WorldWideScience

Sample records for measured experimental quantities

  1. Calibration of uncertain inputs to computer models using experimentally measured quantities and the BMARS emulator

    International Nuclear Information System (INIS)

    Stripling, H.F.; McClarren, R.G.; Kuranz, C.C.; Grosskopf, M.J.; Rutter, E.; Torralva, B.R.

    2011-01-01

    We present a method for calibrating the uncertain inputs to a computer model using available experimental data. The goal of the procedure is to produce posterior distributions of the uncertain inputs such that when samples from the posteriors are used as inputs to future model runs, the model is more likely to replicate (or predict) the experimental response. The calibration is performed by sampling the space of the uncertain inputs, using the computer model (or, more likely, an emulator for the computer model) to assign weights to the samples, and applying the weights to produce the posterior distributions and generate predictions of new experiments within confidence bounds. The method is similar to the Markov chain Monte Carlo (MCMC) calibration methods with independent sampling with the exception that we generate samples beforehand and replace the candidate acceptance routine with a weighting scheme. We apply our method to the calibration of a Hyades 2D model of laser energy deposition in beryllium. We employ a Bayesian Multivariate Adaptive Regression Splines (BMARS) emulator as a surrogate for Hyades 2D. We treat a range of uncertainties in our system, including uncertainties in the experimental inputs, experimental measurement error, and systematic experimental timing errors. The results of the calibration are posterior distributions that both agree with intuition and improve the accuracy and decrease the uncertainty in experimental predictions. (author)

  2. Video Measurements: Quantity or Quality

    Science.gov (United States)

    Zajkov, Oliver; Mitrevski, Boce

    2012-01-01

    Students have problems with understanding, using and interpreting graphs. In order to improve the students' skills for working with graphs, we propose Manual Video Measurement (MVM). In this paper, the MVM method is explained and its accuracy is tested. The comparison with the standardized video data software shows that its accuracy is comparable…

  3. The Radiometric Measurement Quantity for SAR Images

    OpenAIRE

    Döring, Björn J.; Schwerdt, Marco

    2013-01-01

    A Synthetic Aperture Radar (SAR) system measures among other quantities the terrain radar reflectivity. After image calibration, the pixel intensities are commonly expressed in terms of radar cross sections (for point targets) or as backscatter coefficients (for distributed targets), which are directly related. This paper argues that pixel intensities are not generally proportional to radar cross section or derived physical quantities. The paper further proposes to replace the inaccurate term...

  4. Physical quantities, their role and treatment in gasflow measurement techniques

    International Nuclear Information System (INIS)

    Narjes, L.

    1977-06-01

    We begin by taking a closer look at the concepts physical quantity, dimension and unit of measurement. Then a survey is given of the physical quantities applied in gasflow measurement techniques. Here the volume-, as well as the mass-flow rate, as derived quantities are of particular interest. The application of these quantities in relation to the legal units of measurement is specifically described. In addition the quantity equation and further the quantity equation adapted to the use of suitable units and their modes of application are compared. In the appendix four examples clarify these modes. Special attention is paid to the quantity equation adapted to practically oriented units. The applications of this type of equation in VDI regulations, standards and other technical guidelines for measurement of flow are mentioned. Moreover, the meaning of the standard state for the comparison of flows of gaseous fluids is illustrated. The difficulties concerning an international agreement on uniform standard temperature are explained. Starting from there, the advantages of the fundamental quantity 'amount of substance' applied to the measurement of flow are described. The use of this quantity for the thermodynamic state of ideal and real gases, respectively gas mixtures, is demonstrated in the appendix by an example. (orig.) [de

  5. Uncertainty analysis of thermal quantities measurement in a centrifugal compressor

    Science.gov (United States)

    Hurda, Lukáš; Matas, Richard

    2017-09-01

    Compressor performance characteristics evaluation process based on the measurement of pressure, temperature and other quantities is examined to find uncertainties for directly measured and derived quantities. CFD is used as a tool to quantify the influences of different sources of uncertainty of measurements for single- and multi-thermocouple total temperature probes. The heat conduction through the body of the thermocouple probe and the heat-up of the air in the intake piping are the main phenomena of interest.

  6. A colorimeter for measurement of picomole quantities of urea.

    Science.gov (United States)

    Vurek, G G; Knepper, M A

    1982-04-01

    We described a new colorimeter for the measurement of picomole quantities of urea in nanoliter volume fluid samples. The diacetyl monoxime reaction was used to produce a colored product from urea. The method is capable of resolving differences of 10 pmoles between samples containing 0 to 225 pmoles.

  7. Comparison of simulated and measured quantities of a duplex reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koskela, M.; Kajava, M. [ABB Marine, Helsinki (Finland)

    1997-12-31

    The purpose of this article is to illustrate the use of an analog simulator as a design tool when designing new power electric equipment. The purpose of simulation is to predict the functionality of electrical equipment to be constructed. Duplex reactor is an electromagnetic device designed to reduce voltage harmonics and short circuit currents in the ship electrical network. In this report a comparison between simulated and measured electrical quantities of a duplex reactor has been made. The purpose of the measurements was to show the correct functioning of the reactor. The simulation results and the measured waveforms corresponds well to each other. (orig.) 4 refs.

  8. Radiation quantities, units and measurements. Final report 1999

    International Nuclear Information System (INIS)

    Wambersie, A.; Allisy, A.; Caswell, R.S.

    2000-01-01

    The determination of human exposure to radiation and radioactivity, whether arising from environmental exposures, medical practice or industrial activities, requires a fundamental set of quantities and units with which exposures can be specified and the means and ability to make measurements which yield results in terms of these quantities and units. Radiation protection then, as well as effective use of radiation in medical applications, requires the capability to accurately quantify the characteristics and extent of radiation exposure, so that appropriate and useful assessments of the potential health consequences and risks, whether for protection of the public and workers or for diagnosis and treatment of disease, can be formulated. The work carried out via this concerted action on ''Radiation quantities, units and measurements'' has addressed these needs. Measurement of radiation is a complex subject and is a science in itself. Yet many users of radiation who need to make radiation measurements cannot be expected to become experts in this particular field. They need authoritative guidance on how to deal with the measurement problems connected with their particular use of radiation. The work carried out pursuant to this concerted action has resulted in publications that meet this need. Important achievements include the publication of seven new ICRU reports, the completion of all but the printing of three other ICRU reports, completion of the drafting work on two other reports, the development of many others reports and the initiation of seven new activities that will result in ICRU reports representing important future contribution to the needs identified in this project. (orig.)

  9. Evaluating the uncertainty of input quantities in measurement models

    Science.gov (United States)

    Possolo, Antonio; Elster, Clemens

    2014-06-01

    The Guide to the Expression of Uncertainty in Measurement (GUM) gives guidance about how values and uncertainties should be assigned to the input quantities that appear in measurement models. This contribution offers a concrete proposal for how that guidance may be updated in light of the advances in the evaluation and expression of measurement uncertainty that were made in the course of the twenty years that have elapsed since the publication of the GUM, and also considering situations that the GUM does not yet contemplate. Our motivation is the ongoing conversation about a new edition of the GUM. While generally we favour a Bayesian approach to uncertainty evaluation, we also recognize the value that other approaches may bring to the problems considered here, and focus on methods for uncertainty evaluation and propagation that are widely applicable, including to cases that the GUM has not yet addressed. In addition to Bayesian methods, we discuss maximum-likelihood estimation, robust statistical methods, and measurement models where values of nominal properties play the same role that input quantities play in traditional models. We illustrate these general-purpose techniques in concrete examples, employing data sets that are realistic but that also are of conveniently small sizes. The supplementary material available online lists the R computer code that we have used to produce these examples (stacks.iop.org/Met/51/3/339/mmedia). Although we strive to stay close to clause 4 of the GUM, which addresses the evaluation of uncertainty for input quantities, we depart from it as we review the classes of measurement models that we believe are generally useful in contemporary measurement science. We also considerably expand and update the treatment that the GUM gives to Type B evaluations of uncertainty: reviewing the state-of-the-art, disciplined approach to the elicitation of expert knowledge, and its encapsulation in probability distributions that are usable in

  10. Ultracold atoms for precision measurement of fundamental physical quantities

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    Cooling and trapping of neutral atoms has been one of the most active fields of research in physics in recent years. Several methods were demonstrated to reach temperatures as low as a few nanokelvin allowing, for example, the investigation of quantum degenerate gases. The ability to control the quantum degrees of freedom of atoms opens the way to applications for precision measurement of fundamental physical quantities. Experiments in progress, planned or being considered using new quantum devices based on ultracold atoms, namely atom interferometers and atomic clocks, will be discussed.

  11. Physical quantities related to measurement campaigns for cooling towers

    International Nuclear Information System (INIS)

    Boegel, W.

    1975-12-01

    The nomenclature in reports on the measurement campaigns for cooling towers will be adapted as far as possible to the already existing VDI report on this subject. On the other hand, the appropriate standards will also be accounted for. In order to facilitate a decision in individual cases in a first table the meteorologically or generally interesting quantities of the VDI reports are compared with the German, international, and WMO standards and - if necessary - also commented. A second table contains the air humidity parameters standardized by WMO including brief definitions. (orig/HP) [de

  12. Experimental Study on Meso-Scale Milling Process Using Nanofluid Minimum Quantity Lubrication

    International Nuclear Information System (INIS)

    Lee, P. H.; Nam, T. S.; Li, Cheng Jun; Lee, S. W.

    2010-01-01

    This paper present the characteristics of micro- and meso-scale milling processes in which compressed cold air, minimum quantity lubrication (MQL) and MoS 2 nanofluid MQL are used. For process characterization, the micro and meso-scale milling experiments are conducted using desktop meso-scale machine tool system and the surface roughness is measured. The experimental results show that the use of compressed chilly air and nanofluid MQL in the micro- and meso-scale milling processes is effective in improving the surface finish

  13. Measuring Radionuclides in the environment: radiological quantities and sampling designs

    International Nuclear Information System (INIS)

    Voigt, G.

    1998-10-01

    One aim of the workshop was to support and provide an ICRU report committee (International Union of Radiation Units) with actual information on techniques, data and knowledge of modern radioecology when radionuclides are to be measured in the environment. It has been increasingly recognised that some studies in radioecology, especially those involving both field sampling and laboratory measurements, have not paid adequate attention to the problem of obtaining representative, unbiased samples. This can greatly affect the quality of scientific interpretation, and the ability to manage the environment. Further, as the discipline of radioecology has developed, it has seen a growth in the numbers of quantities and units used, some of which are ill-defined and which are non-standardised. (orig.)

  14. Is the dose equivalent index a quantity to be measured

    International Nuclear Information System (INIS)

    Wagner, S.R.

    1980-01-01

    ICRP introduced the concept of Effective Dose Equivalent H(sub)E and fixed the basic limits of radiation exposure in terms of H(sub)I. As H(sub)E cannot be measured, ICRP stated that with external exposure to penetrating radiation the limitation of the Dose Equivalent Index H(sub)I would afford at least as good a level of protection. However, difficulties arise in measuring H(sub)I and in calibrating instruments in terms of H(sub)I, since the height and location of the dose equivalent maximum in the sphere which is the phantom used in the definition of H(sub)I, depend on the energy and the angular distribution of the incident radiation. That is, H(sub)I is not an additive quantity relative to the partial H(sub)I(sub)i-values of the different energy and angular components. Hence, 1) the distribution of dose equivalent in the sphere must be measured in full for a determination of H(sub)I, and 2) it is not possible to calibrate an instrument which does not exhibit the scattering and absorption properties of the sphere, consistently for arbitrary radiation fields in terms of H(sub)I. Thus the calibration in an unidirectional beam would infer an uncertainty which may amount to a factor of up to 4. This would hardly be tolerable as a base for radiation protection provisions. An alternative is to introduce operational quantities which are additive, e.g. 1) the sum of maxima of the dose equivalent distributions in the sphere produced by different radiation components, and 2) the mean dose equivalent in the sphere. Their relation to H(sub)E for different types of radiation and consequences on secondary limits are discussed. (H.K.)

  15. Is the dose equivalent index a quantity to be measured

    International Nuclear Information System (INIS)

    Wagner, S.R.

    1980-01-01

    The following modifying factors are briefly considered in relation to the ambiguities and limitations of the Dose Equivalent Index: 1) Variations with time or of the movement of the exposed person 2) Irradiation geometry 3) Effect of radiation energy 4) Instrument performance and calibration, and other operational quantities. (U.K.)

  16. Water quantity and quality response of a green roof to storm events: Experimental and monitoring observations.

    Science.gov (United States)

    Carpenter, Corey M G; Todorov, Dimitar; Driscoll, Charles T; Montesdeoca, Mario

    2016-11-01

    Syracuse, New York is working under a court-ordered agreement to limit combined sewer overflows (CSO) to local surface waters. Green infrastructure technologies, including green roofs, are being implemented as part of a CSO abatement strategy and to develop co-benefits of diminished stormwater runoff, including decreased loading of contaminants to the wastewater system and surface waters. The objective of this study was to examine the quantity and quality of discharge associated with precipitation events over an annual cycle from a green roof in Syracuse, NY and to compare measurements from this monitoring program with results from a roof irrigation experiment. Wet deposition, roof drainage, and water quality were measured for 87 storm events during an approximately 12 month period over 2011-2012. Water and nutrient (total phosphorus, total nitrogen, and dissolved organic carbon) mass balances were conducted on an event basis to evaluate retention annually and during the growing and non-growing seasons. These results are compared with a hydrological manipulation experiment, which comprised of artificially watering of the roof. Loadings of nutrients were calculated for experimental and actual storms using the concentration of nutrients and the flow data of water discharging the roof. The green roof was effective in retaining precipitation quantity from storm events (mean percent retention 96.8%, SD = 2.7%, n = 87), although the relative fraction of water retained decreased with increases in the size of the event. There was no difference in water retention of the green roof for the growing and non-growing seasons. Drainage waters exhibited high concentration of nutrients during the warm temperature growing season, particularly total nitrogen and dissolved organic carbon. Overall, nutrient losses were low because of the strong retention of water. However, there was marked variation in the retention of nutrients by season due to variations in concentrations in roof

  17. Measuring nanocurie quantities of tritium bred in metallic lithium and lithium oxide samples

    International Nuclear Information System (INIS)

    Bertone, P.C.

    1985-01-01

    The LBM program requires that nanocurie quantities of tritium, bred in both lithium oxide pellets and lithium samples, be measured with an uncertainty not exceeding + or - 6%. Two methods of accurately measuring nanocurie quantities of tritium bred in LBM lithium oxide pellets and one method of accurately measuring nanocurie quantities of tritium bred in lithium samples are described. Potential errors associated with these tritium measurement techniques are also discussed

  18. Experimental verification of nanoparticle jet minimum quantity lubrication effectiveness in grinding

    International Nuclear Information System (INIS)

    Jia, Dongzhou; Li, Changhe; Zhang, Dongkun; Zhang, Yanbin; Zhang, Xiaowei

    2014-01-01

    In our experiment, K-P36 precision numerical control surface grinder was used for dry grinding, minimum quantity lubrication (MQL) grinding, nanoparticle jet MQL grinding, and traditional flood grinding of hardened 45 steel. A three-dimensional dynamometer was used to measure grinding force in the experiment. In this research, experiments were conducted to measure and calculate specific tangential grinding force, frictional coefficient, and specific grinding energy, thus verifying the lubrication performance of nanoparticles in surface grinding. Findings present that compared with dry grinding, the specific tangential grinding force of MQL grinding, nanoparticle jet MQL grinding, and flood grinding decreased by 45.88, 62.34, and 69.33 %, respectively. Their frictional coefficient was reduced by 11.22, 29.21, and 32.18 %, and the specific grinding energy declined by 45.89, 62.34, and 69.45 %, respectively. Nanoparticle jet MQL presented ideal lubrication effectiveness, which was attributed to the friction oil film with strong antifriction and anti-wear features formed by nanoparticles on the grinding wheel/workpiece interface. Moreover, lubricating properties of nanoparticles of the same size (50 nm) but different types were verified through experimentation. In our experiment, ZrO 2 nanoparticles, polycrystal diamond (PCD) nanoparticles, and MoS 2 nanoparticles were used in the comparison of nanoparticle jet MQL grinding. The experimental results manifest that MoS 2 nanoparticles exhibited the optimal lubricating effectiveness, followed by PCD nanoparticles. Our research also integrated the properties of different nanoparticles to analyze the lubrication mechanisms of different nanoparticles. The experiment further verified the impact of nanoparticle concentration on the effectiveness of nanoparticle jet MQL in grinding. The experimental results demonstrate that when the nanoparticle mass fraction was 6 %, the minimum specific tangential grinding force

  19. A Novel Experimental and Modelling Strategy for Nanoparticle Toxicity Testing Enabling the Use of Small Quantities

    Directory of Open Access Journals (Sweden)

    Marinda van Pomeren

    2017-11-01

    Full Text Available Metallic nanoparticles (NPs differ from other metal forms with respect to their large surface to volume ratio and subsequent inherent reactivity. Each new modification to a nanoparticle alters the surface to volume ratio, fate and subsequently the toxicity of the particle. Newly-engineered NPs are commonly available only in low quantities whereas, in general, rather large amounts are needed for fate characterizations and effect studies. This challenge is especially relevant for those NPs that have low inherent toxicity combined with low bioavailability. Therefore, within our study, we developed new testing strategies that enable working with low quantities of NPs. The experimental testing method was tailor-made for NPs, whereas we also developed translational models based on different dose-metrics allowing to determine dose-response predictions for NPs. Both the experimental method and the predictive models were verified on the basis of experimental effect data collected using zebrafish embryos exposed to metallic NPs in a range of different chemical compositions and shapes. It was found that the variance in the effect data in the dose-response predictions was best explained by the minimal diameter of the NPs, whereas the data confirmed that the predictive model is widely applicable to soluble metallic NPs. The experimental and model approach developed in our study support the development of (ecotoxicity assays tailored to nano-specific features.

  20. Fluid Vessel Quantity using Non-Invasive PZT Technology Flight Volume Measurements Under Zero G Analysis

    Science.gov (United States)

    Garofalo, Anthony A.

    2013-01-01

    The purpose of the project is to perform analysis of data using the Systems Engineering Educational Discovery (SEED) program data from 2011 and 2012 Fluid Vessel Quantity using Non-Invasive PZT Technology flight volume measurements under Zero G conditions (parabolic Plane flight data). Also experimental planning and lab work for future sub-orbital experiments to use the NASA PZT technology for fluid volume measurement. Along with conducting data analysis of flight data, I also did a variety of other tasks. I provided the lab with detailed technical drawings, experimented with 3d printers, made changes to the liquid nitrogen skid schematics, and learned how to weld. I also programmed microcontrollers to interact with various sensors and helped with other things going on around the lab.

  1. The estimation of differential counting measurements of possitive quantities with relatively large statistical errors

    International Nuclear Information System (INIS)

    Vincent, C.H.

    1982-01-01

    Bayes' principle is applied to the differential counting measurement of a positive quantity in which the statistical errors are not necessarily small in relation to the true value of the quantity. The methods of estimation derived are found to give consistent results and to avoid the anomalous negative estimates sometimes obtained by conventional methods. One of the methods given provides a simple means of deriving the required estimates from conventionally presented results and appears to have wide potential applications. Both methods provide the actual posterior probability distribution of the quantity to be measured. A particularly important potential application is the correction of counts on low radioacitvity samples for background. (orig.)

  2. The effect of vial type and cocktail quantity on tritium measurement in LSC

    International Nuclear Information System (INIS)

    Chen Zhilin; Xing Shixiong; Wang Heyi; Chang Ruimin; Wu Guanyin; Zhou Yinhang

    2010-01-01

    The effect of sample vial type and cocktail quantity on tritium measurement in liquid scintillation counting is studied in this paper. With both high and low level tritium samples, glass vials allow higher counting rates than plastic vials do. We also present detailed analysis of the way to obtain the optimal counting condition by dispensing different quantity of cocktail into sample vials. Results indicate that the optimal counting condition has little relationship with tritium concentration in the sample. The main factor which influences the counting is the quantity of cocktail added into samples. Figure of merit is employed to access the results, which increases as the quantity of cocktail increasing. But when the ratio of cocktail and sample reaches 2.0, increase of ratio makes little contribution to the counts, and the disintegrations per minute comes nearly to be a constant.

  3. Operational quantities for use in external radiation protection measurements. An investigation of concepts and principles

    International Nuclear Information System (INIS)

    1983-01-01

    Under the terms of the Euratom Treaty the Commission of the European Communities is required to draw up basic standards for the health protection of the general public and workers against the dangers arising from ionizing radiation. The basic standards lay down reference values for particular quantities; these values are required to be measured, and appropriate steps taken to ensure that they are not exceeded. To ensure that the basic standards are applied uniformly in the Member States, it is necessary to harmonize not only national laws but also measurement and recording techniques. As a practical contribution towards this objective, the Commission has since 1964 been conducting intercomparison programmes on operational radiation protection dosimetry. Effective monitoring against the dangers of ionizing radiation cannot be guaranteed unless the measuring instruments meet the necessary requirements, the quantities measured are those for which limit values have been laid down, and the instruments can be calibrated unequivocally. The differences between the concepts of quantity and unit of measurement in radiation protection were often unclear. In the light of developments at international level, the introduction of the international system of units of measurements (SI units) and the contents of ICRP Publication No 26, the services of the European Community responsible for radiation protection decided to review the whole question of quantities. The introduction of the 'index' quantities (absorbed dose index and dose equivalent index) was greeted with initial enthusiasm, but it soon became clear, on closer critical examination, that these too had major shortcomings. The Commission, in collaboration with experts from the Member States of the European Community, has therefore set out in this publication the various considerations and points of view concerning the use of these quantities in practical dosimetry. It is hoped that this publication will be of use to all

  4. A Neural Network Approach to Fluid Quantity Measurement in Dynamic Environments

    CERN Document Server

    Terzic, Edin; Nagarajah, Romesh; Alamgir, Muhammad

    2012-01-01

    Sloshing causes liquid to fluctuate, making accurate level readings difficult to obtain in dynamic environments. The measurement system described uses a single-tube capacitive sensor to obtain an instantaneous level reading of the fluid surface, thereby accurately determining the fluid quantity in the presence of slosh. A neural network based classification technique has been applied to predict the actual quantity of the fluid contained in a tank under sloshing conditions.   In A neural network approach to fluid quantity measurement in dynamic environments, effects of temperature variations and contamination on the capacitive sensor are discussed, and the authors propose that these effects can also be eliminated with the proposed neural network based classification system. To examine the performance of the classification system, many field trials were carried out on a running vehicle at various tank volume levels that range from 5 L to 50 L. The effectiveness of signal enhancement on the neural network base...

  5. A Model to Determinate the Influence of Probability Density Functions (PDFs of Input Quantities in Measurements

    Directory of Open Access Journals (Sweden)

    Jesús Caja

    2016-06-01

    Full Text Available A method for analysing the effect of different hypotheses about the type of the input quantities distributions of a measurement model is presented here so that the developed algorithms can be simplified. As an example, a model of indirect measurements with optical coordinate measurement machine was employed to evaluate these different hypotheses. As a result of the different experiments, the assumption that the different variables of the model can be modelled as normal distributions is proved.

  6. MEASUREMENT AND PRECISION, EXPERIMENTAL VERSION.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    THIS DOCUMENT IS AN EXPERIMENTAL VERSION OF A PROGRAMED TEXT ON MEASUREMENT AND PRECISION. PART I CONTAINS 24 FRAMES DEALING WITH PRECISION AND SIGNIFICANT FIGURES ENCOUNTERED IN VARIOUS MATHEMATICAL COMPUTATIONS AND MEASUREMENTS. PART II BEGINS WITH A BRIEF SECTION ON EXPERIMENTAL DATA, COVERING SUCH POINTS AS (1) ESTABLISHING THE ZERO POINT, (2)…

  7. Definition, significance and measurement of quantities pertaining to the oxygen carrying properties of human blood

    NARCIS (Netherlands)

    Zijlstra, WG; Maas, AHJ; Moran, RF

    1996-01-01

    A consistent set of definitions is given of the principal quantities pertaining to the oxygen transport by the blood, and of their mutual relationships, in relation to the methods used in their measurement. At the core is the correct definition of oxygen saturation, the deviation of which has

  8. Arrangement for the measurement of the quantity of asphalt in an asphaltic compound

    International Nuclear Information System (INIS)

    Noma, I.; Taniguchi, K.

    1978-01-01

    The arrangement for the measurement of the quantity of asphalt in an asphaltic compound in an apparatus for the mixture of asphalt components and an aggregate for the formation of an asphaltic compound characterized by the inclusion of a member for the transmission of a neutron beam which reacts with the hydrogen atoms in the asphaltic compound in such a way that the energy of a neutron beam is adsorbed; a continuous transport device feeds a continuous supply of the asphalt compound past the neutron beam; a member responds to an automatic detector for the quantity of asphaltic components in the asphaltic compound and provides an adjustment so that the quantity [of asphaltic components in asphaltic compound] may be held at a constant value. (G.C.)

  9. The experimental determination of the relationship between the energising time of the common rail injector and the set fuel quantity and rail pressure

    Directory of Open Access Journals (Sweden)

    Pietras Dariusz

    2017-01-01

    Full Text Available The article discusses the issue of experimentally determining the relationship between the energising time of the common rail electromagnetic injector and the set fuel quantity and rail pressure. Experimental studies according to the assumed methodology were made on a test bench enabling the dynamic flow rate measurement of the injector. The fuel system mounted on the test bench was controlled by the laboratory CI engine control unit based on the original concept of one of the authors of the article. The results of the experimental studies have made it possible to determine many of the characteristics of the fuel flow rate depending on the specified rail pressure and the energising time of the injector. An analysis was then performed followed by extrapolation of the obtained results. The data obtained from these analyses are the basis for the development of the energising time control algorithm based on a set fuel quantity and rail pressure.

  10. Experimental measurements and mathematics; Les mesures experimentales et les mathematiques

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, I.; Bruno, S.; Durand, O.; Gaillard, P.; Lagrange, J.M.; Lamy, F.; Peyrat, J.P. [CEA Bruyeres-le-Chatel, 91 (France); Choux, A.; Druoton, L.; Pascal, G.; Sulpice, F. [CEA Valduc, 21 - Is-sur-Tille (France); Busvelle, E.; Garnier, L. [Universite de Bourgogne, Lab. d' Electronique, Informatique et Image, 21 - Dijon (France); Gauthier, J.P. [Laboratoire des Sciences de l' Information et des Systemes, 83 - Toulon (France); Langevin, R. [Institut Mathematique de Bourgogne, 21 - Dijon (France)

    2011-01-15

    Many problems that appear in experimental works can be solved by using mathematical methods, from the conception phase to the interpretation of measurements. We illustrate the use of these methods at CEA-DAM by pointing out some examples in 3 typical domains: treatment of experimental data, geometrical controls of targets, and analysis of a huge quantity of data. (authors)

  11. Experimental techniques and measurement accuracies

    International Nuclear Information System (INIS)

    Bennett, E.F.; Yule, T.J.; DiIorio, G.; Nakamura, T.; Maekawa, H.

    1985-02-01

    A brief description of the experimental tools available for fusion neutronics experiments is given. Attention is paid to error estimates mainly for the measurement of tritium breeding ratio in simulated blankets using various techniques

  12. Approach to determine measurement uncertainty in complex nanosystems with multiparametric dependencies and multivariate output quantities

    Science.gov (United States)

    Hampel, B.; Liu, B.; Nording, F.; Ostermann, J.; Struszewski, P.; Langfahl-Klabes, J.; Bieler, M.; Bosse, H.; Güttler, B.; Lemmens, P.; Schilling, M.; Tutsch, R.

    2018-03-01

    In many cases, the determination of the measurement uncertainty of complex nanosystems provides unexpected challenges. This is in particular true for complex systems with many degrees of freedom, i.e. nanosystems with multiparametric dependencies and multivariate output quantities. The aim of this paper is to address specific questions arising during the uncertainty calculation of such systems. This includes the division of the measurement system into subsystems and the distinction between systematic and statistical influences. We demonstrate that, even if the physical systems under investigation are very different, the corresponding uncertainty calculation can always be realized in a similar manner. This is exemplarily shown in detail for two experiments, namely magnetic nanosensors and ultrafast electro-optical sampling of complex time-domain signals. For these examples the approach for uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) is explained, in which correlations between multivariate output quantities are captured. To illustate the versatility of the proposed approach, its application to other experiments, namely nanometrological instruments for terahertz microscopy, dimensional scanning probe microscopy, and measurement of concentration of molecules using surface enhanced Raman scattering, is shortly discussed in the appendix. We believe that the proposed approach provides a simple but comprehensive orientation for uncertainty calculation in the discussed measurement scenarios and can also be applied to similar or related situations.

  13. Ultrasonic fluid quantity measurement in dynamic vehicular applications a support vector machine approach

    CERN Document Server

    Terzic, Jenny; Nagarajah, Romesh; Alamgir, Muhammad

    2013-01-01

    Accurate fluid level measurement in dynamic environments can be assessed using a Support Vector Machine (SVM) approach. SVM is a supervised learning model that analyzes and recognizes patterns. It is a signal classification technique which has far greater accuracy than conventional signal averaging methods. Ultrasonic Fluid Quantity Measurement in Dynamic Vehicular Applications: A Support Vector Machine Approach describes the research and development of a fluid level measurement system for dynamic environments. The measurement system is based on a single ultrasonic sensor. A Support Vector Machines (SVM) based signal characterization and processing system has been developed to compensate for the effects of slosh and temperature variation in fluid level measurement systems used in dynamic environments including automotive applications. It has been demonstrated that a simple ν-SVM model with Radial Basis Function (RBF) Kernel with the inclusion of a Moving Median filter could be used to achieve the high levels...

  14. Experimental study of quantity to be taken as patient dose in helical multi-slice CT scan

    International Nuclear Information System (INIS)

    Liu Lantao; Wei Kedao; Yue Brorong; Wang Jianchao

    2009-01-01

    Objective: To bring forward a novel quantity which is used to be taken as effective dose in helical multi - slice CT scan and to validate it by experiment. Methods: Dot chamber and pencil-chamber were used to measure the doses which were performed under axial mode and helical multi-slice mode. Then the readings of doses were compared and analyzed. Results: The dose reading from dot chamber was close to the one from pencil - chamber under axial mode. The ratio is 1.14 for the readings from dot chamber under two scan modes and is 2.88 for the readings from pencil-chamber under two scan modes. Conclusions: The dose measured from dot chamber is an effective quantity to be taken as effective dose. However it is insufficient that the CTDI and DLP be used to be taken as effective dose as the limitation of pencil-chamber in length. (authors)

  15. Application of an experimental irradiation facility type K-120 for the radiation treatment of agricultural products in large quantity

    International Nuclear Information System (INIS)

    Stenger, V.; Foeldiak, G.; Horvath, I.; Hargittai, P.; Bartfai, Cs.

    1979-01-01

    During experimental and pilot irradiation carried out by the 60 Co irradiation facility type K-120 of the Institute of Isotopes of the Hungarian Academy of Sciences an irradiation technology for the treatment of agricultural and food products of considerable density has been developed. Applying transport containers of commercial size the intermittent radiation treatment of great quantity products was made possible with homogeneous dose distribution. The radiation technical characteristics, the utilization coefficient and the capacity of the facility for every agricultural product were calculated. (author)

  16. The Impact of the Support System’s Kinematic Structure on Selected Kinematic and Dynamic Quantities of an Experimental Crane

    Directory of Open Access Journals (Sweden)

    Trąbka Arkadiusz

    2014-12-01

    Full Text Available This paper presents a comparative analysis of two kinematic structures of the support system (with supports with bilateral and unilateral constraints, which were used in an experimental model of a crane. The computational model was developed by using the ADAMS software. The impact of the kinematic structure of the support system on selected kinematic and dynamic values that were recorded during the slewing motion was analysed. It was found, among other things, that an increased number of degrees of freedom of the support system leads to multiple distortions of time characteristics of kinematic and dynamic quantities.

  17. Flip-flop electrometer: a system for measuring radiation and other physical quantities

    International Nuclear Information System (INIS)

    Santos, Luiz Antonio P.

    2007-01-01

    Several nuclear instrumentation systems operate based on the electrometer technique: dosimetry, spectrometry and calibration. In general, electrometers are expensive and require a sophisticated calibration at secondary laboratories. The problem is that the electrical current is very low, picoampere or femtoampere, and it is very difficult to be measured. The purpose of this work is to show an electrometer system based on the flip-flop circuitry that can be used in innumerous applications in accurate instrumentation and metrology of physical quantities. Actually, an electronic flip-flop register is used as frequency generator. It was possible to build it by using an analog-digital feedback (ADF) between the device output and a schimitt-trigger field sensor (STFS) at the device input. When a very low electrical current enters in the STFS circuitry the output change the logical state and the ADF circuitry acts in the input to make the circuit oscillate. The digital oscillation frequency is proportional to the very low input current which comes from a radiation detector or scintillation dosimeter. The Flip-flop electrometer R was calibrated with a 6430 Keithley R sub-femto-amperemeter. The great advantage is its low cost and it can be used for measurements of any type of detector or transducer: ion chamber, photodiode, phototransistor, scintillator, TLD or temperature, pressure and humidity sensor, etc. An application software that controls the Flip-flop electrometer will also be presented. The software, called DoseX, can program the instrument, change the conversion factors from different detection systems and choose the physical quantity to be measured dependent on the transducer. (author)

  18. Toward new instruments for measurement of low concentration hydrogen sulfide in small-quantity aqueous solutions

    International Nuclear Information System (INIS)

    Wu, Xiao Chu; Wu, Dong Qing; Zhang, W J; Sammynaiken, R; Yang, Wei; Wang, Rui

    2008-01-01

    Endogenously generated hydrogen sulfide (H 2 S) has been found to play some important physiological roles in the nervous and cardiovascular systems, such as a neuromodulator and a vasorelaxant. These roles are in contrast to our common perception that H 2 S is toxic. However, whether H 2 S plays a positive or negative role is dependent on the H 2 S concentration levels in mammals. This further puts a high demand on the accurate measurement of H 2 S in mammals with a further desire to be real time, continuous and in vivo. Existing methods for H 2 S measurement require a large number of tissue samples with complex procedures, and these methods are extremely invasive. The development of new in vivo and real-time methods for measuring H 2 S is, however, a great challenge. In the present study, we proposed and examined five potential H 2 S measurement methods: (1) atomic force microscopy with coating materials, (2) Raman spectroscopy on the H 2 S solutions, (3) gas chromatography/mass spectroscopy (with the static headspace technique) on the H 2 S solutions, (4) mass spectroscopy on unfunctionalized carbon nanotubes treated with the H 2 S solutions and (5) Raman spectroscopy on unfunctionalized carbon nanotubes treated with the H 2 S solutions. Our study concluded that method (5) is the most promising one for detecting low concentration H 2 S in small-quantity aqueous solutions in terms of measurement resolution and non-invasiveness, but the method is not very robust

  19. Measurement of uranium quantities by fluorescence-X using neuronal techniques

    International Nuclear Information System (INIS)

    Vigneron, V.; Martinez, J.M.; Simon, A.C.; Junca, R.

    1995-01-01

    Layered neural networks are a class of models based on neural computation in biological systems. Connexionists models are made of a large number of simple computing structures, highly interconnected. The weights assigned to the connections enable the encoding of the knowledge required for a task. They can be trained to learn any input-output relation after selecting a suitable architecture. This method appears useful in those cases in which a simple operation and a fast response are needed, together with a reasonable accuracy. They are applied here to the automatic analysis of X-ray fluorescence spectra, obtained with plastic bottles irradiate by collimated beam of photons, emitted by a sealed source of iridium. The method could allow the surveillance of the measurement of uranium quantities in nuclear fuel cycles in processing plants. (authors). 11 refs., 4 figs

  20. Water quality and quantity assessment of pervious pavements performance in experimental car park areas.

    Science.gov (United States)

    Sañudo-Fontaneda, Luis A; Charlesworth, Susanne M; Castro-Fresno, Daniel; Andres-Valeri, Valerio C A; Rodriguez-Hernandez, Jorge

    2014-01-01

    Pervious pavements have become one of the most used sustainable urban drainage system (SUDS) techniques in car parks. This research paper presents the results of monitoring water quality from several experimental car park areas designed and constructed in Spain with bays made of interlocking concrete block pavement, porous asphalt, polymer-modified porous concrete and reinforced grass with plastic and concrete cells. Moreover, two different sub-base materials were used (limestone aggregates and basic oxygen furnace slag). This study therefore encompasses the majority of the materials used as permeable surfaces and sub-base layers all over the world. Effluent from the test bays was monitored for dissolved oxygen, pH, electric conductivity, total suspended solids, turbidity and total petroleum hydrocarbons in order to analyze the behaviour shown by each combination of surface and sub-base materials. In addition, permeability tests were undertaken in all car parks using the 'Laboratorio Caminos Santander' permeameter and the Cantabrian Portable Infiltrometer. All results are presented together with the influence of surface and sub-base materials on water quality indicators using bivariate correlation statistical analysis at a confidence level of 95%. The polymer-modified porous concrete surface course in combination with limestone aggregate sub-base presented the best performance.

  1. Measurement of new operational quantities with radiation protection instruments designed for working area monitoring and for individual monitoring

    International Nuclear Information System (INIS)

    Prigent, R.; Chary, J.; Chemtob, M.

    1992-01-01

    The ICRP recommended a dose limitation system based on numerical evaluation of the dose equivalent to organs or tissues, H T , which are used to calculate the effective dose, H E , by weighting. The ICRU proposed new operational quantities accessible to measurement which are conservative with respect to these recommendations. The objective of this paper is to recall briefly the basic recommendations and to find out if radiation protection instruments presently used calibrated in terms of the previous quantities are capable to measure these new quantities. A dozen of practical cases are presented. (author)

  2. Measurement of new operational quantities with radiation protection instruments designed for working area monitoring and for individual monitoring

    International Nuclear Information System (INIS)

    Prigent, R.; Chary, J.; Chemtob, M.; Lebouleux, P.

    1992-01-01

    The ICRP recommended a dose limitation system based on numerical evaluation of the dose equivalent to organs or tissues, H T , which are used to calculate the effective dose, H E , by weighting. The ICRU proposed new operational quantities accessible to measurement which are conservative with respect to these recommendations. The objective of this paper is to recall briefly the basic recommendations and to find out if radiation protection instruments presently used calibrated in terms of the previous quantities are capable to measure these new quantities. A dozen of practical cases are presented

  3. Relationship between Performance of Quantity Surveying Students in Building Construction and Construction Measurement Courses

    Directory of Open Access Journals (Sweden)

    Olatunde Nathaniel Ayinde

    2018-01-01

    Full Text Available Stakeholders in the educational sector over the century have devoted substantial resources in seeking ways of improving students’ academic performance, yet, the desired improved academic performance has not been achieved. By appraising the relationship between the performance of Quantity Surveying (QS students in Building Construction and Construction Measurement courses; the study identified a major curriculum drafting deficiency in the QS programmes in Nigeria which if addressed could help achieve the much needed improved students’ academic performance. The specific objectives of the study were to determine the performance of QS students in Building construction and construction Measurement Courses; and to determine whether a relationship exist in the performances of QS students in the two subject areas. Purposive sampling technique was used to select Federal Polytechnic Ede, Osun State for the study. Random sampling technique was used to select 241 students who provide data for the study. Close ended questionnaire was used to collect data for the study and data was analyzed using frequency, percentile and correlation analysis. Finding indicates that 43% of the respondents on the average put up good performances in Building Construction Courses while only 19% of the respondents on the average had good grades in Construction Measurement Courses. Results also showed that a significant relationship exist between the performance of QS students in Building Construction and Construction Measurement courses as 83.3% (five out of six pair courses shows significant positive linear correlation. The study recommends that a quick curriculum re-adjustment should be initiated so as to enhance improved academic performance by QS Students especially in Construction Measurement courses.

  4. High Throughput Microplate Respiratory Measurements Using Minimal Quantities Of Isolated Mitochondria

    Science.gov (United States)

    Rogers, George W.; Brand, Martin D.; Petrosyan, Susanna; Ashok, Deepthi; Elorza, Alvaro A.; Ferrick, David A.; Murphy, Anne N.

    2011-01-01

    Recently developed technologies have enabled multi-well measurement of O2 consumption, facilitating the rate of mitochondrial research, particularly regarding the mechanism of action of drugs and proteins that modulate metabolism. Among these technologies, the Seahorse XF24 Analyzer was designed for use with intact cells attached in a monolayer to a multi-well tissue culture plate. In order to have a high throughput assay system in which both energy demand and substrate availability can be tightly controlled, we have developed a protocol to expand the application of the XF24 Analyzer to include isolated mitochondria. Acquisition of optimal rates requires assay conditions that are unexpectedly distinct from those of conventional polarography. The optimized conditions, derived from experiments with isolated mouse liver mitochondria, allow multi-well assessment of rates of respiration and proton production by mitochondria attached to the bottom of the XF assay plate, and require extremely small quantities of material (1–10 µg of mitochondrial protein per well). Sequential measurement of basal, State 3, State 4, and uncoupler-stimulated respiration can be made in each well through additions of reagents from the injection ports. We describe optimization and validation of this technique using isolated mouse liver and rat heart mitochondria, and apply the approach to discover that inclusion of phosphatase inhibitors in the preparation of the heart mitochondria results in a specific decrease in rates of Complex I-dependent respiration. We believe this new technique will be particularly useful for drug screening and for generating previously unobtainable respiratory data on small mitochondrial samples. PMID:21799747

  5. High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria.

    Directory of Open Access Journals (Sweden)

    George W Rogers

    Full Text Available Recently developed technologies have enabled multi-well measurement of O(2 consumption, facilitating the rate of mitochondrial research, particularly regarding the mechanism of action of drugs and proteins that modulate metabolism. Among these technologies, the Seahorse XF24 Analyzer was designed for use with intact cells attached in a monolayer to a multi-well tissue culture plate. In order to have a high throughput assay system in which both energy demand and substrate availability can be tightly controlled, we have developed a protocol to expand the application of the XF24 Analyzer to include isolated mitochondria. Acquisition of optimal rates requires assay conditions that are unexpectedly distinct from those of conventional polarography. The optimized conditions, derived from experiments with isolated mouse liver mitochondria, allow multi-well assessment of rates of respiration and proton production by mitochondria attached to the bottom of the XF assay plate, and require extremely small quantities of material (1-10 µg of mitochondrial protein per well. Sequential measurement of basal, State 3, State 4, and uncoupler-stimulated respiration can be made in each well through additions of reagents from the injection ports. We describe optimization and validation of this technique using isolated mouse liver and rat heart mitochondria, and apply the approach to discover that inclusion of phosphatase inhibitors in the preparation of the heart mitochondria results in a specific decrease in rates of Complex I-dependent respiration. We believe this new technique will be particularly useful for drug screening and for generating previously unobtainable respiratory data on small mitochondrial samples.

  6. Measuring influenza RNA quantity after prolonged storage or multiple freeze/thaw cycles.

    Science.gov (United States)

    Granados, Andrea; Petrich, Astrid; McGeer, Allison; Gubbay, Jonathan B

    2017-09-01

    In this study, we aim to determine what effects prolonged storage and repeated freeze/thaw cycles have on the stability of influenza A(H1N1)pdm09 (influenza A/H1N1)RNA. Cloned influenza A/H1N1 RNA transcripts were serially diluted from 8.0-1.0 log 10 copies/μl. RT-qPCR was used to measure RNA loss in transcripts stored at -80°C, -20°C, 4°C and 25°C for up to 84days or transcripts undergoing a total of 10 freeze/thaw cycles. Viral load was measured in clinical specimens stored at-80°C for three years (n=89 influenza A RNA extracts; n=35 primary specimens) and in 10 clinical specimens from the 2015/2016 influenza season that underwent 7 freeze/thaw cycles. RNA stored at -80°C, -20°C, 4°C and 25°C is stable for up to 56, 56, 21, and 7days respectively or up to 9 freeze/thaw cycles when stored at -80°C. There is no difference in viral load in clinical specimens that have been stored for up to three years at -80°C if they are re-extracted. Similarly, clinical specimens undergoing up to 7 freeze/thaw cycles are stable if they are re-extracted between cycles. Influenza specimens can be stored for up to three years at -80°C or undergo up to 7 freeze/thaw cycles without loss of RNA quantity if re-extracted. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Measurement of the quantity of water in organic solvents by infrared absorption an measurement of the dielectric constants

    International Nuclear Information System (INIS)

    Desnoyer, M.

    1959-06-01

    Some chemical methods for the analysis of the quantity of water in solvents are first described, their object being the determination of the maximum error for cases where the water content is less than 1 per cent. - The first part of the work consists in describing infrared spectrometry as applied to the analysis of water in carbon tetrachloride, chloroform aniline, acetone and dioxane. A method based on isotopic exchange between heavy and light water is used on the one hand for determining the solubility of water in carbon tetrachloride and on the other hand for establishing standard solutions (sensitivity of the method). - In the second part the dielectric constant of water solvent solutions is measured. A table is presented giving the precision obtained by the two principal methods. These are comparable and further than that the appearance of the spectra suggests an interpretation of the anomalies observed in calibration curves obtained by the dielectric constant method. (author) [fr

  8. Thermal quantities of 46Ti

    International Nuclear Information System (INIS)

    Rahmatinejad, A.; Razavi, R.; Kakavand, T.

    2015-01-01

    Thermodynamic quantities of 46 Ti have been calculated in the framework of the BCS model with inclusion of modified nuclear pairing gap (MPBCS) that was proposed in our previous publication. Using modified paring gap results in an S-shaped heat capacity curve at critical temperature with a smooth behavior instead of singular behavior of the same curve in the BCS calculations. In addition the thermal quantities have been extracted within the framework of a canonical ensemble according to the new experimental data on nuclear level densities measured by the Oslo group. Comparison shows a good agreement between our calculations in MPBCS and the extracted quantities in the canonical ensemble framework

  9. Uncertainties in the measured quantities of water leaving waste Tank 241-C-106 via the ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Minteer, D.J.

    1995-01-23

    The purpose of this analysis is to estimate the uncertainty in the measured quantity of water which typically leaves Tank 241-C-106 via the ventilation system each month. Such measurements are essential for heat removal estimation and tank liquid level verification purposes. The uncertainty associated with the current, infrequent, manual method of measurement (involves various psychrometric and pressure measurements) is suspected to be unreasonably high. Thus, the possible reduction of this uncertainty using a continuous, automated method of measurement will also be estimated. There are three major conclusions as a result of this analysis: (1) the uncertainties associated with the current (infrequent, manual) method of measuring the water which typically leaves Tank 241-C-106 per month via the ventilation system are indeed quite high (80% to 120%); (2) given the current psychrometric and pressure measurement methods and any tank which loses considerable moisture through active ventilation, such as Tank 241-C-106, significant quantities of liquid can actually leak from the tank before a leak can be positively identified via liquid level measurement; (3) using improved (continuous, automated) methods of taking the psychrometric and pressure measurements, the uncertainty in the measured quantity of water leaving Tank 241-C-106 via the ventilation system can be reduced by approximately an order of magnitude.

  10. Uncertainties in the measured quantities of water leaving waste Tank 241-C-106 via the ventilation system

    International Nuclear Information System (INIS)

    Minteer, D.J.

    1995-01-01

    The purpose of this analysis is to estimate the uncertainty in the measured quantity of water which typically leaves Tank 241-C-106 via the ventilation system each month. Such measurements are essential for heat removal estimation and tank liquid level verification purposes. The uncertainty associated with the current, infrequent, manual method of measurement (involves various psychrometric and pressure measurements) is suspected to be unreasonably high. Thus, the possible reduction of this uncertainty using a continuous, automated method of measurement will also be estimated. There are three major conclusions as a result of this analysis: (1) the uncertainties associated with the current (infrequent, manual) method of measuring the water which typically leaves Tank 241-C-106 per month via the ventilation system are indeed quite high (80% to 120%); (2) given the current psychrometric and pressure measurement methods and any tank which loses considerable moisture through active ventilation, such as Tank 241-C-106, significant quantities of liquid can actually leak from the tank before a leak can be positively identified via liquid level measurement; (3) using improved (continuous, automated) methods of taking the psychrometric and pressure measurements, the uncertainty in the measured quantity of water leaving Tank 241-C-106 via the ventilation system can be reduced by approximately an order of magnitude

  11. EXPERIMENTAL MEASUREMENT, ANALYSIS AND MODELLING ...

    African Journals Online (AJOL)

    30 juin 2010 ... We obtain a good agreement between the resolution of the nonlinear equation of heat and the results obtained by the experimentation. . Keywords: Emissivity, Température, optimal Linearisation, finite elements. 1. ..... basse température, Rapport de Stage de D.E.A, Université Paris 12 – Val de Marne.

  12. Technology development for evaluation of operational quantities and measurement standard in radiation protection

    International Nuclear Information System (INIS)

    Chang, Si Young; Lee, T. Y.; Kim, J. L.; Kim, B. H.; Chung, K. K.; Lee, J. I.; Park, T. S.; Ha, S. H.; Oh, P. J.; Jun, K. J.

    1999-03-01

    A study on the fabrication of a new personal thermo-luminescence dosimeter, which can evaluate the personal dose equivalent H p (d), has been performed. Optimum conditions for fabrications of a LiF:Mg, Cu, Na, Si TL phosphor powder has been determined and a disc type TL pellet has been fabricated from this TL powder. Another type of CaSO 4 :Dy, Mo TL material has been also fabricated. These two TL materials have shown greater TL sensitivity than the foreign-made commercial TL materials. Mono-energetic florescence X-rays from 8.6 response have been constructed and evaluated for the performance of the purity, air kerma, beam uniformity and distribution,and scattered fraction of X-rays. A free-air ionization chamber for the absolute measurement of air kerma in medium X-ray has been designed and constructed. Experimental results showed that the homemade chamber leaves nothing to be desired, compared with the national standard chambers in other advanced countries. Gas proportional counting system has been designed and constructed for absolute activity measurements of gaseous radionuclides. Unattached fractions of radon progeny were evaluated in the characteristic study on the detection of radon progeny

  13. Technology development for evaluation of operational quantities and measurement standard in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Si Young; Lee, T. Y.; Kim, J. L.; Kim, B. H.; Chung, K. K.; Lee, J. I.; Park, T. S.; Ha, S. H.; Oh, P. J.; Jun, K. J

    1999-03-01

    A study on the fabrication of a new personal thermo-luminescence dosimeter, which can evaluate the personal dose equivalent H{sub p}(d), has been performed. Optimum conditions for fabrications of a LiF:Mg, Cu, Na, Si TL phosphor powder has been determined and a disc type TL pellet has been fabricated from this TL powder. Another type of CaSO{sub 4}:Dy, Mo TL material has been also fabricated. These two TL materials have shown greater TL sensitivity than the foreign-made commercial TL materials. Mono-energetic florescence X-rays from 8.6 response have been constructed and evaluated for the performance of the purity, air kerma, beam uniformity and distribution,and scattered fraction of X-rays.A free-air ionization chamber for the absolute measurement of air kerma in medium X-ray has been designed and constructed. Experimental results showed that the homemade chamber leaves nothing to be desired, compared with the national standard chambers in other advanced countries. Gas proportional counting system has been designed and constructed for absolute activity measurements of gaseous radionuclides. Unattached fractions of radon progeny were evaluated in the characteristic study on the detection of radon progeny.

  14. Testing the algorithms for automatic identification of errors on the measured quantities of the nuclear power plant. Verification tests

    International Nuclear Information System (INIS)

    Svatek, J.

    1999-12-01

    During the development and implementation of supporting software for the control room and emergency control centre at the Dukovany nuclear power plant it appeared necessary to validate the input quantities in order to assure operating reliability of the software tools. Therefore, the development of software for validation of the measured quantities of the plant data sources was initiated, and the software had to be debugged and verified. The report contains the proposal for and description of the verification tests for testing the algorithms of automatic identification of errors on the observed quantities of the NPP by means of homemade validation software. In particular, the algorithms treated serve the validation of the hot leg temperature at primary circuit loop no. 2 or 4 at the Dukovany-2 reactor unit using data from the URAN and VK3 information systems, recorded during 3 different days. (author)

  15. Immunocapture and microplate-based activity and quantity measurement of pyruvate dehydrogenase in human peripheral blood mononuclear cells.

    Science.gov (United States)

    Liu, Xiaowen; Pervez, Hira; Andersen, Lars W; Uber, Amy; Montissol, Sophia; Patel, Parth; Donnino, Michael W

    2015-01-01

    Pyruvate dehydrogenase (PDH) activity is altered in many human disorders. Current methods require tissue samples and yield inconsistent results. We describe a modified method for measuring PDH activity from isolated human peripheral blood mononuclear cells (PBMCs). RESULTS/METHODOLOGY: We found that PDH activity and quantity can be successfully measured in human PBMCs. Freeze-thaw cycles cannot efficiently disrupt the mitochondrial membrane. Processing time of up to 20 h does not affect PDH activity with proteinase inhibitor addition and a detergent concentration of 3.3% showed maximum yield. Sample protein concentration is correlated to PDH activity and quantity in human PBMCs from healthy subjects. Measuring PDH activity from PBMCs is a novel, easy and less invasive way to further understand the role of PDH in human disease.

  16. Immunocapture and microplate-based activity and quantity measurement of pyruvate dehydrogenase in human peripheral blood mononuclear cells

    Science.gov (United States)

    Liu, Xiaowen; Pervez, Hira; Andersen, Lars W; Uber, Amy; Montissol, Sophia; Patel, Parth; Donnino, Michael W

    2015-01-01

    Background Pyruvate dehydrogenase (PDH) activity is altered in many human disorders. Current methods require tissue samples and yield inconsistent results. We describe a modified method for measuring PDH activity from isolated human peripheral blood mononuclear cells (PBMCs). Results/Methodology We found that PDH activity and quantity can be successfully measured in human PBMCs. Freeze-thaw cycles cannot efficiently disrupt the mitochondrial membrane. Processing time of up to 20 h does not affect PDH activity with proteinase inhibitor addition and a detergent concentration of 3.3% showed maximum yield. Sample protein concentration is correlated to PDH activity and quantity in human PBMCs from healthy subjects. Conclusion Measuring PDH activity from PBMCs is a novel, easy and less invasive way to further understand the role of PDH in human disease. PMID:25826140

  17. Deriving Structural Information from Experimentally Measured Data on Biomolecules.

    Science.gov (United States)

    van Gunsteren, Wilfred F; Allison, Jane R; Daura, Xavier; Dolenc, Jožica; Hansen, Niels; Mark, Alan E; Oostenbrink, Chris; Rusu, Victor H; Smith, Lorna J

    2016-12-23

    During the past half century, the number and accuracy of experimental techniques that can deliver values of observables for biomolecular systems have been steadily increasing. The conversion of a measured value Q exp of an observable quantity Q into structural information is, however, a task beset with theoretical and practical problems: 1) insufficient or inaccurate values of Q exp , 2) inaccuracies in the function Q(r→) used to relate the quantity Q to structure r→ , 3) how to account for the averaging inherent in the measurement of Q exp , 4) how to handle the possible multiple-valuedness of the inverse r→(Q) of the function Q(r→) , to mention a few. These apply to a variety of observable quantities Q and measurement techniques such as X-ray and neutron diffraction, small-angle and wide-angle X-ray scattering, free-electron laser imaging, cryo-electron microscopy, nuclear magnetic resonance, electron paramagnetic resonance, infrared and Raman spectroscopy, circular dichroism, Förster resonance energy transfer, atomic force microscopy and ion-mobility mass spectrometry. The process of deriving structural information from measured data is reviewed with an eye to non-experts and newcomers in the field using examples from the literature of the effect of the various choices and approximations involved in the process. A list of choices to be avoided is provided. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Automatic apparatus for measuring thermophysical quantities controlled by calculator EMG 666

    International Nuclear Information System (INIS)

    Kubicar, L.; Illekova, E.

    1984-01-01

    Automatic system for measuring thermal diffusivity, thermal conductivity and heat capacity of samples is described. Measurements are performed by the pulse method in the temperature range from -150 to 1500 deg C. The measuring CAMAC equipment connected with the EMG 666 computer. Data processing is carried out by 100-400 measurement points (measuring cycle) for the whole temperature range

  19. Measurement of organic carbon quantity at chemoautorophic bacterium; Kagaku dokuritsu eiyo saikin ni okeru yuki tansoryo no sokutei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, I; Kato, K; Nozaki, K [Electrotechnical Laboratory, Tsukuba (Japan); Kurokawa, K [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1996-10-27

    Described herein is the method for analyzing quantity of organic carbon synthesized by chemoautotrophic bacterium. It is based on the combustion-infrared spectroscopy, which is normally adopted for quantitative analysis of organic carbon. The problems involved in the measurement of organic compounds synthesized by iron-oxidizing bacteria are noise by culture medium components, aging of gas analyzer and contamination with organic compounds from a silicon plug. The measures taken in this study against these problems include comparison of the results with a medium containing iron-oxidizing bacteria with those with a medium free of these bacteria, calibration with the standard solution for each measurement, and replacement of a silicone plug by a silicon cap. Organic carbon is measured by a TOC-5000 analyzer equipped with an automatic sample feeder ASI-5000. Biomass density is determined by the MPN method. It is confirmed that organic carbon quantity is almost in proportion to biomass density, a phenomenon which can be used to determine organic carbon quantity. 7 refs., 6 figs., 1 tab.

  20. A wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement

    International Nuclear Information System (INIS)

    Friedt, J.-M; Droit, C.; Martin, G.; Ballandras, S.

    2010-01-01

    Monitoring physical quantities using acoustic wave devices can be advantageously achieved using the wave characteristic dependence to various parametric perturbations (temperature, stress, and pressure). Surface acoustic wave (SAW) resonators are particularly well suited to such applications as their resonance frequency is directly influenced by these perturbations, modifying both the phase velocity and resonance conditions. Moreover, the intrinsic radio frequency (rf) nature of these devices makes them ideal for wireless applications, mainly exploiting antennas reciprocity and piezoelectric reversibility. In this paper, we present a wireless SAW sensor interrogation unit operating in the 434 MHz centered ISM band--selected as a tradeoff between antenna dimensions and electromagnetic wave penetration in dielectric media--based on the principles of a frequency sweep network analyzer. We particularly focus on the compliance with the ISM standard which reveals complicated by the need for switching from emission to reception modes similarly to radar operation. In this matter, we propose a fully digital rf synthesis chain to develop various interrogation strategies to overcome the corresponding difficulties and comply with the above-mentioned standard. We finally assess the reader interrogation range, accuracy, and dynamics.

  1. A wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement

    Energy Technology Data Exchange (ETDEWEB)

    Friedt, J.-M [SENSeOR, 32 Avenue de l' Observatoire, 25044 Besancon (France); Droit, C.; Martin, G.; Ballandras, S. [Department of Time and Frequency, FEMTO-ST, 32 Avenue de l' Observatoire, 25044 Besancon (France)

    2010-01-15

    Monitoring physical quantities using acoustic wave devices can be advantageously achieved using the wave characteristic dependence to various parametric perturbations (temperature, stress, and pressure). Surface acoustic wave (SAW) resonators are particularly well suited to such applications as their resonance frequency is directly influenced by these perturbations, modifying both the phase velocity and resonance conditions. Moreover, the intrinsic radio frequency (rf) nature of these devices makes them ideal for wireless applications, mainly exploiting antennas reciprocity and piezoelectric reversibility. In this paper, we present a wireless SAW sensor interrogation unit operating in the 434 MHz centered ISM band--selected as a tradeoff between antenna dimensions and electromagnetic wave penetration in dielectric media--based on the principles of a frequency sweep network analyzer. We particularly focus on the compliance with the ISM standard which reveals complicated by the need for switching from emission to reception modes similarly to radar operation. In this matter, we propose a fully digital rf synthesis chain to develop various interrogation strategies to overcome the corresponding difficulties and comply with the above-mentioned standard. We finally assess the reader interrogation range, accuracy, and dynamics.

  2. Psychological Measurement Needs Units, Ratios, and Real Quantities: A Commentary on Humphry

    Science.gov (United States)

    Kyngdon, Andrew

    2011-01-01

    Behavioral scientists have struggled with units of measurement for as long as they have struggled with measurement itself. Psychology's sole attempt at an explicit unit of measurement--the Lexile Framework for Reading (Stenner, Burdick, Sanford, & Burdick, 2006)--has been and continues to be ignored by the psychometric "cognoscenti."…

  3. Organization of measurements of nonelectric quantities in the T-15 tokamak technological data acquisition system

    International Nuclear Information System (INIS)

    Gerasimov, V.P.; Grachev, V.F.; Komina, V.F.; Skosarev, V.A.

    1982-01-01

    Equipment for and organization of measurements of signals of the T-15 tokamak cryogenic and vacuum subsystems including temperature measurements of surfaces of the device units and structures are considered. TVO type resistors are used as transducers for low-temperature measurements. High-temperature measurements are performed by thermocouple transducers. The signal conversion apparatus for transducers includes low-level signal commutators and analog-to-digital converters of integrating type. The constitutuent errors of measurement conversions are considered. It is shown that, to decrease the effect of magnetic field, twisted wires with an additional armoured screen of zinc-plated iron should be used

  4. Non-destructive measurements of uranium and thorium concentrations and quantities

    International Nuclear Information System (INIS)

    Dragnev, T.N.; Damjanov, B.P.; Karamanova, J.S.

