WorldWideScience

Sample records for measured ecg signals

  1. ECG signal processing

    NARCIS (Netherlands)

    2009-01-01

    A system extracts an ECG signal from a composite signal (308) representing an electric measurement of a living subject. Identification means (304) identify a plurality of temporal segments (309) of the composite signal corresponding to a plurality of predetermined segments (202,204,206) of an ECG

  2. Measurements on wireless transmission of ECG signals

    International Nuclear Information System (INIS)

    Gabrielli, A.; Lax, I.

    2016-01-01

    The scope of this research is to design an electronic prototype, an operative system as a proof of concept, to transmit and receive biological parameters, in particular electrocardiogram signals, through dedicated wireless circuits. The apparatus features microelectronics chips that were developed for more general biomedical applications, here adapted to deal with cardiac signals. The paper mainly focuses on the electronic aspects, as in this study we do not face medical or clinical aspects of the system. The transmitter circuit uses a commercial instrumentation amplifier and the receiver has been equipped with wide-band amplifiers along with made-in-the-lab band-pass filters centered at the carrier. We have been able to mount the entire system prototype into a preliminary data acquisition chain that reads out the electrocardiogram signal. The prototype allows acquiring the waveform, converting it to a digital pattern and open the transmission through a series of high-frequency packets exploiting the Ultra Wide Band protocol. The sensor value is embedded in the transmission through the rate of the digital packets. In fact, these are sent wireless at a specific packet-frequency that depends on the sensor amplitude and are detected into a receiver circuit that recovers the information.

  3. Measurements on wireless transmission of ECG signals

    Science.gov (United States)

    Gabrielli, A.; Lax, I.

    2016-12-01

    The scope of this research is to design an electronic prototype, an operative system as a proof of concept, to transmit and receive biological parameters, in particular electrocardiogram signals, through dedicated wireless circuits. The apparatus features microelectronics chips that were developed for more general biomedical applications, here adapted to deal with cardiac signals. The paper mainly focuses on the electronic aspects, as in this study we do not face medical or clinical aspects of the system. The transmitter circuit uses a commercial instrumentation amplifier and the receiver has been equipped with wide-band amplifiers along with made-in-the-lab band-pass filters centered at the carrier. We have been able to mount the entire system prototype into a preliminary data acquisition chain that reads out the electrocardiogram signal. The prototype allows acquiring the waveform, converting it to a digital pattern and open the transmission through a series of high-frequency packets exploiting the Ultra Wide Band protocol. The sensor value is embedded in the transmission through the rate of the digital packets. In fact, these are sent wireless at a specific packet-frequency that depends on the sensor amplitude and are detected into a receiver circuit that recovers the information.

  4. Design of a Continuous Blood Pressure Measurement System Based on Pulse Wave and ECG Signals.

    Science.gov (United States)

    Li, Jian-Qiang; Li, Rui; Chen, Zhuang-Zhuang; Deng, Gen-Qiang; Wang, Huihui; Mavromoustakis, Constandinos X; Song, Houbing; Ming, Zhong

    2018-01-01

    With increasingly fierce competition for jobs, the pressures on people have risen in recent years, leading to lifestyle and diet disorders that result in significantly higher risks of cardiovascular disease. Hypertension is one of the common chronic cardiovascular diseases; however, mainstream blood pressure measurement devices are relatively heavy. When multiple measurements are required, the user experience and the measurement results may be unsatisfactory. In this paper, we describe the design of a signal collection module that collects pulse waves and electrocardiograph (ECG) signals. The collected signals are input into a signal processing module to filter the noise and amplify the useful physiological signals. Then, we use a wavelet transform to eliminate baseline drift noise and detect the feature points of the pulse waves and ECG signals. We propose the concept of detecting the wave shape associated with an instance, an approach that minimizes the impact of atypical pulse waves on blood pressure measurements. Finally, we propose an improved method for measuring blood pressure based on pulse wave velocity that improves the accuracy of blood pressure measurements by 58%. Moreover, the results meet the american medical instrument promotion association standards, which demonstrate the feasibility of our measurement system.

  5. Enhancement of Twins Fetal ECG Signal Extraction Based on Hybrid Blind Extraction Techniques

    Directory of Open Access Journals (Sweden)

    Ahmed Kareem Abdullah

    2017-07-01

    Full Text Available ECG machines are noninvasive system used to measure the heartbeat signal. It’s very important to monitor the fetus ECG signals during pregnancy to check the heat activity and to detect any problem early before born, therefore the monitoring of ECG signals have clinical significance and importance. For multi-fetal pregnancy case the classical filtering algorithms are not sufficient to separate the ECG signals between mother and fetal. In this paper the mixture consists of mixing from three ECG signals, the first signal is the mother ECG (M-ECG signal, second signal the Fetal-1 ECG (F1-ECG, and third signal is the Fetal-2 ECG (F2-ECG, these signals are extracted based on modified blind source extraction (BSE techniques. The proposed work based on hybridization between two BSE techniques to ensure that the extracted signals separated well. The results demonstrate that the proposed work very efficiently to extract the useful ECG signals

  6. Detection of driving fatigue by using noncontact EMG and ECG signals measurement system.

    Science.gov (United States)

    Fu, Rongrong; Wang, Hong

    2014-05-01

    Driver fatigue can be detected by constructing a discriminant mode using some features obtained from physiological signals. There exist two major challenges of this kind of methods. One is how to collect physiological signals from subjects while they are driving without any interruption. The other is to find features of physiological signals that are of corresponding change with the loss of attention caused by driver fatigue. Driving fatigue is detected based on the study of surface electromyography (EMG) and electrocardiograph (ECG) during the driving period. The noncontact data acquisition system was used to collect physiological signals from the biceps femoris of each subject to tackle the first challenge. Fast independent component analysis (FastICA) and digital filter were utilized to process the original signals. Based on the statistical analysis results given by Kolmogorov-Smirnov Z test, the peak factor of EMG (p fatigue of drivers. The discriminant criterion of fatigue was obtained from the training samples by using Mahalanobis distance, and then the average classification accuracy was given by 10-fold cross-validation. The results showed that the method proposed in this paper can give well performance in distinguishing the normal state and fatigue state. The noncontact, onboard vehicle drivers' fatigue detection system was developed to reduce fatigue-related risks.

  7. Assessing ECG signal quality indices to discriminate ECGs with artefacts from pathologically different arrhythmic ECGs.

    Science.gov (United States)

    Daluwatte, C; Johannesen, L; Galeotti, L; Vicente, J; Strauss, D G; Scully, C G

    2016-08-01

    False and non-actionable alarms in critical care can be reduced by developing algorithms which assess the trueness of an arrhythmia alarm from a bedside monitor. Computational approaches that automatically identify artefacts in ECG signals are an important branch of physiological signal processing which tries to address this issue. Signal quality indices (SQIs) derived considering differences between artefacts which occur in ECG signals and normal QRS morphology have the potential to discriminate pathologically different arrhythmic ECG segments as artefacts. Using ECG signals from the PhysioNet/Computing in Cardiology Challenge 2015 training set, we studied previously reported ECG SQIs in the scientific literature to differentiate ECG segments with artefacts from arrhythmic ECG segments. We found that the ability of SQIs to discriminate between ECG artefacts and arrhythmic ECG varies based on arrhythmia type since the pathology of each arrhythmic ECG waveform is different. Therefore, to reduce the risk of SQIs classifying arrhythmic events as noise it is important to validate and test SQIs with databases that include arrhythmias. Arrhythmia specific SQIs may also minimize the risk of misclassifying arrhythmic events as noise.

  8. A novel biometric authentication approach using ECG and EMG signals.

    Science.gov (United States)

    Belgacem, Noureddine; Fournier, Régis; Nait-Ali, Amine; Bereksi-Reguig, Fethi

    2015-05-01

    Security biometrics is a secure alternative to traditional methods of identity verification of individuals, such as authentication systems based on user name and password. Recently, it has been found that the electrocardiogram (ECG) signal formed by five successive waves (P, Q, R, S and T) is unique to each individual. In fact, better than any other biometrics' measures, it delivers proof of subject's being alive as extra information which other biometrics cannot deliver. The main purpose of this work is to present a low-cost method for online acquisition and processing of ECG signals for person authentication and to study the possibility of providing additional information and retrieve personal data from an electrocardiogram signal to yield a reliable decision. This study explores the effectiveness of a novel biometric system resulting from the fusion of information and knowledge provided by ECG and EMG (Electromyogram) physiological recordings. It is shown that biometrics based on these ECG/EMG signals offers a novel way to robustly authenticate subjects. Five ECG databases (MIT-BIH, ST-T, NSR, PTB and ECG-ID) and several ECG signals collected in-house from volunteers were exploited. A palm-based ECG biometric system was developed where the signals are collected from the palm of the subject through a minimally intrusive one-lead ECG set-up. A total of 3750 ECG beats were used in this work. Feature extraction was performed on ECG signals using Fourier descriptors (spectral coefficients). Optimum-Path Forest classifier was used to calculate the degree of similarity between individuals. The obtained results from the proposed approach look promising for individuals' authentication.

  9. Parametric modelling of cardiac system multiple measurement signals: an open-source computer framework for performance evaluation of ECG, PCG and ABP event detectors.

    Science.gov (United States)

    Homaeinezhad, M R; Sabetian, P; Feizollahi, A; Ghaffari, A; Rahmani, R

    2012-02-01

    The major focus of this study is to present a performance accuracy assessment framework based on mathematical modelling of cardiac system multiple measurement signals. Three mathematical algebraic subroutines with simple structural functions for synthetic generation of the synchronously triggered electrocardiogram (ECG), phonocardiogram (PCG) and arterial blood pressure (ABP) signals are described. In the case of ECG signals, normal and abnormal PQRST cycles in complicated conditions such as fascicular ventricular tachycardia, rate dependent conduction block and acute Q-wave infarctions of inferior and anterolateral walls can be simulated. Also, continuous ABP waveform with corresponding individual events such as systolic, diastolic and dicrotic pressures with normal or abnormal morphologies can be generated by another part of the model. In addition, the mathematical synthetic PCG framework is able to generate the S4-S1-S2-S3 cycles in normal and in cardiac disorder conditions such as stenosis, insufficiency, regurgitation and gallop. In the PCG model, the amplitude and frequency content (5-700 Hz) of each sound and variation patterns can be specified. The three proposed models were implemented to generate artificial signals with varies abnormality types and signal-to-noise ratios (SNR), for quantitative detection-delineation performance assessment of several ECG, PCG and ABP individual event detectors designed based on the Hilbert transform, discrete wavelet transform, geometric features such as area curve length (ACLM), the multiple higher order moments (MHOM) metric, and the principal components analysed geometric index (PCAGI). For each method the detection-delineation operating characteristics were obtained automatically in terms of sensitivity, positive predictivity and delineation (segmentation) error rms and checked by the cardiologist. The Matlab m-file script of the synthetic ECG, ABP and PCG signal generators are available in the Appendix.

  10. ECG contamination of EEG signals: effect on entropy.

    Science.gov (United States)

    Chakrabarti, Dhritiman; Bansal, Sonia

    2016-02-01

    Entropy™ is a proprietary algorithm which uses spectral entropy analysis of electroencephalographic (EEG) signals to produce indices which are used as a measure of depth of hypnosis. We describe a report of electrocardiographic (ECG) contamination of EEG signals leading to fluctuating erroneous Entropy values. An explanation is provided for mechanism behind this observation by describing the spread of ECG signals in head and neck and its influence on EEG/Entropy by correlating the observation with the published Entropy algorithm. While the Entropy algorithm has been well conceived, there are still instances in which it can produce erroneous values. Such erroneous values and their cause may be identified by close scrutiny of the EEG waveform if Entropy values seem out of sync with that expected at given anaesthetic levels.

  11. Empirical mode decomposition of the ECG signal for noise removal

    Science.gov (United States)

    Khan, Jesmin; Bhuiyan, Sharif; Murphy, Gregory; Alam, Mohammad

    2011-04-01

    Electrocardiography is a diagnostic procedure for the detection and diagnosis of heart abnormalities. The electrocardiogram (ECG) signal contains important information that is utilized by physicians for the diagnosis and analysis of heart diseases. So good quality ECG signal plays a vital role for the interpretation and identification of pathological, anatomical and physiological aspects of the whole cardiac muscle. However, the ECG signals are corrupted by noise which severely limit the utility of the recorded ECG signal for medical evaluation. The most common noise presents in the ECG signal is the high frequency noise caused by the forces acting on the electrodes. In this paper, we propose a new ECG denoising method based on the empirical mode decomposition (EMD). The proposed method is able to enhance the ECG signal upon removing the noise with minimum signal distortion. Simulation is done on the MIT-BIH database to verify the efficacy of the proposed algorithm. Experiments show that the presented method offers very good results to remove noise from the ECG signal.

  12. Wearable Textile Electrodes for ECG Measurement

    Directory of Open Access Journals (Sweden)

    Lukas Vojtech

    2013-01-01

    Full Text Available The electrocardiogram (ECG is one of the most important parameters for monitoring of the physiological state of a person. Currently available systems for ECG monitoring are both stationary and wearable, but the comfort of the monitored person is not at a satisfactory level because these systems are not part of standard clothing. This article is therefore devoted to the development and measurement of wearable textile electrodes for ECG measurement device with high comfort for the user. The electrode material is made of electrically conductive textile. This creates a textile composite that guarantees high comfort for the user while ensuring good quality of ECG measurements. The composite is implemented by a carrier (a T-shirt with flame retardant and sensing electrodes embroidered with yarn based on a mixture of polyester coated with silver nanoparticles and cotton. The electrodes not only provide great comfort but are also antibacterial and antiallergic due to silver nanoparticles.

  13. Fetal ECG Extraction from Abdominal Signals: A Review on Suppression of Fundamental Power Line Interference Component and Its Harmonics

    OpenAIRE

    Ţarălungă, Dragoş-Daniel; Ungureanu, Georgeta-Mihaela; Gussi, Ilinca; Strungaru, Rodica; Wolf, Werner

    2014-01-01

    Interference of power line (PLI) (fundamental frequency and its harmonics) is usually present in biopotential measurements. Despite all countermeasures, the PLI still corrupts physiological signals, for example, electromyograms (EMG), electroencephalograms (EEG), and electrocardiograms (ECG). When analyzing the fetal ECG (fECG) recorded on the maternal abdomen, the PLI represents a particular strong noise component, being sometimes 10 times greater than the fECG signal, and thus impairing the...

  14. A Hygroscopic Sensor Electrode for Fast Stabilized Non-Contact ECG Signal Acquisition.

    Science.gov (United States)

    Fong, Ee-May; Chung, Wan-Young

    2015-08-05

    A capacitive electrocardiography (cECG) technique using a non-invasive ECG measuring technology that does not require direct contact between the sensor and the skin has attracted much interest. The system encounters several challenges when the sensor electrode and subject's skin are weakly coupled. Because there is no direct physical contact between the subject and any grounding point, there is no discharge path for the built-up electrostatic charge. Subsequently, the electrostatic charge build-up can temporarily contaminate the ECG signal from being clearly visible; a stabilization period (3-15 min) is required for the measurement of a clean, stable ECG signal at low humidity levels (below 55% relative humidity). Therefore, to obtain a clear ECG signal without noise and to reduce the ECG signal stabilization time to within 2 min in a dry ambient environment, we have developed a fabric electrode with embedded polymer (FEEP). The designed hygroscopic FEEP has an embedded superabsorbent polymer layer. The principle of FEEP as a conductive electrode is to provide humidity to the capacitive coupling to ensure strong coupling and to allow for the measurement of a stable, clear biomedical signal. The evaluation results show that hygroscopic FEEP is capable of rapidly measuring high-accuracy ECG signals with a higher SNR ratio.

  15. Comparative study of measured heart cycle phase durations: standard lead ECG versus original ascending aorta lead ECG

    Directory of Open Access Journals (Sweden)

    Sergey V. Kolmakov

    2012-11-01

    Full Text Available Aims The present paper aims at evaluating the existing difference in duration measurements of the same heart cycle phases in the standard V3, V4, V5, V6 leads ECG versus original HDA lead ECG of the ascending aorta. Materials and methods The method of changing the filter pass band is used. Its essence is in artificial changing of the conditions of the signal recording carrying the informative indications of the initial information used in hemodynamic equations. The method also enables calculating the percentage deviation from the initial values. The principle of balance of the blood volume entering the heart and the blood volume leaving the heart is used to trace the minimal deviations and their respective recording conditions. Results In each of the V3, V4, V5, V6 ECG leads durations of the same phases have different values. The values measured on the ECG of the ascending aorta and those measured using the standard V4 ECG lead differ slightly. Conclusion For heart cycle phase analysis it is possible to use only the ECG of the ascending aorta and V4 standard lead ECG. Using conventional standard ECG leads causes an error up to 25%.

  16. Noise Suppression in ECG Signals through Efficient One-Step Wavelet Processing Techniques

    Directory of Open Access Journals (Sweden)

    E. Castillo

    2013-01-01

    Full Text Available This paper illustrates the application of the discrete wavelet transform (DWT for wandering and noise suppression in electrocardiographic (ECG signals. A novel one-step implementation is presented, which allows improving the overall denoising process. In addition an exhaustive study is carried out, defining threshold limits and thresholding rules for optimal wavelet denoising using this presented technique. The system has been tested using synthetic ECG signals, which allow accurately measuring the effect of the proposed processing. Moreover, results from real abdominal ECG signals acquired from pregnant women are presented in order to validate the presented approach.

  17. Efficient ECG Signal Compression Using Adaptive Heart Model

    National Research Council Canada - National Science Library

    Szilagyi, S

    2001-01-01

    This paper presents an adaptive, heart-model-based electrocardiography (ECG) compression method. After conventional pre-filtering the waves from the signal are localized and the model's parameters are determined...

  18. Microprocessor-based simulator of surface ECG signals

    International Nuclear Information System (INIS)

    MartInez, A E; Rossi, E; Siri, L Nicola

    2007-01-01

    In this work, a simulator of surface electrocardiogram recorded signals (ECG) is presented. The device, based on a microcontroller and commanded by a personal computer, produces an analog signal resembling actual ECGs, not only in time course and voltage levels, but also in source impedance. The simulator is a useful tool for electrocardiograph calibration and monitoring, to incorporate as well in educational tasks and in clinical environments for early detection of faulty behaviour

  19. Unveiling the Biometric Potential of Finger-Based ECG Signals

    Science.gov (United States)

    Lourenço, André; Silva, Hugo; Fred, Ana

    2011-01-01

    The ECG signal has been shown to contain relevant information for human identification. Even though results validate the potential of these signals, data acquisition methods and apparatus explored so far compromise user acceptability, requiring the acquisition of ECG at the chest. In this paper, we propose a finger-based ECG biometric system, that uses signals collected at the fingers, through a minimally intrusive 1-lead ECG setup recurring to Ag/AgCl electrodes without gel as interface with the skin. The collected signal is significantly more noisy than the ECG acquired at the chest, motivating the application of feature extraction and signal processing techniques to the problem. Time domain ECG signal processing is performed, which comprises the usual steps of filtering, peak detection, heartbeat waveform segmentation, and amplitude normalization, plus an additional step of time normalization. Through a simple minimum distance criterion between the test patterns and the enrollment database, results have revealed this to be a promising technique for biometric applications. PMID:21837235

  20. Unveiling the biometric potential of finger-based ECG signals.

    Science.gov (United States)

    Lourenço, André; Silva, Hugo; Fred, Ana

    2011-01-01

    The ECG signal has been shown to contain relevant information for human identification. Even though results validate the potential of these signals, data acquisition methods and apparatus explored so far compromise user acceptability, requiring the acquisition of ECG at the chest. In this paper, we propose a finger-based ECG biometric system, that uses signals collected at the fingers, through a minimally intrusive 1-lead ECG setup recurring to Ag/AgCl electrodes without gel as interface with the skin. The collected signal is significantly more noisy than the ECG acquired at the chest, motivating the application of feature extraction and signal processing techniques to the problem. Time domain ECG signal processing is performed, which comprises the usual steps of filtering, peak detection, heartbeat waveform segmentation, and amplitude normalization, plus an additional step of time normalization. Through a simple minimum distance criterion between the test patterns and the enrollment database, results have revealed this to be a promising technique for biometric applications.

  1. Heritability of ECG Biomarkers in the Netherlands Twin Registry Measured from Holter ECGs.

    Directory of Open Access Journals (Sweden)

    Emily C Hodkinson

    2016-04-01

    Full Text Available INTRODUCTIONThe resting ECG is the most commonly used tool to assess cardiac electrophysiology. Previous studies have estimated heritability of ECG parameters based on these snapshots of the cardiac electrical activity. In this study we set out to determine whether analysis of heart rate specific data from Holter ECGs allows more complete assessment of the heritability of ECG parameters.METHODS and RESULTSHolter ECGs were recorded from 221 twin pairs and analyzed using a multi-parameter beat binning approach. Heart rate dependent estimates of heritability for QRS duration, QT interval, Tpeak–Tend and Theight were calculated using structural equation modelling. QRS duration is largely determined by environmental factors whereas repolarization is primarily genetically determined. Heritability estimates of both QT interval and Theight were significantly higher when measured from Holter compared to resting ECGs and the heritability estimate of each was heart rate dependent. Analysis of the genetic contribution to correlation between repolarization parameters demonstrated that covariance of individual ECG parameters at different heart rates overlap but at each specific heart rate there was relatively little overlap in the genetic determinants of the different repolarization parameters.CONCLUSIONSHere we present the first study of heritability of repolarization parameters measured from Holter ECGs. Our data demonstrate that higher heritability can be estimated from the Holter than the resting ECG and reveals rate dependence in the genetic – environmental determinants of the ECG that has not previously been tractable. Future applications include deeper dissection of the ECG of participants with inherited cardiac electrical disease.

  2. Classification of a Driver's cognitive workload levels using artificial neural network on ECG signals.

    Science.gov (United States)

    Tjolleng, Amir; Jung, Kihyo; Hong, Wongi; Lee, Wonsup; Lee, Baekhee; You, Heecheon; Son, Joonwoo; Park, Seikwon

    2017-03-01

    An artificial neural network (ANN) model was developed in the present study to classify the level of a driver's cognitive workload based on electrocardiography (ECG). ECG signals were measured on 15 male participants while they performed a simulated driving task as a primary task with/without an N-back task as a secondary task. Three time-domain ECG measures (mean inter-beat interval (IBI), standard deviation of IBIs, and root mean squared difference of adjacent IBIs) and three frequencydomain ECG measures (power in low frequency, power in high frequency, and ratio of power in low and high frequencies) were calculated. To compensate for individual differences in heart response during the driving tasks, a three-step data processing procedure was performed to ECG signals of each participant: (1) selection of two most sensitive ECG measures, (2) definition of three (low, medium, and high) cognitive workload levels, and (3) normalization of the selected ECG measures. An ANN model was constructed using a feed-forward network and scaled conjugate gradient as a back-propagation learning rule. The accuracy of the ANN classification model was found satisfactory for learning data (95%) and testing data (82%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The event synchronous canceller algorithm removes maternal ECG from abdominal signals without affecting the fetal ECG

    NARCIS (Netherlands)

    Ungureanu, G.M.; Bergmans, J.W.M.; Oei, S.G.; Ungureanu, A.; Wolf, W.

    2009-01-01

    Fetal monitoring using abdominally recorded signals (ADS) allows physicians to detect occurring changes in the well-being state of the fetus from the beginning of pregnancy. Mainly based on the fetal electrocardiogram (fECG), it provides the long-term fetal heart rate (fHR) and assessment of the

  4. Conditional Random Fields for Morphological Analysis of Wireless ECG Signals

    Science.gov (United States)

    Natarajan, Annamalai; Gaiser, Edward; Angarita, Gustavo; Malison, Robert; Ganesan, Deepak; Marlin, Benjamin

    2015-01-01

    Thanks to advances in mobile sensing technologies, it has recently become practical to deploy wireless electrocardiograph sensors for continuous recording of ECG signals. This capability has diverse applications in the study of human health and behavior, but to realize its full potential, new computational tools are required to effectively deal with the uncertainty that results from the noisy and highly non-stationary signals collected using these devices. In this work, we present a novel approach to the problem of extracting the morphological structure of ECG signals based on the use of dynamically structured conditional random field (CRF) models. We apply this framework to the problem of extracting morphological structure from wireless ECG sensor data collected in a lab-based study of habituated cocaine users. Our results show that the proposed CRF-based approach significantly out-performs independent prediction models using the same features, as well as a widely cited open source toolkit. PMID:26726321

  5. Chaos control applied to cardiac rhythms represented by ECG signals

    International Nuclear Information System (INIS)

    Borem Ferreira, Bianca; Amorim Savi, Marcelo; Souza de Paula, Aline

    2014-01-01

    The control of irregular or chaotic heartbeats is a key issue in cardiology. In this regard, chaos control techniques represent a good alternative since they suggest treatments different from those traditionally used. This paper deals with the application of the extended time-delayed feedback control method to stabilize pathological chaotic heart rhythms. Electrocardiogram (ECG) signals are employed to represent the cardiovascular behavior. A mathematical model is employed to generate ECG signals using three modified Van der Pol oscillators connected with time delay couplings. This model provides results that qualitatively capture the general behavior of the heart. Controlled ECG signals show the ability of the strategy either to control or to suppress the chaotic heart dynamics generating less-critical behaviors. (paper)

  6. A configurable and low-power mixed signal SoC for portable ECG monitoring applications.

    Science.gov (United States)

    Kim, Hyejung; Kim, Sunyoung; Van Helleputte, Nick; Artes, Antonio; Konijnenburg, Mario; Huisken, Jos; Van Hoof, Chris; Yazicioglu, Refet Firat

    2014-04-01

    This paper describes a mixed-signal ECG System-on-Chip (SoC) that is capable of implementing configurable functionality with low-power consumption for portable ECG monitoring applications. A low-voltage and high performance analog front-end extracts 3-channel ECG signals and single channel electrode-tissue-impedance (ETI) measurement with high signal quality. This can be used to evaluate the quality of the ECG measurement and to filter motion artifacts. A custom digital signal processor consisting of 4-way SIMD processor provides the configurability and advanced functionality like motion artifact removal and R peak detection. A built-in 12-bit analog-to-digital converter (ADC) is capable of adaptive sampling achieving a compression ratio of up to 7, and loop buffer integration reduces the power consumption for on-chip memory access. The SoC is implemented in 0.18 μm CMOS process and consumes 32 μ W from a 1.2 V while heart beat detection application is running, and integrated in a wireless ECG monitoring system with Bluetooth protocol. Thanks to the ECG SoC, the overall system power consumption can be reduced significantly.

  7. Fault Tolerant Neural Network for ECG Signal Classification Systems

    Directory of Open Access Journals (Sweden)

    MERAH, M.

    2011-08-01

    Full Text Available The aim of this paper is to apply a new robust hardware Artificial Neural Network (ANN for ECG classification systems. This ANN includes a penalization criterion which makes the performances in terms of robustness. Specifically, in this method, the ANN weights are normalized using the auto-prune method. Simulations performed on the MIT ? BIH ECG signals, have shown that significant robustness improvements are obtained regarding potential hardware artificial neuron failures. Moreover, we show that the proposed design achieves better generalization performances, compared to the standard back-propagation algorithm.

  8. Conditional Random Fields for Morphological Analysis of Wireless ECG Signals

    OpenAIRE

    Natarajan, Annamalai; Gaiser, Edward; Angarita, Gustavo; Malison, Robert; Ganesan, Deepak; Marlin, Benjamin

    2014-01-01

    Thanks to advances in mobile sensing technologies, it has recently become practical to deploy wireless electrocardiograph sensors for continuous recording of ECG signals. This capability has diverse applications in the study of human health and behavior, but to realize its full potential, new computational tools are required to effectively deal with the uncertainty that results from the noisy and highly non-stationary signals collected using these devices. In this work, we present a novel app...

  9. Low-complexity R-peak detection in ECG signals : a preliminary step towards ambulatory fetal monitoring

    NARCIS (Netherlands)

    Rooijakkers, M.J.; Rabotti, C.; Bennebroek, M.; Meerbergen, van J.; Mischi, M.

    2011-01-01

    Non-invasive fetal health monitoring during pregnancy has become increasingly important. Recent advances in signal processing technology have enabled fetal monitoring during pregnancy, using abdominal ECG recordings. Ubiquitous ambulatory monitoring for continuous fetal health measurement is however

  10. High Resolution of the ECG Signal by Polynomial Approximation

    Directory of Open Access Journals (Sweden)

    G. Rozinaj

    2006-04-01

    Full Text Available Averaging techniques as temporal averaging and space averaging have been successfully used in many applications for attenuating interference [6], [7], [8], [9], [10]. In this paper we introduce interference removing of the ECG signal by polynomial approximation, with smoothing discrete dependencies, to make up for averaging methods. The method is suitable for low-level signals of the electrical activity of the heart often less than 10 m V. Most low-level signals arising from PR, ST and TP segments which can be detected eventually and their physiologic meaning can be appreciated. Of special importance for the diagnostic of the electrical activity of the heart is the activity bundle of His between P and R waveforms. We have established an artificial sine wave to ECG signal between P and R wave. The aim focus is to verify the smoothing method by polynomial approximation if the SNR (signal-to-noise ratio is negative (i.e. a signal is lower than noise.

  11. Development of a portable Linux-based ECG measurement and monitoring system.

    Science.gov (United States)

    Tan, Tan-Hsu; Chang, Ching-Su; Huang, Yung-Fa; Chen, Yung-Fu; Lee, Cheng

    2011-08-01

    This work presents a portable Linux-based electrocardiogram (ECG) signals measurement and monitoring system. The proposed system consists of an ECG front end and an embedded Linux platform (ELP). The ECG front end digitizes 12-lead ECG signals acquired from electrodes and then delivers them to the ELP via a universal serial bus (USB) interface for storage, signal processing, and graphic display. The proposed system can be installed anywhere (e.g., offices, homes, healthcare centers and ambulances) to allow people to self-monitor their health conditions at any time. The proposed system also enables remote diagnosis via Internet. Additionally, the system has a 7-in. interactive TFT-LCD touch screen that enables users to execute various functions, such as scaling a single-lead or multiple-lead ECG waveforms. The effectiveness of the proposed system was verified by using a commercial 12-lead ECG signal simulator and in vivo experiments. In addition to its portability, the proposed system is license-free as Linux, an open-source code, is utilized during software development. The cost-effectiveness of the system significantly enhances its practical application for personal healthcare.

  12. Intelligent classification of electrocardiogram (ECG) signal using extended Kalman Filter (EKF) based neuro fuzzy system.

    Science.gov (United States)

    Meau, Yeong Pong; Ibrahim, Fatimah; Narainasamy, Selvanathan A L; Omar, Razali

    2006-05-01

    This study presents the development of a hybrid system consisting of an ensemble of Extended Kalman Filter (EKF) based Multi Layer Perceptron Network (MLPN) and a one-pass learning Fuzzy Inference System using Look-up Table Scheme for the recognition of electrocardiogram (ECG) signals. This system can distinguish various types of abnormal ECG signals such as Ventricular Premature Cycle (VPC), T wave inversion (TINV), ST segment depression (STDP), and Supraventricular Tachycardia (SVT) from normal sinus rhythm (NSR) ECG signal.

  13. Fetal ECG Extraction from Abdominal Signals: A Review on Suppression of Fundamental Power Line Interference Component and Its Harmonics

    Directory of Open Access Journals (Sweden)

    Dragoş-Daniel Ţarălungă

    2014-01-01

    Full Text Available Interference of power line (PLI (fundamental frequency and its harmonics is usually present in biopotential measurements. Despite all countermeasures, the PLI still corrupts physiological signals, for example, electromyograms (EMG, electroencephalograms (EEG, and electrocardiograms (ECG. When analyzing the fetal ECG (fECG recorded on the maternal abdomen, the PLI represents a particular strong noise component, being sometimes 10 times greater than the fECG signal, and thus impairing the extraction of any useful information regarding the fetal health state. Many signal processing methods for cancelling the PLI from biopotentials are available in the literature. In this review study, six different principles are analyzed and discussed, and their performance is evaluated on simulated data (three different scenarios, based on five quantitative performance indices.

  14. Fetal ECG extraction from abdominal signals: a review on suppression of fundamental power line interference component and its harmonics.

    Science.gov (United States)

    Ţarălungă, Dragoş-Daniel; Ungureanu, Georgeta-Mihaela; Gussi, Ilinca; Strungaru, Rodica; Wolf, Werner

    2014-01-01

    Interference of power line (PLI) (fundamental frequency and its harmonics) is usually present in biopotential measurements. Despite all countermeasures, the PLI still corrupts physiological signals, for example, electromyograms (EMG), electroencephalograms (EEG), and electrocardiograms (ECG). When analyzing the fetal ECG (fECG) recorded on the maternal abdomen, the PLI represents a particular strong noise component, being sometimes 10 times greater than the fECG signal, and thus impairing the extraction of any useful information regarding the fetal health state. Many signal processing methods for cancelling the PLI from biopotentials are available in the literature. In this review study, six different principles are analyzed and discussed, and their performance is evaluated on simulated data (three different scenarios), based on five quantitative performance indices.

  15. Wireless and Non-contact ECG Measurement System – the “Aachen SmartChair”

    Directory of Open Access Journals (Sweden)

    A. Aleksandrowicz

    2007-01-01

    Full Text Available This publication describes a measurement system that obtains an electrocardiogram (ECG by capacitively coupled electrodes. Fordemonstration purposes, this measurement system was integrated into an off-the-shelf office chair (so-called “Aachen SmartChair”.Whereas in usual clinical applications adhesive, conductively-coupled electrodes have to be attached to the skin, the described system is able to measure an ECG without direct skin contact through the cloth. A wireless communication module was integrated for transmitting theECG data to a PC or to an ICU patient monitor. For system validation, a classical ECG with conductive electrodes and an oxygensaturation signal (SpO2 were obtained simultaneously. Finally, system-specific problems of the presented device are discussed.

  16. Cancelable ECG biometrics using GLRT and performance improvement using guided filter with irreversible guide signal.

    Science.gov (United States)

    Kim, Hanvit; Minh Phuong Nguyen; Se Young Chun

    2017-07-01

    Biometrics such as ECG provides a convenient and powerful security tool to verify or identify an individual. However, one important drawback of biometrics is that it is irrevocable. In other words, biometrics cannot be re-used practically once it is compromised. Cancelable biometrics has been investigated to overcome this drawback. In this paper, we propose a cancelable ECG biometrics by deriving a generalized likelihood ratio test (GLRT) detector from a composite hypothesis testing in randomly projected domain. Since it is common to observe performance degradation for cancelable biometrics, we also propose a guided filtering (GF) with irreversible guide signal that is a non-invertibly transformed signal of ECG authentication template. We evaluated our proposed method using ECG-ID database with 89 subjects. Conventional Euclidean detector with original ECG template yielded 93.9% PD1 (detection probability at 1% FAR) while Euclidean detector with 10% compressed ECG (1/10 of the original data size) yielded 90.8% PD1. Our proposed GLRT detector with 10% compressed ECG yielded 91.4%, which is better than Euclidean with the same compressed ECG. GF with our proposed irreversible ECG template further improved the performance of our GLRT with 10% compressed ECG up to 94.3%, which is higher than Euclidean detector with original ECG. Lastly, we showed that our proposed cancelable ECG biometrics practically met cancelable biometrics criteria such as efficiency, re-usability, diversity and non-invertibility.

  17. ECG Signal Processing, Classification and Interpretation A Comprehensive Framework of Computational Intelligence

    CERN Document Server

    Pedrycz, Witold

    2012-01-01

    Electrocardiogram (ECG) signals are among the most important sources of diagnostic information in healthcare so improvements in their analysis may also have telling consequences. Both the underlying signal technology and a burgeoning variety of algorithms and systems developments have proved successful targets for recent rapid advances in research. ECG Signal Processing, Classification and Interpretation shows how the various paradigms of Computational Intelligence, employed either singly or in combination, can produce an effective structure for obtaining often vital information from ECG signals. Neural networks do well at capturing the nonlinear nature of the signals, information granules realized as fuzzy sets help to confer interpretability on the data and evolutionary optimization may be critical in supporting the structural development of ECG classifiers and models of ECG signals. The contributors address concepts, methodology, algorithms, and case studies and applications exploiting the paradigm of Comp...

  18. A mixed signal ECG processing platform with an adaptive sampling ADC for portable monitoring applications.

    Science.gov (United States)

    Kim, Hyejung; Van Hoof, Chris; Yazicioglu, Refet Firat

    2011-01-01

    This paper describes a mixed-signal ECG processing platform with an 12-bit ADC architecture that can adapt its sampling rate according to the input signals rate of change. This enables the sampling of ECG signals with significantly reduced data rate without loss of information. The presented adaptive sampling scheme reduces the ADC power consumption, enables the processing of ECG signals with lower power consumption, and reduces the power consumption of the radio while streaming the ECG signals. The test results show that running a CWT-based R peak detection algorithm using the adaptively sampled ECG signals consumes only 45.6 μW and it leads to 36% less overall system power consumption.

  19. Extraction of ECG signal with adaptive filter for hearth abnormalities detection

    Science.gov (United States)

    Turnip, Mardi; Saragih, Rijois. I. E.; Dharma, Abdi; Esti Kusumandari, Dwi; Turnip, Arjon; Sitanggang, Delima; Aisyah, Siti

    2018-04-01

    This paper demonstrates an adaptive filter method for extraction ofelectrocardiogram (ECG) feature in hearth abnormalities detection. In particular, electrocardiogram (ECG) is a recording of the heart's electrical activity by capturing a tracingof cardiac electrical impulse as it moves from the atrium to the ventricles. The applied algorithm is to evaluate and analyze ECG signals for abnormalities detection based on P, Q, R and S peaks. In the first phase, the real-time ECG data is acquired and pre-processed. In the second phase, the procured ECG signal is subjected to feature extraction process. The extracted features detect abnormal peaks present in the waveform. Thus the normal and abnormal ECG signal could be differentiated based on the features extracted.

  20. Locally-adaptive Myriad Filters for Processing ECG Signals in Real Time

    Directory of Open Access Journals (Sweden)

    Nataliya Tulyakova

    2017-03-01

    Full Text Available The locally adaptive myriad filters to suppress noise in electrocardiographic (ECG signals in almost in real time are proposed. Statistical estimates of efficiency according to integral values of such criteria as mean square error (MSE and signal-to-noise ratio (SNR for the test ECG signals sampled at 400 Hz embedded in additive Gaussian noise with different values of variance are obtained. Comparative analysis of adaptive filters is carried out. High efficiency of ECG filtering and high quality of signal preservation are demonstrated. It is shown that locally adaptive myriad filters provide higher degree of suppressing additive Gaussian noise with possibility of real time implementation.

  1. Automatic detection of slow-wave sleep and REM-sleep stages using polysomnographic ECG signals

    International Nuclear Information System (INIS)

    Khemiri, S.; Aloui, K.; Naceur, M. S.

    2011-01-01

    We describe in this paper a new approach of classifying the different sleep stages only by focusing on the polysomnographic ECG signals. We show the pre-processing technique of the ECG signals. At the same time the identifcation and elimination of the different types of artifacts which contain the signal and its reconstruction are shown. The automatic classification of the slow-deep sleep and the rapid eye movement sleep called in this work REM-sleep consists in extracting physiological indicators that characterize these two sleep stages through the polysomnographic ECG signal. In other words, this classification is based on the analysis of the cardiac rhythm during a night's sleep.

  2. One-Dimensional Signal Extraction Of Paper-Written ECG Image And Its Archiving

    Science.gov (United States)

    Zhang, Zhi-ni; Zhang, Hong; Zhuang, Tian-ge

    1987-10-01

    A method for converting paper-written electrocardiograms to one dimensional (1-D) signals for archival storage on floppy disk is presented here. Appropriate image processing techniques were employed to remove the back-ground noise inherent to ECG recorder charts and to reconstruct the ECG waveform. The entire process consists of (1) digitization of paper-written ECGs with an image processing system via a TV camera; (2) image preprocessing, including histogram filtering and binary image generation; (3) ECG feature extraction and ECG wave tracing, and (4) transmission of the processed ECG data to IBM-PC compatible floppy disks for storage and retrieval. The algorithms employed here may also be used in the recognition of paper-written EEG or EMG and may be useful in robotic vision.

  3. Electrocardiogram (ECG Signal Modeling and Noise Reduction Using Hopfield Neural Networks

    Directory of Open Access Journals (Sweden)

    F. Bagheri

    2013-02-01

    Full Text Available The Electrocardiogram (ECG signal is one of the diagnosing approaches to detect heart disease. In this study the Hopfield Neural Network (HNN is applied and proposed for ECG signal modeling and noise reduction. The Hopfield Neural Network (HNN is a recurrent neural network that stores the information in a dynamic stable pattern. This algorithm retrieves a pattern stored in memory in response to the presentation of an incomplete or noisy version of that pattern. Computer simulation results show that this method can successfully model the ECG signal and remove high-frequency noise.