    1979-01-01

    The passive X-ray fluorescent-gamma spectrometry method and technique for uranium concentration measurements was developed and tested. It is based on the measurement of the intensity ratios of self-excited Ksub(α) X-rays of uranium to the intensity of the combined peak with 92.8 keV average energy. The last peak has 92.367 and 92.792 keV gamma rays of 234 Th, representing the activities of 238 U and its daughter isotopes, and 93.35 keV Th Ksub(α) X-rays representing the activities of 235 U and its daughters. The results of the measurements do not depend on the size and the shape of the measurements. The procedure is developed to take automatically into account the presence of any absorber or cladding between the measured sample and the detector. The attainable precision of the measurements (at 95% confidence level) is 0.2 - 0.3%. If combined with enrichment measurements, and after suitable empirical calibration, the method can be used without standards. Gamma-spectrometric measurements of 238 U and 232 Th are based on the daughter isotopes' gamma activities. However, this is correct only when there is a corresponding equilibrium between 238 U and 232 Th and the daughter isotopes' activities. Where such equilibrium is not reached the status of the daughter products' activities regarding equilibrium, has to be taken into account. Two methods of quantitative corrections are proposed: (i) The use of an absolute determination of the 228 Ac/ 224 Ra activity ratio through self-calibrated measurements and individual activities and their correlation with the equilibrium activities. (ii) Use of two of the same sample measurements at two different moments during the unrestored equilibrium and the correlation of the measurement results with the 232 Th activity. This method can be generally applied. (author)

  5. Using measurable dosimetric quantities to characterize the inter-structural tradeoff in inverse planning

    Science.gov (United States)

    Liu, Hongcheng; Dong, Peng; Xing, Lei

    2017-08-01

    Traditional inverse planning relies on the use of weighting factors to balance the conflicting requirements of different structures. Manual trial-and-error determination of weighting factors has long been recognized as a time-consuming part of treatment planning. The purpose of this work is to develop an inverse planning framework that parameterizes the dosimetric tradeoff among the structures with physically meaningful quantities to simplify the search for clinically sensible plans. In this formalism, instead of using weighting factors, the permissible variation range of the prescription dose or dose volume histogram (DVH) of the involved structures are used to characterize the ‘importance’ of the structures. The inverse planning is then formulated into a convex feasibility problem, called the dosimetric variation-controlled model (DVCM), whose goal is to generate plans with dosimetric or DVH variations of the structures consistent with the pre-specified values. For simplicity, the dosimetric variation range for a structure is extracted from a library of previous cases which possess similar anatomy and prescription. A two-phase procedure (TPP) is designed to solve the model. The first phase identifies a physically feasible plan to satisfy the prescribed dosimetric variation, and the second phase automatically improves the plan in case there is room for further improvement. The proposed technique is applied to plan two prostate cases and two head-and-neck cases and the results are compared with those obtained using a conventional CVaR approach and with a moment-based optimization scheme. Our results show that the strategy is able to generate clinically sensible plans with little trial and error. In all cases, the TPP generates a very competitive plan as compared to those obtained using the alternative approaches. Particularly, in the planning of one of the head-and-neck cases, the TPP leads to a non-trivial improvement in the resultant dose distribution

  6. Measurement system to detect minute quantity of plutonium and other alpha emitter

    International Nuclear Information System (INIS)

    Simon, G.G.; Eyrich, W.

    1990-01-01

    Presently, the most highly developed method in use is the time correlation analysis method (TCA). With special equipped electronics and computer system designed for the TCA method, the time correlation of the registered events is used to determine the contribution of different multiplets. Thus, the efficiency of the measurement system and the isotopic composition of the probe can be determined and thereby the Plutonium content is calculated. In the case of minute contents of Plutonium, the TCA method is insufficient to calculate the efficiency of the measurement system because of the large statistical error relative to the fluctuation of the background counting rate. This paper reports that in addition to the TCA method, the local correlation analysis (LCA) was developed at the Nuclear Research Center in Karlsruhe (KfK) to yield more information. The efficiency of the measurement system can be calculated taking into account the lifetime of the neutrons in the measurement system and the probe position

  7. Optimising neutron polarizers--measuring the flipping ratio and related quantities

    CERN Document Server

    Goossens, D J

    2002-01-01

    The continuing development of gaseous spin polarized sup 3 He transmission filters for use as neutron polarizers makes the choice of optimum thickness for these filters an important consideration. The 'quality factors' derived for the optimisation of transmission filters for particular measurements are general to all neutron polarizers. In this work optimisation conditions for neutron polarizers are derived and discussed for the family of studies related to measuring the flipping ratio from samples. The application of the optimisation conditions to sup 3 He transmission filters and other types of neutron polarizers is discussed. Absolute comparisons are made between the effectiveness of different types of polarizers for this sort of work.

  8. Measurements of gluon spin-sensitive quantities at the Z0 resonance

    International Nuclear Information System (INIS)

    Fan, C.G.

    1993-10-01

    Measurements have been made of the scaled jet energies (x 1 , x 2 , x 3 ) and the Ellis-Karliner angle (cosθ EK ), which are sensitive to the spill of the gluon, in the 3-jet hadronic events from the e + e - annihilation at the Z 0 resonance. The experiment is performed with the SLD detector at the Stanford Linear Accelerator Center (SLAC). The data used in this analysis was collected during the 1992 physics run, which includes 10,252 hadronic Z 0 events that have CDC information written out. Only charged tracks measured in the central drift chamber are used for the measurements of the above variables. The raw data are found to be in good agreement with the Monte Carlo simulations passing the same set of track and event selection cuts. A bin-to-bin correction is done for the distributions of x 1 , x 2 , x 3 , and cosθ EK to account for the effects of hadronization, detector acceptance and resolution. The corrected data is compared to the parton level distributions of x 1 , x 2 , x 3 , and cosθ EK simulated from the vector QCD model and the scalar gluon model respectively. The systematic errors, calculated for all the bins in these distributions, are obtained by comparing the results from different sets of track and event selection cuts, from different hadronization models and from different Monte Carlo programs. Good agreement is found between data and the vector QCD model. The scalar gluon model strongly disagrees with the data

  9. Measurements of gluon spin-sensitive quantities at the Z0 resonance

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Cheng -Gang [Stanford Univ., CA (United States)

    1993-10-01

    Measurements have been made of the scaled jet energies (x1, x2, x3) and the Ellis-Karliner angle (cosθEK), which are sensitive to the spill of the gluon, in the 3-jet hadronic events from the e+e- annihilation at the Z0 resonance. The experiment is performed with the SLD detector at the Stanford Linear Accelerator Center (SLAC). The data used in this analysis was collected during the 1992 physics run, which includes 10,252 hadronic Z0 events that have CDC information written out. Only charged tracks measured in the central drift chamber are used for the measurements of the above variables. The raw data are found to be in good agreement with the Monte Carlo simulations passing the same set of track and event selection cuts. A bin-to-bin correction is done for the distributions of x1, x2, x3, and cosθEK to account for the effects of hadronization, detector acceptance and resolution. The corrected data is compared to the parton level distributions of x1, x2, x3, and cosθEK simulated from the vector QCD model and the scalar gluon model respectively. The systematic errors, calculated for all the bins in these distributions, are obtained by comparing the results from different sets of track and event selection cuts, from different hadronization models and from different Monte Carlo programs. Good agreement is found between data and the vector QCD model. The scalar gluon model strongly disagrees with the data.

  10. Review of clinical approaches and diagnostic quantities used in pedobarographic measurements.

    Science.gov (United States)

    Deschamps, K; Roosen, P; Nobels, F; Deleu, P A; Birch, I; Desloovere, K; Bruyninckx, H; Matricali, G; Staes, F

    2015-03-01

    The non-invasive nature of pedobarographic measurements is particularly attractive to researchers for analyzing and characterizing the impact of specific pathological foot conditions. However, adequate clinical use of pedobarographic technology requires a profound technical and methodological knowledge. Several papers summarized the technical capacities of pedobarographic technology. Moreover, methodological expertise has grown considerably during the last two decades. Therefore, two crucial decisions have to be made before pathomechanical modelling or functional interpretation of foot and lower limb disorders can be pursued. The first is the selection of the specific method to analyse the dynamic plantar footprint, and the second is the choice of parameters to quantify the results. In the first part of this paper, we review the different methods used to analyse the dynamic plantar footprint and discuss their conceptual backgrounds. We also aim to illustrate the clinical relevance of each method and elaborate on the future perspectives. In the second part, we review quantification methods of pedobarographic measurements. The latter is of primary relevance to clinicians and investigators with a special interest in foot and lower limb biomechanics.

  11. The BAT AGN Spectroscopic Survey (BASS) DR1-Spectral Measurements, Derived Quantities, and AGN Demographics

    Science.gov (United States)

    Koss, Michael; BASS Team

    2018-01-01

    We present the first catalog and data release of the Swift-BAT AGN Spectroscopic Survey (BASS). We analyze optical spectra of the majority of AGN (77%, 641/836) detected based on their 14-195 keV emission in the 70-month Swift BAT all-sky catalog. This includes redshift determination, absorption and emission line measurements, and black hole mass and accretion rate estimates for the majority of obscured and un-obscured AGN (74%, 473/641) with 340 measured for the first time. With ~90% of sources at z10^21.9 cm^-2. Seyfert 1.9 show a range of column densities. Compared to narrow line AGN in the SDSS, the X-ray selected AGN have a larger fraction of dusty host galaxies suggesting these types of AGN are missed in optical surveys. Using the most sensitive [OIII]/Hbeta and [NII]/Halpha emission line diagnostic, about half of the sources are classified as Seyferts, ~15% reside in dusty galaxies that lack an Hbeta detection, but for which the line upper limits imply either a Seyfert or LINER, ~15% are in galaxies with weak or no emission lines despite high quality spectra, and a few percent each are LINERS, composite galaxies, HII regions, or in known beamed AGN.

  12. Instrument for ultrasonic measurement of physical quantities of flowing media, especially the flow velocity

    International Nuclear Information System (INIS)

    Thun, N.; Brown, A.E.

    1977-01-01

    The invention is based on the task to present an instrument for ultrasonic measurement of flow velocities with high accuracy which may be produced substantially cheaper because of the use of a simple circuit design and normal components. The task is solved according to the invention by connecting the output of the first signal level transmitter as main signal and the output of the second signal level transmitter as auxiliary signal with a summing circuit forming a control signal by adding and/or subtracting the auxiliary signal to/from the main signal and providing for a switch, controlled by the transmitting direction, causing alternatingly two different delay times for the reference signal to become effective. (orig./RW) [de

  13. Dependence of freshwater plants on quantity of carbon dioxide and hydrogen ion concentration illustrated through experimental investigations

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, E S

    1944-01-01

    By culture experiments with the freshwater plants Helodea canadensis and Ceratophyllum demersum, in which both the contents of carbon dioxide and pH of the water were varied, it was shown that ph within the area 4.5 to 8.2 has no appreciable influence on the growth. The supply of carbon dioxide, on the other hand, has very great influence. The fact that the two freshwater plants mentioned in Denmark are found in alkaline water only, is due to the contents of assimilable carbon dioxide decreasing with decrease of pH. While thus in alkaline water there are generally large quantities of bicarbonate, from which half of the carbon dioxide may be utilized in the assimilation, there is in acid water (pH below 4.5) no bicarbonate. Carbon dioxide in true solution and bicarbonate carbon dioxide behave differently as sources of carbon dioxide for the assimilation; this is amongst other things due to the fact that the absorption of the carbon dioxide through the bicarbonate is made actively on the part of the plant. The investigations which illustrate the influence of the quantity of carbon dioxide on the intensity of assimilation were made on submersed plants in water containing bicarbonate, and therefore give quite different results in relation to terraneous plants, where the carbon dioxide is exclusively assimilated.

  14. Test Station for Magnetization Measurements on Large Quantities of Superconducting Strands

    CERN Document Server

    Le Naour, S; Billan, J; Genest, J

    2001-01-01

    In the superconducting main magnets of the Large Hadron Collider (LHC), persistent currents in the superconductor determine the field quality at injection field. For this reason it is necessary to check the magnetization of the cable strands during their production. During four years, this requires measurements of the width of the strand magnetization hysteresis loop at 0.5 T, 1.9 K, at a rate of up to eight samples per day. This paper describes the design, construction and the first results of a magnetization test station built for this purpose. The samples are cooled in a cryostat, with a 2-m long elliptic tail. This tail is inserted in a normal conducting dipole magnet with a field between ± 1.5 T. Racetrack pick-up coils, integrated in the cryostat, detect the voltage due to flux change, which is then integrated numerically. The sample holder can contain eight strand samples, each 20 cm long. The test station operates in two modes: either the sample is fixed while the external field is changed, or the sa...

  15. New technology development for radiation dose measurement and evaluation based on the operational quantity

    International Nuclear Information System (INIS)

    Kim, Jang Lyul; Kim, B. H.; Lee, J. I.; Lim, K. S.; Song, M. Y.; Joo, G. S.; Kim, S. I.; Chang, I. S.

    2012-04-01

    · Development of optically stimulated luminescence (OSL) technique for multi-purpose radiation dosimetry - Development of a semi-automatic type OSL measurement system · Number of sample holders: 10 ea · Development of a built-in type reference radiation irradiation system using 50 kV-1 mA X-rays of the maximum dose rate of 230 mGy/s - Development of an automatic diameter control system and crystal growth system for making a new OSL material: LiMgF 3 : X, LiAlO 2 : C - Development of a procedure of retrospective accident dosimetry · Establishment of Practical Technology for Internal Dose Assessment - Development of the technology to the internal dose assessment for an injection of radionuclides and intercomparison on the evaluation results of the committed effective dose between the estimators of Korea · Construction of workplace monitoring technique by quantification of neutron fields - Preparation of the neutron spectra DB of various neutron fields and production of those dosimetric data: 29 kinds of neutron fields using a thermal neutron irradiator, a proton accelerator and a neutron generator - Neutron monitoring procedure at workplace using neutron fluence spectra

  16. Strongly intensive quantities

    International Nuclear Information System (INIS)

    Gorenstein, M. I.; Gazdzicki, M.

    2011-01-01

    Analysis of fluctuations of hadron production properties in collisions of relativistic particles profits from use of measurable intensive quantities which are independent of system size variations. The first family of such quantities was proposed in 1992; another is introduced in this paper. Furthermore we present a proof of independence of volume fluctuations for quantities from both families within the framework of the grand canonical ensemble. These quantities are referred to as strongly intensive ones. Influence of conservation laws and resonance decays is also discussed.

  17. Experimental investigations on the effect of process parameters with the use of minimum quantity solid lubrication in turning

    Science.gov (United States)

    Makhesana, Mayur A.; Patel, K. M.; Mawandiya, B. K.

    2018-04-01

    Turning process is a very basic process in any field of mechanical application. During turning process, most of the energy is converted into heat because of the friction between work piece and tool. Heat generation can affect the surface quality of the work piece and tool life. To reduce the heat generation, Conventional Lubrication process is used in most of the industry. Minimum quantity lubrication has been an effective alternative to improve the performance of machining process. In this present work, effort has been made to study the effect of various process parameters on the surface roughness and power consumption during turning of EN8 steel material. Result revealed the effect of depth of cut and feed on the obtained surface roughness value. Further the effect of solid lubricant has been also studied and optimization of process parameters is also done for the turning process.

  18. Experimental Measurement-Device-Independent Entanglement Detection

    Science.gov (United States)

    Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed

    2015-02-01

    Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols.

  19. Sophistication of 14C measurement at JAEA-AMS-MUTSU. Attempt on a small quantity of sample

    International Nuclear Information System (INIS)

    Tanaka, Takayuki; Kabuto, Shoji; Kinoshita, Naoki; Yamamoto, Nobuo

    2010-01-01

    In the investigations on substance dynamics using the molecular weight and chemical fractionation, the utilization of 14 C measurement by an accelerator mass spectrometry (AMS) have started. As a result of the fractionation, sample contents required for AMS measurement have been downsized. We expect that this trend toward a small quantity of sample will be steadily accelerated in the future. As 14 C measurement by AMS established at Mutsu office require about 2 mg of sample content at present, our AMS lags behind the others in the trend. We try to downsize the needed sample content for 14 C measurement by our AMS. In this study, we modified the shape of the target-piece in which the sample is packed and which is regularly needed to radiocarbon measurement by our AMS. Moreover, we improved on the apparatus needed to pack the sample. As a result of the improvement, we revealed that it is possible to measure the 14 C using our AMS even by the amount of the sample of about 0.5 mg. (author)

  20. Determination of trace elements in atomic absorption spectrophotometry. Study of the atomic cloud and atom generator. Application to the measurement of physical quantities

    International Nuclear Information System (INIS)

    Hircq, Bernard.

    1976-06-01

    After the description of the absorption cell the principal parameters are studied: argon flow rate in the cell, atomization temperature, cell geometry etc. The technique is applied to the measurement of impurities in uranium after deposition on a carbon filament. The atomic concentration distribution and the dimensions of the cloud generated by a graphite filament are then studied along the axes parallel to the filament and as a function of the various experimental parameters. From the determination of the cloud elevation rate it is possible to calculate the absolute atomic concentration, which allows certain physical quantities to be evaluated: oscillator force, Lorentz Widening, diffusion coefficient... The size and penetration depth of the deposit are then determined with an ionic microprobe and the distribution with a Castaing microprobe. The chemical transformations undergone by the uranium matrix during the heat cycles are studied by the X-ray method [fr

  1. Experimental measurements at the MASURCA facility

    International Nuclear Information System (INIS)

    Assal, W.; Bosq, J.C.; Mellier, F.

    2012-01-01

    Dedicated to the neutronics studies of fast and semi-fast reactor lattices, MASURCA (meaning 'mock-up facility for fast breeder reactor studies at Cadarache') is an airflow cooled fast reactor operating at a maximum power of 5 kW playing an important role in the CEA research activities. At this facility, a lot of neutron integral experimental programs were undertaken. The purpose of this poster is to show a panorama of the facility from this experimental measurement point of view. A hint at the forthcoming refurbishment will be included. These programs include various experimental measurements (reactivity, distributions of fluxes, reaction rates), performed essentially with fission chambers, in accordance with different methods (noise methods, radial or axial traverses, rod drops) and involving several devices systems (monitors, fission chambers, amplifiers, power supplies, data acquisition systems). For this purpose are implemented electronics modules to shape the signals sent from the detectors in various mode (fluctuation, pulse, current). All the electric and electronic devices needed for these measurements and the relating wiring will be fully explained through comprehensive layouts. Data acquired during counting performed at the time of startup phase or rod drops are analyzed by the mean of a Neutronic Measurement Treatment (TMN in French) programmed on the basis of the MATLAB software. This toolbox gives the opportunity of data files management, reactivity valuation from neutronics measurements and transient or divergence simulation at zero power. Particular TMN using at MASURCA will be presented. (authors)

  2. Experimental Measurements at the MASURCA Facility

    Science.gov (United States)

    Assal, W.; Bosq, J. C.; Mellier, F.

    2012-12-01

    Dedicated to the neutronics studies of fast and semi-fast reactor lattices, MASURCA (meaning “mock-up facility for fast breeder reactor studies at CADARACHE”) is an airflow cooled fast reactor operating at a maximum power of 5 kW playing an important role in the CEA research activities. At this facility, a lot of neutron integral experimental programs were undertaken. The purpose of this poster is to show a panorama of the facility from this experimental measurement point of view. A hint at the forthcoming refurbishment will be included. These programs include various experimental measurements (reactivity, distributions of fluxes, reaction rates), performed essentially with fission chambers, in accordance with different methods (noise methods, radial or axial traverses, rod drops) and involving several devices systems (monitors, fission chambers, amplifiers, power supplies, data acquisition systems ...). For this purpose are implemented electronics modules to shape the signals sent from the detectors in various mode (fluctuation, pulse, current). All the electric and electronic devices needed for these measurements and the relating wiring will be fully explained through comprehensive layouts. Data acquired during counting performed at the time of startup phase or rod drops are analyzed by the mean of a Neutronic Measurement Treatment (TMN in French) programmed on the basis of the MATLAB software. This toolbox gives the opportunity of data files management, reactivity valuation from neutronics measurements and transient or divergence simulation at zero power. Particular TMN using at MASURCA will be presented.

  3. Experimental measurements at the Masurca facility

    International Nuclear Information System (INIS)

    AssaI, W.; Bosq, J. C.; Mellier, F.

    2009-01-01

    Dedicated to the neutronics studies of fast and semi-fast reactor lattices, Masurca (meaning 'mock-up facility for fast breeder reactor studies at Cadarache') is an airflow cooled fast reactor operating at a maximum power of 5 kW playing an important role in the CEA research activities. At this facility, a lot of neutron integral experimental programs were undertaken. The purpose of this poster is to show a panorama of the facility from this experimental measurement point of view. A hint at the forthcoming refurbishment will be included. These programs include various experimental measurements (reactivity, distributions of fluxes, reaction rates), performed essentially with fission chambers, in accordance with different methods (noise methods, radial or axial traverses, rod drops) and involving several devices systems (monitors, fission chambers, amplifiers, power supplies, data acquisition systems...). For this purpose electronics modules are implemented to shape the signals sent from the detectors in various mode (fluctuation, pulse, current). All the electrical and electronic devices needed for these measurements and the relating wiring will be fully explained through comprehensive layouts. Data acquired during counting performed at the time of startup phase or rod drops are analyzed by the mean of a Neutronic Measurement Treatment (TMN in French) programmed on the basis of the MATLAB software. This toolbox gives the opportunity of data files management, reactivity valuation from neutronics measurements and transient or divergence simulation at zero power. Particular TMN using at Masurca will be presented. (authors)

  4. EXPERIMENTAL MEASUREMENT OF NANOFLUIDS THERMAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Adnan M. Hussein

    2013-07-01

    Full Text Available Solid particles dispersed in a liquid with sizes no larger than 100nm, known as nanofluids, are used to enhance Thermophysical properties compared to the base fluid. Preparations of alumina (Al2O3, titania (TiO2 and silica (SiO2 in water have been experimentally conducted in volume concentrations ranging between 1 and 2.5%. Thermal conductivity is measured by the hot wire method and viscosity with viscometer equipment. The results of thermal conductivity and viscosity showed an enhancement (0.5–20% and 0.5–60% respectively compared with the base fluid. The data measured agreed with experimental data of other researchers with deviation of less than 5%. The study showed that alumina has the highest thermal conductivity, followed silica and titania, on the other hand silica has the highest viscosity followed alumina and titania.

  5. Experimental measurement of energy harvesting with backpack

    Science.gov (United States)

    Pavelkova, Radka; Vala, David; Suranek, Pavel; Mahdal, Miroslav

    2017-08-01

    This article deals with the energy harvesting systems, especially the energy harvesting backpack, which appears as a convenient means for energy harvesting for mobile sensors power. Before starting the experiment, it was necessary to verify whether this energy will be sufficient to get acquainted with the human kinematics and analyze problematics itself. For this purpose there was used motion capture technology from Xsens. Measured data on the position of a particle moving man and back when walking, these data were then used for experimental realization of energy harvesting backpack and as input data to the simulation in Simulink, which brought us a comparison between theoretical assumptions and practical implementation. When measuring characteristics of energy harvesting system we have a problem with measurements on backpack solved when redoing of the hydraulic cylinder as a source of a suitable movement corresponding to the amplitude and frequency of human walk.

  6. Experimental research of digital holographic microscopic measuring

    Science.gov (United States)

    Zhu, Xueliang; Chen, Feifei; Li, Jicheng

    2013-06-01

    Digital holography is a new imaging technique, which is developed on the base of optical holography, Digital processing, and Computer techniques. It is using CCD instead of the conventional silver to record hologram, and then reproducing the 3D contour of the object by the way of computer simulation. Compared with the traditional optical holographic, the whole process is of simple measuring, lower production cost, faster the imaging speed, and with the advantages of non-contact real-time measurement. At present, it can be used in the fields of the morphology detection of tiny objects, micro deformation analysis, and biological cells shape measurement. It is one of the research hot spot at home and abroad. This paper introduced the basic principles and relevant theories about the optical holography and Digital holography, and researched the basic questions which influence the reproduce images in the process of recording and reconstructing of the digital holographic microcopy. In order to get a clear digital hologram, by analyzing the optical system structure, we discussed the recording distance and of the hologram. On the base of the theoretical studies, we established a measurement and analyzed the experimental conditions, then adjusted them to the system. To achieve a precise measurement of tiny object in three-dimension, we measured MEMS micro device for example, and obtained the reproduction three-dimensional contour, realized the three dimensional profile measurement of tiny object. According to the experiment results consider: analysis the reference factors between the zero-order term and a pair of twin-images by the choice of the object light and the reference light and the distance of the recording and reconstructing and the characteristics of reconstruction light on the measurement, the measurement errors were analyzed. The research result shows that the device owns certain reliability.

  7. Experimental measurement of proton penetration in silicon

    International Nuclear Information System (INIS)

    Castaing, C.; Baruch, P.; Picard, C.

    1974-01-01

    After proton implantation in silicon at high fluence, hydrogen precipitation in bubbles is induced by annealing. The stresses are so high that blister formation and peeling occur, leaving flat bottomed pits, with a depth equal to the projected proton range R(p). In this way R(p) was measured between 200 and 600keV, and compared with already published values, and with values computed through LSS (Lindhard, Scharff, and Schiott) theory, using a correct electronic stopping power. A table of ranges and standard deviations, computed in this way is given. The agreement with experimental results is excellent [fr

  8. Quantities for environmental monitoring

    International Nuclear Information System (INIS)

    1989-01-01

    It is recommended that if measurements are made with the objective of monitor radiation levels in the environment to elucidate long-term changes in these levels, then air kerma should be used. If the objective is to give an indication that levels from man-made sources are acceptable within specified limits for the exposure of people, then ambient dose equivalent should be used. It should be noted that radiation risks to individuals are best expressed by the quantity effective dose equivalent. If this latter quantity is to be accurately assessed, it may be necessary to obtain details of the quality of the environmental radiation that cannot be described adequately by simple measurements of either air kerma or ambient dose equivalent. If the above objectives pertain, the measurements should record both air kerma and ambient dose equivalent. If neutrons are measured in the environment then ambient dose equivalent is the appropriate quantity for both the above objectives. (author)

  9. Measuring cannabis consumption: Psychometric properties of the Daily Sessions, Frequency, Age of Onset, and Quantity of Cannabis Use Inventory (DFAQ-CU).

    Science.gov (United States)

    Cuttler, Carrie; Spradlin, Alexander

    2017-01-01

    We created the Daily Sessions, Frequency, Age of Onset, and Quantity of Cannabis Use Inventory (DFAQ-CU) because the current lack of psychometrically sound inventories for measuring these dimensions of cannabis use has impeded research on the effects of cannabis in humans. A sample of 2,062 cannabis users completed the DFAQ-CU and was used to assess the DFAQ-CU's factor structure and reliability. To assess validity, a subsample of 645 participants completed additional measures of cannabis dependence and problems (Marijuana Smoking History Questionnaire [MSHQ], Timeline Followback [TLFB], Cannabis Abuse Screening Test [CAST], Cannabis Use Disorders Identification Test Revised [CUDIT-R], Cannabis Use Problems Identification Test [CUPIT], and Alcohol Use Disorder Identification Test [AUDIT]). A six-factor structure was revealed, with factors measuring: daily sessions, frequency, age of onset, marijuana quantity, cannabis concentrate quantity, and edibles quantity. The factors were reliable, with Cronbach's alpha coefficients ranging from .69 (daily sessions) to .95 (frequency). Results further provided evidence for the factors' convergent (MSHQ, TLFB), predictive (CAST, CUDIT-R, CUPIT), and discriminant validity (AUDIT). The DFAQ-CU is the first psychometrically sound inventory for measuring frequency, age of onset, and quantity of cannabis use. It contains pictures of marijuana to facilitate the measurement of quantity of marijuana used, as well as questions to assess the use of different forms of cannabis (e.g., concentrates, edibles), methods of administering cannabis (e.g., joints, hand pipes, vaporizers), and typical THC levels. As such, the DFAQ-CU should help facilitate research on frequency, quantity, and age of onset of cannabis use.

  10. Measuring cannabis consumption: Psychometric properties of the Daily Sessions, Frequency, Age of Onset, and Quantity of Cannabis Use Inventory (DFAQ-CU.

    Directory of Open Access Journals (Sweden)

    Carrie Cuttler

    Full Text Available We created the Daily Sessions, Frequency, Age of Onset, and Quantity of Cannabis Use Inventory (DFAQ-CU because the current lack of psychometrically sound inventories for measuring these dimensions of cannabis use has impeded research on the effects of cannabis in humans.A sample of 2,062 cannabis users completed the DFAQ-CU and was used to assess the DFAQ-CU's factor structure and reliability. To assess validity, a subsample of 645 participants completed additional measures of cannabis dependence and problems (Marijuana Smoking History Questionnaire [MSHQ], Timeline Followback [TLFB], Cannabis Abuse Screening Test [CAST], Cannabis Use Disorders Identification Test Revised [CUDIT-R], Cannabis Use Problems Identification Test [CUPIT], and Alcohol Use Disorder Identification Test [AUDIT].A six-factor structure was revealed, with factors measuring: daily sessions, frequency, age of onset, marijuana quantity, cannabis concentrate quantity, and edibles quantity. The factors were reliable, with Cronbach's alpha coefficients ranging from .69 (daily sessions to .95 (frequency. Results further provided evidence for the factors' convergent (MSHQ, TLFB, predictive (CAST, CUDIT-R, CUPIT, and discriminant validity (AUDIT.The DFAQ-CU is the first psychometrically sound inventory for measuring frequency, age of onset, and quantity of cannabis use. It contains pictures of marijuana to facilitate the measurement of quantity of marijuana used, as well as questions to assess the use of different forms of cannabis (e.g., concentrates, edibles, methods of administering cannabis (e.g., joints, hand pipes, vaporizers, and typical THC levels. As such, the DFAQ-CU should help facilitate research on frequency, quantity, and age of onset of cannabis use.

  11. Electromagnetically controlled measuring device for measuring injection quantities in a diesel injection pump volumetrically. Elektromagnetisch gesteuerte Messvorrichtung zur volumetrischen Messung von Einspritzmengen einer Dieseleinspritzpumpe

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, K H; Mueller, M; Decker, R; Huber, G

    1990-11-22

    The invention concerns a measuring device for volumetric measurements of injection quantities of a diesel injection pump which injects its contents into a volumetric chamber controlled electromagnetically by a discharge valve and enclosed by a non-impact gas pressure loaded volumetric vessel and effects a retreating movement of the latter. The device is provided with an inductive path controller fitted with a differential pair of coils containing an axially movable ferromagnetic core. The path controller forms a part of a lifter rod connected to the volumetric vessel. It gives an opening signal to the discharge valve after each retreat of the volumetric vessel and a closing signal as soon as a defined height of suspension corresponding to the original position of the volumetric vessel after its return is reached.

  12. Access to What? Creating a Composite Measure of Educational Quantity and Educational Quality for 11 African Countries

    Science.gov (United States)

    Spaull, Nicholas; Taylor, Stephen

    2015-01-01

    The aim of the current study is to create a composite statistic of educational quantity and educational quality by combining household data (Demographic and Health Survey) on grade completion and survey data (Southern and Eastern African Consortium for Monitoring Educational Quality) on cognitive outcomes for 11 African countries: Kenya, Lesotho,…

  13. Experimental Measurement of In Situ Stress

    Science.gov (United States)

    Tibbo, Maria; Milkereit, Bernd; Nasseri, Farzine; Schmitt, Douglas; Young, Paul

    2016-04-01

    The World Stress Map data is determined by stress indicators including earthquake focal mechanisms, in situ measurement in mining, oil and gas boreholes as well as the borehole cores, and geologic data. Unfortunately, these measurements are not only infrequent but sometimes infeasible, and do not provide nearly enough data points with high accuracy to correctly infer stress fields in deep mines around the world. Improvements in stress measurements of Earth's crust is fundamental to several industries such as oil and gas, mining, nuclear waste management, and enhanced geothermal systems. Quantifying the state of stress and the geophysical properties of different rock types is a major complication in geophysical monitoring of deep mines. Most stress measurement techniques involve either the boreholes or their cores, however these measurements usually only give stress along one axis, not the complete stress tensor. The goal of this project is to investigate a new method of acquiring a complete stress tensor of the in situ stress in the Earth's crust. This project is part of a comprehensive, exploration geophysical study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, and focuses on two boreholes located in this mine. These boreholes are approximately 400 m long with NQ diameters and are located at depths of about 1300 - 1600 m and 1700 - 2000 m. Two borehole logging surveys were performed on both boreholes, October 2013 and July 2015, in order to perform a time-lapse analysis of the geophysical changes in the mine. These multi-parameter surveys include caliper, full waveform sonic, televiewer, chargeability (IP), and resistivity. Laboratory experiments have been performed on borehole core samples of varying geologies from each borehole. These experiments have measured the geophysical properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. The apparatus' used for this project are geophysical imaging cells capable

  14. Experimental Pressure Measurements on Hydropower Turbine Runners

    Energy Technology Data Exchange (ETDEWEB)

    Harding, Samuel F.; Richmond, Marshall C.

    2017-04-28

    The range of hydrodynamic operating conditions to which the turbine is exposed results in significant pressure fluctuations on both the pressure and suction sides of the blades. Understanding these dynamic pressures has a range of applications. Structurally, the resulting dynamic loads are significant in understanding the design life and maintenance schedule of the bearing, shafts and runner components. The pulsing pressures have also been seen to have a detrimental effect on the surface condition of the blades. Biologically, the pressure gradients and pressure extremes are the primary driver of barotrauma for fish passing through hydroturbines. Improvements in computational fluid dynamics (CFD) can be used to simulate such unsteady pressures in the regions of concern. High frequency model scale and prototype measurements of pressures at the blade are important in the validation of these models. Experimental characterization of pressure fields over hydroturbine blades has been demonstrated by a number of studies which using multiple pressure transducers to map the pressure contours on the runner blades. These have been performed at both model and prototype scales, often to validate computational models of the pressure and flow fields over the blades. This report provides a review of existing studies in which the blade pressure was measured in situ. The report assesses the technology for both model and prototype scale testing. The details of the primary studies in this field are reported and used to inform the types of hardware required for similar experiments based on the Ice Harbor Dam owned by the US Corps of Engineers on the Snake River, WA, USA. Such a study would be used to validate the CFD performed for the BioPA.

  15. Experimental techniques of conversion coefficient measurements

    International Nuclear Information System (INIS)

    Hamilton, J.H.

    1975-01-01

    Discusses briefly the history of conversion electron spectra measurements, and the interpretation of the collected data. Then provides a comprehensive review of techniques presently available to measure the conversion coefficients. (Auth.)

  16. Measuring instruments of the Physikalisch-Technische Bundesanstalt for realization of the units of the dosimetric quantities standard ion dose, photon-equivalent dose and air-kerma

    International Nuclear Information System (INIS)

    Engelke, B.A.; Oetzmann, W.; Struppek, G.

    1988-08-01

    The realization of the units of the dosimetric quantities exposure, air-kerma and photon-equivalent dose is an important task of the Physikalisch-Technische Bundesanstalt. The report describes the measuring instruments and other technical equipment as well as the determination of the numerous corrections needed. All data and correction factors required for the realization of the units mentioned above are given in many diagrams and tables. (orig.) [de

  17. Destructive and non-destructive methods of measuring the quantity and isotopic composition of fissile materials for purposes of national safeguards in the German Democratic Republic

    International Nuclear Information System (INIS)

    Villun, K.; Gruner, V.; Siebert, Kh.U.; Hoffmann, D.

    1979-01-01

    The authors give a brief description of the destructive and non-destructive methods of measuring the quantity and isotopic composition of fissile materials used in the nuclear materials accounting and control system of the German Democratic Republic. They cite examples of the use of gamma-spectrometry, X-ray fluorescence analysis, neutron activation, radiochemical techniques, mass-spectrometry and alpha-spectrometry. (author)

  18. Experimental demonstration of the finite measurement time effect on the Feynman-{alpha} technique

    Energy Technology Data Exchange (ETDEWEB)

    Wallerbos, E.J.M.; Hoogenboom, J.E

    1998-09-01

    The reactivity of a subcritical system is determined by fitting two different theoretical models to a measured Feynman-{alpha} curve. The first model is the expression usually found in the literature, which can be shown to be the expectation value of the experimental quality if the measurement time is infinite. The second model is a new expression which is the expectation value of the experimental quantity for a finite measurement time. The reactivity inferred with the new model is seen to be independent of the length of the fitting interval, whereas the reactivity inferred with the conventional model is seen to vary. This difference demonstrates the effect of the finite measurement time. As a reference, the reactivity is also measured with the pulsed-neutron source method. It is seen to be in good agreement with the reactivity obtained with the Feynman-{alpha} technique when the new expression is applied.

  19. Weak measurement and its experimental realisation

    International Nuclear Information System (INIS)

    Flack, R; Hiley, B J

    2014-01-01

    The relationship between the real part of the weak value of the momentum operator at a post selected position is discussed and the meaning of the experimentally determined stream-lines in the Toronto experiment of Kocsis et al is re-examined. We argue against interpreting the energy flow lines as photon trajectories. The possibility of performing an analogous experiment using atoms is proposed in order that a direct comparison can be made with the trajectories calculated by Philippidis, Dewdney and Hiley using the Bohm approach.

  20. Z0 decay modes - experimental measurements

    International Nuclear Information System (INIS)

    Dorfan, J.M.

    1984-08-01

    This report summarizes three lectures given at the Theoretical Advanced Study Institute at the University of Michigan at Ann Arbor. The lectures begin with an introduction to storage rings and linear colliders with special reference to the parameters of the SLC and LEP. The rigors of the Z 0 environment are presented along with the requirements for SLC and LEP detectors. The pedagogy needed for testing the Standard Model is developed, and some experimental tests of the Standard Model are discussed. Tests which involve extensions of the Standard Model (charged Higgs particles, more generations) as well as a few examples of how supersymmetry may show up at the Z 0 are discussed. 25 references, 34 figures

  1. Measurements of operator performance - an experimental setup

    International Nuclear Information System (INIS)

    Netland, K.

    1980-01-01

    The human has to be considered as an important element in a process control system, even if the degree of automation is extremely high. Other elements, e.g. computer, displays, etc., can to a large extent be described and quantified. The human (operator), is difficult to describe in a precise way, and it is just as difficult to predict his thinking and acting in a control room environment. Many factors influence his performance, such as: experience, motivation, level of knowledge, training, control environment, job organization, etc. These factors have to a certain degree to be described before guidelines for design of the man-process interfaces and the control room layout can be developed. For decades, the psychological science has obtained knowledge of the human mind and behaviour. This knowledge should have the potential of a positive input on our effort to describe the factors influencing the operator performance. Even if the human is complex, a better understanding of his thinking and acting, and a more precise description of the factors influencing his performance can be obtained. At OECD Halden Reactor Project an experimental set-up for such studies has been developed and implemented in the computer laboratory. The present set-up includes elements as a computer- and display-based control room, a simulator representing a nuclear power plant, training programme for the subjects, and methods for the experiments. Set-up modules allow reconfiguration of experiments. (orig./HP)

  2. Measures of Situation Awareness: An Experimental Evaluation

    Science.gov (United States)

    1991-10-01

    occurrence from non- occurrence of the target event, referred to as sensitivity (Macmillan and Creelman , 1990). Because sensitivity declines if pilots are...Pollack and Norman, 1964; see also Craig, 1979; Macmillan and Creelman , 1990). Finally, avoidance failures were measured simply as the number of times...Wesley. Macmillan, N. A., & Creelman , C. D. (1990). Response bias: Characteristics of detection theory, threshold theory, and "non- parametric" indexes

  3. Experimental thermodynamics experimental thermodynamics of non-reacting fluids

    CERN Document Server

    Neindre, B Le

    2013-01-01

    Experimental Thermodynamics, Volume II: Experimental Thermodynamics of Non-reacting Fluids focuses on experimental methods and procedures in the study of thermophysical properties of fluids. The selection first offers information on methods used in measuring thermodynamic properties and tests, including physical quantities and symbols for physical quantities, thermodynamic definitions, and definition of activities and related quantities. The text also describes reference materials for thermometric fixed points, temperature measurement under pressures, and pressure measurements. The publicatio

  4. Experimental measurements of negative hydrogen ion production from surfaces

    International Nuclear Information System (INIS)

    Graham, W.G.

    1977-09-01

    Experimental measurements of the production of H - from surfaces bombarded with hydrogen are reviewed. Some measurements of H + and H 0 production from surfaces are also discussed with particular emphasis on work which might be relevant to ion source applications

  5. A simple experimental setup for magneto-dielectric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Manimuthu, P.; Shanker, N. Praveen; Kumar, K. Saravana; Venkateswaran, C., E-mail: cvunom@hotmail.com

    2014-09-01

    The increasing demand for the multiferroic materials calls for the need of an experimental setup that will facilitate magneto-dielectric coupling measurements. A connector setup designed makes it possible to measure and analyze the dielectric properties of the material under the influence of a magnetic field. The salient feature of this setup is in its incorporation with the already existing experimental facilities.

  6. A simple experimental setup for magneto-dielectric measurements

    International Nuclear Information System (INIS)

    Manimuthu, P.; Shanker, N. Praveen; Kumar, K. Saravana; Venkateswaran, C.

    2014-01-01

    The increasing demand for the multiferroic materials calls for the need of an experimental setup that will facilitate magneto-dielectric coupling measurements. A connector setup designed makes it possible to measure and analyze the dielectric properties of the material under the influence of a magnetic field. The salient feature of this setup is in its incorporation with the already existing experimental facilities

  7. A mathematical model to determine incorporated quantities of radioactivity from the measured photometric values of tritium-autoradiographs in neuroanatomy

    International Nuclear Information System (INIS)

    Jennissen, J.J.

    1981-01-01

    The mathematical/empirical model developed in this paper helps to determine the incorporated radioactivity from the measured photometric values and the exposure time T. Possible errors of autoradiography due to the exposure time or the preparation are taken into consideration by the empirical model. It is shown that the error of appr. 400% appearing in the sole comparison of the measured photometric values can be corrected. The model is valid for neuroanatomy as optical nerves, i.e. neuroanatomical material, were used to develop it. Its application also to the other sections of the central nervous system seems to be justified due to the reduction of errors thus achieved. (orig.) [de

  8. Method for profile measurement in vivo of small quantities of radionuclides with γ-energies over 1 MeV

    International Nuclear Information System (INIS)

    Falk, R.

    1976-11-01

    A comparison of two different methods to get profiles for the activity distribution in vivo have been performed. Mathematical conection of the transmission through the sides of the collimator showed the best result. The method will be adapted to clinical use for example for measurement of iron-59 at investigation of the bone marrow

  9. Experimental measurements of shock properties of stishovite

    International Nuclear Information System (INIS)

    Furnish, M.D.; Ito, E.

    1996-01-01

    We have synthesized, characterized and performed Hugoniot measurements on monolithic samples of stishovite. Synthesis was accomplished in a multianvil press with pyrophyllite gaskets and carbon heaters. The samples had densities ranging from 3.80 to 4.07Mg/m 3 , corresponding to stishovite volume fractions of 0.7 to 0.87, a range confirmed by NMR analysis. They had no significant impurities except less than 1% carbon. Samples ∼1 mm thick and 3 mm diameter were tested in reverse- and forward-ballistics modes on a two-stage light gas gun, using velocity interferometry diagnostics. Impact velocities ranged from 4.0 to 6.5 km/sec. Hugoniot stresses for the four successful tests ranged from 65 to 225GPa. At higher stresses significant uncertainties arise due to impact tilt/nonplanarity issues. Results are consistent with earlier predictions of the stishovite Hugoniot based on quartz-centered Hugoniot data, static-compression (diamond-anvil cell) data and hydrostatic multianvil cell data. Release behavior appears to be frozen. These results are remarkable in view of the small size of the samples used. copyright 1996 American Institute of Physics

  10. Radiation quantities and units

    International Nuclear Information System (INIS)

    2013-01-01

    This fifth chapter presents the conceptual evolution, the definition procedures, the radiological quantities themselves, the relation between them, the new operational quantities and the new quantities defined in the ICRP 60 that replaced ICRP 26 and was included in the CNEN-NN-3.01 standard of 2011

  11. Overhead traveling crane vibration research using experimental wireless measuring system

    Directory of Open Access Journals (Sweden)

    Tomasz HANISZEWSKI

    2013-01-01

    Full Text Available The paper contains an operations and constructions description of theexperimental wireless measuring system for measuring accelerations in bridge cranes,based on PHIDGET 1056 sensors. Developed experimental research and measuringmethodology allows the use of the proposed wireless system on other cranesconstructions. The paper also shows examples of the results of vibration measurementsand FFT spectra, obtained on the basis of accelerations measurements.

  12. Measuring and Analyzing the Scholarly Impact of Experimental Evaluation Initiatives

    DEFF Research Database (Denmark)

    Angelini, Marco; Ferro, Nicola; Larsen, Birger

    2014-01-01

    Evaluation initiatives have been widely credited with contributing highly to the development and advancement of information access systems, by providing a sustainable platform for conducting the very demanding activity of comparable experimental evaluation in a large scale. Measuring the impact...

  13. Are necessary unmeasurable quantities in radiation protection?

    International Nuclear Information System (INIS)

    David, M.G.; Correa, M.F.; Videira, A.A.P.

    2016-01-01

    We discuss in this paper the metrological status of unmeasurable protection quantities and the need to maintain these kind of quantities in the system. The discussion is based on reports from the institutions responsible for the quantities and on scientific publications. In conclusion, we can say that there are alternatives for changing the system in a way that it keep just measurable quantities, nevertheless the present system is well assimilated. Even though a proposal yet to be presented for changing the system, although might simplify and improve it, is not intended to overcome the existence of unmeasurable quantities or the two kinds of quantities. (author)

  14. MEAL-BASED ENHANCEMENT OF PROTEIN QUALITY AND QUANTITY DURING WEIGHT LOSS IN OBESE OLDER ADULTS WITH MOBILITY LIMITATIONS: RATIONALE AND DESIGN FOR THE MEASUR-UP TRIAL

    Science.gov (United States)

    McDonald, Shelley R.; Starr, Kathryn N. Porter; Mauceri, Luisa; Orenduff, Melissa; Granville, Esther; Ocampo, Christine; Payne, Martha E.; Pieper, Carl F.; Bales, Connie W.

    2015-01-01

    Obese older adults with even modest functional limitations are at a disadvantage for maintaining their independence into late life. However, there is no established intervention for obesity in older individuals. The Measuring Eating, Activity and Strength: Understanding the Response --Using Protein (MEASUR-UP) trial is a randomized controlled pilot study of obese women and men aged ≥60 years with mild to moderate functional impairments. Changes in body composition (lean and fat mass) and function (Short Physical Performance Battery) in an enhanced protein weight reduction (Protein) arm will be compared to those in a traditional weight loss (Control) arm. The Protein intervention is based on evidence that older adults achieve optimal rates of muscle protein synthesis when consuming about 25-30 grams of high quality protein per meal; these participants will consume −30 g of animal protein at each meal via a combination of provided protein (beef) servings and diet counseling. This trial will provide information on the feasibility and efficacy of enhancing protein quantity and quality in the context of a weight reduction regimen and determine the impact of this intervention on body weight, functional status, and lean muscle mass. We hypothesize that the enhancement of protein quantity and quality in the Protein arm will result in better outcomes for function and/or lean muscle mass than in the Control arm. Ultimately, we hope our findings will help identify a safe weight loss approach that can delay or prevent late life disability by changing the trajectory of age-associated functional impairment associated with obesity. PMID:25461495

  15. New experimental procedure for measuring volume magnetostriction on powder samples

    International Nuclear Information System (INIS)

    Rivero, G.; Multigner, M.; Valdes, J.; Crespo, P.; Martinez, A.; Hernando, A.

    2005-01-01

    Conventional techniques used for volume magnetostriction measurements, as strain gauge or cantilever method, are very useful for ribbons or thin films but cannot be applied when the samples are in powder form. To overcome this problem a new experimental procedure has been developed. In this work, the experimental set-up is described, together with the results obtained in amorphous FeCuZr powders, which exhibit a strong dependence of the magnetization on the strength of the applied magnetic field. The magnetostriction measurements presented in this work point out that this dependence is related to a magnetovolume effect

  16. Critical review of the current radiation protection quantities and units

    International Nuclear Information System (INIS)

    Sabol, J.

    1998-01-01

    Examples exist in dosimetry and radiation protection where primary attention was focused on the unit rather than the corresponding quantity. Another difficulty arises from the fact that quantities in this field cannot be considered as pure physical quantities, they are rather biophysical quantities. There are too many quantities (e. g. 17 quantities based on the dose equivalent), with differences in numerical values of 'similar' quantities, not always satisfactory approximations of virtually unmeasurable quantities by measurable quantities, inconsistency in definitions and interpretations of quantities of some international expert bodies, and problems of weighting and conversion factors. (M.D.)

  17. A measure of state persecutory ideation for experimental studies.

    Science.gov (United States)

    Freeman, Daniel; Pugh, Katherine; Green, Catherine; Valmaggia, Lucia; Dunn, Graham; Garety, Philippa

    2007-09-01

    Experimental research is increasingly important in developing the understanding of paranoid thinking. An assessment measure of persecutory ideation is necessary for such work. We report the reliability and validity of the first state measure of paranoia: The State Social Paranoia Scale. The items in the measure conform to a recent definition in which persecutory thinking has the 2 elements of feared harm and perpetrator intent. The measure was tested with 164 nonclinical participants and 21 individuals at high risk of psychosis with attenuated positive symptoms. The participants experienced a social situation presented in virtual reality and completed the new measure. The State Social Paranoia Scale was found to have excellent internal reliability, adequate test-retest reliability, clear convergent validity as assessed by both independent interviewer ratings and self-report measures, and showed divergent validity with measures of positive and neutral thinking. The measure of paranoia in a recent social situation has good psychometric properties.

  18. A novel experimental technique of nuclear lifetime measurements

    International Nuclear Information System (INIS)

    Yuminov, O.A.; D'Arrigo, A.; Giardina, G.; Taccone, A.; Vannini, G.; Moroni, A.; Ricci, R.A.; Vannucci, L.

    1995-01-01

    In the present paper a new experimental method to measure nuclear reaction time in the 10 -15 -10 -10 s region is presented. Measurements of the lifetimes of low-lying and long-lived states of 19 F and 20 Ne decaying via α-channel were carried out with the aim of checking the feasibility of the method. The results obtained in this way are compared with the lifetimes known from different techniques. ((orig.))

  19. Some observations on precipitation measurement on forested experimental watersheds

    Science.gov (United States)

    Raymond E. Leonard; Kenneth G. Reinhart

    1963-01-01

    Measurement of precipitation on forested experimental watersheds presents difficulties other than those associated with access to and from the gages in all kinds of weather. For instance, the tree canopy must be cleared above the gage. The accepted practice of keeping an unobstructed sky view of 45" around the gage involves considerable tree cutting. On a level...

  20. Electron density measurement in an evolving plasma. Experimental devices

    International Nuclear Information System (INIS)

    Consoli, Terenzio; Dagai, Michel

    1960-01-01

    The experimental devices described here allow the electron density measurements in the 10 16 e/m 3 to 10 20 e/m 3 interval. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 250, p. 1223-1225, sitting of 15 February 1960 [fr

  1. Experimental estimation and optimization of process parameters under minimum quantity lubrication and dry turning of AISI-4340 with different carbide inserts

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Akash; Setia, Sunil [Lovely Professional University, Phagwara (India); Dhiman, Suresh; Sharma, Rajesh [National Institute of Technology, Hamirpur (India)

    2014-06-15

    An experimental study has been performed on AISI 4340 steel in this paper. The influence of approach angle, feed rate, cutting speed and depth of cut has been on cutting forces and tool tip temperature has been experimentally investigated. Before conducting experiments on the AISI 4340 steel work-piece, the chemical composition test, microstructure test were performed and hardness of the work-piece was improved by heat treatment. A total of 64 experiments each by two different coated carbide inserts (PVD and CVD-coated) were conducted on AISI-4340 steel under different environmental conditions (dry and MQL machining). During the experiments, approach angle, cutting speed, feed rate are varied to four levels and the depth of cut is kept constant to investigate the effect of the same on the three cutting forces component and the temperature variations on the tool-tip. It is observed that the main cutting force was largest among the three cutting force components in case of AISI 4340 steel turning and MQL machining show beneficial effects compared to dry machining.

  2. Experimental estimation and optimization of process parameters under minimum quantity lubrication and dry turning of AISI-4340 with different carbide inserts

    International Nuclear Information System (INIS)

    Saini, Akash; Setia, Sunil; Dhiman, Suresh; Sharma, Rajesh

    2014-01-01

    An experimental study has been performed on AISI 4340 steel in this paper. The influence of approach angle, feed rate, cutting speed and depth of cut has been on cutting forces and tool tip temperature has been experimentally investigated. Before conducting experiments on the AISI 4340 steel work-piece, the chemical composition test, microstructure test were performed and hardness of the work-piece was improved by heat treatment. A total of 64 experiments each by two different coated carbide inserts (PVD and CVD-coated) were conducted on AISI-4340 steel under different environmental conditions (dry and MQL machining). During the experiments, approach angle, cutting speed, feed rate are varied to four levels and the depth of cut is kept constant to investigate the effect of the same on the three cutting forces component and the temperature variations on the tool-tip. It is observed that the main cutting force was largest among the three cutting force components in case of AISI 4340 steel turning and MQL machining show beneficial effects compared to dry machining.

  3. Experimental determination of PVT data, critical quantities and of the equation of state for sodium up to 2600 K and 500 bar

    International Nuclear Information System (INIS)

    Binder, H.

    1984-01-01

    In the present thesis the PVT-data of fluid sodium are measured up to 2600 K and 500 bar and the vapor pressure curve is determined up to the critical point, which is found to be Tsub(c) = 2485 +- 15 K / Psub(c) = 248 +- 5 bar, rhosub(c) = 0.30 +- 0.05 g/cm 3 . The measured values are used to investigate the attractive forces of sodium theoretically. (BHO)

  4. Self-protection of FLIP fuel: Experimental measurements

    International Nuclear Information System (INIS)

    Johnson, A.G.; Ringle, J.C.; Anderson, T.V.; Dodd, B.; Bennett, S.; Carpenter, W.T.

    1980-01-01

    During the last year and one-half non-power reactor licensees of the Nuclear Regulatory Commission (NRC) have been repeatedly alerted to the fact that the Commission planned to tighten physical security regulations for their class of reactors. Essentially all of the new NRC physical security requirements for these reactors have been based on the type, quantity and enrichment of the special nuclear materials (e.g. enriched uranium and plutonium) possessed by the licensees. While each licensee's security classification will be evaluated individually, it is now apparent that non-power reactor licensees using or storing formula quantities of special nuclear material not meeting the 100 rem per hour at three feet self-protection exemption (e.g. 5 kilograms or more of non-self-protected fuel enriched to 20% or more with U-235) will be required to meet extremely stringent NRC physical security requirements patterned after the new Physical Protection Upgrade Rule. Implementation of these much stricter security requirements poses many economic and operational difficulties for university research reactors, to the point where facility closure could be the only alternative. TRIGA reactors utilizing a full FLIP fueled core, such as the Oregon State University TRIGA (OSTR), qualify for the highest physical protection category unless fuel can be maintained at self-protecting radiation levels. In order to demonstrate that OSTR fuel could be consistently kept above the 100 rem per hour threshold, a computer program was written which predicts the gamma radiation levels from an irradiated FLIP fuel element at 1, 2 and 3 feet in air and water. Furthermore, in order to verify the accuracy of the computer program, actual measurements of irradiated fuel elements were made at 3 feet in air and at 1, 2 and 3 feet in water, and the results compared very favorably to the predictions. The results of specific measurements, the instrumentation used and its calibration, the personnel doses

  5. Reconstruction of dynamic structures of experimental setups based on measurable experimental data only

    Science.gov (United States)

    Chen, Tian-Yu; Chen, Yang; Yang, Hu-Jiang; Xiao, Jing-Hua; Hu, Gang

    2018-03-01

    Nowadays, massive amounts of data have been accumulated in various and wide fields, it has become today one of the central issues in interdisciplinary fields to analyze existing data and extract as much useful information as possible from data. It is often that the output data of systems are measurable while dynamic structures producing these data are hidden, and thus studies to reveal system structures by analyzing available data, i.e., reconstructions of systems become one of the most important tasks of information extractions. In the past, most of the works in this respect were based on theoretical analyses and numerical verifications. Direct analyses of experimental data are very rare. In physical science, most of the analyses of experimental setups were based on the first principles of physics laws, i.e., so-called top-down analyses. In this paper, we conducted an experiment of “Boer resonant instrument for forced vibration” (BRIFV) and inferred the dynamic structure of the experimental set purely from the analysis of the measurable experimental data, i.e., by applying the bottom-up strategy. Dynamics of the experimental set is strongly nonlinear and chaotic, and itʼs subjects to inevitable noises. We proposed to use high-order correlation computations to treat nonlinear dynamics; use two-time correlations to treat noise effects. By applying these approaches, we have successfully reconstructed the structure of the experimental setup, and the dynamic system reconstructed with the measured data reproduces good experimental results in a wide range of parameters.

  6. Experimental determination of entanglement with a single measurement.

    Science.gov (United States)

    Walborn, S P; Souto Ribeiro, P H; Davidovich, L; Mintert, F; Buchleitner, A

    2006-04-20

    Nearly all protocols requiring shared quantum information--such as quantum teleportation or key distribution--rely on entanglement between distant parties. However, entanglement is difficult to characterize experimentally. All existing techniques for doing so, including entanglement witnesses or Bell inequalities, disclose the entanglement of some quantum states but fail for other states; therefore, they cannot provide satisfactory results in general. Such methods are fundamentally different from entanglement measures that, by definition, quantify the amount of entanglement in any state. However, these measures suffer from the severe disadvantage that they typically are not directly accessible in laboratory experiments. Here we report a linear optics experiment in which we directly observe a pure-state entanglement measure, namely concurrence. Our measurement set-up includes two copies of a quantum state: these 'twin' states are prepared in the polarization and momentum degrees of freedom of two photons, and concurrence is measured with a single, local measurement on just one of the photons.

  7. Experimental measurement of zero power reactor transfer function

    International Nuclear Information System (INIS)

    Liang Shuhong

    2011-01-01

    In order to study the zero power reactor (ZPR) transfer function, the ZPR transfer function expression was deduced with the point reactor kinetics equation, which was disturbed by reactivity input response. Based on the Fourier analysis for the input of triangular wave, the relation between the transfer function and reactivity was got. Validating research experiment was made on the DF-VI fast ZPR. After the disturbed reactivity was measured, the experimental value of the transfer function was got. According to the experimental value and the calculated value, the expression of the ZPR transfer function is proved, whereas the disturbed reactivity is got from the transfer function. (authors)

  8. Experimental Method for Measuring Dust Load on Surfaces in Rooms

    DEFF Research Database (Denmark)

    Lengweiler, Philip; Nielsen, Peter V.; Moser, Alfred

    A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms, there is a n......A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms......, there is a need for better understanding of the mechanism of dust deposition and resuspension. With the presented experimental setup, the dust load on surfaces in a channel can be measured as a function of the environmental and surface conditions and the type of particles under controlled laboratory conditions....

  9. Study of a fuel injection quantity sensor in diesel engine. Part 3. Experimental evaluation of the improved type micro turbine sensor; Diesel kikan ni okeru nenryo funsharyo sensor no kenkyu. 3. Funsharyo keisoku no seido kojo ni kansuru jikken hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Maehara, H; Iwasaki, T; Kobayashi, T [Zexel Corp., Tokyo (Japan)

    1997-10-01

    A Micro Turbine Sensor has been developed to measure fuel injection quantity and injection rate. Previous reports described results of experiments on the MTS which were carried out under steady and unsteady flow conditions. The MTS has been improved in shape of a holder tip and a detecting procedure for rotating speed of a turbine. As a result revolution speed of the turbine increased 18% over the conventional type holder under steady flow condition. Furthermore the measurement resolution of the MTS came up to about 2(mm{sup 3}/pulse) at 20(mm{sup 3}/stroke) under intermittent spray conditions using fuel injection pump. 11 refs., 11 figs., 1 tab.

  10. Contact Angle Measurements Using a Simplified Experimental Setup

    Science.gov (United States)

    Lamour, Guillaume; Hamraoui, Ahmed; Buvailo, Andrii; Xing, Yangjun; Keuleyan, Sean; Prakash, Vivek; Eftekhari-Bafrooei, Ali; Borguet, Eric

    2010-01-01

    A basic and affordable experimental apparatus is described that measures the static contact angle of a liquid drop in contact with a solid. The image of the drop is made with a simple digital camera by taking a picture that is magnified by an optical lens. The profile of the drop is then processed with ImageJ free software. The ImageJ contact…

  11. submitter Experimental temperature measurements for the energy amplifier test

    CERN Document Server

    Calero, J; Gallego, E; Gálvez, J; García Tabares, L; González, E; Jaren, J; López, C; Lorente, A; Martínez Val, J M; Oropesa, J; Rubbia, C; Rubio, J A; Saldana, F; Tamarit, J; Vieira, S

    1996-01-01

    A uranium thermometer has been designed and built in order to make local power measurements in the First Energy Amplifier Test (FEAT). Due to the experimental conditions power measurements of tens to hundreds of nW were required, implying a sensitivity in the temperature change measurements of the order of 1 mK. A uranium thermometer accurate enough to match that sensitivity has been built. The thermometer is able to determine the absolute energetic gain obtained in a tiny subcritical uranium assembly exposed to a proton beam of kinetic energies between 600 MeV and 2.75 GeV. In addition, the thermometer measurements have provided information about the spatial power distribution and the shape of the neutron spallation cascade.

  12. Emission sources and quantities

    International Nuclear Information System (INIS)

    Heinen, B.