  4. The morphological classification of heartbeats as dominant and non-dominant in ECG signals

    International Nuclear Information System (INIS)

    Chiarugi, Franco; Emmanouilidou, Dimitra; Tsamardinos, Ioannis

    2010-01-01

    Surface electrocardiography (ECG) is the art of analyzing the heart's electrical activity by applying electrodes to certain positions on the body and measuring potentials at the body surface resulting from this electrical activity. Usually, significant clinical information can be obtained from analysis of the dominant beat morphology. In this respect, identification of the dominant beats and their averaging can be very helpful, allowing clinicians to carry out the measurement of amplitudes and intervals on a beat much cleaner from noise than a generic beat selected from the entire ECG recording. In this paper a standard clustering algorithm for the morphological grouping of heartbeats has been analyzed based on K-means, different signal representations, distance metrics and validity indices. The algorithm has been tested on all the records of the MIT-BIH Arrhythmia Database (MIT-BIH AD) obtaining satisfying performances in terms of averaged dominant beat estimation, but the results have not been fully satisfactory in terms of sensitivity and specificity. In order to improve the clustering accuracy, an ad hoc algorithm based on a two-phase decision tree, which integrates additional specific knowledge related to the ECG domain, has been implemented. Similarity features extracted from every beat have been used in the decision trees for the identification of different morphological classes of ECG beats. The results, in terms of dominant beat discrimination, have been evaluated on all annotated beats of the MIT-BIH AD with sensitivity = 99.05%, specificity = 93.94%, positive predictive value = 99.32% and negative predictive value = 91.69%. Further tests have shown a very slight decrement of the performances on all detected beats of the same database using an already published QRS detector, demonstrating the validity of the algorithm in real unsupervised clustering situations where annotated beat positions are not available but beats are detected with a high

  5. Reconstruction of ECG signals in presence of corruption.

    Science.gov (United States)

    Ganeshapillai, Gartheeban; Liu, Jessica F; Guttag, John

    2011-01-01

    We present an approach to identifying and reconstructing corrupted regions in a multi-parameter physiological signal. The method, which uses information in correlated signals, is specifically designed to preserve clinically significant aspects of the signals. We use template matching to jointly segment the multi-parameter signal, morphological dissimilarity to estimate the quality of the signal segment, similarity search using features on a database of templates to find the closest match, and time-warping to reconstruct the corrupted segment with the matching template. In experiments carried out on the MIT-BIH Arrhythmia Database, a two-parameter database with many clinically significant arrhythmias, our method improved the classification accuracy of the beat type by more than 7 times on a signal corrupted with white Gaussian noise, and increased the similarity to the original signal, as measured by the normalized residual distance, by more than 2.5 times.

  6. Extraction of the fetal ECG in noninvasive recordings by signal decompositions

    International Nuclear Information System (INIS)

    Christov, I; Simova, I; Abächerli, R

    2014-01-01

    No signal processing technique has been able to reliably deliver an undistorted fetal electrocardiographic (fECG) signal from electrodes placed on the maternal abdomen because of the low signal-to-noise ratio of the fECG recorded from the maternal body surface. As a result, this led to increased rates of Caesarean deliveries of healthy infants. In an attempt to solve the problem, Physionet/Computing in Cardiology announced the 2013 Challenge: noninvasive fetal ECG. We are suggesting a method for cancellation of the maternal ECG consisting of: maternal QRS detection, heart rate dependant P-QRS-T interval selection, location of the fiducial points inside this interval for best matching by cross correlation, superimposition of the intervals, calculation of the mean signal of the P-QRS-T interval, and sequential subtraction of the mean signal from the whole fECG recording. Three signal decomposition methods were further applied in order to enhance the fetal QRSs (fQRS): principal component analysis, root-mean-square and Hotelling’s T-squared. A combined lead of all decompositions was synthesized and fQRS detection was performed on it. The current research differs from the Challenge in that it uses three signal decomposition methods to enhance the fECG. The new results for 97 recordings of test set B are: 305.657 for Event 4: Fetal heart rate (FHR) and 23.062 for Event 5: Fetal RR interval (FRR). (paper)

  7. Fusion of ECG and ABP signals based on wavelet transform for cardiac arrhythmias classification.

    Science.gov (United States)

    Arvanaghi, Roghayyeh; Daneshvar, Sabalan; Seyedarabi, Hadi; Goshvarpour, Atefeh

    2017-11-01

    Each of Electrocardiogram (ECG) and Atrial Blood Pressure (ABP) signals contain information of cardiac status. This information can be used for diagnosis and monitoring of diseases. The majority of previously proposed methods rely only on ECG signal to classify heart rhythms. In this paper, ECG and ABP were used to classify five different types of heart rhythms. To this end, two mentioned signals (ECG and ABP) have been fused. These physiological signals have been used from MINIC physioNet database. ECG and ABP signals have been fused together on the basis of the proposed Discrete Wavelet Transformation fusion technique. Then, some frequency features were extracted from the fused signal. To classify the different types of cardiac arrhythmias, these features were given to a multi-layer perceptron neural network. In this study, the best results for the proposed fusion algorithm were obtained. In this case, the accuracy rates of 96.6%, 96.9%, 95.6% and 93.9% were achieved for two, three, four and five classes, respectively. However, the maximum classification rate of 89% was obtained for two classes on the basis of ECG features. It has been found that the higher accuracy rates were acquired by using the proposed fusion technique. The results confirmed the importance of fusing features from different physiological signals to gain more accurate assessments. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Measurement of ventricular function by ECG gating during atrial fibrillation

    International Nuclear Information System (INIS)

    Bacharach, S.L.; Green, M.V.; Bonow, R.O.; Findley, S.L.; Ostrow, H.G.; Johnston, G.S.

    1981-01-01

    The assumptions necessary to perform ECG-gated cardiac studies are seemingly not valid for patients in atrial fibrillation (AF). To evaluate the effect of AF on equilibrium gated scintigraphy, beat-by-beat measurements of left-ventricular function were made on seven subjects in AF (mean heart rate 64 bpm), using a high-efficiency nonimaging detector. The parameters evaluated were ejection fraction (EF), time to end-systole (TES), peak rates of ejection and filling (PER,PFR), and their times of occurrence (TPER, TPFR). By averaging together single-beat values of EF, PER, etc., it was possible to determine the true mean values of these parameters. The single-beam mean values were compared with the corresponding parameters calculated from one ECG-gated time-activity curve (TAC) obtained by superimposing all the single-beat TACs irrespective of their length. For this population with slow heart rates, we find that the values for EF, etc., produced from ECG-gated time-activity curves, are very similar to those obtained from the single-beat data. Thus use of ECG gating at low heart rates may allow reliable estimation of average cardiac function even in subjects with AF

  9. Self-organized neural network for the quality control of 12-lead ECG signals

    International Nuclear Information System (INIS)

    Chen, Yun; Yang, Hui

    2012-01-01

    Telemedicine is very important for the timely delivery of health care to cardiovascular patients, especially those who live in the rural areas of developing countries. However, there are a number of uncertainty factors inherent to the mobile-phone-based recording of electrocardiogram (ECG) signals such as personnel with minimal training and other extraneous noises. PhysioNet organized a challenge in 2011 to develop efficient algorithms that can assess the ECG signal quality in telemedicine settings. This paper presents our efforts in this challenge to integrate multiscale recurrence analysis with a self-organizing map for controlling the ECG signal quality. As opposed to directly evaluating the 12-lead ECG, we utilize an information-preserving transform, i.e. Dower transform, to derive the 3-lead vectorcardiogram (VCG) from the 12-lead ECG in the first place. Secondly, we delineate the nonlinear and nonstationary characteristics underlying the 3-lead VCG signals into multiple time-frequency scales. Furthermore, a self-organizing map is trained, in both supervised and unsupervised ways, to identify the correlations between signal quality and multiscale recurrence features. The efficacy and robustness of this approach are validated using real-world ECG recordings available from PhysioNet. The average performance was demonstrated to be 95.25% for the training dataset and 90.0% for the independent test dataset with unknown labels. (paper)

  10. Robust QRS peak detection by multimodal information fusion of ECG and blood pressure signals.

    Science.gov (United States)

    Ding, Quan; Bai, Yong; Erol, Yusuf Bugra; Salas-Boni, Rebeca; Zhang, Xiaorong; Hu, Xiao

    2016-11-01

    QRS peak detection is a challenging problem when ECG signal is corrupted. However, additional physiological signals may also provide information about the QRS position. In this study, we focus on a unique benchmark provided by PhysioNet/Computing in Cardiology Challenge 2014 and Physiological Measurement focus issue: robust detection of heart beats in multimodal data, which aimed to explore robust methods for QRS detection in multimodal physiological signals. A dataset of 200 training and 210 testing records are used, where the testing records are hidden for evaluating the performance only. An information fusion framework for robust QRS detection is proposed by leveraging existing ECG and ABP analysis tools and combining heart beats derived from different sources. Results show that our approach achieves an overall accuracy of 90.94% and 88.66% on the training and testing datasets, respectively. Furthermore, we observe expected performance at each step of the proposed approach, as an evidence of the effectiveness of our approach. Discussion on the limitations of our approach is also provided.

  11. Estimating actigraphy from motion artifacts in ECG and respiratory effort signals.

    Science.gov (United States)

    Fonseca, Pedro; Aarts, Ronald M; Long, Xi; Rolink, Jérôme; Leonhardt, Steffen

    2016-01-01

    Recent work in unobtrusive sleep/wake classification has shown that cardiac and respiratory features can help improve classification performance. Nevertheless, actigraphy remains the single most discriminative modality for this task. Unfortunately, it requires the use of dedicated devices in addition to the sensors used to measure electrocardiogram (ECG) or respiratory effort. This paper proposes a method to estimate actigraphy from the body movement artifacts present in the ECG and respiratory inductance plethysmography (RIP) based on the time-frequency analysis of those signals. Using a continuous wavelet transform to analyze RIP, and ECG and RIP combined, it provides a surrogate measure of actigraphy with moderate correlation (for ECG+RIP, ρ = 0.74, p  <  0.001) and agreement (mean bias ratio of 0.94 and 95% agreement ratios of 0.11 and 8.45) with reference actigraphy. More important, it can be used as a replacement of actigraphy in sleep/wake classification: after cross-validation with a data set comprising polysomnographic (PSG) recordings of 15 healthy subjects and 25 insomniacs annotated by an external sleep technician, it achieves a statistically non-inferior classification performance when used together with respiratory features (average κ of 0.64 for 15 healthy subjects, and 0.50 for a dataset with 40 healthy and insomniac subjects), and when used together with respiratory and cardiac features (average κ of 0.66 for 15 healthy subjects, and 0.56 for 40 healthy and insomniac subjects). Since this method eliminates the need for a dedicated actigraphy device, it reduces the number of sensors needed for sleep/wake classification to a single sensor when using respiratory features, and to two sensors when using respiratory and cardiac features without any loss in performance. It offers a major benefit in terms of comfort for long-term home monitoring and is immediately applicable for legacy ECG and RIP monitoring devices already used in clinical

  12. Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals.

    Science.gov (United States)

    Elhaj, Fatin A; Salim, Naomie; Harris, Arief R; Swee, Tan Tian; Ahmed, Taqwa

    2016-04-01

    Arrhythmia is a cardiac condition caused by abnormal electrical activity of the heart, and an electrocardiogram (ECG) is the non-invasive method used to detect arrhythmias or heart abnormalities. Due to the presence of noise, the non-stationary nature of the ECG signal (i.e. the changing morphology of the ECG signal with respect to time) and the irregularity of the heartbeat, physicians face difficulties in the diagnosis of arrhythmias. The computer-aided analysis of ECG results assists physicians to detect cardiovascular diseases. The development of many existing arrhythmia systems has depended on the findings from linear experiments on ECG data which achieve high performance on noise-free data. However, nonlinear experiments characterize the ECG signal more effectively sense, extract hidden information in the ECG signal, and achieve good performance under noisy conditions. This paper investigates the representation ability of linear and nonlinear features and proposes a combination of such features in order to improve the classification of ECG data. In this study, five types of beat classes of arrhythmia as recommended by the Association for Advancement of Medical Instrumentation are analyzed: non-ectopic beats (N), supra-ventricular ectopic beats (S), ventricular ectopic beats (V), fusion beats (F) and unclassifiable and paced beats (U). The characterization ability of nonlinear features such as high order statistics and cumulants and nonlinear feature reduction methods such as independent component analysis are combined with linear features, namely, the principal component analysis of discrete wavelet transform coefficients. The features are tested for their ability to differentiate different classes of data using different classifiers, namely, the support vector machine and neural network methods with tenfold cross-validation. Our proposed method is able to classify the N, S, V, F and U arrhythmia classes with high accuracy (98.91%) using a combined support

  13. A ECG Signal Gathering and Displaying System Based on AVR

    Science.gov (United States)

    Ning, Li; Ruilan, Zhang; Jian, Liu; Xiaochen, Wang; Shuying, Chen; Zhuolin, Lang

    2017-12-01

    This article introduces a kind of system which is based on the AVR to acquire the data of ECG. Such system using the A/D function of ATmega8 chip and the lattice graph LCD to design ECG heart acquisition satisfies the demands above. This design gives a composition of hardware and programming of software about the system in detail which has mainly realized the real-time gathering, the amplifier, the filter, the A/D transformation and the LCD display. Since the AVR includes A/D transformation function and support embedded C language programming, it reduces the peripheral circuit, further more it also decreases the time to design and debug this system.

  14. IIR digital filter design for powerline noise cancellation of ECG signal using arduino platform

    Science.gov (United States)

    Rahmatillah, Akif; Ataulkarim

    2017-05-01

    Powerline noise has been one of significant noises of Electrocardiogram (ECG) signal measurement. This noise is characterized by a sinusoidal signal which has 50 Hz of noise and 0.3 mV of maximum amplitude. This paper describes the design of IIR Notch filter design to reject a 50 Hz power line noise. IIR filter coefficients were calculated using pole placement method with three variations of band stop cut off frequencies of (49-51)Hz, (48 - 52)Hz, and (47 - 53)Hz. The algorithm and coefficients of filter were embedded to Arduino DUE (ARM 32 bit microcontroller). IIR notch filter designed has been able to reject power line noise with average square of error value of 0.225 on (49-51) Hz filter design and 0.2831 on (48 - 52)Hz filter design.

  15. On the application of optimal wavelet filter banks for ECG signal classification

    International Nuclear Information System (INIS)

    Hadjiloucas, S; Jannah, N; Hwang, F; Galvão, R K H

    2014-01-01

    This paper discusses ECG signal classification after parametrizing the ECG waveforms in the wavelet domain. Signal decomposition using perfect reconstruction quadrature mirror filter banks can provide a very parsimonious representation of ECG signals. In the current work, the filter parameters are adjusted by a numerical optimization algorithm in order to minimize a cost function associated to the filter cut-off sharpness. The goal consists of achieving a better compromise between frequency selectivity and time resolution at each decomposition level than standard orthogonal filter banks such as those of the Daubechies and Coiflet families. Our aim is to optimally decompose the signals in the wavelet domain so that they can be subsequently used as inputs for training to a neural network classifier

  16. ECG signal performance de-noising assessment based on threshold tuning of dual-tree wavelet transform.

    Science.gov (United States)

    El B'charri, Oussama; Latif, Rachid; Elmansouri, Khalifa; Abenaou, Abdenbi; Jenkal, Wissam

    2017-02-07

    Since the electrocardiogram (ECG) signal has a low frequency and a weak amplitude, it is sensitive to miscellaneous mixed noises, which may reduce the diagnostic accuracy and hinder the physician's correct decision on patients. The dual tree wavelet transform (DT-WT) is one of the most recent enhanced versions of discrete wavelet transform. However, threshold tuning on this method for noise removal from ECG signal has not been investigated yet. In this work, we shall provide a comprehensive study on the impact of the choice of threshold algorithm, threshold value, and the appropriate wavelet decomposition level to evaluate the ECG signal de-noising performance. A set of simulations is performed on both synthetic and real ECG signals to achieve the promised results. First, the synthetic ECG signal is used to observe the algorithm response. The evaluation results of synthetic ECG signal corrupted by various types of noise has showed that the modified unified threshold and wavelet hyperbolic threshold de-noising method is better in realistic and colored noises. The tuned threshold is then used on real ECG signals from the MIT-BIH database. The results has shown that the proposed method achieves higher performance than the ordinary dual tree wavelet transform into all kinds of noise removal from ECG signal. The simulation results indicate that the algorithm is robust for all kinds of noises with varying degrees of input noise, providing a high quality clean signal. Moreover, the algorithm is quite simple and can be used in real time ECG monitoring.

  17. New methodologies for measuring Brugada ECG patterns cannot differentiate the ECG pattern of Brugada syndrome from Brugada phenocopy.

    Science.gov (United States)

    Gottschalk, Byron H; Garcia-Niebla, Javier; Anselm, Daniel D; Jaidka, Atul; De Luna, Antoni Bayés; Baranchuk, Adrian

    2016-01-01

    Brugada phenocopies (BrP) are clinical entities characterized by ECG patterns that are identical to true Brugada syndrome (BrS), but are elicited by various clinical circumstances. A recent study demonstrated that the patterns of BrP and BrS are indistinguishable under the naked eye, thereby validating the concept that the patterns are identical. The aim of our study was to determine whether recently developed ECG criteria would allow for discrimination between type-2 BrS ECG pattern and type-2 BrP ECG pattern. Ten ECGs from confirmed BrS (aborted sudden death, transformation into type 1 upon sodium channel blocking test and/or ventricular arrhythmias, positive genetics) cases and 9 ECGs from confirmed BrP were included in the study. Surface 12-lead ECGs were scanned, saved in JPEG format for blind measurement of two values: (i) β-angle; and (ii) the base of the triangle. Cut-off values of ≥58° for the β-angle and ≥4mm for the base of the triangle were used to determine the BrS ECG pattern. Mean values for the β-angle in leads V1 and V2 were 66.7±25.5 and 55.4±28.1 for BrS and 54.1±26.5 and 43.1±16.1 for BrP respectively (p=NS). Mean values for the base of the triangle in V1 and V2 were 7.5±3.9 and 5.7±3.9 for BrS and 5.6±3.2 and 4.7±2.7 for BrP respectively (p=NS). The β-angle had a sensitivity of 60%, specificity of 78% (LR+ 2.7, LR- 0.5). The base of the triangle had a sensitivity of 80%, specificity of 40% (LR+ 1.4, LR- 0.5). New ECG criteria presented relatively low sensitivity and specificity, positive and negative predictive values to discriminate between BrS and BrP ECG patterns, providing further evidence that the two patterns are identical. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Wavelet-Based Watermarking and Compression for ECG Signals with Verification Evaluation

    Directory of Open Access Journals (Sweden)

    Kuo-Kun Tseng

    2014-02-01

    Full Text Available In the current open society and with the growth of human rights, people are more and more concerned about the privacy of their information and other important data. This study makes use of electrocardiography (ECG data in order to protect individual information. An ECG signal can not only be used to analyze disease, but also to provide crucial biometric information for identification and authentication. In this study, we propose a new idea of integrating electrocardiogram watermarking and compression approach, which has never been researched before. ECG watermarking can ensure the confidentiality and reliability of a user’s data while reducing the amount of data. In the evaluation, we apply the embedding capacity, bit error rate (BER, signal-to-noise ratio (SNR, compression ratio (CR, and compressed-signal to noise ratio (CNR methods to assess the proposed algorithm. After comprehensive evaluation the final results show that our algorithm is robust and feasible.

  19. Analysis Spectrum of ECG Signal and QRS Detection during Running on Treadmill

    Science.gov (United States)

    Agung Suhendra, M.; Ilham R., M.; Simbolon, Artha I.; Faizal A., M.; Munandar, A.

    2018-03-01

    The heart is an important organ in our metabolism in which it controls circulatory and oxygen. The heart exercise is needed one of them using the treadmill to prevent health. To analysis, it using electrocardiograph (ECG) to investigating and diagnosing anomalies of the heart. In this paper, we would like to analysis ECG signals during running on the treadmill with kinds of speeds. There are two analysis ECG signals i.e. QRS detection and power spectrum density (PSD). The result of PSD showed that subject 3 has highly for all subject and the result of QRS detection using pan Tomkins algorithm that a percentage of failed detection is an approaching to 0 % for all subject.

  20. [Investigation of fast filter of ECG signals with lifting wavelet and smooth filter].

    Science.gov (United States)

    Li, Xuefei; Mao, Yuxing; He, Wei; Yang, Fan; Zhou, Liang

    2008-02-01

    The lifting wavelet is used to decompose the original ECG signals and separate them into the approach signals with low frequency and the detail signals with high frequency, based on frequency characteristic. Parts of the detail signals are ignored according to the frequency characteristic. To avoid the distortion of QRS Complexes, the approach signals are filtered by an adaptive smooth filter with a proper threshold value. Through the inverse transform of the lifting wavelet, the reserved approach signals are reconstructed, and the three primary kinds of noise are limited effectively. In addition, the method is fast and there is no time delay between input and output.

  1. Extracting the respiration cycle lengths from ECG signal recorded with bed sheet electrodes

    International Nuclear Information System (INIS)

    Vehkaoja, A; Peltokangas, M; Lekkala, J

    2013-01-01

    A method for recognizing the respiration cycle lengths from the electrocardiographic (ECG) signal recorded with textile electrodes that are attached to a bed sheet is proposed. The method uses two features extracted from the ECG that are affected by the respiration: respiratory sinus arrhythmia and the amplitude of the R-peaks. The proposed method was tested in one hour long recordings with ten healthy young adults. A relative mean absolute error of 5.6 % was achieved when the algorithm was able to provide a result for approximately 40 % of the time. 90 % of the values were within 0.5 s and 97 % within 1 s from the reference respiration value. In addition to the instantaneous respiration cycle lengths, also the mean values during 1 and 5 minutes epochs are calculated. The effect of the ECG signal source is evaluated by calculating the result also from the simultaneously recorded reference ECG signal. The acquired respiration information can be used in the estimation of sleep quality and the detection of sleep disorders

  2. A portable system for acquiring and removing motion artefact from ECG signals

    Science.gov (United States)

    Griffiths, A.; Das, A.; Fernandes, B.; Gaydecki, P.

    2007-07-01

    A novel electrocardiograph (ECG) signal acquisition and display system is under development. It is designed for patients ranging from the elderly to athletes. The signals are obtained from electrodes integrated into a vest, amplified, digitally processed and transmitted via Bluetooth to a PC with a Labview ® interface. Digital signal processing is performed to remove movement artefact and electromyographic (EMG) noise, which severely distorts signal morphology and complicates clinical diagnosis. Independent component analysis (ICA) is also used to improve the signal quality. The complete system will integrate the electronics into a single module which will be embedded in the vest.

  3. A portable system for acquiring and removing motion artefact from ECG signals

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, A; Das, A; Fernandes, B; Gaydecki, P [School of Electrical and Electronic Engineering, University of Manchester, PO Box 88, Manchester M60 1QD (United Kingdom)

    2007-07-15

    A novel electrocardiograph (ECG) signal acquisition and display system is under development. It is designed for patients ranging from the elderly to athletes. The signals are obtained from electrodes integrated into a vest, amplified, digitally processed and transmitted via Bluetooth to a PC with a Labview (registered) interface. Digital signal processing is performed to remove movement artefact and electromyographic (EMG) noise, which severely distorts signal morphology and complicates clinical diagnosis. Independent component analysis (ICA) is also used to improve the signal quality. The complete system will integrate the electronics into a single module which will be embedded in the ves000.

  4. Adaptive Fourier decomposition based R-peak detection for noisy ECG Signals.

    Science.gov (United States)

    Ze Wang; Chi Man Wong; Feng Wan

    2017-07-01

    An adaptive Fourier decomposition (AFD) based R-peak detection method is proposed for noisy ECG signals. Although lots of QRS detection methods have been proposed in literature, most detection methods require high signal quality. The proposed method extracts the R waves from the energy domain using the AFD and determines the R-peak locations based on the key decomposition parameters, achieving the denoising and the R-peak detection at the same time. Validated by clinical ECG signals in the MIT-BIH Arrhythmia Database, the proposed method shows better performance than the Pan-Tompkin (PT) algorithm in both situations of a native PT and the PT with a denoising process.

  5. On the Design of an Efficient Cardiac Health Monitoring System Through Combined Analysis of ECG and SCG Signals.

    Science.gov (United States)

    Sahoo, Prasan Kumar; Thakkar, Hiren Kumar; Lin, Wen-Yen; Chang, Po-Cheng; Lee, Ming-Yih

    2018-01-28

    Cardiovascular disease (CVD) is a major public concern and socioeconomic problem across the globe. The popular high-end cardiac health monitoring systems such as magnetic resonance imaging (MRI), computerized tomography scan (CT scan), and echocardiography (Echo) are highly expensive and do not support long-term continuous monitoring of patients without disrupting their activities of daily living (ADL). In this paper, the continuous and non-invasive cardiac health monitoring using unobtrusive sensors is explored aiming to provide a feasible and low-cost alternative to foresee possible cardiac anomalies in an early stage. It is learned that cardiac health monitoring based on sole usage of electrocardiogram (ECG) signals may not provide powerful insights as ECG provides shallow information on various cardiac activities in the form of electrical impulses only. Hence, a novel low-cost, non-invasive seismocardiogram (SCG) signal along with ECG signals are jointly investigated for the robust cardiac health monitoring. For this purpose, the in-laboratory data collection model is designed for simultaneous acquisition of ECG and SCG signals followed by mechanisms for the automatic delineation of relevant feature points in acquired ECG and SCG signals. In addition, separate feature points based novel approach is adopted to distinguish between normal and abnormal morphology in each ECG and SCG cardiac cycle. Finally, a combined analysis of ECG and SCG is carried out by designing a Naïve Bayes conditional probability model. Experiments on Institutional Review Board (IRB) approved licensed ECG/SCG signals acquired from real subjects containing 12,000 cardiac cycles show that the proposed feature point delineation mechanisms and abnormal morphology detection methods consistently perform well and give promising results. In addition, experimental results show that the combined analysis of ECG and SCG signals provide more reliable cardiac health monitoring compared to the

  6. On the Design of an Efficient Cardiac Health Monitoring System Through Combined Analysis of ECG and SCG Signals

    Directory of Open Access Journals (Sweden)

    Prasan Kumar Sahoo

    2018-01-01

    Full Text Available Cardiovascular disease (CVD is a major public concern and socioeconomic problem across the globe. The popular high-end cardiac health monitoring systems such as magnetic resonance imaging (MRI, computerized tomography scan (CT scan, and echocardiography (Echo are highly expensive and do not support long-term continuous monitoring of patients without disrupting their activities of daily living (ADL. In this paper, the continuous and non-invasive cardiac health monitoring using unobtrusive sensors is explored aiming to provide a feasible and low-cost alternative to foresee possible cardiac anomalies in an early stage. It is learned that cardiac health monitoring based on sole usage of electrocardiogram (ECG signals may not provide powerful insights as ECG provides shallow information on various cardiac activities in the form of electrical impulses only. Hence, a novel low-cost, non-invasive seismocardiogram (SCG signal along with ECG signals are jointly investigated for the robust cardiac health monitoring. For this purpose, the in-laboratory data collection model is designed for simultaneous acquisition of ECG and SCG signals followed by mechanisms for the automatic delineation of relevant feature points in acquired ECG and SCG signals. In addition, separate feature points based novel approach is adopted to distinguish between normal and abnormal morphology in each ECG and SCG cardiac cycle. Finally, a combined analysis of ECG and SCG is carried out by designing a Naïve Bayes conditional probability model. Experiments on Institutional Review Board (IRB approved licensed ECG/SCG signals acquired from real subjects containing 12,000 cardiac cycles show that the proposed feature point delineation mechanisms and abnormal morphology detection methods consistently perform well and give promising results. In addition, experimental results show that the combined analysis of ECG and SCG signals provide more reliable cardiac health monitoring compared to

  7. Pseudo Asynchronous Level Crossing adc for ecg Signal Acquisition.

    Science.gov (United States)

    Marisa, T; Niederhauser, T; Haeberlin, A; Wildhaber, R A; Vogel, R; Goette, J; Jacomet, M

    2017-02-07

    A new pseudo asynchronous level crossing analogue-to-digital converter (adc) architecture targeted for low-power, implantable, long-term biomedical sensing applications is presented. In contrast to most of the existing asynchronous level crossing adc designs, the proposed design has no digital-to-analogue converter (dac) and no continuous time comparators. Instead, the proposed architecture uses an analogue memory cell and dynamic comparators. The architecture retains the signal activity dependent sampling operation by generating events only when the input signal is changing. The architecture offers the advantages of smaller chip area, energy saving and fewer analogue system components. Beside lower energy consumption the use of dynamic comparators results in a more robust performance in noise conditions. Moreover, dynamic comparators make interfacing the asynchronous level crossing system to synchronous processing blocks simpler. The proposed adc was implemented in [Formula: see text] complementary metal-oxide-semiconductor (cmos) technology, the hardware occupies a chip area of 0.0372 mm 2 and operates from a supply voltage of [Formula: see text] to [Formula: see text]. The adc's power consumption is as low as 0.6 μW with signal bandwidth from [Formula: see text] to [Formula: see text] and achieves an equivalent number of bits (enob) of up to 8 bits.

  8. A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification.

    Science.gov (United States)

    Yildirim, Özal

    2018-05-01

    Long-short term memory networks (LSTMs), which have recently emerged in sequential data analysis, are the most widely used type of recurrent neural networks (RNNs) architecture. Progress on the topic of deep learning includes successful adaptations of deep versions of these architectures. In this study, a new model for deep bidirectional LSTM network-based wavelet sequences called DBLSTM-WS was proposed for classifying electrocardiogram (ECG) signals. For this purpose, a new wavelet-based layer is implemented to generate ECG signal sequences. The ECG signals were decomposed into frequency sub-bands at different scales in this layer. These sub-bands are used as sequences for the input of LSTM networks. New network models that include unidirectional (ULSTM) and bidirectional (BLSTM) structures are designed for performance comparisons. Experimental studies have been performed for five different types of heartbeats obtained from the MIT-BIH arrhythmia database. These five types are Normal Sinus Rhythm (NSR), Ventricular Premature Contraction (VPC), Paced Beat (PB), Left Bundle Branch Block (LBBB), and Right Bundle Branch Block (RBBB). The results show that the DBLSTM-WS model gives a high recognition performance of 99.39%. It has been observed that the wavelet-based layer proposed in the study significantly improves the recognition performance of conventional networks. This proposed network structure is an important approach that can be applied to similar signal processing problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Adaptive EMG noise reduction in ECG signals using noise level approximation

    Science.gov (United States)

    Marouf, Mohamed; Saranovac, Lazar

    2017-12-01

    In this paper the usage of noise level approximation for adaptive Electromyogram (EMG) noise reduction in the Electrocardiogram (ECG) signals is introduced. To achieve the adequate adaptiveness, a translation-invariant noise level approximation is employed. The approximation is done in the form of a guiding signal extracted as an estimation of the signal quality vs. EMG noise. The noise reduction framework is based on a bank of low pass filters. So, the adaptive noise reduction is achieved by selecting the appropriate filter with respect to the guiding signal aiming to obtain the best trade-off between the signal distortion caused by filtering and the signal readability. For the evaluation purposes; both real EMG and artificial noises are used. The tested ECG signals are from the MIT-BIH Arrhythmia Database Directory, while both real and artificial records of EMG noise are added and used in the evaluation process. Firstly, comparison with state of the art methods is conducted to verify the performance of the proposed approach in terms of noise cancellation while preserving the QRS complex waves. Additionally, the signal to noise ratio improvement after the adaptive noise reduction is computed and presented for the proposed method. Finally, the impact of adaptive noise reduction method on QRS complexes detection was studied. The tested signals are delineated using a state of the art method, and the QRS detection improvement for different SNR is presented.

  10. Low-complexity R-peak detection in ECG signals: a preliminary step towards ambulatory fetal monitoring.

    Science.gov (United States)

    Rooijakkers, Michiel; Rabotti, Chiara; Bennebroek, Martijn; van Meerbergen, Jef; Mischi, Massimo

    2011-01-01

    Non-invasive fetal health monitoring during pregnancy has become increasingly important. Recent advances in signal processing technology have enabled fetal monitoring during pregnancy, using abdominal ECG recordings. Ubiquitous ambulatory monitoring for continuous fetal health measurement is however still unfeasible due to the computational complexity of noise robust solutions. In this paper an ECG R-peak detection algorithm for ambulatory R-peak detection is proposed, as part of a fetal ECG detection algorithm. The proposed algorithm is optimized to reduce computational complexity, while increasing the R-peak detection quality compared to existing R-peak detection schemes. Validation of the algorithm is performed on two manually annotated datasets, the MIT/BIH Arrhythmia database and an in-house abdominal database. Both R-peak detection quality and computational complexity are compared to state-of-the-art algorithms as described in the literature. With a detection error rate of 0.22% and 0.12% on the MIT/BIH Arrhythmia and in-house databases, respectively, the quality of the proposed algorithm is comparable to the best state-of-the-art algorithms, at a reduced computational complexity.

  11. FPGA-based electrocardiography (ECG signal analysis system using least-square linear phase finite impulse response (FIR filter

    Directory of Open Access Journals (Sweden)

    Mohamed G. Egila

    2016-12-01

    Full Text Available This paper presents a proposed design for analyzing electrocardiography (ECG signals. This methodology employs highpass least-square linear phase Finite Impulse Response (FIR filtering technique to filter out the baseline wander noise embedded in the input ECG signal to the system. Discrete Wavelet Transform (DWT was utilized as a feature extraction methodology to extract the reduced feature set from the input ECG signal. The design uses back propagation neural network classifier to classify the input ECG signal. The system is implemented on Xilinx 3AN-XC3S700AN Field Programming Gate Array (FPGA board. A system simulation has been done. The design is compared with some other designs achieving total accuracy of 97.8%, and achieving reduction in utilizing resources on FPGA implementation.

  12. Suppression of AC railway power-line interference in ECG signals recorded by public access defibrillators

    Directory of Open Access Journals (Sweden)

    Dotsinsky Ivan

    2005-11-01

    Full Text Available Abstract Background Public access defibrillators (PADs are now available for more efficient and rapid treatment of out-of-hospital sudden cardiac arrest. PADs are used normally by untrained people on the streets and in sports centers, airports, and other public areas. Therefore, automated detection of ventricular fibrillation, or its exclusion, is of high importance. A special case exists at railway stations, where electric power-line frequency interference is significant. Many countries, especially in Europe, use 16.7 Hz AC power, which introduces high level frequency-varying interference that may compromise fibrillation detection. Method Moving signal averaging is often used for 50/60 Hz interference suppression if its effect on the ECG spectrum has little importance (no morphological analysis is performed. This approach may be also applied to the railway situation, if the interference frequency is continuously detected so as to synchronize the analog-to-digital conversion (ADC for introducing variable inter-sample intervals. A better solution consists of rated ADC, software frequency measuring, internal irregular re-sampling according to the interference frequency, and a moving average over a constant sample number, followed by regular back re-sampling. Results The proposed method leads to a total railway interference cancellation, together with suppression of inherent noise, while the peak amplitudes of some sharp complexes are reduced. This reduction has negligible effect on accurate fibrillation detection. Conclusion The method is developed in the MATLAB environment and represents a useful tool for real time railway interference suppression.

  13. Suppression of AC railway power-line interference in ECG signals recorded by public access defibrillators.

    Science.gov (United States)

    Dotsinsky, Ivan

    2005-11-26

    Public access defibrillators (PADs) are now available for more efficient and rapid treatment of out-of-hospital sudden cardiac arrest. PADs are used normally by untrained people on the streets and in sports centers, airports, and other public areas. Therefore, automated detection of ventricular fibrillation, or its exclusion, is of high importance. A special case exists at railway stations, where electric power-line frequency interference is significant. Many countries, especially in Europe, use 16.7 Hz AC power, which introduces high level frequency-varying interference that may compromise fibrillation detection. Moving signal averaging is often used for 50/60 Hz interference suppression if its effect on the ECG spectrum has little importance (no morphological analysis is performed). This approach may be also applied to the railway situation, if the interference frequency is continuously detected so as to synchronize the analog-to-digital conversion (ADC) for introducing variable inter-sample intervals. A better solution consists of rated ADC, software frequency measuring, internal irregular re-sampling according to the interference frequency, and a moving average over a constant sample number, followed by regular back re-sampling. The proposed method leads to a total railway interference cancellation, together with suppression of inherent noise, while the peak amplitudes of some sharp complexes are reduced. This reduction has negligible effect on accurate fibrillation detection. The method is developed in the MATLAB environment and represents a useful tool for real time railway interference suppression.

  14. Effects of cuff inflation and deflation on pulse transit time measured from ECG and multi-wavelength PPG.

    Science.gov (United States)

    Liu, Jing; Li, Yao; Ding, Xiao-Rong; Dai, Wen-Xuan; Zhang, Yuan-Ting

    2015-01-01

    Pulse transit time (PTT), which refers to the time it takes a pulse wave to travel between two arterial sites is a promising index for cuff-less blood pressure (BP) estimation, as well as non-invasive assessment of arterial functions. However, it has not been investigated whether PTTs measured from ECG and different wavelength PPG are equally affected by the arterial status. Furthermore, comparison between the changes of different PTTs can provide enlightenment on the hardware implementation of the PTT-based BP estimation method. This work mainly studied the changes of PTTs calculated from electrocardiogram (ECG) and multi-wavelength photoplethysmogram (PPG) after exerting cuff pressure on the upper arm. A four-channel PPG acquisition system was developed to collect the multi-wavelength PPG signals of red, yellow, green and blue light at the fingertip simultaneously. Ten subjects participated in the experiment and their PTTs measured from different PPG and ECG signals before and after exerting cuff pressure were compared. This study found that within one minute after the four-minute cuff inflation and deflation process, the PTT measured from ECG and yellow PPG experienced a significant increase (p0.9) compared with that before exerting cuff pressure. This indicates that PTTs calculated from different wavelength PPG have different recoverability from smooth muscle relaxation. Another interesting finding is that the PTT calculated from ECG and yellow PPG had a strong correlation (|r|>0.7) with the time difference between yellow PPG and other PPG signals, which implies the potential of the time difference between yellow PPG and other PPGs as a complementary to PTT-based model for blood pressure estimation.

  15. ECG-Based Measurements of Drug-induced Repolarization Changes

    DEFF Research Database (Denmark)

    Bhuiyan, Tanveer Ahmed

    The purpose of this thesis is to investigate the abnormal repolarization both in the cellular and the surface ECG along with their relationship. It has been identified that the certain morphological changes of the monophasic action potential are predictor of TdP arrhythmia. Therefore the proporti......The purpose of this thesis is to investigate the abnormal repolarization both in the cellular and the surface ECG along with their relationship. It has been identified that the certain morphological changes of the monophasic action potential are predictor of TdP arrhythmia. Therefore...... the proportional changes of the surface ECG which corresponds to the arrhythmia-triggering MAP morphology is warranted to increase the confidence of determining cardiotoxicity of drugs....

  16. Programming a DSP card for generating an ECG signal with possibility of anomalies

    International Nuclear Information System (INIS)

    Hamrouni, Sayma

    2013-01-01

    This project consists of programming a DSP designed to generate an ECG signal with a probability of anomaly. To begin with, we get to know the characteristics of a DSP card and its architecture. As a second step, we programmed the DSP32C using the compiler D3CC associated with Textpad in order to obtain an analog signal in the respective outputs. And then finally, we developed a graphical user interface using the programming software LabVIEW that aims controlling the good operation of DSP. The tests previously made have proved the good operation of the application.

  17. Investigating the effect of traditional Persian music on ECG signals in young women using wavelet transform and neural networks.

    Science.gov (United States)

    Abedi, Behzad; Abbasi, Ataollah; Goshvarpour, Atefeh

    2017-05-01

    In the past few decades, several studies have reported the physiological effects of listening to music. The physiological effects of different music types on different people are different. In the present study, we aimed to examine the effects of listening to traditional Persian music on electrocardiogram (ECG) signals in young women. Twenty-two healthy females participated in this study. ECG signals were recorded under two conditions: rest and music. For each ECG signal, 20 morphological and wavelet-based features were selected. Artificial neural network (ANN) and probabilistic neural network (PNN) classifiers were used for the classification of ECG signals during and before listening to music. Collected data were separated into two data sets: train and test. Classification accuracies of 88% and 97% were achieved in train data sets using ANN and PNN, respectively. In addition, the test data set was employed for evaluating the classifiers, and classification rates of 84% and 93% were obtained using ANN and PNN, respectively. The present study investigated the effect of music on ECG signals based on wavelet transform and morphological features. The results obtained here can provide a good understanding on the effects of music on ECG signals to researchers.