    1991-01-01

    The paper examines emission sources and quantities for SO 2 and NO x . Natural SO 2 is released from volcanic sources and to a much lower extent from marsh gases. In nature NO x is mainly produced in the course of the chemical and bacterial denitrification processes going on in the soil. Manmade pollutants are produced in combustion processes. The paper concentrates on manmade pollution. Aspects discussed include: mechanism of pollution development; manmade emission sources (e.g. industry, traffic, power plants and domestic sources); and emission quantities and forecasts. 11 refs., 2 figs., 5 tabs

  13. Experimental study and Monte Carlo modeling of operational quantities in metrology of ionizing radiation: application to neutrons dosimetry by radio-photoluminescence

    International Nuclear Information System (INIS)

    Salem, Youbba-Ould

    2014-01-01

    We characterize a passive dosimeter capable of measuring both fast and thermal neutrons for ambient and personal dosimetry. These neutrons can be detected in a mixed neutron-gamma field with appropriate converters (polyethylene for fast neutrons, cadmium for thermal neutrons). Monte Carlo simulations with MCNPX helped with the geometrical conception of the dosimeter and the choice of materials. The responses of the RPL dosimeter to these neutrons are linear in H * (10) and H p (10) with detection limits of 2 mSv for fast neutrons and 0.19 mSv for thermal neutrons. The angular dependencies are satisfactory according to the ISO 21909 norm. A calibration factor of (9.5 ± 0.5)*10 -2 mSv.cm 2 /RPL signal is obtained to the fast neutrons of the IPHC's 241 Am-Be calibrator. This factor is (9.7 ± 0.3)*10 -3 mSv.cm 2 /RPL signal for the thermalized neutrons. (author)

  14. Experimental subcritical reactivity determinations employing APSD measurements with pulse mode detectors in the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Santos, Adimir dos; Lee, Seung Min; Diniz, Ricardo; Jerez, Rogerio

    2011-01-01

    This work aims to determine experimentally the subcritical reactivity levels of several configurations of the IPEN/MB-01 reactor in an approach based on the subcritical kinetic model developed by Gandini and Salvatores. The procedure employs the measurements of the APSD (Auto Power Spectral Density) using pulse mode detectors. The proposed approach is based only on measured quantities such as counting rates and the parameters arising from the least square approach of the APSD. Other difficult quantity such as detector efficiencies is not needed in the method. Several measurements of APSD were performed in varying degrees of sub-criticality (up to around -7000 pcm). The APSD data were least-square fitted to get the prompt decay mode (α). Beside the startup source, an external neutron sources of Am-Be was installed near the core in order to improve neutron count statistics. The final experimental results are of very good quality. The experiment shows clearly that the classical one point kinetic theory cannot describe the measured reactivity. MCNP K eff results were compared to the corresponding experimental results. The agreement was fairly good. (author)

  15. Experimental measurements of the cavitating flow after horizontal water entry

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thang Tat; Thai, Nguyen Quang; Phuong, Truong Thi [Institute of Mechanics (IMECH), Vietnam Academy of Science and Technology (VAST), 264—Doi Can, Ba Dinh, Hanoi (Viet Nam); Hai, Duong Ngoc, E-mail: ntthang@imech.vast.vn, E-mail: dnhai@vast.vn, E-mail: nqthai@imech.vast.vn, E-mail: ttphuong@imech.vast.vn [Graduate University of Science and Technology (GUST), VAST, 18—Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam)

    2017-10-15

    Water-entry cavitating flow is of considerable importance in underwater high-speed applications. That is because of the drag-reduction effect that concerns the presence of a cavity around moving objects. Though the study of the flow has long been carried out, little data are documented in literature so far. Besides, currently, in the case of unsteady flow, experimental measurements of some flow parameters such as the cavity pressure still encounter difficulties. Hence continuing research efforts are of important significance. The objective of this study is to investigate experimentally the unsteady cavitating flow after the horizontal water entry of projectiles. An experimental apparatus has been developed. Qualitative and quantitative optical visualizations of the flow have been carried out by using high-speed videography. Digital image processing has been applied to analyzing the recorded flow images. Based on the known correlations between the ellipsoidal super-cavity’s size and the corresponding cavitation number, the cavity pressure has been measured by utilizing the data of image processing. A comparison between the partial- and super-cavitating flow regimes is reported. The received results can be useful for the design of high-speed underwater projectiles. (paper)

  16. Radiation quantities and units

    International Nuclear Information System (INIS)

    1980-01-01

    This report supersedes ICRU Report 19. Since ICRU Report 19 was published, a number of discussions have taken place between members of the Report Committee on Fundamental Quantities and Units and other workers in the field. Some of these discussions have resulted in the acceptance of certain modifications in the material set out in Report 19 and these modifications are incorporated in the current report. In addition, there has been some expansion and rearrangement of the material in the earlier report. In line, with providing more didactic material and useful source material for other ICRU reports, the general considerations in subsection 1.A of Report 19 have been expanded and placed in a separate subsection. The additional material includes discussions of four terms that are used in this document - quantity, unit, stochastic, and non-stochastic - along with a brief discussion of the mathematical formalism used in ICRU reports. As in ICRU Report 19, the definitions of quantities and units specifically designed for radiation protection (Part B) are separated from those of the general quantities (Part A). The inclusion of the index concept outlined in ICRU Report 25[4] required an extension of Part B

  17. Quantification of tomographic PIV uncertainty using controlled experimental measurements.

    Science.gov (United States)

    Liu, Ning; Wu, Yue; Ma, Lin

    2018-01-20

    The goal of this work was to experimentally quantify the uncertainty of three-dimensional (3D) and three-component (3C) velocity measurements using tomographic particle image velocimetry (tomo-PIV). Controlled measurements were designed using tracer particles embedded in a solid sample, and tomo-PIV measurements were performed on the sample while it was moved both translationally and rotationally to simulate various known displacement fields, so the 3D3C displacements measured by tomo-PIV can be directly compared to the known displacements created by the sample. The results illustrated that (1) the tomo-PIV technique was able to reconstruct the 3D3C velocity with an averaged error of 0.8-1.4 voxels in terms of magnitude and 1.7°-1.9° in terms of orientation for the velocity fields tested; (2) view registration (VR) plays a significant role in tomo-PIV, and by reducing VR error from 0.6° to 0.1°, the 3D3C measurement accuracy can be improved by at least 2.5 times in terms of both magnitude and orientation; and (3) the use of additional cameras in tomo-PIV can extend the 3D3C velocity measurement to a larger volume, while maintaining acceptable accuracy. These results obtained from controlled tests are expected to aid the error analysis and the design of tomo-PIV measurements.

  18. Experimental solubility measurements of lanthanides in liquid alkalis

    Science.gov (United States)

    Isler, Jeremy; Zhang, Jinsuo; Mariani, Robert; Unal, Cetin

    2017-11-01

    In metallic nuclear fuel, lanthanide fission products play a crucial role in the fuel burnup-limiting phenomena of fuel cladding-chemical interaction (FCCI). The lanthanides have been hypothesized to transport by a 'liquid-like' mechanism out of the metallic fuel to the fuel peripheral to cause FCCI. By liquid fission product cesium and liquid bond sodium, the lanthanides are transported to the peripheral of the fuel through the porosity of the fuel. This work investigates the interaction between the lanthanides and the alkali metals by experimentally measuring the solubility of lanthanides within liquid sodium, and neodymium in liquid cesium and mixtures of cesium and sodium. The temperature dependence of the solubility is experimentally determined within an inert environment. In addition, the dependence of the solubility on the alkali metal concentration in liquid mixtures of cesium and sodium was examined. In quantifying the solubility, the fundamental understanding of this transport mechanism can be better determined.

  19. Calibration of personal dosemeters in terms of the ICRU operational quantities

    International Nuclear Information System (INIS)

    McDonald, J.C.; Hertel, N.E.

    1992-01-01

    The International Commission on Radiological Units and Measurements (ICRU) has defined several new operational quantities for radiation protection purposes. The quantities to be used for personal monitoring are defined at depths in the human body. Because these quantities are impossible to measure directly, the ICRU has recommended that personal dosimeters should be calibrated under simplified conditions on an appropriate phantom, such as the ICRU sphere. The U.S. personal dosimetry accreditation programs make use of a 30 x 30 x 15 cm polymethylmethacrylate (PMMA) phantom; therefore it is necessary to relate the response of dosimeters calibrated on this phantom to the ICRU operational quantities. Calculations of the conversion factors to compute dosimeter response in terms of the operational quantities have been performed using the code MCNP. These calculations have also been compared to experimental measurements using thermoluminescent (TLD) detectors. (author)

  20. Calibration of personal dosemeters in terms of the ICRU operational quantities

    International Nuclear Information System (INIS)

    McDonald, J.C.; Hertel, N.E.

    1992-05-01

    The International Commission on Radiological Units and Measurements (ICRU) has defined several new operational quantities for radiation protection purposes. The quantities to be used for personal monitoring are defined at depths in the human body. Because these quantities are impossible to measure directly, the ICRU has recommended that personal dosemeters should be calibrated under simplified conditions on an appropriate phantom, such as the ICRU sphere. The US personal dosimetry accreditation programs make use of a 30 x 30 x 15 cm polymethymethacrylate (PMMA) phantom, therefore it is necessary to relate the response of dosemeters calibrated on this phantom to the ICRU operational quantities. Calculations of the conversion factors to compute dosemeter response in terms of the operational quantities have been performed using the code MCNP. These calculations have also been compared to experimental measurements using thermoluminescent (TLD) detectors

  1. Experimental comparison of particle interaction measurement techniques using optical traps

    International Nuclear Information System (INIS)

    Koehler, Timothy P.; Grillet, Anne Mary; Brotherton, Christopher M.; Molecke, Ryan A.

    2008-01-01

    Optical tweezers has become a powerful and common tool for sensitive determination of electrostatic interactions between colloidal particles. Recently, two techniques, 'blinking' tweezers and direct force measurements, have become increasingly prevalent in investigations of inter-particle potentials. The 'blinking' tweezers method acquires physical statistics of particle trajectories to determine drift velocities, diffusion coefficients, and ultimately colloidal forces as a function of the center-center separation of two particles. Direct force measurements monitor the position of a particle relative to the center of an optical trap as the separation distance between two continuously trapped particles is gradually decreased. As the particles near each other, the displacement from the trap center for each particle increases proportional to the inter-particle force. Although commonly employed in the investigation of interactions of colloidal particles, there exists no direct comparison of these experimental methods in the literature. In this study, an experimental apparatus was developed capable of performing both methods and is used to quantify electrostatic potentials between particles in several particle/solvent systems. Comparisons are drawn between the experiments conducted using the two measurement techniques, theory, and existing literature. Forces are quantified on the femto-Newton scale and results agree well with literature values

  2. Experimental infrared measurements for hydrocarbon pollutant determination in subterranean waters

    Science.gov (United States)

    Lay-Ekuakille, A.; Palamara, I.; Caratelli, D.; Morabito, F. C.

    2013-01-01

    Subterranean waters are often polluted by industrial and anthropic effluents that are drained in subsoil. To prevent and control pollution, legislations of different developed countries require an online monitoring measurement, especially for detecting organic solvents (chlorinated and unchlorinated ones). Online measurements include both real-time and no real-time measurements. In general, it is difficult to implement real-time measurements in stricto sensu for online acquisitions on aqueous effluents since they need to be processed by a modeling. This research presents an experimental measurement system based on infrared (IR) spectroscopy for aqueous effluents containing hydrocarbons and capable of displaying excellent values of pollutant concentrations even in instable conditions; the system is able to detect pollutants either in laminar or turbulent flow. The results show the possibility of avoiding the use of "Pitot tube" that is employed to create a stagnation point in order to convert kinetic energy into potential one. This conversion allows the transformation of a turbulent flow in a laminar flow making easy measurement of pollutants included in an aqueous effluent. Obviously, "Pitot tube" is also used for other fluid effluents. The obtained results have been compared with those produced by means of sophisticated IR instrumentation for laboratory applications.

  3. Experimental ion mobility measurements in Ne-N2

    International Nuclear Information System (INIS)

    Cortez, A.F.V.; Encarnação, P.M.C.C.; Santos, F.P.; Borges, F.I.G.M.; Conde, C.A.N.; Veenhof, R.; Neves, P.N.B.

    2016-01-01

    Data on ion mobility is important to improve the performance of large volume gaseous detectors, such as the ALICE TPC or in the NEXT experiment. In the present work the method, experimental setup and results for the ion mobility measurements in Ne-N 2 mixtures are presented. The results for this mixture show the presence of two peaks for different gas ratios of Ne-N 2 , low reduced electric fields, E / N , 10–20 Td (2.4–4.8 kV·cm −1 ·bar −1 ), low pressures 6–8 Torr (8–10.6 mbar) and at room temperature.

  4. Experimental ion mobility measurements in Xe-CO2

    Science.gov (United States)

    Cortez, A. F. V.; Santos, M. A. G.; Veenhof, R.; Patra, R. N.; Neves, P. N. B.; Santos, F. P.; Borges, F. I. G. M.; Conde, C. A. N.

    2017-06-01

    Data on ion mobility is important to improve the performance of large volume gaseous detectors. In the present work the method, experimental setup and results for the ion mobility measurements in Xe-CO2 mixtures are presented. The results for this mixture show the presence of only one peak for all gas ratios of Xe-CO2, low reduced electric fields, E/N, 10-25 Td (2.4-6.1 kV·cm-1·bar-1), low pressures 6-8 Torr (8-10.6 mbar), at room temperature.

  5. Experimental measurements and modelling of the WEGA boundary layer plasma

    International Nuclear Information System (INIS)

    El Shaer, M.; Ichtchenko, G.

    1983-02-01

    The boundary layer of the WEGA Tokamak has been investigated by using specific diagnostics: movable 4 mm microwave interferometer, several types of movable and fixed probes, Katsumata probe, and multigrid electrostatic analyzer. During the RF heating at the lower hybrid frequency, some modifications in the parameters of the boundary layer are observed which are interpreted by the ponderomotive force effects. A comparison between the measured reflection coefficients of the grill waveguides and their predicted values by a coupling theory (not taking into account the real conditions facing the Grill) is presented. A diffusion model was also made to describe this particular region and to fit the experimental results

  6. A heat transport benchmark problem for predicting the impact of measurements on experimental facility design

    International Nuclear Information System (INIS)

    Cacuci, Dan Gabriel

    2016-01-01

    Highlights: • Predictive Modeling of Coupled Multi-Physics Systems (PM_CMPS) methodology is used. • Impact of measurements for reducing predicted uncertainties is highlighted. • Presented thermal-hydraulics benchmark illustrates generally applicable concepts. - Abstract: This work presents the application of the “Predictive Modeling of Coupled Multi-Physics Systems” (PM_CMPS) methodology conceived by Cacuci (2014) to a “test-section benchmark” problem in order to quantify the impact of measurements for reducing the uncertainties in the conceptual design of a proposed experimental facility aimed at investigating the thermal-hydraulics characteristics expected in the conceptual design of the G4M reactor (GEN4ENERGY, 2012). This “test-section benchmark” simulates the conditions experienced by the hottest rod within the conceptual design of the facility's test section, modeling the steady-state conduction in a rod heated internally by a cosinus-like heat source, as typically encountered in nuclear reactors, and cooled by forced convection to a surrounding coolant flowing along the rod. The PM_CMPS methodology constructs a prior distribution using all of the available computational and experimental information, by relying on the maximum entropy principle to maximize the impact of all available information and minimize the impact of ignorance. The PM_CMPS methodology then constructs the posterior distribution using Bayes’ theorem, and subsequently evaluates it via saddle-point methods to obtain explicit formulas for the predicted optimal temperature distributions and predicted optimal values for the thermal-hydraulics model parameters that characterized the test-section benchmark. In addition, the PM_CMPS methodology also yields reduced uncertainties for both the model parameters and responses. As a general rule, it is important to measure a quantity consistently with, and more accurately than, the information extant prior to the measurement. For

  7. Experimental measurements in the BYU controlled profile reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tree, D.R.; Black, D.l.; Rigby, J.R.; McQuay, M.Q.; Webb, B.W. [Brigham Young University, Provo, UT (United States). Dept. of Mechanical Engineering

    1998-09-01

    Over the past decade the Controlled Profile Reactor (CPR) has been used to obtain extensive combustion data sets. CPR is a small scale (0.2-0.4 MW) combustion facility that has been used to obtain data for model validation, the testing of new combustion concepts, and the development of new combustion instruments. This review of the past ten years of research completed in the CPR includes a description of the reactor and instrumentation used, a summary of three experimental data sets which have been obtained in the reactor, and a description of novel tests and instrumentation. Measurements obtained include gas species, gas temperature, particle velocity, particle size, particle number density, particle-cloud temperature profiles, radiation and total heat flux to the wall, and wall temperatures. Species data include the measurement of CO, CO{sub 2}, NO, NO{sub x}, O{sub 2}, NH{sub 3} and HCN. The three combustion studies included one with natural gas combustion in a swirling flow, and two pulverized-coal combustion studies involving Utah Blind Canyon and Pittsburgh No. 8 coals. Most, but not all of the above measurements were obtained in each study. The second coal study involving the Pittsburgh No. 8 coal contained the most complete set of data and is described in detail. Novel combustion instrumentation includes the use of Coherent Anti-Stokes Raman Spectroscopy (CARS) to measure gas temperature. Novel combustion experiments include the measurement of NO{sub x} and burnout with coal-char blends. The measurements have led to an improved understanding of the combustion process and an understanding of the strengths and weaknesses associated with different aspects of comprehensive combustion models. 67 refs., 26 figs., 9 tabs.

  8. Method and means for determining heat quantities

    Energy Technology Data Exchange (ETDEWEB)

    Waasdorp, G G; de Jong, J J; Bijl, A

    1965-08-24

    To determine the quantity of potential heat W that has flowed past a certain point in a certain time, the velocity of the combustible Q, the temperature T, and the specific gravity YDTU are measured, and these values are transmitted to a computer which automatically calculates the quantity: ..pi..EQUATION/sup -/ in which delta T is the difference between the combustible temperature T and a reference temperature, and in which the relation f(YDTU, delta T) represents the heat of combustion as a function of the quantities YDTU and delta T and possibly other properties of the combustible. Alternatively the quantity: ..pi..EQUATION/sup -/ may be measured; here the quantities have the same meaning as above.

  9. Effect of Electron Seeding on Experimentally Measured Multipactor Discharge Threshold

    Science.gov (United States)

    Noland, Jonathan; Graves, Timothy; Lemon, Colby; Looper, Mark; Farkas, Alex

    2012-10-01

    Multipactor is a vacuum phenomenon in which electrons, moving in resonance with an externally applied electric field, impact material surfaces. If the number of secondary electrons created per primary electron impact averages more than unity, the resonant interaction can lead to an electron avalanche. Multipactor is a generally undesirable phenomenon, as it can cause local heating, absorb power, or cause detuning of RF circuits. In order to increase the probability of multipactor initiation, test facilities often employ various seeding sources such as radioactive sources (Cesium 137, Strontium 90), electron guns, or photon sources. Even with these sources, the voltage for multipactor initiation is not certain as parameters such as material type, RF pulse length, and device wall thickness can all affect seed electron flux and energy in critical gap regions, and hence the measured voltage threshold. This study investigates the effects of seed electron source type (e.g., photons versus beta particles), material type, gap size, and RF pulse length variation on multipactor threshold. In addition to the experimental work, GEANT4 simulations will be used to estimate the production rate of low energy electrons (< 5 keV) by high energy electrons and photons. A comparison of the experimental fluxes to the typical energetic photon and particle fluxes experienced by spacecraft in various orbits will also be made. Initial results indicate that for a simple, parallel plate device made of aluminum, there is no threshold variation (with seed electrons versus with no seed electrons) under continuous-wave RF exposure.

  10. Experimental Measurements of Prestressed Masonry with using Sliding Joint

    Directory of Open Access Journals (Sweden)

    Stara Marie

    2014-06-01

    Full Text Available Contribution deals with experimental measurements of deformations in the place exposed to local load caused by additional pre-stressing. The measurements are made at the masonry corner built in the laboratory equipment. The laboratory equipment was designed at Faculty of Civil Engineering VŠB-Technical University of Ostrava for measurement tri-axial stress-strain conditions in masonry. In this masonry corner two pre-stressing bars are placed. These bars are in different height and are anchored to the anchor plates, which transfer pre-stressing forces to the masonry. The specimen for laboratory testing is performed in the proportion to the reality of 1:1. In the bottom part masonry is inserted asphalt strip. It operates in the masonry like a sliding joint and reduces the shear stress at interface between concrete and masonry structures. The results are compared with the results of masonry without the use of sliding joints, including comment on the effect of sliding joints on the pre-stressing masonry structures.

  11. Experimental arrangement to measure dispersion in optical fiber devices

    Energy Technology Data Exchange (ETDEWEB)

    Armas Rivera, Ivan [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias de la Electronica (Mexico); Beltran Perez, Georgina; Castillo Mixcoatl, Juan; Munoz Aguirre, Severino [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico Matematicas (Mexico); Zaca Moran, Placido, E-mail: ivan_rr1@hotmail.com [Benemerita Universidad Autonoma de Puebla, Fisicoquimica de Materiales ICUAP (Mexico)

    2011-01-01

    Dispersion is a quite important parameter in systems based on optical fiber, especially in pulsed emission lasers, where the temporal width is affected by such parameter. Therefore, it is necessary to consider the dispersion provoked by each component in the cavity. There are various experimental interferometric arrangements to evaluate this parameter. Generally, these systems modify the wavelength to obtain information about the n({lambda}) dependency, which is contained in the interferogram phase. However, this makes the system quite slow and it requires tunable and narrow bandwidth laser sources. In the present work, results obtained from an arrangement based on Mach-Zehnder interferometer where one of the arms is the optical fiber under study, while the reference one is air, are presented. In order to determine the n({lambda}) dependency, a wide spectrum light source was used in the wavelength range of interest. The phase information was evaluated from the interferometric signal measured by an optical spectrum analyzer.

  12. Experimental ion mobility measurements in Xe-CH4

    Science.gov (United States)

    Perdigoto, J. M. C.; Cortez, A. F. V.; Veenhof, R.; Neves, P. N. B.; Santos, F. P.; Borges, F. I. G. M.; Conde, C. A. N.

    2017-09-01

    Data on ion mobility is important to improve the performance of large volume gaseous detectors. In the present work, the method, experimental setup and results for the ion mobility measurements in Xe-CH4 mixtures are presented. The results for this mixture show the presence of two distinct groups of ions. The nature of the ions depend on the mixture ratio since they are originated by both Xe and CH4. The results here presented were obtained for low reduced electric fields, E/N, 10-25 Td (2.4-6.1 kV ṡ cm-1 ṡ bar-1), at low pressure (8 Torr) (10.6 mbar), and at room temperature.

  13. Experimental testing facilities for ultrasonic measurements in heavy liquid metal

    International Nuclear Information System (INIS)

    Cojocaru, V.; Ionescu, V.; Nicolescu, D.; Nitu, A.

    2016-01-01

    The thermo-physical properties of Heavy Liquid Metals (HLM), like lead or its alloy, Lead Bismuth Eutectic (LBE), makes them attractive as coolant candidates in advanced nuclear systems. The opaqueness, that is common to all liquid metals, disables all optical methods. For this reason ultrasound waves are used in different applications in heavy liquid metal technology, for example for flow and velocity measurements and for inspection techniques. The practical use of ultrasound in heavy liquid metals still needs to be demonstrated by experiments. This goal requires heavy liquid metal technology facility especially adapted to this task. In this paper is presented an experimental testing facility for investigations of Heavy Liquid Metals acoustic properties, designed and constructed in RATEN ICN. (authors)

  14. Experimental arrangement to measure dispersion in optical fiber devices

    International Nuclear Information System (INIS)

    Armas Rivera, Ivan; Beltran Perez, Georgina; Castillo Mixcoatl, Juan; Munoz Aguirre, Severino; Zaca Moran, Placido

    2011-01-01

    Dispersion is a quite important parameter in systems based on optical fiber, especially in pulsed emission lasers, where the temporal width is affected by such parameter. Therefore, it is necessary to consider the dispersion provoked by each component in the cavity. There are various experimental interferometric arrangements to evaluate this parameter. Generally, these systems modify the wavelength to obtain information about the n(λ) dependency, which is contained in the interferogram phase. However, this makes the system quite slow and it requires tunable and narrow bandwidth laser sources. In the present work, results obtained from an arrangement based on Mach-Zehnder interferometer where one of the arms is the optical fiber under study, while the reference one is air, are presented. In order to determine the n(λ) dependency, a wide spectrum light source was used in the wavelength range of interest. The phase information was evaluated from the interferometric signal measured by an optical spectrum analyzer.

  15. Forage quantity and quality

    Science.gov (United States)

    Jorgenson, Janet C.; Udevitz, Mark S.; Felix, Nancy A.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    The Porcupine caribou herd has traditionally used the coastal plain of the Arctic National Wildlife Refuge, Alaska, for calving. Availability of nutritious forage has been hypothesized as one of the reasons the Porcupine caribou herd migrates hundreds of kilometers to reach the coastal plain for calving (Kuropat and Bryant 1980, Russell et al. 1993).Forage quantity and quality and the chronology of snowmelt (which determines availability and phenological stages of forage) have been suggested as important habitat attributes that lead calving caribou to select one area over another (Lent 1980, White and Trudell 1980, Eastland et al. 1989). A major question when considering the impact of petroleum development is whether potential displacement of the caribou from the 1002 Area to alternate calving habitat will limit access to high quantity and quality forage.Our study had the following objectives: 1) quantify snowmelt patterns by area; 2) quantify relationships among phenology, biomass, and nutrient content of principal forage species by vegetation type; and 3) determine if traditional concentrated calving areas differ from adjacent areas with lower calving densities in terms of vegetation characteristics.

  16. Measuring Diagnostic Stand for Experimental Researches in Technology Machining

    Directory of Open Access Journals (Sweden)

    A. E. Dreval'

    2014-01-01

    Full Text Available The paper reviews applied techniques, methods, and structure of the control and measuring means to conduct experimental and scientific researches of cutting processes. Existing research methods in cutting the metals are divided by features, such as essence of methods, the number of records of physical indicators, the number of studied factors, duration of tests. The groups of methods are briefly characterized.The chair "Tool Engineering and Technologies" of BMSTU developed and made a diagnostic stand of control and measurements for conducting research activities in the field of materials processing technology by cutting to define rational technological decisions, when machining, and carry out an analysis of efficiency and economic feasibility of made decisions. The diagnostic stand contains modern the electronic equipment. Record of measuring parameters is made in real time with a possibility for visual representation of read results and mathematical and statistical processing of measurement results. The stand can be used in research laboratories of machine-building enterprises, laboratories of higher education institutions, and other scientific divisions.The paper presents a justification that the stand is reasonable to use for the following: completion and choice of rational cutting modes, workability assessment of new constructional materials, technical and operational characteristics of the processed surfaces, and operational properties of the cutting tools of various producers, choice of optimum geometrical parameters of the cutting tools and brands of the lubricant cooling technological means, as well as the energy consumption for the chosen machining process. The stand allows us to make an assessment of wear resistance and tribology-technical characteristics of tool materials, as well as an accuracy, rigidity, vibration stability of machines, both new and being in operation.

  17. Experimental evaluation of a MOSFET dosimeter for proton dose measurements

    International Nuclear Information System (INIS)

    Kohno, Ryosuke; Nishio, Teiji; Miyagishi, Tomoko; Hirano, Eriko; Hotta, Kenji; Kawashima, Mitsuhiko; Ogino, Takashi

    2006-01-01

    The metal oxide semiconductor field-effect transistor (MOSFET) dosimeter has been widely studied for use as a dosimeter for patient dose verification. The major advantage of this detector is its size, which acts as a point dosimeter, and also its ease of use. The commercially available TN502RD MOSFET dosimeter manufactured by Thomson and Nielsen has never been used for proton dosimetry. Therefore we used the MOSFET dosimeter for the first time in proton dose measurements. In this study, the MOSFET dosimeter was irradiated with 190 MeV therapeutic proton beams. We experimentally evaluated dose reproducibility, linearity, fading effect, beam intensity dependence and angular dependence for the proton beam. Furthermore, the Bragg curve and spread-out Bragg peak were also measured and the linear-energy transfer (LET) dependence of the MOSFET response was investigated. Many characteristics of the MOSFET response for proton beams were the same as those for photon beams reported in previous papers. However, the angular MOSFET responses at 45, 90, 135, 225, 270 and 315 degrees for proton beams were over-responses of about 15%, and moreover the MOSFET response depended strongly on the LET of the proton beam. This study showed that the angular dependence and LET dependence of the MOSFET response must be considered very carefully for quantitative proton dose evaluations

  18. Prices versus Quantities

    DEFF Research Database (Denmark)

    Hansen, Lars Gårn; Jensen, Frank

    illustrate that this result does not generalise to a search fishery, where marginal costs are allowed to depend on harvest. Hansen et al (2008) study a fishery where non-compliance with regulations is a problem. When the regulator is uncertain about non-compliance (compliance uncertainty), then landing fees......Weitzman (2002) studies the regulation of a fishery characterised by constant marginal harvest costs and shows that price regulation performs better than quantity regulation when the regulator is uncertain about the biological reproduction function (ecological uncertainty). Here, we initially...... are the preferred type of regulation, and Hansen et al (2008) find that this result does generalise to a search fishery where marginal costs depend on harvest. In this paper, we simulate a stochastic stock-recruitment model for the Danish cod fishery in the Kategat capturing both ecological and compliance...

  19. Allen's astrophysical quantities

    CERN Document Server

    2000-01-01

    This new, fourth, edition of Allen's classic Astrophysical Quantities belongs on every astronomer's bookshelf. It has been thoroughly revised and brought up to date by a team of more than ninety internationally renowned astronomers and astrophysicists. While it follows the basic format of the original, this indispensable reference has grown to more than twice the size of the earlier editions to accommodate the great strides made in astronomy and astrophysics. It includes detailed tables of the most recent data on: - General constants and units - Atoms, molecules, and spectra - Observational astronomy at all wavelengths from radio to gamma-rays, and neutrinos - Planetary astronomy: Earth, planets and satellites, and solar system small bodies - The Sun, normal stars, and stars with special characteristics - Stellar populations - Cataclysmic and symbiotic variables, supernovae - Theoretical stellar evolution - Circumstellar and interstellar material - Star clusters, galaxies, quasars, and active galactic nuclei ...

  20. Experimental study of ERT monitoring ability to measure solute dispersion.

    Science.gov (United States)

    Lekmine, Grégory; Pessel, Marc; Auradou, Harold

    2012-01-01

    This paper reports experimental measurements performed to test the ability of electrical resistivity tomography (ERT) imaging to provide quantitative information about transport parameters in porous media such as the dispersivity α, the mixing front velocity u, and the retardation factor R(f) associated with the sorption or trapping of the tracers in the pore structure. The flow experiments are performed in a homogeneous porous column placed between two vertical set of electrodes. Ionic and dyed tracers are injected from the bottom of the porous media over its full width. Under such condition, the mixing front is homogeneous in the transverse direction and shows an S-shape variation in the flow direction. The transport parameters are inferred from the variation of the concentration curves and are compared with data obtained from video analysis of the dyed tracer front. The variations of the transport parameters obtained from an inversion performed by the Gauss-Newton method applied on smoothness-constrained least-squares are studied in detail. While u and R(f) show a relatively small dependence on the inversion procedure, α is strongly dependent on the choice of the inversion parameters. Comparison with the video observations allows for the optimization of the parameters; these parameters are found to be robust with respect to changes in the flow condition and conductivity contrast. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  1. A Viewpoint on the Quantity "Plane Angle"

    Science.gov (United States)

    Eder, W. E.

    1982-01-01

    Properties of the quantity "plane angle" are explored under the hypothesis that it is a dimensional quantity. The exploration proceeds especially with respect to the physical concept, its mathematical treatment, vector concepts, measurement theory, units of related quantities, engineering pragmatism, and SI. An attempt is made to bring these different relations into a rational, logical and consistent framework, and thus to justify the hypothesis. Various types of vectorial quantities are recognized, and their properties described with an outline of the necessary algebraic manipulations. The concept of plane angle is amplified, and its interdependence with the circular arc is explored. The resulting units of plane angle form a class of similar scales of measurement. Consequences of the confirmed hypothesis are developed for mathematical expressions involving trigonometric functions, rotational volumes and areas, mathematical limits, differentiation and series expansion. Consequences for mechanical rotational quantities are developed, with proposals for revisions to a number of expressions for derived units within SI. A revised definition for the quantity "plane angle" is stated to take account of the developed insights. There is a clear need to reconsider the status of plane angle and some other quantities within the international framework of SI.

  2. Relativity of Electric Quantity

    Directory of Open Access Journals (Sweden)

    GAO Zhong-wen

    2017-04-01

    Full Text Available The demonstration foundation,which is used to demonstrate that observed values from the interaction force between two charges,which are not at the same point would be different in different reference frames,is that the transmission of the interaction between charges needs time. Firstly,this paper analyzes the foundation of hypothetical process that the electric field and the magnetic field are built by one charge,and then the electromagnetic field would be transferred to another charge in vacuo by the speed of light,and produces force. It points out that from the simultaneity of relativity,the force applied to charge would occur in different time in the different reference frames,the force would be neither in the same size nor in the opposite direction,and Newton’s Third Law is not valid longer, the deeper cause of these conclusions would be known. On this basis,this paper gives the basis that force would keep invariant in different reference frames,and according to this condition,with the situation of the charge that under the Coulombian force and electromagnetism,the relative form of expression and demonstration methods of electric quantity in different reference frames are given. On the basis of the hypothesis that force would keep invariant in different reference frames,with the similar derivation process,the mass relativity equation of Einstein would be obtained.

  3. Parallel computing in experimental mechanics and optical measurement: A review (II)

    Science.gov (United States)

    Wang, Tianyi; Kemao, Qian

    2018-05-01

    With advantages such as non-destructiveness, high sensitivity and high accuracy, optical techniques have successfully integrated into various important physical quantities in experimental mechanics (EM) and optical measurement (OM). However, in pursuit of higher image resolutions for higher accuracy, the computation burden of optical techniques has become much heavier. Therefore, in recent years, heterogeneous platforms composing of hardware such as CPUs and GPUs, have been widely employed to accelerate these techniques due to their cost-effectiveness, short development cycle, easy portability, and high scalability. In this paper, we analyze various works by first illustrating their different architectures, followed by introducing their various parallel patterns for high speed computation. Next, we review the effects of CPU and GPU parallel computing specifically in EM & OM applications in a broad scope, which include digital image/volume correlation, fringe pattern analysis, tomography, hyperspectral imaging, computer-generated holograms, and integral imaging. In our survey, we have found that high parallelism can always be exploited in such applications for the development of high-performance systems.

  4. 16 CFR 500.25 - Net quantity, average quantity, permitted variations.

    Science.gov (United States)

    2010-01-01

    ... good distribution practice and which unavoidably result in change of weight or mass or measure. (c... good packaging practice: Provided, that such variations shall not be permitted to such extent that the... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Net quantity, average quantity, permitted...

  5. The covariance matrix of derived quantities and their combination

    International Nuclear Information System (INIS)

    Zhao, Z.; Perey, F.G.

    1992-06-01

    The covariance matrix of quantities derived from measured data via nonlinear relations are only approximate since they are functions of the measured data taken as estimates for the true values of the measured quantities. The evaluation of such derived quantities entails new estimates for the true values of the measured quantities and consequently implies a modification of the covariance matrix of the derived quantities that was used in the evaluation process. Failure to recognize such an implication can lead to inconsistencies between the results of different evaluation strategies. In this report we show that an iterative procedure can eliminate such inconsistencies

  6. Hypersonic nozzle/afterbody CFD code validation. I - Experimental measurements

    Science.gov (United States)

    Spaid, Frank W.; Keener, Earl R.

    1993-01-01

    This study was conducted to obtain a detailed experimental description of the flow field created by the interaction of a single-expansion-ramp-nozzle flow with a hypersonic external stream. Data were obtained from a generic nozzle/afterbody model in the 3.5-Foot Hypersonic Wind Tunnel of the NASA Ames Research Center in a cooperative experimental program involving Ames and the McDonnell Douglas Research Laboratories. This paper presents experimental results consisting primarily of surveys obtained with a five-hole total-pressure/flow-direction probe and a total-temperature probe. These surveys were obtained in the flow field created by the interaction between the underexpanded jet plume and the external flow.

  7. Experimental infrared measurements for hydrocarbon pollutant determination in subterranean waters

    OpenAIRE

    Lay-Ekuakille, A.; Palamara, I.; Caratelli, D.; Morabito, F.C.

    2013-01-01

    Subterranean waters are often polluted by industrial and anthropic effluents that are drained in subsoil. To prevent and control pollution, legislations of different developed countries require an online monitoring measurement, especially for detecting organic solvents (chlorinated and unchlorinated ones). Online measurements include both real-time and no real-time measurements. In general, it is difficult to implement real-time measurements in stricto sensu for online acquisitions on aqueous...

  8. Experimental comparison among the laboratories accredited within the framework of the European Co-operation for Accreditation on the calibration of a radiation protection dosimeters in the terms of the quantity air Kerma

    International Nuclear Information System (INIS)

    Bovi, M.; Toni, M.P.; Tricomi, G.

    2002-01-01

    The European co-operation for Accreditation (EA) formalises the collaboration of the Accreditation Bodies of the Member States of the European Union and the European Free Trade Association covering all conformity assessment activities. This collaboration is based on a Memorandum of Understanding dated the 27 November 1997 and aims at developing and maintain Multilateral Agreements (MLAs) within EA and with non-members accreditation bodies. MLAs Signatories guarantee uniformity of accreditation by continuous and rigorous evaluation. Based on mutual confidence, the MLAs recognise the equivalence of the accreditation systems administered by EA Members and of certificates and reports issued by bodies accredited under these systems. A basic element of the program to establish and maintain mutual confidence among calibration services is the participation of the accredited laboratories in experimental interlaboratory comparisons (ILC) organised by EA members or other international organisations. The aim of these ILC is to verify the technical equivalence of calibration services within the EA. The ILC which it is dealt with in the present work was recently carried out over a period of two years, ending in May 2002. It interested the laboratories accredited in the ionising radiation field for calibration of dosimeters at radiation protection levels in terms of the quantity air kerma (K air ) due to 6 0C o and 1 37C s gamma radiation. The ILC was planned by the EA expert group on Ionising radiation and radioactivity and approved by the EA General Assembly in December 1999 with the title Calibration of a Radiation Protection Dosimeter under the code IR3. The need of this comparison also resulted from an inquiry carried out in 1998 by the expert group among the different Accreditation Bodies members of EA and associated to EA. The organization of the ILC was carried out according to the EA rules by the Italian Accreditation Body in the ionising radiation field, the SIT

  9. Experimental methods in cryogenic spectroscopy: Stark effect measurements in substituted myoglobin

    Science.gov (United States)

    Moran, Bradley M.

    treatment that is employed during analysis of the experimental data requires the state energies and the transition dipole moments of the porphyrin probe. The configuration interaction, as well as the coupled-cluster approaches, have been investigated for their ability to produce realistic valuations for these calculated quantities as gauged by their ability to accurately reproduce valuations for spectroscopically observable transition energies. A capacitive cell, for the determination of a material's dielectric permittivity, necessary for defining the magnitude of the externally applied electric field at the sample, was developed and shown to successfully yield permittivity valuations for various media in accordance with those reported the literature, while offering the ability to provide measures for permittivities over the temperature range of 1-300 K.

  10. Composition and quantities of retained gas measured in Hanford waste tanks 241-AW-101 A-101, AN-105, AN-104, and AN-103

    International Nuclear Information System (INIS)

    Shekarriz, A.; Rector, D.R.; Mahoney, L.A.

    1997-03-01

    This report provides the results obtained for the first five tanks sampled with the Retained Gas Sampler (RGS): Tanks 241-AW-101, A-101, AN-105, AN-104, and AN-103. The RGS is a modified version of the core sampler used at Hanford. It is designed specifically, in concert with the gas extraction equipment in the hot cell, to capture and extrude a gas-containing waste sample in a hermetically sealed system. The retained gases are then extracted and stored in small gas canisters. The composition of the gases contained in the canisters was measured by mass spectroscopy. The total gas volume was obtained from analysis of the extraction process, as discussed in detail throughout this report. The following are the findings of this research: (1) The RGS is a viable approach for measuring retained gases in double- and single-shell waste tanks at Hanford. (2) Local measurements of void fraction with the RGS agree with the results obtained with the void fraction instrument (VFI) in most cases. (3) In the tanks sampled, more than 16% of the retained gas in the nonconvective layer was nitrogen (N 2 ). The fraction of nitrogen gas was approximately 60% in Tank 241-AW-101. This finding shows that not all the retained gas mixtures are flammable. (4) In the tanks sampled, the ratios of hydrogen to oxidizers were observed to be significantly higher than 1; i.e., these tanks are fuel-rich. Based on these observations, the RGS will be used to sample for retained gases in several single-shell tanks at Hanford. The remaining sections of this summary describe the RGS-findings for the first five tanks tested. The results are described in the order in which the tanks were sampled, to reflect the increasing experience on which RGS methods were based

  11. Implementation of an Experimental Method for Coupled Subchannel Mixing Measurement

    International Nuclear Information System (INIS)

    Silin, Nicolas; Juanico, Luis; Delmastro, Dario

    2003-01-01

    In this work the application of a thermal tracing technique to the measurement of thermal turbulent mixing between coupled subchannels is presented.The experiment was carried out on a real scale model with geometry similar to nuclear fuel element rod bundles.Thermal mixing rates were measured for water flows at different Reynolds numbers

  12. Performance measurement, expectancy and agency theory: An experimental study

    NARCIS (Netherlands)

    Sloof, R.; van Praag, C.M.

    2008-01-01

    Theoretical analyses of (optimal) performance measures are typically performed within the realm of the linear agency model. This model implies that, for a given compensation scheme, the agent’s optimal effort is unrelated to the amount of noise in the performance measure. In contrast, expectancy

  13. Quantity Stickiness versus Stackelberg Leadership

    International Nuclear Information System (INIS)

    Ferreira, F. A.

    2008-01-01

    We study the endogenous Stackelberg relations in a dynamic market. We analyze a twice-repeated duopoly where, in the beginning, each firm chooses either a quantity-sticky production mode or a quantity-flexible production mode. The size of the market becomes observable after the first period. In the second period, a firm can adjust its quantity if, and only if, it has adopted the flexible mode. Hence, if one firm chooses the sticky mode whilst the other chooses the flexible mode, then they respectively play the roles of a Stackelberg leader and a Stackelberg follower in the second marketing period. We compute the supply quantities at equilibrium and the corresponding expected profits of the firms. We also analyze the effect of the slope parameter of the demand curve on the expected supply quantities and on the profits.

  14. Experimental device for measuring the dynamic properties of diaphragm motors

    Science.gov (United States)

    Fojtášek, Kamil; Dvořák, Lukáš; Mejzlík, Jan

    The subject of this paper is to design and description of the experimental device for the determination dynamic properties of diaphragm pneumatic motors. These motors are structurally quite different from conventional pneumatic linear cylinders. The working fluid is typically compressed air, the piston of motor is replaced by an elastic part and during the working cycle there is a contact of two elastic environments. In the manufacturers catalogs of these motors are not given any working characteristics. Description of the dynamic behavior of diaphragm motor will be used for verification of mathematical models.

  15. Calibration of a gamma spectrometer for natural radioactivity measurement. Experimental measurements and Monte Carlo modelling

    International Nuclear Information System (INIS)

    Courtine, Fabien

    2007-03-01

    The thesis proceeded in the context of dating by thermoluminescence. This method requires laboratory measurements of the natural radioactivity. For that purpose, we have been using a germanium spectrometer. To refine the calibration of this one, we modelled it by using a Monte-Carlo computer code: Geant4. We developed a geometrical model which takes into account the presence of inactive zones and zones of poor charge-collection within the germanium crystal. The parameters of the model were adjusted by comparison with experimental results obtained with a source of 137 Cs. It appeared that the form of the inactive zones is less simple than is presented in the specialized literature. This model was widened to the case of a more complex source, with cascade effect and angular correlations between photons: the 60 Co. Lastly, applied to extended sources, it gave correct results and allowed us to validate the simulation of matrix effect. (author)

  16. Analysis of experimental biosensor/FIA lactose measurements

    Directory of Open Access Journals (Sweden)

    Ferreira L.S.

    2003-01-01

    Full Text Available Whey is an abundant effluent in the production of cheese and casein. The biotechnological utilization of this economically important and nutritive source is limited mainly because of the presence of high percentages of lactose. This disaccharide has poor solubility, which can cause crystallization and insufficient sweetness in dairy food; additionally, part of the adult population suffers from associated lactose intolerance diseases. There are several methods to determine lactose such as spectrophotometry, polarimetry, infrared spectroscopy, titrimetry and chromatography. However these methods are tedious and time-consuming due to long sample preparation. These disadvantages stimulated the development of an enzymatic lactose biosensor. It employs two immobilized enzymes, beta-galactosidase and glucose oxidase and the quantitative analysis of lactose is based on determination of oxygen consumption in the enzymatic reaction. The influence of temperature on the biosensor signal was experimentally studied. It was observed that a nonlinear relationship exists between the electric response of the biosensor - provided by CAFCA (Computer Assisted Flow Control & Analysis - ANASYSCON, Hannover - and lactose concentration. In this work, attempts were made to correlate these variables using a simple nonlinear model and multilayered neural networks, with the latter providing the best modeling of the experimental data.

  17. Experimental infrared measurements for hydrocarbon pollutant determination in subterranean waters

    NARCIS (Netherlands)

    Lay-Ekuakille, A.; Palamara, I.; Caratelli, D.; Morabito, F.C.

    2013-01-01

    Subterranean waters are often polluted by industrial and anthropic effluents that are drained in subsoil. To prevent and control pollution, legislations of different developed countries require an online monitoring measurement, especially for detecting organic solvents (chlorinated and unchlorinated

  18. Increasing of MERARG experimental performances: on-line fission gas release measurement by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pontillon, Y.; Capdevila, H.; Clement, S. [CEA, DEN, DEC, SA3C, LAMIR, F-13108 Saint Paul lez Durance, (France); Guigues, E.; Janulyte, A.; Zerega, Y.; Andre, J. [Aix-Marseille Universite, LISA EA 4672, 13397 MARSEILLE cedex 20, (France)

    2015-07-01

    The MERARG device - implemented at the LECASTAR Hot Laboratory, at the CEA Cadarache - allows characterizing nuclear fuels with respect to the behaviour of fission gases during thermal transients representative of normal or off normal operating nuclear power plant conditions. The fuel is heated in order to extract a part or the total gas inventory it contains. Fission Gas Release (FGR) is actually recorded by mean of both on-line gamma spectrometry station and micro gas chromatography. These two devices monitor the quantity and kinetics of fission gas release rate. They only address {sup 85}Kr radioactive isotope and the elemental quantification of Kr, Xe and He (with a relatively low detection limit in the latter case, typically 5-10 ppm). In order to better estimate the basic mechanisms that promote fission gas release from irradiated nuclear fuels, the CEA fuel study department decided to improve its experimental facility by modifying MERARG to extend the studies of gamma emitter fission gases to all gases (including Helium) with a complete isotopic distribution capability. To match these specifications, a Residual Gas Analyser (RGA) has been chosen as mass spectrometer. This paper presents a review of the main aspects of the qualification/calibration phase of the RGA type analyser. In particular, results recorded over three mass ranges 1-10 u, 80-90 u and 120-140 u in the two classical modes of MERARG, i.e. on-line and off-line measurements are discussed. Results obtained from a standard gas bottle show that the quantitative analysis at a few ppm levels can be achieved for all isotopes of Kr and Xe, as well as masses 2 and 4 u. (authors)

  19. Performance Measurement, Expectancy and Agency Theory: An Experimental Study

    OpenAIRE

    Randolph Sloof; Mirjam van Praag

    2007-01-01

    Theoretical analyses of (optimal) performance measures are typically performed within the realm of the linear agency model. An important implication of this model is that, for a given compensation scheme, the agent's optimal effort choice is unrelated to the amount of noise in the performance measure. In contrast, expectancy theory as developed by psychologists predicts that effort levels are increasing in the signal-to-noise ratio. We conduct a real effort laboratory experiment to assess the...

  20. Development of experimental methods for measuring fuel elements burnup

    International Nuclear Information System (INIS)

    PEREDA, C; HENRIQUEZ, C; NAVARRO, G; TORRES, H; KLEIN, J; CALDERON, D; MEDEL, J; MUTIS, O; DAIE, J; ITURRIETA, L; LONCOMILLA, M; ZAMBRANO, J; KESTELMAN, A

    2003-01-01

    This paper is a summary of the work carried out during the last two years in fuel burning measurements at RECH-1 for different enrichments, cooling times and burning rates. The measurements were made in two gamma-spectrometric facilities, one is installed in a hot cell and the other inside of the secondary pool of the RECH-1, where the element is under 2 meters of water. The hot cell measurements need at least 100 cooling days because of the problems generated by the transport of highly active fuel elements from the Reactor to the cell. This was the main reason for using the in-pool facility because of its capability to measure the burning of fuel elements without having to wait so long, that is with only 5 cooling days. The accumulated experience in measurements achieved in both facilities and the encouraging results show that this measuring method is reliable. The results agreed well with those obtained using the reactor's physics codes, which was the way they were obtained previously (Cw)

  1. Measurement of the quantity of water in organic solvents by infrared absorption an measurement of the dielectric constants; Dosage de l'eau dans les solvants organiques par absorption infra-rouge et mesure des constantes dielectriques

    Energy Technology Data Exchange (ETDEWEB)

    Desnoyer, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-06-15

    Some chemical methods for the analysis of the quantity of water in solvents are first described, their object being the determination of the maximum error for cases where the water content is less than 1 per cent. - The first part of the work consists in describing infrared spectrometry as applied to the analysis of water in carbon tetrachloride, chloroform aniline, acetone and dioxane. A method based on isotopic exchange between heavy and light water is used on the one hand for determining the solubility of water in carbon tetrachloride and on the other hand for establishing standard solutions (sensitivity of the method). - In the second part the dielectric constant of water solvent solutions is measured. A table is presented giving the precision obtained by the two principal methods. These are comparable and further than that the appearance of the spectra suggests an interpretation of the anomalies observed in calibration curves obtained by the dielectric constant method. (author) [French] Quelques methodes chimiques d'analyses de l'eau dissoute dans les solvants sont decrites tout d'abord en vue de determiner l'erreur maxima dans le cas ou la teneur en eau ne depasse pas 1 pour cent. - Une premiere partie du travail expose la technique utilisee en spectrometrie infrarouge pour doser l'eau dans le tetrachlorure de carbone, chloroforme, aniline, acetone et le dioxane. Une methode basee sur l'echange isotopique entre l'eau legere et l'eau lourde permet de determiner d'une part la solubilite de l'eau dans le tetrachlorure de carbone et le chloroforme et d'autre part le titre en valeur absolue des solutions etalons (sensibilite de la methode). - Dans une deuxieme partie, on mesure la constante dielectrique des solutions eau-solvant. On dresse un tableau des precisions obtenues par les deux methodes principales. Celles-ci sont comparables et en outre, l'aspect du spectre suggere une interpretation des anomalies observees dans les courbes d'etalonnage tracees par la

  2. Design and experimentally measure a high performance metamaterial filter

    Science.gov (United States)

    Xu, Ya-wen; Xu, Jing-cheng

    2018-03-01

    Metamaterial filter is a kind of expecting optoelectronic device. In this paper, a metal/dielectric/metal (M/D/M) structure metamaterial filter is simulated and measured. Simulated results indicate that the perfect impedance matching condition between the metamaterial filter and the free space leads to the transmission band. Measured results show that the proposed metamaterial filter achieves high performance transmission on TM and TE polarization directions. Moreover, the high transmission rate is also can be obtained when the incident angle reaches to 45°. Further measured results show that the transmission band can be expanded through optimizing structural parameters. The central frequency of the transmission band is also can be adjusted through optimizing structural parameters. The physical mechanism behind the central frequency shifted is solved through establishing an equivalent resonant circuit model.

  3. Experimental nonlocality-based randomness generation with nonprojective measurements

    Science.gov (United States)

    Gómez, S.; Mattar, A.; Gómez, E. S.; Cavalcanti, D.; Farías, O. Jiménez; Acín, A.; Lima, G.

    2018-04-01

    We report on an optical setup generating more than one bit of randomness from one entangled bit (i.e., a maximally entangled state of two qubits). The amount of randomness is certified through the observation of Bell nonlocal correlations. To attain this result we implemented a high-purity entanglement source and a nonprojective three-outcome measurement. Our implementation achieves a gain of 27% of randomness as compared with the standard methods using projective measurements. Additionally, we estimate the amount of randomness certified in a one-sided device-independent scenario, through the observation of Einstein-Podolsky-Rosen steering. Our results prove that nonprojective quantum measurements allow extending the limits for nonlocality-based certified randomness generation using current technology.

  4. Performance measurement, expectancy and agency theory: An experimental study

    NARCIS (Netherlands)

    Sloof, R.; van Praag, C.M.

    2005-01-01

    Theoretical analyses of (optimal) performance measures are typically performed within the realm of the linear agency model. An important implication of this model is that, for a given compensation scheme, the agent's optimal effort choice is unrelated to the amount of noise in the performance

  5. "Calibration" system for spectral measurements and its experimental results

    Science.gov (United States)

    Bruchkouskaya, Sviatlana I.; Katkovsky, Leonid V.; Belyaev, Boris I.; Malyshev, Vladislav B.

    2017-04-01

    "Calibration" system has been developed at A. N. Sevchenko Research Institute of Applied Physical Problems of the Belarusian State University. It was designed for measuring the characteristics of spectral reflectance of all types of natural surfaces (test sites) in ground conditions or on board of aircraft carriers and has the following components: - Photospectroradiometr (PhSR) of high resolution with a range of 400-900 nm, equipped with a digital time-lapse video system; - Two-channel modular spectroradiometer (TMS) with a range of 400-900 nm, designed for simultaneous measurements of reflected light brightness of the underlying surface and the incident radiation from the upper hemisphere; - Two portable spectroradiometers (PSR-700 and PSR-1300) with a spectral range 800-1500 nm; 1200-2500 nm; - Scanning solar spectropolarimeter (SSP-600) with a range of 350-950 nm for measurements of direct sunlight and scattered by the atmosphere at different angles; "Calibration" system provides spectral resolution of 5.2 nm in a range of 400-900 nm, 10 nm in a range of 800-1500 nm and 15 nm in a range of 1200-2500 nm. Measurements of the optical characteristics of solar radiation (for determining parameters of the atmosphere) and that of underlying surface are synchronous. There is also a set of special nozzles for measurements of spectral brightness coefficients, polarization characteristics and spectral albedo. Spectra and images are geotagged to the navigation data (time, GPS). For the measurements of spectral reflection dependencies within "Monitoring-SG" framework expeditions to the Kuril Islands, Kursk aerospace test site and Kamchatka Peninsula were conducted in 2015 and 2016. The spectra of different underlying surfaces have been obtained: soils, plants and water objects, sedimentary and volcanic rocks. These surveys are a valuable material for further researches and selection of test facilities for flight calibration of space imaging systems. Information obtained

  6. Quantum mechanics and the theories of local hidden variables: an experimental test by measuring the spin correlation function in p-p scattering

    International Nuclear Information System (INIS)

    Lamehi-Rachti, Mohammad.

    1976-01-01

    The Einstein-Podolsky-Rosen paradox is briefly exposed with the Bell theorem on hidden variables and the locality principle. The conditions for an ideal experiment are discussed and the results from γ-γ correlation experiments are given. The principle of an experimental measurement of the spin correlation function predicted by the quantum mechanics theory is derived, new hypotheses to be introduced are discussed. The formula giving the dependence of the counting asymmetry on the spin correlation function, polarimeter analyzing power, and geometric correlation is developed. The principle of a Monte Carlo calculation is also exposed. The experimental device is described with the methods for measuring the subsidiary quantities and experimental results are analyzed [fr

  7. Calibration of personal dosimeters: Quantities and terminology

    International Nuclear Information System (INIS)

    Aleinikov, V.E.

    1999-01-01

    The numerical results obtained in the interpretation of individual monitoring of external radiation depend not only on the accurate calibration of the radiation measurement instruments involved, but also on the definition of the quantities in term of which these instruments are calibrated The absence of uniformity in terminology not only makes it difficult to understand properly the scientific and technical literature but can also lead to incorrect interpretation of particular concepts and recommendations. In this paper, brief consideration is given to definition of radiation quantities and terminology used in calibration procedures. (author)

  8. Experimental viscosity measurements of biodiesels at high pressure

    Directory of Open Access Journals (Sweden)

    Schaschke C.J.

    2016-01-01

    Full Text Available The viscosity of biodiesels of soybean and rapeseed biodiesels blended with mineral diesel fuel were measured at pressures of up to 200 MPa. Using a falling sinker-type viscometer reproducible viscosity data were obtained based on the time taken for a sinker to descend a fixed distance down an enclosed tube under the influence of gravity. Measurements were taken using pressures which correspond to those of interest in automotive common rail diesel engines, and at temperatures of between 25ºC and 80ºC. In all cases, the viscosity of the biodiesel blends were found to increase exponentially for which the blends were noted as being more viscous than pure mineral fuels. A pressure-freezing effect was not observed for the blends.

  9. Experimental approaches to the measurement of dielectronic recombination

    International Nuclear Information System (INIS)

    Datz, S.

    1984-01-01

    In dielectronic recombination, the first step involves a continuum electron which excites a previously bound electron and, in so doing, loses just enough energy to be captured in a bound state (nl). This results in a doubly excited ion of a lower charge state which may either autoionize or emit a photon resulting in a stabilized recombination. The complete signature of the event is an ion of reduced charge and an emitted photon. Methods of measuring this event are discussed

  10. Experimental measurements of spatial dose distributions in radiosurgery treatments

    International Nuclear Information System (INIS)

    Avila-Rodriguez, M. A.; Rodriguez-Villafuerte, M.; Diaz-Perches, R.; Perez-Pastenes, M. A.

    2001-01-01

    The measurement of stereotactic radiosurgery dose distributions requires an integrating, high-resolution dosimeter capable of providing a spatial map of absorbed dose. This paper describes the use of a commercial radiochromic dye film (GafChromic MD-55-2) to measure radiosurgery dose distributions with 6 MV X-rays in a head phantom. The response of the MD-55-2 was evaluated by digitizing and analyzing the films with conventional computer systems. Radiosurgery dose distributions were measured using the radiochromic film in a spherical acrylic phantom of 16 cm diameter undergoing a typical SRS treatment as a patient, and were compared with dose distributions provided by the treatment planning system. The comparison lead to mean radial differences of ±0.6 mm, ±0.9 mm, ±1.3 mm, ±1.9 mm, and ±2.8 mm, for the 80, 60, 50, 40, and 30% isodose curves, respectively. It is concluded that the radiochromic film is a convenient and useful tool for radiosurgery treatment planning validation

  11. Experimental measurement of electron heat diffusivity in a tokamak

    International Nuclear Information System (INIS)

    Callen, J.D.; Jahns, G.L.

    1976-06-01

    The electron temperature perturbation produced by internal disruptions in the center of the Oak Ridge Tokamak (ORMAK) is followed with a multi-chord soft x-ray detector array. The space-time evolution is found to be diffusive in character, with a conduction coefficient larger by a factor of 2.5 - 15 than that implied by the energy containment time, apparently because it is a measurement for the small group of electrons whose energies exceed the cut-off energy of the detectors

  12. A review of direct experimental measurements of detachment

    Science.gov (United States)

    Boedo, J.; McLean, A. G.; Rudakov, D. L.; Watkins, J. G.

    2018-04-01

    Detached divertor plasmas feature strong radial and parallel gradients of density, temperature, electric fields and flow over the divertor volume and therefore, sampling the divertor plasma directly provides crucial knowledge to the interpretation and modeling efforts. We review the contribution of diagnostics that directly sample the plasma to the advancement of knowledge of the physics of detachment and detached divertors, such as the characteristics of the various regimes, discovery and quantification of drifts and identification of convection of heat and particles. We focus on wall probes, scanning probes, retarding field analyzers and Thomson scattering in the divertor region and also include the contribution of measurements away from the divertor that provide insight on how divertor detachment affects core, edge or pedestal conditions. Wall probes are critical as they can be installed in closed volumes of difficult access to other diagnostics and measure plasma parameters at the divertor structures, which define the plasma boundary conditions and where detachment effects are more likely to be strongest.

  13. Experimental ion mobility measurements in Xe-CF4 mixtures

    Science.gov (United States)

    Cortez, A. F. V.; Kaja, M. A.; Escada, J.; Santos, M. A. G.; Veenhof, R.; Neves, P. N. B.; Santos, F. P.; Borges, F. I. G. M.; Conde, C. A. N.

    2018-04-01

    In this paper we present the results of the ion mobility measurements made in gaseous mixtures of xenon with carbon tetrafluoride (Xe-CF4) for pressures ranging from 6 to 10 Torr (8-10.6 mbar) and for low reduced electric fields in the 10 to 25 Td range (2.4-6.1 kVṡcm‑1ṡbar‑1), at room temperature. The time-of-arrival spectra revealed one or two peaks depending on the gas relative abundances, which were attributed to CF3+ and to Xe2+ ions. However, for Xe concentrations above 60%, only one peak remains (Xe2+). The reduced mobilities obtained from the peak centroid of the time-of-arrival spectra are presented for Xe concentrations in the 5%-95% range.

  14. Isotopic Resonance Hypothesis: Experimental Verification by Escherichia coli Growth Measurements

    Science.gov (United States)

    Xie, Xueshu; Zubarev, Roman A.

    2015-03-01

    Isotopic composition of reactants affects the rates of chemical and biochemical reactions. As a rule, enrichment of heavy stable isotopes leads to progressively slower reactions. But the recent isotopic resonance hypothesis suggests that the dependence of the reaction rate upon the enrichment degree is not monotonous. Instead, at some ``resonance'' isotopic compositions, the kinetics increases, while at ``off-resonance'' compositions the same reactions progress slower. To test the predictions of this hypothesis for the elements C, H, N and O, we designed a precise (standard error +/-0.05%) experiment that measures the parameters of bacterial growth in minimal media with varying isotopic composition. A number of predicted resonance conditions were tested, with significant enhancements in kinetics discovered at these conditions. The combined statistics extremely strongly supports the validity of the isotopic resonance phenomenon (p biotechnology, medicine, chemistry and other areas.

  15. Overview of the In-Flight Experimentations and Measurements on the IXV Experimental Vehicle

    Science.gov (United States)

    Cosson, E.; Giusto, S.; Del Vecchio, A.; Mancuso, S.

    2009-01-01

    After an assessment and then a trade-off of all the passenger experiments proposed by different partners within Europe, a selection of Core Experiments to be embarked on-board IXV to fulfil the Mission and System Requirements has been made. Some Passenger Experiments have also been identified to be potentially embarked, provided it is compatible with the system allocations, since they could bring valuable additional in-flight data. All those experiments include Thermal Protection System (TPS) experiments (including innovative TPS materials), AeroThermoDynamic (ATD) experiments and Health Monitoring System (HMS) experiments. Aside the previously mentioned experiments, a specific Vehicle Model Identification experiment (VMI) aims at validating in-flight the mathematical models of flight dynamics for a gliding re-entry vehicle. This paper also presents a preliminary version of the in- flight measurement plan, encompassing both conventional instrumentation and advanced sensors or even innovative measurement techniques.

  16. Modeling non-harmonic behavior of materials from experimental inelastic neutron scattering and thermal expansion measurements

    Science.gov (United States)

    Bansal, Dipanshu; Aref, Amjad; Dargush, Gary; Delaire, Olivier

    2016-09-01

    Based on thermodynamic principles, we derive expressions quantifying the non-harmonic vibrational behavior of materials, which are rigorous yet easily evaluated from experimentally available data for the thermal expansion coefficient and the phonon density of states. These experimentally-derived quantities are valuable to benchmark first-principles theoretical predictions of harmonic and non-harmonic thermal behaviors using perturbation theory, ab initio molecular-dynamics, or Monte-Carlo simulations. We illustrate this analysis by computing the harmonic, dilational, and anharmonic contributions to the entropy, internal energy, and free energy of elemental aluminum and the ordered compound \\text{FeSi} over a wide range of temperature. Results agree well with previous data in the literature and provide an efficient approach to estimate anharmonic effects in materials.

  17. Removal of Arsenic with Oyster Shell: Experimental Measurements

    Directory of Open Access Journals (Sweden)

    Md. Atiqur Rahman, , and

    2008-12-01

    Full Text Available Oyster shell has tremendous potential as a remediation material for the removal of arsenic from groundwater. A single arsenic removal system was developed with oyster shell for tube well water containing arsenic. The system removes arsenic from water by adsorption through fine oyster shell. Various conditions that affect the adsorption/desorption of arsenic were investigated. Adsorption column methods showed the removal of As(III under the following conditions: initial As concentration, 100 µg /L; oyster shell amount, 6 g; particle size, <355µm ; treatment flow rate, 1.7 mL/min; and pH 6.5. Arsenic concentration of the treated water were below the Bangladesh drinking water standard of 50 µg/L for As. The desorption efficiencies with 2M of KOH after the treatment of groundwater were in the range of 80-83%. A combination of techniques was used to measure the pH, conductivity, cations and anions. The average concentrations of other inorganic constituents of health concern (Na, K, Ca, Mg and Fe in treated water were below their respective WHO guideline for drinking. The present study might provide new avenues to achieve the arsenic concentrations required for drinking water recommended by Bangladesh and the World Health Organization (WHO.

  18. Hypergraph topological quantities for tagged social networks

    Science.gov (United States)

    Zlatić, Vinko; Ghoshal, Gourab; Caldarelli, Guido

    2009-09-01

    Recent years have witnessed the emergence of a new class of social networks, which require us to move beyond previously employed representations of complex graph structures. A notable example is that of the folksonomy, an online process where users collaboratively employ tags to resources to impart structure to an otherwise undifferentiated database. In a recent paper, we proposed a mathematical model that represents these structures as tripartite hypergraphs and defined basic topological quantities of interest. In this paper, we extend our model by defining additional quantities such as edge distributions, vertex similarity and correlations as well as clustering. We then empirically measure these quantities on two real life folksonomies, the popular online photo sharing site Flickr and the bookmarking site CiteULike. We find that these systems share similar qualitative features with the majority of complex networks that have been previously studied. We propose that the quantities and methodology described here can be used as a standard tool in measuring the structure of tagged networks.

  19. Oscillation experiments on Cesar and Marius - Experimental devices and measurement techniques

    International Nuclear Information System (INIS)

    Brunet, Max; Guerange, Jacques; Morier, Francis; Tonolli, Jacky

    1969-02-01

    An original method of measurement of effective cross sections of fissile materials has been developed by the CEA: a central fuel element of a critical experimental reactor is replaced by a sample containing the material to be studied. The replacement technique is based on oscillating the fuel load of the central channel. Signals are measured which are proportional to reactivity variation and to neutron density disturbance at the vicinity of the central channel, these variation and disturbance being produced by the sample oscillation. Measurements have been performed on experimental reactors (Minerve in Fontenay-aux-Roses, and Cesar and Marius in Cadarache). The authors herein describe the experimental devices and measurement techniques implemented in Marius and Cesar. In a first part, they describe the experimental devices which have been used during the three measurement campaigns (between 1965 and 1967). They report the study of measurement accuracies, and of some problems related to the use of the local detector [fr

  20. Experimental Measurement of the Flow Field of Heavy Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Fred Browand; Charles Radovich

    2005-05-31

    trucks in a tandem configuration. In December 2003, such fuel consumption tests were performed at the same Crows Landing testsite. In the tests, two identical trucks are operated at headways in the range 3-10 meters. The trucks are steered by hand, but longitudinal control is provided by a closed-loop control system. Laser ranging measures truck-to-truck distance, and the control system maintains a truck separation to within about {+-} 3 centimeters. From these tests it is concluded that both trucks save fuel by close-following, that the fuel saving increases with decreasing spacing, and that the trail truck saves more fuel. An average value of fuel saving for each of the two trucks at spacings of 6-10 meters can be taken to be 3.0 liters/100 km.

  1. Quantity Estimation Of The Interactions

    International Nuclear Information System (INIS)

    Gorana, Agim; Malkaj, Partizan; Muda, Valbona

    2007-01-01

    In this paper we present some considerations about quantity estimations, regarding the range of interaction and the conservations laws in various types of interactions. Our estimations are done under classical and quantum point of view and have to do with the interaction's carriers, the radius, the influence range and the intensity of interactions

  2. Recognizing Prefixes in Scientific Quantities

    Science.gov (United States)

    Sokolowski, Andrzej

    2015-01-01

    Although recognizing prefixes in physical quantities is inherent for practitioners, it might not be inherent for students, who do not use prefixes in their everyday life experiences. This deficiency surfaces in AP Physics exams. For example, readers of an AP Physics exam reported "a common mistake of incorrectly converting nanometers to…

  3. Definitions of Quantities and Units.

    Science.gov (United States)

    Spurgin, C. B.

    1983-01-01

    Compares various methods of defining derived quantities, arguing for a definitional formula using base or fundamental units in a word equation, or symbol-equations with the symbols explained. Suggests that fundamental units be defined operationally or left regarded as intuitive as in the case of length and time. (JM)

  4. Experimental validation of error in temperature measurements in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    An experimental analysis has been performed to validate the measurement error of cooling curves measured in thin walled ductile cast iron. Specially designed thermocouples with Ø0.2 mm thermocouple wire in Ø1.6 mm ceramic tube was used for the experiments. Temperatures were measured in plates...

  5. Experimental study of a swept reflectometer with a single antenna for plasma density profile measurement

    International Nuclear Information System (INIS)

    Calderon, M.A.G.; Simonet, F.

    1984-12-01

    The feasibility of a swept microwave reflectometer, with one antenna only, for plasma electron density measurement is studied. Experimental results obtained in the laboratory by simulating the plasma with a metallic mirror are presented

  6. Experimental device for the X-ray energetic distribution measurement in a tokamak plasma

    International Nuclear Information System (INIS)

    Perez-Navarro, A.

    1977-01-01

    An experimental system to measure the X-ray spectrum in a tokamak plasma is described, emphasizing its characteristics: resolution, dead time and the pulse pile-up distortion effects on the X-ray spectra. (author) [es

  7. A Statistical Approach for Selecting Buildings for Experimental Measurement of HVAC Needs

    Directory of Open Access Journals (Sweden)

    Malinowski Paweł

    2017-03-01

    Full Text Available This article presents a statistical methodology for selecting representative buildings for experimentally evaluating the performance of HVAC systems, especially in terms of energy consumption. The proposed approach is based on the k-means method. The algorithm for this method is conceptually simple, allowing it to be easily implemented. The method can be applied to large quantities of data with unknown distributions. The method was tested using numerical experiments to determine the hourly, daily, and yearly heat values and the domestic hot water demands of residential buildings in Poland. Due to its simplicity, the proposed approach is very promising for use in engineering applications and is applicable to testing the performance of many HVAC systems.

  8. Experimental measurement of flexion-extension movement in normal and corpse prosthetic elbow joint.

    Science.gov (United States)

    TarniŢă, Daniela; TarniŢă, DănuŢ Nicolae

    2016-01-01

    This paper presents a comparative experimental study of flexion-extension movement in healthy elbow and in the prosthetic elbow joint fixed on an original experimental bench. Measurements were carried out in order to validate the functional morphology and a new elbow prosthesis type ball head. The three-dimensional (3D) model and the physical prototype of our experimental bench used to test elbow endoprosthesis at flexion-extension and pronation-supination movements is presented. The measurements were carried out on a group of nine healthy subjects and on the prosthetic corpse elbow, the experimental data being obtained for flexion-extension movement cycles. Experimental data for the two different flexion-extension tests for the nine subjects and for the corpse prosthetic elbow were acquired using SimiMotion video system. Experimental data were processed statistically. The corresponding graphs were obtained for all subjects in the experimental group, and for corpse prosthetic elbow for both flexion-extension tests. The statistical analysis has proved that the flexion angles of healthy elbows were significantly close to the values measured at the prosthetic elbow fixed on the experimental bench. The studied elbow prosthesis manages to re-establish the mobility for the elbow joint as close to the normal one.

  9. Theoretical background and experimental measurements of human brain noise intensity in perception of ambiguous images

    International Nuclear Information System (INIS)

    Runnova, Anastasiya E.; Hramov, Alexander E.; Grubov, Vadim V.; Koronovskii, Alexey A.; Kurovskaya, Maria K.; Pisarchik, Alexander N.

    2016-01-01

    We propose a theoretical approach associated with an experimental technique to quantitatively characterize cognitive brain activity in the perception of ambiguous images. Based on the developed theoretical background and the obtained experimental data, we introduce the concept of effective noise intensity characterizing cognitive brain activity and propose the experimental technique for its measurement. The developed theory, using the methods of statistical physics, provides a solid experimentally approved basis for further understanding of brain functionality. The rather simple way to measure the proposed quantitative characteristic of the brain activity related to the interpretation of ambiguous images will hopefully become a powerful tool for physicists, physiologists and medics. Our theoretical and experimental findings are in excellent agreement with each other.

  10. LOFT experimental measurements uncertainty analyses. Volume XX. Fluid-velocity measurement using pulsed-neutron activation

    International Nuclear Information System (INIS)

    Lassahn, G.D.; Taylor, D.J.N.

    1982-08-01

    Analyses of uncertainty components inherent in pulsed-neutron-activation (PNA) measurements in general and the Loss-of-Fluid-Test (LOFT) system in particular are given. Due to the LOFT system's unique conditions, previously-used techniques were modified to make the volocity measurement. These methods render a useful, cost-effective measurement with an estimated uncertainty of 11% of reading

  11. Concept of ICRU's operational quantity and its application

    International Nuclear Information System (INIS)

    Murakami, Hiroyuki

    1995-01-01

    The operational quantity which was introduced in the ICRU report 39 published in 1985 was shocking rather than fresh for the author. The report was translated into Japanese, but at the beginning, the contents were not able to be understood. Thereafter, the measurement of ICRU sphere dose equivalent was introduced in a national law. But it is feared that the understanding of this operational quantity is limited to specialist level, and is not by men of practical works. The meaning of ''operational'' must be that workers measure and obtain dose on the spot for the radiation protection for themselves. The principles used when ICRU considered the new practical measured quantity are shown. In the definition of operational quantity in area monitoring, two concepts of expanded and aligned connect real measurement with the operational quantity. The problems of measuring individual dose equivalent are discussed. As to the reality of applying the operational quantity, the fundamentals of the calibration of measuring instruments, the investigation of the operational quantity in relation to measuring instruments and measurement mode, and the relation of area monitoring and individual monitoring are described. (K.I.)

  12. DOE approach to threshold quantities

    International Nuclear Information System (INIS)

    Wickham, L.E.; Kluk, A.F.; Department of Energy, Washington, DC)

    1985-01-01

    The Department of Energy (DOE) is developing the concept of threshold quantities for use in determining which waste materials must be handled as radioactive waste and which may be disposed of as nonradioactive waste at its sites. Waste above this concentration level would be managed as radioactive or mixed waste (if hazardous chemicals are present); waste below this level would be handled as sanitary waste. Ideally, the threshold must be set high enough to significantly reduce the amount of waste requiring special handling. It must also be low enough so that waste at the threshold quantity poses a very small health risk and multiple exposures to such waste would still constitute a small health risk. It should also be practical to segregate waste above or below the threshold quantity using available instrumentation. Guidance is being prepared to aid DOE sites in establishing threshold quantity values based on pathways analysis using site-specific parameters (waste stream characteristics, maximum exposed individual, population considerations, and site specific parameters such as rainfall, etc.). A guidance dose of between 0.001 to 1.0 mSv/y (0.1 to 100 mrem/y) was recommended with 0.3 mSv/y (30 mrem/y) selected as the guidance dose upon which to base calculations. Several tasks were identified, beginning with the selection of a suitable pathway model for relating dose to the concentration of radioactivity in the waste. Threshold concentrations corresponding to the guidance dose were determined for waste disposal sites at a selected humid and arid site. Finally, cost-benefit considerations at the example sites were addressed. The results of the various tasks are summarized and the relationship of this effort with related developments at other agencies discussed

  13. Quantities used in radiological protection

    International Nuclear Information System (INIS)

    Menossi, Carlos

    2010-01-01

    The application of ICRP recommendations requires knowledge of a variety of concepts and magnitudes. Many of them are employed in other fields of science and precision in its definition reflects this wide application. In this regard, information on quantities and basic units of radiation, which exists in numerous publications, are subjects of great interest. The characteristics and radiation effects are studied by physicists, biologists and chemists mainly. However, there are basics that must be known and to be recognized by general practitioners and specialists from all branches of medicine. The information on quantities and units are used only in radiation protection, have been obtained from the reports listed on the attached bibliography. Such quantities and units contain weighting factors used to provide for different types of radiation and energies that affect the body and thus take into account the relative radio-sensitivity of different tissues. Additionally, they have added a series of data for a better understanding of the units: for example, multiples and sub-multiples, and some examples of converting the units used in radiation protection. (author) [es

  14. On the measurement of a weak classical force coupled to a harmonic oscillator: experimental progress

    International Nuclear Information System (INIS)

    Bocko, M.F.; Onofrio, R.

    1996-01-01

    Several high-precision physics experiments are approaching a level of sensitivity at which the intrinsic quantum nature of the experimental apparatus is the dominant source of fluctuations limiting the sensitivity of the measurements. This quantum limit is embodied by the Heisenberg uncertainty principle, which prohibits arbitrarily precise simultaneous measurements of two conjugate observables of a system but allows one-time measurements of a single observable with any precision. The dynamical evolution of a system immediately following a measurement limits the class of observables that may be measured repeatedly with arbitrary precision, with the influence of the measurement apparatus on the system being confined strictly to the conjugate observables. Observables having this feature, and the corresponding measurements performed on them, have been named quantum nondemolition or back-action evasion observables. In a previous review (Caves et al., 1980, Rev. Mod. Phys. 52, 341) a quantum-mechanical analysis of quantum nondemolition measurements of a harmonic oscillator was presented. The present review summarizes the experimental progress on quantum nondemolition measurements and the classical models developed to describe and guide the development of practical implementations of quantum nondemolition measurements. The relationship between the classical and quantum theoretical models is also reviewed. The concept of quantum nondemolition and back-action evasion measurements originated in the context of measurements on a macroscopic mechanical harmonic oscillator, though these techniques may be useful in other experimental contexts as well, as is discussed in the last part of this review. copyright 1996 The American Physical Society

  15. Measurement of the x-ray mass-attenuation coefficients of gold, derived quantities between 14 keV and 21 keV and determination of the bond lengths of gold

    International Nuclear Information System (INIS)

    Glover, J L; Chantler, C T; Barnea, Z; Rae, N A; Tran, C Q

    2010-01-01

    The x-ray mass-attenuation coefficients of gold are measured at 91 energies between 14 keV and 21 keV using synchrotron radiation. The measurements are accurate to between 0.08% and 0.1%. The photoelectric mass-absorption coefficients and the imaginary component of the form factors of gold are also determined. The results include the L I edge and are the most accurate and extensive gold dataset available in this energy range. An analysis of the L I edge XAFS showed excellent agreement between the measured and simulated XAFS and yielded highly accurate values of the bond lengths of gold. When our results are compared with earlier measurements and with predictions of major theoretical tabulations, significant discrepancies are noted. The comparison raises questions about the nature of discrepancies between experimental and theoretical values of mass-attenuation coefficients.

  16. Information quantity in a pixel of digital image

    OpenAIRE

    Kharinov, M.

    2014-01-01

    The paper is devoted to the problem of integer-valued estimating of information quantity in a pixel of digital image. The definition of an integer estimation of information quantity based on constructing of the certain binary hierarchy of pixel clusters is proposed. The methods for constructing hierarchies of clusters and generating of hierarchical sequences of image approximations that minimally differ from the image by a standard deviation are developed. Experimental results on integer-valu...

  17. Calculation and experimental measurements in the Argonauta reactor subcritical and exponential facility

    International Nuclear Information System (INIS)

    Voi, Dante L.; Furieri, Rosane C.A.A.; Renke, Carlos A.C.; Bastos, Wilma S.; Ferreira, Francisco J.O.

    1997-01-01

    Initial measurements were performed on the exponential and subcritical facility installed on the internal thermal column of the Argonauta reactor at IEN-CNEN-Rio de Janeiro, Brazil. The measurements are include in the reactor physics experimental program for integral parameters determination, for both valid and confirmed theoretical models for reactor calculation. Gamma doses and neutron fluxes were measured with telescopic, proportional counters, wire and foil detectors. Experimental data were compared with results obtained by application of CITATION code. (author). 4 refs., 8 figs

  18. Experimental system to measure excitation cross-sections by electron impact. Measurements for ArI and ArII

    International Nuclear Information System (INIS)

    Blanco, F.; Sanchez, J.A.; Aguilera, J.A.; Campos, J.

    1989-01-01

    An experimental set-up to measure excitation cross-section of atomic and molecular levels by electron impact based on the optical method is reported. We also present some measurements on the excitation cross-section for ArI 5p'(1/2)0 level, and for simultaneous ionization and excitation of Ar leading to ArII levels belonging to the 3p 4 4p and 3p 4 4d configurations. (Author)

  19. Technique of measuring and evaluating the R3E dia. 112 experimental fuel element

    International Nuclear Information System (INIS)

    Stanc, S.; Badiar, S.

    1974-10-01

    The charging is considered of the R3E experimental fuel element having a diameter of 112 mm which will serve the simultaneous temperature measurement on 15 sites and neutron flux measurement on 7 sites aimed at verifying the improved R3-type fuel element with extended cladding and a new toroidal spacing. The temperature will be measured using jacket thermocouples while neutron flux will be measured by self-powered detectors. The methods are described of checking the measuring chain by determining the loop resistance of the thermocouples and SPN detectors in order to verify the correctness of the measured data. (J.B.)

  20. Impact of measurement uncertainty from experimental load distribution factors on bridge load rating

    Science.gov (United States)

    Gangone, Michael V.; Whelan, Matthew J.

    2018-03-01

    Load rating and testing of highway bridges is important in determining the capacity of the structure. Experimental load rating utilizes strain transducers placed at critical locations of the superstructure to measure normal strains. These strains are then used in computing diagnostic performance measures (neutral axis of bending, load distribution factor) and ultimately a load rating. However, it has been shown that experimentally obtained strain measurements contain uncertainties associated with the accuracy and precision of the sensor and sensing system. These uncertainties propagate through to the diagnostic indicators that in turn transmit into the load rating calculation. This paper will analyze the effect that measurement uncertainties have on the experimental load rating results of a 3 span multi-girder/stringer steel and concrete bridge. The focus of this paper will be limited to the uncertainty associated with the experimental distribution factor estimate. For the testing discussed, strain readings were gathered at the midspan of each span of both exterior girders and the center girder. Test vehicles of known weight were positioned at specified locations on each span to generate maximum strain response for each of the five girders. The strain uncertainties were used in conjunction with a propagation formula developed by the authors to determine the standard uncertainty in the distribution factor estimates. This distribution factor uncertainty is then introduced into the load rating computation to determine the possible range of the load rating. The results show the importance of understanding measurement uncertainty in experimental load testing.

  1. An experimental device for measurement of gas permeation in solid matrices

    International Nuclear Information System (INIS)

    De Salve, M.; Mazzi, E.; Zucchetti, M.

    1996-01-01

    The inventory in and the permeation through fusion reactor structures of hydrogen and its isotopes play an important role in the machine operation, evolution of material properties, and safety. An experimental and research activity for the determination of permeability (and derived parameters) of gases in solid matrices is described. It uses a gas permeation method, that basically consists in the measure of the time evolution of the gas pressure in a chamber in which vacuum has been previously made (downstream volume). This chamber is separated from another one, full of the gas in exam (upstream volume), by means of a membrane of the material under study. The experimental installation is described. The first stage of the experimental activity has dealt with the set-up of the device, the volume calibration, and the definition of the parameters range for which the installation can give reliable measurements. The subsequent stage of the activity has consisted in the measurement of the permeability, and then of the diffusion coefficient, of nitrogen in some materials at room temperature. Concurrently with the experimental activity, a model has been set-up and implemented in a computer code: this code permits to evaluate the time evolution of the pressure in the downstream chamber. With this code, using the measured parameters, the time evolution of the pressure experimentally measured has been satisfactorily reproduced. (author)

  2. Experimental verification of neutron emission method for measuring of fissile material content in spent fuel

    International Nuclear Information System (INIS)

    Abou-Zaid, A.A.; Pytel, K.

    1999-01-01

    A non-destructive method of measurement of fissile nuclides content remained in spent fuel from research reactor is presented. The method, called the neutron emission one, is based on counting of fission neutrons emitted from fissile isotopes: 235 U, 239 Pu, 241 Pu. Fissions are induced mainly by neutrons supplied by the external neutron source. Another effects contribute also to the measured neutron population, e. g. source neutrons from penetrating the fuel without being captured and scattered, neutrons (α,n) reactions and from spontaneous fissions of actinides. Complexity of phenomena occurring within the measurement facility required the detailed numerical simulation and experimental studies prior design of ultimate measurement stand. In the previous paper, the results of Monte Carlo simulation on optimisation of measuring stand for neutron emission method were presented. On the basis of those results, the experimental stand for Maria reactor fuel investigation has been designed and manufactured. The present paper, being the continuation of previous one, contains the description of experimental facility and the results of measurements for the fresh fuel (without burnup) and the fuel mock-up (without fissile materials). Although some discrepancies were found between Monte Carlo and experimental results, the main conclusions concerning the optimal geometry of measuring facility have been confirmed. (author)

  3. Coherent versus incoherent resonant emission: an experimental method for easy discrimination and measurement

    Science.gov (United States)

    Ceccherini, S.; Colocci, M.; Gurioli, M.; Bogani, F.

    1998-11-01

    The distinction between the coherent and the incoherent component of the radiation emitted from resonantly excited material systems is difficult experimentally, particularly when ultra-short optical pulses are used for excitation. We propose an experimental procedure allowing an easy measurement of the two components. The method is completely general and applicable to any kind of physical system; its feasibility is demonstrated on the resonant emission from excitons in a semiconductor quantum well.

  4. How necessary are the new quantities

    International Nuclear Information System (INIS)

    Kraus, W.

    1991-01-01

    The necessity of the ICRU operational quantities is discussed from the point of view of practical, opertional radiation protection, on the basis of ICRU report 43. It is clear that, although the new quantities have some advantages over previous systems of operational quantities, there are some disadvantages as well. The decision to adopt these quantities is, therefore, not clear cut. (orig.)

  5. Development of an Experimental Measurement System for Human Error Characteristics and a Pilot Test

    International Nuclear Information System (INIS)

    Jang, Tong-Il; Lee, Hyun-Chul; Moon, Kwangsu

    2017-01-01

    Some items out of individual and team characteristics were partially selected, and a pilot test was performed to measure and evaluate them using the experimental measurement system of human error characteristics. It is one of the processes to produce input data to the Eco-DBMS. And also, through the pilot test, it was tried to take methods to measure and acquire the physiological data, and to develop data format and quantification methods for the database. In this study, a pilot test to measure the stress and the tension level, and team cognitive characteristics out of human error characteristics was performed using the human error characteristics measurement and experimental evaluation system. In an experiment measuring the stress level, physiological characteristics using EEG was measured in a simulated unexpected situation. As shown in results, although this experiment was pilot, it was validated that relevant results for evaluating human error coping effects of workers’ FFD management guidelines and unexpected situation against guidelines can be obtained. In following researches, additional experiments including other human error characteristics will be conducted. Furthermore, the human error characteristics measurement and experimental evaluation system will be utilized to validate various human error coping solutions such as human factors criteria, design, and guidelines as well as supplement the human error characteristics database.

  6. Experimental Test of Entropic Noise-Disturbance Uncertainty Relations for Spin-1/2 Measurements.

    Science.gov (United States)

    Sulyok, Georg; Sponar, Stephan; Demirel, Bülent; Buscemi, Francesco; Hall, Michael J W; Ozawa, Masanao; Hasegawa, Yuji

    2015-07-17

    Information-theoretic definitions for noise and disturbance in quantum measurements were given in [Phys. Rev. Lett. 112, 050401 (2014)] and a state-independent noise-disturbance uncertainty relation was obtained. Here, we derive a tight noise-disturbance uncertainty relation for complementary qubit observables and carry out an experimental test. Successive projective measurements on the neutron's spin-1/2 system, together with a correction procedure which reduces the disturbance, are performed. Our experimental results saturate the tight noise-disturbance uncertainty relation for qubits when an optimal correction procedure is applied.

  7. Measurements of experimental precision for trials with cowpea (Vigna unguiculata L. Walp.) genotypes.

    Science.gov (United States)

    Teodoro, P E; Torres, F E; Santos, A D; Corrêa, A M; Nascimento, M; Barroso, L M A; Ceccon, G

    2016-05-09

    The aim of this study was to evaluate the suitability of statistics as experimental precision degree measures for trials with cowpea (Vigna unguiculata L. Walp.) genotypes. Cowpea genotype yields were evaluated in 29 trials conducted in Brazil between 2005 and 2012. The genotypes were evaluated with a randomized block design with four replications. Ten statistics that were estimated for each trial were compared using descriptive statistics, Pearson correlations, and path analysis. According to the class limits established, selective accuracy and F-test values for genotype, heritability, and the coefficient of determination adequately estimated the degree of experimental precision. Using these statistics, 86.21% of the trials had adequate experimental precision. Selective accuracy and the F-test values for genotype, heritability, and the coefficient of determination were directly related to each other, and were more suitable than the coefficient of variation and the least significant difference (by the Tukey test) to evaluate experimental precision in trials with cowpea genotypes.

  8. Experimental measurements and prediction of liquid densities for n-alkane mixtures

    International Nuclear Information System (INIS)

    Ramos-Estrada, Mariana; Iglesias-Silva, Gustavo A.; Hall, Kenneth R.

    2006-01-01

    We present experimental liquid densities for n-pentane, n-hexane and n-heptane and their binary mixtures from (273.15 to 363.15) K over the entire composition range (for the mixtures) at atmospheric pressure. A vibrating tube densimeter produces the experimental densities. Also, we present a generalized correlation to predict the liquid densities of n-alkanes and their mixtures. We have combined the principle of congruence with the Tait equation to obtain an equation that uses as variables: temperature, pressure and the equivalent carbon number of the mixture. Also, we present a generalized correlation for the atmospheric liquid densities of n-alkanes. The average absolute percentage deviation of this equation from the literature experimental density values is 0.26%. The Tait equation has an average percentage deviation of 0.15% from experimental density measurements

  9. Further optimization studies of experimental dynamic responses measured on the HTGC Dragon reactor

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1968-04-01

    This report considers some measurements made of the dynamics of the HTGC Dragon reactor and the optimization of a mathematical model which represents the reactor, by altering the parameters until a least squares fit between the experimental responses and the mathematical model is obtained. The experimental information was processed in various ways. The experimental response to an impulse, step or periodic sine wave change in reactivity was processed as an impulse, step or periodic sine wave response respectively and compared with a similar response from the model. In other studies the result of a binary cross correlation experiment (effectively an impulse response input) was processed as a frequency response and this experimental frequency response was compared with the frequency response from the mathematical model. It was possible therefore to compare the optimum values of parameters, obtained for different forms of perturbing signal and for different methods of processing and to relate the optima obtained to the problem of parameter estimation. (author)

  10. INTERCOMPARISON ON THE MEASUREMENT OF THE QUANTITY PERSONAL DOSE EQUIVALENT HP(10) IN PHOTON FIELDS. LINEARITY DEPENDENCE, LOWER LIMIT OF DETECTION AND UNCERTAINTY IN MEASUREMENT OF DOSIMETRY SYSTEMS OF INDIVIDUAL MONITORING SERVICES IN GABON AND GHANA.

    Science.gov (United States)

    Ondo Meye, P; Schandorf, C; Amoako, J K; Manteaw, P O; Amoatey, E A; Adjei, D N

    2017-12-01

    An inter-comparison study was conducted to assess the capability of dosimetry systems of individual monitoring services (IMSs) in Gabon and Ghana to measure personal dose equivalent Hp(10) in photon fields. The performance indicators assessed were the lower limit of detection, linearity and uncertainty in measurement. Monthly and quarterly recording levels were proposed with corresponding values of 0.08 and 0.025 mSv, and 0.05 and 0.15 mSv for the TLD and OSL systems, respectively. The linearity dependence of the dosimetry systems was performed following the requirement given in the Standard IEC 62387 of the International Electrotechnical Commission (IEC). The results obtained for the two systems were satisfactory. The procedure followed for the uncertainty assessment is the one given in the IEC technical report TR62461. The maximum relative overall uncertainties, in absolute value, expressed in terms of Hp(10), for the TL dosimetry system Harshaw 6600, are 44. 35% for true doses below 0.40 mSv and 36.33% for true doses ≥0.40 mSv. For the OSL dosimetry system microStar, the maximum relative overall uncertainties, in absolute value, are 52.17% for true doses below 0.40 mSv and 37.43% for true doses ≥0.40 mSv. These results are in good agreement with the requirements for accuracy of the International Commission on Radiological protection. When expressing the uncertainties in terms of response, comparison with the IAEA requirements for overall accuracy showed that the uncertainty results were also acceptable. The values of Hp(10) directly measured by the two dosimetry systems showed a significant underestimation for the Harshaw 6600 system, and a slight overestimation for the microStar system. After correction for linearity of the measured doses, the two dosimetry systems gave better and comparable results. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Progress in nuclear measuring and experimental techniques by application of microelectronics. 1

    International Nuclear Information System (INIS)

    Meiling, W.

    1984-01-01

    In the past decade considerable progress has been made in nuclear measuring and experimental techniques by developing position-sensitive detector systems and widely using integrated circuits and microcomputers for data acquisition and processing as well as for automation of measuring processes. In this report which will be published in three parts those developments are reviewed and demonstrated on selected examples. After briefly characterizing microelectronics, the use of microelectronic elements for radiation detectors is reviewed. (author)

  12. Experimental test of far-infrared polarimetry for Faraday rotation measurements on the TFR 600 Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Soltwisch, H [Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Plasmaphysik; Association Euratom-Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.)); Equipe, T F.R. [Association Euratom-CEA sur la Fusion, Centre d' Etudes Nucleaires de Fontenay-aux-Roses, 92 (France). Dept. de Recherches sur la Fusion Controlee

    1981-09-01

    The results are reported on the feasibility of using far-infrared polarimetry for Faraday rotation diagnostic measurements on the TRF Tokamak. Precise quantitative results were not obtained but a satisfactory agreement with a simple theoretical model leads to a good understanding of the experimental limitations of the method.

  13. Experimental evaluation of permanent magnet probe flowmeter measuring high temperature liquid sodium flow in the ITSL

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Uiju; Kim, Yun Ho [Nuclear engineering Department, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Jong-Man; Kim, Tae-Joon [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Sung Joong, E-mail: sungjkim@mit.edu [Nuclear engineering Department, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2013-12-15

    Highlights: • An Instrument Test Sodium Loop (ITSL) has been built and tested in various conditions at KAERI. • Free fall of liquid sodium was conducted experimentally and numerically. • A Permanent Magnet Probe Flowmeter (PMPF) was experimented in the ITSL. • Excellent linearity of the PMPF was achieved under high temperature condition. - Abstract: The Instrument Test Sodium Loop (ITSL) installed at Korea Atomic Energy Research Institute (KAERI) is a medium-size experimental facility dedicated to obtaining relevant experimental data of liquid sodium flow characteristics under various thermal hydraulic conditions and sodium purification. The ITSL has been utilized to perform thermal flow measurement of the liquid sodium and to calibrate a Permanent Magnet Probe Flowmeter (PMPF). The primary objective of this study is to obtain liquid sodium flow rate given a wide temperature range using the PMPF. Non-stationary method was adopted for the calibration of the probe given the liquid sodium temperature range of 150–415 °C. A relationship between the measured voltage signal and flow rate was obtained successfully. It is observed that the calibration experiments result in excellent linear relationships between measured voltage and volumetric flow rate at various temperature conditions. Also a computational analysis using FlowMaster, is employed to facilitate the calibration process by predicting the liquid sodium flow rate. Finally the effect of the fluid temperature on thermal flow measurements is discussed in light of the obtained experimental data.

  14. Development of the Neuron Assessment for Measuring Biology Students' Use of Experimental Design Concepts and Representations

    Science.gov (United States)

    Dasgupta, Annwesa P.; Anderson, Trevor R.; Pelaez, Nancy J.

    2016-01-01

    Researchers, instructors, and funding bodies in biology education are unanimous about the importance of developing students' competence in experimental design. Despite this, only limited measures are available for assessing such competence development, especially in the areas of molecular and cellular biology. Also, existing assessments do not…

  15. Experimentally Measured Susceptibility to Peer Influence and Adolescent Sexual Behavior Trajectories: A Preliminary Study

    Science.gov (United States)

    Choukas-Bradley, Sophia; Giletta, Matteo; Widman, Laura; Cohen, Geoffrey L.; Prinstein, Mitchell J.

    2014-01-01

    A performance-based measure of peer influence susceptibility was examined as a moderator of the longitudinal association between peer norms and trajectories of adolescents' number of sexual intercourse partners. Seventy-one 9th grade adolescents (52% female) participated in an experimental "chat room" paradigm involving…

  16. Experimentally measured susceptibility to peer influence and adolescent sexual behavior trajectories : A preliminary study

    NARCIS (Netherlands)

    Choukas-Bradley, S.; Giletta, M.; Widman, L.; Cohen, G.L.; Prinstein, M.J.

    2014-01-01

    A performance-based measure of peer influence susceptibility was examined as a moderator of the longitudinal association between peer norms and trajectories of adolescents' number of sexual intercourse partners. Seventy-one 9th grade adolescents (52% female) participated in an experimental "chat

  17. An experimental model for measuring gastrointestinal bleeding rate using Tc-99m DTPA in rabbits

    International Nuclear Information System (INIS)

    Owunwanne, A.; Abdel-Dayem, H.M.; Sadek, S.; Yakoub, T.; Mahajan, K.K.; Ericsson, S.B.

    1987-01-01

    An animal experimental model to measure the rate of gastrointestinal bleeding rate in a rabbit using Tc-99m DTPA is described. It was possible to detect a bleeding rate of 0.1 ml/min. However, the model could not be used to calculate the minimum amount of radioactivity needed to detect the bleeding site. (orig.) [de

  18. On the Dielectric Constant for Acetanilide: Experimental Measurements and Effect on Energy Transport

    Science.gov (United States)

    Careri, G.; Compatangelo, E.; Christiansen, P. L.; Halding, J.; Skovgaard, O.

    1987-01-01

    Experimental measurements of the dielectric constant for crystalline acetanilide powder for temperatures ranging from - 140°C to 20°C and for different hydration levels are presented. A Davydov-soliton computer model predicts dramatic changes in the energy transport and storage for typically increased values of the dielectric constant.

  19. Experimental measurements of the solubility of technetium under near-field conditions

    International Nuclear Information System (INIS)

    Pilkington, N.J.; Wilkins, J.D.

    1988-05-01

    The solubility of technetium in contact with hydrated technetium dioxide under near-field conditions has been measured experimentally. The values obtained were changed little by a change in pH or in the filtration method used. The presence of organic degradation products increased slightly the solution concentration of technetium. (author)

  20. COMPARISON OF EXPERIMENTAL-DESIGNS COMBINING PROCESS AND MIXTURE VARIABLES .2. DESIGN EVALUATION ON MEASURED DATA

    NARCIS (Netherlands)

    DUINEVELD, C. A. A.; Smilde, A. K.; Doornbos, D. A.

    1993-01-01

    The construction of a small experimental design for a combination of process and mixture variables is a problem which has not been solved completely by now. In a previous paper we evaluated some designs with theoretical measures. This second paper evaluates the capabilities of the best of these

  1. COMPARISON OF EXPERIMENTAL-DESIGNS COMBINING PROCESS AND MIXTURE VARIABLES .2. DESIGN EVALUATION ON MEASURED DATA

    NARCIS (Netherlands)

    DUINEVELD, CAA; SMILDE, AK; DOORNBOS, DA

    The construction of a small experimental design for a combination of process and mixture variables is a problem which has not been solved completely by now. In a previous paper we evaluated some designs with theoretical measures. This second paper evaluates the capabilities of the best of these

  2. Experimental technique to measure thoron generation rate of building material samples using RAD7 detector

    International Nuclear Information System (INIS)

    Csige, I.; Szabó, Zs.; Szabó, Cs.

    2013-01-01

    Thoron ( 220 Rn) is the second most abundant radon isotope in our living environment. In some dwellings it is present in significant amount which calls for its identification and remediation. Indoor thoron originates mainly from building materials. In this work we have developed and tested an experimental technique to measure thoron generation rate in building material samples using RAD7 radon-thoron detector. The mathematical model of the measurement technique provides the thoron concentration response of RAD7 as a function of the sample thickness. For experimental validation of the technique an adobe building material sample was selected for measuring the thoron concentration at nineteen different sample thicknesses. Fitting the parameters of the model to the measurement results, both the generation rate and the diffusion length of thoron was estimated. We have also determined the optimal sample thickness for estimating the thoron generation rate from a single measurement. -- Highlights: • RAD7 is used for the determination of thoron generation rate (emanation). • The described model takes into account the thoron decay and attenuation. • The model describes well the experimental results. • A single point measurement method is offered at a determined sample thickness

  3. Measuring and Advancing Experimental Design Ability in an Introductory Course without Altering Existing Lab Curriculum

    Directory of Open Access Journals (Sweden)

    Ryan A. Shanks

    2017-05-01

    Full Text Available Introductory biology courses provide an important opportunity to prepare students for future courses, yet existing cookbook labs, although important in their own way, fail to provide many of the advantages of semester-long research experiences. Engaging, authentic research experiences aid biology students in meeting many learning goals. Therefore, overlaying a research experience onto the existing lab structure allows faculty to overcome barriers involving curricular change. Here we propose a working model for this overlay design in an introductory biology course and detail a means to conduct this lab with minimal increases in student and faculty workloads. Furthermore, we conducted exploratory factor analysis of the Experimental Design Ability Test (EDAT and uncovered two latent factors which provide valid means to assess this overlay model’s ability to increase advanced experimental design abilities. In a pre-test/post-test design, we demonstrate significant increases in both basic and advanced experimental design abilities in an experimental and comparison group. We measured significantly higher gains in advanced experimental design understanding in students in the experimental group. We believe this overlay model and EDAT factor analysis contribute a novel means to conduct and assess the effectiveness of authentic research experiences in an introductory course without major changes to the course curriculum and with minimal increases in faculty and student workloads.

  4. Experimental sources of variation in avian energetics: estimated basal metabolic rate decreases with successive measurements.

    Science.gov (United States)

    Jacobs, Paul J; McKechnie, Andrew E

    2014-01-01

    Basal metabolic rate (BMR) is one of the most widely used metabolic variables in endotherm ecological and evolutionary physiology. Surprisingly few studies have investigated how BMR is influenced by experimental and analytical variables over and above the standardized conditions required for minimum normothermic resting metabolism. We tested whether avian BMR is affected by habituation to the conditions experienced during laboratory gas exchange measurements by measuring BMR five times in succession in budgerigars (Melopsittacus undulatus) housed under constant temperature and photoperiod. Both the magnitude and the variability of BMR decreased significantly with repeated measurements, from 0.410 ± 0.092 W (n = 9) during the first measurement to 0.285 ± 0.042 W (n = 9) during the fifth measurement. Thus, estimated BMR decreased by ∼30% within individuals solely on account of the number of times they had previously experienced the experimental conditions. The most likely explanation for these results is an attenuation with repeated exposure of the acute stress response induced by birds being handled and placed in respirometry chambers. Our data suggest that habituation to experimental conditions is potentially an important determinant of observed BMR, and this source of variation needs to be taken into account in future studies of metabolic variation among individuals, populations, and species.

  5. Discussion on concepts for radiological dosimetric quantities in the Japan Health Physics Society

    International Nuclear Information System (INIS)

    Takahashi, Fumiaki; Oda, Keiji

    2007-01-01

    Many dosimetric quantities have been used for radiation protection purpose. The International Commission on Radiological Protection (ICRP) has recommended protection quantities and the International Commission on Radiation Units and Measurements (ICRU) has introduced operational quantities to provide a reasonable estimate of the protection quantities. Enthusiastic discussions are continuously made on the issues of the dosimetric quantities, such as basic biological data for the definition of these quantities and applicability of the quantities to actual radiation protection practice. At the moment, some changes are being proposed concerning dosimetric quantities in the draft recommendations of ICRP, opened for consultation in recent years. Thus, the Japan Health Physics Society (JHPS) established the Expert Committee on concepts of Dosimetric Quantities used in radiological protection (ECDQ) in April 2005 to reviewed and discuss issues in the dosimetric quantities. (author)

  6. Role of experimental resolution in measurements of critical layer thickness for strained-layer epitaxy

    International Nuclear Information System (INIS)

    Fritz, I.J.

    1987-01-01

    Experimental measurements of critical layer thicknesses (CLT's) in strained-layer epitaxy are considered. Finite experimental resolution can have a major effect on measured CLT's and can easily lead to spurious results. The theoretical approach to critical layer thicknesses of J. W. Matthews [J. Vac. Sci. Technol. 12, 126 (1975)] has been modified in a straightforward way to predict the apparent critical thickness for an experiment with finite resolution in lattice parameter. The theory has also been modified to account for the general empirical result that fewer misfit dislocations are generated than predicted by equilibrium calculation. The resulting expression is fit to recent x-ray diffraction data on InGaAs/GaAs and SiGe/Si. The results suggest that CLT's in these systems may not be significantly larger than predicted by equilibrium theory, in agreement with high-resolution measurements

  7. Flow-based vulnerability measures for network component importance: Experimentation with preparedness planning

    International Nuclear Information System (INIS)

    Nicholson, Charles D.; Barker, Kash; Ramirez-Marquez, Jose E.

    2016-01-01

    This work develops and compares several flow-based vulnerability measures to prioritize important network edges for the implementation of preparedness options. These network vulnerability measures quantify different characteristics and perspectives on enabling maximum flow, creating bottlenecks, and partitioning into cutsets, among others. The efficacy of these vulnerability measures to motivate preparedness options against experimental geographically located disruption simulations is measured. Results suggest that a weighted flow capacity rate, which accounts for both (i) the contribution of an edge to maximum network flow and (ii) the extent to which the edge is a bottleneck in the network, shows most promise across four instances of varying network sizes and densities. - Highlights: • We develop new flow-based measures of network vulnerability. • We apply these measures to determine the importance of edges after disruptions. • Networks of varying size and density are explored.

  8. 1988 Progress report of the EDF department for the analysis of experimental data and measurements

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The 1988 activity report of the department for the analysis of experimental data and measurements (Department of Retour d'Experience Mesures-Essais, of EDF, France), is presented. The mission of the department is to collect and investigate data from the nuclear power plant operations. The investigations started before 1988, were carried on in 1988. The department main activities are: technology and information transfer from experimental activities, the construction of a standard data acquisition and processing system, the actions involving the N4 turbine, and the modelling and construction of new non-destructive methods of control. The most important facts and activities carried out in 1988 are presented [fr

  9. Inverse kinetics technique for reactor shutdown measurement: an experimental assessment. [AGR

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, T. A.; McDonald, D.

    1975-09-15

    It is proposed to use the Inverse Kinetics Technique to measure the subcritical reactivity as a function of time during the testing of the nitrogen injection systems on AGRs. A description is given of an experimental assessment of the technique by investigating known transients created by control rod movements on a small experimental reactor, (2m high, 1m radius). Spatial effects were observed close to the moving rods but otherwise derived reactivities were independent of detector position and agreed well with the existing calibrations. This prompted the suggestion that data from installed reactor instrumentation could be used to calibrate CAGR control rods.

  10. Experimental measurements of competition between fundamental and second harmonic emission in a quasi-optical gyrotron

    International Nuclear Information System (INIS)

    Alberti, S.; Pedrozzi, M.; Tran, M.Q.; Hogge, J.P.; Tran, T.M.; Muggli, P.; Joedicke, B.; Mathews, H.G.

    1990-04-01

    A quasi-optical gyrotron (QOG) designed for operation at the fundamental (Ω ce ≅100 GHz) exhibits simultaneous emission at Ω ce and 2Ω ce (second harmonic). For a beam current of 4 A, 20% of the total RF power is emitted at the second harmonic. The experimental measurements show that the excitation of the second harmonic is only possible when the fundamental is present. The frequency of the second harmonic is locked by the frequency of the fundamental. Experimental evidence shows that when the second harmonic is not excited, total efficiency is enhanced. (author) 6 refs., 5 figs., 1 tab

  11. Improvements in the measurement system of a biological Magnetic Induction Tomographical experimental setup

    International Nuclear Information System (INIS)

    Bras, N. B.; Martins, R. C.; Serra, A. C.

    2010-01-01

    Magnetic Induction Tomography (MIT) is an imaging technique that allows mapping the internal structure complex conductivity of a body. In this paper a feasibility study to implement a higher resolution MIT system for biological tissues is carried out. Recent improvements in measured signal stability and accuracy as well as a much improved angular resolution measurement of the multi-coil setup are presented which, together with a new mechanical design allows obtaining longer stable and more accurate acquisitions. This allows improving the number of measurements without trends or external perturbations, leading to a better conductivity resolution and to an enhanced image reconstruction. Throughout the paper experimental data is used to consolidate results.

  12. Measurements of gamma-ray energy deposition in a heterogeneous reactor experimental configuration and their analysis

    International Nuclear Information System (INIS)

    Calamand, D.; Wouters, R. de; Knipe, A.D.; Menil, R.

    1984-10-01

    An important contribution to the power output of a fast reactor is provided by the energy deposition from gamma-rays, and is particularly significant in the inner fertile zones of heterogeneous breeder reactor designs. To establish the validity of calculational methods and data for such systems an extensive series of measurements was performed in the zero power reactor Masurca, as part of the RACINE programme. The experimental study involved four European laboratories and the measurement techniques covered a range of thermoluminescent dosemeters and an ionization chamber. The present paper describes and compares the gamma-ray energy deposition measurements and analysis

  13. Asymptotic conditions and conserved quantities

    International Nuclear Information System (INIS)

    Koul, R.K.

    1990-01-01

    Two problems have been investigated in this dissertation. The first one deals with the relationship between stationary space-times which are flat at null infinity and stationary space-times which are asymptotic flat at space-like infinity. It is shown that the stationary space-times which are asymptotically flat, in the Penrose sense, at null infinity, are asymptotically flat at space-like infinity in the Geroch sense and metric at space like infinity is at least C 1 . In the converse it is shown that the stationary space-times which are asymptotically flat at space like infinity, in the Beig sense, are asymptotically flat at null infinity in the Penrose sense. The second problem addressed deals with the theories of arbitrary dimensions. The theories treated are the ones which have fiber bundle structure, outside some compact region. For these theories the criterion for the choice of the background metric is specified, and the boundary condition for the initial data set (q ab , P ab ) is given in terms of the background metric. Having these boundary conditions it is shown that the symplectic structure and the constraint functionals are well defined. The conserved quantities associated with internal Killing vector fields are specified. Lastly the energy relative to a fixed background and the total energy of the theory have been given. It is also shown that the total energy of the theory is independent of the choice of the background

  14. New quantities in radiation protection and conversion coefficients

    International Nuclear Information System (INIS)

    1986-01-01

    Four new quantities have been proposed by the ICRP for use in radiation protection from external sources, i.e. the ambient dose equivalent, the directional dose equivalent, the individual dose equivalent (penetrating), and the individual dose equivalent (superficial). These quantities are briefly described together with two new concepts of expanded and aligned fields. The BCRU recommends that these quantities should be adopted for use in the UK together with conversion coefficients when re-calibrating existing instruments, reporting the results of measurements and designing instruments. (UK)

  15. Experimental Measurements of Temporal Dispersion for Underwater Laser Communications and Imaging

    Science.gov (United States)

    Cochenour, Brandon Michael

    The challenge in implementing optical sensors underwater lies in the high variability of the ocean environment where propagation of light in the ocean is complicated by absorption and scattering. Most underwater optical sensors operate in the blue/green portion of the electromagnetic spectrum where seawater exhibits an absorption minimum. Mitigating scattering however is a greater challenge. In particular, scattering causes both spatial distortion (beam spreading) and temporal dispersion (pulse spreading or distortion). Each of type of dispersion decreases sensor performance (operating range, image resolution, data bandwidth, etc.). While spatial dispersion has received a great deal of attention in previous decades, technological limitations of sensor hardware have made experimental measurements of temporal dispersion underwater difficult until now. The main contribution of this thesis are experimental measurements of temporal dispersion of optical beams in turbid water, made with a high sensitivity/high dynamic range experimental technique. Measurements are performed as a function of water clarity (0-20 attenuation lengths), transmitter/receiver alignment (0-30 degrees, half angle), receiver field of view (1-7 degrees, full angle), and transmitter beam divergence (collimated and diffuse). Special attention is paid to the interdependency between spatial and temporal dispersion. This work provides severable notable contributions: 1. While experimental characterization of spatial dispersion has received significant attention underwater, there has been a lack of measurements characterizing temporal dispersion underwater. This work provides the most comprehensive set of experimental measurements to date regarding the temporal dispersion of optical beams underwater. 2. An experimental analysis of the influence of scattering phase function on temporal dispersion. Coarse estimates of the scattering phase function are used to determine the ranges (or attenuation lengths

  16. Experimental hot-wire measurements in a centrifugal compressor with vaned diffuser

    International Nuclear Information System (INIS)

    Pinarbasi, Ali

    2008-01-01

    The purpose of this study was to improve the understanding of the flow physics in a centrifugal compressor with vaned diffuser. For this reason three component hot wire measurements in the vaneless space and vane region of a low speed centrifugal compressor are presented. A low speed compressor with a 19 bladed backswept impeller and diffuser with 16 wedge vanes were used. The measurements were made at three inter-vane positions and are presented as mean velocity, turbulent kinetic energy and flow angle distributions. The flow entering the diffuser closely resembles the classic jet-wake flow characteristic of centrifugal impeller discharges. A strong upstream influence of the diffuser vanes is observed which results in significant variations in flow quantities between the vane-to-vane locations. The circumferential variations due to the passage and blade wakes rapidly mix out in the vaneless space, although some variations are still discernible in the vaned region. The impeller blade wakes mix out rapidly within the vaneless space and more rapidly than in an equivalent vaneless diffuser. Although the flow is highly non uniform in velocity at the impeller exit, there is no evidence in the results of any separation from the diffuser vanes

  17. An experimental method for making spectral emittance and surface temperature measurements of opaque surfaces

    International Nuclear Information System (INIS)

    Moore, Travis J.; Jones, Matthew R.; Tree, Dale R.; Daniel Maynes, R.; Baxter, Larry L.

    2011-01-01

    An experimental procedure has been developed to make spectral emittance and temperature measurements. The spectral emittance of an object is calculated using measurements of the spectral emissive power and of the surface temperature of the object obtained using a Fourier transform infrared (FTIR) spectrometer. A calibration procedure is described in detail which accounts for the temperature dependence of the detector. The methods used to extract the spectral emissive power and surface temperature from measured infrared spectra were validated using a blackbody radiator at known temperatures. The average error in the measured spectral emittance was 2.1% and the average difference between the temperature inferred from the recorded spectra and the temperature indicated on the blackbody radiator was 1.2%. The method was used to measure the spectral emittance of oxidized copper at various temperatures.

  18. Experimental study on performance verification tests for coordinate measuring systems with optical distance sensors

    Science.gov (United States)

    Carmignato, Simone

    2009-01-01

    Optical sensors are increasingly used for dimensional and geometrical metrology. However, the lack of international standards for testing optical coordinate measuring systems is currently limiting the traceability of measurements and the easy comparison of different optical systems. This paper presents an experimental investigation on artefacts and procedures for testing coordinate measuring systems equipped with optical distance sensors. The work is aimed at contributing to the standardization of testing methods. The VDI/VDE 2617-6.2:2005 guideline, which is probably the most complete document available at the state of the art for testing systems with optical distance sensors, is examined with specific experiments. Results from the experiments are discussed, with particular reference to the tests used for determining the following characteristics: error of indication for size measurement, probing error and structural resolution. Particular attention is given to the use of artefacts alternative to gauge blocks for determining the error of indication for size measurement.

  19. Charaterisation of function spaces via mollification; fractal quantities for distributions

    Directory of Open Access Journals (Sweden)

    Hans Triebel

    2003-01-01

    Full Text Available The aim of this paper is twofold. First we characterise elements f belonging to the Besov spaces Bpqs(ℝn with s∈ℝ,  0quantities for distributions generalising well-known corresponding quantities for Radon measures.

  20. Establishment of Experimental Equipment for Training of Professionals in the Nuclear Radiation Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S. K.; Seo, K. W.; Joo, Y. C.; Kim, I. C.; Woo, C. K.; Yoo, B. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-09-15

    The main purpose of this project is to establish experimental equipment for training of professionals and students in the field of radiation measurement, and settle the foundation for the advanced education system and program. The priority for the experimental equipment had been deduced by reviewing of the Nuclear Training and Education Center of KAERI and other country's training courses. Equipment for training of radiation professionals are High-Purity Germanium spectroscopic systems, alpha analyzers, and hand-held gamma/neutron inspector systems. For the basic experiments, electric personal dosimeters and a reader, radiation survey meters, and various alpha, beta and gamma radiation isotopes have been equipped. Some old or disused equipment and devices were disposed and re-arranged, and a new experiment lab had been settled for gamma spectroscopy. Along with the preparation of equipment, 14 experimental modules have been selected for practical and essential experiments training to professionals from industries, universities and research organizations. Among the modules, 7 important experiment notes had been prepared in Korea and also in English. As a consequence, these advanced radiation experimental setting would be a basis to cooperate with IAEA or other countries for international training courses. These activities would be a foundation for our contribution to the international nuclear society and for improving our nuclear competitiveness. The experimental equipment and application notes developed in this study will be used also by other training institutes and educational organizations through introducing and encouraging to use them to the nuclear society.

  1. Establishment of Experimental Equipment for Training of Professionals in the Nuclear Radiation Measurement

    International Nuclear Information System (INIS)

    Ahn, S. K.; Seo, K. W.; Joo, Y. C.; Kim, I. C.; Woo, C. K.; Yoo, B. H.

    2008-09-01

    The main purpose of this project is to establish experimental equipment for training of professionals and students in the field of radiation measurement, and settle the foundation for the advanced education system and program. The priority for the experimental equipment had been deduced by reviewing of the Nuclear Training and Education Center of KAERI and other country's training courses. Equipment for training of radiation professionals are High-Purity Germanium spectroscopic systems, alpha analyzers, and hand-held gamma/neutron inspector systems. For the basic experiments, electric personal dosimeters and a reader, radiation survey meters, and various alpha, beta and gamma radiation isotopes have been equipped. Some old or disused equipment and devices were disposed and re-arranged, and a new experiment lab had been settled for gamma spectroscopy. Along with the preparation of equipment, 14 experimental modules have been selected for practical and essential experiments training to professionals from industries, universities and research organizations. Among the modules, 7 important experiment notes had been prepared in Korea and also in English. As a consequence, these advanced radiation experimental setting would be a basis to cooperate with IAEA or other countries for international training courses. These activities would be a foundation for our contribution to the international nuclear society and for improving our nuclear competitiveness. The experimental equipment and application notes developed in this study will be used also by other training institutes and educational organizations through introducing and encouraging to use them to the nuclear society

  2. Experimental Influences in the Accurate Measurement of Cartilage Thickness in MRI.

    Science.gov (United States)

    Wang, Nian; Badar, Farid; Xia, Yang

    2018-01-01

    Objective To study the experimental influences to the measurement of cartilage thickness by magnetic resonance imaging (MRI). Design The complete thicknesses of healthy and trypsin-degraded cartilage were measured at high-resolution MRI under different conditions, using two intensity-based imaging sequences (ultra-short echo [UTE] and multislice-multiecho [MSME]) and 3 quantitative relaxation imaging sequences (T 1 , T 2 , and T 1 ρ). Other variables included different orientations in the magnet, 2 soaking solutions (saline and phosphate buffered saline [PBS]), and external loading. Results With cartilage soaked in saline, UTE and T 1 methods yielded complete and consistent measurement of cartilage thickness, while the thickness measurement by T 2 , T 1 ρ, and MSME methods were orientation dependent. The effect of external loading on cartilage thickness is also sequence and orientation dependent. All variations in cartilage thickness in MRI could be eliminated with the use of a 100 mM PBS or imaged by UTE sequence. Conclusions The appearance of articular cartilage and the measurement accuracy of cartilage thickness in MRI can be influenced by a number of experimental factors in ex vivo MRI, from the use of various pulse sequences and soaking solutions to the health of the tissue. T 2 -based imaging sequence, both proton-intensity sequence and quantitative relaxation sequence, similarly produced the largest variations. With adequate resolution, the accurate measurement of whole cartilage tissue in clinical MRI could be utilized to detect differences between healthy and osteoarthritic cartilage after compression.

  3. Simulation and experimental study of an indigenously designed and constructed THGEM-based microdosimeter for dose-equivalent measurement

    International Nuclear Information System (INIS)

    Moslehi, A.; Raisali, G.; Lamehi, M.

    2016-01-01

    Most of the GEM/THGEM-based microdosimetric detectors presented in the literature simulate 2 μm of tissue which results in a flat neutron dose-equivalent response in the MeV region. The objective of this work was to introduce a neutron microdosimeter with a more extended flat response. In this regard, a THGEM-based microdosimeter with plexiglas walls, simulating 1 μm of tissue was designed and constructed. Its performance was investigated by both simulation and experimentation to determine the microdosimetric quantity of “lineal energy”. In the simulation study, lineal energy distribution, mean quality factor and dose-equivalent response of the microdosimeter for eleven neutron energies from 10 keV to 14 MeV, along with the energy spectrum of "2"4"1Am-Be neutrons, were calculated by the Geant4 simulation toolkit. Obtained lineal energy distributions were compatible with the distributions determined by a Rossi counter. Also, the mean quality factors agreed well with the values reported by the ICRU report 40 which confirmed tissue equivalent behavior of the microdosimeter. They were different from the effective quality factor values within 15% between 20 keV and 14 MeV. This led to a flat dose-equivalent response with 20% difference from a median value of 0.82 in the above energy range which was an improvement compared with other THGEM-based detectors, simulating 2 μm of tissue. In spite of the satisfactory determination of the dose-equivalent, the microdosimeter had low detection sensitivity. In the experimental study, the measured lineal energy distribution of "2"4"1Am-Be neutrons was in agreement with the simulated distribution. Further, the measured mean quality factor and dose-equivalent differed by 1.5% and 3.5%, respectively, from the calculated values. Finally, it could be concluded that the investigated microdosimeter reliably determined the desired dose-equivalent value of each neutron field with every energy spectrum lying between 20 keV and

  4. Experimental measurements and theoretical simulations for neutron flux in self-serve facility of Dhruva reactor

    International Nuclear Information System (INIS)

    Rana, Y.S.; Mishra, Abhishek; Singh, Tej

    2016-06-01

    Dhruva is a 100 MW th tank type research reactor with natural metallic uranium as fuel and heavy water as coolant, moderator and reflector. The reactor is utilized for production of a large variety of radioisotopes for fulfilling growing demands of various applications in industrial, agricultural and medicinal sectors, and neutron beam research in condensed matter physics. The core consists of two on-power tray rods for radioisotope production and fifteen experimental beam holes for neutron beam research. Recently, a self-serve facility has also been commissioned in one of the through tubes in the reactor for carrying out short term irradiations. To get accurate information about neutron flux spectrum, measurements have been carried out in self-serve facility of Dhruva reactor. The present report describes measurement method, analysis technique and results. Theoretical estimations for neutron flux were also carried out and a comparison between theoretical and experimental results is made. (author)

  5. Trained Quantity Abilities in Horses (Equus caballus: A Preliminary Investigation

    Directory of Open Access Journals (Sweden)

    Maria Elena Miletto Petrazzini

    2014-07-01

    Full Text Available Once believed to be a human prerogative, the capacity to discriminate between quantities now has also been reported in several vertebrates. To date, only two studies investigated numerical abilities in horses (Equus caballus but reported contrasting data. To assess whether horses can be trained to discriminate between quantities, I have set up a new experimental protocol using operant conditioning. One adult female was trained to discriminate between 1 and 4 (Test 1 in three different conditions: non-controlled continuous variables (numerical and continuous quantities that co-vary with number are simultaneously available, 50% controlled continuous variables (intermediate condition, and 100% controlled continuous variables (only numerical information available. The subject learned the discrimination in all conditions, showing the capacity to process numerical information. When presented with a higher numerical ratio (2 vs. 4, Test 2, the subject still discriminated between the quantities but its performance was statistically significant only in the non-controlled condition, suggesting that the subject used multiple cues in presence of a more difficult discrimination. On the whole, the results here reported encourage the use of this experimental protocol as a valid tool to investigate the capacity to process numerical and continuous quantities in horses in future research.

  6. Measurement of ultra-high energy cosmic rays: An experimental summary and prospects

    Directory of Open Access Journals (Sweden)

    Fukushima M.

    2013-06-01

    Full Text Available Measurements of Ultra-High Energy Cosmic Rays achieved remarkable progress in the last 10 years. Physicists, gathered from around the world in the symposium UHECR-2012 held at CERN on February 13-16 2012, reported their most up-to-date observations, discussed the meaning of their findings, and identified remaining problems and future challenges in this field. This paper is a part of the symposium proceedings on the experimental summary and future prospects of the UHECR study.

  7. Experimental system using an active method for the measurement of low alpha emitter grades

    International Nuclear Information System (INIS)

    Bernard, P.; Cance, M.

    1986-06-01

    The diversity of waste produced in France, the limitations of passive neutron measurements, the new safety requirements in the field of low level waste disposal have induced us to develop active neutron techniques. Two experimental pulsed neutron interrogation systems are described giving a sensitivity lower than 10 mg Pu 239 in 200 l drums. This project is the result of a close cooperation between the CEA, SGN and SODERN

  8. Basic experimental preparation for the measurement of the stopping power of heavy ions in matter

    International Nuclear Information System (INIS)

    Carvalho Brito Brum, H. de.

    1976-02-01

    To measure the stopping power of heavy ions in solid matter one must develop both an experimental apparatus and a data analysis program. This thesis discusses these preparatory works and the methods to be employed. The design, building and testing of a scattering chamber with many detectors; the preparation of thin solid films, their analysis by electron diffraction and their thickness measurements; the testing of the electronic system; the calibration of the 4 MeV Van de Graaf accelerator at PUC/RJ; and the development of an original data analysis computer program are presented. (Author) [pt

  9. Experimental results on the MOX fuel. Study of the calculus/measures divergences

    International Nuclear Information System (INIS)

    Martin, S.

    1997-01-01

    For each nuclear plant unit restart, all safety criterion have to be respected. Various parameters as boron concentration, temperature coefficient, worth or power and activity distributions related to fuel assemblies, have to be calculated. To compute these parameters Framatome uses the neutronic channel Science. Before the validation they are compare to experimental measures. For UO 2 fuel the divergence calculus/measures are correct. But for MOX fuels the divergence worsening. This paper discusses tis divergence and research the origin. (A.L.B.)