  18. 3D Finite Element Electrical Model of Larval Zebrafish ECG Signals

    Science.gov (United States)

    Crowcombe, James; Dhillon, Sundeep Singh; Hurst, Rhiannon Mary; Egginton, Stuart; Müller, Ferenc; Sík, Attila; Tarte, Edward

    2016-01-01

    Assessment of heart function in zebrafish larvae using electrocardiography (ECG) is a potentially useful tool in developing cardiac treatments and the assessment of drug therapies. In order to better understand how a measured ECG waveform is related to the structure of the heart, its position within the larva and the position of the electrodes, a 3D model of a 3 days post fertilisation (dpf) larval zebrafish was developed to simulate cardiac electrical activity and investigate the voltage distribution throughout the body. The geometry consisted of two main components; the zebrafish body was modelled as a homogeneous volume, while the heart was split into five distinct regions (sinoatrial region, atrial wall, atrioventricular band, ventricular wall and heart chambers). Similarly, the electrical model consisted of two parts with the body described by Laplace’s equation and the heart using a bidomain ionic model based upon the Fitzhugh-Nagumo equations. Each region of the heart was differentiated by action potential (AP) parameters and activation wave conduction velocities, which were fitted and scaled based on previously published experimental results. ECG measurements in vivo at different electrode recording positions were then compared to the model results. The model was able to simulate action potentials, wave propagation and all the major features (P wave, R wave, T wave) of the ECG, as well as polarity of the peaks observed at each position. This model was based upon our current understanding of the structure of the normal zebrafish larval heart. Further development would enable us to incorporate features associated with the diseased heart and hence assist in the interpretation of larval zebrafish ECGs in these conditions. PMID:27824910

  19. Aiding the Detection of QRS Complex in ECG Signals by Detecting S Peaks Independently.

    Science.gov (United States)

    Sabherwal, Pooja; Singh, Latika; Agrawal, Monika

    2018-03-30

    In this paper, a novel algorithm for the accurate detection of QRS complex by combining the independent detection of R and S peaks, using fusion algorithm is proposed. R peak detection has been extensively studied and is being used to detect the QRS complex. Whereas, S peaks, which is also part of QRS complex can be independently detected to aid the detection of QRS complex. In this paper, we suggest a method to first estimate S peak from raw ECG signal and then use them to aid the detection of QRS complex. The amplitude of S peak in ECG signal is relatively weak than corresponding R peak, which is traditionally used for the detection of QRS complex, therefore, an appropriate digital filter is designed to enhance the S peaks. These enhanced S peaks are then detected by adaptive thresholding. The algorithm is validated on all the signals of MIT-BIH arrhythmia database and noise stress database taken from physionet.org. The algorithm performs reasonably well even for the signals highly corrupted by noise. The algorithm performance is confirmed by sensitivity and positive predictivity of 99.99% and the detection accuracy of 99.98% for QRS complex detection. The number of false positives and false negatives resulted while analysis has been drastically reduced to 80 and 42 against the 98 and 84 the best results reported so far.

  20. Design and implementation of a multiband digital filter using FPGA to extract the ECG signal in the presence of different interference signals.

    Science.gov (United States)

    Aboutabikh, Kamal; Aboukerdah, Nader

    2015-07-01

    In this paper, we propose a practical way to synthesize and filter an ECG signal in the presence of four types of interference signals: (1) those arising from power networks with a fundamental frequency of 50Hz, (2) those arising from respiration, having a frequency range from 0.05 to 0.5Hz, (3) muscle signals with a frequency of 25Hz, and (4) white noise present within the ECG signal band. This was done by implementing a multiband digital filter (seven bands) of type FIR Multiband Least Squares using a digital programmable device (Cyclone II EP2C70F896C6 FPGA, Altera), which was placed on an education and development board (DE2-70, Terasic). This filter was designed using the VHDL language in the Quartus II 9.1 design environment. The proposed method depends on Direct Digital Frequency Synthesizers (DDFS) designed to synthesize the ECG signal and various interference signals. So that the synthetic ECG specifications would be closer to actual ECG signals after filtering, we designed in a single multiband digital filter instead of using three separate digital filters LPF, HPF, BSF. Thus all interference signals were removed with a single digital filter. The multiband digital filter results were studied using a digital oscilloscope to characterize input and output signals in the presence of differing sinusoidal interference signals and white noise. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Influence of Mobile Phones on the Quality of ECG Signal Acquired by Medical Devices

    Science.gov (United States)

    Buczkowski, T.; Janusek, D.; Zavala-Fernandez, H.; Skrok, M.; Kania, M.; Liebert, A.

    2013-10-01

    Health aspects of the use of radiating devices, like mobile phones, are still a public concern. Stand-alone electrocardiographic systems and those built-in, more sophisticated, medical devices have become a standard tool used in everyday medical practice. GSM mobile phones might be a potential source of electromagnetic interference (EMI) which may affect reliability of medical appliances. Risk of such event is particularly high in places remote from GSM base stations in which the signal received by GSM mobile phone is weak. In such locations an increase in power of transmitted radio signal is necessary to enhance quality of the communication. In consequence, the risk of interference of electronic devices increases because of the high level of EMI. In the present paper the spatial, temporal, and spectral characteristics of the interference have been examined. The influence of GSM mobile phone on multilead ECG recordings was studied. It was observed that the electrocardiographic system was vulnerable to the interference generated by the GSM mobile phone working with maximum transmit power and in DTX mode when the device was placed in a distance shorter than 7.5 cm from the ECG electrode located on the surface of the chest. Negligible EMI was encountered at any longer distance.

  2. ECG artifact cancellation in surface EMG signals by fractional order calculus application.

    Science.gov (United States)

    Miljković, Nadica; Popović, Nenad; Djordjević, Olivera; Konstantinović, Ljubica; Šekara, Tomislav B

    2017-03-01

    New aspects for automatic electrocardiography artifact removal from surface electromyography signals by application of fractional order calculus in combination with linear and nonlinear moving window filters are explored. Surface electromyography recordings of skeletal trunk muscles are commonly contaminated with spike shaped artifacts. This artifact originates from electrical heart activity, recorded by electrocardiography, commonly present in the surface electromyography signals recorded in heart proximity. For appropriate assessment of neuromuscular changes by means of surface electromyography, application of a proper filtering technique of electrocardiography artifact is crucial. A novel method for automatic artifact cancellation in surface electromyography signals by applying fractional order calculus and nonlinear median filter is introduced. The proposed method is compared with the linear moving average filter, with and without prior application of fractional order calculus. 3D graphs for assessment of window lengths of the filters, crest factors, root mean square differences, and fractional calculus orders (called WFC and WRC graphs) have been introduced. For an appropriate quantitative filtering evaluation, the synthetic electrocardiography signal and analogous semi-synthetic dataset have been generated. The examples of noise removal in 10 able-bodied subjects and in one patient with muscle dystrophy are presented for qualitative analysis. The crest factors, correlation coefficients, and root mean square differences of the recorded and semi-synthetic electromyography datasets showed that the most successful method was the median filter in combination with fractional order calculus of the order 0.9. Statistically more significant (p ECG peak reduction was obtained by the median filter application compared to the moving average filter in the cases of low level amplitude of muscle contraction compared to ECG spikes. The presented results suggest that the

  3. Influence of the trigger technique on ventricular function measurements using 3-Tesla magnetic resonance imaging: comparison of ECG versus pulse wave triggering

    International Nuclear Information System (INIS)

    Sievers, Burkhard; Wiesner, Marco; Kiria, Nino; Speiser, Uwe; Schoen, Steffen; Strasser, Ruth H.

    2011-01-01

    Background Three Tesla cardiovascular magnetic resonance imaging (3T-CMR) is increasingly used in clinical practice. Despite many advantages one drawback is that ECG signal disturbances and artifacts increase with higher magnetic field strength resulting in trigger problems and false gating. This particularly affects cardiac imaging because most pulse sequences require ECG triggering. Pulse wave (PW) triggering is robust and might have advantages over ECG triggering. Purpose To evaluate differences in left ventricular (LV) function as an integral part of most CMR studies between ECG- and PW-triggered short-axis imaging using 3T-CMR. Material and Methods Forty-three patients underwent multiple short-axis cine imaging for LV-function assessment with ECG and PW triggering using standard multi breath hold steady-state free precession. LV-volumes (EDV, ESV), ejection fraction (EF), and mass were determined by slice summation. LV-wall motion was assessed by using a 4-point scoring scale. Bland Altman statistics for inter-observer variability were performed. Results ECG triggering failed in 15 patients (34.8%). Thus, analysis was performed in 28 patients (13 with impaired LV function). Difference in volumes (EDV 0.13 ± 1.8 mL, ESV 0.59 ± 1.1 mL), EF (-0.32 ± 0.6%) and mass (0.01 ± 1.1 g) between ECG and PW triggering were very small and significant only for ESV and EF (p 0.011). In patients with impaired LV function (n = 19) differences were not significant (p = 0.128). Wall motion scores did not differ between ECG and PW triggering (p = 0.295). Inter-observer variability for function measurements was low. Conclusion Short-axis cine imaging for LV-function assessment can accurately be performed using PW triggering on 3T magnets, and may be used in clinical practice when ECG triggering is disturbed

  4. ECG-gated scintillation probe measurement of left ventricular function

    International Nuclear Information System (INIS)

    Bacharach, S.L.; Green, M.V.; Borer, J.S.; Ostrow, H.G.; Redwood, D.R.; Johnston, G.S.

    1977-01-01

    A nonimaging, ECG-gated scintillation-probe system is described that permits real-time quantification, at high temporal resolution, of the time variation of left ventricular (LV) volume over a complete, average cardiac cycle. Linearity between counting rate and volume, probe positioning, and background correction were investigated for both cylindrically collimated (CC) and parallel-hole-collimated (PC) detectors. In 53 patient studies, results obtained with these probes were compared with results obtained from an ECG-gated gamma camera system (CS) with high temporal resolution. Time-activity curves obtained by all three devices were essentially identical in shape (for CC against CS, r = 0.93; for PC against CS, r = 0.98) and in intracycle timing. Left-ventricular ejection fractions obtained with the probes showed workable agreement with the camera: for CC against CS, r = 0.85 (N = 31); for PC against CS, r = 0.90 (N = 21). When LV background is removed as a source of error, the correlation between (PC) probe and camera is improved (r = 0.95, N = 21). This suggests that the portable probe system be used in circumstances where exact knowledge of LV background is minimally important--e.g., continuous bedside monitoring of changes in LV function

  5. Matrix-Inversion-Free Compressed Sensing With Variable Orthogonal Multi-Matching Pursuit Based on Prior Information for ECG Signals.

    Science.gov (United States)

    Cheng, Yih-Chun; Tsai, Pei-Yun; Huang, Ming-Hao

    2016-05-19

    Low-complexity compressed sensing (CS) techniques for monitoring electrocardiogram (ECG) signals in wireless body sensor network (WBSN) are presented. The prior probability of ECG sparsity in the wavelet domain is first exploited. Then, variable orthogonal multi-matching pursuit (vOMMP) algorithm that consists of two phases is proposed. In the first phase, orthogonal matching pursuit (OMP) algorithm is adopted to effectively augment the support set with reliable indices and in the second phase, the orthogonal multi-matching pursuit (OMMP) is employed to rescue the missing indices. The reconstruction performance is thus enhanced with the prior information and the vOMMP algorithm. Furthermore, the computation-intensive pseudo-inverse operation is simplified by the matrix-inversion-free (MIF) technique based on QR decomposition. The vOMMP-MIF CS decoder is then implemented in 90 nm CMOS technology. The QR decomposition is accomplished by two systolic arrays working in parallel. The implementation supports three settings for obtaining 40, 44, and 48 coefficients in the sparse vector. From the measurement result, the power consumption is 11.7 mW at 0.9 V and 12 MHz. Compared to prior chip implementations, our design shows good hardware efficiency and is suitable for low-energy applications.

  6. Deep ECGNet: An Optimal Deep Learning Framework for Monitoring Mental Stress Using Ultra Short-Term ECG Signals.

    Science.gov (United States)

    Hwang, Bosun; You, Jiwoo; Vaessen, Thomas; Myin-Germeys, Inez; Park, Cheolsoo; Zhang, Byoung-Tak

    2018-02-08

    Stress recognition using electrocardiogram (ECG) signals requires the intractable long-term heart rate variability (HRV) parameter extraction process. This study proposes a novel deep learning framework to recognize the stressful states, the Deep ECGNet, using ultra short-term raw ECG signals without any feature engineering methods. The Deep ECGNet was developed through various experiments and analysis of ECG waveforms. We proposed the optimal recurrent and convolutional neural networks architecture, and also the optimal convolution filter length (related to the P, Q, R, S, and T wave durations of ECG) and pooling length (related to the heart beat period) based on the optimization experiments and analysis on the waveform characteristics of ECG signals. The experiments were also conducted with conventional methods using HRV parameters and frequency features as a benchmark test. The data used in this study were obtained from Kwangwoon University in Korea (13 subjects, Case 1) and KU Leuven University in Belgium (9 subjects, Case 2). Experiments were designed according to various experimental protocols to elicit stressful conditions. The proposed framework to recognize stress conditions, the Deep ECGNet, outperformed the conventional approaches with the highest accuracy of 87.39% for Case 1 and 73.96% for Case 2, respectively, that is, 16.22% and 10.98% improvements compared with those of the conventional HRV method. We proposed an optimal deep learning architecture and its parameters for stress recognition, and the theoretical consideration on how to design the deep learning structure based on the periodic patterns of the raw ECG data. Experimental results in this study have proved that the proposed deep learning model, the Deep ECGNet, is an optimal structure to recognize the stress conditions using ultra short-term ECG data.

  7. ECG De-noising

    DEFF Research Database (Denmark)

    Kærgaard, Kevin; Jensen, Søren Hjøllund; Puthusserypady, Sadasivan

    2015-01-01

    Electrocardiogram (ECG) is a widely used noninvasive method to study the rhythmic activity of the heart and thereby to detect the abnormalities. However, these signals are often obscured by artifacts from various sources and minimization of these artifacts are of paramount important. This paper...... proposes two adaptive techniques, namely the EEMD-BLMS (Ensemble Empirical Mode Decomposition in conjunction with the Block Least Mean Square algorithm) and DWT-NN (Discrete Wavelet Transform followed by Neural Network) methods in minimizing the artifacts from recorded ECG signals, and compares...... their performance. These methods were first compared on two types of simulated noise corrupted ECG signals: Type-I (desired ECG+noise frequencies outside the ECG frequency band) and Type-II (ECG+noise frequencies both inside and outside the ECG frequency band). Subsequently, they were tested on real ECG recordings...

  8. Noise-aware dictionary-learning-based sparse representation framework for detection and removal of single and combined noises from ECG signal.

    Science.gov (United States)

    Satija, Udit; Ramkumar, Barathram; Sabarimalai Manikandan, M

    2017-02-01

    Automatic electrocardiogram (ECG) signal enhancement has become a crucial pre-processing step in most ECG signal analysis applications. In this Letter, the authors propose an automated noise-aware dictionary learning-based generalised ECG signal enhancement framework which can automatically learn the dictionaries based on the ECG noise type for effective representation of ECG signal and noises, and can reduce the computational load of sparse representation-based ECG enhancement system. The proposed framework consists of noise detection and identification, noise-aware dictionary learning, sparse signal decomposition and reconstruction. The noise detection and identification is performed based on the moving average filter, first-order difference, and temporal features such as number of turning points, maximum absolute amplitude, zerocrossings, and autocorrelation features. The representation dictionary is learned based on the type of noise identified in the previous stage. The proposed framework is evaluated using noise-free and noisy ECG signals. Results demonstrate that the proposed method can significantly reduce computational load as compared with conventional dictionary learning-based ECG denoising approaches. Further, comparative results show that the method outperforms existing methods in automatically removing noises such as baseline wanders, power-line interference, muscle artefacts and their combinations without distorting the morphological content of local waves of ECG signal.

  9. Conventional QT Variability Measurement vs. Template Matching Techniques: Comparison of Performance Using Simulated and Real ECG

    Science.gov (United States)

    Baumert, Mathias; Starc, Vito; Porta, Alberto

    2012-01-01

    Increased beat-to-beat variability in the QT interval (QTV) of ECG has been associated with increased risk for sudden cardiac death, but its measurement is technically challenging and currently not standardized. The aim of this study was to investigate the performance of commonly used beat-to-beat QT interval measurement algorithms. Three different methods (conventional, template stretching and template time shifting) were subjected to simulated data featuring typical ECG recording issues (broadband noise, baseline wander, amplitude modulation) and real short-term ECG of patients before and after infusion of sotalol, a QT interval prolonging drug. Among the three algorithms, the conventional algorithm was most susceptible to noise whereas the template time shifting algorithm showed superior overall performance on simulated and real ECG. None of the algorithms was able to detect increased beat-to-beat QT interval variability after sotalol infusion despite marked prolongation of the average QT interval. The QTV estimates of all three algorithms were inversely correlated with the amplitude of the T wave. In conclusion, template matching algorithms, in particular the time shifting algorithm, are recommended for beat-to-beat variability measurement of QT interval in body surface ECG. Recording noise, T wave amplitude and the beat-rejection strategy are important factors of QTV measurement and require further investigation. PMID:22860030

  10. Conventional QT variability measurement vs. template matching techniques: comparison of performance using simulated and real ECG.

    Directory of Open Access Journals (Sweden)

    Mathias Baumert

    Full Text Available Increased beat-to-beat variability in the QT interval (QTV of ECG has been associated with increased risk for sudden cardiac death, but its measurement is technically challenging and currently not standardized. The aim of this study was to investigate the performance of commonly used beat-to-beat QT interval measurement algorithms. Three different methods (conventional, template stretching and template time shifting were subjected to simulated data featuring typical ECG recording issues (broadband noise, baseline wander, amplitude modulation and real short-term ECG of patients before and after infusion of sotalol, a QT interval prolonging drug. Among the three algorithms, the conventional algorithm was most susceptible to noise whereas the template time shifting algorithm showed superior overall performance on simulated and real ECG. None of the algorithms was able to detect increased beat-to-beat QT interval variability after sotalol infusion despite marked prolongation of the average QT interval. The QTV estimates of all three algorithms were inversely correlated with the amplitude of the T wave. In conclusion, template matching algorithms, in particular the time shifting algorithm, are recommended for beat-to-beat variability measurement of QT interval in body surface ECG. Recording noise, T wave amplitude and the beat-rejection strategy are important factors of QTV measurement and require further investigation.

  11. Improvement of emotional healthcare system with stress detection from ECG signal.

    Science.gov (United States)

    Tivatansakul, S; Ohkura, M

    2015-01-01

    Our emotional healthcare system is designed to cope with users' negative emotions in daily life. To make the system more intelligent, we integrated emotion recognition by facial expression to provide appropriate services based on user's current emotional state. Our emotion recognition by facial expression has confusion issue to recognize some positive, neutral and negative emotions that make the emotional healthcare system provide a relaxation service even though users don't have negative emotions. Therefore, to increase the effectiveness of the system to provide the relaxation service, we integrate stress detection from ECG signal. The stress detection might be able to address the confusion issue of emotion recognition by facial expression to provide the service. Indeed, our results show that integration of stress detection increases the effectiveness and efficiency of the emotional healthcare system to provide services.

  12. A multi-step method with signal quality assessment and fine-tuning procedure to locate maternal and fetal QRS complexes from abdominal ECG recordings

    International Nuclear Information System (INIS)

    Liu, Chengyu; Li, Peng; Zhao, Lina; Di Maria, Costanzo; Zhang, Henggui; Chen, Zhiqing

    2014-01-01

    Non-invasive monitoring of fetal electrocardiogram (fECG) plays an important role in detecting and diagnosing fetal diseases. This study aimed to develop a multi-step method for locating both maternal and fetal QRS complexes from abdominal ECG (aECG) recordings. The proposed method included four major steps: abdominal ECG pre-processing, maternal QRS complex locating, maternal ECG cancellation and fetal QRS complex locating. Signal quality assessment (SQA) and fine-tuning for maternal ECG (FTM) were implemented in the first and third steps, respectively. The method was then evaluated using 75 non-invasive 4-channel aECG recordings provided by the PhysioNet/Computing in Cardiology Challenge 2013. The F 1 measure, which is a new index introduced by Behar et al (2013 Proc. Comput. Cardiol. 40 297–300), was used to assess the locating accuracy. The other two indices, mean squared error of heart rate (MSE H R) between the fetal HR signals estimated from the reference and our method (MSE H R in bpm 2 ) and root mean squared difference between the corresponding fetal RR intervals (MSE R R in ms) were also used to assess the locating accuracy. Overall, for the maternal QRS complex, the F 1 measure was 98.4% from the method without the implementation of SQA, and it was improved to 99.8% with SQA. For the fetal QRS complex, the F 1 measure, MSE H R and MSE R R were 84.9%, 185.6 bpm 2 and 19.4 ms for the method without both SQA and FTM procedures. They were improved to 93.9%, 47.5 bpm 2 and 7.6 ms with both SQA and FTM procedures. These improvements were observed from each individual subject. It can be concluded that implementing both SQA and FTM procedures could achieve better performance for locating both maternal and fetal QRS complexes. (paper)

  13. A real time ECG signal processing application for arrhythmia detection on portable devices

    Science.gov (United States)

    Georganis, A.; Doulgeraki, N.; Asvestas, P.

    2017-11-01

    Arrhythmia describes the disorders of normal heart rate, which, depending on the case, can even be fatal for a patient with severe history of heart disease. The purpose of this work is to develop an application for heart signal visualization, processing and analysis in Android portable devices e.g. Mobile phones, tablets, etc. The application is able to retrieve the signal initially from a file and at a later stage this signal is processed and analysed within the device so that it can be classified according to the features of the arrhythmia. In the processing and analysing stage, different algorithms are included among them the Moving Average and Pan Tompkins algorithm as well as the use of wavelets, in order to extract features and characteristics. At the final stage, testing is performed by simulating our application in real-time records, using the TCP network protocol for communicating the mobile with a simulated signal source. The classification of ECG beat to be processed is performed by neural networks.

  14. Compressed sensing of ECG signal for wireless system with new fast iterative method.

    Science.gov (United States)

    Tawfic, Israa; Kayhan, Sema

    2015-12-01

    Recent experiments in wireless body area network (WBAN) show that compressive sensing (CS) is a promising tool to compress the Electrocardiogram signal ECG signal. The performance of CS is based on algorithms use to reconstruct exactly or approximately the original signal. In this paper, we present two methods work with absence and presence of noise, these methods are Least Support Orthogonal Matching Pursuit (LS-OMP) and Least Support Denoising-Orthogonal Matching Pursuit (LSD-OMP). The algorithms achieve correct support recovery without requiring sparsity knowledge. We derive an improved restricted isometry property (RIP) based conditions over the best known results. The basic procedures are done by observational and analytical of a different Electrocardiogram signal downloaded them from PhysioBankATM. Experimental results show that significant performance in term of reconstruction quality and compression rate can be obtained by these two new proposed algorithms, and help the specialist gathering the necessary information from the patient in less time if we use Magnetic Resonance Imaging (MRI) application, or reconstructed the patient data after sending it through the network. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Energy Analysis of Decoders for Rakeness-Based Compressed Sensing of ECG Signals.

    Science.gov (United States)

    Pareschi, Fabio; Mangia, Mauro; Bortolotti, Daniele; Bartolini, Andrea; Benini, Luca; Rovatti, Riccardo; Setti, Gianluca

    2017-12-01

    In recent years, compressed sensing (CS) has proved to be effective in lowering the power consumption of sensing nodes in biomedical signal processing devices. This is due to the fact the CS is capable of reducing the amount of data to be transmitted to ensure correct reconstruction of the acquired waveforms. Rakeness-based CS has been introduced to further reduce the amount of transmitted data by exploiting the uneven distribution to the sensed signal energy. Yet, so far no thorough analysis exists on the impact of its adoption on CS decoder performance. The latter point is of great importance, since body-area sensor network architectures may include intermediate gateway nodes that receive and reconstruct signals to provide local services before relaying data to a remote server. In this paper, we fill this gap by showing that rakeness-based design also improves reconstruction performance. We quantify these findings in the case of ECG signals and when a variety of reconstruction algorithms are used either in a low-power microcontroller or a heterogeneous mobile computing platform.

  16. A noise reconfigurable current-reuse resistive feedback amplifier with signal-dependent power consumption for fetal ECG monitoring

    NARCIS (Netherlands)

    Song, Shuang; Rooijakkers, M.J.; Harpe, P.; Rabotti, C.; Mischi, M.; Van Roermund, A.H.M.; Cantatore, E.

    2016-01-01

    This paper presents a noise-reconfigurable resistive feedback amplifier with current-reuse technique for fetal ECG monitoring. The proposed amplifier allows for both tuning of the noise level and changing the power consumption according to the signal properties, minimizing the total power

  17. ECG dispersion mapping predicts clinical deterioration, measured by increase in the Simple Clinical Score.

    LENUS (Irish Health Repository)

    Kellett, J

    2012-01-01

    Objective: ECG dispersion mapping (ECG-DM) is a novel technique that reports abnormal ECG microalternations. We report the ability of ECG-DM to predict clinical deterioration of acutely ill medical patients, as measured by an increase in the Simple Clinical Score (SCS) the day after admission to hospital. Methods: 453 acutely ill medical patients (mean age 69.7 +\\/- 14.0 years) had the SCS recorded and ECGDM performed immediately after admission to hospital. Results: 46 patients had an SCS increase 20.8 +\\/- 7.6 hours after admission. Abnormal micro-alternations during left ventricular re-polarization had the highest association with SCS increase (p=0.0005). Logistic regression showed that only nursing home residence and abnormal micro-alternations during re-polarization of the left ventricle were independent predictors of SCS increase with an odds ratio of 2.84 and 3.01, respectively. Conclusion: ECG-DM changes during left ventricular re-polarization are independent predictors of clinical deterioration the day after hospital admission.

  18. Closed-Loop Control of Humidification for Artifact Reduction in Capacitive ECG Measurements.

    Science.gov (United States)

    Leicht, Lennart; Eilebrecht, Benjamin; Weyer, Soren; Leonhardt, Steffen; Teichmann, Daniel

    2017-04-01

    Recording biosignals without the need for direct skin contact offers new opportunities for ubiquitous health monitoring. Electrodes with capacitive coupling have been shown to be suitable for the monitoring of electrical potentials on the body surface, in particular ECG. However, due to triboelectric charge generation and motion artifacts, signal and thus diagnostic quality is inferior to galvanic coupling. Active closed-loop humidification of capacitive electrodes is proposed in this work as a new concept to improve signal quality. A capacitive ECG recording system integrated into a common car seat is presented. It can regulate the micro climate at the interface of electrode and patient by actively dispensing water vapour and monitoring humidity in a closed-loop approach. As a regenerative water reservoir, silica gel is used. The system was evaluated with respect to subjective and objective ECG signal quality. Active humidification was found to have a significant positive effect in case of previously poor quality. Also, it had no diminishing effect in case of already good signal quality.

  19. Biosignal PI, an Affordable Open-Source ECG and Respiration Measurement System

    Directory of Open Access Journals (Sweden)

    Farhad Abtahi

    2014-12-01

    Full Text Available Bioimedical pilot projects e.g., telemedicine, homecare, animal and human trials usually involve several physiological measurements. Technical development of these projects is time consuming and in particular costly. A versatile but affordable biosignal measurement platform can help to reduce time and risk while keeping the focus on the important goal and making an efficient use of resources. In this work, an affordable and open source platform for development of physiological signals is proposed. As a first step an 8–12 leads electrocardiogram (ECG and respiration monitoring system is developed. Chips based on iCoupler technology have been used to achieve electrical isolation as required by IEC 60601 for patient safety. The result shows the potential of this platform as a base for prototyping compact, affordable, and medically safe measurement systems. Further work involves both hardware and software development to develop modules. These modules may require development of front-ends for other biosignals or just collect data wirelessly from different devices e.g., blood pressure, weight, bioimpedance spectrum, blood glucose, e.g., through Bluetooth. All design and development documents, files and source codes will be available for non-commercial use through project website, BiosignalPI.org.

  20. A GI Proposal to Display ECG Digital Signals Wirelessly Real-time Transmitted onto a Remote PC

    Directory of Open Access Journals (Sweden)

    Marius Corneliu Rosu

    2018-03-01

    Full Text Available The sensors, as wireless communication system, comply the 7-layer model Open Systems Interconnection (OSI. In this paper, a point-to-point transmission model was used. The ECG signal is transmitted from the Router Sensor (RS to an end Coordinator Node (CN plugged-in to the laptop via USB port; RS acquires ECG signal in analogical mode, and is also responsible with sampling, quantization and sending it wirelessly direct to CN. The distance between RS and CN is a single-hop transmission, and does not exceed the range of the XBeeS2Pro transceivers. The communication protocol is ZigBee. Remote viewing of the transmitted signal is performed on a Graphical Interface (GI written under MATLAB, after the signal has been digitized; the choice of MATLAB was motivated by future developments. Particular aspects will be highlighted, so that the reader to be edified about the results obtained during laboratory experiments. Recording demonstrate that the purpose exposed in title has been reached: Direct link in Real-Time was established, and the digital ECG signal received is reconstituted accurately on MATLAB GI; signal received on laptop is compared with the analog signal displayed on oscilloscope.

  1. Evaluation of a Multichannel Non-Contact ECG System and Signal Quality Algorithms for Sleep Apnea Detection and Monitoring

    Directory of Open Access Journals (Sweden)

    Ivan D. Castro

    2018-02-01

    Full Text Available Sleep-related conditions require high-cost and low-comfort diagnosis at the hospital during one night or longer. To overcome this situation, this work aims to evaluate an unobtrusive monitoring technique for sleep apnea. This paper presents, for the first time, the evaluation of contactless capacitively-coupled electrocardiography (ccECG signals for the extraction of sleep apnea features, together with a comparison of different signal quality indicators. A multichannel ccECG system is used to collect signals from 15 subjects in a sleep environment from different positions. Reference quality labels were assigned for every 30-s segment. Quality indicators were calculated, and their signal classification performance was evaluated. Features for the detection of sleep apnea were extracted from capacitive and reference signals. Sleep apnea features related to heart rate and heart rate variability achieved high similarity to the reference values, with p-values of 0.94 and 0.98, which is in line with the more than 95% beat-matching obtained. Features related to signal morphology presented lower similarity with the reference, although signal similarity metrics of correlation and coherence were relatively high. Quality-based automatic classification of the signals had a maximum accuracy of 91%. Best-performing quality indicators were based on template correlation and beat-detection. Results suggest that using unobtrusive cardiac signals for the automatic detection of sleep apnea can achieve similar performance as contact signals, and indicates clinical value of ccECG. Moreover, signal segments can automatically be classified by the proposed quality metrics as a pre-processing step. Including contactless respiration signals is likely to improve the performance and provide a complete unobtrusive cardiorespiratory monitoring solution; this is a promising alternative that will allow the screening of more patients with higher comfort, for a longer time, and at

  2. Measurement of ECG abnormalities and cardiovascular risk classification: a cohort study of primary care patients in the Netherlands

    NARCIS (Netherlands)

    de Groot, A.; Bots, M.L.; Rutten, F.H.; den Ruijter, H.M.; Numans, M.E.; Vaartjes, I.

    2015-01-01

    Background: GPs need accurate tools for cardiovascular (CV) risk assessment. Abnormalities in resting electrocardiograms (ECGs) relate to increased CV risk. Aim: To determine whether measurement of ECG abnormalities on top of established risk estimation (SCORE) improves CV risk classification in a

  3. An optimized cosine-modulated nonuniform filter bank design for subband coding of ECG signal

    Directory of Open Access Journals (Sweden)

    A. Kumar

    2015-07-01

    Full Text Available A simple iterative technique for the design of nonuniform cosine modulated filter banks (CMFBS is presented in this paper. The proposed technique employs a single parameter for optimization. The nonuniform cosine modulated filter banks are derived by merging the adjacent filters of uniform cosine modulated filter banks. The prototype filter is designed with the aid of different adjustable window functions such as Kaiser, Cosh and Exponential, and by using the constrained equiripple finite impulse response (FIR digital filter design technique. In this method, either cut off frequency or passband edge frequency is varied in order to adjust the filter coefficients so that reconstruction error could be optimized/minimized to zero. Performance and effectiveness of the proposed method in terms of peak reconstruction error (PRE, aliasing distortion (AD, computational (CPU time, and number of iteration (NOI have been shown through the numerical examples and comparative studies. Finally, the technique is exploited for the subband coding of electrocardiogram (ECG and speech signals.

  4. Design of Low Power Algorithms for Automatic Embedded Analysis of Patch ECG Signals

    DEFF Research Database (Denmark)

    Saadi, Dorthe Bodholt

    , several different cable-free wireless patch-type ECG recorders have recently reached the market. One of these recorders is the ePatch designed by the Danish company DELTA. The extended monitoring period available with the patch recorders has demonstrated to increase the diagnostic yield of outpatient ECG....... Such algorithms could allow the real-time transmission of clinically relevant information to a central monitoring station. The first step in embedded ECG interpretation is the automatic detection of each individual heartbeat. An important part of this project was therefore to design a novel algorithm...

  5. E-Bra system for women ECG measurement with GPRS communication, Nanosensor, and motion artifact remove algorithm

    Science.gov (United States)

    Kwon, Hyeokjun; Oh, Sechang; Kumar, Prashanth S.; Varadan, Vijay K.

    2012-10-01

    CardioVascular Disease(CVD)s lead the sudden cardiac death due to irregular phenomenon of the cardiac signal by the abnormal case of blood vessel and cardiac structure. For last two decades, cardiac disease research for man is under active discussion. As a result, the death rate by cardiac disease in men has been falling gradually compared with relatively increasing the women death rate due to CVD[2]. The main reason of this phenomenon causes the lack a sense of the seriousness to female CVD and different symptom of female CVD compared with the symptoms of male CVD. Usually, because the women CVD accompanies with ordinary symptoms unrecognizing the heart abnormality signal such as unusual fatigue, sleep disturbances, shortness of breath, anxiety, chest discomfort, and indigestion dyspepsia, most women CVD patients do not realize that these symptoms are related to the CVD symptoms. Therefore, periodic ECG signal observation is required for women cardiac disease patients. ElectroCardioGram(ECG) detection, treadmill test/exercise ECG, nuclear scan, coronary angiography, and intracoronary ultrasound are used to diagnose abnormality of heart. Among the medical checkup methods for CVDs checkup, it is very effective method for the diagnosis of cardiac disease and the early detection of heart abnormality to monitor ECG periodically. This paper suggests the effective ECG monitoring system for woman by attaching the system on woman's brassiere by using augmented chest lead attachment method. The suggested system in this paper consists of ECG signal transmission system and a server program to display and analyze the transmitted ECG. The ECG signal transmission system consists of three parts such as ECG physical signal detection part with two electrodes made by gold nanowire structure, data acquisition with AD converter, and data transmission part with GPRS(General Packet Radio Service) communication. Usually, to detect human bio signal, Ag/AgCl or gold cup electrodes are used

  6. A stretchable electrode array for non-invasive, skin-mounted measurement of electrocardiography (ECG), electromyography (EMG) and electroencephalography (EEG).

    Science.gov (United States)

    Ma, Rui; Kim, Dae-Hyeong; McCormick, Martin; Coleman, Todd; Rogers, John

    2010-01-01

    This paper reports a class of stretchable electrode array capable of intimate, conformal integration onto the curvilinear surfaces of skin on the human body. The designs employ conventional metallic conductors but in optimized mechanical layouts, on soft, thin elastomeric substrates. These devices exhibit an ability to record spontaneous EEG activity even without conductive electrolyte gels, with recorded alpha rhythm responses that are 40% stronger than those collected using conventional tin electrodes and gels under otherwise similar conditions. The same type of device can also measure high quality ECG and EMG signals. The results suggest broad utility for skin-mounted measurements of electrical activity in the body, with advantages in signal levels, wearability and modes of integration compared to alternatives.

  7. Classification of Multichannel ECG Signals Using a Cross-Distance Analysis

    National Research Council Canada - National Science Library

    Shahram, Morteza

    2001-01-01

    This paper presents a multi-stage algorithm for multi-channel ECG beat classification into normal and abnormal categories using a sequential beat clustering and a cross- distance analysis algorithm...

  8. Heart Rate Variability and Wavelet-based Studies on ECG Signals from Smokers and Non-smokers

    Science.gov (United States)

    Pal, K.; Goel, R.; Champaty, B.; Samantray, S.; Tibarewala, D. N.

    2013-12-01

    The current study deals with the heart rate variability (HRV) and wavelet-based ECG signal analysis of smokers and non-smokers. The results of HRV indicated dominance towards the sympathetic nervous system activity in smokers. The heart rate was found to be higher in case of smokers as compared to non-smokers ( p smokers from the non-smokers. The results indicated that when RMSSD, SD1 and RR-mean features were used concurrently a classification efficiency of > 90 % was achieved. The wavelet decomposition of the ECG signal was done using the Daubechies (db 6) wavelet family. No difference was observed between the smokers and non-smokers which apparently suggested that smoking does not affect the conduction pathway of heart.

  9. Efficient algorithm for baseline wander and powerline noise removal from ECG signals based on discrete Fourier series.

    Science.gov (United States)

    Bahaz, Mohamed; Benzid, Redha

    2018-03-01

    Electrocardiogram (ECG) signals are often contaminated with artefacts and noises which can lead to incorrect diagnosis when they are visually inspected by cardiologists. In this paper, the well-known discrete Fourier series (DFS) is re-explored and an efficient DFS-based method is proposed to reduce contribution of both baseline wander (BW) and powerline interference (PLI) noises in ECG records. In the first step, the determination of the exact number of low frequency harmonics contributing in BW is achieved. Next, the baseline drift is estimated by the sum of all associated Fourier sinusoids components. Then, the baseline shift is discarded efficiently by a subtraction of its approximated version from the original biased ECG signal. Concerning the PLI, the subtraction of the contributing harmonics calculated in the same manner reduces efficiently such type of noise. In addition of visual quality results, the proposed algorithm shows superior performance in terms of higher signal-to-noise ratio and smaller mean square error when faced to the DCT-based algorithm.

  10. Bioelectric Signal Measuring System

    Science.gov (United States)

    Guadarrama-Santana, A.; Pólo-Parada, L.; García-Valenzuela, A.

    2015-01-01

    We describe a low noise measuring system based on interdigitated electrodes for sensing bioelectrical signals. The system registers differential voltage measurements in order of microvolts. The base noise during measurements was in nanovolts and thus, the sensing signals presented a very good signal to noise ratio. An excitation voltage of 1Vrms with 10 KHz frequency was applied to an interdigitated capacitive sensor without a material under test and to a mirror device simultaneously. The output signals of both devices was then subtracted in order to obtain an initial reference value near cero volts and reduce parasitic capacitances due to the electronics, wiring and system hardware as well. The response of the measuring system was characterized by monitoring temporal bioelectrical signals in real time of biological materials such as embryo chicken heart cells and bovine suprarenal gland cells.

  11. Continuous and Cuffless Blood Pressure Monitoring Based on ECG and SpO2 Signals ByUsing Microsoft Visual C Sharp.

    Science.gov (United States)

    Younessi Heravi, M A; Khalilzadeh, M A; Joharinia, S

    2014-03-01

    One of the main problems especially in operating room and monitoring devices is measurement of Blood Pressure (BP) by sphygmomanometer cuff. Objective :In this study we designed a new method to measure BP changes continuously for detecting information between cuff inflation times by using vital signals in monitoring devices. This will be achieved by extraction of the time difference between each cardiac cycle and a relative pulse wave. Finger pulse and ECG signals in lead I were recorded by a monitoring device. The output of monitoring device wasinserted in a computer by serial network communication. A software interface (Microsoft Visual C#.NET ) was used to display and process the signals in the computer. Time difference between each cardiac cycle and pulse signal was calculated throughout R wave detection in ECG and peak of pulse signal by the software. The relation between time difference in two waves and BP was determined then the coefficients of equation were obtained in different physical situations. The results of estimating BP were compared with the results of sphygmomanometer method and the error rate was calculated. In this study, 25 subjects participated among them 15 were male and 10 were female. The results showed that BP was linearly related to time difference. Average of coefficient correlation was 0.9±0.03 for systolic and 0.82±0.04 for diastolic blood pressure. The highest error percentage was calculated 8% for male and 11% for female group. Significant difference was observed between the different physical situation and arm movement changes. The relationship between time difference and age was estimated in a linear relationship with a correlation coefficient of 0.76. By determining linear relation values with high accuracy, BP can be measured with insignificant error. Therefore it can be suggested as a new method to measure the blood pressure continuously.

  12. Continuous and Cuffless Blood Pressure Monitoring Based on ECG and SpO2 Signals By Using Microsoft Visual C Sharp

    Directory of Open Access Journals (Sweden)

    Younessi Heravi M. A.

    2014-03-01

    Full Text Available Background: One of the main problems especially in operating room and monitoring devices is measurement of Blood Pressure (BP by sphygmomanometer cuff. Objective: In this study we designed a new method to measure BP changes continuously for detecting information between cuff inflation times by using vital signals in monitoring devices. This will be achieved by extraction of the time difference between each cardiac cycle and a relative pulse wave. Methods: Finger pulse and ECG signals in lead I were recorded by a monitoring device. The output of monitoring device was inserted in a computer by serial network communication. A software interface (Microsoft Visual C#.NET was used to display and process the signals in the computer. Time difference between each cardiac cycle and pulse signal was calculated throughout R wave detection in ECG and peak of pulse signal by the software. The relation between time difference in two waves and BP was determined then the coefficients of equation were obtained in different physical situations. The results of estimating BP were compared with the results of sphygmomanometer method and the error rate was calculated. Results: In this study, 25 subjects participated among them 15 were male and 10 were female. The results showed that BP was linearly related to time difference. Average of coefficient correlation was 0.9±0.03 for systolic and 0.82±0.04 for diastolic blood pressure. The highest error percentage was calculated 8% for male and 11% for female group. Significant difference was observed between the different physical situation and arm movement changes. The relationship between time difference and age was estimated in a linear relationship with a correlation coefficient of 0.76. Conclusion: By determining linear relation values with high accuracy, BP can be measured with insignificant error. Therefore it can be suggested as a new method to measure the blood pressure continuously.

  13. Hardware-efficient robust biometric identification from 0.58 second template and 12 features of limb (Lead I) ECG signal using logistic regression classifier.

    Science.gov (United States)

    Sahadat, Md Nazmus; Jacobs, Eddie L; Morshed, Bashir I

    2014-01-01

    The electrocardiogram (ECG), widely known as a cardiac diagnostic signal, has recently been proposed for biometric identification of individuals; however reliability and reproducibility are of research interest. In this paper, we propose a template matching technique with 12 features using logistic regression classifier that achieved high reliability and identification accuracy. Non-invasive ECG signals were captured using our custom-built ambulatory EEG/ECG embedded device (NeuroMonitor). ECG data were collected from healthy subjects (10), between 25-35 years, for 10 seconds per trial. The number of trials from each subject was 10. From each trial, only 0.58 seconds of Lead I ECG data were used as template. Hardware-efficient fiducial point detection technique was implemented for feature extraction. To obtain repeated random sub-sampling validation, data were randomly separated into training and testing sets at a ratio of 80:20. Test data were used to find the classification accuracy. ECG template data with 12 extracted features provided the best performance in terms of accuracy (up to 100%) and processing complexity (computation time of 1.2ms). This work shows that a single limb (Lead I) ECG can robustly identify an individual quickly and reliably with minimal contact and data processing using the proposed algorithm.

  14. An ECG Lab Project for Teaching Signal Conditioning Systems in a Master's Degree in Mechatronic Engineering

    Science.gov (United States)

    Martín, Francisco Javier Ferrero; Martínez, Alberto López; Llopis, Marta Valledor; Rodriguez, Juan Carlos Campo; Viejo, Cecilio Blanco; Vershinin, Yuri A.

    2015-01-01

    Ongoing technological progress in measurement systems triggered the development of an in­novative, hands-on teaching program to help students toward a fuller understanding of recent changes in the field. This paper presents a lab project that links theoretical principles with the practical issues of signal conditioning systems. This is…

  15. A microcomputer-based data acquisition system for ECG, body and ambient temperatures measurement during bathing.

    Science.gov (United States)

    Uokawa, Y; Yonezawa, Y; Caldwell, W M; Hahn, A W

    2000-01-01

    A data acquisition system employing a low power 8 bit microcomputer has been developed for heart rate variability monitoring before, during and after bathing. The system consists of three integral chest electrodes, two temperature sensors, an instrumentation amplifier, a low power 8-bit single chip microcomputer (SMC) and a 4 MB compact flash memory (CFM). The ECG from the electrodes is converted to an 8-bit digital format at a 1 ms rate by an A/D converter in the SMC. Both signals from the body and ambient temperature sensors are converted to an 8-bit digital format every 1 second. These data are stored by the CFM. The system is powered by a rechargeable 3.6 V lithium battery. The 4 x 11 x 1 cm system is encapsulated in epoxy and silicone, yielding a total volume of 44 cc. The weight is 100 g.

  16. Evaluation of ECG-gated [(11)C]acetate PET for measuring left ventricular volumes, mass, and myocardial external efficiency.

    Science.gov (United States)

    Hansson, Nils Henrik; Tolbod, Lars; Harms, Johannes; Wiggers, Henrik; Kim, Won Yong; Hansen, Esben; Zaremba, Tomas; Frøkiær, Jørgen; Jakobsen, Steen; Sørensen, Jens

    2016-08-01

    Noninvasive estimation of myocardial external efficiency (MEE) requires measurements of left ventricular (LV) oxygen consumption with [(11)C]acetate PET in addition to LV stroke volume and mass with cardiovascular magnetic resonance (CMR). Measuring LV geometry directly from ECG-gated [(11)C]acetate PET might enable MEE evaluation from a single PET scan. Therefore, we sought to establish the accuracy of measuring LV volumes, mass, and MEE directly from ECG-gated [(11)C]acetate PET. Thirty-five subjects with aortic valve stenosis underwent ECG-gated [(11)C]acetate PET and CMR. List mode PET data were rebinned into 16-bin ECG-gated uptake images before measuring LV volumes and mass using commercial software and compared to CMR. Dynamic datasets were used for calculation of mean LV oxygen consumption and MEE. LV mass, volumes, and ejection fraction measured by CMR and PET correlated strongly (r = 0.86-0.92, P PET (P PET-based MEE, corrected for bias, correlated fairly with PET/CMR-based MEE (r = 0.60, P PET-based MEE bias was strongly associated with LV wall thickness. Although analysis-related improvements in accuracy are recommended, LV geometry estimated from ECG-gated [(11)C]acetate PET correlate excellently with CMR and can indeed be used to evaluate MEE.

  17. Sequential Total Variation Denoising for the Extraction of Fetal ECG from Single-Channel Maternal Abdominal ECG.

    Science.gov (United States)

    Lee, Kwang Jin; Lee, Boreom

    2016-07-01

    Fetal heart rate (FHR) is an important determinant of fetal health. Cardiotocography (CTG) is widely used for measuring the FHR in the clinical field. However, fetal movement and blood flow through the maternal blood vessels can critically influence Doppler ultrasound signals. Moreover, CTG is not suitable for long-term monitoring. Therefore, researchers have been developing algorithms to estimate the FHR using electrocardiograms (ECGs) from the abdomen of pregnant women. However, separating the weak fetal ECG signal from the abdominal ECG signal is a challenging problem. In this paper, we propose a method for estimating the FHR using sequential total variation denoising and compare its performance with that of other single-channel fetal ECG extraction methods via simulation using the Fetal ECG Synthetic Database (FECGSYNDB). Moreover, we used real data from PhysioNet fetal ECG databases for the evaluation of the algorithm performance. The R-peak detection rate is calculated to evaluate the performance of our algorithm. Our approach could not only separate the fetal ECG signals from the abdominal ECG signals but also accurately estimate the FHR.

  18. A microcontroller-based telemetry system for sympathetic nerve activity and ECG measurement.

    Science.gov (United States)

    Harada, E; Yonezawa, Y; Caldwell, W M; Hahn, A W

    1999-01-01

    A telemetry system employing a low power 8-bit microcontroller has been developed for chronic unanesthetized small animal studies. The two-channel system is designed for use with animals in shielded cages. Analog signals from implantable ECG and nerve electrodes are converted to an 8-bit serial digital format. This is accomplished by individual 8 bit A/D converters included in the microcontroller, which also has serial I/O port. The converted serial binary code is applied directly to an antenna wire. Therefore, the system does not need to employ a separate transmitter, such as in FM or infrared optical telemeters. The system is used in a shielded animal cage to reduce interference from external radio signals and 60 Hz power line fields. The code is received by a high input impedance amplifier in the cage and is then demodulated. The telemeter is powered by a small 3 V lithium battery, which provides 100 hours of continuous operation. The circuit is constructed on two 25 x 25 mm. printed circuit boards and encapsulated in epoxy, yielding a total volume of 6.25 cc. The weight is 15 g.

  19. Variable threshold method for ECG R-peak detection.

    Science.gov (United States)

    Kew, Hsein-Ping; Jeong, Do-Un

    2011-10-01

    In this paper, a wearable belt-type ECG electrode worn around the chest by measuring the real-time ECG is produced in order to minimize the inconvenient in wearing. ECG signal is detected using a potential instrument system. The measured ECG signal is transmits via an ultra low power consumption wireless data communications unit to personal computer using Zigbee-compatible wireless sensor node. ECG signals carry a lot of clinical information for a cardiologist especially the R-peak detection in ECG. R-peak detection generally uses the threshold value which is fixed. There will be errors in peak detection when the baseline changes due to motion artifacts and signal size changes. Preprocessing process which includes differentiation process and Hilbert transform is used as signal preprocessing algorithm. Thereafter, variable threshold method is used to detect the R-peak which is more accurate and efficient than fixed threshold value method. R-peak detection using MIT-BIH databases and Long Term Real-Time ECG is performed in this research in order to evaluate the performance analysis.

  20. ECG movement artefacts can be greatly reduced with the aid of a movement absorbing device

    DEFF Research Database (Denmark)

    Harrison, Adrian Paul; Wandall, Kirsten; Thorball, Jørgen

    2007-01-01

    Accurate ECG signal analysis can be confounded by electric lead, and/or electrode movements varying in origin from, for example, hiccups, tremor or patient restlessness. ECG signals recorded using either a conventional electrode holder or with the aid of an electrode holder capable of absorbing...... movement artefacts, were measured on a healthy human subject. Results show a greatly improved stability of the ECG signal recorded using an electrode holder capable of absorbing movement artefacts during periods of lead disturbance, and highlight the movement artefacts that develop when the recording lead...... of a conventional ECG electrode holder is tugged or pulled during theperiod of monitoring. It is concluded that the new design of ECG electrode holder will not only enable clearer signal recordings for clinical assessment, but will reduce the ECG artefacts associated with the transportation of patients, and may...

  1. [A novel biologic electricity signal measurement based on neuron chip].

    Science.gov (United States)

    Lei, Yinsheng; Wang, Mingshi; Sun, Tongjing; Zhu, Qiang; Qin, Ran

    2006-06-01

    Neuron chip is a multiprocessor with three pipeline CPU; its communication protocol and control processor are integrated in effect to carry out the function of communication, control, attemper, I/O, etc. A novel biologic electronic signal measurement network system is composed of intelligent measurement nodes with neuron chip at the core. In this study, the electronic signals such as ECG, EEG, EMG and BOS can be synthetically measured by those intelligent nodes, and some valuable diagnostic messages are found. Wavelet transform is employed in this system to analyze various biologic electronic signals due to its strong time-frequency ability of decomposing signal local character. Better effect is gained. This paper introduces the hardware structure of network and intelligent measurement node, the measurement theory and the signal figure of data acquisition and processing.

  2. Flexible Graphene Electrodes for Prolonged Dynamic ECG Monitoring

    Directory of Open Access Journals (Sweden)

    Cunguang Lou

    2016-11-01

    Full Text Available This paper describes the development of a graphene-based dry flexible electrocardiography (ECG electrode and a portable wireless ECG measurement system. First, graphene films on polyethylene terephthalate (PET substrates and graphene paper were used to construct the ECG electrode. Then, a graphene textile was synthesized for the fabrication of a wearable ECG monitoring system. The structure and the electrical properties of the graphene electrodes were evaluated using Raman spectroscopy, scanning electron microscopy (SEM, and alternating current impedance spectroscopy. ECG signals were then collected from healthy subjects using the developed graphene electrode and portable measurement system. The results show that the graphene electrode was able to acquire the typical characteristics and features of human ECG signals with a high signal-to-noise (SNR ratio in different states of motion. A week-long continuous wearability test showed no degradation in the ECG signal quality over time. The graphene-based flexible electrode demonstrates comfortability, good biocompatibility, and high electrophysiological detection sensitivity. The graphene electrode also combines the potential for use in long-term wearable dynamic cardiac activity monitoring systems with convenience and comfort for use in home health care of elderly and high-risk adults.

  3. Removing ECG Artifact from the Surface EMG Signal Using Adaptive Subtraction Technique

    Science.gov (United States)

    Abbaspour, S; Fallah, A

    2014-01-01

    Background: The electrocardiogram artifact is a major contamination in the electromyogram signals when electromyogram signal is recorded from upper trunk muscles and because of that the contaminated electromyogram is not useful. Objective: Removing electrocardiogram contamination from electromyogram signals. Methods: In this paper, the clean electromyogram signal, electrocardiogram artifact and electrocardiogram signal were recorded from leg muscles, the pectoralis major muscle of the left side and V4, respectively. After the pre-processing, contaminated electromyogram signal is simulated with a combination of clean electromyogram and electrocardiogram artifact. Then, contaminated electromyogram is cleaned using adaptive subtraction method. This method contains some steps; (1) QRS detection, (2) formation of electrocardiogram template by averaging the electrocardiogram complexes, (3) using low pass filter to remove undesirable artifacts, (4) subtraction. Results: Performance of our method is evaluated using qualitative criteria, power spectrum density and coherence and quantitative criteria signal to noise ratio, relative error and cross correlation. The result of signal to noise ratio, relative error and cross correlation is equal to 10.493, 0.04 and %97 respectively. Finally, there is a comparison between proposed method and some existing methods. Conclusion: The result indicates that adaptive subtraction method is somewhat effective to remove electrocardiogram artifact from contaminated electromyogram signal and has an acceptable result. PMID:25505766

  4. QRS detection based ECG quality assessment

    International Nuclear Information System (INIS)

    Hayn, Dieter; Jammerbund, Bernhard; Schreier, Günter

    2012-01-01

    Although immediate feedback concerning ECG signal quality during recording is useful, up to now not much literature describing quality measures is available. We have implemented and evaluated four ECG quality measures. Empty lead criterion (A), spike detection criterion (B) and lead crossing point criterion (C) were calculated from basic signal properties. Measure D quantified the robustness of QRS detection when applied to the signal. An advanced Matlab-based algorithm combining all four measures and a simplified algorithm for Android platforms, excluding measure D, were developed. Both algorithms were evaluated by taking part in the Computing in Cardiology Challenge 2011. Each measure's accuracy and computing time was evaluated separately. During the challenge, the advanced algorithm correctly classified 93.3% of the ECGs in the training-set and 91.6 % in the test-set. Scores for the simplified algorithm were 0.834 in event 2 and 0.873 in event 3. Computing time for measure D was almost five times higher than for other measures. Required accuracy levels depend on the application and are related to computing time. While our simplified algorithm may be accurate for real-time feedback during ECG self-recordings, QRS detection based measures can further increase the performance if sufficient computing power is available. (paper)

  5. A capacitive ECG array with visual patient feedback.

    Science.gov (United States)

    Eilebrecht, Benjamin; Schommartz, Antje; Walter, Marian; Wartzek, Tobias; Czaplik, Michael; Leonhardt, Steffen

    2010-01-01

    Capacitive electrocardiogram (ECG) sensing is a promising technique for less constraining vital signal measurement and close to a commercial application. Even bigger trials testing the diagnostic significance were already done with single lead systems. Anyway, most applications to be found in research are limited to one channel and thus limited in its diagnostic relevance as only diseases coming along with a change of the heart rate can be diagnosed adequately. As a consequence the need for capacitive multi-channel ECGs combining the diagnostic relevance and the advantages of capacitive ECG sensing emerges. This paper introduces a capacitive ECG measurement system which allows the recording of standardized ECG leads according to Einthoven and Goldberger by means of an electrode array with nine electrodes.

  6. Cardiorespiratory dynamics measured from continuous ECG monitoring improves detection of deterioration in acute care patients: A retrospective cohort study

    Science.gov (United States)

    Clark, Matthew T.; Calland, James Forrest; Enfield, Kyle B.; Voss, John D.; Lake, Douglas E.; Moorman, J. Randall

    2017-01-01

    Background Charted vital signs and laboratory results represent intermittent samples of a patient’s dynamic physiologic state and have been used to calculate early warning scores to identify patients at risk of clinical deterioration. We hypothesized that the addition of cardiorespiratory dynamics measured from continuous electrocardiography (ECG) monitoring to intermittently sampled data improves the predictive validity of models trained to detect clinical deterioration prior to intensive care unit (ICU) transfer or unanticipated death. Methods and findings We analyzed 63 patient-years of ECG data from 8,105 acute care patient admissions at a tertiary care academic medical center. We developed models to predict deterioration resulting in ICU transfer or unanticipated death within the next 24 hours using either vital signs, laboratory results, or cardiorespiratory dynamics from continuous ECG monitoring and also evaluated models using all available data sources. We calculated the predictive validity (C-statistic), the net reclassification improvement, and the probability of achieving the difference in likelihood ratio χ2 for the additional degrees of freedom. The primary outcome occurred 755 times in 586 admissions (7%). We analyzed 395 clinical deteriorations with continuous ECG data in the 24 hours prior to an event. Using only continuous ECG measures resulted in a C-statistic of 0.65, similar to models using only laboratory results and vital signs (0.63 and 0.69 respectively). Addition of continuous ECG measures to models using conventional measurements improved the C-statistic by 0.01 and 0.07; a model integrating all data sources had a C-statistic of 0.73 with categorical net reclassification improvement of 0.09 for a change of 1 decile in risk. The difference in likelihood ratio χ2 between integrated models with and without cardiorespiratory dynamics was 2158 (p value: <0.001). Conclusions Cardiorespiratory dynamics from continuous ECG monitoring detect

  7. Respiratory Information Extraction from Electrocardiogram Signals

    KAUST Repository

    Amin, Gamal El Din Fathy

    2010-01-01

    The Electrocardiogram (ECG) is a tool measuring the electrical activity of the heart, and it is extensively used for diagnosis and monitoring of heart diseases. The ECG signal reflects not only the heart activity but also many other physiological

  8. Ultra-Low Voltage Sixth-Order Low Pass Filter for Sensing the T-Wave Signal in ECGs

    Directory of Open Access Journals (Sweden)

    Panagiotis Bertsias

    2014-11-01

    Full Text Available An ultra-low voltage sixth-order low pass filter topology, suitable for sensing the T-wave signal in an electrocardiogram (ECG, is presented in this paper. This is realized using a cascade connection of second-order building blocks constructed from a sinh-domain two-integrator loop. The performance of the filter has been evaluated using the Cadence Analog Design Environment and the design kit provided by the Austria Mikro Systeme (AMS 0.35-µm CMOS process. The power consumption of filters was 7.21 nW, while a total harmonic distortion (THD level of 4% was observed for an input signal of 220 pA. The RMS value of the input referred noise was 0.43 pA, and the simulated value of the dynamic range (DR was 51.1 dB. A comparison with already published counterparts shows that the proposed topology offers the benefits of 0.5-V supply voltage operation and significantly improved power efficiency.

  9. A method of ECG template extraction for biometrics applications.

    Science.gov (United States)

    Zhou, Xiang; Lu, Yang; Chen, Meng; Bao, Shu-Di; Miao, Fen

    2014-01-01

    ECG has attracted widespread attention as one of the most important non-invasive physiological signals in healthcare-system related biometrics for its characteristics like ease-of-monitoring, individual uniqueness as well as important clinical value. This study proposes a method of dynamic threshold setting to extract the most stable ECG waveform as the template for the consequent ECG identification process. With the proposed method, the accuracy of ECG biometrics using the dynamic time wraping for difference measures has been significantly improved. Analysis results with the self-built electrocardiogram database show that the deployment of the proposed method was able to reduce the half total error rate of the ECG biometric system from 3.35% to 1.45%. Its average running time on the platform of android mobile terminal was around 0.06 seconds, and thus demonstrates acceptable real-time performance.

  10. Towards a Continuous Biometric System Based on ECG Signals Acquired on the Steering Wheel

    Directory of Open Access Journals (Sweden)

    João Ribeiro Pinto

    2017-09-01

    Full Text Available Electrocardiogram signals acquired through a steering wheel could be the key to seamless, highly comfortable, and continuous human recognition in driving settings. This paper focuses on the enhancement of the unprecedented lesser quality of such signals, through the combination of Savitzky-Golay and moving average filters, followed by outlier detection and removal based on normalised cross-correlation and clustering, which was able to render ensemble heartbeats of significantly higher quality. Discrete Cosine Transform (DCT and Haar transform features were extracted and fed to decision methods based on Support Vector Machines (SVM, k-Nearest Neighbours (kNN, Multilayer Perceptrons (MLP, and Gaussian Mixture Models - Universal Background Models (GMM-UBM classifiers, for both identification and authentication tasks. Additional techniques of user-tuned authentication and past score weighting were also studied. The method’s performance was comparable to some of the best recent state-of-the-art methods (94.9% identification rate (IDR and 2.66% authentication equal error rate (EER, despite lesser results with scarce train data (70.9% IDR and 11.8% EER. It was concluded that the method was suitable for biometric recognition with driving electrocardiogram signals, and could, with future developments, be used on a continuous system in seamless and highly noisy settings.

  11. Towards a Continuous Biometric System Based on ECG Signals Acquired on the Steering Wheel.

    Science.gov (United States)

    Pinto, João Ribeiro; Cardoso, Jaime S; Lourenço, André; Carreiras, Carlos

    2017-09-28

    Electrocardiogram signals acquired through a steering wheel could be the key to seamless, highly comfortable, and continuous human recognition in driving settings. This paper focuses on the enhancement of the unprecedented lesser quality of such signals, through the combination of Savitzky-Golay and moving average filters, followed by outlier detection and removal based on normalised cross-correlation and clustering, which was able to render ensemble heartbeats of significantly higher quality. Discrete Cosine Transform (DCT) and Haar transform features were extracted and fed to decision methods based on Support Vector Machines (SVM), k-Nearest Neighbours (kNN), Multilayer Perceptrons (MLP), and Gaussian Mixture Models - Universal Background Models (GMM-UBM) classifiers, for both identification and authentication tasks. Additional techniques of user-tuned authentication and past score weighting were also studied. The method's performance was comparable to some of the best recent state-of-the-art methods (94.9% identification rate (IDR) and 2.66% authentication equal error rate (EER)), despite lesser results with scarce train data (70.9% IDR and 11.8% EER). It was concluded that the method was suitable for biometric recognition with driving electrocardiogram signals, and could, with future developments, be used on a continuous system in seamless and highly noisy settings.

  12. Dose reduction in multi-slice CT of the heart by use of ECG-controlled tube current modulation (''ECG pulsing''): phantom measurements

    International Nuclear Information System (INIS)

    Poll, L.W.; Cohnen, M.; Brachten, S.; Moedder, U.; Ewen, K.

    2002-01-01

    To evaluate the effect of ECG-controlled tube current modulation on radiation exposure in retrospectively-ECG-gated multislice CT (MSCT) of the heart. Material and methods: Three different cardiac MSCT protocols with different slice collimation (4 x 1, and 4 x 2.5 mm), and a pitch-factor of 1.5 and 1.8 were investigated at a multi-slice CT scanner Somatom Volume Zoom, Siemens. An anthropomorphic Alderson-Rando phantom was equipped with LiF-Thermoluminescence dosimeters at several organ sites, and effective doses were calculated using ICRP-weighting factors. Scan protocols were performed with ECG-controlled tube current modulation ('ECG pulsing') at two different heart rates (60 and 80 bpm). These data were compared to previous data from MSCT of the heart without use of 'ECG pulsing'. Results: Radiation exposure with (60 bpm) and without tube current modulation using a 2.5 mm collimation was 1.8 mSv and 2.9 mSv for females, and 1.5 mSv and 2.4 mSv for males, respectively. For protocols using a 1 mm collimation with a pitch-factor of 1.5 (1.8), radiation exposure with and without tube current modulation was 5.6 (6.3) mSv and 9.5 (11.2) mSv for females, and 4.6 (5.2) mSv and 7.7 (9.2) mSv for males, respectively. At higher heart rates (80 bpm) radiation exposure is increased from 1.5-1.8 mSv to 1.8-2.1 mSv, using the 2.5 mm collimation, and from 4.6-5.6 mSv to 5.9-7.2 mSv, for protocols using 1 mm collimation. Conclusions: The ECG-controlled tube current modulation allows a dose reduction of 37% to 44% when retrospectively ECG-gated MSCT of the heart is performed. The tube current - as a function over time - and therefore the radiation exposure is dependent on the heart rate. (orig.) [de

  13. The PLR-DTW method for ECG based biometric identification.

    Science.gov (United States)

    Shen, Jun; Bao, Shu-Di; Yang, Li-Cai; Li, Ye

    2011-01-01

    There has been a surge of research on electrocardiogram (ECG) signal based biometric for person identification. Though most of the existing studies claimed that ECG signal is unique to an individual and can be a viable biometric, one of the main difficulties for real-world applications of ECG biometric is the accuracy performance. To address this problem, this study proposes a PLR-DTW method for ECG biometric, where the Piecewise Linear Representation (PLR) is used to keep important information of an ECG signal segment while reduce the data dimension at the same time if necessary, and the Dynamic Time Warping (DTW) is used for similarity measures between two signal segments. The performance evaluation was carried out on three ECG databases, and the existing method using wavelet coefficients, which was proved to have good accuracy performance, was selected for comparison. The analysis results show that the PLR-DTW method achieves an accuracy rate of 100% for identification, while the one using wavelet coefficients achieved only around 93%.

  14. WaveformECG: A Platform for Visualizing, Annotating, and Analyzing ECG Data.

    Science.gov (United States)

    Winslow, Raimond L; Granite, Stephen; Jurado, Christian

    2016-01-01

    The electrocardiogram (ECG) is the most commonly collected data in cardiovascular research because of the ease with which it can be measured and because changes in ECG waveforms reflect underlying aspects of heart disease. Accessed through a browser, WaveformECG is an open source platform supporting interactive analysis, visualization, and annotation of ECGs.

  15. ECG biometric identification: A compression based approach.

    Science.gov (United States)

    Bras, Susana; Pinho, Armando J

    2015-08-01

    Using the electrocardiogram signal (ECG) to identify and/or authenticate persons are problems still lacking satisfactory solutions. Yet, ECG possesses characteristics that are unique or difficult to get from other signals used in biometrics: (1) it requires contact and liveliness for acquisition (2) it changes under stress, rendering it potentially useless if acquired under threatening. Our main objective is to present an innovative and robust solution to the above-mentioned problem. To successfully conduct this goal, we rely on information-theoretic data models for data compression and on similarity metrics related to the approximation of the Kolmogorov complexity. The proposed measure allows the comparison of two (or more) ECG segments, without having to follow traditional approaches that require heartbeat segmentation (described as highly influenced by external or internal interferences). As a first approach, the method was able to cluster the data in three groups: identical record, same participant, different participant, by the stratification of the proposed measure with values near 0 for the same participant and closer to 1 for different participants. A leave-one-out strategy was implemented in order to identify the participant in the database based on his/her ECG. A 1NN classifier was implemented, using as distance measure the method proposed in this work. The classifier was able to identify correctly almost all participants, with an accuracy of 99% in the database used.

  16. Ventricular short-axis measurements in patients with pulmonary embolism: Effect of ECG-gating on variability, accuracy, and risk prediction

    International Nuclear Information System (INIS)

    Scheffel, Hans; Stolzmann, Paul; Leschka, Sebastian; Desbiolles, Lotus; Seifert, Burkhardt; Marincek, Borut; Alkadhi, Hatem

    2012-01-01

    Objective: To assess prospectively the intra- and interobserver variability, accuracy, and prognostic value of right and left ventricular short-axis diameter (RVd and LVd) measurements for risk stratification in patients with pulmonary embolism (PE) using ECG-gated compared to non-gated CT. Materials and methods: Sixty consecutive patients (33 women; mean age 58.7 ± 10.3 years) with suspicion of PE underwent both non-gated and ECG-gated chest CT. RVd and LVd on four-chamber views and intra- and interobserver agreements were calculated for both protocols. RVd/LVd ratios were calculated and were related to 30-days adverse clinical events using receiver operating characteristics with area-under-the-curve (AUC) analyses. Results: Both inter- and intraobserver variability showed narrower limits of agreement for all measurements with ECG-gated as compared to non-gated CT. Diameter measurements were significantly lower using non-ECG-gated CT as compared to ECG-gated CT for RVd and LVd (both p < .05). The AUC for the RVd/LVd ratio from ECG-gated CT was significantly larger than that from non-gated CT (0.956, 95% CI: 0.768–0.999 versus 0.675, 95% CI: 0.439–0.860; p = .048). Conclusion: RVd and LVd measurements from ECG-gated chest CT show less intra- and interobserver variability and more accurately reflect ventricular function. In our patient cohort ECG-gated chest CT allows better prediction of short-term outcome of patients with acute PE that needs to be validated in a larger outcome study

  17. WAVELET ANALYSIS OF ABNORMAL ECGS

    Directory of Open Access Journals (Sweden)

    Vasudha Nannaparaju

    2014-02-01

    Full Text Available Detection of the warning signals by the heart can be diagnosed from ECG. An accurate and reliable diagnosis of ECG is very important however which is cumbersome and at times ambiguous in time domain due to the presence of noise. Study of ECG in wavelet domain using both continuous Wavelet transform (CWT and discrete Wavelet transform (DWT, with well known wavelet as well as a wavelet proposed by the authors for this investigation is found to be useful and yields fairly reliable results. In this study, Wavelet analysis of ECGs of Normal, Hypertensive, Diabetic and Cardiac are carried out. The salient feature of the study is that detection of P and T phases in wavelet domain is feasible which are otherwise feeble or absent in raw ECGs.

  18. Signal transforms in dynamic measurements

    CERN Document Server

    Layer, Edward

    2015-01-01

    This book is devoted to the analysis of measurement signals which requires specific mathematical operations like Convolution, Deconvolution, Laplace, Fourier, Hilbert, Wavelet or Z transform which are all presented in the present book. The different problems refer to the modulation of signals, filtration of disturbance as well as to the orthogonal signals and their use in digital form for the measurement of current, voltage, power and frequency are also widely discussed. All the topics covered in this book are presented in detail and illustrated by means of examples in MathCad and LabVIEW. This book provides a useful source for researchers, scientists and engineers who in their daily work are required to deal with problems of measurement and signal processing and can also be helpful to undergraduate students of electrical engineering.    

  19. Experimental evaluations of wearable ECG monitor.

    Science.gov (United States)

    Ha, Kiryong; Kim, Youngsung; Jung, Junyoung; Lee, Jeunwoo

    2008-01-01

    Healthcare industry is changing with ubiquitous computing environment and wearable ECG measurement is one of the most popular approaches in this healthcare industry. Reliability and performance of healthcare device is fundamental issue for widespread adoptions, and interdisciplinary perspectives of wearable ECG monitor make this more difficult. In this paper, we propose evaluation criteria considering characteristic of both ECG measurement and ubiquitous computing. With our wearable ECG monitors, various levels of experimental analysis are performed based on evaluation strategy.

  20. New approach for T-wave peak detection and T-wave end location in 12-lead paced ECG signals based on a mathematical model.

    Science.gov (United States)

    Madeiro, João P V; Nicolson, William B; Cortez, Paulo C; Marques, João A L; Vázquez-Seisdedos, Carlos R; Elangovan, Narmadha; Ng, G Andre; Schlindwein, Fernando S

    2013-08-01

    This paper presents an innovative approach for T-wave peak detection and subsequent T-wave end location in 12-lead paced ECG signals based on a mathematical model of a skewed Gaussian function. Following the stage of QRS segmentation, we establish search windows using a number of the earliest intervals between each QRS offset and subsequent QRS onset. Then, we compute a template based on a Gaussian-function, modified by a mathematical procedure to insert asymmetry, which models the T-wave. Cross-correlation and an approach based on the computation of Trapezium's area are used to locate, respectively, the peak and end point of each T-wave throughout the whole raw ECG signal. For evaluating purposes, we used a database of high resolution 12-lead paced ECG signals, recorded from patients with ischaemic cardiomyopathy (ICM) in the University Hospitals of Leicester NHS Trust, UK, and the well-known QT database. The average T-wave detection rates, sensitivity and positive predictivity, were both equal to 99.12%, for the first database, and, respectively, equal to 99.32% and 99.47%, for QT database. The average time errors computed for T-wave peak and T-wave end locations were, respectively, -0.38±7.12 ms and -3.70±15.46 ms, for the first database, and 1.40±8.99 ms and 2.83±15.27 ms, for QT database. The results demonstrate the accuracy, consistency and robustness of the proposed method for a wide variety of T-wave morphologies studied. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Spectral analysis of 87-lead body surface signal-averaged ECGs in patients with previous anterior myocardial infarction as a marker of ventricular tachycardia.

    Science.gov (United States)

    Hosoya, Y; Kubota, I; Shibata, T; Yamaki, M; Ikeda, K; Tomoike, H

    1992-06-01

    There were few studies on the relation between the body surface distribution of high- and low-frequency components within the QRS complex and ventricular tachycardia (VT). Eighty-seven signal-averaged ECGs were obtained from 30 normal subjects (N group) and 30 patients with previous anterior myocardial infarction (MI) with VT (MI-VT[+] group, n = 10) or without VT (MI-VT[-] group, n = 20). The onset and offset of the QRS complex were determined from 87-lead root mean square values computed from the averaged (but not filtered) ECG waveforms. Fast Fourier transform analysis was performed on signal-averaged ECG. The resulting Fourier coefficients were attenuated by use of the transfer function, and then inverse transform was done with five frequency ranges (0-25, 25-40, 40-80, 80-150, and 150-250 Hz). From the QRS onset to the QRS offset, the time integration of the absolute value of reconstructed waveforms was calculated for each of the five frequency ranges. The body surface distributions of these areas were expressed as QRS area maps. The maximal values of QRS area maps were compared among the three groups. In the frequency ranges of 0-25 and 150-250 Hz, there were no significant differences in the maximal values among these three groups. Both MI groups had significantly smaller maximal values of QRS area maps in the frequency ranges of 25-40 and 40-80 Hz compared with the N group. The MI-VT(+) group had significantly smaller maximal values in the frequency ranges of 40-80 and 80-150 Hz than the MI-VT(-) group. These three groups were clearly differentiated by the maximal values of the 40-80-Hz QRS area map. It was suggested that the maximal value of the 40-80-Hz QRS area map was a new marker for VT after anterior MI.

  2. Beat-to-beat systolic time-interval measurement from heart sounds and ECG

    International Nuclear Information System (INIS)

    Paiva, R P; Carvalho, P; Couceiro, R; Henriques, J; Antunes, M; Quintal, I; Muehlsteff, J

    2012-01-01

    Systolic time intervals are highly correlated to fundamental cardiac functions. Several studies have shown that these measurements have significant diagnostic and prognostic value in heart failure condition and are adequate for long-term patient follow-up and disease management. In this paper, we investigate the feasibility of using heart sound (HS) to accurately measure the opening and closing moments of the aortic heart valve. These moments are crucial to define the main systolic timings of the heart cycle, i.e. pre-ejection period (PEP) and left ventricular ejection time (LVET). We introduce an algorithm for automatic extraction of PEP and LVET using HS and electrocardiogram. PEP is estimated with a Bayesian approach using the signal's instantaneous amplitude and patient-specific time intervals between atrio-ventricular valve closure and aortic valve opening. As for LVET, since the aortic valve closure corresponds to the start of the S2 HS component, we base LVET estimation on the detection of the S2 onset. A comparative assessment of the main systolic time intervals is performed using synchronous signal acquisitions of the current gold standard in cardiac time-interval measurement, i.e. echocardiography, and HS. The algorithms were evaluated on a healthy population, as well as on a group of subjects with different cardiovascular diseases (CVD). In the healthy group, from a set of 942 heartbeats, the proposed algorithm achieved 7.66 ± 5.92 ms absolute PEP estimation error. For LVET, the absolute estimation error was 11.39 ± 8.98 ms. For the CVD population, 404 beats were used, leading to 11.86 ± 8.30 and 17.51 ± 17.21 ms absolute PEP and LVET errors, respectively. The results achieved in this study suggest that HS can be used to accurately estimate LVET and PEP. (paper)

  3. MR flow measurements for assessment of the pulmonary, systemic and bronchosystemic circulation: Impact of different ECG gating methods and breathing schema

    International Nuclear Information System (INIS)

    Ley, Sebastian; Ley-Zaporozhan, Julia; Kreitner, Karl-Friedrich; Iliyushenko, Svitlana; Puderbach, Michael; Hosch, Waldemar; Wenz, Heiner; Schenk, Jens-Peter; Kauczor, Hans-Ulrich

    2007-01-01

    Purpose: Different ECG gating techniques are available for MR phase-contrast (PC) flow measurements. Until now no study has reported the impact of different ECG gating techniques on quantitative flow parameters. The goal was to evaluate the impact of the gating method and the breathing schema on the pulmonary, systemic and bronchosystemic circulation. Material and methods: Twenty volunteers were examined (1.5 T) with free breathing phase-contrast flow (PC-flow) measurements with prospective (free-prospective) and retrospective (free-retrospective) ECG gating. Additionally, expiratory breath-hold retrospective ECG gated measurements (bh-retrospective) were performed. Blood flow per minute; peak velocity and time to peak velocity were compared. The clinically important difference between the systemic and pulmonary circulation (bronchosystemic shunt) was calculated. Results: Blood flow per minute was lowest for free-prospective (6 l/min, pulmonary trunc) and highest for bh-retrospective measurements (6.9 l/min, pulmonary trunc). No clinically significant difference in peak velocity was assessed (82-83 cm/s pulmonary trunc, 109-113 cm/s aorta). Time to peak velocity was shorter for retro-gated free-retrospective and bh-retrospective than for pro-gated free-prospective. The difference between systemic and pulmonary measurements was least for the free-retrospective technique. Conclusion: The type of gating has a significant impact on flow measurements. Therefore, it is important to use the same ECG gating method, especially for follow-up examinations. Retrospective ECG gated free breathing measurements allow for the most precise assessment of the bronchosystemic blood flow and should be used in clinical routine

  4. An Investigation on the Effect of Extremely Low Frequency Pulsed Electromagnetic Fields on Human Electrocardiograms (ECGs).

    Science.gov (United States)

    Fang, Qiang; Mahmoud, Seedahmed S; Yan, Jiayong; Li, Hui

    2016-11-23

    For this investigation, we studied the effects of extremely low frequency pulse electromagnetic fields (ELF-PEMF) on the human cardiac signal. Electrocardiograms (ECGs) of 22 healthy volunteers before and after a short duration of ELF-PEMF exposure were recorded. The experiment was conducted under single-blind conditions. The root mean square (RMS) value of the recorded data was considered as comparison criteria. We also measured and analysed four important ECG time intervals before and after ELF-PEMF exposure. Results revealed that the RMS value of the ECG recordings from 18 participants (81.8% of the total participants) increased with a mean value of 3.72%. The increase in ECG voltage levels was then verified by a second experimental protocol with a control exposure. In addition to this, we used hyperbolic T-distributions (HTD) in the analysis of ECG signals to verify the change in the RR interval. It was found that there were small shifts in the frequency-domain signal before and after EMF exposure. This shift has an influence on all frequency components of the ECG signals, as all spectrums were shifted. It is shown from this investigation that a short time exposure to ELF-PEMF can affect the properties of ECG signals. Further study is needed to consolidate this finding and discover more on the biological effects of ELF-PEMF on human physiological processes.

  5. Reduction of Motion Artifacts and Improvement of R Peak Detecting Accuracy Using Adjacent Non-Intrusive ECG Sensors

    Directory of Open Access Journals (Sweden)

    Minho Choi

    2016-05-01

    Full Text Available Non-intrusive electrocardiogram (ECG monitoring has many advantages: easy to measure and apply in daily life. However, motion noise in the measured signal is the major problem of non-intrusive measurement. This paper proposes a method to reduce the noise and to detect the R peaks of ECG in a stable manner in a sitting arrangement using non-intrusive sensors. The method utilizes two capacitive ECG sensors (cECGs to measure ECG, and another two cECGs located adjacent to the sensors for ECG are added to obtain the information on motion. Then, active noise cancellation technique and the motion information are used to reduce motion noise. To verify the proposed method, ECG was measured indoors and during driving, and the accuracy of the detected R peaks was compared. After applying the method, the sum of sensitivity and positive predictivity increased 8.39% on average and 26.26% maximally in the data. Based on the results, it was confirmed that the motion noise was reduced and that more reliable R peak positions could be obtained by the proposed method. The robustness of the new ECG measurement method will elicit benefits to various health care systems that require noninvasive heart rate or heart rate variability measurements.

  6. ECG Electrocardiogram (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español ECG (Electrocardiogram) KidsHealth / For Parents / ECG (Electrocardiogram) Print en ... whether there is any damage. How Is an ECG Done? There is nothing painful about getting an ...