  10. Theory and experimental study of biased charge collector for measuring HPIB

    International Nuclear Information System (INIS)

    He Xiaoping; Wang Haiyang; Sun Jianfeng; Yang Hailiang; Qiu Aici; Tang Junping; Li Jingya; Li Hongyu

    2004-01-01

    Structure of the biased charge collector for measuring HPIB (High-power ion beam) is introduced in this paper. The inner charge propagation process of HPIB in the biased charge collector was simulated with KARAT PIC code. The simulation results indicated that charge was neutralized but current was not neutralized in the biased charge collector. The influence of biased voltage and aperture diameter were also simulated. A -800V biased voltage can meet the requirement for measuring 500 keV HPIB, and this is consistent with the experimental results

  11. Sensitivity Measurement of Transmission Computer Tomography: thePreliminary Experimental Study

    International Nuclear Information System (INIS)

    Widodo, Chomsin-S; Sudjatmoko; Kusminarto; Agung-BS Utomo; Suparta, Gede B

    2000-01-01

    This paper reports result of preliminary experimental study onmeasurement method for sensitivity of a computed tomography (CT) scanner. ACT scanner has been build at the Department of Physics, FMIPA UGM and itsperformance based on its sensitivity was measured. The result showed that themeasurement method for sensitivity confirmed this method may be developedfurther as a measurement standard. Although the CT scanner developed has anumber of shortcoming, the analytical results from the sensitivitymeasurement suggest a number of reparations and improvements for the systemso that improved reconstructed CT images can be obtained. (author)

  12. An experimental set-up to measure Light Yield of Scintillating Fibres

    CERN Document Server

    Alfieri, C; Joram, C; Kenzie, M W

    2015-01-01

    In the context of the LHCb SciFi Tracker project, an experimental set up was designed and built to provide reliable and reproducible measurements of the light yield of scintillating fibres. This document describes the principle and technical realisation of the set-up. A few examples illustrate the operation and data analysis. In the first implementation of the set-up a photomultiplier tube with bialkali photocathode was used for the reading of the light from the fibres under test. In order to measure also green emitting fibres, the photomultiplier was replaced in January 2016 by a SiPM with higher sensitivity and larger spectral coverage1.

  13. An experimental applications of impedance measurements by spectral analysis to electrochemistry and corrosion

    International Nuclear Information System (INIS)

    Castro, E.B.; Vilche, J.R.; Milocco, R.H.

    1984-01-01

    An impedance measurement system based on the spectral analysis of excitation and response signals was implemented using a pseudo-random binary sequence in the generation of the electrical perturbation signal. The spectral density functions were estimated through finite Fourier transforms of the original time history records by fast computation of Fourier series. Experimental results obtained using the FFT algorithm in the developed impedance measurement system which covers a wide frequency range, 10 KHz >= f >= 1 mHz, are given both for dummy cells representing conventional electric circuits in electrochemistry and corrosion systems and for the Fe/acidic chloride solution interfaces under different polarization conditions. (C.L.B.) [pt

  14. An Effective Experimental Optimization Method for Wireless Power Transfer System Design Using Frequency Domain Measurement

    Directory of Open Access Journals (Sweden)

    Sangyeong Jeong

    2017-10-01

    Full Text Available This paper proposes an experimental optimization method for a wireless power transfer (WPT system. The power transfer characteristics of a WPT system with arbitrary loads and various types of coupling and compensation networks can be extracted by frequency domain measurements. The various performance parameters of the WPT system, such as input real/imaginary/apparent power, power factor, efficiency, output power and voltage gain, can be accurately extracted in a frequency domain by a single passive measurement. Subsequently, the design parameters can be efficiently tuned by separating the overall design steps into two parts. The extracted performance parameters of the WPT system were validated with time-domain experiments.

  15. Feasibility of reactivity worth measurements by perturbation method with Caliban and Silene experimental reactors

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, Pierre; Authier, Nicolas [Commissariat a l' Energie Atomique, Centre d' Etudes de Valduc, 21120 Is-Sur-Tille (France)

    2008-07-01

    Reactivity worth measurements of material samples put in the central cavities of nuclear reactors allow to test cross section nuclear databases or to extract information about the critical masses of fissile elements. Such experiments have already been completed on the Caliban and Silene experimental reactors operated by the Criticality and Neutronics Research Laboratory of Valduc (CEA, France) using the perturbation measurement technique. Calculations have been performed to prepare future experiments on new materials, such as light elements, structure materials, fission products or actinides. (authors)

  16. Quantitative comparisons between experimentally measured 2-D carbon radiation and Monte Carlo impurity (MCI) code simulations

    International Nuclear Information System (INIS)

    Evans, T.E.; Leonard, A.W.; West, W.P.; Finkenthal, D.F.; Fenstermacher, M.E.; Porter, G.D.

    1998-08-01

    Experimentally measured carbon line emissions and total radiated power distributions from the DIII-D divertor and Scrape-Off Layer (SOL) are compared to those calculated with the Monte Carlo Impurity (MCI) model. A UEDGE background plasma is used in MCI with the Roth and Garcia-Rosales (RG-R) chemical sputtering model and/or one of six physical sputtering models. While results from these simulations do not reproduce all of the features seen in the experimentally measured radiation patterns, the total radiated power calculated in MCI is in relatively good agreement with that measured by the DIII-D bolometric system when the Smith78 physical sputtering model is coupled to RG-R chemical sputtering in an unaltered UEDGE plasma. Alternatively, MCI simulations done with UEDGE background ion temperatures along the divertor target plates adjusted to better match those measured in the experiment resulted in three physical sputtering models which when coupled to the RG-R model gave a total radiated power that was within 10% of measured value

  17. An experimental technique for the direct measurement of N2O5 reactivity on ambient particles

    Directory of Open Access Journals (Sweden)

    T. H. Bertram

    2009-06-01

    Full Text Available An experimental approach for the direct measurement of trace gas reactivity on ambient aerosol particles has been developed. The method utilizes a newly designed entrained aerosol flow reactor coupled to a custom-built chemical ionization mass spectrometer. The experimental method is described via application to the measurement of the N2O5 reaction probability, γ (N2O5. Laboratory investigations on well characterized aerosol particles show that measurements of γ (N2O5 observed with this technique are in agreement with previous observations, using conventional flow tube methods, to within ±20% at atmospherically relevant particle surface area concentrations (0–1000 μm2 cm−3. Uncertainty in the measured γ (N2O5 is discussed in the context of fluctuations in potential ambient biases (e.g., temperature, relative humidity and trace gas loadings. Under ambient operating conditions we estimate a single-point uncertainty in γ (N2O5 that ranges between ± (1.3×10-2 + 0.2×γ (N2O5, and ± (1.3×10-3 + 0.2×γ (N2O5 for particle surface area concentrations of 100 to 1000 μm2 cm−3, respectively. Examples from both laboratory investigations and field observations are included alongside discussion of future applications for the reactivity measurement and optimal deployment locations and conditions.

  18. Experimental study on reactivity measurement in thermal reactor by polarity correlation method

    International Nuclear Information System (INIS)

    Yasuda, Hideshi

    1977-11-01

    Experimental study on the polarity correlation method for measuring the reactivity of a thermal reactor, especially the one possessing long prompt neutron lifetime such as graphite on heavy water moderated core, is reported. The techniques of reactor kinetics experiment are briefly reviewed, which are classified in two groups, one characterized by artificial disturbance to a reactor and the other by natural fluctuation inherent in a reactor. The fluctuation phenomena of neutron count rate are explained using F. de Hoffman's stochastic method, and correlation functions for the neutron count rate fluctuation are shown. The experimental results by polarity correlation method applied to the β/l measurements in both graphite-moderated SHE core and light water-moderated JMTRC and JRR-4 cores, and also to the measurement of SHE shut down reactivity margin are presented. The measured values were in good agreement with those by a pulsed neutron method in the reactivity range from critical to -12 dollars. The conditional polarity correlation experiments in SHE at -20 cent and -100 cent are demonstrated. The prompt neutron decay constants agreed with those obtained by the polarity correlation experiments. The results of experiments measuring large negative reactivity of -52 dollars of SHE by pulsed neutron, rod drop and source multiplication methods are given. Also it is concluded that the polarity and conditional polarity correlation methods are sufficiently applicable to noise analysis of a low power thermal reactor with long prompt neutron lifetime. (Nakai, Y.)

  19. Modeling and experimental characterization of a new piezoelectric sensor for low-amplitude vibration measurement

    International Nuclear Information System (INIS)

    Hou, X Y; Koh, C G; Kuang, K S C; Lee, W H

    2017-01-01

    This paper investigates the capability of a novel piezoelectric sensor for low-frequency and low-amplitude vibration measurement. The proposed design effectively amplifies the input acceleration via two amplifying mechanisms and thus eliminates the use of the external charge amplifier or conditioning amplifier typically employed for measurement system. The sensor is also self-powered, i.e. no external power unit is required. Consequently, wiring and electrical insulation for on-site measurement are considerably simpler. In addition, the design also greatly reduces the interference from rotational motion which often accompanies the translational acceleration to be measured. An analytical model is developed based on a set of piezoelectric constitutive equations and beam theory. Closed-form expression is derived to correlate sensor geometry and material properties with its dynamic performance. Experimental calibration is then carried out to validate the analytical model. After calibration, experiments are carried out to check the feasibility of the new sensor in structural vibration detection. From experimental results, it is concluded that the proposed sensor is suitable for measuring low-frequency and low-amplitude vibrations. (paper)

  20. Comparison of theoretical estimates and experimental measurements of fatigue crack growth under severe thermal shock conditions (part one - experimental observations)

    International Nuclear Information System (INIS)

    Marsh, D.; Green, D.; Parker, R.

    1984-01-01

    This paper reports the results of an experiment in which a severe thermal cycle comprising of alternate upshocks and downshocks has been applied to an axisymmetric feature with an internal, partial penetration weld and crevice. The direction of cracking and crack growth rate were observed experimentally and detailed records made of the thermal cycle. A second part to the paper, reported separately, compares a linear elastic fracture mechanics assessment of the cracking to the experimental observations

  1. Design of an experimental device dedicated to the measurement of spallation reactions; Mise au point d'un dispositif experimental pour des mesures exclusives des reactions de spallation

    Energy Technology Data Exchange (ETDEWEB)

    Lafriakh, A

    2005-12-15

    Spallation mechanisms are not yet completely understood, especially because of the difficulty of experimentally disentangling the effects of the different steps of the reaction. In order to understand these mechanisms, we have developed a new experimental device able to perform inclusive measurements. We propose a detection system based on a combination of ionization chambers and proportional counters and on a wall of plastic scintillators to measure light charged particles. In particular the detection of light charged particles is described in detail. In order to validate our device, we have compared our preliminary results obtained on the Fe{sup 56} + p system at 1 GeV/u with inclusive measurements previously obtained at the FRS spectrometer of the GSI facility. A comparison of charge differential cross section shows reasonable agreement. However, our new device allowed extension of those measurements down to Z = 1 and Z = 2. These cross sections are important for material damage studies. Taking into account our error brackets, the evolution of mean longitudinal velocities with respect to residue masses is comparable to that obtained at the FRS. These first results, although preliminary, allow us to validate our experimental device. It is now possible to exploit the strong points of our exclusive measurements, namely correlations between different measured observables. Finally, experimental problems encountered will be taken into account in the future experimental programs, in order to ensure the best measurements conditions.

  2. Uncertainty evaluation in correlated quantities: application to elemental analysis of atmospheric aerosols

    International Nuclear Information System (INIS)

    Espinosa, A.; Miranda, J.; Pineda, J. C.

    2010-01-01

    One of the aspects that are frequently overlooked in the evaluation of uncertainty in experimental data is the possibility that the involved quantities are correlated among them, due to different causes. An example in the elemental analysis of atmospheric aerosols using techniques like X-ray Fluorescence (X RF) or Particle Induced X-ray Emission (PIXE). In these cases, the measured elemental concentrations are highly correlated, and then are used to obtain information about other variables, such as the contribution from emitting sources related to soil, sulfate, non-soil potassium or organic matter. This work describes, as an example, the method required to evaluate the uncertainty in variables determined from correlated quantities from a set of atmospheric aerosol samples collected in the Metropolitan Area of the Mexico Valley and analyzed with PIXE. The work is based on the recommendations of the Guide for the Evaluation of Uncertainty published by the International Organization for Standardization. (Author)

  3. A non-invasive experimental approach for surface temperature measurements on semi-crystalline thermoplastics

    Science.gov (United States)

    Boztepe, Sinan; Gilblas, Remi; de Almeida, Olivier; Le Maoult, Yannick; Schmidt, Fabrice

    2017-10-01

    Most of the thermoforming processes of thermoplastic polymers and their composites are performed adopting a combined heating and forming stages at which a precursor is heated prior to the forming. This step is done in order to improve formability by softening the thermoplastic polymer. Due to low thermal conductivity and semi-transparency of polymers, infrared (IR) heating is widely used for thermoforming of such materials. Predictive radiation heat transfer models for temperature distributions are therefore critical for optimizations of thermoforming process. One of the key challenges is to build a predictive model including the physical background of radiation heat transfer phenomenon in semi-crystalline thermoplastics as their microcrystalline structure introduces an optically heterogeneous medium. In addition, the accuracy of a predictive model is required to be validated experimentally where IR thermography is one of the suitable methods for such a validation as it provides a non-invasive, full-field surface temperature measurement. Although IR cameras provide a non-invasive measurement, a key issue for obtaining a reliable measurement depends on the optical characteristics of a heated material and the operating spectral band of IR camera. It is desired that the surface of a material to be measured has a spectral band where the material behaves opaque and an employed IR camera operates in the corresponding band. In this study, the optical characteristics of the PO-based polymer are discussed and, an experimental approach is proposed in order to measure the surface temperature of the PO-based polymer via IR thermography. The preliminary analyses showed that IR thermographic measurements may not be simply performed on PO-based polymers and require a correction method as their semi-transparent medium introduce a challenge to obtain reliable surface temperature measurements.

  4. Experimental assessment for instantaneous temperature and heat flux measurements under Diesel motored engine conditions

    International Nuclear Information System (INIS)

    Torregrosa, A.J.; Bermúdez, V.; Olmeda, P.; Fygueroa, O.

    2012-01-01

    Higlights: ► We measured in-cylinder wall heat fluxes. ► We examine the effects of different engine parameters. ► Increasing air mass flow increase heat fluxes. ► The effect of engine speed can be masked by the effect of volumetric efficiency. ► Differences among the different walls have been found. - Abstract: The main goal of this work is to validate an innovative experimental facility and to establish a methodology to evaluate the influence of some of the engine parameters on local engine heat transfer behaviour under motored steady-state conditions. Instantaneous temperature measurements have been performed in order to estimate heat fluxes on a modified Diesel single cylinder combustion chamber. This study was divided into two main parts. The first one was the design and setting on of an experimental bench to reproduce Diesel conditions and perform local-instantaneous temperature measurements along the walls of the combustion chamber by means of fast response thermocouples. The second one was the development of a procedure for temperature signal treatment and local heat flux calculation based on one-dimensional Fourier analysis. A thermodynamic diagnosis model has been employed to characterise the modified engine with the new designed chamber. As a result of the measured data coherent findings have been obtained in order to understand local behaviour of heat transfer in an internal combustion engine, and the influence of engine parameters on local instantaneous temperature and heat flux, have been analysed.

  5. Numerical Simulations and Experimental Measurements of Scale-Model Horizontal Axis Hydrokinetic Turbines (HAHT) Arrays

    Science.gov (United States)

    Javaherchi, Teymour; Stelzenmuller, Nick; Seydel, Joseph; Aliseda, Alberto

    2014-11-01

    The performance, turbulent wake evolution and interaction of multiple Horizontal Axis Hydrokinetic Turbines (HAHT) is analyzed in a 45:1 scale model setup. We combine experimental measurements with different RANS-based computational simulations that model the turbines with sliding-mesh, rotating reference frame and blame element theory strategies. The influence of array spacing and Tip Speed Ratio on performance and wake velocity structure is investigated in three different array configurations: Two coaxial turbines at different downstream spacing (5d to 14d), Three coaxial turbines with 5d and 7d downstream spacing, and Three turbines with lateral offset (0.5d) and downstream spacing (5d & 7d). Comparison with experimental measurements provides insights into the dynamics of HAHT arrays, and by extension to closely packed HAWT arrays. The experimental validation process also highlights the influence of the closure model used (k- ω SST and k- ɛ) and the flow Reynolds number (Re=40,000 to 100,000) on the computational predictions of devices' performance and characteristics of the flow field inside the above-mentioned arrays, establishing the strengths and limitations of existing numerical models for use in industrially-relevant settings (computational cost and time). Supported by DOE through the National Northwest Marine Renewable Energy Center (NNMREC).

  6. Experimental measurement and modeling of snow accumulation and snowmelt in a mountain microcatchment

    Science.gov (United States)

    Danko, Michal; Krajčí, Pavel; Hlavčo, Jozef; Kostka, Zdeněk; Holko, Ladislav

    2016-04-01

    Fieldwork is a very useful source of data in all geosciences. This naturally applies also to the snow hydrology. Snow accumulation and snowmelt are spatially very heterogeneous especially in non-forested, mountain environments. Direct field measurements provide the most accurate information about it. Quantification and understanding of processes, that cause these spatial differences are crucial in prediction and modelling of runoff volumes in spring snowmelt period. This study presents possibilities of detailed measurement and modeling of snow cover characteristics in a mountain experimental microcatchment located in northern part of Slovakia in Western Tatra mountains. Catchment area is 0.059 km2 and mean altitude is 1500 m a.s.l. Measurement network consists of 27 snow poles, 3 small snow lysimeters, discharge measurement device and standard automatic weather station. Snow depth and snow water equivalent (SWE) were measured twice a month near the snow poles. These measurements were used to estimate spatial differences in accumulation of SWE. Snowmelt outflow was measured by small snow lysimeters. Measurements were performed in winter 2014/2015. Snow water equivalent variability was very high in such a small area. Differences between particular measuring points reached 600 mm in time of maximum SWE. The results indicated good performance of a snow lysimeter in case of snowmelt timing identification. Increase of snowmelt measured by the snow lysimeter had the same timing as increase in discharge at catchment's outlet and the same timing as the increase in air temperature above the freezing point. Measured data were afterwards used in distributed rainfall-runoff model MIKE-SHE. Several methods were used for spatial distribution of precipitation and snow water equivalent. The model was able to simulate snow water equivalent and snowmelt timing in daily step reasonably well. Simulated discharges were slightly overestimated in later spring.

  7. A dual tracer ratio method for comparative emission measurements in an experimental dairy housing

    Science.gov (United States)

    Mohn, Joachim; Zeyer, Kerstin; Keck, Margret; Keller, Markus; Zähner, Michael; Poteko, Jernej; Emmenegger, Lukas; Schrade, Sabine

    2018-04-01

    Agriculture, and in particular dairy farming, is an important source of ammonia (NH3) and non-carbon dioxide greenhouse gas (GHG) emissions. This calls for the development and quantification of effective mitigation strategies. Our study presents the implementation of a dual tracer ratio method in a novel experimental dairy housing with two identical, but spatially separated housing areas. Modular design and flexible floor elements allow the assessment of structural, process engineering and organisational abatement measures at practical scale. Thereby, the emission reduction potential of specific abatement measures can be quantified in relation to a reference system. Emissions in the naturally ventilated housing are determined by continuous dosing of two artificial tracers (sulphur hexafluoride SF6, trifluoromethylsulphur pentafluoride SF5CF3) and their real-time detection in the ppt range with an optimized GC-ECD method. The two tracers are dosed into different experimental sections, which enables the independent assessment of both housing areas. Mass flow emissions of NH3 and GHGs are quantified by areal dosing of tracer gases and multipoint sampling as well as real-time analysis of both tracer and target gases. Validation experiments demonstrate that the technique is suitable for both areal and point emission sources and achieves an uncertainty of less than 10% for the mass emissions of NH3, methane (CH4) and carbon dioxide (CO2), which is superior to other currently available methods. Comparative emission measurements in this experimental dairy housing will provide reliable, currently unavailable information on emissions for Swiss dairy farming and demonstrate the reduction potential of mitigation measures for NH3, GHGs and potentially other pollutants.

  8. Experimentally measuring a quantum state by the Heisenberg exchange interaction in a single apparatus

    International Nuclear Information System (INIS)

    Peng Xinhua; Du Jiangfeng; Suter, D.

    2005-01-01

    Full text: Quantum information processing requires the effective measurement of quantum states. An important method, called quantum state tomography, needs measuring a complete set of observables on the measured system to determine its unknown quantum state ρ. The measurement involves certain noncommuting observables as a result of Bohr's complementarity. Very recently, Allahverdyan et al. proposed a new method in which the unknown quantum state r is determined by measuring a set of commuting observables in the price of a controlled interaction with an auxiliary system. If both systems S and A are spins, their z components (σ z ) can be chosen to measure after some specific Heisenberg exchange interaction. We study in detail a general Heisenberg XYZ model for a two-qubit system and present two classes of special Heisenberg interactions which can serve as the controlled interaction in Allahverdyan's scheme when the state of the auxiliary system A is initially completely disordered. Using the nuclear magnetic resonance techniques, the measurement scheme in a single apparatus has been experimentally demonstrated by designing the quantum circuit to simulate the Heisenberg exchange interaction. (author)

  9. Using the analysis of stress waves to build research for experimentation on ultrasonic film measurement

    Science.gov (United States)

    Chang, Shi-Shing; Wu, John H.

    1993-09-01

    After the 2th world war, although the application of ultrasonic wave in industries is becoming more and more popular. But due to the restriction of the precise equivelent , experimental method and the support of the basic theoremsetc. Ultrasonic wave is not applied in precise measurement. Nowadays due to many conditions - the improvement in the production technic, the precise of the equivelent, causes to increase the application of ultrasonic wave. But it's still limited due to the lack of measurement and analysis theorem. In this paper, first we caculate translation of the stress wave (elastic wave) in material for the free surface of material by a normal impulse load. as the theorem analysis base in real application. It is applied to an experiment of film measurement. We can find the partical motion in material and the arriving time of wave front. Then we can estimate the thickness of layers and can prove the actual condition with the result of experiment. This resarch is not only in the theoretical investigation but also in setting overall the measurement system, and excutes the following three experiments: the thickness measurement of two layers, the thickness measurement of film material. the thickness measurement of air propagation. About the data processing, we relied on the frequency analysis to evalute the time difference of two overlapped ultrasonic wave signal. in the meanwhile. we also designed several computer programs to assist the sonic wave identification and signal analysis.

  10. Influence of relative humidity and temperature on quantity of electric charge of static protective clothing used in petrochemical industry

    International Nuclear Information System (INIS)

    Zhang, Yunpeng; Liu, Quanzhen; Liu, Baoquan; Li, Yipeng; Zhang, Tingting

    2013-01-01

    In this paper, the working principle of static protective clothing and its testing method of quantity of electric charge are introduced, and the influence of temperature and relative humidity on the quantity of electric charge (q e ) of static protective clothing is studied by measuring q e of different clothing samples. The result shows that temperature and relative humidity can influence q e of static protective clothing to some extent and the influence of relative humidity is bigger than that of temperature. According to experimental results, the relationship of q e and relative humidity and temperature was analysed, and the safety boundary of quantity of electric charge is discussed. In order to reduce the occurrence of electrostatic accidents and ensure safe production and operation of petrochemical industry, some suggestions on choosing and using of static protective clothing are given for guaranteeing its static protective performance.

  11. Influence of relative humidity and temperature on quantity of electric charge of static protective clothing used in petrochemical industry

    Science.gov (United States)

    Zhang, Yunpeng; Liu, Quanzhen; Liu, Baoquan; Li, Yipeng; Zhang, Tingting

    2013-03-01

    In this paper, the working principle of static protective clothing and its testing method of quantity of electric charge are introduced, and the influence of temperature and relative humidity on the quantity of electric charge (qe) of static protective clothing is studied by measuring qe of different clothing samples. The result shows that temperature and relative humidity can influence qe of static protective clothing to some extent and the influence of relative humidity is bigger than that of temperature. According to experimental results, the relationship of qe and relative humidity and temperature was analysed, and the safety boundary of quantity of electric charge is discussed. In order to reduce the occurrence of electrostatic accidents and ensure safe production and operation of petrochemical industry, some suggestions on choosing and using of static protective clothing are given for guaranteeing its static protective performance.

  12. Characterisation of large area THGEMs and experimental measurement of the Townsend coefficients for CF4

    Science.gov (United States)

    Burns, J.; Crane, T.; Ezeribe, A. C.; Grove, C. L.; Lynch, W.; Scarff, A.; Spooner, N. J. C.; Steer, C.

    2017-10-01

    Whilst the performance of small THGEMs is well known, here we consider the challenges in scaling these up to large area charge readouts. We first verify the expected gain of larger THGEMs by reporting experimental Townsend coefficients for a 10 cm diameter THGEM in low-pressure CF4. Large area 50 cm by 50 cm THGEMs were sourced from a commercial PCB supplier and geometrical imperfections were observed which we quantified using an optical camera setup. The large area THGEMs were experimentally characterised at Boulby Underground Laboratory through a series of gain calibrations and alpha spectrum measurements. ANSYS, Magboltz and Garfield++ simulations of the design of a TPC based on the large area THGEMs are presented. We also consider their implications for directional dark matter research and potential applications within nuclear security.

  13. Experimental measurements and numerical simulation of permittivity and permeability of Teflon in X band

    Directory of Open Access Journals (Sweden)

    Adriano Luiz de Paula

    2011-01-01

    Full Text Available Recognizing the importance of an adequate characterization of radar absorbing materials, and consequently their development, the present study aims to contribute for the establishment and validation of experimental determination and numerical simulation of electromagnetic materials complex permittivity and permeability, using a Teflon® sample. The present paper branches out into two related topics. The first one is concerned about the implementation of a computational modeling to predict the behavior of electromagnetic materials in confined environment by using electromagnetic three-dimensional simulation. The second topic re-examines the Nicolson-Ross-Weir mathematical model to retrieve the constitutive parameters (complex permittivity and permeability of a homogeneous sample (Teflon®, from scattering coefficient measurements. The experimental and simulated results show a good convergence that guarantees the application of the used methodologies for the characterization of different radar absorbing materials samples.

  14. Experimental measurement of the 12C+16O fusion cross sections at astrophysical energies

    Science.gov (United States)

    Fang, X.; Tan, W. P.; Beard, M.; deBoer, R. J.; Gilardy, G.; Jung, H.; Liu, Q.; Lyons, S.; Robertson, D.; Setoodehnia, K.; Seymour, C.; Stech, E.; Vande Kolk, B.; Wiescher, M.; de Souza, R.; Hudan, S.; Singh, V.; Tang, X. D.; Uberseder, E.

    2018-05-01

    The total cross sections of the 12C+16O fusion have been experimentally determined at low energies to investigate the role of this reaction during late stellar evolution burning phases. A high-intensity oxygen beam was produced by the 5MV pelletron accelerator at the University of Notre Dame impinging on a thick ultra-pure graphite target. Protons and γ-rays were measured simultaneously in the center-of-mass energy range from 3.64 to 5.01 MeV, using strip silicon and HPGe detectors. Statistical model calculations were employed to interpret the experimental results. A new broad resonance-like structure is observed for the 12C+16O reaction, and a decreasing trend of its S-factor towards low energies is found.

  15. Measurements and Experimental Database Review for Laminar Flame Speed Premixed Ch4/Air Flames

    Science.gov (United States)

    Zubrilin, I. A.; Matveev, S. S.; Matveev, S. G.; Idrisov, D. V.

    2018-01-01

    Laminar flame speed (SL ) of CH4 was determined at atmospheric pressure and initial gas temperatures in range from 298 to 358 K. The heat flux method was employed to measure the flame speed in non-stretched flames. The kinetic mechanism GRI 3.0 [1] were used to simulate SL . The measurements were compared with available literature results. The data determined with the heat flux method agree with some previous burner measurements and disagree with the data from some vessel closed method and counterflow method. The GRI 3.0 mechanism was able to reproduce the present experiments. Laminar flame speed was determined at pressures range from of 1 to 20 atmospheres through mechanism GRI 3.0. Based on experimental data and calculations was obtained SL dependence on pressure and temperature. The resulting of dependence recommended use during the numerical simulation of methane combustion.

  16. Experimental Characterization of Ultra-Wideband Channel Parameter Measurements in an Underground Mine

    Directory of Open Access Journals (Sweden)

    B. Nkakanou

    2011-01-01

    Full Text Available Experimental results for an ultra-wideband (UWB channel parameters in an underground mining environment over a frequency range of 3 GHz to 10 GHz are reported. The measurements were taken both in LOS and NLOS cases in two different size mine galleries. In the NLOS case, results were acquired for different corridor obstruction angles. The results were obtained during an extensive measurement campaign in the UWB frequency, and the measurement procedure allows both the large- and small-scale parameters such as the path loss exponent, coherence bandwidth, and so forth, to be quantified. The capacity of the UWB channel as a function of the physical depth of the mine gallery has also been recorded for comparison purposes.

  17. Dose rate constants for new dose quantities

    International Nuclear Information System (INIS)

    Tschurlovits, M.; Daverda, G.; Leitner, A.

    1992-01-01

    Conceptual changes and new quantities made is necessary to reassess dose rate quantities. Calculations of the dose rate constant were done for air kerma, ambient dose equivalent and directional dose equivalent. The number of radionuclides is more than 200. The threshold energy is selected as 20 keV for the dose equivalent constants. The dose rate constant for the photon equivalent dose as used mainly in German speaking countries as a temporary quantity is also included. (Author)

  18. Experimental study on two-dimensional film flow with local measurement methods

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jin-Hwa, E-mail: evo03@snu.ac.kr [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Cho, Hyoung-Kyu [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Seok [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Euh, Dong-Jin, E-mail: djeuh@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Park, Goon-Cherl [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2015-12-01

    Highlights: • An experimental study on the two-dimensional film flow with lateral air injection was performed. • The ultrasonic thickness gauge was used to measure the local liquid film thickness. • The depth-averaged PIV (Particle Image Velocimetry) method was applied to measure the local liquid film velocity. • The uncertainty of the depth-averaged PIV was quantified with a validation experiment. • Characteristics of two-dimensional film flow were classified following the four different flow patterns. - Abstract: In an accident condition of a nuclear reactor, multidimensional two-phase flows may occur in the reactor vessel downcomer and reactor core. Therefore, those have been regarded as important issues for an advanced thermal-hydraulic safety analysis. In particular, the multi-dimensional two-phase flow in the upper downcomer during the reflood phase of large break loss of coolant accident appears with an interaction between a downward liquid and a transverse gas flow, which determines the bypass flow rate of the emergency core coolant and subsequently, the reflood coolant flow rate. At present, some thermal-hydraulic analysis codes incorporate multidimensional modules for the nuclear reactor safety analysis. However, their prediction capability for the two-phase cross flow in the upper downcomer has not been validated sufficiently against experimental data based on local measurements. For this reason, an experimental study was carried out for the two-phase cross flow to clarify the hydraulic phenomenon and provide local measurement data for the validation of the computational tools. The experiment was performed in a 1/10 scale unfolded downcomer of Advanced Power Reactor 1400 (APR1400). Pitot tubes, a depth-averaged PIV method and ultrasonic thickness gauge were applied for local measurement of the air velocity, the liquid film velocity and the liquid film thickness, respectively. The uncertainty of the depth-averaged PIV method for the averaged

  19. Experimental study on two-dimensional film flow with local measurement methods

    International Nuclear Information System (INIS)

    Yang, Jin-Hwa; Cho, Hyoung-Kyu; Kim, Seok; Euh, Dong-Jin; Park, Goon-Cherl

    2015-01-01

    Highlights: • An experimental study on the two-dimensional film flow with lateral air injection was performed. • The ultrasonic thickness gauge was used to measure the local liquid film thickness. • The depth-averaged PIV (Particle Image Velocimetry) method was applied to measure the local liquid film velocity. • The uncertainty of the depth-averaged PIV was quantified with a validation experiment. • Characteristics of two-dimensional film flow were classified following the four different flow patterns. - Abstract: In an accident condition of a nuclear reactor, multidimensional two-phase flows may occur in the reactor vessel downcomer and reactor core. Therefore, those have been regarded as important issues for an advanced thermal-hydraulic safety analysis. In particular, the multi-dimensional two-phase flow in the upper downcomer during the reflood phase of large break loss of coolant accident appears with an interaction between a downward liquid and a transverse gas flow, which determines the bypass flow rate of the emergency core coolant and subsequently, the reflood coolant flow rate. At present, some thermal-hydraulic analysis codes incorporate multidimensional modules for the nuclear reactor safety analysis. However, their prediction capability for the two-phase cross flow in the upper downcomer has not been validated sufficiently against experimental data based on local measurements. For this reason, an experimental study was carried out for the two-phase cross flow to clarify the hydraulic phenomenon and provide local measurement data for the validation of the computational tools. The experiment was performed in a 1/10 scale unfolded downcomer of Advanced Power Reactor 1400 (APR1400). Pitot tubes, a depth-averaged PIV method and ultrasonic thickness gauge were applied for local measurement of the air velocity, the liquid film velocity and the liquid film thickness, respectively. The uncertainty of the depth-averaged PIV method for the averaged

  20. The new operational quantities for radiation protection

    International Nuclear Information System (INIS)

    Kellerer, A.M.

    1985-01-01

    Philosophies and quantities for radiation protection have often been subjected to changes, and some of the developments are traced which ultimately led to recent proposals by ICRU. Development in the past has largely been towards clarification and generalisation of definitions. The present changes, however, reflect a more fundamental issue, the transition from the limitation system to the assessment system in radiation protection. The index quantities were suitable tools to ascertain compliance with the limitation system of radiation protection. The new quantities proposed by ICRU are suitable estimators for effective dose equivalent, which is an essential quantity in the assessment system of radiation protection. A synopsis of the definitions is given. (author)

  1. New experimental device for high-temperature normal spectral emissivity measurements of coatings

    International Nuclear Information System (INIS)

    Honnerová, Petra; Martan, Jiří; Kučera, Martin; Honner, Milan; Hameury, Jacques

    2014-01-01

    A new experimental device for normal spectral emissivity measurements of coatings in the infrared spectral range from 1.38 μm to 26 μm and in the temperature range from 550 K to 1250 K is presented. A Fourier transform infrared spectrometer (FTIR) is used for the detection of sample and blackbody spectral radiation. Sample heating is achieved by a fiber laser with a scanning head. Surface temperature is measured by two methods. The first method uses an infrared camera and a reference coating with known effective emissivity, the second method is based on the combination of Christiansen wavelength with contact and noncontact surface temperature measurement. Application of the method is shown on the example of a high-temperature high-emissivity coating. Experimental results obtained with this apparatus are compared with the results performed by a direct method of Laboratoire National d’Essais (LNE) in France. The differences in the spectra are analyzed. (paper)

  2. Calibration of a gamma spectrometer for measuring natural radioactivity. Experimental measurements and modeling by Monte-Carlo methods

    International Nuclear Information System (INIS)

    Courtine, Fabien

    2007-01-01

    The thesis proceeded in the context of dating by thermoluminescence. This method requires laboratory measurements of the natural radioactivity. For that purpose, we have been using a germanium spectrometer. To refine the calibration of this one, we modelled it by using a Monte-Carlo computer code: Geant4. We developed a geometrical model which takes into account the presence of inactive zones and zones of poor charge-collection within the germanium crystal. The parameters of the model were adjusted by comparison with experimental results obtained with a source of 137 Cs. It appeared that the form of the inactive zones is less simple than is presented in the specialized literature. This model was widened to the case of a more complex source, with cascade effect and angular correlations between photons: the 60 Co. Lastly, applied to extended sources, it gave correct results and allowed us to validate the simulation of matrix effect. (author)

  3. A novel full-field experimental method to measure the local compressibility of gas diffusion media

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Yeh-Hung; Li, Yongqiang [Electrochemical Energy Research Lab, GM R and D, Honeoye Falls, NY 14472 (United States); Rock, Jeffrey A. [GM Powertrain, Honeoye Falls, NY 14472 (United States)

    2010-05-15

    The gas diffusion medium (GDM) in a proton exchange membrane (PEM) fuel cell needs to simultaneously satisfy the requirements of transporting reactant gases, removing product water, conducting electrons and heat, and providing mechanical support to the membrane electrode assembly (MEA). Concerning the localized over-compression which may force carbon fibers and other conductive debris into the membrane to cause fuel cell failure by electronically shorting through the membrane, we have developed a novel full-field experimental method to measure the local thickness and compressibility of GDM. Applying a uniform air pressure upon a thin polyimide film bonded on the top surface of the GDM with support from the bottom by a flat metal substrate and measuring the thickness change using the 3-D digital image correlation technique with an out-of-plane displacement resolution less than 0.5 {mu}m, we have determined the local thickness and compressive stress/strain behavior in the GDM. Using the local thickness and compressibility data over an area of 11.2 mm x 11.2 mm, we numerically construct the nominal compressive response of a commercial Toray trademark TGP-H-060 based GDM subjected to compression by flat platens. Good agreement in the nominal stress/strain curves from the numerical construction and direct experimental flat-platen measurement confirms the validity of the methodology proposed in this article. The result shows that a nominal pressure of 1.4 MPa compressed between two flat platens can introduce localized compressive stress concentration of more than 3 MPa in up to 1% of the total area at various locations from several hundred micrometers to 1 mm in diameter. We believe that this full-field experimental method can be useful in GDM material and process development to reduce the local hard spots and help to mitigate the membrane shorting failure in PEM fuel cells. (author)

  4. A novel full-field experimental method to measure the local compressibility of gas diffusion media

    Science.gov (United States)

    Lai, Yeh-Hung; Li, Yongqiang; Rock, Jeffrey A.

    The gas diffusion medium (GDM) in a proton exchange membrane (PEM) fuel cell needs to simultaneously satisfy the requirements of transporting reactant gases, removing product water, conducting electrons and heat, and providing mechanical support to the membrane electrode assembly (MEA). Concerning the localized over-compression which may force carbon fibers and other conductive debris into the membrane to cause fuel cell failure by electronically shorting through the membrane, we have developed a novel full-field experimental method to measure the local thickness and compressibility of GDM. Applying a uniform air pressure upon a thin polyimide film bonded on the top surface of the GDM with support from the bottom by a flat metal substrate and measuring the thickness change using the 3-D digital image correlation technique with an out-of-plane displacement resolution less than 0.5 μm, we have determined the local thickness and compressive stress/strain behavior in the GDM. Using the local thickness and compressibility data over an area of 11.2 mm × 11.2 mm, we numerically construct the nominal compressive response of a commercial Toray™ TGP-H-060 based GDM subjected to compression by flat platens. Good agreement in the nominal stress/strain curves from the numerical construction and direct experimental flat-platen measurement confirms the validity of the methodology proposed in this article. The result shows that a nominal pressure of 1.4 MPa compressed between two flat platens can introduce localized compressive stress concentration of more than 3 MPa in up to 1% of the total area at various locations from several hundred micrometers to 1 mm in diameter. We believe that this full-field experimental method can be useful in GDM material and process development to reduce the local hard spots and help to mitigate the membrane shorting failure in PEM fuel cells.

  5. Modeling of a pitching and plunging airfoil using experimental flow field and load measurements

    Science.gov (United States)

    Troshin, Victor; Seifert, Avraham

    2018-01-01

    The main goal of the current paper is to outline a low-order modeling procedure of a heaving airfoil in a still fluid using experimental measurements. Due to its relative simplicity, the proposed procedure is applicable for the analysis of flow fields within complex and unsteady geometries and it is suitable for analyzing the data obtained by experimentation. Currently, this procedure is used to model and predict the flow field evolution using a small number of low profile load sensors and flow field measurements. A time delay neural network is used to estimate the flow field. The neural network estimates the amplitudes of the most energetic modes using four sensory inputs. The modes are calculated using proper orthogonal decomposition of the flow field data obtained experimentally by time-resolved, phase-locked particle imaging velocimetry. To permit the use of proper orthogonal decomposition, the measured flow field is mapped onto a stationary domain using volume preserving transformation. The analysis performed by the model showed good estimation quality within the parameter range used in the training procedure. However, the performance deteriorates for cases out of this range. This situation indicates that, to improve the robustness of the model, both the decomposition and the training data sets must be diverse in terms of input parameter space. In addition, the results suggest that the property of volume preservation of the mapping does not affect the model quality as long as the model is not based on the Galerkin approximation. Thus, it may be relaxed for cases with more complex geometry and kinematics.

  6. Measurement with SR-0 experimental modules of the SPHINX nuclear transmutation system. Variants 2008

    International Nuclear Information System (INIS)

    Rypar, Vojtech; Juricek, Vlastimil; Svadlenkova, Marie; Heraltova, Lenka; Viererbl, Ladislav; Lahodova, Zdena

    2008-12-01

    Experiments were performed with two LR-0 rector core arrangements and 3 variants of SR-0 insertion modules with a view to establishing the critical parameters of the reactor cores for the 3 module variants comprising different materials and different numbers of LR-0 fuel pins. The effect of the materials on the photon dose distribution and, on the axial and radial neutron field distributions (via 140 Ba and 140 La activities) was examined and the reaction rate distribution of activation foils inside the experimental module was measured

  7. Optical waveguiding and applied photonics technological aspects, experimental issue approaches and measurements

    CERN Document Server

    Massaro, Alessandro

    2012-01-01

    Optoelectronics--technology based on applications light such as micro/nano quantum electronics, photonic devices, laser for measurements and detection--has become an important field of research. Many applications and physical problems concerning optoelectronics are analyzed in Optical Waveguiding and Applied Photonics.The book is organized in order to explain how to implement innovative sensors starting from basic physical principles. Applications such as cavity resonance, filtering, tactile sensors, robotic sensor, oil spill detection, small antennas and experimental setups using lasers are a

  8. The Experimental Measurement of Aerodynamic Heating About Complex Shapes at Supersonic Mach Numbers

    Science.gov (United States)

    Neumann, Richard D.; Freeman, Delma C.

    2011-01-01

    In 2008 a wind tunnel test program was implemented to update the experimental data available for predicting protuberance heating at supersonic Mach numbers. For this test the Langley Unitary Wind Tunnel was also used. The significant differences for this current test were the advances in the state-of-the-art in model design, fabrication techniques, instrumentation and data acquisition capabilities. This current paper provides a focused discussion of the results of an in depth analysis of unique measurements of recovery temperature obtained during the test.

  9. Quark deconfinement in nuclei: A review of experimental tests based on nuclear magnetic moment measurements

    International Nuclear Information System (INIS)

    Stone, N.J.; Rikovska, J.

    1988-01-01

    The introduction very briefly outlines the basic idea and experimental evidence to suggest that quarks may behave differently in nuclei and in individual nucleons, with possible consequences for the calculation of nuclear magnetic dipole moments. After description of a calculation of moments made using the extreme model of total quark deconfinement (the MIT bag model) attention is focussed on experimental tests and the state of current evidence for more partial quark deconfinement. The arguments of Yamazaki which give an experimental basis for distinguishing quark deconfinement effects from, specifically, effects caused by pion exchange currents, are given in more detail. The reasons underlying choice of nuclei in which meaningful tests may be possible are given. Early claims by Karl et al. to have demonstrated the existence of quark deconfinement in mass 3 nuclei are discussed. The current status of evidence for deconfinement based on orbital g-factor measurements in heavier nuclei is also summarised. Finally some examples are given of possible experiments using recently developed on-line facilities which may provide further tests of these ideas. (orig.)

  10. Uncertainty in techno-economic estimates of cellulosic ethanol production due to experimental measurement uncertainty

    Directory of Open Access Journals (Sweden)

    Vicari Kristin J

    2012-04-01

    Full Text Available Abstract Background Cost-effective production of lignocellulosic biofuels remains a major financial and technical challenge at the industrial scale. A critical tool in biofuels process development is the techno-economic (TE model, which calculates biofuel production costs using a process model and an economic model. The process model solves mass and energy balances for each unit, and the economic model estimates capital and operating costs from the process model based on economic assumptions. The process model inputs include experimental data on the feedstock composition and intermediate product yields for each unit. These experimental yield data are calculated from primary measurements. Uncertainty in these primary measurements is propagated to the calculated yields, to the process model, and ultimately to the economic model. Thus, outputs of the TE model have a minimum uncertainty associated with the uncertainty in the primary measurements. Results We calculate the uncertainty in the Minimum Ethanol Selling Price (MESP estimate for lignocellulosic ethanol production via a biochemical conversion process: dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis and co-fermentation of the resulting sugars to ethanol. We perform a sensitivity analysis on the TE model and identify the feedstock composition and conversion yields from three unit operations (xylose from pretreatment, glucose from enzymatic hydrolysis, and ethanol from fermentation as the most important variables. The uncertainty in the pretreatment xylose yield arises from multiple measurements, whereas the glucose and ethanol yields from enzymatic hydrolysis and fermentation, respectively, are dominated by a single measurement: the fraction of insoluble solids (fIS in the biomass slurries. Conclusions We calculate a $0.15/gal uncertainty in MESP from the TE model due to uncertainties in primary measurements. This result sets a lower bound on the error bars of

  11. Continuing Professional Development in the quantity surveying ...

    African Journals Online (AJOL)

    This research study was conducted in order to investigate Continuing Professional Development (CPD) in the South African quantity surveying profession. The study further aimed to establish the reasons why some quantity surveyors do not acquire the required CPD hours and face losing their professional registration with ...

  12. Continuing Professional Development in the quantity surveying ...

    African Journals Online (AJOL)

    1991-01-01

    Jan 1, 1991 ... The research established that quantity surveyors regarded handing in their CPD ... Surveying, Walter Sisulu University, PO Box 1421, East London, 5200, South Africa. ... Keywords: Continuing professional development, quantity surveying, perception .... In spite of this opportunity enshrined in the Act, the.

  13. 36 CFR 223.220 - Quantity determination.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Quantity determination. 223.220 Section 223.220 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER Special Forest Products § 223.220 Quantity determination...

  14. 30 CFR 75.325 - Air quantity.

    Science.gov (United States)

    2010-07-01

    ... the exposure of miners. (i) A ventilating air quantity that is less than what is required by paragraph... results of sampling that demonstrate that the lesser air quantity will maintain continuous compliance with applicable TLV ®'s. (j) If during sampling required by § 70.1900(c) of this subchapter the ventilating air is...

  15. Experimental measurements of the eddy current signal due to a flawed, conducting half space

    International Nuclear Information System (INIS)

    Long, S.A.; Toomsawasdi, S.; Zaman, A.J.M.

    1984-01-01

    This chapter reports on an experimental investigation in which the change in impedance of a practical multi-turn eddy current coil near a conducting half space is measured as a function of the conductivity and the lift-off distance. The results are compared in a qualitative fashion with the analytical results for a single-turn coil. Measurements are also made of the change in impedance due to a small void in the conducting half space as a function of both its depth and radial position. The results indicate that, at least in a qualitative fashion, the precisely derived analytical solutions adequately predict the general behavior of the change in complex impedance of an eddy current coil above a conducting ground plane as a function of lift-off distance. It is determined that the effect of a sub-surface void on the change in inductance of the test coil correlates well with theoretical calculations

  16. Modeling and Experimental Tests of a Mechatronic Device to Measure Road Profiles Considering Impact Dynamics

    DEFF Research Database (Denmark)

    Souza, A.; Santos, Ilmar

    2002-01-01

    of a vehicle and to test its components in laboratory. In this framework a mechanism to measure road profiles is designed and presented. Such a mechanism is composed of two rolling wheels and two long beams attached to the vehicles by means of four Kardan joints. The wheels are kept in contact to the ground...... to highlight that the aim of this device is to independently measure two road profiles, without the influence of the vehicle dynamics where the mechanism is attached. Before the mechatronic mechanism is attached to a real vehicle, its dynamic behavior must be known. A theoretical analysis of the mechanism...... predicts well the mechanism movements. However it was also experimentally observed that the contact between the wheels and the road profile is not permanent. To analyze the non-contact between the wheels and the road, the Newton-Euler´s Method is used to calculate forces and moments of reactions between...

  17. Noninvasive measurement of nutrient portal blood shunting: an experimental study with [14C]ursodeoxycholic acid

    International Nuclear Information System (INIS)

    Nordlinger, B.; Parquet, M.; Infante, R.; Moreels, R.; Blondiau, P.; Boschat, M.; Groussard, M.; Huguet, C.

    1982-01-01

    All of the methods proposed for measuring portal blood flow are either invasive, estimate total rather than nutrient flow, and none has proved reliable in cirrhotic patients. A method has been derived from pharmacokinetic principles used for the calculation of bioavailability of drugs according to the route of administration (i.v. or p.o.) and tested experimentally in 20 pigs. A tracer dose of [ 14 C]ursodeoxycholic acid, a biliary acid with a high-liver first-pass effect, is administered in the duodenum, and serial peripheral blood samples are taken. Later, the same dose of the same drug is administered i.v. The shunt fraction of portal blood F is obtained by the ratio of the areas under the plasma level vs. time curves (AUC) after p.o. and i.v. administrations: (see formula in text). The pigs were divided into three experimental groups. (i) Group I: undisturbed portal flow; (ii) Group II: total diversion of portal blood with an end-to-side portacaval shunt, and (iii) Group III: partial diversion of portal blood through a side-to-side portacaval shunt. Portal flow was measured during surgery with an electromagnetic flowmeter above and below the shunt and the degree of shunting calculated. Results show that the shunt fraction measured with ursodeoxycholic acid is well-correlated with hemodynamic data. No overlap between Groups I and III is observed. It is concluded that the shunt fraction of nutrient portal blood can be measured with this noninvasive method. Minute amounts of ursodeoxycholic acid were used in order to be completely metabolized by the liver, even in spite of hepatocellular dysfunction. Therefore, this method should be valid in cirrhotic patients and be useful to decide the type of portasystemic shunt to propose for the decompression of gastroesophageal varices

  18. Experimental density and viscosity measurements of di(2ethylhexyl)sebacate at high pressure

    International Nuclear Information System (INIS)

    Paredes, Xavier; Fandino, Olivia; Pensado, Alfonso S.; Comunas, Maria J.P.; Fernandez, Josefa

    2012-01-01

    Highlights: → We measure viscosities for di(2-ethylhexyl)sebacate from (298.15 to 398.15) K and up to 60 MPa. → We measure densities for DEHS from (298.15 to 373.15) K and from (0.1 to 60) MPa. → The reported and lit. data were used in a viscosity correlation from (273 to 491) K and up to 1.1 GPa. → This correlation could be used in industrial equipment that operate at high pressures. - Abstract: Experimental densities and dynamic viscosities of di(2-ethylhexyl)sebacate (DEHS) are the object of study in this work. DEHS could be a useful industrial reference fluid for moderately high viscosity at high pressures as it is often used as a pressure transmitting fluid. At atmospheric pressure the density and viscosity measurements have been performed in a rotational SVM 3000 Stabinger viscometer from (273.15 to 373.15) K, whereas from (0.1 to 60) MPa and from (298.15 to 398.15) K an automated Anton Paar DMA HPM vibrating-tube densimeter, and a high-pressure rolling-ball viscometer were used. Several Vogel-Fulcher-Tammann type equations were used to fit the experimental values of viscosity to the pressure and temperature. The measured viscosity data have been used together with previous data found in the literature to establish a correlation of the viscosity surface η(T, p) of DEHS, covering a temperature range from (273 to 491) K and pressure up to 1.1 GPa. This correlation could be used in industrial equipment like viscometers and other devices that operate at high pressures. Our viscosity data have also been fitted as a function of temperature and volume to the thermodynamic scaling model of Roland et al. [C.M. Roland, S. Bair, R. Casalini, J. Chem. Phys. 125 (2006) 124508].

  19. A novel experimental mechanics method for measuring the light pressure acting on a solar sail membrane

    Science.gov (United States)

    Shi, Aiming; Jiang, Li; Dowell, Earl H.; Qin, Zhixuan

    2017-02-01

    Solar sail is a high potential `sailing craft' for interstellar exploration. The area of the first flight solar sail demonstrator named "IKAROS" is 200 square meters. Future interplanetary missions will require solar sails at least on the order of 10000 square meters (or larger). Due to the limitation of ground facilities, the size of experimental sample should not be large. Furthermore the ground experiments have to be conducted in gravitational field, so the gravity effect must be considered in a ground test. To obtain insight into the solar sail membrane dynamics, a key membrane flutter (or limit cycle oscillations) experiment with light forces acting on it must be done. But one big challenge is calibrating such a tiny light force by as a function of the input power. In this paper, a gravity-based measuring method for light pressure acting on membrane is presented. To explain the experimental principle, an ideal example of a laser beam with expanders and a metal film is studied. Based on calculations, this experimental mechanics method for calibrating light pressure with an accuracy of 0.01 micro-Newton may be realized by making the light force balance the gravity force on the metal films. This gravity-based measuring method could not only be applied to study the dynamics characteristics of solar sail membrane structure with different light forces, but could also be used to determine more accurate light forces/loads acting on solar sail films and hence to enhance the determination of the mechanical properties of the solar sail membrane structure.

  20. Experimental determination of an ionisation detector for measuring the nuclear lifetime

    International Nuclear Information System (INIS)

    Tisserant, S.

    1982-06-01

    The proton or neutron decay signature needs a good measurement of the varied produced particle energy, together with a good identification of them. The lack of experimental data on electron and charged pion of low energy led to experiment two series of tests. This thesis study precise, from these tests, the performances of the detector that will be installed at Modane. Prototype performances are first studied, concerning the particle energy measurement (electron and charged pions) and their identification. To extrapolate these results to the final detector, simulation programs will be used. The application of such a program that Electron-Gamma-Shower to energies below 500 MeV/c 2 for electromagnetic showers will be verified. For the pions, a simulation program of pion-nucleus interactions at low energy will be checked out from the experimental test data. Scattering effects, charge exchange and absorption are particularly concerned. These simulations reproduce the prototype results; they will be applied to the expected decay modes of proton and neutron. It will be shown that a fine grain detector. Shows a comparable sensitivty for every mode without final neutrino. Triggering probability and decay sign probability will be studied particularly [fr

  1. Neutron spectrometer for DD/DT burning ratio measurement in fusion experimental reactor

    International Nuclear Information System (INIS)

    Asai, Keisuke; Naoi, Norihiro; Iguchi, Tetsuo; Watanabe, Kenichi; Kawarabayashi, Jun; Nishitani, Takeo

    2006-01-01

    The most feasible fuels for a fusion reactor are D (Deuterium) and T (Tritium). DD and/or DT fusion reaction or nuclear burning reaction provides two kinds of neutrons, DD neutron and DT neutron, respectively. DD/DT burning ratio, which can be estimated by DD/DT neutron ratio in the burning plasma, is essential for burn control, alpha particle emission rate monitoring and tritium fuel cycle estimation. Here we propose a new neutron spectrometer for the absolute DD/DT burning ratio measurement. The system consists of a Proton Recoil Telescope (PRT) and a Time-of-Flight (TOF) technique. We have conducted preliminary experiments with a prototype detector and a DT neutron beam (φ20 mm) at the Fusion Neutronics Source, Japan Atomic Energy Agency (JAEA), to assess its basic performance. The detection efficiency obtained by the experiment is consistent with the calculation results in PRT, and sufficient energy resolution for the DD/DT neutron discrimination has been achieved in PRT and TOF. The validity of the Monte Carlo calculation has also been confirmed by comparing the experimental results with the calculation results. The design consideration of this system for use in ITER (International Thermonuclear Experimental Reactor) has shown that this system is capable of monitoring the line-integrated DD/DT burning ratio for the plasma core line of sight with the required measurement accuracy of 20% in the upper 4 decades of the ITER operation (fusion power: 100 kW-700 MW). (author)

  2. Experimental technologies comparison for strain measurement of a composite main landing gear bay specimen

    Science.gov (United States)

    Viscardi, Massimo; Arena, Maurizio; Ciminello, Monica; Guida, Michele; Meola, Carosena; Cerreta, Pietro

    2018-03-01

    The development of advanced monitoring system for strain measurements on aeronautical components remain an important target both when related to the optimization of the lead-time and cost for part validation, allowing earlier entry into service, and when related to the implementation of advanced health monitoring systems dedicated to the in-service parameters verification and early stage detection of structural problems. The paper deals with the experimental testing of a composite samples set of the main landing gear bay for a CS-25 category aircraft, realized through an innovative design and production process. The test have represented a good opportunity for direct comparison of different strain measurement techniques: Strain Gauges (SG) and Fibers Bragg Grating (FBG) have been used as well as non-contact techniques, specifically the Digital Image Correlation (DIC) and Infrared (IR) thermography applied where possible in order to highlight possible hot-spot during the tests. The crucial points identification on the specimens has been supported by means of advanced finite element simulations, aimed to assessment of the structural strength and deformation as well as to ensure the best performance and the global safety of the whole experimental campaign.

  3. Experimental Measurement and Numerical Modeling of the Effective Thermal Conductivity of TRISO Fuel Compacts

    International Nuclear Information System (INIS)

    Folsom, Charles

    2015-01-01

    Accurate modeling capability of thermal conductivity of tristructural-isotropic (TRISO) fuel compacts is important to fuel performance modeling and safety of Generation IV reactors. To date, the effective thermal conductivity (ETC) of tristructural-isotropic (TRISO) fuel compacts has not been measured directly. The composite fuel is a complicated structure comprised of layered particles in a graphite matrix. In this work, finite element modeling is used to validate an analytic ETC model for application to the composite fuel material for particle-volume fractions up to 40%. The effect of each individual layer of a TRISO particle is analyzed showing that the overall ETC of the compact is most sensitive to the outer layer constituent. In conjunction with the modeling results, the thermal conductivity of matrix-graphite compacts and the ETC of surrogate TRISO fuel compacts have been successfully measured using a previously developed measurement system. The ETC of the surrogate fuel compacts varies between 50-30 W m -1 K -1 over a temperature range of 50-600°C. As a result of the numerical modeling and experimental measurements of the fuel compacts, a new model and approach for analyzing the effect of compact constituent materials on ETC is proposed that can estimate the fuel compact ETC with approximately 15-20% more accuracy than the old method. Using the ETC model with measured thermal conductivity of the graphite matrix-only material indicate that, in the composite form, the matrix material has a much greater thermal conductivity, which is attributed to the high anisotropy of graphite thermal conductivity. Therefore, simpler measurements of individual TRISO compact constituents combined with an analytic ETC model, will not provide accurate predictions of overall ETC of the compacts emphasizing the need for measurements of composite, surrogate compacts.

  4. Experimental measurement of compressibility coefficients of synthetic sandstone in hydrostatic conditions

    International Nuclear Information System (INIS)

    Asaei, H; Moosavi, M

    2013-01-01

    For the characterization of the mechanical behavior of porous media in elastic conditions, the theory of poroelasticity is used. The number of poroelastic coefficients is greater in elastic conditions because of the complexity of porous media. The laboratory measurement of poroelastic coefficients needs a system that can control and measure the variables of poroelasticity. In this paper, experimental measurements of these coefficients are presented. Laboratory tests are performed using a system designed by the authors. Laboratory hydrostatic tests are performed on cylindrical samples in drained, pore pressure loading, undrained and dry conditions. Compressibilities (bulk and pore compressibility), effective stress and Skempton coefficients are measured by these tests. Samples are made of a composition (sand and cement) and are made by a compaction process synthetically. Calibration tests are performed for the setup to identify possible errors in the system and to correct the results of the main tests. This is done by performing similar compressibility tests at each stress level on a cylindrical steel sample (5.47 mm in diameter) with a longitudinal hole along it (hollow cylinder). A steel sample is used to assume an incompressible sample. The results of the tests are compared with the theory of poroelasticity and the obtained graphs and their errors are analyzed. This study shows that the results of the drained and pore pressure loading tests are compatible with poroelastic formulation, while the undrained results have errors because of extra fluid volume in the pore pressure system and calibration difficulties. (paper)

  5. Experimental reslts from the HERO project: In situ measurements of ionospheric modifications using sounding rockets

    International Nuclear Information System (INIS)

    Rose, G.; Grandal, B.; Neske, E.; Ott, W.; Spenner, K.; Maseide, K.; Troim, J.

    1985-01-01

    The Heating Rocket project HERO comprised the first in situ experiments to measure artifical ionospheric modifications at F layer heights set up by radio waves transmitted from the Heating facility at Ramfjord near Tromso in Northern Norway. Four instrumented payloads were launched on sounding rockets from Andoya Rocket Range during the autumn of 1982 into a sunlit ionosphere with the sun close to the horizon. The payloads recorded modifications, in particular, the presence of electron plasma waves near the reflection level of the heating wave. The amplitude and phase of the three components of the electric and magnetic fields of the heating wave were measured simultaneously as a function of altitude. Coherent spectra of the three electric field components of the locally generated electron plasma waves were obtained in a 50-kHz-wide band. At the same time quasi-continuous measurements were made on several fixed frequencies from 4 kHz to 16 kHz below the heating frequency and in the VLF-range using linear dipole antennas. Moreover, measurements were made of electron temperature, suprathermal electrons and local electron density along the rocket trajectory. The experimental results will be presented and discussed

  6. Design of an experimental apparatus for measurement of the surface tension of metastable fluids

    Science.gov (United States)

    Vinš, V.; Hrubý, J.; Hykl, J.; Blaha, J.; Šmíd, B.

    2013-04-01

    A unique experimental apparatus for measurement of the surface tension of aqueous mixtures has been designed, manufactured, and tested in our laboratory. The novelty of the setup is that it allows measurement of surface tension by two different methods: a modified capillary elevation method in a long vertical capillary tube and a method inspired by the approach of Hacker (National Advisory Committee for Aeronautics, Technical Note 2510, 1-20, 1951), i.e. in a short horizontal capillary tube. Functionality of all main components of the apparatus, e.g., glass chamber with the capillary tube, temperature control unit consisting of two thermostatic baths with special valves for rapid temperature jumps, helium distribution setup allowing pressure variation above the liquid meniscus inside the capillary tube, has been successfully tested. Preliminary results for the surface tension of the stable and metastable supercooled water measured by the capillary elevation method at atmospheric pressure are provided. The surface tension of water measured at temperatures between +26 °C and -11 °C is in good agreement with the extrapolated IAPWS correlation (IAPWS Release on Surface Tension of Ordinary Water Substance, September 1994); however it disagrees with data by Hacker.

  7. Surface tension and related thermodynamic quantities of aqueous electrolyte solutions

    CERN Document Server

    Matubayasi, Norihiro

    2013-01-01

    Surface tension provides a thermodynamic avenue for analyzing systems in equilibrium and formulating phenomenological explanations for the behavior of constituent molecules in the surface region. While there are extensive experimental observations and established ideas regarding desorption of ions from the surfaces of aqueous salt solutions, a more successful discussion of the theory has recently emerged, which allows the quantitative calculation of the distribution of ions in the surface region. Surface Tension and Related Thermodynamic Quantities of Aqueous Electrolyte Solutions provides a d

  8. Experimental measurement of enthalpy increments of Th0.25Ce0.75O2

    International Nuclear Information System (INIS)

    Babu, R.; Balakrishnan, S.; Ananthasivan, K.; Nagarajan, K.

    2013-01-01

    Thorium has been suggested as an alternative fertile material for a nuclear fuel cycle, and an inert matrix for burning plutonium and for waste disposal. The third stage of India's nuclear power programme envisages utilization of thorium and plutonium as a fuel in Advanced Heavy Water Reactor (AHWR) and Accelerator Driven Sub-critical Systems (ADSS). Solid solutions of ThO 2 -PuO 2 are of importance because of coexistence of Th with Pu during the breeding cycle. CeO 2 is used as a PuO 2 analog due to similar ionic radii of cations and similar physico-chemical properties of the oxides. ThO 2 forms a homogeneous solid solution with the cubic fluorite structure when doped with Ce in the entire compositional range. In the development of mixed oxide nuclear fuels, knowledge of thermodynamic properties of thorium oxide and its mixtures has become extremely importance for understanding the fuel behavior during irradiation and for predicting the performance of the fuel under accidental conditions. Thermodynamic functions such as the enthalpy increment and heat capacity of the theria-ceria solid solution have not been measured experimentally. Hence, the enthalpy increments of thoria-ceria solid solutions, Th 0.25 Ce 0.75 O 2 by inverse drop calorimetry in the temperature range 523-1723 K have been measured. The measured enthalpy increments were fitted in to polynomial functions by using the least squares method and the other thermodynamic functions such as heat capacity, entropy and Gibbs energy functions were computed in the temperature range 298-1800 K. The reported thermodynamic functions for Th 0.25 Ce 0.75 O 2 forms the first experimental data and the heat capacity of (Th,Ce)O 2 solid solutions was shown to obey the Neumann-Kopp's rule. (author)

  9. Calculation of the Scattered Radiation Profile in 64 Slice CT Scanners Using Experimental Measurement

    Directory of Open Access Journals (Sweden)

    Afshin Akbarzadeh

    2009-06-01

    Full Text Available Introduction: One of the most important parameters in x-ray CT imaging is the noise induced by detected scattered radiation. The detected scattered radiation is completely dependent on the scanner geometry as well as size, shape and material of the scanned object. The magnitude and spatial distribution of the scattered radiation in x-ray CT should be quantified for development of robust scatter correction techniques. Empirical methods based on blocking the primary photons in a small region are not able to extract scatter in all elements of the detector array while the scatter profile is required for a scatter correction procedure. In this study, we measured scatter profiles in 64 slice CT scanners using a new experimental measurement. Material and Methods: To measure the scatter profile, a lead block array was inserted under the collimator and the phantom was exposed at the isocenter. The raw data file, which contained detector array readouts, was transferred to a PC and was read using a dedicated GUI running under MatLab 7.5. The scatter profile was extracted by interpolating the shadowed area. Results: The scatter and SPR profiles were measured. Increasing the tube voltage from 80 to 140 kVp resulted in an 80% fall off in SPR for a water phantom (d=210 mm and 86% for a polypropylene phantom (d = 350 mm. Increasing the air gap to 20.9 cm caused a 30% decrease in SPR. Conclusion: In this study, we presented a novel approach for measurement of scattered radiation distribution and SPR in a CT scanner with 64-slice capability using a lead block array. The method can also be used on other multi-slice CT scanners. The proposed technique can accurately estimate scatter profiles. It is relatively straightforward, easy to use, and can be used for any related measurement.

  10. Measurement of the ratio of hydrogen to deuterium at the KSTAR 2009 experimental campaign

    International Nuclear Information System (INIS)

    Kwak, Jong-Gu; Wang, Son Jong; Kim, Sun Ho; Park, Jae Min; Na, Hoon Kyun

    2010-01-01

    The control of the ratio of hydrogen to the deuterium is one of the very important issues for ion cyclotron range of frequency (ICRF) minority heating as well as the plasma wall interaction in the tokamak. The ratio of hydrogen to deuterium during the tokamak shot was deduced from the emission spectroscopy measurements during the KSTAR 2009 experimental campaign. Graphite tiles were used for the plasma facing components (PFCs) at KSTAR and its surface area exposed to the plasma was about 11 m 2 . The data showed that it remained as high as around 50% during the campaign period because graphite tiles were exposed to the air for about two months and the hydrogen contents at the tiles are not fully pumped out due to the lack of baking on the PFC in the 2009 campaign. The validation of the spectroscopy method was checked by using the Zeeman effects and the ratio of hydrogen to the deuterium is compared with results from the residual gas analysis. During the tokamak shot, the ratio is low below 10% initially and saturated after around 1 s. When there is a hydrogen injection to the vessel via ion cyclotron wall conditioning and the boronization process where the carbone is used, the ratio of the hydrogen to the deuterium is increased by up to 100% and it recovers to around 50% after one day of operation. However it does not decrease below 50% at the end of the experimental campaign. It was found that the full baking on the PFC (with a high temperature and sufficient vacuum pumping) is required for the ratio control which guarantees the efficient ICRF heating at the KSTAR 2010 experimental campaign.

  11. DEAR Monte Carlo simulation versus experimental data in measurements with the DEAR NTP setup

    International Nuclear Information System (INIS)

    Bragadireanu, A.M.; Iliescu, M.; Petrascu, C.; Ponta, T.

    1999-01-01

    The DEAR NTP setup was installed in DAΦNE and is taking background data since February 1999. The goal of this work is to compare the measurements, in terms of charged particle hits (clusters), with the DEAR Monte Carlo simulation, taking into account the main effects due to which the particles are lost from circulating beams: Touschek effect and beam-gas interaction. To be mentioned that, during this period, no collisions between electrons and positrons have been achieved in the DEAR Interaction Point (IP) and consequently we don't have any experimental data concerning the hadronic background coming from φ-decays directly, or as secondary products of hadronic interactions. The NTP setup was shielded using lead and copper which gives a shielding factor of about 4. In parallel with the NTP setup, the signals from two scintillator slabs (150 x 80 x 2 mm) collected by 4 PMTs, positioned bellow the NTP setup and facing the IP, were digitized and counted using a National Instruments Timer/Counter Card. To compare experimental data with results of the Monte Carlo simulation we selected periods with only one circulating beam (electrons or positrons), in order to have a clean data set and we selected data files with CCD occupancy lower than 5%. As concerning the X-rays, the statistics was too poor to perform any quantitative comparison. The comparison between Monte Carlo, CCD data and kaon monitor data, for two beams are shown. It can be seen the agreement is fairly good and promising along the way of checking our routines which describes the experimental setup and the physical processes occurring in the accelerator environment. (authors)

  12. Comparative performance of three experimental hut designs for measuring malaria vector responses to insecticides in Tanzania.

    Science.gov (United States)

    Massue, Dennis J; Kisinza, William N; Malongo, Bernard B; Mgaya, Charles S; Bradley, John; Moore, Jason D; Tenu, Filemoni F; Moore, Sarah J

    2016-03-15

    Experimental huts are simplified, standardized representations of human habitations that provide model systems to evaluate insecticides used in indoor residual spray (IRS) and long-lasting insecticidal nets (LLINs) to kill disease vectors. Hut volume, construction materials and size of entry points impact mosquito entry and exposure to insecticides. The performance of three standard experimental hut designs was compared to evaluate insecticide used in LLINs. Field studies were conducted at the World Health Organization Pesticide Evaluation Scheme (WHOPES) testing site in Muheza, Tanzania. Three East African huts, three West African huts, and three Ifakara huts were compared using Olyset(®) and Permanet 2.0(®) versus untreated nets as a control. Outcomes measured were mortality, induced exophily (exit rate), blood feeding inhibition and deterrence (entry rate). Data were analysed using linear mixed effect regression and Bland-Altman comparison of paired differences. A total of 613 mosquitoes were collected in 36 nights, of which 13.5% were Anopheles gambiae sensu lato, 21% Anopheles funestus sensu stricto, 38% Mansonia species and 28% Culex species. Ifakara huts caught three times more mosquitoes than the East African and West African huts, while the West African huts caught significantly fewer mosquitoes than the other hut types. Mosquito densities were low, very little mosquito exit was measured in any of the huts with no measurable exophily caused by the use of either Olyset or Permanet. When the huts were directly compared, the West African huts measured greater exophily than other huts. As unholed nets were used in the experiments and few mosquitoes were captured, it was not possible to measure difference in feeding success either between treatments or hut types. In each of the hut types there was increased mortality when Permanet or Olyset were present inside the huts compared to the control, however this did not vary between the hut types. Both East African

  13. Monte Carlo and experimental determination of correction factors for gamma knife perfexion small field dosimetry measurements

    Science.gov (United States)

    Zoros, E.; Moutsatsos, A.; Pappas, E. P.; Georgiou, E.; Kollias, G.; Karaiskos, P.; Pantelis, E.

    2017-09-01

    Detector-, field size- and machine-specific correction factors are required for precise dosimetry measurements in small and non-standard photon fields. In this work, Monte Carlo (MC) simulation techniques were used to calculate the k{{Qmsr},{{Q}0}}{{fmsr},{{f}ref}} and k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} correction factors for a series of ionization chambers, a synthetic microDiamond and diode dosimeters, used for reference and/or output factor (OF) measurements in the Gamma Knife Perfexion photon fields. Calculations were performed for the solid water (SW) and ABS plastic phantoms, as well as for a water phantom of the same geometry. MC calculations for the k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} correction factors in SW were compared against corresponding experimental results for a subset of ionization chambers and diode detectors. Reference experimental OF data were obtained through the weighted average of corresponding measurements using TLDs, EBT-2 films and alanine pellets. k{{Qmsr},{{Q}0}}{{fmsr},{{f}ref}} values close to unity (within 1%) were calculated for most of ionization chambers in water. Greater corrections of up to 6.0% were observed for chambers with relatively large air-cavity dimensions and steel central electrode. A phantom correction of 1.006 and 1.024 (breaking down to 1.014 from the ABS sphere and 1.010 from the accompanying ABS phantom adapter) were calculated for the SW and ABS phantoms, respectively, adding up to k{{Qmsr},{{Q}0}}{{fmsr},{{f}ref}} corrections in water. Both measurements and MC calculations for the diode and microDiamond detectors resulted in lower than unit k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} correction factors, due to their denser sensitive volume and encapsulation materials. In comparison, higher than unit k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} results for the ionization chambers suggested field size depended dose underestimations (being significant for the 4 mm field), with magnitude depending on the combination of

  14. Monte Carlo calculations and experimental measurements of dosimetric parameters of the IRA-103Pd source

    International Nuclear Information System (INIS)

    Sadeghi, Mahdi; Hosseini, Hamed; Raisali, Gholamreza

    2008-01-01

    Full text: The use of 103 Pd seed sources for permanent prostate implantation has become a popular brachytherapy application. As recommended by AAPM the dosimetric characteristics of the new source must be determined using experimental and Monte Carlo simulations, before its use in clinical applications thus The goal of this report is the experimental and theoretical determination of the dosimetric characteristics of this source following the recommendations in the AAPM TG-43U1 protocol. Figure 1 shows the geometry of the IRA- 103 Pd source. The source consists of a cylindrical silver core, 0.3 cm long x 0.05 cm in diameter, onto which 0.5 nm layer of 103 Pd has been uniformly adsorbed. The effective active length of source is 0.3 cm and the silver core encapsulated inside a hollow titanium tube with 0.45 cm long, 0.07 cm and 0.08 inner and outer diameters and two caps. The Monte Carlo N-Particle (MCNP) code, version 4C, was used to determine the relevant dosimetric parameters of the source. The geometry of the Monte Carlo simulation performed in this study consisted of a sphere with 30 cm diameter. Dose distributions around this source were measured in two Perspex phantom using enough TLD chips. For these measurements, slabs of Perspex material were machined to accommodate the source and TLD chips. A value of 0.67± 1% cGy.h -1 .U -1 for, Λ, was calculated as the ratio of d(r 0 ,θ 0 ) and s K , that may be compared with Λ values obtained for 103 Pd sources. Result of calculations and measurements values of dosimetric parameters of the source including radial dose function, g(r), and anisotropy function, F(r,θ), has been shown in separate figures. The radial dose function, g(r), for the IRA- 103 Pd source and other 103 Pd sources is included in Fig. 2. Comparison between measured and Monte Carlo simulated dose function, g(r), and anisotropy function, F(r,θ), of this source demonstrated that they are in good agreement with each other and The value of Λ is

  15. Experimental measurements and integrated modelling studies of actinide sorption onto cement

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari; Baston, G.M.N.

    2003-01-01

    An Integrated Cement Sorption Model (ICSM) for actinides onto Ordinary Portland Cement (OPC) is developed. The experimental measurements using the batch sorption technique for actinides onto cement and constituent minerals, which were considered in the modelling calculations, are also described. The actinide elements studied (thorium, uranium, neptunium, plutonium and americium) were strongly sorbed onto OPC. An initial comparison of the experimental data relating the sorption values of actinides onto cement-component phases with those onto OPC is carried out. The results suggest that the Calcium Silicate Hydrate (C-S-H) phases were found to be the most likely candidates to be the dominant-sorbing phases in order to describe the sorption of a actinides onto OPC. An approach to develop the integrated cement sorption model, based on a thermodynamic surface complexation model, is described with discussions on the possible mineralogy and phase distribution of OPC. Another approach than sorption, assuming that co-precipitation on the surface of the cement phase dominates 'sorption', is proposed and discussed. A scoring system is introduced to assess the applicability of the proposed ICSMs. It is suggested that the thermodynamic sorption model is recommended for the sorption of ionic species and the surface co-precipitation model is recommended for the sorption of neutral species though the sorption model is still recommended to be used to model OPC-based systems. (author)

  16. An Experimental Comparison of Similarity Assessment Measures for 3D Models on Constrained Surface Deformation

    Science.gov (United States)

    Quan, Lulin; Yang, Zhixin

    2010-05-01

    To address the issues in the area of design customization, this paper expressed the specification and application of the constrained surface deformation, and reported the experimental performance comparison of three prevail effective similarity assessment algorithms on constrained surface deformation domain. Constrained surface deformation becomes a promising method that supports for various downstream applications of customized design. Similarity assessment is regarded as the key technology for inspecting the success of new design via measuring the difference level between the deformed new design and the initial sample model, and indicating whether the difference level is within the limitation. According to our theoretical analysis and pre-experiments, three similarity assessment algorithms are suitable for this domain, including shape histogram based method, skeleton based method, and U system moment based method. We analyze their basic functions and implementation methodologies in detail, and do a series of experiments on various situations to test their accuracy and efficiency using precision-recall diagram. Shoe model is chosen as an industrial example for the experiments. It shows that shape histogram based method gained an optimal performance in comparison. Based on the result, we proposed a novel approach that integrating surface constrains and shape histogram description with adaptive weighting method, which emphasize the role of constrains during the assessment. The limited initial experimental result demonstrated that our algorithm outperforms other three algorithms. A clear direction for future development is also drawn at the end of the paper.

  17. Calculation of kinetic parameters of Caliban metallic core experimental reactor from stochastic neutron measurements

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N.; Baud, J. [Commissariat a l' energie Atomique, Centre de Valduc, 21120 Is-sur-Tille (France)

    2009-07-01

    Several experimental devices are operated by the Criticality and Neutron Science Research Department of the CEA Valduc Laboratory. One of these is the metallic core reactor Caliban. The knowledge of the fundamental kinetic parameters of the reactor is very useful, indeed necessary, to the operator. The purpose of this study was to develop and perform experiments allowing to determinate some of these parameters. The prompt neutron decay constant and particularly its value at criticality can be measured with reactor noise techniques such as the interval-distribution, the Feynman variance-to-mean, and the Rossi-{alpha} methods. By introducing the Nelson number, the effective delayed neutron fraction and the average neutron lifetime can also be calculated with the Rossi-{alpha} method. Subcritical, critical, and even supercritical experiments were performed. With the Rossi-{alpha} technique, it was found that the prompt neutron decay constant at criticality was (6.02*10{sup 5} {+-} 9%). Experiments also brought out the limitations of the used experimental parameters. (authors)

  18. Three experimental tests of Bell's inequalities by measurement of polarization correlation of photons

    International Nuclear Information System (INIS)

    Aspect, A.

    1983-02-01

    We have performed three experimental tests of Bell's inequalities by measuring the linear-polarization correlation of photons emitted by pairs in the 4p 2 1 S 0 → 4s4p 1 P 1 → 4s 2 1 S 0 radiative cascade of calcium. The first part of this dissertation reminds the theoretical background (Bell's theorem), and the experimental situation (previous experiments). We then describe our apparatus: the source (calcium atomic beam selectively excited by two-photon absorption), the optics, the photon coincidence-counting system. Our first experiment, analogous to previous ones (but more precise) involves one-channel polarizers. Our second experiment, based on a conceptually simpler scheme, uses two-channel polarizers. The third experiment involves acousto-optical switches followed by two linear polarizers: these devices act as time-varying polarizers, the orientation of which is changed during the time of flight of photons. In the three experiments, the results are in good agreement with the Quantum mechanical predictions, and they distinctly violate the relevant Bell's inequalities [fr

  19. Measuring the Biodegradability of Plastic Polymers in Olive-Mill Waste Compost with an Experimental Apparatus

    Directory of Open Access Journals (Sweden)

    Francesco Castellani

    2016-01-01

    Full Text Available The use of biodegradable polymers is spreading in agriculture to replace those materials derived from petroleum, thus reducing the environmental concerns. However, to issue a significant assessment, biodegradation rate must be measured in case-specific standardized conditions. In accordance with ISO 14855-1, we designed and used an experimental apparatus to evaluate the biodegradation rate of three biopolymers based on renewable resources, two poly(ε-caprolactone (PCL composites, and a compatibilized polylactic acid and polybutyrate (PLA/PBAT blend. Biodegradation tests were carried out under composting condition using mature olive-mill waste (OMW compost as inoculum. Carbon dioxide emissions were automatically recorded by infrared gas detectors and also trapped in saturated Ba(OH2 solution and evaluated via a standard titration method to check the results. Some of the samples reached more than 80% biodegradation in less than 20 days. Both the experimental apparatus and the OMW compost showed to be suitable for the cases studied.

  20. Fluid dynamic design and experimental study of an aspirated temperature measurement platform used in climate observation

    International Nuclear Information System (INIS)

    Yang, Jie; Liu, Qingquan; Dai, Wei; Ding, Renhui

    2016-01-01

    Due to the solar radiation effect, current air temperature sensors inside a thermometer screen or radiation shield may produce measurement errors that are 0.8 °C or higher. To improve the observation accuracy, an aspirated temperature measurement platform is designed. A computational fluid dynamics (CFD) method is implemented to analyze and calculate the radiation error of the aspirated temperature measurement platform under various environmental conditions. Then, a radiation error correction equation is obtained by fitting the CFD results using a genetic algorithm (GA) method. In order to verify the performance of the temperature sensor, the aspirated temperature measurement platform, temperature sensors with a naturally ventilated radiation shield, and a thermometer screen are characterized in the same environment to conduct the intercomparison. The average radiation errors of the sensors in the naturally ventilated radiation shield and the thermometer screen are 0.44 °C and 0.25 °C, respectively. In contrast, the radiation error of the aspirated temperature measurement platform is as low as 0.05 °C. This aspirated temperature sensor allows the radiation error to be reduced by approximately 88.6% compared to the naturally ventilated radiation shield, and allows the error to be reduced by a percentage of approximately 80% compared to the thermometer screen. The mean absolute error and root mean square error between the correction equation and experimental results are 0.032 °C and 0.036 °C, respectively, which demonstrates the accuracy of the CFD and GA methods proposed in this research.

  1. Fluid dynamic design and experimental study of an aspirated temperature measurement platform used in climate observation.

    Science.gov (United States)

    Yang, Jie; Liu, Qingquan; Dai, Wei; Ding, Renhui

    2016-08-01

    Due to the solar radiation effect, current air temperature sensors inside a thermometer screen or radiation shield may produce measurement errors that are 0.8 °C or higher. To improve the observation accuracy, an aspirated temperature measurement platform is designed. A computational fluid dynamics (CFD) method is implemented to analyze and calculate the radiation error of the aspirated temperature measurement platform under various environmental conditions. Then, a radiation error correction equation is obtained by fitting the CFD results using a genetic algorithm (GA) method. In order to verify the performance of the temperature sensor, the aspirated temperature measurement platform, temperature sensors with a naturally ventilated radiation shield, and a thermometer screen are characterized in the same environment to conduct the intercomparison. The average radiation errors of the sensors in the naturally ventilated radiation shield and the thermometer screen are 0.44 °C and 0.25 °C, respectively. In contrast, the radiation error of the aspirated temperature measurement platform is as low as 0.05 °C. This aspirated temperature sensor allows the radiation error to be reduced by approximately 88.6% compared to the naturally ventilated radiation shield, and allows the error to be reduced by a percentage of approximately 80% compared to the thermometer screen. The mean absolute error and root mean square error between the correction equation and experimental results are 0.032 °C and 0.036 °C, respectively, which demonstrates the accuracy of the CFD and GA methods proposed in this research.

  2. Fluid dynamic design and experimental study of an aspirated temperature measurement platform used in climate observation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jie, E-mail: yangjie396768@163.com [Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing 210044 (China); School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Liu, Qingquan [Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing 210044 (China); Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing 210044 (China); Dai, Wei [School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Ding, Renhui [Jiangsu Meteorological Observation Center, Nanjing 210008 (China)

    2016-08-15

    Due to the solar radiation effect, current air temperature sensors inside a thermometer screen or radiation shield may produce measurement errors that are 0.8 °C or higher. To improve the observation accuracy, an aspirated temperature measurement platform is designed. A computational fluid dynamics (CFD) method is implemented to analyze and calculate the radiation error of the aspirated temperature measurement platform under various environmental conditions. Then, a radiation error correction equation is obtained by fitting the CFD results using a genetic algorithm (GA) method. In order to verify the performance of the temperature sensor, the aspirated temperature measurement platform, temperature sensors with a naturally ventilated radiation shield, and a thermometer screen are characterized in the same environment to conduct the intercomparison. The average radiation errors of the sensors in the naturally ventilated radiation shield and the thermometer screen are 0.44 °C and 0.25 °C, respectively. In contrast, the radiation error of the aspirated temperature measurement platform is as low as 0.05 °C. This aspirated temperature sensor allows the radiation error to be reduced by approximately 88.6% compared to the naturally ventilated radiation shield, and allows the error to be reduced by a percentage of approximately 80% compared to the thermometer screen. The mean absolute error and root mean square error between the correction equation and experimental results are 0.032 °C and 0.036 °C, respectively, which demonstrates the accuracy of the CFD and GA methods proposed in this research.

  3. Central X-ray beam correction of radiographic acetabular cup measurement after THA: an experimental study.

    Science.gov (United States)

    Schwarz, T; Weber, M; Wörner, M; Renkawitz, T; Grifka, J; Craiovan, B

    2017-05-01

    Accurate assessment of cup orientation on postoperative radiographs is essential for evaluating outcome after THA. However, accuracy is impeded by the deviation of the central X-ray beam in relation to the cup and the impossibility of measuring retroversion on standard pelvic radiographs. In an experimental trial, we built an artificial cup holder enabling the setting of different angles of anatomical anteversion and inclination. Twelve different cup orientations were investigated by three examiners. After comparing the two methods for radiographic measurement of the cup position developed by Lewinnek and Widmer, we showed how to differentiate between anteversion and retroversion in each cup position by using a second plane. To show the effect of the central beam offset on the cup, we X-rayed a defined cup position using a multidirectional central beam offset. According to Murray's definition of anteversion and inclination, we created a novel corrective procedure to balance measurement errors caused by deviation of the central beam. Measurement of the 12 different cup positions with the Lewinnek's method yielded a mean deviation of [Formula: see text] (95 % CI 1.3-2.3) from the original cup anteversion. The respective deviation with the Widmer/Liaw's method was [Formula: see text] (95 % CI 2.4-4.0). In each case, retroversion could be differentiated from anteversion with a second radiograph. Because of the multidirectional central beam offset ([Formula: see text] cm) from the acetabular cup in the cup holder ([Formula: see text] anteversion and [Formula: see text] inclination), the mean absolute difference for anteversion was [Formula: see text] (range [Formula: see text] to [Formula: see text] and [Formula: see text] (range [Formula: see text] to [Formula: see text] for inclination. The application of our novel mathematical correction of the central beam offset reduced deviation to a mean difference of [Formula: see text] for anteversion and [Formula: see text

  4. Development, calibration and experimental results obtained with an innovative calorimeter (CALMOS) for nuclear heating measurements

    International Nuclear Information System (INIS)

    Carcreff, H.; Cloute-Cazalaa, V.; Salmon, L.

    2011-01-01

    Nuclear heating inside an MTR reactor has to be known in order to be able to control samples temperature during irradiation experiments. An R and D program has been carried out at CEA to design a new type of in-core calorimetric system. This new development, started in 2002, has for main objective to manufacture a calorimeter suitable to monitoring nuclear heating inside the 70 MWth OSIRIS material testing reactor operated by CEA's Nuclear Energy Div. at the Saclay research center. An innovative calorimetric probe, associated to a specific handling system, has been designed to provide access to measurements both along the fissile height and on the upper part of the core, where nuclear heating still remains high. Two mock-ups of the probe were manufactured and tested in 2005 and 2009 in ex-core area of OSIRIS reactor for process validation, while a displacement system has been especially studied to move the probe along a given axial measurement range. This paper deals with the development, tests on preliminary mock-ups and the finalization of the probe. Main modeling and experimental results are presented. Moreover, alternative methods to calibration for nuclear heating rate measurements which are now possible with this new calorimeter are presented and discussed. (authors)

  5. Development, calibration, and experimental results obtained with an innovative calorimeter (CALMOS) for nuclear heating measurements

    International Nuclear Information System (INIS)

    Carcreff, Hubert; Cloute-Cazalaa, Veronique; Salmon, Laurent

    2012-01-01

    Nuclear heating inside an MTR reactor has to be known in order to be able to control samples temperature during irradiation experiments. An R and D program has been carried out at CEA to design a new type of in-core calorimetric system. This new development, started in 2002, has for main objective to manufacture a calorimeter suitable to monitoring nuclear heating inside the 70 MWth OSIRIS material testing reactor operated by CEA's Nuclear Energy Division at the Saclay research center. An innovative calorimetric probe, associated to a specific handling system, has been designed to provide access to measurements both along the fissile height and on the upper part of the core, where nuclear heating still remains high. Two mock-ups of the probe were manufactured and tested in 2005 and 2009 in ex-core area of OSIRIS reactor for process validation, while a displacement system has been especially studied to move the probe along a given axial measurement range. This paper deals with the development, tests on preliminary mock-ups and the finalization of the probe. Main modeling and experimental results are presented. Moreover, alternative methods to calibration for nuclear heating rate measurements which are now possible with this new calorimeter are presented and discussed. (authors)

  6. Muon Lifetime Measurement and Introduction to the use of FPGAs in Experimental Physics

    International Nuclear Information System (INIS)

    Villasenor, L.

    2008-01-01

    During the laboratory sessions at the Workshop, the students used a simple experimental setup to measure the muon lifetime with a 10% statistical error. The muon detector consisted of a sealed container, filled with liquid scintillator, coupled to a 2.5'' photomultiplier (PMT). A personal computer (PC) was used to control a digital oscilloscope which directly measured the time interval between two consecutive PMT pulses in a time window of 20 μs. The students were also introduced to the use of root to analyze the muon data and to measure the muon lifetime. They were also presented with a basic introduction to the application of field-programmable gate arrays (FPGAs) in data acquisition (DAQ) systems by means of examples. We started with a brief introduction to the VHDL language and the software package used to program FPGAs and PROMs on a commercial FPGA development board. They learned to program FPGAs for handling data transfers using the RS-232 port of a PC. They were also introduced to the concepts of circular RAMs (Random Access Memory) and FIFO (First-In First-Out) memories in the context of fast and efficient DAQ systems. We emphasized the way in which inexpensive FPGA-based electronics replaces the use of traditionally used electronics modules, such as NIM, CAMAC, FASTBUS, VME, etc., to construct fast and powerful DAQ systems

  7. Measuring and modeling the temporal dynamics of nitrogen balance in an experimental-scale paddy field

    Science.gov (United States)

    Tseng, C.; Lin, Y.

    2013-12-01

    Nitrogen balance involves many mechanisms and plays an important role to maintain the function of nature. Fertilizer application in agriculture activity is usually seen as a common and significant nitrogen input to environment. Improper fertilizer application on paddy field can result in great amount of various types of nitrogen losses. Hence, it is essential to understand and quantify the nitrogen dynamics in paddy field for fertilizer management and pollution control. In this study, we develop a model which considers major transformation processes of nitrogen (e.g. volatilization, nitrification, denitrification and plant uptake). In addition, we measured different types of nitrogen in plants, soil and water at plant growth stages in an experimental-scale paddy field in Taiwan. The measurement includes total nitrogen in plants and soil, and ammonium-N (NH4+-N), nitrate-N (NO3--N) and organic nitrogen in water. The measured data were used to calibrate the model parameters and validate the model for nitrogen balance simulation. The results showed that the model can accurately estimate the temporal dynamics of nitrogen balance in paddy field during the whole growth stage. This model might be helpful and useful for future fertilizer management and pollution control in paddy field.

  8. Experimental measurements and finite element models of High Displacement Piezoelectric Actuators.

    Science.gov (United States)

    Camargo, Gilberto; Ashford, Gevale; Naco, Eris; Usher, Tim

    2004-03-01

    Piezoelectric actuators have many applications including morphable wing technology and piezoelectric transformers. A Piezoelectric ceramic is a material that will move when a voltage is applied and conversely produces a charge when a pressure is applied. In our study, we examine THUNDER (Thin Layer Unimorph Ferroelectric Driver and Sensor) actuators (Thunder TM is a trademark of FACE International Corporation.) Thunder actuators are constructed by bonding thin PZT piezoelectric ceramics to metal sheets. We will present physical measurements of piezoelectric actuators, as well as measurements of the displacements due to applied voltages. In our studies we used a laser micrometer to measure the dimensional characteristics of four sizes of THUNDER actuators including TH-8R, TH-9R, TH-10R, and finally the TH-11R. We also developed computer models using a commercial fine element modeling package (FEM) known as ANSYS6.0®. This software enables us to construct our models controlling such attributes as exact dimensions of the three layers of the piezoelectric actuator, the material properties of each element, the type of load that is to be applied as well as the manner in which the layers are bonded together. The computer model compares favorably with the experimental results. Acknowledgements: NASA Grant No. 0051-0078 Department of Defense (DoD) Control No.ISP02-EUG15

  9. Units for physical quantities used in dosimetry and radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Taubert, R; Wagner, S

    1976-04-01

    The 15th General Conference on Weights and Measures (1975) decided to introduce the name Becquerel for the SI unit of the quantity activity (1 Bq = 1 s/sup -1/) and the name Gray for the SI unit of ionizing radiations (1 Gy = 1 J/kg). The consequences of this latter decision are discussed. The Bundesanstalt is of the opinion that no further names for this unit should be introduced, but that the Gray should be used also for other quantities of the same dimension, especially for the dose equivalent.

  10. Experimental Measurement of Relative Permeability Functions for Fuel Cell GDL Materials

    KAUST Repository

    Hussaini, Irfan; Wang, Chao-Yang

    2009-01-01

    Gas diffusion layer in PEM fuel cells plays a pivotal role in water management. Modeling of liquid water transport through the GDL relies on knowledge of relative permeability functions in the in-plane and through-plane directions. In the present work, air and water relative permeabilities are experimentally determined as functions of saturation for typical GDL materials such as Toray-060, -090, -120 carbon paper and E-Tek carbon cloth materials in their plain, untreated forms. Saturation is measured using an ex-situ gravimetric method. Absolute and relative permeability functions in the two directions of interest are presented. Significant departure from the generally assumed cubic function of saturation is observed. ©The Electrochemical Society.

  11. Design, Specification and Construction of Specialized Measurement System in the Experimental Building

    Science.gov (United States)

    Fedorczak-Cisak, Malgorzata; Kwasnowski, Pawel; Furtak, Marcin; Hayduk, Grzegorz

    2017-10-01

    Experimental buildings for “in situ” research are a very important tool for collecting data on energy efficiency of the energy-saving technologies. One of the most advanced building of this type in Poland is the Maloposkie Laboratory of Energy-saving Buildings at Cracow University of Technology. The building itself is used by scientists as a research object and research tool to test energy-saving technologies. It is equipped with a specialized measuring system consisting of approx. 3 000 different sensors distributed in technical installations and structural elements of the building (walls, ceilings, cornices) and the ground. The authors of the paper will present the innovative design and technology of this specialized instrumentation. They will discuss issues arising during the implementation and use of the building.

  12. EXPERIMENTAL MEASUREMENT, ANALYSIS AND MODELLING OF DEPENDENCY EMISSIVITY IN FUNCTION OF TEMPERATURE

    Directory of Open Access Journals (Sweden)

    N. Baba Ahmed

    2015-08-01

    Full Text Available We propose a direct method of measurement of the total emissivity of opaque samples on a range of temperature around the ambient one. The method rests on the modulation of the temperature of the sample and the infra-red signal processing resulting from the surface of the sample we model the total emissivity obtained in experiments according to the temperature to establish linear correlations. This leads us to apply the method of optimal linearization associated the finite element method with the nonlinear problem of transfer of heat if thermal conductivity, the specific heat and the emissivity of studied material depend on the temperature. We obtain a good agreement between the resolution of the nonlinear equation of heat and the results obtained by the experimentation. .

  13. Experimental testing of the digital multichannel analyzer for gamma spectrometry measurements

    International Nuclear Information System (INIS)

    Novkovic, D.; Nadjdjerdj, L.; Kandic, A.; Vukanac, I.; Djurasevic, M.

    2008-01-01

    The results of experimental testing of the digital multichannel analyzer which digitalizes the signal after a preamplifier are presented. The recordings of some of the characteristics of the spectrometer containing a digital MCA, such as full-peak efficiency, net-area ratio of the two peaks and the stability of the peak position, were carried out under different input counting rates, with different radioactive sources. The tested MCA has shown some excellent features, like the stability of the peak position over a long-term period and flexibility in the adjusting of optimum measurement conditions. However, the performed tests have also shown some serious and unexpected disadvantages of the digital MCA when it operates under certain circumstances, one of them having to do with the automatic tuning of live-time correction at low-input counting rates. (author)

  14. Experimental Set-up and Full-scale measurements in the ‘Cube'

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Heiselberg, Per

    The Cube' is an outdoor test facility located at the main campus of Aalborg University. It has been built in the fall of 2005 with the purpose of detailed investigations of the DSF performance, development of the empirical test cases for validation and further improvements of various building...... of any power supplied to the experimental zone in order to maintain the necessary thermal conditions. An accuracy of these measurements is justified by the quality of the facility construction: ‘the Cube' is very well insulated and tight....... simulation software for the modelling of buildings with double skin facades in the frame of IEA ECBCS ANNEX 43/SHC Task 34, Subtask EDouble Skin Facade. The test facility is designed to be flexible for a choice of the DSF operational modes, natural or mechanical flow conditions, different types of shading...

  15. Comparison of Numerically Simulated and Experimentally Measured Performance of a Rotating Detonation Engine

    Science.gov (United States)

    Paxson, Daniel E.; Fotia, Matthew L.; Hoke, John; Schauer, Fred

    2015-01-01

    A quasi-two-dimensional, computational fluid dynamic (CFD) simulation of a rotating detonation engine (RDE) is described. The simulation operates in the detonation frame of reference and utilizes a relatively coarse grid such that only the essential primary flow field structure is captured. This construction and other simplifications yield rapidly converging, steady solutions. Viscous effects, and heat transfer effects are modeled using source terms. The effects of potential inlet flow reversals are modeled using boundary conditions. Results from the simulation are compared to measured data from an experimental RDE rig with a converging-diverging nozzle added. The comparison is favorable for the two operating points examined. The utility of the code as a performance optimization tool and a diagnostic tool are discussed.

  16. Solar intensity measurement using a thermoelectric module; experimental study and mathematical modeling

    International Nuclear Information System (INIS)

    Rahbar, Nader; Asadi, Amin

    2016-01-01

    Highlights: • Solar intensity could be explained as a linear function of voltage and ambient temperature. • The maximum output voltage is approximately 120 mV which was occurred in midday. • The average value of the heat-sink thermal resistance could be measured with this device. • The average values of total heat transfer coefficients could be measured with this device. • Two correlations were proposed to predict the solar intensity with the accuracy of 10%. - Abstract: The present study is intended to design, manufacture, and modeling an inexpensive pyranometer using a thermoelectric module. The governing equations relating the solar intensity, output voltage, and ambient temperature have been derived by applying the mathematical and thermodynamic models. According to the thermodynamics modeling, the output voltage is a function of solar intensity, ambient temperature, internal parameters of thermoelectric module, convection and radiation coefficients, and geometrical characteristics of the setup. Moreover, the solar intensity can be considered as a linear function of voltage and ambient temperature within an acceptable range of accuracy. The experiments have been carried out on a typical winter day under climatic conditions of Semnan (35°33′N, 53°23′E), Iran. The results also indicated that the output voltage is dependent on the solar intensity and its maximum value was 120 mV. Finally, based on the experimental results, two correlations, with the accuracy of 10%, have been proposed to predict the solar intensity as a function of output voltage and ambient temperature. The average values of total heat transfer coefficient and thermal resistance of the heat-sink have been also calculated according to the thermodynamic modeling and experimental results.

  17. Workplace stress experienced by quantity surveyors

    African Journals Online (AJOL)

    Paul (P.A.) Bowen, Department of Construction Economics and Management,. University of Cape Town, Private ..... Explore workplace stress levels among quantity surveyors in the developing nation of ...... London: Free. Association Books.

  18. Methodology and experimental setup for measuring short-lives fission product yields in actinides induced fission by charged particles

    International Nuclear Information System (INIS)

    Bellido, A.V.

    1995-07-01

    The theoretical principles and the laboratory set-up for the fission products yields measurements are described. The procedures for the experimental determinations are explain in detail. (author). 43 refs., 5 figs

  19. Average Transverse Momentum Quantities Approaching the Lightfront

    OpenAIRE

    Boer, Daniel

    2015-01-01

    In this contribution to Light Cone 2014, three average transverse momentum quantities are discussed: the Sivers shift, the dijet imbalance, and the $p_T$ broadening. The definitions of these quantities involve integrals over all transverse momenta that are overly sensitive to the region of large transverse momenta, which conveys little information about the transverse momentum distributions of quarks and gluons inside hadrons. TMD factorization naturally suggests alternative definitions of su...

  20. A conserved quantity in thin body dynamics

    Science.gov (United States)

    Hanna, J. A.; Pendar, H.

    2016-02-01

    Thin, solid bodies with metric symmetries admit a restricted form of reparameterization invariance. Their dynamical equilibria include motions with both rigid and flowing aspects. On such configurations, a quantity is conserved along the intrinsic coordinate corresponding to the symmetry. As an example of its utility, this conserved quantity is combined with linear and angular momentum currents to construct solutions for the equilibria of a rotating, flowing string, for which it is akin to Bernoulli's constant.

  1. Experimental measurements of thermoelectric and electrochemical potentials in sandstones saturated with NaCl electrolyte

    Science.gov (United States)

    Leinov, E.; Jackson, M.

    2013-12-01

    Measurements of the self-potential (SP) have been used to characterize subsurface flow in numerous settings, including volcanoes, earthquake zones, and geothermal fields. Thermoelectric (TE) and electrochemical (EC) potentials contribute to the measured SP if gradients in temperature and/or concentration are present, yet few experimental measurements of EC and TE potentials in natural porous media have been reported. Each is the sum of a diffusion and exclusion potential: the former arises when ions of contrasting mobility migrate at different rates down a temperature or concentration gradient; the latter arises when there is a temperature or concentration gradient across an electrically charged porous medium in which co-ions of the same polarity have been excluded from the pore-space. Here we report measurements of the SP arising from temperature or concentration gradients across clean (clay-free) sandstone samples saturated with NaCl electrolyte over the salinity range 5x10-5 to 1M. Electrical potentials are measured using non-polarizing Ag/AgCl electrodes, and temperature or salinity gradients are induced by placing the saturated samples in contact with electrolyte reservoirs of contrasting temperature or concentration. Our experimental methodology accounts for the temperature- and concentration-dependent electrode response. We find that the TE potential responds linearly to the applied temperature difference, allowing a TE potential coupling coefficient to be determined; the value of this decreases as the electrolyte concentration increases, from +0.056mV/K at 10-4 M to -0.126mV/K at 1M. The EC potential increases as the concentration ratio increases, from a minimum of 1.8mV at a salinity ratio of 1.13, to a maximum of 24.8mV at salinity ratio of 102, before decreasing to 19.5mV at salinity ratio of 103. In both cases, at high values of concentration (>0.01M) the measured potential is diffusion dominated, while at lower concentration the exclusion potential is

  2. Correction of Pelvic Tilt and Pelvic Rotation in Cup Measurement after THA - An Experimental Study.

    Science.gov (United States)

    Schwarz, Timo Julian; Weber, Markus; Dornia, Christian; Worlicek, Michael; Renkawitz, Tobias; Grifka, Joachim; Craiovan, Benjamin

    2017-09-01

    Purpose  Accurate assessment of cup orientation on postoperative pelvic radiographs is essential for evaluating outcome after THA. Here, we present a novel method for correcting measurement inaccuracies due to pelvic tilt and rotation. Method  In an experimental setting, a cup was implanted into a dummy pelvis, and its final position was verified via CT. To show the effect of pelvic tilt and rotation on cup position, the dummy was fixed to a rack to achieve a tilt between + 15° anterior and -15° posterior and 0° to 20° rotation to the contralateral side. According to Murray's definitions of anteversion and inclination, we created a novel corrective procedure to measure cup position in the pelvic reference frame (anterior pelvic plane) to compensate measurement errors due to pelvic tilt and rotation. Results  The cup anteversion measured on CT was 23.3°; on AP pelvic radiographs, however, variations in pelvic tilt (± 15°) resulted in anteversion angles between 11.0° and 36.2° (mean error 8.3°± 3.9°). The cup inclination was 34.1° on CT and ranged between 31.0° and 38.7° (m. e. 2.3°± 1.5°) on radiographs. Pelvic rotation between 0° and 20° showed high variation in radiographic anteversion (21.2°-31.2°, m. e. 6.0°± 3.1°) and inclination (34.1°-27.2°, m. e. 3.4°± 2.5°). Our novel correction algorithm for pelvic tilt reduced the mean error in anteversion measurements to 0.6°± 0.2° and in inclination measurements to 0.7° (SD± 0.2). Similarly, the mean error due to pelvic rotation was reduced to 0.4°± 0.4° for anteversion and to 1.3°± 0.8 for inclination. Conclusion  Pelvic tilt and pelvic rotation may lead to misinterpretation of cup position on anteroposterior pelvic radiographs. Mathematical correction concepts have the potential to significantly reduce these errors, and could be implemented in future radiological software tools. Key Points   · Pelvic tilt and rotation influence cup

  3. Assessment of CANDU physics codes using experimental data - II: CANDU core physics measurements

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Jeong, Chang Joon; Choi, Hang Bok

    2001-11-01

    Benchmark calculations of the advanced CANDU reactor analysis tools (WIMS-AECL, SHETAN and RFSP) and the Monte Carlo code MCNP-4B have been performed using Wolsong Units 2 and 3 Phase-B measurement data. In this study, the benchmark calculations have been done for the criticality, boron worth, reactivity device worth, reactivity coefficient, and flux scan. For the validation of the WIMS-AECL/SHETANRFSP code system, the lattice parameters of the fuel channel were generated by the WIMS-AECL code, and incremental cross sections of reactivity devices and structural material were generated by the SHETAN code. The results have shown that the criticality is under-predicted by -4 mk. The reactivity device worths are generally consistent with the measured data except for the strong absorbers such as shutoff rod and mechanical control absorber. The heat transport system temperature coefficient and flux distributions are in good agreement with the measured data. However, the moderator temperature coefficient has shown a relatively large error, which could be caused by the incremental cross-section generation methodology for the reactivity device. For the MCNP-4B benchmark calculation, cross section libraries were newly generated from ENDF/B-VI release 3 through the NJOY97.114 data processing system and a three-dimensional full core model was developed. The simulation results have shown that the criticality is estimated within 4 mk and the estimated reactivity worth of the control devices are generally consistent with the measurement data, which implies that the MCNP code is valid for CANDU core analysis. In the future, therefore, the MCNP code could be used as a reference tool to benchmark design and analysis codes for the advanced fuels for which experimental data are not available

  4. An experimental setup for visualizations and measurements on free hypersonic jets

    Directory of Open Access Journals (Sweden)

    Tordella Daniela

    2012-04-01

    Full Text Available The free hypersonic jets can be found in several technological applications and even in astrophysical observations. This article is mainly devoted to explain an experiment about visualizations and measurements on free hypersonic jets extending on length scales in the order of hundreds of initial diameters and traveling in a medium not necessarily made of the same gas of the jets. The experiments are performed by means of special facilities where the jet Mach numbers and the jetto-ambient density ratios can be set independently of each other, what permits the investigation of a wide parameters range in the relevant physics. The Mach number of the jets ranges from 5 to 20 and the jet-to ambient density ratio, which plays an important role in the jets morphology, can be set from 0.1 up to values exceeding 100. The present setup produces the jets by means of a fast piston system (for high Mach numbers or injection valves (for low Mach numbers, both coupled with de Laval nozzles. The visualizations and measurements are based on the electron beam technique: the jets are weakly ionized, then a fast CMOS camera captures images that are analyzed by image processing techniques. A sample of the results obtained by this experimental system is included at the end of this work.

  5. Accurate Profile Measurement of the low Intensity Secondary Beams in the CERN Experimental Areas

    CERN Document Server

    AUTHOR|(CDS)2084531; Tranquille, Gerard

    2018-02-23

    The CERN accelerators deliver a wide spectrum of secondary beams to the Experimental Areas. These beams are composed of hadrons, leptons, and heavy ions that can vary greatly in momentum (1 GeV/c to 400 GeV/c) and intensity (10^2 to 10^8 particles per second). The profile, position, and intensity of these beams are measured utilising particle detectors. However, the current systems show several problems that limit the quality of this kind of monitoring. The aim of this doctoral thesis is to investigate the best detector technology that could replace the existing monitors and build a first prototype of it. A review of the existing detection techniques has led to the choice of Scintillating Fibres (SciFi) read-out with Silicon Photomultipliers (SiPM). This detection technology has the potential to perform better in terms of material budget, range of intensities measured, and active area size. In addition, it has particle counting capabilities, which could extend its application to momentum spectrometry or Time...

  6. Monte Carlo calculations and experimental measurements of dosimetric parameters of the IRA-103Pd brachytherapy source

    International Nuclear Information System (INIS)

    Sadeghi, Mahdi; Raisali, Gholamreza; Hosseini, S. Hamed; Shavar, Arzhang

    2008-01-01

    This article presents a brachytherapy source having 103 Pd adsorbed onto a cylindrical silver rod that has been developed by the Agricultural, Medical, and Industrial Research School for permanent implant applications. Dosimetric characteristics (radial dose function, anisotropy function, and anisotropy factor) of this source were experimentally and theoretically determined in terms of the updated AAPM Task group 43 (TG-43U1) recommendations. Monte Carlo simulations were used to calculate the dose rate constant. Measurements were performed using TLD-GR200A circular chip dosimeters using standard methods employing thermoluminescent dosimeters in a Perspex phantom. Precision machined bores in the phantom located the dosimeters and the source in a reproducible fixed geometry, providing for transverse-axis and angular dose profiles over a range of distances from 0.5 to 5 cm. The Monte Carlo N-particle (MCNP) code, version 4C simulation techniques have been used to evaluate the dose-rate distributions around this model 103 Pd source in water and Perspex phantoms. The Monte Carlo calculated dose rate constant of the IRA- 103 Pd source in water was found to be 0.678 cGy h -1 U -1 with an approximate uncertainty of ±0.1%. The anisotropy function, F(r,θ), and the radial dose function, g(r), of the IRA- 103 Pd source were also measured in a Perspex phantom and calculated in both Perspex and liquid water phantoms

  7. Estimating temperature reactivity coefficients by experimental procedures combined with isothermal temperature coefficient measurements and dynamic identification

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Aoki, Yukinori; Shimazu, Yoichiro; Yamasaki, Masatoshi; Hanayama, Yasushi

    2006-01-01

    A method to evaluate the moderator coefficient (MTC) and the Doppler coefficient through experimental procedures performed during reactor physics tests of PWR power plants is proposed. This method combines isothermal temperature coefficient (ITC) measurement experiments and reactor power transient experiments at low power conditions for dynamic identification. In the dynamic identification, either one of temperature coefficients can be determined in such a way that frequency response characteristics of the reactivity change observed by a digital reactivity meter is reproduced from measured data of neutron count rate and the average coolant temperature. The other unknown coefficient can also be determined by subtracting the coefficient obtained from the dynamic identification from ITC. As the proposed method can directly estimate the Doppler coefficient, the applicability of the conventional core design codes to predict the Doppler coefficient can be verified for new types of fuels such as mixed oxide fuels. The digital simulation study was carried out to show the feasibility of the proposed method. The numerical analysis showed that the MTC and the Doppler coefficient can be estimated accurately and even if there are uncertainties in the parameters of the reactor kinetics model, the accuracies of the estimated values are not seriously impaired. (author)

  8. Experimental measurement of 12C+16O fusion at stellar energies

    Science.gov (United States)

    Fang, X.; Tan, W. P.; Beard, M.; deBoer, R. J.; Gilardy, G.; Jung, H.; Liu, Q.; Lyons, S.; Robertson, D.; Setoodehnia, K.; Seymour, C.; Stech, E.; Vande Kolk, B.; Wiescher, M.; deSouza, R. T.; Hudan, S.; Singh, V.; Tang, X. D.; Uberseder, E.

    2017-10-01

    The total cross section of the 12C+16O fusion reaction has been measured at low energies to investigate the role of this reaction during late stellar evolution burning phases. A high-intensity oxygen beam, produced by the 5 MV pelletron accelerator at the University of Notre Dame, impinged on a thick, ultrapure graphite target. Protons and γ rays were simultaneously measured in the center-of-mass energy range from 3.64 to 5.01 MeV for singles and from 3.73 to 4.84 MeV for coincidence events, using silicon and Ge detectors. Statistical model calculations were employed to interpret the experimental results. The emergence of a new resonance-like broad structure and a decreasing trend in the S -factor data towards lower energies (opposite to previous data) are found for the 12C+16O fusion reaction. Based on these results the uncertainty range of the reaction rate within the temperature range of late stellar burning environments is discussed.

  9. Seeing mental states: An experimental strategy for measuring the observability of other minds

    Science.gov (United States)

    Becchio, Cristina; Koul, Atesh; Ansuini, Caterina; Bertone, Cesare; Cavallo, Andrea

    2018-03-01

    Is it possible to perceive others' mental states? Are mental states visible in others' behavior? In contrast to the traditional view that mental states are hidden and not directly accessible to perception, in recent years a phenomenologically-motivated account of social cognition has emerged: direct social perception. However, despite numerous published articles that both defend and critique direct perception, researchers have made little progress in articulating the conditions under which direct perception of others' mental states is possible. This paper proposes an empirically anchored approach to the observability of others' mentality - not just in the weak sense of discussing relevant empirical evidence for and against the phenomenon of interest, but also, and more specifically, in the stronger sense of identifying an experimental strategy for measuring the observability of mental states and articulating the conditions under which mental states are observable. We conclude this article by reframing the problem of direct perception in terms of establishing a definable and measurable relationship between movement features and perceived mental states.

  10. Experimental measurement and modeling analysis on mechanical properties of incudostapedial joint.

    Science.gov (United States)

    Zhang, Xiangming; Gan, Rong Z

    2011-10-01

    The incudostapedial (IS) joint between the incus and stapes is a synovial joint consisting of joint capsule, cartilage, and synovial fluid. The mechanical properties of the IS joint directly affect the middle ear transfer function for sound transmission. However, due to the complexity and small size of the joint, the mechanical properties of the IS joint have not been reported in the literature. In this paper, we report our current study on mechanical properties of human IS joint using both experimental measurement and finite element (FE) modeling analysis. Eight IS joint samples with the incus and stapes attached were harvested from human cadaver temporal bones. Tension, compression, stress relaxation and failure tests were performed on those samples in a micro-material testing system. An analytical approach with the hyperelastic Ogden model and a 3D FE model of the IS joint including the cartilage, joint capsule, and synovial fluid were employed to derive mechanical parameters of the IS joint. The comparison of measurements and modeling results reveals the relationship between the mechanical properties and structure of the IS joint.

  11. Dynamic properties of human incudostapedial joint-Experimental measurement and finite element modeling.

    Science.gov (United States)

    Jiang, Shangyuan; Gan, Rong Z

    2018-04-01

    The incudostapedial joint (ISJ) is a synovial joint connecting the incus and stapes in the middle ear. Mechanical properties of the ISJ directly affect sound transmission from the tympanic membrane to the cochlea. However, how ISJ properties change with frequency has not been investigated. In this paper, we report the dynamic properties of the human ISJ measured in eight samples using a dynamic mechanical analyzer (DMA) for frequencies from 1 to 80 Hz at three temperatures of 5, 25 and 37 °C. The frequency-temperature superposition (FTS) principle was used to extrapolate the results to 8 kHz. The complex modulus of ISJ was measured with a mean storage modulus of 1.14 MPa at 1 Hz that increased to 3.01 MPa at 8 kHz, and a loss modulus that increased from 0.07 to 0.47 MPa. A 3-dimensional finite element (FE) model consisting of the articular cartilage, joint capsule and synovial fluid was then constructed to derive mechanical properties of ISJ components by matching the model results to experimental data. Modeling results showed that mechanical properties of the joint capsule and synovial fluid affected the dynamic behavior of the joint. This study contributes to a better understanding of the structure-function relationship of the ISJ for sound transmission. Copyright © 2018. Published by Elsevier Ltd.

  12. Investigation of particle transport through the measurement of the electron source in the Texas Experimental Tokamak

    International Nuclear Information System (INIS)

    Klepper, C.C.

    1985-01-01

    The spatial distribution of the electron source was measured spectroscopically in the Texas Experimental Tokamak. The method used involves the measurement of the emissivity of the Balmer α and β lines of neutral hydrogen. Modeling of the corresponding atomic transitions provides a relation between the emissivities and the electron source from the ionization of neutrals. Toroidal distributions were obtained by means of a set of relatively calibrated photodiode amplifier-filter packages referred to as plasma light monitors. Such monitors were distributed toroidally, and attached primarily to radial ports. Specially constructed, absolutely calibrated monitors provided absolute calibration. A scanning, rotating mirror system provided in-out brightness profiles. A TV camera system, viewing the limiter through a tangential port, provided a qualitative description of the poloidal asymmetry. Such description was necessary for the inversion of the rotating mirror data. Using electron density profiles obtained by means of far-infrared interferometry, and integrating the electron sources, the global particle confinement time (tau/sub p/) was computed. Parameter scans were performed in ohmically heated plasmas, varying the toroidal field, the plasma current, the electron density, and the plasma position with respect to the center of the poloidal ring limiter. It was found that tau/sub p/ peaks for a critical density that is independent of the other parameters

  13. Measuring reinforcement learning and motivation constructs in experimental animals: relevance to the negative symptoms of schizophrenia

    Science.gov (United States)

    Markou, Athina; Salamone, John D.; Bussey, Timothy; Mar, Adam; Brunner, Daniela; Gilmour, Gary; Balsam, Peter

    2013-01-01

    The present review article summarizes and expands upon the discussions that were initiated during a meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS; http://cntrics.ucdavis.edu). A major goal of the CNTRICS meeting was to identify experimental procedures and measures that can be used in laboratory animals to assess psychological constructs that are related to the psychopathology of schizophrenia. The issues discussed in this review reflect the deliberations of the Motivation Working Group of the CNTRICS meeting, which included most of the authors of this article as well as additional participants. After receiving task nominations from the general research community, this working group was asked to identify experimental procedures in laboratory animals that can assess aspects of reinforcement learning and motivation that may be relevant for research on the negative symptoms of schizophrenia, as well as other disorders characterized by deficits in reinforcement learning and motivation. The tasks described here that assess reinforcement learning are the Autoshaping Task, Probabilistic Reward Learning Tasks, and the Response Bias Probabilistic Reward Task. The tasks described here that assess motivation are Outcome Devaluation and Contingency Degradation Tasks and Effort-Based Tasks. In addition to describing such methods and procedures, the present article provides a working vocabulary for research and theory in this field, as well as an industry perspective about how such tasks may be used in drug discovery. It is hoped that this review can aid investigators who are conducting research in this complex area, promote translational studies by highlighting shared research goals and fostering a common vocabulary across basic and clinical fields, and facilitate the development of medications for the treatment of symptoms mediated by reinforcement learning and motivational deficits. PMID:23994273

  14. Assessing the precision of strain measurements using electron backscatter diffraction – Part 2: Experimental demonstration

    International Nuclear Information System (INIS)

    Britton, T.B.; Jiang, J.; Clough, R.; Tarleton, E.; Kirkland, A.I.; Wilkinson, A.J.

    2013-01-01

    The residual impression after performing a microhardness indent in silicon has been mapped with high resolution EBSD to reveal residual elastic strain and lattice rotation fields. Mapping of the same area has been performed with variable pattern binning and exposure times to reveal the qualitative and quantitative differences resulting from reducing the pattern size and exposure time. Two dimension ‘image’ plots of these fields indicate that qualitative assessment of the shape and size of the fields can be performed with as much as 4×4 binning. However, quantitative assessment using line scans reveals that the smoothest profile can be obtained using minimal pattern binning and long exposure times. To compare and contrast with these experimental maps, finite element analysis has been performed using a continuum damage-plasticity material law which has been independently calibrated to Si [9]. The constitutive law incorporates isotropic hardening in compression, and isotropic hardening and damage in tension. To accurately capture the localised damage which develops during indentation via the nucleation and propagation of cracks around the indentation site cohesive elements were assigned along the interfaces between the planes which experience the maximum traction. The residual strain state around the indenter and the size of the cracks agree very well with the experimentally measured value. - Highlights: • Similar deformation fields around a microhardness indent have been characterised with HR-EBSD and simulated with a finite element model. • Qualitative assessment of the stress field can be performed with significant EBSD pattern binning (i.e. faster capture of maps). • Quantitative assessment of the stress fields benefits significantly from increased exposure times and minimal binning

  15. Thermal conductivity of Al–Cu–Mg–Si alloys: Experimental measurement and CALPHAD modeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Cong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Sino-German cooperation group “Microstructure in Al alloys”, Central South University, Changsha, Hunan 410083 (China); Du, Yong, E-mail: yong-du@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Sino-German cooperation group “Microstructure in Al alloys”, Central South University, Changsha, Hunan 410083 (China); Liu, Shuhong; Liu, Yuling [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Sino-German cooperation group “Microstructure in Al alloys”, Central South University, Changsha, Hunan 410083 (China); Sundman, Bo. [INSTN, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France)

    2016-07-10

    Highlights: • The thermal conductivities of Al–x wt% Cu (x = 1, 3, 5, 15 and 30) and Al–y wt% Si (y = 2, 12.5 and 20) alloys were determined. • The reported thermal conductivities of Al–Cu–Mg–Si system were critically reviewed. • The CALPHAD approach was applied for the modeling of thermal conductivity. • The applicability of CALPHAD technique in the modeling of thermal conductivity was discussed. - Abstract: In the present work, the thermal conductivities and microstructure of Al–x wt% Cu (x = 1, 3, 5, 15 and 30) and Al–y wt% Si (y = 2, 12.5 and 20) alloys were investigated by using laser-flash method, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Besides, a CALPHAD (CALculation of PHAse Diagram) approach to evaluate the thermal conductivity of Al–Cu–Mg–Si system was performed. The numerical models for the thermal conductivity of pure elements and stoichiometric phases were described as polynomials, and the coefficients were optimized via PARROT module of Thermal-Calc software applied to the experimental data. The thermal conductivity of (Al)-based solid solutions was described by using Redlich–Kister interaction parameters. For alloys in two-phase region, the interface scattering parameter was proposed in the modeling to describe the impediment of interfaces on the heat transfer. Finally, a set of self-consistent parameters for the description of thermal conductivity in Al–Cu–Mg–Si system was obtained, and comprehensive comparisons between the calculated and measured thermal conductivities show that the experimental information is satisfactorily accounted for by the present modeling.

  16. Measuring reinforcement learning and motivation constructs in experimental animals: relevance to the negative symptoms of schizophrenia.

    Science.gov (United States)

    Markou, Athina; Salamone, John D; Bussey, Timothy J; Mar, Adam C; Brunner, Daniela; Gilmour, Gary; Balsam, Peter

    2013-11-01

    The present review article summarizes and expands upon the discussions that were initiated during a meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS; http://cntrics.ucdavis.edu) meeting. A major goal of the CNTRICS meeting was to identify experimental procedures and measures that can be used in laboratory animals to assess psychological constructs that are related to the psychopathology of schizophrenia. The issues discussed in this review reflect the deliberations of the Motivation Working Group of the CNTRICS meeting, which included most of the authors of this article as well as additional participants. After receiving task nominations from the general research community, this working group was asked to identify experimental procedures in laboratory animals that can assess aspects of reinforcement learning and motivation that may be relevant for research on the negative symptoms of schizophrenia, as well as other disorders characterized by deficits in reinforcement learning and motivation. The tasks described here that assess reinforcement learning are the Autoshaping Task, Probabilistic Reward Learning Tasks, and the Response Bias Probabilistic Reward Task. The tasks described here that assess motivation are Outcome Devaluation and Contingency Degradation Tasks and Effort-Based Tasks. In addition to describing such methods and procedures, the present article provides a working vocabulary for research and theory in this field, as well as an industry perspective about how such tasks may be used in drug discovery. It is hoped that this review can aid investigators who are conducting research in this complex area, promote translational studies by highlighting shared research goals and fostering a common vocabulary across basic and clinical fields, and facilitate the development of medications for the treatment of symptoms mediated by reinforcement learning and motivational deficits. Copyright © 2013 Elsevier

  17. Complexity of MRI induced heating on metallic leads: Experimental measurements of 374 configurations

    Directory of Open Access Journals (Sweden)

    Mendoza Gonzalo

    2008-03-01

    Full Text Available Abstract Background MRI induced heating on PM leads is a very complex issue. The widely varying results described in literature suggest that there are many factors that influence the degree of heating and that not always are adequately addressed by existing testing methods. Methods We present a wide database of experimental measurements of the heating of metallic wires and PM leads in a 1.5 T RF coil. The aim of these measurements is to systematically quantify the contribution of some potential factors involved in the MRI induced heating: the length and the geometric structure of the lead; the implant location within the body and the lead path; the shape of the phantom used to simulate the human trunk and its relative position inside the RF coil. Results We found that the several factors are the primary influence on heating at the tip. Closer locations of the leads to the edge of the phantom and to the edge of the coil produce maximum heating. The lead length is the other crucial factor, whereas the implant area does not seem to have a major role in the induced temperature increase. Also the lead structure and the geometry of the phantom revealed to be elements that can significantly modify the amount of heating. Conclusion Our findings highlight the factors that have significant effects on MRI induced heating of implanted wires and leads. These factors must be taken into account by those who plan to study or model MRI heating of implants. Also our data should help those who wish to develop guidelines for defining safe medical implants for MRI patients. In addition, our database of the entire set of measurements can help those who wish to validate their numerical models of implants that may be exposed to MRI systems.