  7. Biosignal integrated circuit with simultaneous acquisition of ECG and PPG for wearable healthcare applications.

    Science.gov (United States)

    Kim, Hyungseup; Park, Yunjong; Ko, Youngwoon; Mun, Yeongjin; Lee, Sangmin; Ko, Hyoungho

    2018-01-01

    Wearable healthcare systems require measurements from electrocardiograms (ECGs) and photoplethysmograms (PPGs), and the blood pressure of the user. The pulse transit time (PTT) can be calculated by measuring the ECG and PPG simultaneously. Continuous-time blood pressure without using an air cuff can be estimated by using the PTT. This paper presents a biosignal acquisition integrated circuit (IC) that can simultaneously measure the ECG and PPG for wearable healthcare applications. Included in this biosignal acquisition circuit are a voltage mode instrumentation amplifier (IA) for ECG acquisition and a current mode transimpedance amplifier for PPG acquisition. The analog outputs from the ECG and PPG channels are muxed and converted to digital signals using 12-bit successive approximation register (SAR) analog-to-digital converter (ADC). The proposed IC is fabricated by using a standard 0.18 μm CMOS process with an active area of 14.44 mm2. The total current consumption for the multichannel IC is 327 μA with a 3.3 V supply. The measured input referred noise of ECG readout channel is 1.3 μVRMS with a bandwidth of 0.5 Hz to 100 Hz. And the measured input referred current noise of the PPG readout channel is 0.122 nA/√Hz with a bandwidth of 0.5 Hz to 100 Hz. The proposed IC, which is implemented using various circuit techniques, can measure ECG and PPG signals simultaneously to calculate the PTT for wearable healthcare applications.

  8. Low-power analog integrated circuits for wireless ECG acquisition systems.

    Science.gov (United States)

    Tsai, Tsung-Heng; Hong, Jia-Hua; Wang, Liang-Hung; Lee, Shuenn-Yuh

    2012-09-01

    This paper presents low-power analog ICs for wireless ECG acquisition systems. Considering the power-efficient communication in the body sensor network, the required low-power analog ICs are developed for a healthcare system through miniaturization and system integration. To acquire the ECG signal, a low-power analog front-end system, including an ECG signal acquisition board, an on-chip low-pass filter, and an on-chip successive-approximation analog-to-digital converter for portable ECG detection devices is presented. A quadrature CMOS voltage-controlled oscillator and a 2.4 GHz direct-conversion transmitter with a power amplifier and upconversion mixer are also developed to transmit the ECG signal through wireless communication. In the receiver, a 2.4 GHz fully integrated CMOS RF front end with a low-noise amplifier, differential power splitter, and quadrature mixer based on current-reused folded architecture is proposed. The circuits have been implemented to meet the specifications of the IEEE 802.15.4 2.4 GHz standard. The low-power ICs of the wireless ECG acquisition systems have been fabricated using a 0.18 μm Taiwan Semiconductor Manufacturing Company (TSMC) CMOS standard process. The measured results on the human body reveal that ECG signals can be acquired effectively by the proposed low-power analog front-end ICs.

  9. Multi-purpose ECG telemetry system.

    Science.gov (United States)

    Marouf, Mohamed; Vukomanovic, Goran; Saranovac, Lazar; Bozic, Miroslav

    2017-06-19

    The Electrocardiogram ECG is one of the most important non-invasive tools for cardiac diseases diagnosis. Taking advantage of the developed telecommunication infrastructure, several approaches that address the development of telemetry cardiac devices were introduced recently. Telemetry ECG devices allow easy and fast ECG monitoring of patients with suspected cardiac issues. Choosing the right device with the desired working mode, signal quality, and the device cost are still the main obstacles to massive usage of these devices. In this paper, we introduce design, implementation, and validation of a multi-purpose telemetry system for recording, transmission, and interpretation of ECG signals in different recording modes. The system consists of an ECG device, a cloud-based analysis pipeline, and accompanied mobile applications for physicians and patients. The proposed ECG device's mechanical design allows laypersons to easily record post-event short-term ECG signals, using dry electrodes without any preparation. Moreover, patients can use the device to record long-term signals in loop and holter modes, using wet electrodes. In order to overcome the problem of signal quality fluctuation due to using different electrodes types and different placements on subject's chest, customized ECG signal processing and interpretation pipeline is presented for each working mode. We present the evaluation of the novel short-term recorder design. Recording of an ECG signal was performed for 391 patients using a standard 12-leads golden standard ECG and the proposed patient-activated short-term post-event recorder. In the validation phase, a sample of validation signals followed peer review process wherein two experts annotated the signals in terms of signal acceptability for diagnosis.We found that 96% of signals allow detecting arrhythmia and other signal's abnormal changes. Additionally, we compared and presented the correlation coefficient and the automatic QRS delineation results

  10. Development of NPP control room operators's mental workload measurement system using bioelectric signals

    International Nuclear Information System (INIS)

    Shim, Bong Sik; Oh, In Seok; Lee, Hyun Cheol; Cha, Kyung Ho; Lee, Dong Ha

    1996-09-01

    This study developed mentalload measurement system based on the relations between mentalload and physiological responses of the human operators. The measurement system was composed of the telemetry system for EEG, EOG, ECG and respiration pattern of the subjects, A/D converter, the physiological signal processing programs (compiled by the Labview). The signal processing programs transformed the physiological signal into the scores indicating mentalload status of the subjects and recorded the mentalload scores in the form of the table of a database. The acqknowledge and the labview programs additionally transformed the mentalload score database and the operator behavior database so that both database were consolidated into one. 94 figs., 57 refs. (Author)

  11. Development of NPP control room operators`s mental workload measurement system using bioelectric signals

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Bong Sik; Oh, In Seok; Lee, Hyun Cheol; Cha, Kyung Ho [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Lee, Dong Ha [Suwon Univ., Suwon (Korea, Republic of)

    1996-09-01

    This study developed mentalload measurement system based on the relations between mentalload and physiological responses of the human operators. The measurement system was composed of the telemetry system for EEG, EOG, ECG and respiration pattern of the subjects, A/D converter, the physiological signal processing programs (compiled by the Labview). The signal processing programs transformed the physiological signal into the scores indicating mentalload status of the subjects and recorded the mentalload scores in the form of the table of a database. The acqknowledge and the labview programs additionally transformed the mentalload score database and the operator behavior database so that both database were consolidated into one. 94 figs., 57 refs. (Author).

  12. Electrical measurement, signal processing, and displays

    CERN Document Server

    Webster, John G

    2003-01-01

    ELECTROMAGNETIC VARIABLES MEASUREMENTVoltage MeasurementCurrent Measurement Power Measurement Power Factor Measurement Phase Measurement Energy Measurement Electrical Conductivity and Resistivity Charge Measurement Capacitance and Capacitance Measurements Permittivity Measurement Electric Field Strength Magnetic Field Measurement Permeability and Hysteresis MeasurementInductance Measurement Immittance MeasurementQ Factor Measurement Distortion Measurement Noise Measurement.Microwave Measurement SIGNAL PROCESSINGAmplifiers and Signal ConditionersModulation Filters Spectrum Analysis and Correlat

  13. The effect of 50/60 Hz notch filter application on human and rat ECG recordings

    International Nuclear Information System (INIS)

    Vale-Cardoso, A S; Guimarães, H N

    2010-01-01

    Power-line interference is always present in indoor biopotential measurements, even when its extremely low magnitude makes it imperceptible. In special situations, this kind of interference can be neglected, but this is not a general rule. In laboratory experiments and clinical analysis, it is hard (and expensive) to isolate the subject of measurement from electrical fields produced by a power line. In human biopotential recordings, it is common practice to apply a 50/60 Hz notch filter to reduce this kind of interference. In such cases, there is no considerable distortion observed on the recorded signal. However, experiments showed that it is not true for rat ECG recordings. Several kinds of notch filters (analog and digital) were implemented for evaluation of the distortion caused on ECG signals. These filters were applied to ECGs of humans and rats and then distortion estimates were computed from their resulting signals. The comparison of these estimates showed that, as experimentally observed, rat ECG signals are significantly distorted and deformed when a 50/60 Hz notch filter is applied to them, while human ECGs are not. The major goal of this paper is to show that the use of a notch filter for power-line interference rejection, when applied to rat ECG recordings, can severely deform the QRS complex of such signals, warning researchers against its non-deliberate usage

  14. A low-power portable ECG sensor interface with dry electrodes

    International Nuclear Information System (INIS)

    Pu Xiaofei; Wan Lei; Zhang Hui; Qin Yajie; Hong Zhiliang

    2013-01-01

    This paper describes a low-power portable sensor interface dedicated to sensing and processing electrocardiogram (ECG) signals. Dry electrodes were employed in this ECG sensor, which eliminates the need of conductive gel and avoids complicated and mandatory skin preparation before electrode attachment. This ECG sensor system consists of two ICs, an analog front-end (AFE) and a successive approximation register analog-to-digital converter (SAR ADC) containing a relaxation oscillator. This proposed design was fabricated in a 0.18 μm 1P6M standard CMOS process. The AFE for extracting the biopotential signals is essential in this ECG sensor. In measurements, the AFE obtains a mid-band gain of 45 dB, a bandwidth from 0.6 to 160 Hz, and a total input referred noise of 2.8 μV rms while consuming 1 μW from the 1.8 V supply. The noise efficiency factor (NEF) of our design is 3.4. After conditioning, the amplified ECG signal is digitized by a 12-bit SAR ADC with 61.8 dB SNDR and 220 fJ/conversion-step. Finally, a complete ECG sensor interface with three dry copper electrodes is demonstrated in real-word setting, showing successful recordings of a capture ECG waveform. (semiconductor integrated circuits)

  15. Abnormal intraluminal signal within the pulmonary arteries on MR imaging: Differentiation between slow blood flow and thrombus using an ECG-gated; multiphasic: Spin-echo technique

    International Nuclear Information System (INIS)

    White, R.D.; Higgins, C.B.

    1986-01-01

    The authors evaluated abnormal MR imaging signal patterns in the pulmonary arteries of 22 patients with pulmonary hypertension (n = 13), pulmonary embolus (n = 4), or both (n = 5). Using multiphasic (five or six phases; 19 patients) or standard (three patients with pulmonary embolus) ECG-gated, double spin-echo techniques, they were able to differentiate between causes of such abnormal signal patterns. The pattern of slow blood flow (abnormal signal in systole with fluctuating distribution during cardiac cycle, and intensity increasing visually from first to second echo) was noted in 89% of patients with pulmonary hypertension alone or in combination with pulmonary embolism, and was characteristic of high systolic pulmonary pressures (12 of 12 patients with pressure > 80 mm Hg, vs. 3 of 5 patients with pressure 55 mm Hg vs. 5 of 7 patients with pressures <55 mm Hg). This pattern was differentiated from that of thrombus (persistent signal with fixed distribution during cardiac cycle, and little to no visible intensity change from first to second echo), which was noted in six of seven proved embolus cases. Thus, gated multiphase MR imaging shows potential for the noninvasive visualization of pulmonary embolus and the differentiation of this entity from the slow blood flow of pulmonary hypertension

  16. Noninvasive measurement of physiological signals on a modified home bathroom scale.

    Science.gov (United States)

    Inan, O T; Dookun Park; Giovangrandi, L; Kovacs, G T A

    2012-08-01

    A commercial bathroom scale with both handlebar and footpad electrodes was modified to enable measurement of four physiological signals: the ballistocardiogram (BCG), electrocardiogram (ECG), lower body impedance plethysmogram (IPG), and lower body electromyogram (EMG). The BCG, which describes the reaction of the body to cardiac ejection of blood, was measured using the strain gauges in the scale. The ECG was detected using handlebar electrodes with a two-electrode amplifier. For the lower body IPG, the two electrodes under the subject's toes were driven with an ac current stimulus, and the resulting differential voltage across the heels was measured and demodulated synchronously with the source. The voltage signal from the same two footpad electrodes under the heels was passed through a passive low-pass filter network into another amplifier, and the output was the lower body EMG signal. The signals were measured from nine healthy subjects, and the average signal-to-noise ratio (SNR) while the subjects were standing still was estimated for the four signals as follows: BCG, 7.6 dB; ECG, 15.8 dB; IPG, 10.7 dB. During periods of motion, the decrease in SNR for the BCG signal was found to be correlated to the increase in rms power for the lower body EMG (r = 0.89, p <; 0.01). The EMG could, thus, be used to flag noise-corrupted segments of the BCG, increasing the measurement robustness. This setup could be used for monitoring the cardiovascular health of patients at home.

  17. New approach for simplified and automated measurement of left ventricular ejection fraction by ECG gated blood pool scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Suetsugu; Adachi, Haruhiko; Sugihara, Hiroki; Katsume, Hiroshi; Ijichi, Hamao; Okamoto, Kunio; Hosoba, Minoru

    1984-12-01

    Background (BKG) correction is important but debatable in the measurement of Left ventricular ejection fraction (LVEF) with ECG gated blood pool scintigraphy. We devised a new simplified BKG processing (fixed BKG method) without BKG region-of-interest (ROI) assignment, and the accuracy and reproducibility were assessed in 25 patients with various heart diseases and 5 normal subjects by comparison with LVEF obtained by contrast levolgraphy (LVG-EF). Four additional protocols for LVEF measurement with BKG-ROI assignment were also assessed for reference. LVEF calculated using the fixed BKG ratio of 0.64 (BKG count rates were 64%) of end-diastolic count rates of LV) with ''Fixed'' LV-ROI was best correlated with LVG-EF (r = 0.936, p < 0.001) and most approximated (Fixed BKG ratio method EF: 61.1 +- 20.1, LVG-EF: 61.2 +- 20.4% (mean +- SD)) among other protocols. The wide availability of the fixed value of 0.64 was tested in various diseases, body size and end-diastolic volume by LVG, and the results were to be little influenced by them. Furthermore, fixed BKG method produced lower inter-and intra- observer variability than other protocols requiring BKG-ROI assignment, probably due to its simplified processing. In conclusion, fixed BKG ratio method simplifies the measurement of LVEF, and is feasible for automated processing and single probe system.

  18. Variable reflectivity signal mirrors and signal response measurements

    International Nuclear Information System (INIS)

    Vine, Glenn de; Shaddock, Daniel A; McClelland, David E

    2002-01-01

    Future gravitational wave detectors will include some form of signal mirror in order to alter the signal response of the device. We introduce interferometer configurations which utilize a variable reflectivity signal mirror allowing a tunable peak frequency and variable signal bandwidth. A detector configured with a Fabry-Perot cavity as the signal mirror is compared theoretically with one using a Michelson interferometer for a signal mirror. A system for the measurement of the interferometer signal responses is introduced. This technique is applied to a power-recycled Michelson interferometer with resonant sideband extraction. We present broadband measurements of the benchtop prototype's signal response for a range of signal cavity detunings. This technique is also applicable to most other gravitational wave detector configurations

  19. Variable reflectivity signal mirrors and signal response measurements

    CERN Document Server

    Vine, G D; McClelland, D E

    2002-01-01

    Future gravitational wave detectors will include some form of signal mirror in order to alter the signal response of the device. We introduce interferometer configurations which utilize a variable reflectivity signal mirror allowing a tunable peak frequency and variable signal bandwidth. A detector configured with a Fabry-Perot cavity as the signal mirror is compared theoretically with one using a Michelson interferometer for a signal mirror. A system for the measurement of the interferometer signal responses is introduced. This technique is applied to a power-recycled Michelson interferometer with resonant sideband extraction. We present broadband measurements of the benchtop prototype's signal response for a range of signal cavity detunings. This technique is also applicable to most other gravitational wave detector configurations.

  20. Detection of Acute Myocardial Infarction in a Pig Model Using the SAN-Atrial-AVN-His (SAAH) Electrocardiogram (ECG), Model PHS-A10, an Automated and Integrated Signals Recognition System.

    Science.gov (United States)

    Zhao, Wenjiao; Lu, Guihua; Liu, Li; Sun, Zhishan; Wu, Mingxin; Yi, Wenyan; Chen, Haiyan; Li, Yanhui; Tang, Lilong; Zeng, Jianping

    2018-03-04

    BACKGROUND The aim of this study was to compare the use of the standard 12-lead electrocardiogram (ECG) with the SAN-Atrial-AVN-His (SAAH) ECG (Model PHS-A10), a new automated and integrated signals recognition system that detects micro-waveforms within the P, QRS, and T-wave, in a pig model of acute myocardial infarction (MI). MATERIAL AND METHODS Six medium-sized domestic Chinese pigs underwent general anesthesia, and an angioplasty balloon was placed and dilated for 120 minutes in the first diagonal coronary artery arising from the left anterior descending (LAD) coronary artery. A standard ECG and a SAAH ECG (Model PHS-A10) were used to evaluate: 1) the number of wavelets in ST-T segment in lead V5; 2) the duration of the repolarization initial (Ri), or duration of the wavelets starting from the J-point to the endpoint of the wavelets in the ST interval; 3) the duration of the repolarization terminal (Rt), of the wavelets, starting from the endpoint of the wavelets in the ST interval to the cross-point of the T-wave and baseline; 4) the ratio Ri: Rt. RESULTS Following coronary artery occlusion, duration of Ri and Ri/Rt increased, and Rt decreased, which was detected by the SAAH ECG (Model PHS-A10) within 12 seconds, compared with standard ECG that detected ST segment depression at 24 seconds following coronary artery occlusion. CONCLUSIONS The findings from this preliminary study in a pig model of acute MI support the need for clinical studies to evaluate the SAAH ECG (Model PHS-A10) for the early detection of acute MI.

  1. Non-invasive Drosophila ECG recording by using eutectic gallium-indium alloy electrode: a feasible tool for future research on the molecular mechanisms involved in cardiac arrhythmia.

    Directory of Open Access Journals (Sweden)

    Po-Hung Kuo

    Full Text Available BACKGROUND: Drosophila heart tube is a feasible model for cardiac physiological research. However, obtaining Drosophila electrocardiograms (ECGs is difficult, due to the weak signals and limited contact area to apply electrodes. This paper presents a non-invasive Gallium-Indium (GaIn based recording system for Drosophila ECG measurement, providing the heart rate and heartbeat features to be observed. This novel, high-signal-quality system prolongs the recording time of insect ECGs, and provides a feasible platform for research on the molecular mechanisms involved in cardiovascular diseases. METHODS: In this study, two types of electrode, tungsten needle probes and GaIn electrodes, were used respectively to noiselessly conduct invasive and noninvasive ECG recordings of Drosophila. To further analyze electrode properties, circuit models were established and simulated. By using electromagnetic shielded heart signal acquiring system, consisted of analog amplification and digital filtering, the ECG signals of three phenotypes that have different heart functions were recorded without dissection. RESULTS AND DISCUSSION: The ECG waveforms of different phenotypes of Drosophila recorded invasively and repeatedly with n value (n>5 performed obvious difference in heart rate. In long period ECG recordings, non-invasive method implemented by GaIn electrodes acts relatively stable in both amplitude and period. To analyze GaIn electrode, the correctness of GaIn electrode model established by this paper was validated, presenting accuracy, stability, and reliability. CONCLUSIONS: Noninvasive ECG recording by GaIn electrodes was presented for recording Drosophila pupae ECG signals within a limited contact area and signal strength. Thus, the observation of ECG changes in normal and SERCA-depleted Drosophila over an extended period is feasible. This method prolongs insect survival time while conserving major ECG features, and provides a platform for

  2. [Implementation of ECG Monitoring System Based on Internet of Things].

    Science.gov (United States)

    Lu, Liangliang; Chen, Minya

    2015-11-01

    In order to expand the capabilities of hospital's traditional ECG device and enhance medical staff's work efficiency, an ECG monitoring system based on internet of things is introduced. The system can monitor ECG signals in real time and analyze data using ECG sensor, PDA, Web servers, which embeds C language, Android systems, .NET, wireless network and other technologies. After experiments, it can be showed that the system has high reliability and stability and can bring the convenience to medical staffs.

  3. A model-based Bayesian framework for ECG beat segmentation

    International Nuclear Information System (INIS)

    Sayadi, O; Shamsollahi, M B

    2009-01-01

    The study of electrocardiogram (ECG) waveform amplitudes, timings and patterns has been the subject of intense research, for it provides a deep insight into the diagnostic features of the heart's functionality. In some recent works, a Bayesian filtering paradigm has been proposed for denoising and compression of ECG signals. In this paper, it is shown that this framework may be effectively used for ECG beat segmentation and extraction of fiducial points. Analytic expressions for the determination of points and intervals are derived and evaluated on various real ECG signals. Simulation results show that the method can contribute to and enhance the clinical ECG beat segmentation performance

  4. Sparse Matrix for ECG Identification with Two-Lead Features

    Directory of Open Access Journals (Sweden)

    Kuo-Kun Tseng

    2015-01-01

    Full Text Available Electrocardiograph (ECG human identification has the potential to improve biometric security. However, improvements in ECG identification and feature extraction are required. Previous work has focused on single lead ECG signals. Our work proposes a new algorithm for human identification by mapping two-lead ECG signals onto a two-dimensional matrix then employing a sparse matrix method to process the matrix. And that is the first application of sparse matrix techniques for ECG identification. Moreover, the results of our experiments demonstrate the benefits of our approach over existing methods.

  5. Optimisation of Embryonic and Larval ECG Measurement in Zebrafish for Quantifying the Effect of QT Prolonging Drugs

    Science.gov (United States)

    Dhillon, Sundeep Singh; Dóró, Éva; Magyary, István; Egginton, Stuart; Sík, Attila; Müller, Ferenc

    2013-01-01

    Effective chemical compound toxicity screening is of paramount importance for safe cardiac drug development. Using mammals in preliminary screening for detection of cardiac dysfunction by electrocardiography (ECG) is costly and requires a large number of animals. Alternatively, zebrafish embryos can be used as the ECG waveform is similar to mammals, a minimal amount of chemical is necessary for drug testing, while embryos are abundant, inexpensive and represent replacement in animal research with reduced bioethical concerns. We demonstrate here the utility of pre-feeding stage zebrafish larvae in detection of cardiac dysfunction by electrocardiography. We have optimised an ECG recording system by addressing key parameters such as the form of immobilization, recording temperature, electrode positioning and developmental age. Furthermore, analysis of 3 days post fertilization (dpf) zebrafish embryos treated with known QT prolonging drugs such as terfenadine, verapamil and haloperidol led to reproducible detection of QT prolongation as previously shown for adult zebrafish. In addition, calculation of Z-factor scores revealed that the assay was sensitive and specific enough to detect large drug-induced changes in QTc intervals. Thus, the ECG recording system is a useful drug-screening tool to detect alteration to cardiac cycle components and secondary effects such as heart block and arrhythmias in zebrafish larvae before free feeding stage, and thus provides a suitable replacement for mammalian experimentation. PMID:23579446

  6. CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring.

    Science.gov (United States)

    Jung, Ha-Chul; Moon, Jin-Hee; Baek, Dong-Hyun; Lee, Jae-Hee; Choi, Yoon-Young; Hong, Joung-Sook; Lee, Sang-Hoon

    2012-05-01

    We fabricated a carbon nanotube (CNT)/ polydimethylsiloxane (PDMS) composite-based dry ECG electrode that can be readily connected to conventional ECG devices, and showed its long-term wearable monitoring capability and robustness to motion and sweat. While the dispersion of CNTs in PDMS is challenging, we optimized the process to disperse untreated CNTs within PDMS by mechanical force only. The electrical and mechanical characteristics of the CNT/PDMS electrode were tested according to the concentration of CNTs and its thickness. The performances of ECG electrodes were evaluated by using 36 types of electrodes which were fabricated with different concentrations of CNTs, and with a differing diameter and thickness. The ECG signals were obtained by using electrodes of diverse sizes to observe the effects of motion and sweat, and the proposed electrode was shown to be robust to both factors. The CNT concentration and diameter of the electrodes were critical parameters in obtaining high-quality ECG signals. The electrode was shown to be biocompatible from the cytotoxicity test. A seven-day continuous wearability test showed that the quality of the ECG signal did not degrade over time, and skin reactions such as itching or erythema were not observed. This electrode could be used for the long-term measurement of other electrical biosignals for ubiquitous health monitoring including EMG, EEG, and ERG.

  7. Measuring displacement signal with an accelerometer

    International Nuclear Information System (INIS)

    Han, Sang Bo

    2010-01-01

    An effective and simple way to reconstruct displacement signal from a measured acceleration signal is proposed in this paper. To reconstruct displacement signal by means of double-integrating the time domain acceleration signal, the Nyquist frequency of the digital sampling of the acceleration signal should be much higher than the highest frequency component of the signal. On the other hand, to reconstruct displacement signal by taking the inverse Fourier transform, the magnitude of the significant frequency components of the Fourier transform of the acceleration signal should be greater than the 6 dB increment line along the frequency axis. With a predetermined resolution in time and frequency domain, determined by the sampling rate to measure and record the original signal, reconstructing high-frequency signals in the time domain and reconstructing low-frequency signals in the frequency domain will produce biased errors. Furthermore, because of the DC components inevitably included in the sampling process, low-frequency components of the signals are overestimated when displacement signals are reconstructed from the Fourier transform of the acceleration signal. The proposed method utilizes curve-fitting around the significant frequency components of the Fourier transform of the acceleration signal before it is inverse-Fourier transformed. Curve-fitting around the dominant frequency components provides much better results than simply ignoring the insignificant frequency components of the signal

  8. The application of root mean square electrocardiography (RMS ECG) for the detection of acquired and congenital long QT syndrome.

    Science.gov (United States)

    Lux, Robert L; Sower, Christopher Todd; Allen, Nancy; Etheridge, Susan P; Tristani-Firouzi, Martin; Saarel, Elizabeth V

    2014-01-01

    Precise measurement of the QT interval is often hampered by difficulty determining the end of the low amplitude T wave. Root mean square electrocardiography (RMS ECG) provides a novel alternative measure of ventricular repolarization. Experimental data have shown that the interval between the RMS ECG QRS and T wave peaks (RTPK) closely reflects the mean ventricular action potential duration while the RMS T wave width (TW) tracks the dispersion of repolarization timing. Here, we tested the precision of RMS ECG to assess ventricular repolarization in humans in the setting of drug-induced and congenital Long QT Syndrome (LQTS). RMS ECG signals were derived from high-resolution 24 hour Holter monitor recordings from 68 subjects after receiving placebo and moxifloxacin and from standard 12 lead ECGs obtained in 97 subjects with LQTS and 97 age- and sex-matched controls. RTPK, QTRMS and RMS TW intervals were automatically measured using custom software and compared to traditional QT measures using lead II. All measures of repolarization were prolonged during moxifloxacin administration and in LQTS subjects, but the variance of RMS intervals was significantly smaller than traditional lead II measurements. TW was prolonged during moxifloxacin and in subjects with LQT-2, but not LQT-1 or LQT-3. These data validate the application of RMS ECG for the detection of drug-induced and congenital LQTS. RMS ECG measurements are more precise than the current standard of care lead II measurements.

  9. Decomposition of ECG by linear filtering.

    Science.gov (United States)

    Murthy, I S; Niranjan, U C

    1992-01-01

    A simple method is developed for the delineation of a given electrocardiogram (ECG) signal into its component waves. The properties of discrete cosine transform (DCT) are exploited for the purpose. The transformed signal is convolved with appropriate filters and the component waves are obtained by computing the inverse transform (IDCT) of the filtered signals. The filters are derived from the time signal itself. Analysis of continuous strips of ECG signals with various arrhythmias showed that the performance of the method is satisfactory both qualitatively and quantitatively. The small amplitude P wave usually had a high percentage rms difference (PRD) compared to the other large component waves.

  10. FPGA compression of ECG signals by using modified convolution scheme of the Discrete Wavelet Transform Compresión de señales ECG sobre FPGA utilizando un esquema modificado de convolución de la Transformada Wavelet Discreta

    Directory of Open Access Journals (Sweden)

    Dora M Ballesteros

    2012-04-01

    Full Text Available This paper presents FPGA design of ECG compression by using the Discrete Wavelet Transform (DWT and one lossless encoding method. Unlike the classical works based on off-line mode, the current work allows the real-time processing of the ECG signal to reduce the redundant information. A model is developed for a fixed-point convolution scheme which has a good performance in relation to the throughput, the latency, the maximum frequency of operation and the quality of the compressed signal. The quantization of the coefficients of the filters and the selected fixed-threshold give a low error in relation to clinical applications.Este documento presenta el diseño basado en FPGA para la compresión de señales ECG utilizando la Transformada Wavelet Discreta y un método de codificación sin pérdida de información. A diferencia de los trabajos clásicos para modo off-line, el trabajo actual permite la compresión en tiempo real de la señal ECG por medio de la reducción de la información redundante. Se propone un modelo para el esquema de convolución en formato punto fijo, el cual tiene buen desempeño en relación a la tasa de salida, la latencia del sistema, la máxima frecuencia de operación y la calidad de la señal comprimida. La arquitectura propuesta, la cuantización utilizada y el método de codificación proporcionan un PRD que es apto para el análisis clínico.

  11. The Development of a Portable ECG Monitor Based on DSP

    Science.gov (United States)

    Nan, CHI Jian; Tao, YAN Yan; Meng Chen, LIU; Li, YANG

    With the advent of global information, researches of Smart Home system are in the ascendant, the ECG real-time detection, and wireless transmission of ECG become more useful. In order to achieve the purpose we developed a portable ECG monitor which achieves the purpose of cardiac disease remote monitoring, and will be used in the physical and psychological disease surveillance in smart home system, we developed this portable ECG Monitor, based on the analysis of existing ECG Monitor, using TMS320F2812 as the core controller, which complete the signal collection, storage, processing, waveform display and transmission.

  12. ECG Identification System Using Neural Network with Global and Local Features

    Science.gov (United States)

    Tseng, Kuo-Kun; Lee, Dachao; Chen, Charles

    2016-01-01

    This paper proposes a human identification system via extracted electrocardiogram (ECG) signals. Two hierarchical classification structures based on global shape feature and local statistical feature is used to extract ECG signals. Global shape feature represents the outline information of ECG signals and local statistical feature extracts the…

  13. [An Algorithm to Eliminate Power Frequency Interference in ECG Using Template].

    Science.gov (United States)

    Shi, Guohua; Li, Jiang; Xu, Yan; Feng, Liang

    2017-01-01

    Researching an algorithm to eliminate power frequency interference in ECG. The algorithm first creates power frequency interference template, then, subtracts the template from the original ECG signals, final y, the algorithm gets the ECG signals without interference. Experiment shows the algorithm can eliminate interference effectively and has none side effect to normal signal. It’s efficient and suitable for practice.

  14. Dose modulated retrospective ECG-gated versus non-gated 64-row CT angiography of the aorta at the same radiation dose: Comparison of motion artifacts, diagnostic confidence and signal-to-noise-ratios

    International Nuclear Information System (INIS)

    Schernthaner, Ruediger E.; Stadler, Alfred; Beitzke, Dietrich; Homolka, Peter; Weber, Michael; Lammer, Johannes; Czerny, Martin; Loewe, Christian

    2012-01-01

    Purpose: To compare ECG-gated and non-gated CT angiography of the aorta at the same radiation dose, with regard to motion artifacts (MA), diagnostic confidence (DC) and signal-to-noise-ratios (SNRs). Materials and methods: Sixty consecutive patients prospectively randomized into two groups underwent 64-row CT angiography, with or without dose-modulated ECG-gating, of the entire aorta, due to several pathologies of the ascending aorta. MA and DC were both assessed using a four-point scale. SNRs were calculated by dividing the mean enhancement by the standard deviation. The dose-length-product (DLP) of each examination was recorded and the effective dose was estimated. Results: Dose-modulated ECG-gating showed statistically significant advantages over non-gated CT angiography, with regard to MA (p < 0.001) and DC (p < 0.001), at the aortic valve, at the origin of the coronary arteries, and at the dissection membrane, with a significant correlation (p < 0.001) between MA and DC. At the aortic wall, however, ECG-gated CT angiography showed statistically significant fewer MA (p < 0.001), but not a statistically significant higher DC (p = 0.137) compared to non-gated CT angiography. At the supra-aortic vessels and the descending aorta, the ECG-triggering showed no statistically significant differences with regard to MA (p = 0.861 and 0.526, respectively) and DC (p = 1.88 and 0.728, respectively). The effective dose of ECG-gated CT angiography (23.24 mSv; range, 18.43–25.94 mSv) did not differ significantly (p = 0.051) from that of non-gated CT angiography (24.28 mSv; range, 19.37–29.27 mSv). Conclusion: ECG-gated CT angiography of the entire aorta reduces MA and results in a higher DC with the same SNR, compared to non-gated CT angiography at the same radiation dose.

  15. Alexander fractional differential window filter for ECG denoising.

    Science.gov (United States)

    Verma, Atul Kumar; Saini, Indu; Saini, Barjinder Singh

    2018-06-01

    The electrocardiogram (ECG) non-invasively monitors the electrical activities of the heart. During the process of recording and transmission, ECG signals are often corrupted by various types of noises. Minimizations of these noises facilitate accurate detection of various anomalies. In the present paper, Alexander fractional differential window (AFDW) filter is proposed for ECG signal denoising. The designed filter is based on the concept of generalized Alexander polynomial and the R-L differential equation of fractional calculus. This concept is utilized to formulate a window that acts as a forward filter. Thereafter, the backward filter is constructed by reversing the coefficients of the forward filter. The proposed AFDW filter is then obtained by averaging of the forward and backward filter coefficients. The performance of the designed AFDW filter is validated by adding the various type of noise to the original ECG signal obtained from MIT-BIH arrhythmia database. The two non-diagnostic measure, i.e., SNR, MSE, and one diagnostic measure, i.e., wavelet energy based diagnostic distortion (WEDD) have been employed for the quantitative evaluation of the designed filter. Extensive experimentations on all the 48-records of MIT-BIH arrhythmia database resulted in average SNR of 22.014 ± 3.806365, 14.703 ± 3.790275, 13.3183 ± 3.748230; average MSE of 0.001458 ± 0.00028, 0.0078 ± 0.000319, 0.01061 ± 0.000472; and average WEDD value of 0.020169 ± 0.01306, 0.1207 ± 0.061272, 0.1432 ± 0.073588, for ECG signal contaminated by the power line, random, and the white Gaussian noise respectively. A new metric named as morphological power preservation measure (MPPM) is also proposed that account for the power preservance (as indicated by PSD plots) and the QRS morphology. The proposed AFDW filter retained much of the original (clean) signal power without any significant morphological distortion as validated by MPPM measure that were 0

  16. An Adaptive Particle Weighting Strategy for ECG Denoising Using Marginalized Particle Extended Kalman Filter: An Evaluation in Arrhythmia Contexts.

    Science.gov (United States)

    Hesar, Hamed Danandeh; Mohebbi, Maryam

    2017-11-01

    Model-based Bayesian frameworks have a common problem in processing electrocardiogram (ECG) signals with sudden morphological changes. This situation often happens in the case of arrhythmias where ECGs do not obey the predefined state models. To solve this problem, in this paper, a model-based Bayesian denoising framework is proposed using marginalized particle-extended Kalman filter (MP-EKF), variational mode decomposition, and a novel fuzzy-based adaptive particle weighting strategy. This strategy helps MP-EKF to perform well even when the morphology of signal does not comply with the predefined dynamic model. In addition, this strategy adapts MP-EKF's behavior to the acquired measurements in different input signal to noise ratios (SNRs). At low input SNRs, this strategy decreases the particles' trust level to the measurements while increasing their trust level to a synthetic ECG constructed with the feature parameters of ECG dynamic model. At high input SNRs, the particles' trust level to the measurements is increased and the trust level to synthetic ECG is decreased. The proposed method was evaluated on MIT-BIH normal sinus rhythm database and compared with EKF/EKS frameworks and previously proposed MP-EKF. It was also evaluated on ECG segments extracted from MIT-BIH arrhythmia database, which contained ventricular and atrial arrhythmia. The results showed that the proposed algorithm had a noticeable superiority over benchmark methods from both SNR improvement and multiscale entropy based weighted distortion (MSEWPRD) viewpoints at low input SNRs.

  17. Electrocardiogram signal quality measures for unsupervised telehealth environments

    International Nuclear Information System (INIS)

    Redmond, S J; Xie, Y; Chang, D; Lovell, N H; Basilakis, J

    2012-01-01

    The use of telehealth paradigms for the remote management of patients suffering from chronic conditions has become more commonplace with the advancement of Internet connectivity and enterprise software systems. To facilitate clinicians in managing large numbers of telehealth patients, and in digesting the vast array of data returned from the remote monitoring environment, decision support systems in various guises are often utilized. The success of decision support systems in interpreting patient conditions from physiological data is dependent largely on the quality of these recorded data. This paper outlines an algorithm to determine the quality of single-lead electrocardiogram (ECG) recordings obtained from telehealth patients. Three hundred short ECG recordings were manually annotated to identify movement artifact, QRS locations and signal quality (discrete quality levels) by a panel of three experts, who then reconciled the annotation as a group to resolve any discrepancies. After applying a published algorithm to remove gross movement artifact, the proposed method was then applied to estimate the remaining ECG signal quality, using a Parzen window supervised statistical classifier model. The three-class classifier model, using a number of time-domain features and evaluated using cross validation, gave an accuracy in classifying signal quality of 78.7% (κ = 0.67) when using fully automated preprocessing algorithms to remove gross motion artifact and detect QRS locations. This is a similar level of accuracy to the reported human inter-scorer agreement when generating the gold standard annotation (accuracy = 70–89.3%, κ = 0.54–0.84). These results indicate that the assessment of the quality of single-lead ECG recordings, acquired in unsupervised telehealth environments, is entirely feasible and may help to promote the acceptance and utility of future decision support systems for remotely managing chronic disease conditions. (paper)

  18. ECG denoising with adaptive bionic wavelet transform.

    Science.gov (United States)

    Sayadi, Omid; Shamsollahi, Mohammad Bagher

    2006-01-01

    In this paper a new ECG denoising scheme is proposed using a novel adaptive wavelet transform, named bionic wavelet transform (BWT), which had been first developed based on a model of the active auditory system. There has been some outstanding features with the BWT such as nonlinearity, high sensitivity and frequency selectivity, concentrated energy distribution and its ability to reconstruct signal via inverse transform but the most distinguishing characteristic of BWT is that its resolution in the time-frequency domain can be adaptively adjusted not only by the signal frequency but also by the signal instantaneous amplitude and its first-order differential. Besides by optimizing the BWT parameters parallel to modifying a new threshold value, one can handle ECG denoising with results comparing to those of wavelet transform (WT). Preliminary tests of BWT application to ECG denoising were constructed on the signals of MIT-BIH database which showed high performance of noise reduction.

  19. ECG acquisition and automated remote processing

    CERN Document Server

    Gupta, Rajarshi; Bera, Jitendranath

    2014-01-01

    The book is focused on the area of remote processing of ECG in the context of telecardiology, an emerging area in the field of Biomedical Engineering Application. Considering the poor infrastructure and inadequate numbers of physicians in rural healthcare clinics in India and other developing nations, telemedicine services assume special importance. Telecardiology, a specialized area of telemedicine, is taken up in this book considering the importance of cardiac diseases, which is prevalent in the population under discussion. The main focus of this book is to discuss different aspects of ECG acquisition, its remote transmission and computerized ECG signal analysis for feature extraction. It also discusses ECG compression and application of standalone embedded systems, to develop a cost effective solution of a telecardiology system.

  20. ECG authentication in post-exercise situation.

    Science.gov (United States)

    Dongsuk Sung; Jeehoon Kim; Myungjun Koh; Kwangsuk Park

    2017-07-01

    Human authentication based on electrocardiogram (ECG) has been a remarkable issue for recent ten years. This paper proposed an authentication technology with the ECG data recorded after the harsh exercise. 55 subjects voluntarily attended to this experiment. A stepper was used as an exercise equipment. The subjects are asked to do stepper for 5 minutes and their ECG signals are acquired before and after the exercise in rest, sitting posture. Linear discriminant analysis (LDA) was used for both feature extraction and classification. Even though, within the first 1 minute recording, the subject recognition accuracy was 59.64%, which is too low to utilize, after one minute the accuracy was higher than 90% and it increased up to 96.22% within 5 minutes, which is plausible to use in authentication circumstances. Therefore, we have concluded that ECG authentication techniques will be able to be used after 1 minute of catching breath.

  1. Real-time QRS detection using integrated variance for ECG gated cardiac MRI

    Directory of Open Access Journals (Sweden)

    Schmidt Marcus

    2016-09-01

    Full Text Available During magnetic resonance imaging (MRI, a patient’s vital signs are required for different purposes. In cardiac MRI (CMR, an electrocardiogram (ECG of the patient is required for triggering the image acquisition process. However, a reliable QRS detection of an ECG signal acquired inside an MRI scanner is a challenging task due to the magnetohydrodynamic (MHD effect which interferes with the ECG. The aim of this work was to develop a reliable QRS detector usable inside the MRI which also fulfills the standards for medical devices (IEC 60601-2-27. Therefore, a novel real-time QRS detector based on integrated variance measurements is presented. The algorithm was trained on ANSI/AAMI EC13 test waveforms and was then applied to two databases with 12-lead ECG signals recorded inside and outside an MRI scanner. Reliable results for both databases were achieved for the ECG signals recorded inside (DBMRI: sensitivity Se = 99.94%, positive predictive value +P = 99.84% and outside (DBInCarT: Se = 99.29%, +P = 99.72% the MRI. Due to the accurate R-peak detection in real-time this can be used for monitoring and triggering in MRI exams.