  18. Experimental validation of a method for removing the capacitive leakage artifact from electrical bioimpedance spectroscopy measurements

    International Nuclear Information System (INIS)

    Buendia, R; Seoane, F; Gil-Pita, R

    2010-01-01

    Often when performing electrical bioimpedance (EBI) spectroscopy measurements, the obtained EBI data present a hook-like deviation, which is most noticeable at high frequencies in the impedance plane. The deviation is due to a capacitive leakage effect caused by the presence of stray capacitances. In addition to the data deviation being remarkably noticeable at high frequencies in the phase and the reactance spectra, the measured EBI is also altered in the resistance and the modulus. If this EBI data deviation is not properly removed, it interferes with subsequent data analysis processes, especially with Cole model-based analyses. In other words, to perform any accurate analysis of the EBI spectroscopy data, the hook deviation must be properly removed. Td compensation is a method used to compensate the hook deviation present in EBI data; it consists of multiplying the obtained spectrum, Z meas (ω), by a complex exponential in the form of exp(–jωTd). Although the method is well known and accepted, Td compensation cannot entirely correct the hook-like deviation; moreover, it lacks solid scientific grounds. In this work, the Td compensation method is revisited, and it is shown that it should not be used to correct the effect of a capacitive leakage; furthermore, a more developed approach for correcting the hook deviation caused by the capacitive leakage is proposed. The method includes a novel correcting expression and a process for selecting the proper values of expressions that are complex and frequency dependent. The correctness of the novel method is validated with the experimental data obtained from measurements from three different EBI applications. The obtained results confirm the sufficiency and feasibility of the correcting method

  19. Accurate measurement of absolute experimental inelastic mean free paths and EELS differential cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Craven, Alan J.; Bobynko, Joanna; Sala, Bianca; MacLaren, Ian, E-mail: ian.maclaren@glasgow.ac.uk

    2016-11-15

    Methods are described for measuring accurate absolute experimental inelastic mean free paths and differential cross-sections using DualEELS. The methods remove the effects of surface layers and give the results for the bulk materials. The materials used are VC{sub 0.83}, TiC{sub 0.98}, VN{sub 0.97} and TiN{sub 0.88} but the method should be applicable to a wide range of materials. The data was taken at 200 keV using a probe half angle of 29 mrad and a collection angle of 36 mrad. The background can be subtracted from under the ionisation edges, which can then be separated from each other. This is achieved by scaling Hartree-Slater calculated cross-sections to the edges in the atomic regions well above the threshold. The average scaling factors required are 1.00 for the non-metal K-edges and 1.01 for the metal L-edges (with uncertainties of a few percent). If preliminary measurements of the chromatic effects in the post-specimen lenses are correct, both drop to 0.99. The inelastic mean free path for TiC{sub 0.98} was measured as 103.6±0.5 nm compared to the prediction of 126.9 nm based on the widely used Iakoubovskii parameterisation. - Highlights: • We show how to extract absolute cross sections for EELS edges using DualEELS. • The method removes the effects of any surface layers on standards. • We use a needle specimen to determining the mean free path for inelastic scattering. • Constrained background fitting is essential to correct background subtraction. • Absolute cross sections are determined for TiC, TiN, VC and VN.

  20. Experimental study of stratified jet by simultaneous measurements of velocity and density fields

    Science.gov (United States)

    Xu, Duo; Chen, Jun

    2012-07-01

    Stratified flows with small density difference commonly exist in geophysical and engineering applications, which often involve interaction of turbulence and buoyancy effect. A combined particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) system is developed to measure the velocity and density fields in a dense jet discharged horizontally into a tank filled with light fluid. The illumination of PIV particles and excitation of PLIF dye are achieved by a dual-head pulsed Nd:YAG laser and two CCD cameras with a set of optical filters. The procedure for matching refractive indexes of two fluids and calibration of the combined system are presented, as well as a quantitative analysis of the measurement uncertainties. The flow structures and mixing dynamics within the central vertical plane are studied by examining the averaged parameters, turbulent kinetic energy budget, and modeling of momentum flux and buoyancy flux. At downstream, profiles of velocity and density display strong asymmetry with respect to its center. This is attributed to the fact that stable stratification reduces mixing and unstable stratification enhances mixing. In stable stratification region, most of turbulence production is consumed by mean-flow convection, whereas in unstable stratification region, turbulence production is nearly balanced by viscous dissipation. Experimental data also indicate that at downstream locations, mixing length model performs better in mixing zone of stable stratification regions, whereas in other regions, eddy viscosity/diffusivity models with static model coefficients represent effectively momentum and buoyancy flux terms. The measured turbulent Prandtl number displays strong spatial variation in the stratified jet.

  1. Experimental techniques for measuring Rayleigh-Taylor instability in inertial confinement fusion (ICF)

    Energy Technology Data Exchange (ETDEWEB)

    Smalyuk, V A

    2012-06-07

    Rayleigh-Taylor (RT) instability is one of the major concerns in inertial confinement fusion (ICF) because it amplifies target modulations in both acceleration and deceleration phases of implosion, which leads to shell disruption and performance degradation of imploding targets. This article reviews experimental results of the RT growth experiments performed on OMEGA laser system, where targets were driven directly with laser light. RT instability was studied in the linear and nonlinear regimes. The experiments were performed in acceleration phase, using planar and spherical targets, and in deceleration phase of spherical implosions, using spherical shells. Initial target modulations consisted of 2-D pre-imposed modulations, and 2-D and 3-D modulations imprinted on targets by the non-uniformities in laser drive. In planar geometry, the nonlinear regime was studied using 3-D modulations with broadband spectra near nonlinear saturation levels. In acceleration-phase, the measured modulation Fourier spectra and nonlinear growth velocities are in good agreement with those predicted by Haan's model [Haan S W 1989 Phys. Rev. A 39 5812]. In a real-space analysis, the bubble merger was quantified by a self-similar evolution of bubble size distributions [Oron D et al 2001 Phys. Plasmas 8, 2883]. The 3-D, inner-surface modulations were measured to grow throughout the deceleration phase of spherical implosions. RT growth rates are very sensitive to the drive conditions, therefore they can be used to test and validate drive physics in hydrodynamic codes used to design ICF implosions. Measured growth rates of pre-imposed 2-D target modulations below nonlinear saturation levels were used to validate non-local thermal electron transport model in laser-driven experiments.

  2. Theoretical and experimental study of a calorimetric technique for measuring energy deposition in materials caused by complex pile irradiation

    International Nuclear Information System (INIS)

    Mas, P.; Sciers, P.; Droulers, Y.

    1962-01-01

    Calorimetric methods may be used to measure gamma fluxes greater than 10 6 r/h near the cores of swimming pool reactors. The theory, design, and properties of isothermal calorimeters are discussed, and experimental results obtained with two types are presented. Measurement of energy deposition in materials and the long term integration of energy depositions are other uses of these devices. Results of measurements on heat deposition in steel and water are given. Fluxes were also measured. (authors) [fr

  3. Measurement of kVp, PPV and air kerma values in function of the electric current quantity and the focus-detector distance in one X-ray equipment

    International Nuclear Information System (INIS)

    Lucena, Rodrigo F. de; Potiens, Maria da Penha A.; Vivolo, Vitor

    2009-01-01

    The objective of this work was to study the behavior of the X-ray equipment Pantak/Seifert, model MXR-160/22 of the calibration laboratory of IPEN, LCI, operating in the diagnostic radiology radiation quality RQR 5 (70 kV). For this evaluation it was used a noninvasive meter PTW, Diavolt TM model. The measurements of kVp, PPV and Dose (air kerma), were made varying the electric current and distance between the focal point and the meter. This behavior is described in the literature and was expected in the analysis of the measurements for comparison purposes. For the tests where it was only increased the electric current it was waited a linear increase of the dose (air kerma), but not a variation in the kVp and PPV. The measurements had corresponded to the waited behavior, since the Dose (air kerma) measurements presented a linear increase with the increase of the electric current and the kVp and PPV values showed a variation less than 2%. In the corresponding measurements increasing the distance between focal point and meter, it was waited the exponentially decreasing of the Dose (air kerma) and again a small variation or no variation of the PPV and kVP with the increase of the distance. Over again the measurements corresponded to the expected, where the Dose (air kerma) decreased exponentially and the PPV and the kVp had a variation less than 1.5%. (author)

  4. Optical Properties of Biomass Burning Aerosols: Comparison of Experimental Measurements and T-Matrix Calculations

    Directory of Open Access Journals (Sweden)

    Samin Poudel

    2017-11-01

    Full Text Available The refractive index (RI is an important parameter in describing the radiative impacts of aerosols. It is important to constrain the RI of aerosol components, since there is still significant uncertainty regarding the RI of biomass burning aerosols. Experimentally measured extinction cross-sections, scattering cross-sections, and single scattering albedos for white pine biomass burning (BB aerosols under two different burning and sampling conditions were modeled using T-matrix theory. The refractive indices were extracted from these calculations. Experimental measurements were conducted using a cavity ring-down spectrometer to measure the extinction, and a nephelometer to measure the scattering of size-selected aerosols. BB aerosols were obtained by burning white pine using (1 an open fire in a burn drum, where the aerosols were collected in distilled water using an impinger, and then re-aerosolized after several days, and (2 a tube furnace to directly introduce the BB aerosols into an indoor smog chamber, where BB aerosols were then sampled directly. In both cases, filter samples were also collected, and electron microscopy images were used to obtain the morphology and size information used in the T-matrix calculations. The effective radius of the particles collected on filter media from the open fire was approximately 245 nm, whereas it was approximately 76 nm for particles from the tube furnace burns. For samples collected in distilled water, the real part of the RI increased with increasing particle size, and the imaginary part decreased. The imaginary part of the RI was also significantly larger than the reported values for fresh BB aerosol samples. For the particles generated in the tube furnace, the real part of the RI decreased with particle size, and the imaginary part was much smaller and nearly constant. The RI is sensitive to particle size and sampling method, but there was no wavelength dependence over the range considered (500

  5. An innovative experimental setup for Large Scale Particle Image Velocimetry measurements in riverine environments

    Science.gov (United States)

    Tauro, Flavia; Olivieri, Giorgio; Porfiri, Maurizio; Grimaldi, Salvatore

    2014-05-01

    Large Scale Particle Image Velocimetry (LSPIV) is a powerful methodology to nonintrusively monitor surface flows. Its use has been beneficial to the development of rating curves in riverine environments and to map geomorphic features in natural waterways. Typical LSPIV experimental setups rely on the use of mast-mounted cameras for the acquisition of natural stream reaches. Such cameras are installed on stream banks and are angled with respect to the water surface to capture large scale fields of view. Despite its promise and the simplicity of the setup, the practical implementation of LSPIV is affected by several challenges, including the acquisition of ground reference points for image calibration and time-consuming and highly user-assisted procedures to orthorectify images. In this work, we perform LSPIV studies on stream sections in the Aniene and Tiber basins, Italy. To alleviate the limitations of traditional LSPIV implementations, we propose an improved video acquisition setup comprising a telescopic, an inexpensive GoPro Hero 3 video camera, and a system of two lasers. The setup allows for maintaining the camera axis perpendicular to the water surface, thus mitigating uncertainties related to image orthorectification. Further, the mast encases a laser system for remote image calibration, thus allowing for nonintrusively calibrating videos without acquiring ground reference points. We conduct measurements on two different water bodies to outline the performance of the methodology in case of varying flow regimes, illumination conditions, and distribution of surface tracers. Specifically, the Aniene river is characterized by high surface flow velocity, the presence of abundant, homogeneously distributed ripples and water reflections, and a meagre number of buoyant tracers. On the other hand, the Tiber river presents lower surface flows, isolated reflections, and several floating objects. Videos are processed through image-based analyses to correct for lens

  6. Novel experimental measuring techniques required to provide data for CFD validation

    International Nuclear Information System (INIS)

    Prasser, H.-M.

    2008-01-01

    CFD code validation requires experimental data that characterize the distributions of parameters within large flow domains. On the other hand, the development of geometry-independent closure relations for CFD codes have to rely on instrumentation and experimental techniques appropriate for the phenomena that are to be modelled, which usually requires high spatial and time resolution. The paper reports about the use of wire-mesh sensors to study turbulent mixing processes in single-phase flow as well as to characterize the dynamics of the gas-liquid interface in a vertical pipe flow. Experiments at a pipe of a nominal diameter of 200 mm are taken as the basis for the development and test of closure relations describing bubble coalescence and break-up, interfacial momentum transfer and turbulence modulation for a multi-bubble-class model. This is done by measuring the evolution of the flow structure along the pipe. The transferability of the extended CFD code to more complicated 3D flow situations is assessed against measured data from tests involving two-phase flow around an asymmetric obstacle placed in a vertical pipe. The obstacle, a half-moon-shaped diaphragm, is movable in the direction of the pipe axis; this allows the 3D gas fraction field to be recorded without changing the sensor position. In the outlook, the pressure chamber of TOPFLOW is presented, which will be used as the containment for a test facility, in which experiments can be conducted in pressure equilibrium with the inner atmosphere of the tank. In this way, flow structures can be observed by optical means through large-scale windows even at pressures of up to 5 MPa. The so-called 'Diving Chamber' technology will be used for Pressurized Thermal Shock (PTS) tests. Finally, some important trends in instrumentation for multi-phase flows will be given. This includes the state-of-art of X-ray and gamma tomography, new multi-component wire-mesh sensors, and a discussion of the potential of other non

  7. Novel experimental measuring techniques required to provide data for CFD validation

    International Nuclear Information System (INIS)

    Prasser, H.M.

    2007-01-01

    CFD code validation requires experimental data that characterize distributions of parameters within large flow domains. On the other hand, the development of geometry-independent closure relations for CFD codes have to rely on instrumentation and experimental techniques appropriate for the phenomena that are to be modelled, which usually requires high spatial and time resolution. The presentation reports about the use of wire-mesh sensors to study turbulent mixing processes in the single-phase flow as well as to characterize the dynamics of the gas-liquid interface in a vertical pipe flow. Experiments at a pipe of a nominal diameter of 200 mm are taken as the basis for the development and test of closure relations describing bubble coalescence and break-up, interfacial momentum transfer and turbulence modulation for a multi-bubble-class model. This is done by measuring the evolution of the flow structure along the pipe. The transferability of the extended CFD code to more complicated 3D flow situations is assessed against measured data from tests involving two-phase flow around an asymmetric obstacle placed in a vertical pipe. The obstacle, a half-moon-shaped diaphragm, is movable in the direction of the pipe axis; this allows the 3D gas fraction field to be recorded without changing the sensor position. In the outlook, the pressure chamber of TOPFLOW is presented, which will be used as the containment for a test facility, in which experiments can be conducted in pressure equilibrium with the inner atmosphere of the tank. In this way, flow structures can be observed by optical means through large-scale windows even at pressures of up to 5 MPa. The so-called 'Diving Chamber' technology will be used for Pressurized Thermal Shock (PTS) tests. Finally, some important trends in instrumentation for multi-phase flows will be given. This includes the state-of-art of X-ray and gamma tomography, new multi-component wire-mesh sensors, and a discussion of the potential of

  8. Measuring pH variability using an experimental sensor on an underwater glider

    Science.gov (United States)

    Hemming, Michael P.; Kaiser, Jan; Heywood, Karen J.; Bakker, Dorothee C. E.; Boutin, Jacqueline; Shitashima, Kiminori; Lee, Gareth; Legge, Oliver; Onken, Reiner

    2017-05-01

    Autonomous underwater gliders offer the capability of measuring oceanic parameters continuously at high resolution in both vertical and horizontal planes, with timescales that can extend to many months. An experimental ion-sensitive field-effect transistor (ISFET) sensor measuring pH on the total scale was attached to a glider during the REP14-MED experiment in June 2014 in the Sardinian Sea in the northwestern Mediterranean. During the deployment, pH was sampled at depths of up to 1000 m along an 80 km transect over a period of 12 days. Water samples were collected from a nearby ship and analysed for dissolved inorganic carbon concentration and total alkalinity to derive the pH for validating the ISFET sensor measurements. The vertical resolution of the pH sensor was good (1 to 2 m), but stability was poor and the sensor drifted in a non-monotonous fashion. In order to remove the sensor drift, a depth-constant time-varying offset was applied throughout the water column for each dive, reducing the spread of the data by approximately two-thirds. Furthermore, the ISFET sensor required temperature- and pressure-based corrections, which were achieved using linear regression. Correcting for this decreased the apparent sensor pH variability by a further 13 to 31 %. Sunlight caused an apparent sensor pH decrease of up to 0.1 in surface waters around local noon, highlighting the importance of shielding the sensor from light in future deployments. The corrected pH from the ISFET sensor is presented along with potential temperature, salinity, potential density anomalies (σθ), and dissolved oxygen concentrations (c(O2)) measured by the glider, providing insights into the physical and biogeochemical variability in the Sardinian Sea. The pH maxima were identified close to the depth of the summer chlorophyll maximum, where high c(O2) values were also found. Longitudinal pH variations at depth (σθ > 28. 8 kg m-3) highlighted the variability of water masses in the Sardinian

  9. Experimental measurements of U24Py nanocluster behavior in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Shannon L.; Szymanowski, Jennifer E.S.; Fein, Jeremy B. [Univ. of Notre Dame, IN (United States). Department of Civil and Environmental Engineering and Earth Sciences; Dembowski, Mateusz [Univ. of Notre Dame, IN (United States). Department of Chemistry and Biochemistry; Burns, Peter C. [Univ. of Notre Dame, IN (United States). Department of Civil and Environmental Engineering and Earth Sciences; Univ. of Notre Dame, IN (United States). Department of Chemistry and Biochemistry

    2016-07-01

    Uranyl peroxide nanoclusters may impact the mobility and partitioning of uranium at contaminated sites and could be used in the isolation of uranium during the reprocessing of nuclear waste. Their behavior in aqueous systems must be better understood to predict the environmental fate of uranyl peroxide nanoclusters and for their use in engineered systems. The aqueous stability of only one uranyl peroxide nanocluster, U60 (K{sub 16}Li{sub 44}[UO{sub 2}(O{sub 2})OH]{sub 60}), has been studied to date [Flynn, S. L., Szymanowski, J. E. S., Gao, Y., Liu, T., Burns, P. C., Fein, J. B.: Experimental measurements of U60 nanocluster stability in aqueous solution. Geochemica et Cosmochimica Acta 156, 94-105 (2015)]. In this study, we measured the aqueous stability of a second uranyl peroxide nanocluster, U24Py (Na{sub 30}[(UO{sub 2}){sub 24}(O{sub 2}){sub 24}(HP{sub 2}O{sub 7}){sub 6}(H{sub 2}P{sub 2}O{sub 7}){sub 6}]), in batch systems as a function of time, pH, and nanocluster concentration, and then compared the aqueous behavior of U24Py to U60 to determine whether the size and morphology differences result in differences in their aqueous behaviors. Systems containing U24Py nanoclusters took over 30 days to achieve steady-state concentrations of monomeric U, Na, and P, illustrating slower reaction kinetics than parallel U60 systems. Furthermore, U24Py exhibited lower stability in solution than U60, with an average of 72% of the total mass in each nanocluster suspension being associated with the U24Py nanocluster, whereas 97% was associated with the U60 nanocluster in parallel experiments [Flynn, S. L., Szymanowski, J. E. S., Gao, Y., Liu, T., Burns, P. C., Fein, J. B.: Experimental measurements of U60 nanocluster stability in aqueous solution. Geochemica et Cosmochimica Acta 156, 94-105 (2015)]. The measurements from the batch experiments were used to calculate ion activity product (IAP) values for the reaction between the U24Py nanocluster and its constituent monomeric

  10. Impact of solar shading on daylight quality. Measurements in experimental office rooms

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, M.C.

    2001-07-01

    The impact of ten solar shading screens and one venetian blind on daylight quality was studied through measurements in two south-oriented experimental office rooms. The daylight quality was assessed by considering five performance indicators: the daylight factor, the work plane illuminance, the illuminance uniformity on the work plane, the absolute luminance in the field of view and the luminance ratios between the paper task, the walls and the VDT screen. The measurements were carried out under perfect sunny conditions and overcast conditions. The results show that the shading devices can be divided into three distinct groups. Group 1 consists of all dark-coloured screens; Group 2 includes the closed venetian blind while Group 3 includes the white screens and the horizontal venetian blind. The devices of Group 1 produced unacceptably low work plane illuminance and vertical luminance values which resulted in unsuitable luminance ratios between the task, the walls and VDT screen. However, these devices reduced the luminance of the window (sky) to acceptable levels. The devices of Group 3 did not prevent high window luminance but yielded higher levels of work plane illuminance and inner wall luminance, which makes them suitable for traditional paper tasks. They also generated high wall luminance values which resulted in a number of unacceptable luminance ratios between the task, walls and VDT screen. The closed venetian blind (Group 2) was the only device which scored well on all performance indicators considered. It provided ideal illuminance levels for paper and VDT tasks and resulted in favourable wall luminance values for computer work.

  11. 16 CFR 500.7 - Net quantity of contents, method of expression.

    Science.gov (United States)

    2010-01-01

    ... expression. The net quantity of contents shall be expressed in terms of weight or mass, measure, numerical... consumers. The net quantity of contents statement shall be in terms of fluid measure if the commodity is liquid, or in terms of weight or mass if the commodity is solid, semi-solid, or viscous, or a mixture of...

  12. Management of small quantities of radioactive waste

    International Nuclear Information System (INIS)

    1998-09-01

    The main objective of this publication is to provide practical guidance primarily to developing Member States on the predisposal management of small quantities of radioactive waste arising from hospitals, laboratories, industries, institutions, research reactors and research centres.The publication covers the management of liquid, solid and gaseous radioactive wastes at the users' premises and gives general guidance on procedures at a centralized waste management facility. Predisposal management of radioactive waste includes handling, treatment, conditioning, storage and transportation. This publication provides information and guidance on the following topics: national waste management framework; origin and characteristics of radioactive waste arising from users generating small quantities of waste; radioactive waste management concepts appropriate for small quantities; local waste management; the documentation and approval necessary for the consignment of waste to a centralized waste management facility; centralized waste management; exemption of radionuclides from the regulatory body; transportation; environmental monitoring; quality assurance for the whole predisposal process; regional co-operation aspects

  13. A conserved quantity in thin body dynamics

    International Nuclear Information System (INIS)

    Hanna, J.A.; Pendar, H.

    2016-01-01

    Thin, solid bodies with metric symmetries admit a restricted form of reparameterization invariance. Their dynamical equilibria include motions with both rigid and flowing aspects. On such configurations, a quantity is conserved along the intrinsic coordinate corresponding to the symmetry. As an example of its utility, this conserved quantity is combined with linear and angular momentum currents to construct solutions for the equilibria of a rotating, flowing string, for which it is akin to Bernoulli's constant. - Highlights: • A conserved quantity relevant to the dynamical equilibria of thin structures. • A mixed Lagrangian–Eulerian non-material action principle for fixed windows of axially moving systems. • Analytical solutions for rotating, flowing strings (yarn balloons). • Noether meets Bernoulli in a textile factory.

  14. A conserved quantity in thin body dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, J.A., E-mail: hannaj@vt.edu [Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Pendar, H. [Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States)

    2016-02-15

    Thin, solid bodies with metric symmetries admit a restricted form of reparameterization invariance. Their dynamical equilibria include motions with both rigid and flowing aspects. On such configurations, a quantity is conserved along the intrinsic coordinate corresponding to the symmetry. As an example of its utility, this conserved quantity is combined with linear and angular momentum currents to construct solutions for the equilibria of a rotating, flowing string, for which it is akin to Bernoulli's constant. - Highlights: • A conserved quantity relevant to the dynamical equilibria of thin structures. • A mixed Lagrangian–Eulerian non-material action principle for fixed windows of axially moving systems. • Analytical solutions for rotating, flowing strings (yarn balloons). • Noether meets Bernoulli in a textile factory.

  15. [Study on the discharge properties of xeon flash lamp and experimental measurement].

    Science.gov (United States)

    Zhao, You-Quan; Miao, Pei-Liang; He, Feng; Gu, Jian; Zhai, Rui-Wei

    2014-07-01

    The Xenon flash lamp is a new type of light source for analytical instrument. The present paper analyzed the discharge process of xenon flash lamp, presented the discharge test system, and conducted experimental measurement of the voltage, current and optical pulse signal in the process of discharge. The results show that in the preliminary discharge, the free electron concentration was at a low level, so the energy was at a low level, then following the gas discharge, numerous free electrons formed in the lamp, resultin in the increase in the concentration of free electrons, therefore discharge current rised rapidly and voltage reduced. The lamp released photons to generate light pulse in the moment of ionic recombination, The pulse xenon lamp light energy output and spectral characteristic is related to electron energy in recombination and combination level of xenon, if the input energy and the energy consumption of the xenon lamp is inconsistent, it will lead to repeated capacitor charging and discharging and produce oscillation waveform. This paper is very useful for understanding the process of xenon lamp discharge, optimizing the driver circuit and the production of xenon flash lamp.

  16. Experimental analysis on removal factor of smear method in measurement of surface contamination

    International Nuclear Information System (INIS)

    Sugiura, Nobuyuki; Taira, Junichi; Takenaka, Keisuke; Yamanaka, Kazuo; Sugai, Kenji; Kosako, Toshiso

    2007-01-01

    The smear test is one of the important ways to measure surface contamination. The loose contamination under the high background radiation, which is more significant in handling non-sealed radioisotopes, can be evaluated by this method. The removal factor is defined as the ratio of the activity removed from the surface by one smear to the whole activity of the removable surface contamination. The removal factor is greatly changed by the quality and condition of surface materials. In this study, the values of removal factor at several typical surface conditions were evaluated experimentally and the practical application of those values was considered. It is required the smear should be pressed by moderate pressure when wiping the surface. The pressure from 1.0 kg to 1.5 kg per filter paper was recommended. The removal factor showed lower value in wiping by the pressure below 1.0 kg. The value of 0.5 for the removal factor could be applied to the smooth surface of linoleum, concrete coated with paint or epoxy resin, stainless steel and glass with the statistical allowance. (author)

  17. Biomechanical evaluation of heel elevation on load transfer — experimental measurement and finite element analysis

    Science.gov (United States)

    Luximon, Yan; Luximon, Ameersing; Yu, Jia; Zhang, Ming

    2012-02-01

    In spite of ill-effects of high heel shoes, they are widely used for women. Hence, it is essential to understand the load transfer biomechanics in order to design better fit and comfortable shoes. In this study, both experimental measurement and finite element analysis were used to evaluate the biomechanical effects of heel height on foot load transfer. A controlled experiment was conducted using custom-designed platforms. Under different weight-bearing conditions, peak plantar pressure, contact area and center of pressure were analyzed. A three-dimensional finite element foot model was used to simulate the high-heel support and to predict the internal stress distributions and deformations for different heel heights. Results from both experiment and model indicated that heel elevations had significant effects on all variables. When heel elevation increased, the center of pressure shifted from the midfoot region to the forefoot region, the contact area was reduced by 26% from 0 to 10.2 cm heel and the internal stress of foot bones increased. Prediction results also showed that the strain and total tension force of plantar fascia was minimum at 5.1 cm heel condition. This study helps to better understand the biomechanical behavior of foot, and to provide better suggestions for design parameters of high heeled shoes.

  18. Experimental protocol to assess the tourism vehicles accessibility based on heart rate and access time measurements

    Energy Technology Data Exchange (ETDEWEB)

    Alcala Fazio, E.; Alvarez Fernandez, N.

    2016-07-01

    The objective of the Project is to define an experimental protocol for the accessibility assessment of the transport vehicles, by analysing the evolution of the effort and time variables consumed by a target group –Persons of Reduced Mobility (PMRs). This protocol consisted in tests of accessibility on a sample of 6 passenger cars (class M1) by 8 elderly people carrying a heart rate monitor, and whose access manoeuvres were recorded by video cameras. Based on the Hilloskorpi et al. [1] model and by developing a method of truncation of the heart rate (HR) tests records - eliminating the component of the work biologically needed by the organism to keep its basal metabolic rate from the work each person performed – it was possible to evaluate how much energy each individual invested in each access manoeuver. Immediately after each test, and after the whole round of vehicles, each participant was surveyed for a subjective assessment of the difficulty of accessing to the cars. According to each of the above results, the HR objective measurements and the subjective opinion about the ease of access experienced by each individual, the vehicles were ranked by order of accessibility to the front and rear seats. The result of both rankings showed the orders of the similar vehicles, the potential of the method and a fair closeness between its results and the subjective, but real and unequivocal, judgments of the participants. (Author)

  19. Developing the Pieta House Suicide Intervention Model: a quasi-experimental, repeated measures design.

    Science.gov (United States)

    Surgenor, Paul Wg; Freeman, Joan; O'Connor, Cindy

    2015-01-01

    While most crisis intervention models adhere to a generalised theoretical framework, the lack of clarity around how these should be enacted has resulted in a proliferation of models, most of which have little to no empirical support. The primary aim of this research was to propose a suicide intervention model that would resolve the client's suicidal crisis by decreasing their suicidal ideation and improve their outlook through enhancing a range of protective factors. The secondary aim was to assess the impact of this model on negative and positive outlook. A quasi-experimental, pre-test post-test repeated measures design was employed. A questionnaire assessing self-esteem, depression, and positive and negative suicidal ideation was administered to the same participants pre- and post- therapy facilitating paired responses. Multiple analysis of variance and paired-samples t-tests were conducted to establish whether therapy using the PH-SIM had a significant effect on the clients' negative and positive outlook. Analyses revealed a statistically significant effect of therapy for depression, negative suicidal ideation, self-esteem, and positive suicidal ideation. Negative outlook was significantly lower after therapy and positive outlook significantly higher. The decreased negative outlook and increased positive outlook following therapy provide some support for the proposed model in fulfilling its role, though additional research is required to establish the precise role of the intervention model in achieving this.

  20. Atmospheric Spray Freeze-Drying: Numerical Modeling and Comparison With Experimental Measurements.

    Science.gov (United States)

    Borges Sebastião, Israel; Robinson, Thomas D; Alexeenko, Alina

    2017-01-01

    Atmospheric spray freeze-drying (ASFD) represents a novel approach to dry thermosensitive solutions via sublimation. Tests conducted with a second-generation ASFD equipment, developed for pharmaceutical applications, have focused initially on producing a light, fine, high-grade powder consistently and reliably. To better understand the heat and mass transfer physics and drying dynamics taking place within the ASFD chamber, 3 analytical models describing the key processes are developed and validated. First, by coupling the dynamics and heat transfer of single droplets sprayed into the chamber, the velocity, temperature, and phase change evolutions of these droplets are estimated for actual operational conditions. This model reveals that, under typical operational conditions, the sprayed droplets require less than 100 ms to freeze. Second, because understanding the heat transfer throughout the entire freeze-drying process is so important, a theoretical model is proposed to predict the time evolution of the chamber gas temperature. Finally, a drying model, calibrated with hygrometer measurements, is used to estimate the total time required to achieve a predefined final moisture content. Results from these models are compared with experimental data. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. Experimental investigation of wettability alteration on residual oil saturation using nonionic surfactants: Capillary pressure measurement

    Directory of Open Access Journals (Sweden)

    Masoud Amirpour

    2015-12-01

    Full Text Available Introducing the novel technique for enhancing oil recovery from available petroleum reservoirs is one of the important issues in future energy demands. Among of all operative factors, wettability may be the foremost parameter affecting residual oil saturation in all stage of oil recovery. Although wettability alteration is one of the methods which enhance oil recovery from the petroleum reservoir. Recently, the studies which focused on this subject were more than the past and many contributions have been made on this area. The main objective of the current study is experimentally investigation of the two nonionic surfactants effects on altering wettability of reservoir rocks. Purpose of this work is to change the wettability to preferentially the water-wet condition. Also reducing the residual oil saturation (Sor is the other purpose of this work. The wettability alteration of reservoir rock is measured by two main quantitative methods namely contact angle and the USBM methods. Results of this study showed that surfactant flooding is more effective in oil-wet rocks to change their wettability and consequently reducing Sor to a low value. Cedar (Zizyphus Spina Christi is low priced, absolutely natural, and abundantly accessible in the Middle East and Central Asia. Based on the results, this material can be used as a chemical surfactant in field for enhancing oil recovery.

  2. Experimental study of fission process by fragment-neutron correlation measurement

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Katsuhisa; Yamamoto, Hideki; Kanno, Ikuo; Kimura, Itsuro; Nakagome, Yoshihiro [Kyoto Univ. (Japan). Faculty of Engineering

    1997-07-01

    Fragment-neutron correlation measurement of {sup 235}U(n{sub th}, f) was carried out. The obtained results showed more statistical accuracy than that of reported thermal neutron reaction. Experimental results and it`s analysis made clear the following facts. The minimum values of <{eta}> (m*) are shown at about 90 and 145 {mu} and <{eta}> (m*) showed the symmetrical form with an axis of symmetrical fission. This tendency is same as the distribution of {sup 252}Cf(s.f). -dV/dTKE(m*) indicates the saw-teethed distribution as same as <{nu}>(m*). The distribution seems depend on stiffness of fission fragment affected by the shell effect. The level density parameter a(m*) of fission fragment obtained from {sup 235}U(n{sub th}, f) expresses the saw-teethed distribution as same as that of {sup 252}Cf(s.f). This distribution can be explained by the empirical equation under consideration of the fission fragment depending on the shell effect and the collective motion. (S.Y.)

  3. Derivation of stochastic differential equations for scrape-off layer plasma fluctuations from experimentally measured statistics

    Energy Technology Data Exchange (ETDEWEB)

    Mekkaoui, Abdessamad [IEK-4 Forschungszentrum Juelich 52428 (Germany)

    2013-07-01

    A method to derive stochastic differential equations for intermittent plasma density dynamics in magnetic fusion edge plasma is presented. It uses a measured first four moments (mean, variance, Skewness and Kurtosis) and the correlation time of turbulence to write a Pearson equation for the probability distribution function of fluctuations. The Fokker-Planck equation is then used to derive a Langevin equation for the plasma density fluctuations. A theoretical expectations are used as a constraints to fix the nonlinearity structure of the stochastic differential equation. In particular when the quadratically nonlinear dynamics is assumed, then it is shown that the plasma density is driven by a multiplicative Wiener process and evolves on the turbulence correlation time scale, while the linear growth is quadratically damped by the fluctuation level. Strong criteria for statistical discrimination of experimental time series are proposed as an alternative to the Kurtosis-Skewness scaling. This scaling is broadly used in contemporary literature to characterize edge turbulence, but it is inappropriate because a large family of distributions could share this scaling. Strong criteria allow us to focus on the relevant candidate distribution and approach a nonlinear structure of edge turbulence model.

  4. Three experimental approaches to measure the social context dependence of prejudice communication and discriminatory behavior.

    Science.gov (United States)

    Beyer, Heiko; Liebe, Ulf

    2015-01-01

    Empirical research on discrimination is faced with crucial problems stemming from the specific character of its object of study. In democratic societies the communication of prejudices and other forms of discriminatory behavior is considered socially undesirable and depends on situational factors such as whether a situation is considered private or whether a discriminatory consensus can be assumed. Regular surveys thus can only offer a blurred picture of the phenomenon. But also survey experiments intended to decrease the social desirability bias (SDB) so far failed in systematically implementing situational variables. This paper introduces three experimental approaches to improve the study of discrimination and other topics of social (un-)desirability. First, we argue in favor of cognitive context framing in surveys in order to operationalize the salience of situational norms. Second, factorial surveys offer a way to take situational contexts and substitute behavior into account. And third, choice experiments - a rather new method in sociology - offer a more valid method of measuring behavioral characteristics compared to simple items in surveys. All three approaches - which may be combined - are easy to implement in large-scale surveys. Results of empirical studies demonstrate the fruitfulness of each of these approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. The Numerical Calculation and Experimental Measurement of the Inductance Parameters for Permanent Magnet Synchronous Motor in Electric Vehicle

    Science.gov (United States)

    Jiang, Chao; Qiao, Mingzhong; Zhu, Peng

    2017-12-01

    A permanent magnet synchronous motor with radial magnetic circuit and built-in permanent magnet is designed for the electric vehicle. Finite element numerical calculation and experimental measurement are adopted to obtain the direct axis and quadrature axis inductance parameters of the motor which are vital important for the motor control. The calculation method is simple, the measuring principle is clear, the results of numerical calculation and experimental measurement are mutual confirmation. A quick and effective method is provided to obtain the direct axis and quadrature axis inductance parameters of the motor, and then improve the design of motor or adjust the control parameters of the motor controller.

  6. Development of a Model for Measuring Scientific Processing Skills Based on Brain-Imaging Technology: Focused on the Experimental Design Process

    Science.gov (United States)

    Lee, Il-Sun; Byeon, Jung-Ho; Kim, Young-shin; Kwon, Yong-Ju

    2014-01-01

    The purpose of this study was to develop a model for measuring experimental design ability based on functional magnetic resonance imaging (fMRI) during biological inquiry. More specifically, the researchers developed an experimental design task that measures experimental design ability. Using the developed experimental design task, they measured…

  7. Relevance of protection quantities in medical exposures

    International Nuclear Information System (INIS)

    Pradhan, A.S.

    2008-01-01

    International Commission on Radiological Protection (ICRP) continues to classify the exposures to radiation in three categories; namely 1- occupational exposure, 2- public exposure, and 3- medical exposure. Protection quantities are primarily meant for the regulatory purpose in radiological protection for controlling and limiting stochastic risks in occupational and public exposures. These are based on two basic assumptions of 1- linear no-threshold dose-effect relationship (LNT) at low doses and 2- long-term additivity of low doses. Medical exposure are predominantly delivered to individuals (patients) undergoing diagnostic examinations, interventional procedures and radiation therapy but also include individual caring for or comforting patients incurring exposure and the volunteers of biomedical medical research programmes. Radiation protection is as relevant to occupational and public exposure as to medical exposures except that the dose limits set for the formers are not applicable to medical exposure but reference levels and dose constrains are recommended for diagnostic and interventional medical procedures. In medical institutions, both the occupational and medical exposure takes place. Since the doses in diagnostic examinations are low, it has been observed that not only the protection quantities are often used in such cases but these are extended to estimate the number of cancer deaths due to such practices. One of the striking features of the new ICRP recommendations has been to elaborate the concepts of the dosimetric quantities. The limitation of protection quantities ((Effective dose, E=Σ RT D TR .W T .W R and Equivalent Dose H T =Σ RT D TR .W R ) have been brought out and this has raised a great concern and initiated debates on the use of these quantities in medical exposures. Consequently, ICRP has set a task group to provide more details and the recommendations. It has, therefore, became important to draw the attention of medical physics community

  8. Editorial: New operational dose equivalent quantities

    International Nuclear Information System (INIS)

    Harvey, J.R.

    1985-01-01

    The ICRU Report 39 entitled ''Determination of Dose Equivalents Resulting from External Radiation Sources'' is briefly discussed. Four new operational dose equivalent quantities have been recommended in ICRU 39. The 'ambient dose equivalent' and the 'directional dose equivalent' are applicable to environmental monitoring and the 'individual dose equivalent, penetrating' and the 'individual dose equivalent, superficial' are applicable to individual monitoring. The quantities should meet the needs of day-to-day operational practice, while being acceptable to those concerned with metrological precision, and at the same time be used to give effective control consistent with current perceptions of the risks associated with exposure to ionizing radiations. (U.K.)

  9. Fluid force predictions and experimental measurements for a magnetically levitated pediatric ventricular assist device.

    Science.gov (United States)

    Throckmorton, Amy L; Untaroiu, Alexandrina; Lim, D Scott; Wood, Houston G; Allaire, Paul E

    2007-05-01

    The latest generation of artificial blood pumps incorporates the use of magnetic bearings to levitate the rotating component of the pump, the impeller. A magnetic suspension prevents the rotating impeller from contacting the internal surfaces of the pump and reduces regions of stagnant and high shear flow that surround fluid or mechanical bearings. Applying this third-generation technology, the Virginia Artificial Heart Institute has developed a ventricular assist device (VAD) to support infants and children. In consideration of the suspension design, the axial and radial fluid forces exerted on the rotor of the pediatric VAD were estimated using computational fluid dynamics (CFD) such that fluid perturbations would be counterbalanced. In addition, a prototype was built for experimental measurements of the axial fluid forces and estimations of the radial fluid forces during operation using a blood analog mixture. The axial fluid forces for a centered impeller position were found to range from 0.5 +/- 0.01 to 1 +/- 0.02 N in magnitude for 0.5 +/- 0.095 to 3.5 +/- 0.164 Lpm over rotational speeds of 6110 +/- 0.39 to 8030 +/- 0.57% rpm. The CFD predictions for the axial forces deviated from the experimental data by approximately 8.5% with a maximum difference of 18% at higher flow rates. Similarly for the off-centered impeller conditions, the maximum radial fluid force along the y-axis was found to be -0.57 +/- 0.17 N. The maximum cross-coupling force in the x direction was found to be larger with a maximum value of 0.74 +/- 0.22 N. This resulted in a 25-35% overestimate of the radial fluid force as compared to the CFD predictions; this overestimation will lead to a far more robust magnetic suspension design. The axial and radial forces estimated from the computational results are well within a range over which a compact magnetic suspension can compensate for flow perturbations. This study also serves as an effective and novel design methodology for blood pump

  10. An Experimental Study to Measure the Mechanical Properties of the Human Liver.

    Science.gov (United States)

    Karimi, Alireza; Shojaei, Ahmad

    2018-01-01

    Since the liver is one of the most important organs of the body that can be injured during trauma, that is, during accidents like car crashes, understanding its mechanical properties is of great interest. Experimental data is needed to address the mechanical properties of the liver to be used for a variety of applications, such as the numerical simulations for medical purposes, including the virtual reality simulators, trauma research, diagnosis objectives, as well as injury biomechanics. However, the data on the mechanical properties of the liver capsule is limited to the animal models or confined to the tensile/compressive loading under single direction. Therefore, this study was aimed at experimentally measuring the axial and transversal mechanical properties of the human liver capsule under both the tensile and compressive loadings. To do that, 20 human cadavers were autopsied and their liver capsules were excised and histologically analyzed to extract the mean angle of a large fibers population (bundle of the fine collagen fibers). Thereafter, the samples were cut and subjected to a series of axial and transversal tensile/compressive loadings. The results revealed the tensile elastic modulus of 12.16 ± 1.20 (mean ± SD) and 7.17 ± 0.85 kPa under the axial and transversal loadings respectively. Correspondingly, the compressive elastic modulus of 196.54 ± 13.15 and 112.41 ± 8.98 kPa were observed under the axial and transversal loadings respectively. The compressive axial and transversal maximum/failure stress of the capsule were 32.54 and 37.30 times higher than that of the tensile ones respectively. The capsule showed a stiffer behavior under the compressive load compared to the tensile one. In addition, the axial elastic modulus of the capsule was found to be higher than that of the transversal one. The findings of the current study have implications not only for understanding the mechanical properties of the human capsule tissue under tensile

  11. Sub-barrier fusion: An experimental review

    International Nuclear Information System (INIS)

    Betts, R.R.

    1991-01-01

    This paper contains a review of the current status of the experimental study of heavy-ion fusion at sub-barrier energies. Emphasis is placed on the comparison of the experimentally observed quantities with theoretical expectations. Results of measurements of the spin distributions of the composite systems formed following fusion are critically examined with a view to understanding the large discrepancies between theory and experiment which exist for some systems. 20 refs., 14 figs

  12. Results of environmental radiation monitoring and meteorology measurements (material prepared for obtaining the licence for RA reactor experimental operation)

    International Nuclear Information System (INIS)

    1980-10-01

    According to the demands for obtaining the licence for restarting the Ra reactor and the experimental operation this document includes the radiation monitoring measured data in the working space and environment of the RA reactor, i.e. Boris Kidric Institute. The meteorology measured data are included as well. All the measurements are performed according to the radiation protection program applied actually from the first reactor start-up at the end of 1959 [sr

  13. 7 CFR 35.13 - Minimum quantity.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Minimum quantity. 35.13 Section 35.13 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... part, transport or receive for transportation to any foreign destination, a shipment of 25 packages or...

  14. Varieties of Quantity Estimation in Children

    Science.gov (United States)

    Sella, Francesco; Berteletti, Ilaria; Lucangeli, Daniela; Zorzi, Marco

    2015-01-01

    In the number-to-position task, with increasing age and numerical expertise, children's pattern of estimates shifts from a biased (nonlinear) to a formal (linear) mapping. This widely replicated finding concerns symbolic numbers, whereas less is known about other types of quantity estimation. In Experiment 1, Preschool, Grade 1, and Grade 3…

  15. Symmetries and conserved quantities in geodesic motion

    International Nuclear Information System (INIS)

    Hojman, S.; Nunez, L.; Patino, A.; Rago, H.

    1986-01-01

    Recently obtained results linking several constants of motion to one (non-Noetherian) symmetry to the problem of geodesic motion in Riemannian space-times are applied. The construction of conserved quantities in geodesic motion as well as the deduction of geometrical statements about Riemannian space-times are achieved

  16. Experimental study of ion stopping power in warm dense matter: charge-state distribution measurements of ions leaving warm dense matter

    International Nuclear Information System (INIS)

    Gauthier, Maxence

    2013-01-01

    The determination if the ion slowing down process (or stopping power) in warm dense matter is essential especially in the frame of inertial confinement fusion. During my thesis, our interest was driven by the modification of the charge state of ion beam emerging from warm dense matter, this quantity playing a major role in ion stopping power calculation. We took advantage of the properties exhibited by ion beams produced by high intensity short pulse lasers to study during two experiments performed at ELFIE and TITAN facilities, the charge state modification of a carbon and helium ion beams emerging from an aluminum foil isochorically heated by an energetic proton beam. In the first two chapters are presented the major challenges regarding the subject from both a theoretical and experimental point of view. Here are exposed the different simulation tools used during the thesis. The third chapter is devoted to the study of the property of laser-produced ion beams in the scope of our experiments aiming at studying the stopping power. We have studied in particular ion beams generated using lower-than-solid density targets during two experiments: helium gas jet and laser-exploded target. In the last chapter are presented the set-ups and results of the two experiments on the charge state of ion beam emerging from warm dense matter. The data we measured in solid-density cold aluminum are successfully compared with the results already obtained in conventional accelerators. (author) [fr

  17. Note: Comparison experimental results of the laser heterodyne interferometer for angle measurement based on the Faraday effect

    Science.gov (United States)

    Zhang, Enzheng; Chen, Benyong; Zheng, Hao; Teng, Xueying; Yan, Liping

    2018-04-01

    A laser heterodyne interferometer for angle measurement based on the Faraday effect is proposed. A novel optical configuration, designed by using the orthogonal return method for a linearly polarized beam based on the Faraday effect, guarantees that the measurement beam can return effectively even though an angular reflector has a large lateral displacement movement. The optical configuration and measurement principle are presented in detail. Two verification experiments were performed; the experimental results show that the proposed interferometer can achieve a large lateral displacement tolerance of 7.4 mm and also can realize high precision angle measurement with a large measurement range.

  18. Crack identification method in beam-like structures using changes in experimentally measured frequencies and Particle Swarm Optimization

    Science.gov (United States)

    Khatir, Samir; Dekemele, Kevin; Loccufier, Mia; Khatir, Tawfiq; Abdel Wahab, Magd

    2018-02-01

    In this paper, a technique is presented for the detection and localization of an open crack in beam-like structures using experimentally measured natural frequencies and the Particle Swarm Optimization (PSO) method. The technique considers the variation in local flexibility near the crack. The natural frequencies of a cracked beam are determined experimentally and numerically using the Finite Element Method (FEM). The optimization algorithm is programmed in MATLAB. The algorithm is used to estimate the location and severity of a crack by minimizing the differences between measured and calculated frequencies. The method is verified using experimentally measured data on a cantilever steel beam. The Fourier transform is adopted to improve the frequency resolution. The results demonstrate the good accuracy of the proposed technique.

  19. Evaluation of the shield calculation adequacy of radiotherapy rooms through Monte Carlo Method and experimental measures

    International Nuclear Information System (INIS)

    Meireles, Ramiro Conceicao

    2016-01-01

    The shielding calculation methodology for radiotherapy services adopted in Brazil and in several countries is that described in publication 151 of the National Council on Radiation Protection and Measurements (NCRP 151). This methodology however, markedly employs several approaches that can impact both in the construction cost and in the radiological safety of the facility. Although this methodology is currently well established by the high level of use, some parameters employed in the calculation methodology did not undergo to a detailed assessment to evaluate the impact of the various approaches considered. In this work the MCNP5 Monte Carlo code was used with the purpose of evaluating the above mentioned approaches. TVLs values were obtained for photons in conventional concrete (2.35g / cm 3 ), considering the energies of 6, 10 and 25 MeV, respectively, first considering an isotropic radiation source impinging perpendicular to the barriers, and subsequently a lead head shielding emitting a shaped beam, in the format of a pyramid trunk. Primary barriers safety margins, taking in account the head shielding emitting photon beam pyramid-shaped in the energies of 6, 10, 15 and 18 MeV were assessed. A study was conducted considering the attenuation provided by the patient's body in the energies of 6,10, 15 and 18 MeV, leading to new attenuation factors. Experimental measurements were performed in a real radiotherapy room, in order to map the leakage radiation emitted by the accelerator head shielding and the results obtained were employed in the Monte Carlo simulation, as well as to validate the entire study. The study results indicate that the TVLs values provided by (NCRP, 2005) show discrepancies in comparison with the values obtained by simulation and that there may be some barriers that are calculated with insufficient thickness. Furthermore, the simulation results show that the additional safety margins considered when calculating the width of the primary

  20. Detectability of underground electrical cables junction with a ground penetrating radar: electromagnetic simulation and experimental measurements

    Science.gov (United States)

    Liu, Xiang; serhir, mohammed; kameni, abelin; lambert, marc; pichon, lionel

    2016-04-01

    For a company like Electricity De France (EDF), being able to detect accurately using non-destructive methods the position of the buried junction between two underground cables is a crucial issue. The junction is the linking part where most maintenance operations are carried out. The challenge of this work is to conduct a feasibility study to confirm or deny the relevance of Ground Penetrating Radar (GPR) to detect these buried junctions in their actual environment against clutter. Indeed, the cables are buried in inhomogeneous medium at around 80cm deep. To do this, the study is conducted in a numerical environment. We use the 3D simulation software CST MWS to model a GPR scenario. In this simulation, we place the already optimized bowtie antennas operating in the frequency band [0.5 GHz - 3 GHz] in front of wet soil (dispersive) and dry soil where the underground cable is placed at 80cm deep. We collect the amplitude and phase of the reflected waves in order to detect the contrast provoked by the geometric dimensions variation of the cable [1] (diameter of the cable is 48mm and the diameter of the junction 74mm). The use of an ultra-wideband antenna is necessary to reconcile resolution and penetration of electromagnetic waves in the medium to be characterized. We focus on the performance of the GPR method according to the characteristics of the surrounding medium in which the electric cables are buried, the polarization of the Tx and Rx antennas. The experimental measurement collected in the EDF site will be presented. The measured data are processed using the clutter reduction method based on digital filtering [2]. We aim at showing that using the developed bowtie antennas that the GPR technique is well adapted for the cable junction localization even in cluttered environment. References [1] D. J. Daniels, "Surface-Penetrating Radar", London, IEE 1996. [2] Potin, D.; Duflos, E.; Vanheeghe, P., "Landmines Ground-Penetrating Radar Signal Enhancement by Digital

  1. Measuring pH variability using an experimental sensor on an underwater glider

    Directory of Open Access Journals (Sweden)

    M. P. Hemming

    2017-05-01

    Full Text Available Autonomous underwater gliders offer the capability of measuring oceanic parameters continuously at high resolution in both vertical and horizontal planes, with timescales that can extend to many months. An experimental ion-sensitive field-effect transistor (ISFET sensor measuring pH on the total scale was attached to a glider during the REP14-MED experiment in June 2014 in the Sardinian Sea in the northwestern Mediterranean. During the deployment, pH was sampled at depths of up to 1000 m along an 80 km transect over a period of 12 days. Water samples were collected from a nearby ship and analysed for dissolved inorganic carbon concentration and total alkalinity to derive the pH for validating the ISFET sensor measurements. The vertical resolution of the pH sensor was good (1 to 2 m, but stability was poor and the sensor drifted in a non-monotonous fashion. In order to remove the sensor drift, a depth-constant time-varying offset was applied throughout the water column for each dive, reducing the spread of the data by approximately two-thirds. Furthermore, the ISFET sensor required temperature- and pressure-based corrections, which were achieved using linear regression. Correcting for this decreased the apparent sensor pH variability by a further 13 to 31 %. Sunlight caused an apparent sensor pH decrease of up to 0.1 in surface waters around local noon, highlighting the importance of shielding the sensor from light in future deployments. The corrected pH from the ISFET sensor is presented along with potential temperature, salinity, potential density anomalies (σθ, and dissolved oxygen concentrations (c(O2 measured by the glider, providing insights into the physical and biogeochemical variability in the Sardinian Sea. The pH maxima were identified close to the depth of the summer chlorophyll maximum, where high c(O2 values were also found. Longitudinal pH variations at depth (σθ > 28. 8 kg m−3 highlighted the variability of

  2. Neutronics model of the bulk shielding reactor (BSR): validation by comparison of calculations with the experimental measurements

    International Nuclear Information System (INIS)

    Johnson, J.O.; Miller, L.F.; Kam, F.B.K.

    1981-05-01

    A neutronics model for the Oak Ridge National Laboratory Bulk Shielding Reactor (ORNL-SAR) was developed and verified by experimental measurements. A cross-section library was generated from the 218 group Master Library using the AMPX Block Code system. A series of one-, two-, and three-dimensional neutronics calculations were performed utilizing both transport and diffusion theory. Spectral comparison was made with 58 Ni(n,p) reaction. The results of the comparison between the calculational model and other experimental measurements showed agreement within 10% and therefore the model was determined to be adequate for calculating the neutron fluence for future irradiation experiments in the ORNL-BSR

  3. Neutronics model of the bulk shielding reactor (BSR): validation by comparison of calculations with the experimental measurements

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.O.; Miller, L.F.; Kam, F.B.K.

    1981-05-01

    A neutronics model for the Oak Ridge National Laboratory Bulk Shielding Reactor (ORNL-SAR) was developed and verified by experimental measurements. A cross-section library was generated from the 218 group Master Library using the AMPX Block Code system. A series of one-, two-, and three-dimensional neutronics calculations were performed utilizing both transport and diffusion theory. Spectral comparison was made with /sup 58/Ni(n,p) reaction. The results of the comparison between the calculational model and other experimental measurements showed agreement within 10% and therefore the model was determined to be adequate for calculating the neutron fluence for future irradiation experiments in the ORNL-BSR.

  4. Experimental analysis of the evolution of thermal shock damage using transit time measurement of ultrasonic waves

    NARCIS (Netherlands)

    Damhof, F.; Brekelmans, W.A.M.; Geers, M.G.D.

    2009-01-01

    Thermal shock is a principal cause of catastrophic wear of the refractory lining of high temperature installations in metal making processes. To investigate thermal shock experimentally with realistic and reproducible heat transfer conditions, chamotte and corund refractory samples of ambient

  5. Experimental Evaluation of Tachistoscopic Measurement: A Step Beyond Wundt’s Criticism

    Czech Academy of Sciences Publication Activity Database

    Vobořil, Dalibor; Jelínek, Martin; Květon, Petr

    2014-01-01

    Roč. 127, č. 2 (2014), 245–252 ISSN 0002-9556 Institutional support: RVO:68081740 Keywords : history of psychology * tachistoscop * experimental instruments Subject RIV: AN - Psychology Impact factor: 0.619, year: 2014

  6. On the turbulent flow in piston engines: Coupling of statistical theory quantities and instantaneous turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Zentgraf, Florian; Baum, Elias; Dreizler, Andreas [Fachgebiet Reaktive Strömungen und Messtechnik (RSM), Center of Smart Interfaces (CSI), Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Böhm, Benjamin [Fachgebiet Energie und Kraftwerkstechnik (EKT), Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Peterson, Brian, E-mail: brian.peterson@ed.ac.uk [Department of Mechanical Engineering, School of Engineering, Institute for Energy Systems, University of Edinburgh, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JL, Scotland (United Kingdom)

    2016-04-15

    Planar particle image velocimetry (PIV) and tomographic PIV (TPIV) measurements are utilized to analyze turbulent statistical theory quantities and the instantaneous turbulence within a single-cylinder optical engine. Measurements are performed during the intake and mid-compression stroke at 800 and 1500 RPM. TPIV facilitates the evaluation of spatially resolved Reynolds stress tensor (RST) distributions, anisotropic Reynolds stress invariants, and instantaneous turbulent vortical structures. The RST analysis describes distributions of individual velocity fluctuation components that arise from unsteady turbulent flow behavior as well as cycle-to-cycle variability (CCV). A conditional analysis, for which instantaneous PIV images are sampled by their tumble center location, reveals that CCV and turbulence have similar contributions to RST distributions at the mean tumble center, but turbulence is dominant in regions peripheral to the tumble center. Analysis of the anisotropic Reynolds stress invariants reveals the spatial distribution of axisymmetric expansion, axisymmetric contraction, and 3D isotropy within the cylinder. Findings indicate that the mid-compression flow exhibits a higher tendency toward 3D isotropy than the intake flow. A novel post-processing algorithm is utilized to classify the geometry of instantaneous turbulent vortical structures and evaluate their frequency of occurrence within the cylinder. Findings are coupled with statistical theory quantities to provide a comprehensive understanding of the distribution of turbulent velocity components, the distribution of anisotropic states of turbulence, and compare the turbulent vortical flow distribution that is theoretically expected to what is experimentally observed. The analyses reveal requisites of important turbulent flow quantities and discern their sensitivity to the local flow topography and engine operation.

  7. A comparison of experimental methods for measuring water permeability of porous building rocks

    Directory of Open Access Journals (Sweden)

    Galvan, S.

    2014-09-01

    Full Text Available This paper compares different experimental methods for measuring water permeability in 17 different porous building rocks. Both commercial apparatus and specially made designed permeameters are used for characterising intrinsic permeability and hydraulic conductivity, k, of rocks in the range of 10−12 to 10−4 m/s (~ 10−19−10−11 m2 or ~ 10−4−104 mD. We use both falling head and constant head permeameter methods including the triaxial and modified triaxial tests and a classical constant head permeameter. Results showed that for very low and low permeability samples (k−6 m/s, triaxial conditions were found the most accurate procedures and they provided similar or slightly lower permeability values than constant and falling head methods. The latter techniques were highly recommended for permeable and high permeable porous building materials. Water permeability values were also linked to effective porosity and interpreted in terms of interparticle and vugs porosity. Finally, some modifications in the apparatus and procedures were carried out in order to assess water permeability in soft materials, which involve the use of non-saturated samples.Se comparan diferentes métodos experimentales para la medida de la permeabilidad al agua en rocas porosas usadas como material de construcción. Se usaron diferentes permeabilímetros, (comerciales y desarrollados específicamente empleando los métodos triaxial, triaxial modificado, carga constante y carga variable. Se caracterizó la permeabilidad intrínseca y conductividad hidráulica, k, con valores que var.an desde 10−12 a 10−4 m/s (~ 10−19−10−11 m2 or ~ 10−4−104 mD. Para muestras poco y muy poco permeables el ensayo con célula triaxial fue el mas reproducible. Los ensayos de carga constante son muy recomendables para rocas porosas de construcción permeables y muy permeables. Además, se definen los parámetros experimentales más apropiados para caracterizar la

  8. Experimental design for reflection measurements of highly reactive liquid or solid substances with application to liquid sodium

    International Nuclear Information System (INIS)

    Chan, S.H.; Gossler, A.A.

    1980-01-01

    A versatile goniometer system with associated electronic components and mechanical instruments has been assembled. It is designed to measure spectral, specular reflectances of highly reactive liquid or solid substances over a spectral range of 0.3 to 9 μ and incidence angles of 12 to 30 0 off the normal direction. The capability of measuring reflectances of liquid substances clearly distinguishes this experimental design from conventional systems which are applicable only to solid substances. This design has been used to measure the spectral, specular reflectance of liquid sodium and preliminary results obtained are compared with those of solid sodium measured by other investigators

  9. Experimental design for reflection measurements of highly reactive liquid or solid substances with application to liquid sodium

    International Nuclear Information System (INIS)

    Chan, S.H.; Gossler, A.A.

    1980-01-01

    This technical report describes the experimental part of a program on thermal radiation properties of reactor materials. A versatile goniometer system with associated electronic components and mechanical instruments has been assembled. It is designed to measure spectral, specular reflectances of highly reactive liquid or solid substances over a spectral range of 0.3 μ to 9 μ and incidence angles of 12 0 to 30 0 off the normal direction. The capability of measuring reflectances of liquid substances clearly distinguishes this experimental design from conventional systems which are applicable only to solid substances. This design has been used to measure the spectral, specular reflectance of liquid sodium and preliminary results obtained are compared with those of solid sodium measured by other investigators

  10. Strategic Planning in Irish Quantity Surveying Pracitces

    OpenAIRE

    Murphy, Roisin

    2011-01-01

    The role and usefulness of strategic planning has been well documented over several decades of strategic management research. Despite the significant body of existing knowledge in the field of strategic planning, there remains a paucity of investigation into the construction sector, specifically in Professional Service Firms (PSF’s) operating within it. The aim of this research was to ascertain the type, scope and extent of strategic planning within Irish Quantity Surveying (QS) practices and...

  11. Volumetric properties of the (tetrahydrofuran + water) and (tetra-n-butyl ammonium bromide + water) systems: Experimental measurements and correlations

    International Nuclear Information System (INIS)

    Belandria, Veronica; Mohammadi, Amir H.; Richon, Dominique

    2009-01-01

    In this communication, we report experimental density data for the binary mixtures of (water + tetrahydrofuran) and (water + tetra-n-butyl ammonium bromide) at atmospheric pressure and various temperatures. The densities were measured using an Anton Paar TM digital vibrating-tube densimeter. For the (tetrahydrofuran + water) system, excess molar volumes have been calculated using the experimental densities and correlated using the Redlich-Kister equation. The Redlich-Kister equation parameters have been adjusted on experimental results. The partial molar volumes and partial excess molar volumes at infinite dilution have also been calculated for each component. A simple density equation was finally applied to correlate the measured density of the (tetra-n-butyl ammonium bromide + water) system.

  12. Experimental measurements of out-of-plane vibrations of a simple blisk design using Blade Tip Timing and Scanning LDV measurement methods

    Science.gov (United States)

    Di Maio, D.; Ewins, D. J.

    2012-04-01

    The study of dynamic properties of rotating structures, such as bladed discs, can be conveniently done using simple bladed discs where the blades do not have staggering angles. Simplified design, although not truly representative of real structures, can be easy and economic to manufacture and, still, very helpful for studying specific dynamic properties. An example of this can be called as mass mistune blisk study. Experimental measurements of vibrations of bladed discs under rotating conditions can be performed using Scanning Laser Doppler Vibrometer (SLDV) systems. However, in the aerospace industry, the vibrations of complex bladed discs must be measured under operating conditions which are more hostile than laboratory simulations. The Blade Tip Timing (BTT) measurement method is a measurement technique, which can be used to measure vibrations of bladed discs of an engine aircraft under operating conditions. However, the BTT technique is ineffective when used with a flat bladed disc whose blade vibrations cannot be measured. This can be detrimental when the use of controlled dynamic parameters, such as those obtained from a simple bladed disc design, can improve the confidence for the validation of post-processing software. This paper presents a work about experimental measurements of a simple bladed disc design whose vibrations were measured synchronously by Scanning LDV and BTT measurement systems. A rotating test rig and its mechanical modifications for the installation of the BTT probes are introduced. Implications of rotating a specimen inconsistently are presented so as solutions to obtained constant revolving speed. The experimental comparisons of forced response vibrations measured synchronously at one blade are presented and explained.

  13. Radiation quantities and units. ICRU report 33

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This report supersedes ICRU Report 19. Since ICRU Report 19 was published, a number of discussions have taken place between members of the Report Committee on Fundamental Quantities and Units and other workers in the field. Some of these discussions have resulted in the acceptance of certain modifications in the material set out in Report 19 and these modifications are incorporated in the current report. In addition, there has been some expansion and rearrangement of the material in the earlier report. It is recommended that energy state be inserted into the definition of activity and that the word transformation be replaced by transition. These modifications have now been incorporated into the current definition. Helpful comments on the previous quantities and units report have resulted in clarification of several points in the present Report. In line with providing more didactic material and useful source material for other ICRU reports, the general considerations in subsection I.A of Report 19 have been expanded and placed in a separate subsection. The additional material includes discussions of four terms that are used in this document - quantity, unit, stochastic, and non-stochastic - along with a brief discussion of the mathematical formalism used in ICRU reports. 11 refs., 4 tabs

  14. Quantity discrimination in wolves (Canis lupus

    Directory of Open Access Journals (Sweden)

    Ewelina eUtrata

    2012-11-01

    Full Text Available Quantity discrimination has been studied extensively in different non-human animal species. In the current study, we tested eleven hand-raised wolves (Canis lupus in a two-way choice task. We placed a number of food items (one to four sequentially into two opaque cans and asked the wolves to choose the larger amount. Moreover, we conducted two additional control conditions to rule out non-numerical properties of the presentation that the animals might have used to make the correct choice. Our results showed that wolves are able to make quantitative judgments at the group, but also at the individual level even when alternative strategies such as paying attention to the surface area or time and total amount are ruled out. In contrast to previous canine studies on dogs (Canis familiaris and coyotes (Canis latrans, our wolves’ performance did not improve with decreasing ratio, referred to as Weber’s law. However, further studies using larger quantities than we used in the current setup are still needed to determine whether and when wolves’ quantity discrimination conforms to Weber’s law.

  15. Towards the evidence of a purely spatial Einstein-Podolsky-Rosen paradox in images: measurement scheme and first experimental results

    Science.gov (United States)

    Devaux, F.; Mougin-Sisini, J.; Moreau, P. A.; Lantz, E.

    2012-07-01

    We propose a scheme to evidence the Einstein-Podolsky-Rosen (EPR) paradox for photons produced by spontaneous down conversion, from measurement of purely spatial correlations of photon positions both in the near- and in the far-field. Experimentally, quantum correlations have been measured in the far-field of parametric fluorescence created in a type II BBO crystal. Imaging is performed in the photon counting regime with an electron-multiplying CCD (EMCCD) camera.

  16. Development of a three-dimensional PIV measurement technique for the experimental study of air bubble collapse phenomena

    International Nuclear Information System (INIS)

    Yang, Y.H.; Hassan, Y.A.; Schmidl, W.D.

    1995-01-01

    Particle image velocimetry (PIV) is a quantitative flow measurement technique. The objective of this study is to develop a new three-dimensional PIV technique for the experimental study of air bubble collapse phenomena. A three-dimensional measurement technique is necessary since bubble collapse is a three-dimensional phenomenon. The investigation of the velocity flow field around a collapsing air bubble can provide detailed three-dimensional quantitative information to help improve the understanding of the related heat transfer processes

  17. Experimental Platform for measuring the parameters of magnetization of a transformer in a quasi-static transitional regime

    International Nuclear Information System (INIS)

    Milovanski, Vasil; , Blagoevgrad (Bulgaria))" data-affiliation=" (HMS “Acad. S. P. Corolov, Blagoevgrad (Bulgaria))" >Stoyanov, Krasimir; Milovanska, Stefani

    2013-01-01

    Some opportunities for development of an experimental module for magnetic research have been examined in the current paper. The goal is to attain a more accurate reading of the measured electrical signals which are directly related to the magnetic parameters and characteristics of the ferromagnetic material

  18. Monitoringsprogramma experimentele gecombineerde luchtwassers op veehouderijbedrijven = Measurement program on experimental multi-pollutant air scrubbers at animal houses

    NARCIS (Netherlands)

    Melse, R.W.; Hol, J.M.G.; Mosquera Losada, J.; Nijeboer, G.M.; Huis in 'T Veld, J.W.H.; Hattum, van T.G.; Kwikkel, R.K.; Dousma, F.; Ogink, N.W.M.

    2011-01-01

    A measurement program was carried out in which the performance of 5 experimental scrubbers on animal farms was monitored for the removal of ammonia, odour and fine dust (PM10, PM2.5). This reports discusses and evaluates the realization of the program and its results.

  19. Outline of experimental schemes for measurements of thermophysical and transport properties in warm dense matter at GSI and FAIR

    International Nuclear Information System (INIS)

    Tauschwitz, Anna; Jacoby, Joachim; Maruhn, Joachim; Basko, Mikhail; Efremov, Vladimir; Iosilevskiy, Igor; Neumayer, Paul; Novikov, Vladimir; Tauschwitz, Andreas; Rosmej, Frank

    2010-01-01

    Different experimental schemes for investigation of warm dense matter produced with intense energetic ion beams are presented. The described target configurations allow direct measurements of thermophysical and transport properties of warm dense matter without hydrodynamic recalculations. The presented experiments will be realized at the current GSI synchrotron SIS-18 and the future FAIR facility in the framework of the WDM-collaboration.

  20. Are Quantity Surveyors Competent to Value for Civil Engineering Works? Evaluating QSs' Competencies and Militating Factors

    Science.gov (United States)

    Olawumi, Timothy Oluwatosin; Ayegun, Olaleke Amos

    2016-01-01

    The role of the quantity surveyor is one that is often unclear amongst the general public. This study discussed the competencies of the quantity surveyor in measuring and managing civil engineering works and also carrying out the financial management for civil engineering construction projects; also outlined the various competencies and skills…

  1. Review of nuclear data improvement needs for nuclear radiation measurement techniques used at the CEA experimental reactor facilities

    Directory of Open Access Journals (Sweden)

    Destouches Christophe

    2016-01-01

    Full Text Available The constant improvement of the neutron and gamma calculation codes used in experimental nuclear reactors goes hand in hand with that of the associated nuclear data libraries. The validation of these calculation schemes always requires the confrontation with integral experiments performed in experimental reactors to be completed. Nuclear data of interest, straight as cross sections, or elaborated ones such as reactivity, are always derived from a reaction rate measurement which is the only measurable parameter in a nuclear sensor. So, in order to derive physical parameters from the electric signal of the sensor, one needs specific nuclear data libraries. This paper presents successively the main features of the measurement techniques used in the CEA experimental reactor facilities for the on-line and offline neutron/gamma flux characterizations: reactor dosimetry, neutron flux measurements with miniature fission chambers and Self Power Neutron Detector (SPND and gamma flux measurements with chamber ionization and TLD. For each technique, the nuclear data necessary for their interpretation will be presented, the main identified needs for improvement identified and an analysis of their impact on the quality of the measurement. Finally, a synthesis of the study will be done.

  2. Assessment CANDU physics codes using experimental data - part 1: criticality measurement

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Choi, Hang Bok; Jeong, Chang Joon

    2001-08-01

    In order to assess the applicability of MCNP-4B code to the heavy water moderated, light water cooled and pressure-tube type reactor, the MCNP-4B physics calculations has been carried out for the Deuterium Critical Assembly (DCA), and the results were compared with those of the experimental data. In this study, the key safety parameters like as the multiplication factor, void coefficient, local power peaking factor and bundle power distribution in the scattered core are simulated. In order to use the cross section data consistently for the fuels to be analyzed in the future, new MCNP libraries have been generated from ENDF/B-VI release 3. Generally, the MCNP-4B calculation results show a good agreement with experimental data of DCA core. After benchmarking MCNP-4B against available experimental data, it will be used as the reference tool to benchmark design and analysis codes for the advanced CANDU fuels

  3. Modeling and Experimental Tests of a Mechatronic Device to Measure Road Profiles Considering Impact Dynamics

    DEFF Research Database (Denmark)

    Souza, A.; Santos, Ilmar

    2002-01-01

    dynamics is led with help of a set of non-linear equations of motion obtained using Newton-Euler-Jourdain´s Method. Such a set of equation is numerically solved and the theoretical results are compared with experimental carried out with a laboratory prototype. Comparisons show that the theoretical model...... predicts well the mechanism movements. However it was also experimentally observed that the contact between the wheels and the road profile is not permanent. To analyze the non-contact between the wheels and the road, the Newton-Euler´s Method is used to calculate forces and moments of reactions between...

  4. Does Negative Mood Influence Self-Report Assessment of Individual and Relational Measures? An Experimental Analysis

    Science.gov (United States)

    Heene, Els; De Raedt, Rudi; Buysse, Ann; Van Oost, Paulette

    2007-01-01

    The present study was designed to test the influence of negative mood on the self-report of individual and relational correlates of depression and marital distress. The authors applied a combined experimental mood induction procedure, based on music, autobiographical recall, and environmental manipulation. Results showed that the mood manipulation…

  5. Experimental measurement of effective thermal conductivity of packed lithium-titanate pebble bed

    International Nuclear Information System (INIS)

    Mandal, D.; Sathiyamoorthy, D.; Vinjamur, M.

    2012-01-01

    Lithium titanate is a promising solid breeder material for the fusion reactor blanket. Packed lithium titanate pebble bed is considered for the blanket. The thermal energy; that will be produced in the bed during breeding and the radiated heat from the reactor core absorbed must be removed. So, the experimental thermal property data are important for the blanket design. In past, a significant amount of works were conducted to determine the effective thermal conductivity of packed solid breeder pebble bed, in helium atmosphere, but no flow of gas was considered. With increase in gas flow rate, effective thermal conductivity of pebble bed increases. Particle size and void fraction also affect the thermal properties of the bed significantly. An experimental facility with external heat source was designed and installed. Experiments were carried out with lithium-titanate pebbles of different sizes at variable gas flow rates and at different bed wall temperature. It was observed that effective thermal conductivity of pebble bed is a function of particle Reynolds number and temperature. From the experimental data two correlations have been developed to estimate the effective thermal conductivity of packed lithium-titanate pebble bed for different particle Reynolds number and at different temperatures. The experimental details and results are discussed in this paper.

  6. Experimental measurements and numerical modeling of marginal burning in live chaparral fuel beds

    Science.gov (United States)

    X. Zhou; D.R. Weise; S Mahalingam

    2005-01-01

    An extensive experimental and numerical study was completed to analyze the marginal burning behavior of live chaparral shrub fuels that grow in the mountains of southern California. Laboratory fire spread experiments were carried out to determine the effects of wind, slope, moisture content, and fuel characteristics on marginal burning in fuel beds of common...

  7. Overview of experimental measurements in a generic can-type gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, BC

    2009-11-01

    Full Text Available Due to CFD Shortfalls, experimental data on gas turbine combustors is required to obtain insight into the combustion and flow mechanisms as well as for simulation and model validation and evaluation. The temperature and velocity fields of a generic...

  8. An innovative method for coordinate measuring machine one-dimensional self-calibration with simplified experimental process.

    Science.gov (United States)

    Fang, Cheng; Butler, David Lee

    2013-05-01

    In this paper, an innovative method for CMM (Coordinate Measuring Machine) self-calibration is proposed. In contrast to conventional CMM calibration that relies heavily on a high precision reference standard such as a laser interferometer, the proposed calibration method is based on a low-cost artefact which is fabricated with commercially available precision ball bearings. By optimizing the mathematical model and rearranging the data sampling positions, the experimental process and data analysis can be simplified. In mathematical expression, the samples can be minimized by eliminating the redundant equations among those configured by the experimental data array. The section lengths of the artefact are measured at arranged positions, with which an equation set can be configured to determine the measurement errors at the corresponding positions. With the proposed method, the equation set is short of one equation, which can be supplemented by either measuring the total length of the artefact with a higher-precision CMM or calibrating the single point error at the extreme position with a laser interferometer. In this paper, the latter is selected. With spline interpolation, the error compensation curve can be determined. To verify the proposed method, a simple calibration system was set up on a commercial CMM. Experimental results showed that with the error compensation curve uncertainty of the measurement can be reduced to 50%.

  9. The Experimental Measurement of Local and Bulk Oxygen Transport Resistances in the Catalyst Layer of Proton Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Wang, Chao; Cheng, Xiaojing; Lu, Jiabin; Shen, Shuiyun; Yan, Xiaohui; Yin, Jiewei; Wei, Guanghua; Zhang, Junliang

    2017-12-07

    Remarkable progress has been made in reducing the cathodic Pt loading of PEMFCs; however, a huge performance loss appears at high current densities, indicating the existence of a large oxygen transport resistance associated with the ultralow Pt loading catalyst layer. To reduce the Pt loading without sacrificing cell performance, it is essential to illuminate the oxygen transport mechanism in the catalyst layer. Toward this goal, an experimental approach to measure the oxygen transport resistance in catalyst layers is proposed and realized for the first time in this study. The measuring approach involves a dual-layer catalyst layer design, which consists of a dummy catalyst layer and a practical catalyst layer, followed by changing the thickness of dummy layer to respectively quantify the local and bulk resistances via limiting current measurements combined with linear extrapolation. The experimental results clearly reveal that the local resistance dominates the total resistance in the catalyst layer.

  10. Variations of influence quantities in industrial irradiators and their effect on dosimetry performance

    International Nuclear Information System (INIS)

    Chu, R.D.H.

    1999-01-01

    Many environmental factors, including irradiation temperature, post-irradiation storage temperature, dose rate, relative humidity, oxygen content and the energy spectrum may affect the response of dosimetry systems used in industrial radiation processing. Although the effects of individual influence quantities have been extensively studied, the variations of these influence quantities in production irradiators and the complex relationships between the effects of different influence quantities make it difficult to assess the overall effect on the measurement uncertainty. In the development of new dosimetry systems it is important to know the effect of each influence quantity and developers of new dosimetry systems should perform studies over a wide range of irradiation conditions. Analysis parameters and manufacturing specifications should be chosen to minimize the effect of influence quantities in the environments where the dosimeters will be used. Because of possible relationships between different influence quantities, care must be taken to ensure that the response function determined in the calibration of the dosimetry system is applicable for the conditions in which the dosimeters will be used. Reference standard dosimetry systems which have been thoroughly studied and have known relationships between dose response and influence quantities should be used to verify the calibration of routine dosimetry systems under the actual conditions of use. Better understanding of the variations in influence quantities in industrial irradiators may be obtained by modeling or direct measurements and may provide improvements in the calibration of routine dosimetry system and reduction of the overall measurement uncertainty. (author)

  11. Evaluation of specific absorption rate as a dosimetric quantity for electromagnetic fields bioeffects.

    Directory of Open Access Journals (Sweden)

    Dimitris J Panagopoulos

    Full Text Available PURPOSE: To evaluate SAR as a dosimetric quantity for EMF bioeffects, and identify ways for increasing the precision in EMF dosimetry and bioactivity assessment. METHODS: We discuss the interaction of man-made electromagnetic waves with biological matter and calculate the energy transferred to a single free ion within a cell. We analyze the physics and biology of SAR and evaluate the methods of its estimation. We discuss the experimentally observed non-linearity between electromagnetic exposure and biological effect. RESULTS: WE FIND THAT: a The energy absorbed by living matter during exposure to environmentally accounted EMFs is normally well below the thermal level. b All existing methods for SAR estimation, especially those based upon tissue conductivity and internal electric field, have serious deficiencies. c The only method to estimate SAR without large error is by measuring temperature increases within biological tissue, which normally are negligible for environmental EMF intensities, and thus cannot be measured. CONCLUSIONS: SAR actually refers to thermal effects, while the vast majority of the recorded biological effects from man-made non-ionizing environmental radiation are non-thermal. Even if SAR could be accurately estimated for a whole tissue, organ, or body, the biological/health effect is determined by tiny amounts of energy/power absorbed by specific biomolecules, which cannot be calculated. Moreover, it depends upon field parameters not taken into account in SAR calculation. Thus, SAR should not be used as the primary dosimetric quantity, but used only as a complementary measure, always reporting the estimating method and the corresponding error. Radiation/field intensity along with additional physical parameters (such as frequency, modulation etc which can be directly and in any case more accurately measured on the surface of biological tissues, should constitute the primary measure for EMF exposures, in spite of similar

  12. Evaluation of specific absorption rate as a dosimetric quantity for electromagnetic fields bioeffects.

    Science.gov (United States)

    Panagopoulos, Dimitris J; Johansson, Olle; Carlo, George L

    2013-01-01

    To evaluate SAR as a dosimetric quantity for EMF bioeffects, and identify ways for increasing the precision in EMF dosimetry and bioactivity assessment. We discuss the interaction of man-made electromagnetic waves with biological matter and calculate the energy transferred to a single free ion within a cell. We analyze the physics and biology of SAR and evaluate the methods of its estimation. We discuss the experimentally observed non-linearity between electromagnetic exposure and biological effect. WE FIND THAT: a) The energy absorbed by living matter during exposure to environmentally accounted EMFs is normally well below the thermal level. b) All existing methods for SAR estimation, especially those based upon tissue conductivity and internal electric field, have serious deficiencies. c) The only method to estimate SAR without large error is by measuring temperature increases within biological tissue, which normally are negligible for environmental EMF intensities, and thus cannot be measured. SAR actually refers to thermal effects, while the vast majority of the recorded biological effects from man-made non-ionizing environmental radiation are non-thermal. Even if SAR could be accurately estimated for a whole tissue, organ, or body, the biological/health effect is determined by tiny amounts of energy/power absorbed by specific biomolecules, which cannot be calculated. Moreover, it depends upon field parameters not taken into account in SAR calculation. Thus, SAR should not be used as the primary dosimetric quantity, but used only as a complementary measure, always reporting the estimating method and the corresponding error. Radiation/field intensity along with additional physical parameters (such as frequency, modulation etc) which can be directly and in any case more accurately measured on the surface of biological tissues, should constitute the primary measure for EMF exposures, in spite of similar uncertainty to predict the biological effect due to non-linearity.

  13. Pressure Measurement Techniques for Abdominal Hypertension: Conclusions from an Experimental Model.

    Science.gov (United States)

    Chopra, Sascha Santosh; Wolf, Stefan; Rohde, Veit; Freimann, Florian Baptist

    2015-01-01

    Introduction. Intra-abdominal pressure (IAP) measurement is an indispensable tool for the diagnosis of abdominal hypertension. Different techniques have been described in the literature and applied in the clinical setting. Methods. A porcine model was created to simulate an abdominal compartment syndrome ranging from baseline IAP to 30 mmHg. Three different measurement techniques were applied, comprising telemetric piezoresistive probes at two different sites (epigastric and pelvic) for direct pressure measurement and intragastric and intravesical probes for indirect measurement. Results. The mean difference between the invasive IAP measurements using telemetric pressure probes and the IVP measurements was -0.58 mmHg. The bias between the invasive IAP measurements and the IGP measurements was 3.8 mmHg. Compared to the realistic results of the intraperitoneal and intravesical measurements, the intragastric data showed a strong tendency towards decreased values. The hydrostatic character of the IAP was eliminated at high-pressure levels. Conclusion. We conclude that intragastric pressure measurement is potentially hazardous and might lead to inaccurately low intra-abdominal pressure values. This may result in missed diagnosis of elevated abdominal pressure or even ACS. The intravesical measurements showed the most accurate values during baseline pressure and both high-pressure plateaus.

  14. Experimental measurement of fluid force coefficients for helical tube arrays in air cross flow

    International Nuclear Information System (INIS)

    Shen Shifang; Liu Reilan

    1993-01-01

    A helical coil steam generator is extensively used in the High Temperature Gas Cooled Reactor (HTGCR) and Sodium Cooled Reactor (SCR) nuclear power stations because of its compact structure, good heat-exchange, and small volume. The experimental model is established by the structure parameter of 200MW HTGCR. The fluid elastic instability of helical tube arrays in air cross flow is studied in this experiment, and the fluid force coefficients of helical tube arrays having the same notational direction of two adjacent layers in air cross flow are obtained. As compared to the fluid force coefficients of cylinder tube arrays, the fluid force coefficients of helical tube arrays are smaller in the low velocity area, and greater in the high velocity area. The experimental results help the study of the dynamic characteristics of helical tube arrays in air cross flow

  15. Research technique and experimental device for thermal conductivity measurements of refractory compounds

    International Nuclear Information System (INIS)

    Vishnevetskaya, I.A.; Petrov, V.A.

    1977-01-01

    Proposed is a new axial technique for determining thermal conductivity coefficient of solids at temperatures above 1000 deg C with the use of internal heating of specimens by passing electric current and with experimental determining the thermal flows on the lateral side of the working section of the specimen. This method is usable for investigating the thermal conductivity of materials whose surface radiation characteristics are unknown or unstable and for carrying out experiments not only in vacuum, but also in various atmospheres. The overall fiducial error of the results of the method is evaluated at 4-5 % within the range of temperatures between 1200 and 2300 K. A description of the experimental installation is given

  16. Uncertainty analysis and flow measurements in an experimental mock-up of a molten salt reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Bogdan; Aszodi, Attila [Budapest University of Technology and Economics (Hungary). Inst. of Nuclear Techniques

    2016-09-15

    In the paper measurement results from the experimental modelling of a molten salt reactor concept will be presented along with detailed uncertainty analysis of the experimental system. Non-intrusive flow measurements are carried out on the scaled and segmented mock-up of a homogeneous, single region molten salt fast reactor concept. Uncertainty assessment of the particle image velocimetry (PIV) measurement system applied with the scaled and segmented model is presented in detail. The analysis covers the error sources of the measurement system (laser, recording camera, etc.) and the specific conditions (de-warping of measurement planes) originating in the geometry of the investigated domain. Effect of sample size in the ensemble averaged PIV measurements is discussed as well. An additional two-loop-operation mode is also presented and the analysis of the measurement results confirm that without enhancement nominal and other operation conditions will lead to strong unfavourable separation in the core flow. It implies that use of internal flow distribution structures will be necessary for the optimisation of the core coolant flow. Preliminary CFD calculations are presented to help the design of a perforated plate located above the inlet region. The purpose of the perforated plate is to reduce recirculation near the cylindrical wall and enhance the uniformity of the core flow distribution.

  17. Measurement of transepidermal water loss (TEWL) in cats with experimental skin barrier dysfunction using a closed chamber system.

    Science.gov (United States)

    Momota, Yutaka; Shimada, Kenichiro; Gin, Azusa; Matsubara, Takako; Azakami, Daigo; Ishioka, Katsumi; Nakamura, Yuka; Sako, Toshinori

    2016-10-01

    A closed chamber evaporimeter is suitable for measuring transepidermal water loss (TEWL) in cats because of the compact device size, tolerance to sudden movement and short measuring time. TEWL is a representative parameter for skin barrier dysfunction, which is one of the clinical signs of atopic dermatitis in humans and dogs. Measurement of feline TEWL has been reported, but applicability of this parameter has not been validated. The aims of this study were to determine if tape stripping is a valid experimental model in cats for studying TEWL and to determine if a closed chambered system is a suitable measurement tool for cats. Ten clinically normal cats. In order to evaluate variation of the measured values, TEWL was measured at the right and left side of the three clipped regions (axillae, lateral thigh and groin). Subsequently, TEWL was measured using sequential tape stripping of the stratum corneum as a model of acute barrier disruption. The variations between both sides of the three regions showed no significant difference. Sequential tape stripping was associated with increasing values for TEWL. Feline TEWL was shown to reflect changes in the skin barrier in an experimental model using a closed chamber system and has the potential for evaluating skin barrier function in cats with skin diseases. © 2016 ESVD and ACVD.

  18. Simulating the dust effect on the energy performance of photovoltaic generators based on experimental measurements

    International Nuclear Information System (INIS)

    Kaldellis, J.K.; Kapsali, M.

    2011-01-01

    One of the least analyzed side effects of atmospheric air pollution is the degradation of PV-panels' performance due to the deposition of solid particles varying in composition, size and type. In the current study, the experimental data concerning the effect of three representative air pollutants (i.e. red soil, limestone and carbonaceous fly-ash particles) on the energy performance of PV installations are analyzed. According to the results obtained, a considerable reduction of PVs' energy performance is recorded, depending strongly on particles' composition and source. Subsequently, a theoretical model has been developed in order to be used as an analytical tool for obtaining reliable results concerning the expected effect of regional air pollution on PVs' performance. Furthermore, experimental results concerning the dust effect on PVs' energy yield in an aggravated - from air pollution - urban environment are used to validate the proposed theoretical model. -- Highlights: → The effect of dust deposition on PVs energy efficiency is experimentally examined. → Based on the results, a considerable reduction of PVs energy performance is recorded. → The effect strongly depends on the dust composition and on the type of the pollutant. → A theoretical model is developed for predicting the dust deposition effect on PVs energy yield. → The model is validated on the basis of experiments conducted in urban environment.

  19. Experimental Studies on Damage Detection in Frame Structures Using Vibration Measurements

    Directory of Open Access Journals (Sweden)

    Giancarlo Fraraccio

    2010-01-01

    Full Text Available This paper presents an experimental study of frequency and time domain identification algorithms and discusses their effectiveness in structural health monitoring of frame structures using acceleration input and response data. Three algorithms were considered: 1 a frequency domain decomposition algorithm (FDD, 2 a time domain Observer Kalman IDentification algorithm (OKID, and 3 a subsequent physical parameter identification algorithm (MLK. Through experimental testing of a four-story steel frame model on a uniaxial shake table, the inherent complications of physical instrumentation and testing are explored. Primarily, this study aims to provide a dependable first-order and second-order identification of said test structure in a fully instrumented state. Once the characteristics (i.e. the stiffness matrix for a benchmark structure have been determined, structural damage can be detected by a change in the identified structural stiffness matrix. This work also analyzes the stability of the identified structural stiffness matrix with respect to fluctuations of input excitation magnitude and frequency content in an experimental setting.

  20. The Acquisition of Quantity Contrasts in Guina-ang Bontok

    Science.gov (United States)

    Aoyama, Katsura; Reid, Lawrence A.

    2016-01-01

    This study reports on the acquisition of quantity contrasts in Guina-ang Bontok, an indigenous language spoken in the Philippines. Four-year-old and 5-year-old children's perception and production of quantity contrasts were examined using a pair of names that contrast in the quantity of the medial nasal. Frequencies of the quantity contrast were…

  1. Experimental investigations of two-phase flow measurement using ultrasonic sensors

    OpenAIRE

    Abbagoni, Baba Musa

    2016-01-01

    This thesis presents the investigations conducted in the use of ultrasonic technology to measure two-phase flow in both horizontal and vertical pipe flows which is important for the petroleum industry. However, there are still key challenges to measure parameters of the multiphase flow accurately. Four methods of ultrasonic technologies were explored. The Hilbert-Huang transform (HHT) was first applied to the ultrasound signals of air-water flow on horizontal flow for measur...

  2. A Circuit Design and its Experimental Analysis for Electromagnetic Flowmeter in Measurement of Sewage

    OpenAIRE

    Huang Yu-Hang; Zhu Wei-Hua; Jiang Xingfang

    2014-01-01

    There are many problems in the traditional electromagnetic flowmeter. The problems involve three aspects. The first one is that the measurement precision is low. The second one is that the measurement range is narrow. The third one is that the test results are susceptible to interference. For the problems a new electromagnetic flowmeter controlled by single-chip microcomputer has been proposed. The medium/large-sized electromagnetic flowmeter is suitable for measurement of sewage. The softwar...

  3. The development of human factors experimental evaluation technology - 3-dimensional measurement system for motion analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Soo; Pan, Young Hwan; Lee, Ahn Jae; Lee, Kyung Tae; Lim, Chi Hwan; Chang, Pil Sik; Lee, Seok Woo; Han, Sung Wook; Park, Chul Wook [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-07-01

    Measurement of human motion is important in the application of ergonomics. We developed a system which can measure body movement, especially= hand movement using advanced direct video measurement technology. This system has as dynamic accuracy with 1% error and the sampling rate to 6 - 10 Hz, and can analyse the trajectory and speed of the marker. The use of passive marker obviates the need for a marker telemetry system and minimize motion disruption. 18 refs., 4 tabs., 6 figs. (author)

  4. Experimental evaluation of IGBT junction temperature measurement via peak gate current

    DEFF Research Database (Denmark)

    Baker, Nick; Munk-Nielsen, Stig; Iannuzzo, Francesco

    2015-01-01

    Temperature sensitive electrical parameters allow junction temperature measurements on power semiconductors without modification to module packaging. The peak gate current has recently been proposed for IGBT junction temperature measurement and relies on the temperature dependent resistance...... of the gate pad. Consequently, a consideration of chip geometry and location of the gate pad is required before interpreting temperature data from this method. Results are also compared with a traditional electrical temperature measurement method: the voltage drop under low current....

  5. Reactivity change measurements on plutonium-uranium fuel elements in hector experimental techniques and results

    International Nuclear Information System (INIS)

    Tattersall, R.B.; Small, V.G.; MacBean, I.J.; Howe, W.D.

    1964-08-01

    The techniques used in making reactivity change measurements on HECTOR are described and discussed. Pile period measurements were used in the majority of oases, though the pile oscillator technique was used occasionally. These two methods are compared. Flux determinations were made in the vicinity of the fuel element samples using manganese foils, and the techniques used are described and an error assessment made. Results of both reactivity change and flux measurements on 1.2 in. diameter uranium and plutonium-uranium alloy fuel elements are presented, these measurements being carried out in a variety of graphite moderated lattices at temperatures up to 450 deg. C. (author)

  6. Concurrent Validation of Experimental Army Enlisted Personnel Selection and Classification Measures

    National Research Council Canada - National Science Library

    Knapp, Deirdre J; Tremble, Trueman R

    2007-01-01

    .... This report documents the method and results of the criterion-related validation. The predictor set includes measures of cognitive ability, temperament, psychomotor skills, values, expectations...

  7. Monitoring the eye lens: which dose quantity is adequate?

    International Nuclear Information System (INIS)

    Behrens, R; Dietze, G

    2010-01-01

    Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. The question of which personal dose equivalent quantity is appropriate for monitoring the dose to the eye lens arises from this situation. While in many countries dosemeters calibrated in terms of the dose equivalent quantity H p (0.07) have been seen as being adequate for monitoring the dose to the eye lens, this might be questionable in the case of reduced dose limits and, thus, it may become necessary to use the dose equivalent quantity H p (3) for this purpose. To discuss this question, the dose conversion coefficients for the equivalent dose of the eye lens (in the following eye lens dose) were determined for realistic photon and beta radiation fields and compared with the values of the corresponding conversion coefficients for the different operational quantities. The values obtained lead to the following conclusions: in radiation fields where most of the dose comes from photons, especially x-rays, it is appropriate to use dosemeters calibrated in terms of H p (0.07) on a slab phantom, while in other radiation fields (dominated by beta radiation or unknown contributions of photon and beta radiation) dosemeters calibrated in terms of H p (3) on a slab phantom should be used. As an alternative, dosemeters calibrated in terms of H p (0.07) on a slab phantom could also be used; however, in radiation fields containing beta radiation with the end point energy near 1 MeV, an overestimation of the eye lens dose by up to a factor of 550 is possible.

  8. Measurements of combined neutron and photon fluxes for the accurate characterization of the future Jules Horowitz irradiation reactor experimental conditions

    International Nuclear Information System (INIS)

    Fourmentel, D.

    2013-01-01

    A new Material Testing Reactor (MTR), the Jules Horowitz Reactor (JHR), is under construction at the CEA Cadarache (French Alternatives Energies and Atomic Energy Commission). From 2016 this new MTR will be a new facility for the nuclear research on materials and fuels. The quality of the experiments to be conducted in this reactor is largely linked to the good knowledge of the irradiation conditions. Since 2009, a new research program called IN-CORE1 'Instrumentation for Nuclear radiations and Calorimetry Online in Reactor' is under progress between CEA and Aix-Marseille University in the framework of a joint laboratory LIMMEX2. This program aims to improve knowledge of the neutron and photon fluxes in the RJH core, with one hand, an innovative instrumentation performing mapping of experimental locations, and on the other hand by coupling neutron flux, photon flux and thermal measurements. Neutron flux expected in the JHR core is about 10 15 n.cm -2 .s -1 and nuclear heating up to 20 W.g -1 for a nominal power of 100 MWth. One of the challenges is to identify sensors able to measure such fluxes in JHR experimental conditions and to determine how to analyse the signals delivered by these sensors with the most appropriate methods. The thesis is part of this ambitious program and aims to study the potential and the interest of the combination of radiation measurements in the prospect of a better assessment of the levels of neutron flux, gamma radiation and nuclear heating in the JHR experimental locations. The first step of IN-CORE program is to develop and operate an instrumented device called CARMEN-1 adapted to the mapping of the OSIRIS reactor, then to develop a second version called CARMEN-2 dedicated to experiments in the JHR core, especially for its start-up. This experiment was the opportunity to test all the radiation sensors which could meet the needs of JHR, including recently developed sensors. Reference neutron measurements are performed by activation

  9. The relationship between experimental geometry, heat rate, and ultrasound wave speed measurement while observing phase changes in highly attenuative materials

    Science.gov (United States)

    Moore, David G.; Stair, Sarah L.; Jack, David A.

    2018-04-01

    Ultrasound techniques are capable of monitoring changes in the time-of-flight as a material is exposed to different thermal environments. The focus of the present study is to identify the phase of a material via ultrasound compression wave measurements in a through transmission experimental setup as the material is heated from a solid to a liquid and then allowed to re-solidify. The present work seeks to expand upon the authors' previous research, which proved this through transmission phase monitoring technique was possible, by considering different experimental geometries. The relationship between geometry, the measured speed of sound, and the temperature profile is presented. The use of different volumes helps in establishing a baseline understanding of which aspects of the experiment are geometry dependent and which are independent. The present study also investigates the relationship between the heating rate observed in the experiment and the measured speed of sound. The trends identified between the experimental geometry, heat rate and ultrasound wave speed measurement assist in providing a baseline understanding of the applicability of this technique to various industries, including the polymer industry and the oil industry.

  10. Sensitivity study of experimental measures for the nuclear liquid-gas phase transition in the statistical multifragmentation model

    Science.gov (United States)

    Lin, W.; Ren, P.; Zheng, H.; Liu, X.; Huang, M.; Wada, R.; Qu, G.

    2018-05-01

    The experimental measures of the multiplicity derivatives—the moment parameters, the bimodal parameter, the fluctuation of maximum fragment charge number (normalized variance of Zmax, or NVZ), the Fisher exponent (τ ), and the Zipf law parameter (ξ )—are examined to search for the liquid-gas phase transition in nuclear multifragmention processes within the framework of the statistical multifragmentation model (SMM). The sensitivities of these measures are studied. All these measures predict a critical signature at or near to the critical point both for the primary and secondary fragments. Among these measures, the total multiplicity derivative and the NVZ provide accurate measures for the critical point from the final cold fragments as well as the primary fragments. The present study will provide a guide for future experiments and analyses in the study of the nuclear liquid-gas phase transition.

  11. Sexy but often unreliable: the impact of unreliability on the replicability of experimental findings with implicit measures.

    Science.gov (United States)

    Lebel, Etienne P; Paunonen, Sampo V

    2011-04-01

    Implicit measures have contributed to important insights in almost every area of psychology. However, various issues and challenges remain concerning their use, one of which is their considerable variation in reliability, with many implicit measures having questionable reliability. The goal of the present investigation was to examine an overlooked consequence of this liability with respect to replication, when such implicit measures are used as dependent variables in experimental studies. Using a Monte Carlo simulation, the authors demonstrate that a higher level of unreliability in such dependent variables is associated with substantially lower levels of replicability. The results imply that this overlooked consequence can have far-reaching repercussions for the development of a cumulative science. The authors recommend the routine assessment and reporting of the reliability of implicit measures and also urge the improvement of implicit measures with low reliability.

  12. Analysis of experimental measurements of PWR fresh and spent fuel assemblies using Self-Interrogation Neutron Resonance Densitometry

    Energy Technology Data Exchange (ETDEWEB)

    LaFleur, Adrienne M., E-mail: alafleur@lanl.gov; Menlove, Howard O., E-mail: hmenlove@lanl.gov

    2015-05-01

    Self-Interrogation Neutron Resonance Densitometry (SINRD) is a new NDA technique that was developed at Los Alamos National Laboratory (LANL) to improve existing nuclear safeguards measurements for LWR fuel assemblies. The SINRD detector consists of four fission chambers (FCs) wrapped with different absorber filters to isolate different parts of the neutron energy spectrum and one ion chamber (IC) to measure the gross gamma rate. As a result, two different techniques can be utilized using the same SINRD detector unit and hardware. These techniques are the Passive Neutron Multiplication Counter (PNMC) method and the SINRD method. The focus of the work described in this paper is the analysis of experimental measurements of fresh and spent PWR fuel assemblies that were performed at LANL and the Korea Atomic Energy Research Institute (KAERI), respectively, using the SINRD detector. The purpose of these experiments was to assess the following capabilities of the SINRD detector: 1) reproducibility of measurements to quantify systematic errors, 2) sensitivity to water gap between detector and fuel assembly, 3) sensitivity and penetrability to the removal of fuel rods from the assembly, and 4) use of PNMC/SINRD ratios to quantify neutron multiplication and/or fissile content. The results from these simulations and measurements provide valuable experimental data that directly supports safeguards research and development (R&D) efforts on the viability of passive neutron NDA techniques and detector designs for partial defect verification of spent fuel assemblies. - Highlights: • Experimental measurements of PWR fresh and spent FAs were performed with SINRD. • Good agreement of MCNPX and measured results confirmed accuracy of SINRD model. • For fresh fuel, SINRD and PNMC ratios were not sensitive to water gaps of ≤5-mm. • Practical use of SINRD would be in Fork detector to reduce systematic uncertainties.

  13. A measuring stick for other minds. Comment on 'Seeing mental states: An experimental strategy for measuring the observability of other minds' by Cristina Becchio et al.

    Science.gov (United States)

    Zillekens, Imme Christina; Schilbach, Leonhard

    2018-03-01

    In their compelling article 'Seeing mental states: An experimental strategy for measuring the observability of other minds' Becchio et al. [1] tackle a long-standing and controversial issue, namely the perennial question of whether we can access or even quite literally see other minds. Much of the relevant interdisciplinary literature is built on the premise that one's access to others' minds is indirect and inferential in nature [e.g. [4,5

  14. Measuring Linguistic Empathy: An Experimental Approach to Connecting Linguistic and Social Psychological Notions of Empathy

    Science.gov (United States)

    Kann, Trevor

    2017-01-01

    This dissertation investigated the relationship between Linguistic Empathy and Psychological Empathy by implementing a psycholinguistic experiment that measured a person's acceptability ratings of sentences with violations of Linguistic Empathy and correlating them with a measure of the person's Psychological Empathy. Linguistic Empathy…

  15. Pneumothorax monitoring by remittance measurement: Comparison between experimental model and animal studies

    NARCIS (Netherlands)

    Beek, J. F.; Menovsky, T.; van Straaten, H. L.; Sterenborg, H. J.; Koppe, J. G.; van Gemert, M. J.

    1999-01-01

    Pneumothorax monitoring by remittance measurement in neonatology is investigated using model experiments. The results are compared to previous animal experiments. A multifibre probe is used to measure the change in remittance at 632.8 nm and 790 nm as a function of the thickness of a layer of air

  16. An experimental setup for measuring generation and transport of radon in building materials

    NARCIS (Netherlands)

    van der Pal, M.; Hendriks, N.A.; de Meijer, R.J.; van der Graaf, E.R.; de Wit, M.H.

    2001-01-01

    This study describes an approach for measuring and modelling diffusive and advective transport of radon through building materials. The goal of these measurements and model calculations is to improve our understanding concerning the factors influencing the transport of radon through building

  17. Experimental Setup for Measuring Diffusive and Advective Transport of Radon through Building Materials

    NARCIS (Netherlands)

    Pal, van der M.; Graaf, van der E.R.; Meijer, de R.J.; Wit, de M.H.; Hendriks, N.A.

    2000-01-01

    This study describes an approach for measuring and modelling diffusive and advective transport of radon through building materials. The goal of these measurements and model calculations is to improve our understanding concerning the factors influencing the transport of radon through building

  18. Experimental and numerical investigation of the flow measurement method utilized in the steam generator of HTR-PM

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shiming; Ren, Cheng; Sun, Yangfei [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Tu, Jiyuan [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); School of Aerospace, Mechanical & Manufacturing Engineering, RMIT University, Melbourne, VIC 3083 (Australia); Yang, Xingtuan, E-mail: yangxt107@sina.com [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China)

    2016-08-15

    Highlights: • The flow confluence process in the steam generator is very important for HTR-PM. • The complicated flow in the unique pipeline configuration is studied by both of experimental and numerical method. • The pressure uniformity at the bottom of the model was tested to evaluate the accuracy of the experimental results. • Flow separation and the secondary flow is described for explaining the nonuniformity of the flow distribution. - Abstract: The helium flow measurement method is very important for the design of HTR-PM. Water experiments and numerical simulation with a 1/5 scaled model are conducted to investigate the flow measurement method utilized in the steam generator of HTR-PM. Pressure information at specific location of the 90° elbows with the diameter of 46.75 mm and radius ratio of 1.5 is measured to evaluate the flow rate in the riser-pipes. Pressure uniformity at the bottom of the experimental apparatus is tested to evaluate the influence of the equipment error on the final experimental results. Numerical results obtained by using the realizable k–ε model are compared with the experimental data. The results reveal that flow oscillation does not occur in the confluence system. For every single riser-pipe, the flow is stable despite the nonuniformity of the flow distribution. The average flow rates of the two pipe series show good repeatability regardless of the increases and decreases of the average velocity. In the header box, the flows out of the riser-pipes encounter with each other and finally distort the pressure distribution and the nonuniformity of the flow distribution becomes more significant along with the increasing Reynolds number.

  19. A real-time assessment of measurement uncertainty in the experimental characterization of sprays

    International Nuclear Information System (INIS)

    Panão, M R O; Moreira, A L N

    2008-01-01

    This work addresses the estimation of the measurement uncertainty of discrete probability distributions used in the characterization of sprays. A real-time assessment of this measurement uncertainty is further investigated, particularly concerning the informative quality of the measured distribution and the influence of acquiring additional information on the knowledge retrieved from statistical analysis. The informative quality is associated with the entropy concept as understood in information theory (Shannon entropy), normalized by the entropy of the most informative experiment. A new empirical correlation is derived between the error accuracy of a discrete cumulative probability distribution and the normalized Shannon entropy. The results include case studies using: (i) spray impingement measurements to study the applicability of the real-time assessment of measurement uncertainty, and (ii) the simulation of discrete probability distributions of unknown shape or function to test the applicability of the new correlation

  20. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  1. Statistical examination of particle in a turbulent, non-dilute particle suspension flow experimental measurements

    International Nuclear Information System (INIS)

    Souza, R.C.; Jones, B.G.

    1986-01-01

    An experimental study of particles suspended in fully developed turbulent water flow in a vertical pipe was done. Three series of experiments were conducted to investigate the statistical behaviour of particles in nondilute turbulent suspension flow, for two particle densities and particle sizes, and for several particle volume loadings ranging from 0 to 1 percent. The mean free fall velocity of the particles was determined at these various particle volume loadings, and the phenomenon of cluster formation was observed. The precise volume loading which gives the maximum relative settling velocity was observed to depend on particle density and size. (E.G.) [pt

  2. An experimental technique to measure the capillary waves in electrified microjets

    Directory of Open Access Journals (Sweden)

    Rebollo-Muñoz Noelia

    2012-04-01

    Full Text Available Backlight optical imaging is an experimental technique with an enormous potential in microfluidics to study very varied fluid configurations and phenomena. In this paper, we show the capability of this technique to precisely characterize the capillary waves growing in electrified microjets. For this purpose, images of electrified liquid jets formed by electrospray were acquired and processed using a sub-pixel resolution technique. Our results reflect the validity and usefulness of optical imaging for this type of application.

  3. A study of calculation methodology and experimental measurements of the kinetic parameters for source driven subcritical systems

    International Nuclear Information System (INIS)

    Lee, Seung Min

    2009-01-01

    This work presents a theoretical study of reactor kinetics focusing on the methodology of calculation and the experimental measurements of the so-called kinetic parameters. A comparison between the methodology based on the Dulla's formalism and the classical method is made. The objective is to exhibit the dependence of the parameters on subcriticality level and perturbation. Two different slab type systems were considered: thermal one and fast one, both with homogeneous media. One group diffusion model was used for the fast reactor, and for the thermal system, two groups diffusion model, considering, in both case, only one precursor's family. The solutions were obtained using the expansion method. Also, descriptions of the main experimental methods of measurements of the kinetic parameters are presented in order to put a question about the compatibility of these methods in subcritical region. (author)

  4. Numerical and experimental investigation of thermoelectric cooling in down-hole measuring tools; a case study

    Directory of Open Access Journals (Sweden)

    Rohitha Weerasinghe

    2017-09-01

    Full Text Available Use of Peltier cooling in down-hole seismic tooling has been restricted by the performance of such devices at elevated temperatures. Present paper analyses the performance of Peltier cooling in temperatures suited for down-hole measuring equipment using measurements, predicted manufacturer data and computational fluid dynamic analysis. Peltier performance prediction techniques is presented with measurements. Validity of the extrapolation of thermoelectric cooling performance at elevated temperatures has been tested using computational models for thermoelectric cooling device. This method has been used to model cooling characteristics of a prototype downhole tool and the computational technique used has been proven valid.

  5. Experimental measurements of static pressure and pressure drop in a duct enclosing a seven wire-wrapped rod bundle

    International Nuclear Information System (INIS)

    Graca, M.C.; Ballve, H.; Fernandez y Fernandez, E.; Carajilescov, P.

    1981-01-01

    The friction factor and the static pressure distributions, in the axial and transversal directions, in the wall of the hexagonal duct, enclosing a seven wire-wrapped rod bundle, were experimentally measured, using an air opened loop. The Reynolds numbers are the range 10 3 - 5x10 4 . The friction factors are compared to existing correlations. The static pressure distributions show that the static pressure is not hydrostatic in the cross section of the flow. (Author) [pt

  6. Effects of Fuel Quantity on Soot Formation Process for Biomass-Based Renewable Diesel Fuel Combustion

    KAUST Repository

    Jing, Wei; Wu, Zengyang; Roberts, William L.; Fang, Tiegang

    2016-01-01

    Soot formation process was investigated for biomass-based renewable diesel fuel, such as biomass to liquid (BTL), and conventional diesel combustion under varied fuel quantities injected into a constant volume combustion chamber. Soot measurement

  7. Comparison of Experimental Surface and Flow Field Measurements to Computational Results of the Juncture Flow Model

    Science.gov (United States)

    Roozeboom, Nettie H.; Lee, Henry C.; Simurda, Laura J.; Zilliac, Gregory G.; Pulliam, Thomas H.

    2016-01-01

    Wing-body juncture flow fields on commercial aircraft configurations are challenging to compute accurately. The NASA Advanced Air Vehicle Program's juncture flow committee is designing an experiment to provide data to improve Computational Fluid Dynamics (CFD) modeling in the juncture flow region. Preliminary design of the model was done using CFD, yet CFD tends to over-predict the separation in the juncture flow region. Risk reduction wind tunnel tests were requisitioned by the committee to obtain a better understanding of the flow characteristics of the designed models. NASA Ames Research Center's Fluid Mechanics Lab performed one of the risk reduction tests. The results of one case, accompanied by CFD simulations, are presented in this paper. Experimental results suggest the wall mounted wind tunnel model produces a thicker boundary layer on the fuselage than the CFD predictions, resulting in a larger wing horseshoe vortex suppressing the side of body separation in the juncture flow region. Compared to experimental results, CFD predicts a thinner boundary layer on the fuselage generates a weaker wing horseshoe vortex resulting in a larger side of body separation.

  8. Impulsivity in Multiplayer Online Battle Arena Gamers: Preliminary Results on Experimental and Self-Report Measures.

    Science.gov (United States)

    Nuyens, Filip; Deleuze, Jory; Maurage, Pierre; Griffiths, Mark D; Kuss, Daria J; Billieux, Joël

    2016-06-01

    Background and aims Multiplayer Online Battle Arena (MOBA) games have become the most popular type of video games played worldwide, superseding the playing of Massively Multiplayer Online Role-Playing Games and First-Person Shooter games. However, empirical studies focusing on the use and abuse of MOBA games are still very limited, particularly regarding impulsivity, which is an indicator of addictive states but has not yet been explored in MOBA games. In this context, the objective of the present study is to explore the associations between impulsivity and symptoms of addictive use of MOBA games in a sample of highly involved League of Legends (LoL, currently the most popular MOBA game) gamers. Methods Thirty-six LoL gamers were recruited and completed both experimental (Single Key Impulsivity Paradigm) and self-reported impulsivity assessments (s-UPPS-P Impulsive Behavior Scale, Barratt Impulsiveness Scale), in addition to an assessment of problematic video game use (Problematic Online Gaming Questionnaire). Results Results showed links between impulsivity-related constructs and signs of excessive MOBA game involvement. Findings indicated that impaired ability to postpone rewards in an experimental laboratory task was strongly related to problematic patterns of MOBA game involvement. Although less consistent, several associations were also found between self-reported impulsivity traits and signs of excessive MOBA game involvement. Conclusions Despite these results are preliminary and based upon a small (self-selected) sample, the present study highlights potential psychological factors related to the addictive use of MOBA games.

  9. Impulsivity in Multiplayer Online Battle Arena Gamers: Preliminary Results on Experimental and Self-Report Measures

    Science.gov (United States)

    Nuyens, Filip; Deleuze, Jory; Maurage, Pierre; Griffiths, Mark D.; Kuss, Daria J.; Billieux, Joël

    2016-01-01

    Background and aims Multiplayer Online Battle Arena (MOBA) games have become the most popular type of video games played worldwide, superseding the playing of Massively Multiplayer Online Role-Playing Games and First-Person Shooter games. However, empirical studies focusing on the use and abuse of MOBA games are still very limited, particularly regarding impulsivity, which is an indicator of addictive states but has not yet been explored in MOBA games. In this context, the objective of the present study is to explore the associations between impulsivity and symptoms of addictive use of MOBA games in a sample of highly involved League of Legends (LoL, currently the most popular MOBA game) gamers. Methods Thirty-six LoL gamers were recruited and completed both experimental (Single Key Impulsivity Paradigm) and self-reported impulsivity assessments (s-UPPS-P Impulsive Behavior Scale, Barratt Impulsiveness Scale), in addition to an assessment of problematic video game use (Problematic Online Gaming Questionnaire). Results Results showed links between impulsivity-related constructs and signs of excessive MOBA game involvement. Findings indicated that impaired ability to postpone rewards in an experimental laboratory task was strongly related to problematic patterns of MOBA game involvement. Although less consistent, several associations were also found between self-reported impulsivity traits and signs of excessive MOBA game involvement. Conclusions Despite these results are preliminary and based upon a small (self-selected) sample, the present study highlights potential psychological factors related to the addictive use of MOBA games. PMID:27156376

  10. Measurement of proton capture reactions in the hot cycles: an evaluation of experimental methods

    Energy Technology Data Exchange (ETDEWEB)

    Leleux, P [Inst. de Physique Nucleaire, Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium)

    1998-06-01

    In the hot cycles, most of the proton capture reactions involve radioactive nuclei in the entrance and exit channels. This paper evaluates the specific methods that were designed to measure such reactions. (orig.)

  11. A Circuit Design and its Experimental Analysis for Electromagnetic Flowmeter in Measurement of Sewage

    Directory of Open Access Journals (Sweden)

    Huang Yu-Hang

    2014-02-01

    Full Text Available There are many problems in the traditional electromagnetic flowmeter. The problems involve three aspects. The first one is that the measurement precision is low. The second one is that the measurement range is narrow. The third one is that the test results are susceptible to interference. For the problems a new electromagnetic flowmeter controlled by single-chip microcomputer has been proposed. The medium/large-sized electromagnetic flowmeter is suitable for measurement of sewage. The software and hardware circuit of the electromagnetic flowmeter has been designed and tested. The tested data have been analyzed by the least square method and the error is 0.8 %. The result shown that the electromagnetic flowmeter controlled by single-chip microcomputer for measurement of sewage has reached the advanced level of similar products at home and abroad.

  12. Experimental Procedures for the Measurement of Polymer Solubility and Rheological Properties

    National Research Council Canada - National Science Library

    Shuely, Wendel

    2001-01-01

    ... of solutions between surfaces. The preparation and property measurement of polymer solutions is an important aspect of several of these investigations and rather than report these methods separately, the development...

  13. Experimental verification of air flow rate measurement for representative isokinetic air sampling in ventilation stacks

    International Nuclear Information System (INIS)

    Okruhlica, P.; Mrtvy, M.; Kopecky, Z.

    2009-01-01

    Nuclear facilities are obliged to monitor their discharge's influence on environment. Main monitored factions in NPP's ventilation stacks are usually noble gasses, particulates and iodine. These factions are monitored in air sampled from ventilation stack by means of sampling rosette and bypass followed with on-line measuring monitors and balance sampling devices with laboratory evaluations. Correct air flow rate measurement and representative iso-kinetic air sampling system is essential for physical correct and metrological accurate evaluation of discharge influence on environment. Pairs of measuring sensors (Anemometer, pressure gauge, thermometer and humidity meter) are symmetrically placed in horizontal projection of stack on positions based on measured air flow velocity distribution characteristic, Analogically diameter of sampling rosette nozzles and their placement in the middle of 6 - 7 annuluses are calculated for assurance of representative iso-kinetic sampling. (authors)

  14. Experimental verification of air flow rate measurement for representative isokinetic air sampling in ventilation stacks

    International Nuclear Information System (INIS)

    Okruhlica, P.; Mrtvy, M.; Kopecky, Z.

    2008-01-01

    Nuclear facilities are obliged to monitor their discharge's influence on environment. Main monitored factions in NPP's ventilation stacks are usually noble gasses, particulates and iodine. These factions are monitored in air sampled from ventilation stack by means of sampling rosette and bypass followed with on-line measuring monitors and balance sampling devices with laboratory evaluations. Correct air flow rate measurement and representative iso-kinetic air sampling system is essential for physical correct and metrological accurate evaluation of discharge influence on environment. Pairs of measuring sensors (Anemometer, pressure gauge, thermometer and humidity meter) are symmetrically placed in horizontal projection of stack on positions based on measured air flow velocity distribution characteristic, Analogically diameter of sampling rosette nozzles and their placement in the middle of 6- 7 annuluses are calculated for assurance of representative iso-kinetic sampling. (authors)

  15. Measurements of relevant parameters in the formation of clathrate hydrates by a novel experimental apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Arca, S.; Di Profio, P.; Germani, R.; Savelli, G. [Perugia Univ., CEMIN, Perugia (Italy). Dept. of Chemistry

    2008-07-01

    There is a growing interest in understanding the thermodynamics and kinetics of clathrate hydrate formation. This paper presented a study that involved the design, construction, calibration, and testing of a new apparatus that could obtain as many parameters as possible in a single formation batch and that could measure unexplored clathrate hydrate parameters. The apparatus was capable of measuring equilibrium phases involving gaseous components. The paper described the conceptual design as well as the chamber, pressure line, temperature control, liquid addition line, and conductometric probe. The paper also discussed data acquisition, stirring, measurement examples, and internal illumination and video monitoring. It was concluded that refining measurements, particularly those concerning kinetic characterizations, is important in order to clarify several uncertain kinetic behaviors of clathrate hydrates. 6 refs., 16 figs.

  16. Experimental measurement of the refrigerant temperature of the TRIGA Mark III reactor of the ININ

    International Nuclear Information System (INIS)

    Gallardo S, L.F.; Alonso V, G.

    1991-08-01

    With the object of knowing the axial temperature profile of the refrigerant in the core of the TRIGA Mark III reactor of the ININ, the temperatures of this, at the enter, in the center and the exit of the core were measured, in the positions: west 2, north 2 and south 1. This was made by means of the thermo pars introduction mounted in aluminum guides, connected to a measurer of digital temperature, whose resolution is of ± 0.1 C. The measurements showed a bigger heating of the refrigerant in the superior half of the core, that which suggests that the axial profile of temperature of the reactor is not symmetrical with respect to the center or that those temperature measurements in the center are not correct. (Author)

  17. Dual Rotating Rake Measurements of Higher-Order Duct Modes: Validation Using Experimental and Numerical Data

    Science.gov (United States)

    Dahl, Milo D.; Hixon, Duane R.; Sutliff, Daniel L.

    2018-01-01

    A rotating rake mode measurement system was designed to measure acoustic duct modes generated by a fan stage. After analysis of the measured data, the mode coefficient amplitudes and phases were quantified. Early studies using this system found that mode power levels computed from rotating rake measured data would agree with the far-field power levels. However, this agreement required that the sound from the noise sources within the duct propagated outward from the duct exit without reflection and previous studies suggested conditions could exist where significant reflections could occur. This paper shows that mounting a second rake to the rotating system, with an offset in both the axial and the azimuthal directions, measures the data necessary to determine the modes propagating in both directions within a duct. The rotating rake data analysis technique was extended to include the data measured by the second rake. The analysis resulted in a set of circumferential mode coefficients at each of the two rake microphone locations. Radial basis functions were then least-squares fit to this data to obtain the radial mode coefficients for the modes propagating in both directions within the duct while accounting for the presence of evanescent modes. The validation of the dual-rotating-rake measurements was conducted using data from a combination of experiments and numerical calculations to compute reflection coefficients and other mode coefficient ratios. Compared to results from analytical and numerical computations, the results from dual-rotating-rake measured data followed the expected trends when frequency, mode number, and duct termination geometry were changed.

  18. Experimental Study on the Measurement of Water Bottom Vibration Induced by Underwater Drilling Blasting

    OpenAIRE

    Wenbin, Gu; Jianghai, Chen; Zhenxiong, Wang; Zhihua, Wang; Jianqing, Liu; Ming, Lu

    2015-01-01

    Due to the lack of proper instrumentations and the difficulties in underwater measurements, the studies about water bottom vibration induced by underwater drilling blasting are seldom reported. In order to investigate the propagation and attenuation laws of blasting induced water bottom vibration, a water bottom vibration monitor was developed with consideration of the difficulties in underwater measurements. By means of this equipment, the actual water bottom vibration induced by underwater ...

  19. Experimental study using of a G-M counter and {sup 137}Cs source to measure the HVL with lead

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Dae Cheol [Dept. of Radiological Science, College of Health Science, Shinhan University, Uijeongbu (Korea, Republic of); Dong, Kyung Rae [Dept. of Radiological Technology, Gwangju Health University, Gwangju (Korea, Republic of)

    2016-11-15

    HVL(half-value layer) of lead was measured experimentally using a lead and {sup 137}Cs (370 kBq) source and a G-M counter in which is used a lot of material for shielding HVL measured. {sup 137}Cs in holder to 10 cm and start measuring the radiation. Continue addition of lead of the lead thickness of 1 mm one by one to continue the measurement. By measuring four times the natural radiation of 100 seconds and records the count value and the average rate to be displayed on the meter. Background radiation was a 4 times a count rate and the average 108 (100 s{sup -1}) as a result of measuring the average measurement, the standard deviation was determined to be 1.08 (s{sup -1}). An increase in the thickness of lead initial count rate starting from 920 (N) count rate is decreased with increase in the thickness of lead. Net counting rate, starting with the initial 8.12 (s{sup -1}) showed a decrease with increasing thickness, the standard deviation of the results was decreased from 0.303 (s{sup -1}) to 0.196 (s{sup -1}). Net counting rate is reduced to obtain the result that each half thickness of nappan about 7 mm. Was reduced similarly to the exponential function graph correlation coefficient (R{sup 2}) was found to be 0.9869. Half-value layer which is the initial net counting rate 7.514 (s{sup -1}) is a half the 7 mm to 3.757 (s{sup -1}). In conclusion, it was confirmed the theoretical HVL of lead 7.19 mm and experimentally measured results matched the measured HVL 7 mm.

  20. Study on influences of experimental factors on energy and absolute activity measurements of alpha-emitters

    International Nuclear Information System (INIS)

    Terini, R.A.

    1991-01-01

    This work presents firstly a review of the fundamental results and conclusions obtained through alpha-spectrometry and alpha-counting, and the influence of energy straggling, energy loss, self-absorption and backscattering, on the determination of the energy and the absolute activity of alpha samples. Is is shown that the techniques of source fabrication and the methods of measurements play a capital influence on the obtained results. Moreover, measurements made by us, with a silicon surface barrier detector, show that the peak-asymmetry and peak-shift of an alpha-spectrum increases with the angle of emission, and that the magnitude of this effect depends on the thickness and homogeneity of the sample, as well as on the geometry of the measuring system. Through an analysis of the angular distribution of the emitted particles, the degree of isotropy of some thin Am sup(241) sources was measured and the influence of source backing and the geometry was analysed. We can conclude that, in general, there is a larger precision in measurements made under very small solid angles around the normal to the sample, and we enphasize the necessary cares required on the production of the source and on the set up of the measuring system. (author)