  2. Telemetry Measurement of Selected Biological Signal Using Bluetooth Technology

    Directory of Open Access Journals (Sweden)

    Martin Cerny

    2005-01-01

    Full Text Available This work treats of using the Bluetooth technology in biomedical engineering. The Bluetooth is used for transmission of measured data from pulse oximeter, ECG and monitor of blood pressure. OEM modules realize the devices for pulse oximetry and ECG. Both these realized devices can communicate with computer by Bluetooth technology and standard serial link too. The realized system of measuring devices is very flexible and mobile, because the Bluetooth technology is used and accumulators can supply the realized devices. It is possible to measure other physical values converted to voltage, because the used OEM module for pulse oximetry include A/D converter. The part of this work is software visualisation of measured values to.

  3. Investigations of sensitivity and resolution of ECG and MCG in a realistically shaped thorax model

    International Nuclear Information System (INIS)

    Mäntynen, Ville; Konttila, Teijo; Stenroos, Matti

    2014-01-01

    Solving the inverse problem of electrocardiography (ECG) and magnetocardiography (MCG) is often referred to as cardiac source imaging. Spatial properties of ECG and MCG as imaging systems are, however, not well known. In this modelling study, we investigate the sensitivity and point-spread function (PSF) of ECG, MCG, and combined ECG+MCG as a function of source position and orientation, globally around the ventricles: signal topographies are modelled using a realistically-shaped volume conductor model, and the inverse problem is solved using a distributed source model and linear source estimation with minimal use of prior information. The results show that the sensitivity depends not only on the modality but also on the location and orientation of the source and that the sensitivity distribution is clearly reflected in the PSF. MCG can better characterize tangential anterior sources (with respect to the heart surface), while ECG excels with normally-oriented and posterior sources. Compared to either modality used alone, the sensitivity of combined ECG+MCG is less dependent on source orientation per source location, leading to better source estimates. Thus, for maximal sensitivity and optimal source estimation, the electric and magnetic measurements should be combined. (paper)

  4. Systolic blood pressure estimation using PPG and ECG during physical exercise

    NARCIS (Netherlands)

    Sun, S.; Bezemer, R.; Long, X.; Muehlsteff, J.; Aarts, R.M.

    2016-01-01

    In this work, a model to estimate systolic blood pressure (SBP) using photoplethysmography (PPG) and electrocardiography (ECG) is proposed. Data from 19 subjects doing a 40 min exercise was analyzed. Reference SBP was measured at the finger based on the volume-clamp principle. PPG signals were

  5. A Novel Automatic Detection System for ECG Arrhythmias Using Maximum Margin Clustering with Immune Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Bohui Zhu

    2013-01-01

    Full Text Available This paper presents a novel maximum margin clustering method with immune evolution (IEMMC for automatic diagnosis of electrocardiogram (ECG arrhythmias. This diagnostic system consists of signal processing, feature extraction, and the IEMMC algorithm for clustering of ECG arrhythmias. First, raw ECG signal is processed by an adaptive ECG filter based on wavelet transforms, and waveform of the ECG signal is detected; then, features are extracted from ECG signal to cluster different types of arrhythmias by the IEMMC algorithm. Three types of performance evaluation indicators are used to assess the effect of the IEMMC method for ECG arrhythmias, such as sensitivity, specificity, and accuracy. Compared with K-means and iterSVR algorithms, the IEMMC algorithm reflects better performance not only in clustering result but also in terms of global search ability and convergence ability, which proves its effectiveness for the detection of ECG arrhythmias.

  6. Noise Maps for Quantitative and Clinical Severity Towards Long-Term ECG Monitoring.

    Science.gov (United States)

    Everss-Villalba, Estrella; Melgarejo-Meseguer, Francisco Manuel; Blanco-Velasco, Manuel; Gimeno-Blanes, Francisco Javier; Sala-Pla, Salvador; Rojo-Álvarez, José Luis; García-Alberola, Arcadi

    2017-10-25

    Noise and artifacts are inherent contaminating components and are particularly present in Holter electrocardiogram (ECG) monitoring. The presence of noise is even more significant in long-term monitoring (LTM) recordings, as these are collected for several days in patients following their daily activities; hence, strong artifact components can temporarily impair the clinical measurements from the LTM recordings. Traditionally, the noise presence has been dealt with as a problem of non-desirable component removal by means of several quantitative signal metrics such as the signal-to-noise ratio (SNR), but current systems do not provide any information about the true impact of noise on the ECG clinical evaluation. As a first step towards an alternative to classical approaches, this work assesses the ECG quality under the assumption that an ECG has good quality when it is clinically interpretable. Therefore, our hypotheses are that it is possible (a) to create a clinical severity score for the effect of the noise on the ECG, (b) to characterize its consistency in terms of its temporal and statistical distribution, and (c) to use it for signal quality evaluation in LTM scenarios. For this purpose, a database of external event recorder (EER) signals is assembled and labeled from a clinical point of view for its use as the gold standard of noise severity categorization. These devices are assumed to capture those signal segments more prone to be corrupted with noise during long-term periods. Then, the ECG noise is characterized through the comparison of these clinical severity criteria with conventional quantitative metrics taken from traditional noise-removal approaches, and noise maps are proposed as a novel representation tool to achieve this comparison. Our results showed that neither of the benchmarked quantitative noise measurement criteria represent an accurate enough estimation of the clinical severity of the noise. A case study of long-term ECG is reported

  7. Interference Reduction Selected Measurement Signals of Ships

    Directory of Open Access Journals (Sweden)

    Jan Monieta

    2014-08-01

    Full Text Available The paper presents problems encountered at the signal processing of mechanical values with electric methods. Depending on the measured quantity, the location of the sensors and the analysis frequency band, they are differently interferences. The article presents the results of applying the analysis of parameters of working and accompanying process marine medium speed reciprocating engines in the time, amplitude, frequency domain and wavelet analysis to select a reasonable method. The applied signal acquisition program allows you to perform some analysis of signals in different areas and the transformation of the data to other programs. The ways of interference reducing at various stages of their occurrence and analysis are presented. [b]Keywords[/b]: electrical signals, domain analysis, measurement interference

  8. UMTS signal measurements with digital spectrum analysers

    International Nuclear Information System (INIS)

    Licitra, G.; Palazzuoli, D.; Ricci, A. S.; Silvi, A. M.

    2004-01-01

    The launch of the Universal Mobile Telecommunications System (UNITS), the most recent mobile telecommunications standard has imposed the requirement of updating measurement instrumentation and methodologies. In order to define the most reliable measurement procedure, which is aimed at assessing the exposure to electromagnetic fields, modern spectrum analysers' features for correct signal characterisation has been reviewed. (authors)

  9. Statistical performance evaluation of ECG transmission using wireless networks.

    Science.gov (United States)

    Shakhatreh, Walid; Gharaibeh, Khaled; Al-Zaben, Awad

    2013-07-01

    This paper presents simulation of the transmission of biomedical signals (using ECG signal as an example) over wireless networks. Investigation of the effect of channel impairments including SNR, pathloss exponent, path delay and network impairments such as packet loss probability; on the diagnosability of the received ECG signal are presented. The ECG signal is transmitted through a wireless network system composed of two communication protocols; an 802.15.4- ZigBee protocol and an 802.11b protocol. The performance of the transmission is evaluated using higher order statistics parameters such as kurtosis and Negative Entropy in addition to the common techniques such as the PRD, RMS and Cross Correlation.

  10. Quality assessment of digital annotated ECG data from clinical trials by the FDA ECG Warehouse.

    Science.gov (United States)

    Sarapa, Nenad

    2007-09-01

    The FDA mandates that digital electrocardiograms (ECGs) from 'thorough' QTc trials be submitted into the ECG Warehouse in Health Level 7 extended markup language format with annotated onset and offset points of waveforms. The FDA did not disclose the exact Warehouse metrics and minimal acceptable quality standards. The author describes the Warehouse scoring algorithms and metrics used by FDA, points out ways to improve FDA review and suggests Warehouse benefits for pharmaceutical sponsors. The Warehouse ranks individual ECGs according to their score for each quality metric and produces histogram distributions with Warehouse-specific thresholds that identify ECGs of questionable quality. Automatic Warehouse algorithms assess the quality of QT annotation and duration of manual QT measurement by the central ECG laboratory.

  11. Matrix of regularity for improving the quality of ECGs

    International Nuclear Information System (INIS)

    Xia, Henian; Garcia, Gabriel A; Zhao, Xiaopeng; Bains, Jujhar; Wortham, Dale C

    2012-01-01

    The 12-lead electrocardiography (ECG) is the gold standard for diagnosis of abnormalities of the heart. However, the ECG is susceptible to artifacts, which may lead to wrong diagnosis and thus mistreatment. It is a clinical challenge of great significance differentiating ECG artifacts from patterns of diseases. We propose a computational framework, called the matrix of regularity, to evaluate the quality of ECGs. The matrix of regularity is a novel mechanism to fuse results from multiple tests of signal quality. Moreover, this method can produce a continuous grade, which can more accurately represent the quality of an ECG. When tested on a dataset from the Computing in Cardiology/PhysioNet Challenge 2011, the algorithm achieves up to 95% accuracy. The area under the receiver operating characteristic curve is 0.97. The developed framework and computer program have the potential to improve the quality of ECGs collected using conventional and portable devices. (paper)

  12. Integrated processing of ECG's in a hospital information system

    NARCIS (Netherlands)

    Helder, J.C.; Schram, P.H.; Verwey, H.; Meijler, F.L.; Robles de Medina, E.O.

    The ECG handling in the University Hospital of Utrecht is composed by a system consisting of acquisition and storage of ECG signals, computer analysis, data management, and storage of readings in a patient data base. The last two modules are part of a Hospital Information System (HIS). The modular

  13. A wearable 12-lead ECG acquisition system with fabric electrodes.

    Science.gov (United States)

    Haoshi Zhang; Lan Tian; Huiyang Lu; Ming Zhou; Haiqing Zou; Peng Fang; Fuan Yao; Guanglin Li

    2017-07-01

    Continuous electrocardiogram (ECG) monitoring is significant for prevention of heart disease and is becoming an important part of personal and family health care. In most of the existing wearable solutions, conventional metal sensors and corresponding chips are simply integrated into clothes and usually could only collect few leads of ECG signals that could not provide enough information for diagnosis of cardiac diseases such as arrhythmia and myocardial ischemia. In this study, a wearable 12-lead ECG acquisition system with fabric electrodes was developed and could simultaneously process 12 leads of ECG signals. By integrating the fabric electrodes into a T-shirt, the wearable system would provide a comfortable and convenient user interface for ECG recording. For comparison, the proposed fabric electrode and the gelled traditional metal electrodes were used to collect ECG signals on a subject, respectively. The approximate entropy (ApEn) of ECG signals from both types of electrodes were calculated. The experimental results show that the fabric electrodes could achieve similar performance as the gelled metal electrodes. This preliminary work has demonstrated that the developed ECG system with fabric electrodes could be utilized for wearable health management and telemedicine applications.

  14. Comparison between retrospective gating and ECG triggering in magnetic resonance velocity mapping

    DEFF Research Database (Denmark)

    Søndergaard, L; Ståhlberg, F; Thomsen, C

    1993-01-01

    ECG-triggered cinematographic studies of the cardiovascular system are hampered by several technical restrictions such as the inability to image end-diastole, ghosting, varying signal intensity, and phase contributions from eddy currents. Retrospective gating may solve these problems, but involves...... of flow pulses. However, by reducing the time window retrospectively gated flow measurements were in good agreement with those that are ECG triggered. When fulfilling the demand of a narrow time window for interpolation, retrospective gating offers several advantages in MR velocity mapping....

  15. Visualization of neonatal coronary arteries on multidetector row CT: ECG-gated versus non-ECG-gated technique

    International Nuclear Information System (INIS)

    Tsai, I.C.; Lee, Tain; Chen, Min-Chi; Fu, Yun-Ching; Jan, Sheng-Lin; Wang, Chung-Chi; Chang, Yen

    2007-01-01

    Multidetector CT (MDCT) seems to be a promising tool for detection of neonatal coronary arteries, but whether the ECG-gated or non-ECG-gated technique should be used has not been established. To compare the detection rate and image quality of neonatal coronary arteries on MDCT using ECG-gated and non-ECG-gated techniques. Twelve neonates with complex congenital heart disease were included. The CT scan was acquired using an ECG-gated technique, and the most quiescent phase of the RR interval was selected to represent the ECG-gated images. The raw data were then reconstructed without the ECG signal to obtain non-ECG-gated images. The detection rate and image quality of nine coronary artery segments in the two sets of images were then compared. A two-tailed paired t test was used with P values <0.05 considered as statistically significant. In all coronary segments the ECG-gated technique had a better detection rate and produced images of better quality. The difference between the two techniques ranged from 25% in the left main coronary artery to 100% in the distal right coronary artery. For neonates referred for MDCT, if evaluation of coronary artery anatomy is important for the clinical management or surgical planning, the ECG-gated technique should be used because it can reliably detect the coronary arteries. (orig.)

  16. Multistage principal component analysis based method for abdominal ECG decomposition

    International Nuclear Information System (INIS)

    Petrolis, Robertas; Krisciukaitis, Algimantas; Gintautas, Vladas

    2015-01-01

    Reflection of fetal heart electrical activity is present in registered abdominal ECG signals. However this signal component has noticeably less energy than concurrent signals, especially maternal ECG. Therefore traditionally recommended independent component analysis, fails to separate these two ECG signals. Multistage principal component analysis (PCA) is proposed for step-by-step extraction of abdominal ECG signal components. Truncated representation and subsequent subtraction of cardio cycles of maternal ECG are the first steps. The energy of fetal ECG component then becomes comparable or even exceeds energy of other components in the remaining signal. Second stage PCA concentrates energy of the sought signal in one principal component assuring its maximal amplitude regardless to the orientation of the fetus in multilead recordings. Third stage PCA is performed on signal excerpts representing detected fetal heart beats in aim to perform their truncated representation reconstructing their shape for further analysis. The algorithm was tested with PhysioNet Challenge 2013 signals and signals recorded in the Department of Obstetrics and Gynecology, Lithuanian University of Health Sciences. Results of our method in PhysioNet Challenge 2013 on open data set were: average score: 341.503 bpm 2 and 32.81 ms. (paper)

  17. Method for traceable measurement of LTE signals

    Science.gov (United States)

    Sunder Dash, Soumya; Pythoud, Frederic; Leuchtmann, Pascal; Leuthold, Juerg

    2018-04-01

    This contribution presents a reference setup to measure the power of the cell-specific resource elements present in downlink long term evolution (LTE) signals in a way that the measurements are traceable to the international system of units. This setup can be used to calibrate the LTE code-selective field probes that are used to measure the radiation of base stations for mobile telephony. It can also be used to calibrate LTE signal generators and receivers. The method is based on traceable scope measurements performed directly at the output of a measuring antenna. It implements offline digital signal processing demodulation algorithms that consider the digital down-conversion, timing synchronization, frequency synchronization, phase synchronization and robust LTE cell identification to produce the downlink time-frequency LTE grid. Experimental results on conducted test scenarios, both single-input-single-output and multiple-input-multiple-output antenna configuration, show promising results confirming measurement uncertainties of the order of 0.05 dB with a coverage factor of 2.

  18. [Analysis of pacemaker ECGs].

    Science.gov (United States)

    Israel, Carsten W; Ekosso-Ejangue, Lucy; Sheta, Mohamed-Karim

    2015-09-01

    The key to a successful analysis of a pacemaker electrocardiogram (ECG) is the application of the systematic approach used for any other ECG without a pacemaker: analysis of (1) basic rhythm and rate, (2) QRS axis, (3) PQ, QRS and QT intervals, (4) morphology of P waves, QRS, ST segments and T(U) waves and (5) the presence of arrhythmias. If only the most obvious abnormality of a pacemaker ECG is considered, wrong conclusions can easily be drawn. If a systematic approach is skipped it may be overlooked that e.g. atrial pacing is ineffective, the left ventricle is paced instead of the right ventricle, pacing competes with intrinsic conduction or that the atrioventricular (AV) conduction time is programmed too long. Apart from this analysis, a pacemaker ECG which is not clear should be checked for the presence of arrhythmias (e.g. atrial fibrillation, atrial flutter, junctional escape rhythm and endless loop tachycardia), pacemaker malfunction (e.g. atrial or ventricular undersensing or oversensing, atrial or ventricular loss of capture) and activity of specific pacing algorithms, such as automatic mode switching, rate adaptation, AV delay modifying algorithms, reaction to premature ventricular contractions (PVC), safety window pacing, hysteresis and noise mode. A systematic analysis of the pacemaker ECG almost always allows a probable diagnosis of arrhythmias and malfunctions to be made, which can be confirmed by pacemaker control and can often be corrected at the touch of the right button to the patient's benefit.

  19. [Experience in the use of equipment for ECG system analysis in municipal polyclinics].

    Science.gov (United States)

    Bondarenko, A A

    2006-01-01

    Two electrocardiographs, an analog-digital electrocardiograph with preliminary analog filtering of signal and a smart cardiograph implemented as a PC-compatible device without preliminary analog filtering, are considered. Advantages and disadvantages of ECG systems based on artificial intelligence are discussed. ECG interpretation modes provided by the two electrocardiographs are considered. The reliability of automatic ECG interpretation is assessed. Problems of rational use of automated ECG processing systems are discussed.

  20. Study on a Biometric Authentication Model based on ECG using a Fuzzy Neural Network

    Science.gov (United States)

    Kim, Ho J.; Lim, Joon S.

    2018-03-01

    Traditional authentication methods use numbers or graphic passwords and thus involve the risk of loss or theft. Various studies are underway regarding biometric authentication because it uses the unique biometric data of a human being. Biometric authentication technology using ECG from biometric data involves signals that record electrical stimuli from the heart. It is difficult to manipulate and is advantageous in that it enables unrestrained measurements from sensors that are attached to the skin. This study is on biometric authentication methods using the neural network with weighted fuzzy membership functions (NEWFM). In the biometric authentication process, normalization and the ensemble average is applied during preprocessing, characteristics are extracted using Haar-wavelets, and a registration process called “training” is performed in the fuzzy neural network. In the experiment, biometric authentication was performed on 73 subjects in the Physionet Database. 10-40 ECG waveforms were tested for use in the registration process, and 15 ECG waveforms were deemed the appropriate number for registering ECG waveforms. 1 ECG waveforms were used during the authentication stage to conduct the biometric authentication test. Upon testing the proposed biometric authentication method based on 73 subjects from the Physionet Database, the TAR was 98.32% and FAR was 5.84%.

  1. RF measurements I: signal receiving techniques

    CERN Document Server

    Caspers, F

    2011-01-01

    For the characterization of components, systems and signals in the RF and microwave range, several dedicated instruments are in use. In this paper the fundamentals of the RF-signal sampling technique, which has found widespread applications in 'digital' oscilloscopes and sampling scopes, are discussed. The key element in these front-ends is the Schottky diode which can be used either as an RF mixer or as a single sampler. The spectrum analyser has become an absolutely indispensable tool for RF signal analysis. Here the front-end is the RF mixer as the RF section of modern spectrum analysers has a rather complex architecture. The reasons for this complexity and certain working principles as well as limitations are discussed. In addition, an overview of the development of scalar and vector signal analysers is given. For the determination of the noise temperature of a one-port and the noise figure of a two-port, basic concepts and relations are shown. A brief discussion of commonly used noise measurement techniq...

  2. Evaluation of Digital Compressed Sensing for Real-Time Wireless ECG System with Bluetooth low Energy.

    Science.gov (United States)

    Wang, Yishan; Doleschel, Sammy; Wunderlich, Ralf; Heinen, Stefan

    2016-07-01

    In this paper, a wearable and wireless ECG system is firstly designed with Bluetooth Low Energy (BLE). It can detect 3-lead ECG signals and is completely wireless. Secondly the digital Compressed Sensing (CS) is implemented to increase the energy efficiency of wireless ECG sensor. Different sparsifying basis, various compression ratio (CR) and several reconstruction algorithms are simulated and discussed. Finally the reconstruction is done by the android application (App) on smartphone to display the signal in real time. The power efficiency is measured and compared with the system without CS. The optimum satisfying basis built by 3-level decomposed db4 wavelet coefficients, 1-bit Bernoulli random matrix and the most suitable reconstruction algorithm are selected by the simulations and applied on the sensor node and App. The signal is successfully reconstructed and displayed on the App of smartphone. Battery life of sensor node is extended from 55 h to 67 h. The presented wireless ECG system with CS can significantly extend the battery life by 22 %. With the compact characteristic and long term working time, the system provides a feasible solution for the long term homecare utilization.

  3. Fetal ECG extraction using independent component analysis by Jade approach

    Science.gov (United States)

    Giraldo-Guzmán, Jader; Contreras-Ortiz, Sonia H.; Lasprilla, Gloria Isabel Bautista; Kotas, Marian

    2017-11-01

    Fetal ECG monitoring is a useful method to assess the fetus health and detect abnormal conditions. In this paper we propose an approach to extract fetal ECG from abdomen and chest signals using independent component analysis based on the joint approximate diagonalization of eigenmatrices approach. The JADE approach avoids redundancy, what reduces matrix dimension and computational costs. Signals were filtered with a high pass filter to eliminate low frequency noise. Several levels of decomposition were tested until the fetal ECG was recognized in one of the separated sources output. The proposed method shows fast and good performance.

  4. Signal quality measures for unsupervised blood pressure measurement

    International Nuclear Information System (INIS)

    Abdul Sukor, J; Redmond, S J; Lovell, N H; Chan, G S H

    2012-01-01

    Accurate systolic and diastolic pressure estimation, using automated blood pressure measurement, is difficult to achieve when the transduced signals are contaminated with noise or interference, such as movement artifact. This study presents an algorithm for automated signal quality assessment in blood pressure measurement by determining the feasibility of accurately detecting systolic and diastolic pressures when corrupted with various levels of movement artifact. The performance of the proposed algorithm is compared to a manually annotated reference scoring (RS). Based on visual representations and audible playback of Korotkoff sounds, the creation of the RS involved two experts identifying sections of the recorded sounds and annotating sections of noise contamination. The experts determined the systolic and diastolic pressure in 100 recorded Korotkoff sound recordings, using a simultaneous electrocardiograph as a reference signal. The recorded Korotkoff sounds were acquired from 25 healthy subjects (16 men and 9 women) with a total of four measurements per subject. Two of these measurements contained purposely induced noise artifact caused by subject movement. Morphological changes in the cuff pressure signal and the width of the Korotkoff pulse were extracted features which were believed to be correlated with the noise presence in the recorded Korotkoff sounds. Verification of reliable Korotkoff pulses was also performed using extracted features from the oscillometric waveform as recorded from the inflatable cuff. The time between an identified noise section and a verified Korotkoff pulse was the key feature used to determine the validity of possible systolic and diastolic pressures in noise contaminated Korotkoff sounds. The performance of the algorithm was assessed based on the ability to: verify if a signal was contaminated with any noise; the accuracy, sensitivity and specificity of this noise classification, and the systolic and diastolic pressure

  5. Biometric security based on ECG

    NARCIS (Netherlands)

    Ma, L.; Groot, de J.A.; Linnartz, J.P.M.G.

    2011-01-01

    Recently the electrocardiogram (ECG) has been proposed as a novel biometric. This paper aims to construct a reliable ECG verification system, in terms of privacy protection. To this end, an improved expression to estimate the capacity in the autocorrelation (AC) of the ECG is derived, which not only

  6. Freeware eLearning Flash-ECG for learning electrocardiography.

    Science.gov (United States)

    Romanov, Kalle; Kuusi, Timo

    2009-06-01

    Electrocardiographic (ECG) analysis can be taught in eLearning programmes with suitable software that permits the effective use of basic tools such as a ruler and a magnifier, required for measurements. The Flash-ECG (Research & Development Unit for Medical Education, University of Helsinki, Finland) was developed to enable teachers and students to use scanned and archived ECGs on computer screens and classroom projectors. The software requires only a standard web browser with a Flash plug-in and can be integrated with learning environments (Blackboard/WebCT, Moodle). The Flash-ECG is freeware and is available to medical teachers worldwide.

  7. An Advanced Bio-Inspired PhotoPlethysmoGraphy (PPG) and ECG Pattern Recognition System for Medical Assessment.

    Science.gov (United States)

    Rundo, Francesco; Conoci, Sabrina; Ortis, Alessandro; Battiato, Sebastiano

    2018-01-30

    Physiological signals are widely used to perform medical assessment for monitoring an extensive range of pathologies, usually related to cardio-vascular diseases. Among these, both PhotoPlethysmoGraphy (PPG) and Electrocardiography (ECG) signals are those more employed. PPG signals are an emerging non-invasive measurement technique used to study blood volume pulsations through the detection and analysis of the back-scattered optical radiation coming from the skin. ECG is the process of recording the electrical activity of the heart over a period of time using electrodes placed on the skin. In the present paper we propose a physiological ECG/PPG "combo" pipeline using an innovative bio-inspired nonlinear system based on a reaction-diffusion mathematical model, implemented by means of the Cellular Neural Network (CNN) methodology, to filter PPG signal by assigning a recognition score to the waveforms in the time series. The resulting "clean" PPG signal exempts from distortion and artifacts is used to validate for diagnostic purpose an EGC signal simultaneously detected for a same patient. The multisite combo PPG-ECG system proposed in this work overpasses the limitations of the state of the art in this field providing a reliable system for assessing the above-mentioned physiological parameters and their monitoring over time for robust medical assessment. The proposed system has been validated and the results confirmed the robustness of the proposed approach.

  8. ECG-derived respiration methods: adapted ICA and PCA.

    Science.gov (United States)

    Tiinanen, Suvi; Noponen, Kai; Tulppo, Mikko; Kiviniemi, Antti; Seppänen, Tapio

    2015-05-01

    Respiration is an important signal in early diagnostics, prediction, and treatment of several diseases. Moreover, a growing trend toward ambulatory measurements outside laboratory environments encourages developing indirect measurement methods such as ECG derived respiration (EDR). Recently, decomposition techniques like principal component analysis (PCA), and its nonlinear version, kernel PCA (KPCA), have been used to derive a surrogate respiration signal from single-channel ECG. In this paper, we propose an adapted independent component analysis (AICA) algorithm to obtain EDR signal, and extend the normal linear PCA technique based on the best principal component (PC) selection (APCA, adapted PCA) to improve its performance further. We also demonstrate that the usage of smoothing spline resampling and bandpass-filtering improve the performance of all EDR methods. Compared with other recent EDR methods using correlation coefficient and magnitude squared coherence, the proposed AICA and APCA yield a statistically significant improvement with correlations 0.84, 0.82, 0.76 and coherences 0.90, 0.91, 0.85 between reference respiration and AICA, APCA and KPCA, respectively. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Challenges of ECG monitoring and ECG interpretation in dialysis units.

    Science.gov (United States)

    Poulikakos, Dimitrios; Malik, Marek

    Patients on hemodialysis (HD) suffer from high cardiovascular morbidity and mortality due to high rates of coronary artery disease and arrhythmias. Electrocardiography (ECG) is often performed in the dialysis units as part of routine clinical assessment. However, fluid and electrolyte changes have been shown to affect all ECG morphologies and intervals. ECG interpretation thus depends on the time of the recording in relation to the HD session. In addition, arrhythmias during HD are common, and dialysis-related ECG artifacts mimicking arrhythmias have been reported. Studies using advanced ECG analyses have examined the impact of the HD procedure on selected repolarization descriptors and heart rate variability indices. Despite the challenges related to the impact of the fluctuant fluid and electrolyte status on conventional and advanced ECG parameters, further research in ECG monitoring during dialysis has the potential to provide clinically meaningful and practically useful information for diagnostic and risk stratification purposes. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  10. Heart rhythm analysis using ECG recorded with a novel sternum based patch technology

    DEFF Research Database (Denmark)

    Saadi, Dorthe Bodholt; Fauerskov, Inge; Osmanagic, Armin

    2013-01-01

    , reliable long-term ECG recordings. The device is designed for high compliance and low patient burden. This novel patch technology is CE approved for ambulatory ECG recording of two ECG channels on the sternum. This paper describes a clinical pilot study regarding the usefulness of these ECG signals...... for heart rhythm analysis. A clinical technician with experience in ECG interpretation selected 200 noise-free 7 seconds ECG segments from 25 different patients. These 200 ECG segments were evaluated by two medical doctors according to their usefulness for heart rhythm analysis. The first doctor considered...... 98.5% of the segments useful for rhythm analysis, whereas the second doctor considered 99.5% of the segments useful for rhythm analysis. The conclusion of this pilot study indicates that two channel ECG recorded on the sternum is useful for rhythm analysis and could be used as input to diagnosis...

  11. Optimisation algorithms for ECG data compression.

    Science.gov (United States)

    Haugland, D; Heber, J G; Husøy, J H

    1997-07-01

    The use of exact optimisation algorithms for compressing digital electrocardiograms (ECGs) is demonstrated. As opposed to traditional time-domain methods, which use heuristics to select a small subset of representative signal samples, the problem of selecting the subset is formulated in rigorous mathematical terms. This approach makes it possible to derive algorithms guaranteeing the smallest possible reconstruction error when a bounded selection of signal samples is interpolated. The proposed model resembles well-known network models and is solved by a cubic dynamic programming algorithm. When applied to standard test problems, the algorithm produces a compressed representation for which the distortion is about one-half of that obtained by traditional time-domain compression techniques at reasonable compression ratios. This illustrates that, in terms of the accuracy of decoded signals, existing time-domain heuristics for ECG compression may be far from what is theoretically achievable. The paper is an attempt to bridge this gap.

  12. Robust and Accurate Anomaly Detection in ECG Artifacts Using Time Series Motif Discovery

    Science.gov (United States)

    Sivaraks, Haemwaan

    2015-01-01

    Electrocardiogram (ECG) anomaly detection is an important technique for detecting dissimilar heartbeats which helps identify abnormal ECGs before the diagnosis process. Currently available ECG anomaly detection methods, ranging from academic research to commercial ECG machines, still suffer from a high false alarm rate because these methods are not able to differentiate ECG artifacts from real ECG signal, especially, in ECG artifacts that are similar to ECG signals in terms of shape and/or frequency. The problem leads to high vigilance for physicians and misinterpretation risk for nonspecialists. Therefore, this work proposes a novel anomaly detection technique that is highly robust and accurate in the presence of ECG artifacts which can effectively reduce the false alarm rate. Expert knowledge from cardiologists and motif discovery technique is utilized in our design. In addition, every step of the algorithm conforms to the interpretation of cardiologists. Our method can be utilized to both single-lead ECGs and multilead ECGs. Our experiment results on real ECG datasets are interpreted and evaluated by cardiologists. Our proposed algorithm can mostly achieve 100% of accuracy on detection (AoD), sensitivity, specificity, and positive predictive value with 0% false alarm rate. The results demonstrate that our proposed method is highly accurate and robust to artifacts, compared with competitive anomaly detection methods. PMID:25688284

  13. Biometric and Emotion Identification: An ECG Compression Based Method

    Directory of Open Access Journals (Sweden)

    Susana Brás

    2018-04-01

    Full Text Available We present an innovative and robust solution to both biometric and emotion identification using the electrocardiogram (ECG. The ECG represents the electrical signal that comes from the contraction of the heart muscles, indirectly representing the flow of blood inside the heart, it is known to convey a key that allows biometric identification. Moreover, due to its relationship with the nervous system, it also varies as a function of the emotional state. The use of information-theoretic data models, associated with data compression algorithms, allowed to effectively compare ECG records and infer the person identity, as well as emotional state at the time of data collection. The proposed method does not require ECG wave delineation or alignment, which reduces preprocessing error. The method is divided into three steps: (1 conversion of the real-valued ECG record into a symbolic time-series, using a quantization process; (2 conditional compression of the symbolic representation of the ECG, using the symbolic ECG records stored in the database as reference; (3 identification of the ECG record class, using a 1-NN (nearest neighbor classifier. We obtained over 98% of accuracy in biometric identification, whereas in emotion recognition we attained over 90%. Therefore, the method adequately identify the person, and his/her emotion. Also, the proposed method is flexible and may be adapted to different problems, by the alteration of the templates for training the model.

  14. Biometric and Emotion Identification: An ECG Compression Based Method.

    Science.gov (United States)

    Brás, Susana; Ferreira, Jacqueline H T; Soares, Sandra C; Pinho, Armando J

    2018-01-01

    We present an innovative and robust solution to both biometric and emotion identification using the electrocardiogram (ECG). The ECG represents the electrical signal that comes from the contraction of the heart muscles, indirectly representing the flow of blood inside the heart, it is known to convey a key that allows biometric identification. Moreover, due to its relationship with the nervous system, it also varies as a function of the emotional state. The use of information-theoretic data models, associated with data compression algorithms, allowed to effectively compare ECG records and infer the person identity, as well as emotional state at the time of data collection. The proposed method does not require ECG wave delineation or alignment, which reduces preprocessing error. The method is divided into three steps: (1) conversion of the real-valued ECG record into a symbolic time-series, using a quantization process; (2) conditional compression of the symbolic representation of the ECG, using the symbolic ECG records stored in the database as reference; (3) identification of the ECG record class, using a 1-NN (nearest neighbor) classifier. We obtained over 98% of accuracy in biometric identification, whereas in emotion recognition we attained over 90%. Therefore, the method adequately identify the person, and his/her emotion. Also, the proposed method is flexible and may be adapted to different problems, by the alteration of the templates for training the model.

  15. Biometric and Emotion Identification: An ECG Compression Based Method

    Science.gov (United States)

    Brás, Susana; Ferreira, Jacqueline H. T.; Soares, Sandra C.; Pinho, Armando J.

    2018-01-01

    We present an innovative and robust solution to both biometric and emotion identification using the electrocardiogram (ECG). The ECG represents the electrical signal that comes from the contraction of the heart muscles, indirectly representing the flow of blood inside the heart, it is known to convey a key that allows biometric identification. Moreover, due to its relationship with the nervous system, it also varies as a function of the emotional state. The use of information-theoretic data models, associated with data compression algorithms, allowed to effectively compare ECG records and infer the person identity, as well as emotional state at the time of data collection. The proposed method does not require ECG wave delineation or alignment, which reduces preprocessing error. The method is divided into three steps: (1) conversion of the real-valued ECG record into a symbolic time-series, using a quantization process; (2) conditional compression of the symbolic representation of the ECG, using the symbolic ECG records stored in the database as reference; (3) identification of the ECG record class, using a 1-NN (nearest neighbor) classifier. We obtained over 98% of accuracy in biometric identification, whereas in emotion recognition we attained over 90%. Therefore, the method adequately identify the person, and his/her emotion. Also, the proposed method is flexible and may be adapted to different problems, by the alteration of the templates for training the model. PMID:29670564

  16. Comparison of four different mobile devices for measuring heart rate and ECG with respect to aspects of usability and acceptance by older people.

    Science.gov (United States)

    Ehmen, Hilko; Haesner, Marten; Steinke, Ines; Dorn, Mario; Gövercin, Mehmet; Steinhagen-Thiessen, Elisabeth

    2012-05-01

    In the area of product design and usability, most products are developed for the mass-market by technically oriented designers and developers for use by persons who themselves are also technically adept by today's standards. The demands of older people are commonly not given sufficient consideration within the early developmental process. In the present study, the usability and acceptability of four different devices meant to be worn for the measurement of heart rate or ECG were analyzed on the basis of qualitative subjective user ratings and structured interviews of twelve older participants. The data suggest that there was a relatively high acceptance concerning these belts by older adults but none of the four harnesses was completely usable. Especially problematic to the point of limiting satisfaction among older subjects were problems encountered while adjusting the length of the belt and/or closing the locking mechanism. The two devices intended for dedicated heart rate recording yielded the highest user ratings for design, and were clearly preferred for extended wearing time. Yet for all the devices participants identified several important deficiencies in their design, as well as suggestions for improvement. We conclude that the creation of an acceptable monitoring device for older persons requires designers and developers to consider the special demands and abilities of the target group. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  17. A new method based on fractal variance function for analysis and quantification of sympathetic and vagal activity in variability of R-R time series in ECG signals

    Energy Technology Data Exchange (ETDEWEB)

    Conte, Elio [Department of Pharmacology and Human Physiology and Tires, Center for Innovative Technologies for Signal Detection and Processing, University of Bari, Bari (Italy); School of Advanced International Studies on Nuclear, Theoretical and Nonlinear Methodologies-Bari (Italy)], E-mail: fisio2@fisiol.uniba.it; Federici, Antonio [Department of Pharmacology and Human Physiology and Tires, Center for Innovative Technologies for Signal Detection and Processing, University of Bari, Bari (Italy); Zbilut, Joseph P. [Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1653W Congress, Chicago, IL 60612 (United States)

    2009-08-15

    It is known that R-R time series calculated from a recorded ECG, are strongly correlated to sympathetic and vagal regulation of the sinus pacemaker activity. In human physiology it is a crucial question to estimate such components with accuracy. Fourier analysis dominates still to day the data analysis efforts of such data ignoring that FFT is valid under some crucial restrictions that results largely violated in R-R time series data as linearity and stationarity. In order to go over such approach, we introduce a new method, called CZF. It is based on variogram analysis. It is aimed from a profound link with Recurrence Quantification Analysis that is a basic tool for investigation of non linear and non stationary time series. Therefore, a relevant feature of the method is that it finally may be applied also in cases of non linear and non stationary time series analysis. In addition, the method enables also to analyze the fractal variance function, the Generalized Fractal Dimension and, finally, the relative probability density function of the data. The CZF gives very satisfactory results. In the present paper it has been applied to direct experimental cases of normal subjects, patients with hypertension before and after therapy and in children under some different conditions of experimentation.

  18. A new method based on fractal variance function for analysis and quantification of sympathetic and vagal activity in variability of R-R time series in ECG signals

    International Nuclear Information System (INIS)

    Conte, Elio; Federici, Antonio; Zbilut, Joseph P.

    2009-01-01

    It is known that R-R time series calculated from a recorded ECG, are strongly correlated to sympathetic and vagal regulation of the sinus pacemaker activity. In human physiology it is a crucial question to estimate such components with accuracy. Fourier analysis dominates still to day the data analysis efforts of such data ignoring that FFT is valid under some crucial restrictions that results largely violated in R-R time series data as linearity and stationarity. In order to go over such approach, we introduce a new method, called CZF. It is based on variogram analysis. It is aimed from a profound link with Recurrence Quantification Analysis that is a basic tool for investigation of non linear and non stationary time series. Therefore, a relevant feature of the method is that it finally may be applied also in cases of non linear and non stationary time series analysis. In addition, the method enables also to analyze the fractal variance function, the Generalized Fractal Dimension and, finally, the relative probability density function of the data. The CZF gives very satisfactory results. In the present paper it has been applied to direct experimental cases of normal subjects, patients with hypertension before and after therapy and in children under some different conditions of experimentation.

  19. Designing ECG-based physical unclonable function for security of wearable devices.

    Science.gov (United States)

    Shihui Yin; Chisung Bae; Sang Joon Kim; Jae-Sun Seo

    2017-07-01

    As a plethora of wearable devices are being introduced, significant concerns exist on the privacy and security of personal data stored on these devices. Expanding on recent works of using electrocardiogram (ECG) as a modality for biometric authentication, in this work, we investigate the possibility of using personal ECG signals as the individually unique source for physical unclonable function (PUF), which eventually can be used as the key for encryption and decryption engines. We present new signal processing and machine learning algorithms that learn and extract maximally different ECG features for different individuals and minimally different ECG features for the same individual over time. Experimental results with a large 741-subject in-house ECG database show that the distributions of the intra-subject (same person) Hamming distance of extracted ECG features and the inter-subject Hamming distance have minimal overlap. 256-b random numbers generated from the ECG features of 648 (out of 741) subjects pass the NIST randomness tests.

  20. ECG Denoising Using Marginalized Particle Extended Kalman Filter With an Automatic Particle Weighting Strategy.

    Science.gov (United States)

    Hesar, Hamed Danandeh; Mohebbi, Maryam

    2017-05-01

    In this paper, a model-based Bayesian filtering framework called the "marginalized particle-extended Kalman filter (MP-EKF) algorithm" is proposed for electrocardiogram (ECG) denoising. This algorithm does not have the extended Kalman filter (EKF) shortcoming in handling non-Gaussian nonstationary situations because of its nonlinear framework. In addition, it has less computational complexity compared with particle filter. This filter improves ECG denoising performance by implementing marginalized particle filter framework while reducing its computational complexity using EKF framework. An automatic particle weighting strategy is also proposed here that controls the reliance of our framework to the acquired measurements. We evaluated the proposed filter on several normal ECGs selected from MIT-BIH normal sinus rhythm database. To do so, artificial white Gaussian and colored noises as well as nonstationary real muscle artifact (MA) noise over a range of low SNRs from 10 to -5 dB were added to these normal ECG segments. The benchmark methods were the EKF and extended Kalman smoother (EKS) algorithms which are the first model-based Bayesian algorithms introduced in the field of ECG denoising. From SNR viewpoint, the experiments showed that in the presence of Gaussian white noise, the proposed framework outperforms the EKF and EKS algorithms in lower input SNRs where the measurements and state model are not reliable. Owing to its nonlinear framework and particle weighting strategy, the proposed algorithm attained better results at all input SNRs in non-Gaussian nonstationary situations (such as presence of pink noise, brown noise, and real MA). In addition, the impact of the proposed filtering method on the distortion of diagnostic features of the ECG was investigated and compared with EKF/EKS methods using an ECG diagnostic distortion measure called the "Multi-Scale Entropy Based Weighted Distortion Measure" or MSEWPRD. The results revealed that our proposed

  1. Implementation of a wireless ECG acquisition SoC for IEEE 802.15.4 (ZigBee) applications.

    Science.gov (United States)

    Wang, Liang-Hung; Chen, Tsung-Yen; Lin, Kuang-Hao; Fang, Qiang; Lee, Shuenn-Yuh

    2015-01-01

    This paper presents a wireless biosignal acquisition system-on-a-chip (WBSA-SoC) specialized for electrocardiogram (ECG) monitoring. The proposed system consists of three subsystems, namely, 1) the ECG acquisition node, 2) the protocol for standard IEEE 802.15.4 ZigBee system, and 3) the RF transmitter circuits. The ZigBee protocol is adopted for wireless communication to achieve high integration, applicability, and portability. A fully integrated CMOS RF front end containing a quadrature voltage-controlled oscillator and a 2.4-GHz low-IF (i.e., zero-IF) transmitter is employed to transmit ECG signals through wireless communication. The low-power WBSA-SoC is implemented by the TSMC 0.18-μm standard CMOS process. An ARM-based displayer with FPGA demodulation and an RF receiver with analog-to-digital mixed-mode circuits are constructed as verification platform to demonstrate the wireless ECG acquisition system. Measurement results on the human body show that the proposed SoC can effectively acquire ECG signals.

  2. Artifact reduction in maternal abdominal ECG recordings for fetal ECG estimation.

    NARCIS (Netherlands)

    Vullings, R.; Peters, C.H.L.; Mischi, M.; Sluijter, R.J.; Oei, S.G.; Bergmans, J.W.M.

    2010-01-01

    Monitoring the fetal electrocardiogram (1ECG) is currently one of the most promising methods to assess fetal health. However, the main problem associated with this method is that the signals recorded from the maternal abdomen are affected by noise and interferences: the maternal electrocardiogram

  3. Near Field Communication-based telemonitoring with integrated ECG recordings.

    Science.gov (United States)

    Morak, J; Kumpusch, H; Hayn, D; Leitner, M; Scherr, D; Fruhwald, F M; Schreier, G

    2011-01-01

    Telemonitoring of vital signs is an established option in treatment of patients with chronic heart failure (CHF). In order to allow for early detection of atrial fibrillation (AF) which is highly prevalent in the CHF population telemonitoring programs should include electrocardiogram (ECG) signals. It was therefore the aim to extend our current home monitoring system based on mobile phones and Near Field Communication technology (NFC) to enable patients acquiring their ECG signals autonomously in an easy-to-use way. We prototypically developed a sensing device for the concurrent acquisition of blood pressure and ECG signals. The design of the device equipped with NFC technology and Bluetooth allowed for intuitive interaction with a mobile phone based patient terminal. This ECG monitoring system was evaluated in the course of a clinical pilot trial to assess the system's technical feasibility, usability and patient's adherence to twice daily usage. 21 patients (4f, 54 ± 14 years) suffering from CHF were included in the study and were asked to transmit two ECG recordings per day via the telemonitoring system autonomously over a monitoring period of seven days. One patient dropped out from the study. 211 data sets were transmitted over a cumulative monitoring period of 140 days (overall adherence rate 82.2%). 55% and 8% of the transmitted ECG signals were sufficient for ventricular and atrial rhythm assessment, respectively. Although ECG signal quality has to be improved for better AF detection the developed communication design of joining Bluetooth and NFC technology in our telemonitoring system allows for ambulatory ECG acquisition with high adherence rates and system usability in heart failure patients.

  4. Retrospectively ECG-gated multi-detector row CT of the chest: does ECG-gating improve three-dimensional visualization of the bronchial tree?

    International Nuclear Information System (INIS)

    Schertler, T.; Wildermuth, S.; Willmann, J.K.; Crook, D.W.; Marincek, B.; Boehm, T.

    2004-01-01

    Purpose: To determine the impact of retrospectively ECG-gated multi-detector row CT (MDCT) on three-dimensional (3D) visualization of the bronchial tree and virtual bronchoscopy (VB) as compared to non-ECG-gated data acquisition. Materials and Methods: Contrast-enhanced retrospectively ECG-gated and non-ECG-gated MDCT of the chest was performed in 25 consecutive patients referred for assessment of coronary artery bypass grafts and pathology of the ascending aorta. ECG-gated MDCT data were reconstructed in diastole using an absolute reverse delay of -400 msec in all patients. In 10 patients additional reconstructions at -200 msec, -300 msec, and -500 msec prior to the R-wave were performed. Shaded surface display (SSD) and virtual bronchoscopy (VB) for visualization of the bronchial segments was performed with ECG-gated and non-ECG-gated MDCT data. The visualization of the bronchial tree underwent blinded scoring. Effective radiation dose and signal-to-noise ratio (SNR) for both techniques were compared. Results: There was no significant difference in visualizing single bronchial segments using ECG-gated compared to non-ECG-gated MDCT data. However, the total sum of scores for all bronchial segments visualized with non-ECG-gated MDCT was significantly higher compared to ECG-gated MDCT (P [de

  5. Smart ECG Monitoring Patch with Built-in R-Peak Detection for Long-Term HRV Analysis.

    Science.gov (United States)

    Lee, W K; Yoon, H; Park, K S

    2016-07-01

    Since heart rate variability (HRV) analysis is widely used to evaluate the physiological status of the human body, devices specifically designed for such applications are needed. To this end, we developed a smart electrocardiography (ECG) patch. The smart patch measures ECG using three electrodes integrated into the patch, filters the measured signals to minimize noise, performs analog-to-digital conversion, and detects R-peaks. The measured raw ECG data and the interval between the detected R-peaks can be recorded to enable long-term HRV analysis. Experiments were performed to evaluate the performance of the built-in R-wave detection, robustness of the device under motion, and applicability to the evaluation of mental stress. The R-peak detection results obtained with the device exhibited a sensitivity of 99.29%, a positive predictive value of 100.00%, and an error of 0.71%. The device also exhibited less motional noise than conventional ECG recording, being stable up to a walking speed of 5 km/h. When applied to mental stress analysis, the device evaluated the variation in HRV parameters in the same way as a normal ECG, with very little difference. This device can help users better understand their state of health and provide physicians with more reliable data for objective diagnosis.

  6. New approach to ECG's features recognition involving neural network

    International Nuclear Information System (INIS)

    Babloyantz, A.; Ivanov, V.V.; Zrelov, P.V.

    2001-01-01

    A new approach for the detection of slight changes in the form of the ECG signal is proposed. It is based on the approximation of raw ECG data inside each RR-interval by the expansion in polynomials of special type and on the classification of samples represented by sets of expansion coefficients using a layered feed-forward neural network. The transformation applied provides significantly simpler data structure, stability to noise and to other accidental factors. A by-product of the method is the compression of ECG data with factor 5

  7. Washable and Reliable Textile Electrodes Embedded into Underwear Fabric for Electrocardiography (ECG) Monitoring

    OpenAIRE

    Amale Ankhili; Xuyuan Tao; Cédric Cochrane; David Coulon; Vladan Koncar

    2018-01-01

    A medical quality electrocardiogram (ECG) signal is necessary for permanent monitoring, and an accurate heart examination can be obtained from instrumented underwear only if it is equipped with high-quality, flexible, textile-based electrodes guaranteeing low contact resistance with the skin. The main objective of this article is to develop reliable and washable ECG monitoring underwear able to record and wirelessly send an ECG signal in real time to a smart phone and further to a cloud. The ...

  8. Development of a portable wireless system for bipolar concentric ECG recording

    International Nuclear Information System (INIS)

    Prats-Boluda, G; Ye-Lin, Y; Bueno Barrachina, J M; Senent, E; Rodriguez de Sanabria, R; Garcia-Casado, J

    2015-01-01

    Cardiovascular diseases (CVDs) remain the biggest cause of deaths worldwide. ECG monitoring is a key tool for early diagnosis of CVDs. Conventional monitors use monopolar electrodes resulting in poor spatial resolution surface recordings and requiring extensive wiring. High-spatial resolution surface electrocardiographic recordings provide valuable information for the diagnosis of a wide range of cardiac abnormalities, including infarction and arrhythmia. The aim of this work was to develop and test a wireless recording system for acquiring high spatial resolution ECG signals, based on a flexible tripolar concentric electrode (TCE) without cable wiring or external reference electrode which would make more comnfortable its use in clinical practice. For this, a portable, wireless sensor node for analogue conditioning, digitalization and transmission of a bipolar concentric ECG signal (BC-ECG) using a TCE and a Mason-likar Lead-I ECG (ML-Lead-I ECG) signal was developed. Experimental results from a total of 32 healthy volunteers showed that the ECG fiducial points in the BC-ECG signals, recorded with external and internal reference electrode, are consistent with those of simultaneous ML-Lead-I ECG. No statistically significant difference was found in either signal amplitude or morphology, regardless of the reference electrode used, being the signal-to-noise similar to that of ML-Lead-I ECG. Furthermore, it has been observed that BC-ECG signals contain information that could not available in conventional records, specially related to atria activity. The proposed wireless sensor node provides non-invasive high-local resolution ECG signals using only a TCE without additional wiring, which would have great potential in medical diagnosis of diseases such as atrial or ventricular fibrillations or arrhythmias that currently require invasive diagnostic procedures (catheterization). (paper)

  9. [Study for portable dynamic ECG monitor and recorder].

    Science.gov (United States)

    Yang, Pengcheng; Li, Yongqin; Chen, Bihua

    2012-09-01

    This Paper presents a portable dynamic ECG monitor system based on MSP430F149 microcontroller. The electrocardiogram detecting system consists of ECG detecting circuit, man-machine interaction module, MSP430F149 and upper computer software. The ECG detecting circuit including a preamplifier, second-order Butterworth low-pass filter, high-pass filter, and 50Hz trap circuit to detects electrocardiogram and depresses various kinds of interference effectively. A microcontroller is used to collect three channel analog signals which can be displayed on TFT LCD. A SD card is used to record real-time data continuously and implement the FTA16 file system. In the end, a host computer system interface is also designed to analyze the ECG signal and the analysis results can provide diagnosis references to clinical doctors.

  10. Local Wavelet-Based Filtering of Electromyographic Signals to Eliminate the Electrocardiographic-Induced Artifacts in Patients with Spinal Cord Injury.

    Science.gov (United States)

    Nitzken, Matthew; Bajaj, Nihit; Aslan, Sevda; Gimel'farb, Georgy; El-Baz, Ayman; Ovechkin, Alexander

    2013-07-18

    Surface Electromyography (EMG) is a standard method used in clinical practice and research to assess motor function in order to help with the diagnosis of neuromuscular pathology in human and animal models. EMG recorded from trunk muscles involved in the activity of breathing can be used as a direct measure of respiratory motor function in patients with spinal cord injury (SCI) or other disorders associated with motor control deficits. However, EMG potentials recorded from these muscles are often contaminated with heart-induced electrocardiographic (ECG) signals. Elimination of these artifacts plays a critical role in the precise measure of the respiratory muscle electrical activity. This study was undertaken to find an optimal approach to eliminate the ECG artifacts from EMG recordings. Conventional global filtering can be used to decrease the ECG-induced artifact. However, this method can alter the EMG signal and changes physiologically relevant information. We hypothesize that, unlike global filtering, localized removal of ECG artifacts will not change the original EMG signals. We develop an approach to remove the ECG artifacts without altering the amplitude and frequency components of the EMG signal by using an externally recorded ECG signal as a mask to locate areas of the ECG spikes within EMG data. These segments containing ECG spikes were decomposed into 128 sub-wavelets by a custom-scaled Morlet Wavelet Transform. The ECG-related sub-wavelets at the ECG spike location were removed and a de-noised EMG signal was reconstructed. Validity of the proposed method was proven using mathematical simulated synthetic signals and EMG obtained from SCI patients. We compare the Root-mean Square Error and the Relative Change in Variance between this method, global, notch and adaptive filters. The results show that the localized wavelet-based filtering has the benefit of not introducing error in the native EMG signal and accurately removing ECG artifacts from EMG signals.

  11. Bivariate empirical mode decomposition for ECG-based biometric identification with emotional data.

    Science.gov (United States)

    Ferdinando, Hany; Seppanen, Tapio; Alasaarela, Esko

    2017-07-01

    Emotions modulate ECG signals such that they might affect ECG-based biometric identification in real life application. It motivated in finding good feature extraction methods where the emotional state of the subjects has minimum impacts. This paper evaluates feature extraction based on bivariate empirical mode decomposition (BEMD) for biometric identification when emotion is considered. Using the ECG signal from the Mahnob-HCI database for affect recognition, the features were statistical distributions of dominant frequency after applying BEMD analysis to ECG signals. The achieved accuracy was 99.5% with high consistency using kNN classifier in 10-fold cross validation to identify 26 subjects when the emotional states of the subjects were ignored. When the emotional states of the subject were considered, the proposed method also delivered high accuracy, around 99.4%. We concluded that the proposed method offers emotion-independent features for ECG-based biometric identification. The proposed method needs more evaluation related to testing with other classifier and variation in ECG signals, e.g. normal ECG vs. ECG with arrhythmias, ECG from various ages, and ECG from other affective databases.

  12. Hyperkalemia on ECG

    Directory of Open Access Journals (Sweden)

    Bryson Hicks

    2016-09-01

    Full Text Available History of present illness: A 34-year-old diabetic female presented to the emergency department with chest pain status-post AICD firing. She described the pain as a “12 out of 10” which woke her from sleep at 0200, one hour prior to arrival. Vitals were unremarkable. She had no known history of renal failure. Due to frequent ED visits for chronic pain, patient had difficult vascular access and nursing was initially unable to obtain IV access. An abnormal rhythm was noted on the cardiac monitor, and ECG was ordered. Significant findings: Initial ECG shows tall, peaked T waves, most prominently in V3 and V4, as well as QRS widening. These findings are consistent with hyperkalemia, which was promptly treated. Follow-up ECG post-treatment shows narrowing of the QRS complexes and normalization of peaked T waves. Discussion: The etiology of hyperkalemia may be due to an acute insult such as crush injury, drug side effect, or in acute renal failure, but may also occur in the setting of a chronic insult such as chronic kidney disease.1 As potassium rises, several abnormalities can be identified on ECG. Initially the T waves become peaked and the QRS complexes widen.2,3 This can devolve into a wide complex rhythm, ventricular tachycardia, ventricular fibrillation, or asystole. Patients may also experience systemic symptoms such as weakness or paralysis.1 In this particular case, labs showed a potassium of 7.6-mmol/L after initial treatment (see repeat EKG. While the incidence of hyperkalemia in the general population is not defined, the incidence in hospitalized patients is 1.3-10%.4-8 Impaired kidney function is the most common risk factor found in 33-83% of affected patients.4,5,8,9 Treatment for hyperkalemia generally includes IV insulin and IV dextrose and nebulized albuterol for intracellular shift of potassium, IV furosemide and IV fluids for dilution and renal excretion of furosemide, and IV calcium for stabilization of cardiac membranes.2,3

  13. [Biometric identification method for ECG based on the piecewise linear representation (PLR) and dynamic time warping (DTW)].

    Science.gov (United States)

    Yang, Licai; Shen, Jun; Bao, Shudi; Wei, Shoushui

    2013-10-01

    To treat the problem of identification performance and the complexity of the algorithm, we proposed a piecewise linear representation and dynamic time warping (PLR-DTW) method for ECG biometric identification. Firstly we detected R peaks to get the heartbeats after denoising preprocessing. Then we used the PLR method to keep important information of an ECG signal segment while reducing the data dimension at the same time. The improved DTW method was used for similarity measurements between the test data and the templates. The performance evaluation was carried out on the two ECG databases: PTB and MIT-BIH. The analystic results showed that compared to the discrete wavelet transform method, the proposed PLR-DTW method achieved a higher accuracy rate which is nearly 8% of rising, and saved about 30% operation time, and this demonstrated that the proposed method could provide a better performance.

  14. An innovative non-intrusive driver assistance system for vital signal monitoring.

    NARCIS (Netherlands)

    Sun, Y. & Yu, X.

    2016-01-01

    This paper describes an in-vehicle nonintrusive biopotential measurement system for driver health monitoring and fatigue detection. Previous research has found that the physiological signals including eye features, electrocardiography (ECG), electroencephalography (EEG) and their secondary

  15. Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology.

    Science.gov (United States)

    Lidón-Roger, José Vicente; Prats-Boluda, Gema; Ye-Lin, Yiyao; Garcia-Casado, Javier; Garcia-Breijo, Eduardo

    2018-01-21

    Among many of the electrode designs used in electrocardiography (ECG), concentric ring electrodes (CREs) are one of the most promising due to their enhanced spatial resolution. Their development has undergone a great push due to their use in recent years; however, they are not yet widely used in clinical practice. CRE implementation in textiles will lead to a low cost, flexible, comfortable, and robust electrode capable of detecting high spatial resolution ECG signals. A textile CRE set has been designed and developed using screen-printing technology. This is a mature technology in the textile industry and, therefore, does not require heavy investments. Inks employed as conductive elements have been silver and a conducting polymer (poly (3,4-ethylenedioxythiophene) polystyrene sulfonate; PEDOT:PSS). Conducting polymers have biocompatibility advantages, they can be used with flexible substrates, and they are available for several printing technologies. CREs implemented with both inks have been compared by analyzing their electric features and their performance in detecting ECG signals. The results reveal that silver CREs present a higher average thickness and slightly lower skin-electrode impedance than PEDOT:PSS CREs. As for ECG recordings with subjects at rest, both CREs allowed the uptake of bipolar concentric ECG signals (BC-ECG) with signal-to-noise ratios similar to that of conventional ECG recordings. Regarding the saturation and alterations of ECGs captured with textile CREs caused by intentional subject movements, silver CREs presented a more stable response (fewer saturations and alterations) than those of PEDOT:PSS. Moreover, BC-ECG signals provided higher spatial resolution compared to conventional ECG. This improved spatial resolution was manifested in the identification of P1 and P2 waves of atrial activity in most of the BC-ECG signals. It can be concluded that textile silver CREs are more suitable than those of PEDOT:PSS for obtaining BC-ECG records

  16. A Novel Approach to ECG Classification Based upon Two-Layered HMMs in Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wei Liang

    2014-03-01

    Full Text Available This paper presents a novel approach to ECG signal filtering and classification. Unlike the traditional techniques which aim at collecting and processing the ECG signals with the patient being still, lying in bed in hospitals, our proposed algorithm is intentionally designed for monitoring and classifying the patient’s ECG signals in the free-living environment. The patients are equipped with wearable ambulatory devices the whole day, which facilitates the real-time heart attack detection. In ECG preprocessing, an integral-coefficient-band-stop (ICBS filter is applied, which omits time-consuming floating-point computations. In addition, two-layered Hidden Markov Models (HMMs are applied to achieve ECG feature extraction and classification. The periodic ECG waveforms are segmented into ISO intervals, P subwave, QRS complex and T subwave respectively in the first HMM layer where expert-annotation assisted Baum-Welch algorithm is utilized in HMM modeling. Then the corresponding interval features are selected and applied to categorize the ECG into normal type or abnormal type (PVC, APC in the second HMM layer. For verifying the effectiveness of our algorithm on abnormal signal detection, we have developed an ECG body sensor network (BSN platform, whereby real-time ECG signals are collected, transmitted, displayed and the corresponding classification outcomes are deduced and shown on the BSN screen.

  17. A Novel Approach to ECG Classification Based upon Two-Layered HMMs in Body Sensor Networks

    Science.gov (United States)

    Liang, Wei; Zhang, Yinlong; Tan, Jindong; Li, Yang

    2014-01-01

    This paper presents a novel approach to ECG signal filtering and classification. Unlike the traditional techniques which aim at collecting and processing the ECG signals with the patient being still, lying in bed in hospitals, our proposed algorithm is intentionally designed for monitoring and classifying the patient's ECG signals in the free-living environment. The patients are equipped with wearable ambulatory devices the whole day, which facilitates the real-time heart attack detection. In ECG preprocessing, an integral-coefficient-band-stop (ICBS) filter is applied, which omits time-consuming floating-point computations. In addition, two-layered Hidden Markov Models (HMMs) are applied to achieve ECG feature extraction and classification. The periodic ECG waveforms are segmented into ISO intervals, P subwave, QRS complex and T subwave respectively in the first HMM layer where expert-annotation assisted Baum-Welch algorithm is utilized in HMM modeling. Then the corresponding interval features are selected and applied to categorize the ECG into normal type or abnormal type (PVC, APC) in the second HMM layer. For verifying the effectiveness of our algorithm on abnormal signal detection, we have developed an ECG body sensor network (BSN) platform, whereby real-time ECG signals are collected, transmitted, displayed and the corresponding classification outcomes are deduced and shown on the BSN screen. PMID:24681668

  18. Wireless ECG and PCG Portable Telemedicine Kit for Rural Areas of Colombia

    Directory of Open Access Journals (Sweden)

    Miguel Jimeno

    2014-07-01

    Full Text Available Telemedicine is always a popular topic thanks to the constants advancements of technology. The focus on development of new devices has been mainly on decreasing size to increase portability. Our research focused on improving functionality but not giving up on portability and cost. In this paper we are presenting the first prototype device that measures 4-leads electrocardiogram (ECG and phonocardiogram (PCG signals with low cost, high portability and wireless connectivity features in mind. We designed and developed a prototype that measures ECG using a standard ECG cable; we designed and developed a digital stethoscope prototype and also the necessary hardware for both medical signals to be transmitted through Bluetooth to a computer. We present here the hardware design, a new communication protocol for transmission of both signals from the device to the computer, and the software system to enable remote consultations. We designed the prototype with the main purpose of using low cost parts without sacrificing functionality, with the purpose of using it in remote zones of the Caribbean coast of Colombia. We show open issues and prepare a field implementation of the kit in the target zone.

  19. Mobile Cloud-Computing-Based Healthcare Service by Noncontact ECG Monitoring

    Directory of Open Access Journals (Sweden)

    Ee-May Fong

    2013-12-01

    Full Text Available Noncontact electrocardiogram (ECG measurement technique has gained popularity these days owing to its noninvasive features and convenience in daily life use. This paper presents mobile cloud computing for a healthcare system where a noncontact ECG measurement method is employed to capture biomedical signals from users. Healthcare service is provided to continuously collect biomedical signals from multiple locations. To observe and analyze the ECG signals in real time, a mobile device is used as a mobile monitoring terminal. In addition, a personalized healthcare assistant is installed on the mobile device; several healthcare features such as health status summaries, medication QR code scanning, and reminders are integrated into the mobile application. Health data are being synchronized into the healthcare cloud computing service (Web server system and Web server dataset to ensure a seamless healthcare monitoring system and anytime and anywhere coverage of network connection is available. Together with a Web page application, medical data are easily accessed by medical professionals or family members. Web page performance evaluation was conducted to ensure minimal Web server latency. The system demonstrates better availability of off-site and up-to-the-minute patient data, which can help detect health problems early and keep elderly patients out of the emergency room, thus providing a better and more comprehensive healthcare cloud computing service.

  20. Analysis of acoustic sound signal for ONB measurement

    International Nuclear Information System (INIS)

    Park, S. J.; Kim, H. I.; Han, K. Y.; Chai, H. T.; Park, C.

    2003-01-01

    The onset of nucleate boiling (ONB) was measured in a test fuel bundle composed of several fuel element simulators (FES) by analysing the aquatic sound signals. In order measure ONBs, a hydrophone, a pre-amplifier, and a data acquisition system to acquire/process the aquatic signal was prepared. The acoustic signal generated in the coolant is converted to the current signal through the microphone. When the signal is analyzed in the frequency domain, each sound signal can be identified according to its origin of sound source. As the power is increased to a certain degree, a nucleate boiling is started. The frequent formation and collapse of the void bubbles produce sound signal. By measuring this sound signal one can pinpoint the ONB. Since the signal characteristics is identical for different mass flow rates, this method can be applicable for ascertaining ONB

  1. Deep Learning for ECG Classification

    Science.gov (United States)

    Pyakillya, B.; Kazachenko, N.; Mikhailovsky, N.

    2017-10-01

    The importance of ECG classification is very high now due to many current medical applications where this problem can be stated. Currently, there are many machine learning (ML) solutions which can be used for analyzing and classifying ECG data. However, the main disadvantages of these ML results is use of heuristic hand-crafted or engineered features with shallow feature learning architectures. The problem relies in the possibility not to find most appropriate features which will give high classification accuracy in this ECG problem. One of the proposing solution is to use deep learning architectures where first layers of convolutional neurons behave as feature extractors and in the end some fully-connected (FCN) layers are used for making final decision about ECG classes. In this work the deep learning architecture with 1D convolutional layers and FCN layers for ECG classification is presented and some classification results are showed.

  2. Automatic ECG quality scoring methodology: mimicking human annotators

    International Nuclear Information System (INIS)

    Johannesen, Lars; Galeotti, Loriano

    2012-01-01

    An algorithm to determine the quality of electrocardiograms (ECGs) can enable inexperienced nurses and paramedics to record ECGs of sufficient diagnostic quality. Previously, we proposed an algorithm for determining if ECG recordings are of acceptable quality, which was entered in the PhysioNet Challenge 2011. In the present work, we propose an improved two-step algorithm, which first rejects ECGs with macroscopic errors (signal absent, large voltage shifts or saturation) and subsequently quantifies the noise (baseline, powerline or muscular noise) on a continuous scale. The performance of the improved algorithm was evaluated using the PhysioNet Challenge database (1500 ECGs rated by humans for signal quality). We achieved a classification accuracy of 92.3% on the training set and 90.0% on the test set. The improved algorithm is capable of detecting ECGs with macroscopic errors and giving the user a score of the overall quality. This allows the user to assess the degree of noise and decide if it is acceptable depending on the purpose of the recording. (paper)

  3. ECG fiducial point extraction using switching Kalman filter.

    Science.gov (United States)

    Akhbari, Mahsa; Ghahjaverestan, Nasim Montazeri; Shamsollahi, Mohammad B; Jutten, Christian

    2018-04-01

    In this paper, we propose a novel method for extracting fiducial points (FPs) of the beats in electrocardiogram (ECG) signals using switching Kalman filter (SKF). In this method, according to McSharry's model, ECG waveforms (P-wave, QRS complex and T-wave) are modeled with Gaussian functions and ECG baselines are modeled with first order auto regressive models. In the proposed method, a discrete state variable called "switch" is considered that affects only the observation equations. We denote a mode as a specific observation equation and switch changes between 7 modes and corresponds to different segments of an ECG beat. At each time instant, the probability of each mode is calculated and compared among two consecutive modes and a path is estimated, which shows the relation of each part of the ECG signal to the mode with the maximum probability. ECG FPs are found from the estimated path. For performance evaluation, the Physionet QT database is used and the proposed method is compared with methods based on wavelet transform, partially collapsed Gibbs sampler (PCGS) and extended Kalman filter. For our proposed method, the mean error and the root mean square error across all FPs are 2 ms (i.e. less than one sample) and 14 ms, respectively. These errors are significantly smaller than those obtained using other methods. The proposed method achieves lesser RMSE and smaller variability with respect to others. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. From Pacemaker to Wearable: Techniques for ECG Detection Systems.

    Science.gov (United States)

    Kumar, Ashish; Komaragiri, Rama; Kumar, Manjeet

    2018-01-11

    With the alarming rise in the deaths due to cardiovascular diseases (CVD), present medical research scenario places notable importance on techniques and methods to detect CVDs. As adduced by world health organization, technological proceeds in the field of cardiac function assessment have become the nucleus and heart of all leading research studies in CVDs in which electrocardiogram (ECG) analysis is the most functional and convenient tool used to test the range of heart-related irregularities. Most of the approaches present in the literature of ECG signal analysis consider noise removal, rhythm-based analysis, and heartbeat detection to improve the performance of a cardiac pacemaker. Advancements achieved in the field of ECG segments detection and beat classification have a limited evaluation and still require clinical approvals. In this paper, approaches on techniques to implement on-chip ECG detector for a cardiac pacemaker system are discussed. Moreover, different challenges regarding the ECG signal morphology analysis deriving from medical literature is extensively reviewed. It is found that robustness to noise, wavelet parameter choice, numerical efficiency, and detection performance are essential performance indicators required by a state-of-the-art ECG detector. Furthermore, many algorithms described in the existing literature are not verified using ECG data from the standard databases. Some ECG detection algorithms show very high detection performance with the total number of detected QRS complexes. However, the high detection performance of the algorithm is verified using only a few datasets. Finally, gaps in current advancements and testing are identified, and the primary challenge remains to be implementing bullseye test for morphology analysis evaluation.

  5. PIC microcontroller-based RF wireless ECG monitoring system.

    Science.gov (United States)

    Oweis, R J; Barhoum, A

    2007-01-01

    This paper presents a radio-telemetry system that provides the possibility of ECG signal transmission from a patient detection circuit via an RF data link. A PC then receives the signal through the National Instrument data acquisition card (NIDAQ). The PC is equipped with software allowing the received ECG signals to be saved, analysed, and sent by email to another part of the world. The proposed telemetry system consists of a patient unit and a PC unit. The amplified and filtered ECG signal is sampled 360 times per second, and the A/D conversion is performed by a PIC16f877 microcontroller. The major contribution of the final proposed system is that it detects, processes and sends patients ECG data over a wireless RF link to a maximum distance of 200 m. Transmitted ECG data with different numbers of samples were received, decoded by means of another PIC microcontroller, and displayed using MATLAB program. The designed software is presented in a graphical user interface utility.

  6. In vitro measurement of CT density and estimation of stenosis related to coronary soft plaque at 100 kV and 120 kV on ECG-triggered scan

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Jun, E-mail: horiguch@hiroshima-u.ac.jp [Department of Clinical Radiology, Hiroshima University Hospital, 1-2-3, Kasumi-cho, Minami-ku, Hiroshima 734-8551 (Japan); Fujioka, Chikako, E-mail: fujioka@hiroshima-u.ac.jp [Department of Clinical Radiology, Hiroshima University Hospital, 1-2-3, Kasumi-cho, Minami-ku, Hiroshima 734-8551 (Japan); Kiguchi, Masao, E-mail: kiguchi@hiroshima-u.ac.jp [Department of Clinical Radiology, Hiroshima University Hospital, 1-2-3, Kasumi-cho, Minami-ku, Hiroshima 734-8551 (Japan); Yamamoto, Hideya, E-mail: hideyayama@hiroshima-u.ac.jp [Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences and Hiroshima University Hospital, 1-2-3, Kasumi-cho, Minami-ku, Hiroshima 734-8551 (Japan); Shen, Yun, E-mail: Yuna.Shen@ge.com [CT Lab of Great China, GE Healthcare, L12 and L15, Office Tower, Langham Place, 8 Argyle Street, Mongkok Kowloon (Hong Kong); Kihara, Yasuki, E-mail: ykihara@hiroshima-u.ac.jp [Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences and Hiroshima University Hospital, 1-2-3, Kasumi-cho, Minami-ku, Hiroshima 734-8551 (Japan)

    2011-02-15

    Purpose: The purpose of the study was to compare 100 kV and 120 kV prospective electrocardiograph (ECG)-triggered axial coronary 64-detector CT angiography (64-MDCTA) in soft plaque diagnosis. Materials and methods: Coronary artery models (n = 5) with artificial soft plaques (-32 HU to 53 HU at 120 kV) with three stenosis levels (25%, 50% and 75%) on a cardiac phantom (mimicking slim patient's environment) were scanned in heart rates of 55, 60 and 65 beats per minute (bpm). Four kinds of intracoronary enhancement (205 HU, 241 HU, 280 HU and 314 HU) were simulated. The soft plaque density and the measurement error of stenosis (in percentage), evaluated by two independent observers, were compared between 100 kV and 120 kV. The radiation dose was estimated. Results: Interobserver correlation of the measurement was excellent (density; r = 0.95 and stenosis measure; r = 0.97). Neither the density of soft plaque nor the measurement error of stenosis was different between 100 kV and 120 kV (p = 0.22 and 0.08). The estimated radiation doses were 2.0 mSv and 3.3 mSv (in 14 cm coverage) on 100 kV and 120 kV prospective ECG-triggered axial scans, respectively. Conclusion: The 100 kV prospective ECG-triggered coronary MDCTA has comparable performance to 120 kV coronary CTA in terms of soft plaque densitometry and measurement of stenosis, with a reduced effective dose of 2 mSv.

  7. ECG Holter monitor with alert system and mobile application

    Science.gov (United States)

    Teron, Abigail C.; Rivera, Pedro A.; Goenaga, Miguel A.

    2016-05-01

    This paper proposes a new approach on the Holter monitor by creating a portable Electrocardiogram (ECG) Holter monitor that will alert the user by detecting abnormal heart beats using a digital signal processing software. The alarm will be triggered when the patient experiences arrhythmias such as bradycardia and tachycardia. The equipment is simple, comfortable and small in size that fit in the hand. It can be used at any time and any moment by placing three leads to the person's chest which is connected to an electronic circuit. The ECG data will be transmitted via Bluetooth to the memory of a selected mobile phone using an application that will store the collected data for up to 24 hrs. The arrhythmia is identified by comparing the reference signals with the user's signal. The diagnostic results demonstrate that the ECG Holter monitor alerts the user when an arrhythmia is detected thru the Holter monitor and mobile application.

  8. Smartphone home monitoring of ECG

    Science.gov (United States)

    Szu, Harold; Hsu, Charles; Moon, Gyu; Landa, Joseph; Nakajima, Hiroshi; Hata, Yutaka

    2012-06-01

    A system of ambulatory, halter, electrocardiography (ECG) monitoring system has already been commercially available for recording and transmitting heartbeats data by the Internet. However, it enjoys the confidence with a reservation and thus a limited market penetration, our system was targeting at aging global villagers having an increasingly biomedical wellness (BMW) homecare needs, not hospital related BMI (biomedical illness). It was designed within SWaP-C (Size, Weight, and Power, Cost) using 3 innovative modules: (i) Smart Electrode (lowpower mixed signal embedded with modern compressive sensing and nanotechnology to improve the electrodes' contact impedance); (ii) Learnable Database (in terms of adaptive wavelets transform QRST feature extraction, Sequential Query Relational database allowing home care monitoring retrievable Aided Target Recognition); (iii) Smartphone (touch screen interface, powerful computation capability, caretaker reporting with GPI, ID, and patient panic button for programmable emergence procedure). It can provide a supplementary home screening system for the post or the pre-diagnosis care at home with a build-in database searchable with the time, the place, and the degree of urgency happened, using in-situ screening.

  9. Removal of EMG and ECG artifacts from EEG based on wavelet transform and ICA.

    Science.gov (United States)

    Zhou, Weidong; Gotman, Jean

    2004-01-01

    In this study, the methods of wavelet threshold de-noising and independent component analysis (ICA) are introduced. ICA is a novel signal processing technique based on high order statistics, and is used to separate independent components from measurements. The extended ICA algorithm does not need to calculate the higher order statistics, converges fast, and can be used to separate subGaussian and superGaussian sources. A pre-whitening procedure is performed to de-correlate the mixed signals before extracting sources. The experimental results indicate the electromyogram (EMG) and electrocardiograph (ECG) artifacts in electroencephalograph (EEG) can be removed by a combination of wavelet threshold de-noising and ICA.

  10. Effect of Cardiac Phases and Conductivity Inhomogeneities of the Thorax Models on ECG Lead Selection and Reconstruction

    National Research Council Canada - National Science Library

    Takano, Noriyuki

    2001-01-01

    ECG lead selection and reconstruction were investigated in the present study using ECG source-to-measurement transfer matrices computed in inhomogeneous and homogeneous conductor thorax-heart models...

  11. Attenuation of artifacts in EEG signals measured inside an MRI scanner using constrained independent component analysis

    International Nuclear Information System (INIS)

    Rasheed, Tahir; Lee, Young-Koo; Lee, Soo Yeol; Kim, Tae-Seong

    2009-01-01

    Integration of electroencephalography (EEG) and functional magnetic imaging (fMRI) resonance will allow analysis of the brain activities at superior temporal and spatial resolution. However simultaneous acquisition of EEG and fMRI is hindered by the enhancement of artifacts in EEG, the most prominent of which are ballistocardiogram (BCG) and electro-oculogram (EOG) artifacts. The situation gets even worse if the evoked potentials are measured inside MRI for their minute responses in comparison to the spontaneous brain responses. In this study, we propose a new method of attenuating these artifacts from the spontaneous and evoked EEG data acquired inside an MRI scanner using constrained independent component analysis with a priori information about the artifacts as constraints. With the proposed techniques of reference function generation for the BCG and EOG artifacts as constraints, our new approach performs significantly better than the averaged artifact subtraction (AAS) method. The proposed method could be an alternative to the conventional ICA method for artifact attenuation, with some advantages. As a performance measure we have achieved much improved normalized power spectrum ratios (INPS) for continuous EEG and correlation coefficient (cc) values with outside MRI visual evoked potentials for visual evoked EEG, as compared to those obtained with the AAS method. The results show that our new approach is more effective than the conventional methods, almost fully automatic, and no extra ECG signal measurements are involved

  12. Measurement System for Playout Delay of TV Signals

    NARCIS (Netherlands)

    Kooij, W.J.; Stokking, H.M.; Brandenburg, R. van; Boer, P.T. de

    2014-01-01

    TV signals are carried towards end-users using different (broadcast) technologies and by different providers. This is causing differences in the playout timing of the TV signal at different locations and devices. Authors have developed a measurement system for measuring the relative playout delay of

  13. Dynamic segmentation and linear prediction for maternal ECG removal in antenatal abdominal recordings

    International Nuclear Information System (INIS)

    Vullings, R; Sluijter, R J; Mischi, M; Bergmans, J W M; Peters, C H L; Oei, S G

    2009-01-01

    Monitoring the fetal heart rate (fHR) and fetal electrocardiogram (fECG) during pregnancy is important to support medical decision making. Before labor, the fHR is usually monitored using Doppler ultrasound. This method is inaccurate and therefore of limited clinical value. During labor, the fHR can be monitored more accurately using an invasive electrode; this method also enables monitoring of the fECG. Antenatally, the fECG and fHR can also be monitored using electrodes on the maternal abdomen. The signal-to-noise ratio of these recordings is, however, low, the maternal electrocardiogram (mECG) being the main interference. Existing techniques to remove the mECG from these non-invasive recordings are insufficiently accurate or do not provide all spatial information of the fECG. In this paper a new technique for mECG removal in antenatal abdominal recordings is presented. This technique operates by the linear prediction of each separate wave in the mECG. Its performance in mECG removal and fHR detection is evaluated by comparison with spatial filtering, adaptive filtering, template subtraction and independent component analysis techniques. The new technique outperforms the other techniques in both mECG removal and fHR detection (by more than 3%)

  14. Respiratory Information Extraction from Electrocardiogram Signals

    KAUST Repository

    Amin, Gamal El Din Fathy

    2010-12-01

    The Electrocardiogram (ECG) is a tool measuring the electrical activity of the heart, and it is extensively used for diagnosis and monitoring of heart diseases. The ECG signal reflects not only the heart activity but also many other physiological processes. The respiratory activity is a prominent process that affects the ECG signal due to the close proximity of the heart and the lungs. In this thesis, several methods for the extraction of respiratory process information from the ECG signal are presented. These methods allow an estimation of the lung volume and the lung pressure from the ECG signal. The potential benefit of this is to eliminate the corresponding sensors used to measure the respiration activity. A reduction of the number of sensors connected to patients will increase patients’ comfort and reduce the costs associated with healthcare. As a further result, the efficiency of diagnosing respirational disorders will increase since the respiration activity can be monitored with a common, widely available method. The developed methods can also improve the detection of respirational disorders that occur while patients are sleeping. Such disorders are commonly diagnosed in sleeping laboratories where the patients are connected to a number of different sensors. Any reduction of these sensors will result in a more natural sleeping environment for the patients and hence a higher sensitivity of the diagnosis.

  15. Influence of Signal Stationarity on Digital Stochastic Measurement Implementation

    Directory of Open Access Journals (Sweden)

    Ivan Župunski

    2013-06-01

    Full Text Available The paper presents the influence of signal stationarity on digital stochastic measurement method implementation. The implementation method is based on stochastic voltage generators, analog adders, low resolution A/D converter, and multipliers and accumulators implemented by Field-Programmable Gate Array (FPGA. The characteristic of first implementations of digital stochastic measurement was the measurement of stationary signal harmonics over the constant measurement period. Later, digital stochastic measurement was extended and used also when it was necessary to measure timeseries of non-stationary signal over the variable measurement time. The result of measurement is the set of harmonics, which is, in the case of non-stationary signals, the input for calculating digital values of signal in time domain. A theoretical approach to determine measurement uncertainty is presented and the accuracy trends with varying signal-to-noise ratio (SNR are analyzed. Noisy brain potentials (spontaneous and nonspontaneous are selected as an example of real non-stationary signal and its digital stochastic measurement is tested by simulations and experiments. Tests were performed without noise and with adding noise with SNR values of 10dB, 0dB and - 10dB. The results of simulations and experiments are compared versus theory calculations, and comparasion confirms the theory.

  16. Study of signal discrimination for timing measurements

    CERN Document Server

    Krepelkova, Marta

    2017-01-01

    The timing detectors of the CMS-TOTEM Precision Proton Spectrometer (CT-PPS) are currently read out using discrete components, separated into three boards; the first board hosts the sensors and the amplifiers, the second one hosts the discriminators and the third is dedicated to the Time to Digital Converter (TDC) and to the interface with the data acquisition system (DAQ). This work proposes a new front-end electronics for the timing detector, with sensors, amplifiers and discriminators integrated on the same board. We simulated an updated version of the amplifier together with a discriminator designed using commercial components. We decided to use an LVDS buffer as a discriminator, because of its cost, availability, speed and lo w power consumption. As a proof of concept, we used the LVDS input of an FPGA to discriminate signals produced by a detector prototype, using a radioactive source.

  17. Ecg manifestations in dengue infection

    International Nuclear Information System (INIS)

    Tarique, S.; Murtaza, G.; Asif, S.; Qureshi, I.H.

    2013-01-01

    To determine the frequency of ECG changes in patients with dengue fever and dengue hemorrhagic fever. Place of study: Department of Medicine, Mayo Hospital Lahore Duration of study: September to November 201 Study design: Cross sectional analytical study Patient and methods: 116 patients with dengue infection were enrolled in the study. Their clinical presentation and examination was duly noted. Each patient had baseline and then regular monitoring of blood counts, metabolic profile and fluid status. Patients with Dengue Hemorrhagic fever underwent radiological examination in form of chest radiograph and ultrasound abdomen. ECG was carried out in all patients. Results: Out of 116 patients, 61(52.6%) suffered from Dengue Fever and 55(47.4%) had Dengue Hemorrhagic Fever. Overall 78 patients had normal ECG. Abnormal ECG findings like tachycardia, bradycardia, supraventricular tachycardia, left bundle branch block, ST depression, poor progression of R wave were noted. There was no significant relationship of ECG findings with the disease. Conclusion: ECG changes can occur in dengue infection with or without cardiac symptoms. Commonly noted findings were ST depression and bradycardia. (author)

  18. Design of Secure ECG-Based Biometric Authentication in Body Area Sensor Networks.

    Science.gov (United States)

    Peter, Steffen; Reddy, Bhanu Pratap; Momtaz, Farshad; Givargis, Tony

    2016-04-22

    Body area sensor networks (BANs) utilize wireless communicating sensor nodes attached to a human body for convenience, safety, and health applications. Physiological characteristics of the body, such as the heart rate or Electrocardiogram (ECG) signals, are promising means to simplify the setup process and to improve security of BANs. This paper describes the design and implementation steps required to realize an ECG-based authentication protocol to identify sensor nodes attached to the same human body. Therefore, the first part of the paper addresses the design of a body-area sensor system, including the hardware setup, analogue and digital signal processing, and required ECG feature detection techniques. A model-based design flow is applied, and strengths and limitations of each design step are discussed. Real-world measured data originating from the implemented sensor system are then used to set up and parametrize a novel physiological authentication protocol for BANs. The authentication protocol utilizes statistical properties of expected and detected deviations to limit the number of false positive and false negative authentication attempts. The result of the described holistic design effort is the first practical implementation of biometric authentication in BANs that reflects timing and data uncertainties in the physical and cyber parts of the system.

  19. Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes

    Science.gov (United States)

    O'Mahony, Conor; Grygoryev, Konstantin; Ciarlone, Antonio; Giannoni, Giuseppe; Kenthao, Anan; Galvin, Paul

    2016-08-01

    Microneedle-based ‘dry’ electrodes have immense potential for use in diagnostic procedures such as electrocardiography (ECG) analysis, as they eliminate several of the drawbacks associated with the conventional ‘wet’ electrodes currently used for physiological signal recording. To be commercially successful in such a competitive market, it is essential that dry electrodes are manufacturable in high volumes and at low cost. In addition, the topographical nature of these emerging devices means that electrode performance is likely to be highly dependent on the quality of the skin-electrode contact. This paper presents a low-cost, wafer-level micromoulding technology for the fabrication of polymeric ECG electrodes that use microneedle structures to make a direct electrical contact to the body. The double-sided moulding process can be used to eliminate post-process via creation and wafer dicing steps. In addition, measurement techniques have been developed to characterize the skin-electrode contact force. We perform the first analysis of signal-to-noise ratio dependency on contact force, and show that although microneedle-based electrodes can outperform conventional gel electrodes, the quality of ECG recordings is significantly dependent on temporal and mechanical aspects of the skin-electrode interface.

  20. Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes

    International Nuclear Information System (INIS)

    O’Mahony, Conor; Grygoryev, Konstantin; Ciarlone, Antonio; Giannoni, Giuseppe; Kenthao, Anan; Galvin, Paul

    2016-01-01

    Microneedle-based ‘dry’ electrodes have immense potential for use in diagnostic procedures such as electrocardiography (ECG) analysis, as they eliminate several of the drawbacks associated with the conventional ‘wet’ electrodes currently used for physiological signal recording. To be commercially successful in such a competitive market, it is essential that dry electrodes are manufacturable in high volumes and at low cost. In addition, the topographical nature of these emerging devices means that electrode performance is likely to be highly dependent on the quality of the skin-electrode contact.This paper presents a low-cost, wafer-level micromoulding technology for the fabrication of polymeric ECG electrodes that use microneedle structures to make a direct electrical contact to the body. The double-sided moulding process can be used to eliminate post-process via creation and wafer dicing steps. In addition, measurement techniques have been developed to characterize the skin-electrode contact force. We perform the first analysis of signal-to-noise ratio dependency on contact force, and show that although microneedle-based electrodes can outperform conventional gel electrodes, the quality of ECG recordings is significantly dependent on temporal and mechanical aspects of the skin-electrode interface. (paper)

  1. Design of Secure ECG-Based Biometric Authentication in Body Area Sensor Networks

    Science.gov (United States)

    Peter, Steffen; Pratap Reddy, Bhanu; Momtaz, Farshad; Givargis, Tony

    2016-01-01

    Body area sensor networks (BANs) utilize wireless communicating sensor nodes attached to a human body for convenience, safety, and health applications. Physiological characteristics of the body, such as the heart rate or Electrocardiogram (ECG) signals, are promising means to simplify the setup process and to improve security of BANs. This paper describes the design and implementation steps required to realize an ECG-based authentication protocol to identify sensor nodes attached to the same human body. Therefore, the first part of the paper addresses the design of a body-area sensor system, including the hardware setup, analogue and digital signal processing, and required ECG feature detection techniques. A model-based design flow is applied, and strengths and limitations of each design step are discussed. Real-world measured data originating from the implemented sensor system are then used to set up and parametrize a novel physiological authentication protocol for BANs. The authentication protocol utilizes statistical properties of expected and detected deviations to limit the number of false positive and false negative authentication attempts. The result of the described holistic design effort is the first practical implementation of biometric authentication in BANs that reflects timing and data uncertainties in the physical and cyber parts of the system. PMID:27110785

  2. Design of Secure ECG-Based Biometric Authentication in Body Area Sensor Networks

    Directory of Open Access Journals (Sweden)

    Steffen Peter

    2016-04-01

    Full Text Available Body area sensor networks (BANs utilize wireless communicating sensor nodes attached to a human body for convenience, safety, and health applications. Physiological characteristics of the body, such as the heart rate or Electrocardiogram (ECG signals, are promising means to simplify the setup process and to improve security of BANs. This paper describes the design and implementation steps required to realize an ECG-based authentication protocol to identify sensor nodes attached to the same human body. Therefore, the first part of the paper addresses the design of a body-area sensor system, including the hardware setup, analogue and digital signal processing, and required ECG feature detection techniques. A model-based design flow is applied, and strengths and limitations of each design step are discussed. Real-world measured data originating from the implemented sensor system are then used to set up and parametrize a novel physiological authentication protocol for BANs. The authentication protocol utilizes statistical properties of expected and detected deviations to limit the number of false positive and false negative authentication attempts. The result of the described holistic design effort is the first practical implementation of biometric authentication in BANs that reflects timing and data uncertainties in the physical and cyber parts of the system.

  3. IDENTIFIKASI SINYAL ECG IRAMA MYOCARDIAL ISCHEMIA DENGAN PENDEKATAN FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Azhar A N

    2009-07-01

    Full Text Available The heart is one of vital organs in human body. Incidence of heart disease can be fatal for the patient. Myocardial ischemia, the disease that is often suffered by the human, is a disease due to clogged heart arteries blood vessels. One of the ways to detect this disease is by reading the graph output of electrocardiogram (ECG signal. ECG signal represents the condition and activity of the heart. Specialized knowledge, accuration and expertise are required to read ECG graph. To help expert or doctor, expert system based on artificial intelligent, such as Fuzzy Logic approach, can be applied to improve diagnostic accuracy and thoroughness. Fuzzy logic can be applied because of it flexibility to understand the linguistic variables used in identifying myocardial ischemia disease.

  4. FastICA peel-off for ECG interference removal from surface EMG.

    Science.gov (United States)

    Chen, Maoqi; Zhang, Xu; Chen, Xiang; Zhu, Mingxing; Li, Guanglin; Zhou, Ping

    2016-06-13

    Multi-channel recording of surface electromyographyic (EMG) signals is very likely to be contaminated by electrocardiographic (ECG) interference, specifically when the surface electrode is placed on muscles close to the heart. A novel fast independent component analysis (FastICA) based peel-off method is presented to remove ECG interference contaminating multi-channel surface EMG signals. Although demonstrating spatial variability in waveform shape, the ECG interference in different channels shares the same firing instants. Utilizing the firing information estimated from FastICA, ECG interference can be separated from surface EMG by a "peel off" processing. The performance of the method was quantified with synthetic signals by combining a series of experimentally recorded "clean" surface EMG and "pure" ECG interference. It was demonstrated that the new method can remove ECG interference efficiently with little distortion to surface EMG amplitude and frequency. The proposed method was also validated using experimental surface EMG signals contaminated by ECG interference. The proposed FastICA peel-off method can be used as a new and practical solution to eliminating ECG interference from multichannel EMG recordings.

  5. Portable ECG design and application based on wireless sensor network

    Directory of Open Access Journals (Sweden)

    Gül Fatma TÜRKER

    2016-05-01

    Full Text Available In this study, in order to follow the heart signals of patients that needs to be monitored instantly and continuously without mobility restrictions, a portable electrocardiogram circuit is designed. After performing the detection, upgrading, cleaning and digitizing of ECG signal received from patient via disposable electrodes, ECG signals was performed that transmit to a central node with Wireless Sensor Network (WSN based on ZigBee 802.11.4 standard. Central node is connected to the serial port of a computer. Received data from the central node is processed on computer and continuous flow graph is obtained. The obligation to use wires for tracing patients’ ECG has been removed with this portable system. As it can be seen in this study, thanks to WSN’s property of forming network by itself and its augmentable loop property, the restrain of ECG signals to reach far away distances can be surmounted. The transmission of biological signals with WSN will light on many studies that follow of patients from a distance.

  6. A Novel 12-Lead ECG T-Shirt with Active Electrodes

    Directory of Open Access Journals (Sweden)

    Anna Boehm

    2016-11-01

    Full Text Available We developed an ECG T-shirt with a portable recorder for unobtrusive and long-term multichannel ECG monitoring with active electrodes. A major drawback of conventional 12-lead ECGs is the use of adhesive gel electrodes, which are uncomfortable during long-term application and may even cause skin irritations and allergic reactions. Therefore, we integrated comfortable patches of conductive textile into the ECG T-shirt in order to replace the adhesive gel electrodes. In order to prevent signal deterioration, as reported for other textile ECG systems, we attached active circuits on the outside of the T-shirt to further improve the signal quality of the dry electrodes. Finally, we validated the ECG T-shirt against a commercial Holter ECG with healthy volunteers during phases of lying down, sitting, and walking. The 12-lead ECG was successfully recorded with a resulting mean relative error of the RR intervals of 0.96% and mean coverage of 96.6%. Furthermore, the ECG waves of the 12 leads were analyzed separately and showed high accordance. The P-wave had a correlation of 0.703 for walking subjects, while the T-wave demonstrated lower correlations for all three scenarios (lying: 0.817, sitting: 0.710, walking: 0.403. The other correlations for the P, Q, R, and S-waves were all higher than 0.9. This work demonstrates that our ECG T-shirt is suitable for 12-lead ECG recordings while providing a higher level of comfort compared with a commercial Holter ECG.

  7. Individualized radiation dose control in 256-slice CT coronary angiography (CTCA) in retrospective ECG-triggered helical scans: Using a measure of body size to adjust tube current selection

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing-Lei, E-mail: lijinglei80@126.com [Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, 106 Zhongshan Er Road, Guangzhou 510080 (China); Huang, Mei-Ping, E-mail: huang_meiping@yahoo.com.cn [Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, 106 Zhongshan Er Road, Guangzhou 510080 (China); Liang, Chang-Hong, E-mail: cjr.lchh@vip.163.com [Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, 106 Zhongshan Er Road, Guangzhou 510080 (China); Zhao, Zhen-Jun, E-mail: junabc2006@hotmail.com [Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, 106 Zhongshan Er Road, Guangzhou 510080 (China); Liu, Hui, E-mail: liuhuijiujiu@gmail.com [Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, 106 Zhongshan Er Road, Guangzhou 510080 (China); Cui, Yan-Hai, E-mail: yanhai_cui@126.com [Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, 106 Zhongshan Er Road, Guangzhou 510080 (China); Liu, Qi-Shun, E-mail: liuqishun@yeah.net [Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, 106 Zhongshan Er Road, Guangzhou 510080 (China); Zhang, Jin-E., E-mail: zhjine@yahoo.com.cn [Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, 106 Zhongshan Er Road, Guangzhou 510080 (China); Yang, Lin, E-mail: yanglin001517@163.com [Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, 106 Zhongshan Er Road, Guangzhou 510080 (China); Ivanc, Thomas B., E-mail: Thomas.ivanc@philips.com [CT Clinical Science, Philips Healthcare, Highland Heights, OH (United States); Yanof, Jeffrey H., E-mail: Jeffrey.yanof@philips.com [CT Clinical Science, Philips Healthcare, Highland Heights, OH (United States)

    2012-11-15

    Purpose: To reduce radiation dose for retrospective ECG-triggered helical 256-slice CTCA by determining an optimal body size index to prospectively adjust tube current. Methods: 102 consecutive patients with suspected CAD underwent retrospective ECG-triggered CTCA using 256-slice CT scanner. Six body size indexes including BMI, nipple level (NL) bust, thoracic anteroposterior diameter at NL, chest circumference (CC) at NL, left main and right coronary artery (RCA) origin level were measured and their correlation with noise was evaluated using linear regression. An equation was developed to use this index to adjust tube current. Additional 102 consecutive patients were scanned with the index-based mA s adjustment. A t-test for independent samples was used to compare radiation dose levels with and without the index-based mA s selection method. Results: Linear regression indicated that CC RCA had the best correlation with noise (R{sup 2} = 0.603). Effective radiation dose was reduced from 16.6 {+-} 0.9 to 9.8 {+-} 2.7 mSv (p < 0.01), i.e. 40.9% lower dose with the CC RCA-adapted tube current method. The image quality scores indicated no significant difference with and without the size-based mA s selection method. Conclusion: An accessible measure of body size, such as CC RCA, can be used to adapt tube current for individualized radiation dose control.

  8. Individualized radiation dose control in 256-slice CT coronary angiography (CTCA) in retrospective ECG-triggered helical scans: Using a measure of body size to adjust tube current selection

    International Nuclear Information System (INIS)

    Li, Jing-Lei; Huang, Mei-Ping; Liang, Chang-Hong; Zhao, Zhen-Jun; Liu, Hui; Cui, Yan-Hai; Liu, Qi-Shun; Zhang, Jin-E.; Yang, Lin; Ivanc, Thomas B.; Yanof, Jeffrey H.

    2012-01-01

    Purpose: To reduce radiation dose for retrospective ECG-triggered helical 256-slice CTCA by determining an optimal body size index to prospectively adjust tube current. Methods: 102 consecutive patients with suspected CAD underwent retrospective ECG-triggered CTCA using 256-slice CT scanner. Six body size indexes including BMI, nipple level (NL) bust, thoracic anteroposterior diameter at NL, chest circumference (CC) at NL, left main and right coronary artery (RCA) origin level were measured and their correlation with noise was evaluated using linear regression. An equation was developed to use this index to adjust tube current. Additional 102 consecutive patients were scanned with the index-based mA s adjustment. A t-test for independent samples was used to compare radiation dose levels with and without the index-based mA s selection method. Results: Linear regression indicated that CC RCA had the best correlation with noise (R 2 = 0.603). Effective radiation dose was reduced from 16.6 ± 0.9 to 9.8 ± 2.7 mSv (p < 0.01), i.e. 40.9% lower dose with the CC RCA-adapted tube current method. The image quality scores indicated no significant difference with and without the size-based mA s selection method. Conclusion: An accessible measure of body size, such as CC RCA, can be used to adapt tube current for individualized radiation dose control.

  9. Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit.

    Directory of Open Access Journals (Sweden)

    Yang Yu

    Full Text Available BACKGROUND: Conventional ways of making bio-electrodes are generally complicated, expensive and unconformable. Here we describe for the first time the method of applying Ga-based liquid metal ink as drawable electrocardiogram (ECG electrodes. Such material owns unique merits in both liquid phase conformability and high electrical conductivity, which provides flexible ways for making electrical circuits on skin surface and a prospective substitution of conventional rigid printed circuit boards (PCBs. METHODS: Fundamental measurements of impedance and polarization voltage of the liquid metal ink were carried out to evaluate its basic electrical properties. Conceptual experiments were performed to draw the alloy as bio-electrodes to acquire ECG signals from both rabbit and human via a wireless module developed on the mobile phone. Further, a typical electrical circuit was drawn in the palm with the ink to demonstrate its potential of implementing more sophisticated skin circuits. RESULTS: With an oxide concentration of 0.34%, the resistivity of the liquid metal ink was measured as 44.1 µΩ·cm with quite low reactance in the form of straight line. Its peak polarization voltage with the physiological saline was detected as -0.73 V. The quality of ECG wave detected from the liquid metal electrodes was found as good as that of conventional electrodes, from both rabbit and human experiments. In addition, the circuit drawn with the liquid metal ink in the palm also runs efficiently. When the loop was switched on, all the light emitting diodes (LEDs were lit and emitted colorful lights. CONCLUSIONS: The liquid metal ink promises unique printable electrical properties as both bio-electrodes and electrical wires. The implemented ECG measurement on biological surface and the successfully run skin circuit demonstrated the conformability and attachment of the liquid metal. The present method is expected to innovate future physiological measurement and

  10. Prospective ECG triggering versus low-dose retrospective ECG-gated 128-channel CT coronary angiography: comparison of image quality and radiation dose

    International Nuclear Information System (INIS)

    Feng, Q.; Yin, Y.; Hua, X.; Zhu, R.; Hua, J.; Xu, J.

    2010-01-01

    Aim: To evaluate image quality and radiation dose for 128-detector prospective electrocardiogram (ECG)-gated computed tomography coronary angiography (CTCA) compared with a low-dose retrospective ECG-gated imaging protocol. Materials and methods: Thirty-one and 47 patients suspected of having coronary artery disease were enrolled into groups examined using prospective and low-dose retrospective ECG-gated CT protocols respectively. All examinations were performed on a 128-detector CT system (Definition AS, Siemens Healthcare, Forchheim, Germany). Prospective CTCA was performed using following parameters: tube voltage 100 kV; tube current 205 mAs; centre of acquisition window 70% of the RR interval. The tube current for low-dose retrospective ECG-gated CTCA was full dose during 40-70% of the RR interval and partial dose for the rest of RR interval. The pitch varied between 0.2 and 0.5 depending on heart rate and patient size. Image quality of coronary arteries was evaluated using a four-point grading scale. The signal-to-noise ratios (SNRs) of enhanced arteries and myocardium were also measured, corresponding contrast-to-noise ratios (CNRs) were calculated, and the radiation doses received were recorded. Results: There was a significant difference in the image quality scores between the retrospective and prospective gating protocols (Chi-square = 15.331, p = 0.009). There was no significant difference between the SNRs of the contrasted artery and myocardium in these two groups, but the CNRs were increased in the prospective group. The mean radiation dose of prospective gating group was 2.71 ± 0.67 mSv (range, 1.67-3.59 mSv), which was significantly lower than that of the retrospective group (p < 0.001). Conclusion: Prospective CT angiography can achieve lower radiation dose than that of low-dose retrospective CT angiography, with preserved image quality.

  11. Prospective ECG triggering versus low-dose retrospective ECG-gated 128-channel CT coronary angiography: comparison of image quality and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Q.; Yin, Y.; Hua, X.; Zhu, R.; Hua, J. [Department of Radiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Xu, J., E-mail: xujianr@hotmail.co [Department of Radiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China)

    2010-10-15

    Aim: To evaluate image quality and radiation dose for 128-detector prospective electrocardiogram (ECG)-gated computed tomography coronary angiography (CTCA) compared with a low-dose retrospective ECG-gated imaging protocol. Materials and methods: Thirty-one and 47 patients suspected of having coronary artery disease were enrolled into groups examined using prospective and low-dose retrospective ECG-gated CT protocols respectively. All examinations were performed on a 128-detector CT system (Definition AS, Siemens Healthcare, Forchheim, Germany). Prospective CTCA was performed using following parameters: tube voltage 100 kV; tube current 205 mAs; centre of acquisition window 70% of the RR interval. The tube current for low-dose retrospective ECG-gated CTCA was full dose during 40-70% of the RR interval and partial dose for the rest of RR interval. The pitch varied between 0.2 and 0.5 depending on heart rate and patient size. Image quality of coronary arteries was evaluated using a four-point grading scale. The signal-to-noise ratios (SNRs) of enhanced arteries and myocardium were also measured, corresponding contrast-to-noise ratios (CNRs) were calculated, and the radiation doses received were recorded. Results: There was a significant difference in the image quality scores between the retrospective and prospective gating protocols (Chi-square = 15.331, p = 0.009). There was no significant difference between the SNRs of the contrasted artery and myocardium in these two groups, but the CNRs were increased in the prospective group. The mean radiation dose of prospective gating group was 2.71 {+-} 0.67 mSv (range, 1.67-3.59 mSv), which was significantly lower than that of the retrospective group (p < 0.001). Conclusion: Prospective CT angiography can achieve lower radiation dose than that of low-dose retrospective CT angiography, with preserved image quality.

  12. Development and significance of a fetal electrocardiogram recorded by signal-averaged high-amplification electrocardiography.

    Science.gov (United States)

    Hayashi, Risa; Nakai, Kenji; Fukushima, Akimune; Itoh, Manabu; Sugiyama, Toru

    2009-03-01

    Although ultrasonic diagnostic imaging and fetal heart monitors have undergone great technological improvements, the development and use of fetal electrocardiograms to evaluate fetal arrhythmias and autonomic nervous activity have not been fully established. We verified the clinical significance of the novel signal-averaged vector-projected high amplification ECG (SAVP-ECG) method in fetuses from 48 gravidas at 32-41 weeks of gestation and in 34 neonates. SAVP-ECGs from fetuses and newborns were recorded using a modified XYZ-leads system. Once noise and maternal QRS waves were removed, the P, QRS, and T wave intervals were measured from the signal-averaged fetal ECGs. We also compared fetal and neonatal heart rates (HRs), coefficients of variation of heart rate variability (CV) as a parasympathetic nervous activity, and the ratio of low to high frequency (LF/HF ratio) as a sympathetic nervous activity. The rate of detection of a fetal ECG by SAVP-ECG was 72.9%, and the fetal and neonatal QRS and QTc intervals were not significantly different. The neonatal CVs and LF/HF ratios were significantly increased compared with those in the fetus. In conclusion, we have developed a fetal ECG recording method using the SAVP-ECG system, which we used to evaluate autonomic nervous system development.

  13. Efficient Skin Temperature Sensor and Stable Gel-Less Sticky ECG Sensor for a Wearable Flexible Healthcare Patch.

    Science.gov (United States)

    Yamamoto, Yuki; Yamamoto, Daisuke; Takada, Makoto; Naito, Hiroyoshi; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2017-09-01

    Wearable, flexible healthcare devices, which can monitor health data to predict and diagnose disease in advance, benefit society. Toward this future, various flexible and stretchable sensors as well as other components are demonstrated by arranging materials, structures, and processes. Although there are many sensor demonstrations, the fundamental characteristics such as the dependence of a temperature sensor on film thickness and the impact of adhesive for an electrocardiogram (ECG) sensor are yet to be explored in detail. In this study, the effect of film thickness for skin temperature measurements, adhesive force, and reliability of gel-less ECG sensors as well as an integrated real-time demonstration is reported. Depending on the ambient conditions, film thickness strongly affects the precision of skin temperature measurements, resulting in a thin flexible film suitable for a temperature sensor in wearable device applications. Furthermore, by arranging the material composition, stable gel-less sticky ECG electrodes are realized. Finally, real-time simultaneous skin temperature and ECG signal recordings are demonstrated by attaching an optimized device onto a volunteer's chest. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Influence of the measuring condition on vibrocardiographic signals acquired on the thorax with a laser Doppler vibrometer

    Science.gov (United States)

    Mignanelli, L.; Bauer, G.; Klarmann, M.; Wang, H.; Rembe, C.

    2017-07-01

    Velocity signals acquired with a Laser Doppler Vibrometer on the thorax (Optical Vibrocardiography) contain important information, which have a relation to cardiovascular parameters and cardiovascular diseases. The acquired signal results in a superimposition of vibrations originated from different sources of the human body. Since we study the vibration generated by the heart to reliably detect a characteristic time interval corresponding to the PR interval in the ECG, these disturbance have to be removed by filtering. Moreover, the Laser Doppler Vibrometer measures only in the direction of the laser beam and, thus, the velocity signal is only a projection of the tridimensional movement of the thorax. This work presents an analysis of the influences of the filters and of the measurement direction on the characteristic time interval in Vibrocardiographic signals. Our analysis results in recommended settings for filters and we demonstrate that reliable detection of vibrocardiographic parameters is possible within an angle deviation of 30° in respect to the perpendicular irradiation on the front side of the subject.

  15. Measuring Workload Weak Resilience Signals at a Rail Control Post

    NARCIS (Netherlands)

    Siegel, A.W.; Schraagen, J.M.C.

    2014-01-01

    OCCUPATIONAL APPLICATIONS This article describes an observational study at a rail control post to measure workload weak resilience signals. A weak resilience signal indicates a possible degradation of a system's resilience, which is defined as the ability of a complex socio-technical system to cope

  16. Effects of electrocardiography contamination and comparison of ECG removal methods on upper trapezius electromyography recordings.

    Science.gov (United States)

    Marker, Ryan J; Maluf, Katrina S

    2014-12-01

    Electromyography (EMG) recordings from the trapezius are often contaminated by the electrocardiography (ECG) signal, making it difficult to distinguish low-level muscle activity from muscular rest. This study investigates the influence of ECG contamination on EMG amplitude and frequency estimations in the upper trapezius during muscular rest and low-level contractions. A new method of ECG contamination removal, filtered template subtraction (FTS), is described and compared to 30 Hz high-pass filter (HPF) and averaged template subtraction (ATS) methods. FTS creates a unique template of each ECG artifact using a low-pass filtered copy of the contaminated signal, which is subtracted from contaminated periods in the original signal. ECG contamination results in an over-estimation of EMG amplitude during rest in the upper trapezius, with negligible effects on amplitude and frequency estimations during low-intensity isometric contractions. FTS and HPF successfully removed ECG contamination from periods of muscular rest, yet introduced errors during muscle contraction. Conversely, ATS failed to fully remove ECG contamination during muscular rest, yet did not introduce errors during muscle contraction. The relative advantages and disadvantages of different ECG contamination removal methods should be considered in the context of the specific motor tasks that require analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Concept Design for a 1-Lead Wearable/Implantable ECG Front-End: Power Management.

    Science.gov (United States)

    George, Libin; Gargiulo, Gaetano Dario; Lehmann, Torsten; Hamilton, Tara Julia

    2015-11-19

    Power supply quality and stability are critical for wearable and implantable biomedical applications. For this reason we have designed a reconfigurable switched-capacitor DC-DC converter that, aside from having an extremely small footprint (with an active on-chip area of only 0.04 mm²), uses a novel output voltage control method based upon a combination of adaptive gain and discrete frequency scaling control schemes. This novel DC-DC converter achieves a measured output voltage range of 1.0 to 2.2 V with power delivery up to 7.5 mW with 75% efficiency. In this paper, we present the use of this converter as a power supply for a concept design of a wearable (15 mm × 15 mm) 1-lead ECG front-end sensor device that simultaneously harvests power and communicates with external receivers when exposed to a suitable RF field. Due to voltage range limitations of the fabrication process of the current prototype chip, we focus our analysis solely on the power supply of the ECG front-end whose design is also detailed in this paper. Measurement results show not just that the power supplied is regulated, clean and does not infringe upon the ECG bandwidth, but that there is negligible difference between signals acquired using standard linear power-supplies and when the power is regulated by our power management chip.

  18. Sticker-type ECG/PPG concurrent monitoring system hybrid integration of CMOS SoC and organic sensor device.

    Science.gov (United States)

    Yongsu Lee; Hyeonwoo Lee; Seunghyup Yoo; Hoi-Jun Yoo

    2016-08-01

    The sticker-type sensor system is proposed targeting ECG/PPG concurrent monitoring for cardiovascular diseases. The stickers are composed of two types: Hub and Sensor-node (SN) sticker. Low-power CMOS SoC for measuring ECG and PPG signal is hybrid integrated with organic light emitting diodes (OLEDs) and organic photo detector (OPD). The sticker has only 2g weight and only consumes 141μW. The optical calibration loop is adopted for maintaining SNR of PPG signal higher than 30dB. The pulse arrival time (PAT) and SpO2 value can be extracted from various body parts and verified comparing with the reference device from 20 people in-vivo experiments.

  19. Measurement of the contribution of neutrons to hadron calorimeter signals

    International Nuclear Information System (INIS)

    Akchurin, N.; Berntzon, L.; Cardini, A.; Ferrari, R.; Gaudio, G.; Hauptman, J.; Kim, H.; La Rotonda, L.; Livan, M.; Meoni, E.; Paar, H.; Penzo, A.; Pinci, D.; Policicchio, A.; Popescu, S.; Susinno, G.; Roh, Y.; Vandelli, W.; Wigmans, R.

    2007-01-01

    The contributions of neutrons to hadronic signals from the DREAM calorimeter are measured by analyzing the time structure of these signals. The neutrons, which mainly originate from the evaporation stage of nuclear breakup in the hadronic shower development process, contribute through elastic scattering off protons in the plastic scintillating fibers which provide the dE/dx information in this calorimeter. This contribution is characterized by an exponential tail in the pulse shape, with a time constant of ∼25ns. The relative contribution of neutrons to the signals increases with the distance from the shower axis. As expected, the neutrons do not contribute to the DREAM Cherenkov signals

  20. Prospective ECG-triggered axial CT at 140-kV tube voltage improves coronary in-stent restenosis visibility at a lower radiation dose compared with conventional retrospective ECG-gated helical CT

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Jun; Fujioka, Chikako; Kiguchi, Masao; Kohno, Shingo [Hiroshima University Hospital, Department of Clinical Radiology, Hiroshima (Japan); Yamamoto, Hideya; Kitagawa, Toshiro [Hiroshima University, Department of Molecular and Internal Medicine, Division of Clinical Medical Science, Programs for Applied Biomedicine, Graduate School of Biomedical Sciences, Hiroshima (Japan); Ito, Katsuhide [Hiroshima University, Department of Radiology, Division of Medical Intelligence and Informatics, Programs for Applied Biomedicine, Graduate School of Biomedical Sciences, Hiroshima (Japan)

    2009-10-15

    The purpose of this study was to compare coronary 64-slice CT angiography (CTA) protocols, specifically prospective electrocardiograph (ECG)-triggered and retrospective ECG-gated CT acquisition performed using a tube voltage of 140 kV and 120 kV, regarding intracoronary stent imaging. Coronary artery stents (n=12) with artificial in-stent restenosis (50% luminal reduction, 40 HU) on a cardiac phantom were examined by CT at heart rates of 50-75 beats per minute (bpm). The subjective visibility of in-stent restenosis was evaluated with a three-point scale (1 clearly visible, 2 visible, and 3 not visible), and artificial lumen narrowing [(inner stent diameter - measured lumen diameter)/inner stent diameter], lumen attenuation increase ratio [(in-stent attenuation - coronary lumen attenuation)/coronary lumen attenuation], and signal-to-noise ratio of in-stent lumen were determined. The effective dose was estimated. The artificial lumen narrowing (mean 43%), the increase of lumen attenuation (mean 46%), and signal-to-noise ratio (mean 7.8) were not different between CT acquisitions (p=0.12-0.91). However, the visibility scores of in-stent restenosis were different (p<0.05) between ECG-gated CTA techniques: (a) 140-kV prospective (effective dose 4.6 mSv), 1.6; (b) 120-kV prospective (3.3 mSv), 1.8; (c) 140-kV retrospective (16.4-18.8 mSv), 1.9; and (d) 120-kV retrospective (11.0-13.4 mSv), 1.9. Thus, 140-kV prospective ECG-triggered CTA improves coronary in-stent restenosis visibility at a lower radiation dose compared with retrospective ECG-gated CTA. (orig.)

  1. Performance of human body communication-based wearable ECG with capacitive coupling electrodes.

    Science.gov (United States)

    Sakuma, Jun; Anzai, Daisuke; Wang, Jianqing

    2016-09-01

    Wearable electrocardiogram (ECG) is attracting much attention in daily healthcare applications, and human body communication (HBC) technology provides an evident advantage in making the sensing electrodes of ECG also working for transmission through the human body. In view of actual usage in daily life, however, non-contact electrodes to the human body are desirable. In this Letter, the authors discussed the ECG circuit structure in the HBC-based wearable ECG for removing the common mode noise when employing non-contact capacitive coupling electrodes. Through the comparison of experimental results, they have shown that the authors' proposed circuit structure with the third electrode directly connected to signal ground can provide an effect on common mode noise reduction similar to the usual drive-right-leg circuit, and a sufficiently good acquisition performance of ECG signals.

  2. Measuring methods, registration and signal processing for magnetic field research

    International Nuclear Information System (INIS)

    Nagiello, Z.

    1981-01-01

    Some measuring methods and signal processing systems based on analogue and digital technics, which have been applied in magnetic field research using magnetometers with ferromagnetic transducers, are presented. (author)

  3. Quantitative measurement of intervertebral disc signal using MRI

    International Nuclear Information System (INIS)

    Niemelaeinen, R.; Videman, T.; Dhillon, S.S.; Battie, M.C.

    2008-01-01

    Aim: To investigate the spinal cord as an alternative intra-body reference to cerebrospinal fluid (CSF) in evaluating thoracic disc signal intensity. Materials and methods: T2-weighted magnetic resonance imaging (MRI) images of T6-T12 were obtained using 1.5 T machines for a population-based sample of 523 men aged 35-70 years. Quantitative data on the signal intensities were acquired using an image analysis program (SpEx (copy right) ). A random sample of 30 subjects and intraclass correlation coeffcients (ICC) were used to examine the repeatability of the spinal cord measurements. The validity of using the spinal cord as a reference was examined by correlating cord and CSF samples. Finally, thoracic disc signal was validated by correlating it with age without adjustment and adjusting for either cord or CSF. Pearson's r was used for correlational analyses. Results: The repeatability of the spinal cord signal measurements was extremely high (≥0.99). The correlations between the signals of spinal cord and CSF by level were all above 0.9. The spinal cord-adjusted disc signal and age correlated similarly with CSF-adjusted disc signal and age (r = -0.30 to -0.40 versus r = -0.26 to -0.36). Conclusion: Adjacent spinal cord is a good alternative reference to the current reference standard, CSF, for quantitative measurements of disc signal intensity. Clearly fewer levels were excluded when using spinal cord as compared to CSF due to missing reference samples

  4. Autophagic effects of Hibiscus sabdariffa leaf polyphenols and epicatechin gallate (ECG) against oxidized LDL-induced injury of human endothelial cells.

    Science.gov (United States)

    Chen, Jing-Hsien; Lee, Ming-Shih; Wang, Chi-Ping; Hsu, Cheng-Chin; Lin, Hui-Hsuan

    2017-08-01

    Oxidized low-density lipoprotein (ox-LDL) contributes to the pathogenesis of atherosclerosis by promoting vascular endothelial cell injury. Hibiscus sabdariffa leaf polyphenols (HLP), rich in flavonoids, have been shown to possess antioxidant and antiatherosclerotic activities. In this study, we examined the protective role of HLP and its main compound (-)-epicatechin gallate (ECG) in human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL in vitro. In a model of ox-LDL-impaired HUVECs, assessments of cell viability, cytotoxicity, cell proliferation, apoptosis, and autophagy were detected. To highlight the mechanisms of the antiapoptotic effects of HLP and ECG, the expressions of molecular proteins were measured by Western blotting, real-time PCR, and so on. HLP or ECG improved the survival of HUVECs from ox-LDL-induced viability loss. In addition, HLP or ECG showed potential in reducing ox-LDL-dependent apoptosis. Next, the ox-LDL-induced formation of acidic vesicular organelles and upregulation of the autophagy-related genes were increased by HLP or ECG. The HLP-triggered autophagic flux was further confirmed by increasing the LC3-II level under the pretreatment of an autophagy inhibitor chloroquine. Molecular data indicated the autophagic effect of HLP or ECG might be mediated via class III PI3K/Beclin-1 and PTEN/class I PI3K/Akt cascade signaling, as demonstrated by the usage of a class III PI3K inhibitor 3-methyladenine (3-MA) and a PTEN inhibitor SF1670. Our data imply that ECG-enriched HLP upregulates the autophagic pathway, which in turn led to reduce ox-LDL-induced HUVECs injury and apoptosis and provide a new mechanism for its antiatherosclerotic activity.

  5. Measurement of MOSFET LF Noise Under Large Signal RF Excitation

    NARCIS (Netherlands)

    van der Wel, A.P.; Klumperink, Eric A.M.; Nauta, Bram

    A new measurement technique is presented that allows measurement of MOSFET LF noise under large signal RF excitation. Measurements indicate that MOSFETS exhibit a reduction in LF noise when they are cycled from inversion to accummulation and that this reduction does not depend on the frequency of

  6. Can Functional Cardiac Age be Predicted from ECG in a Normal Healthy Population

    Science.gov (United States)

    Schlegel, Todd; Starc, Vito; Leban, Manja; Sinigoj, Petra; Vrhovec, Milos

    2011-01-01

    In a normal healthy population, we desired to determine the most age-dependent conventional and advanced ECG parameters. We hypothesized that changes in several ECG parameters might correlate with age and together reliably characterize the functional age of the heart. Methods: An initial study population of 313 apparently healthy subjects was ultimately reduced to 148 subjects (74 men, 84 women, in the range from 10 to 75 years of age) after exclusion criteria. In all subjects, ECG recordings (resting 5-minute 12-lead high frequency ECG) were evaluated via custom software programs to calculate up to 85 different conventional and advanced ECG parameters including beat-to-beat QT and RR variability, waveform complexity, and signal-averaged, high-frequency and spatial/spatiotemporal ECG parameters. The prediction of functional age was evaluated by multiple linear regression analysis using the best 5 univariate predictors. Results: Ignoring what were ultimately small differences between males and females, the functional age was found to be predicted (R2= 0.69, P ECGs, functional cardiac age can be estimated by multiple linear regression analysis of mostly advanced ECG results. Because some parameters in the regression formula, such as QTcorr, high frequency QRS amplitude and P-wave width also change with disease in the same direction as with increased age, increased functional age of the heart may reflect subtle age-related pathologies in cardiac electrical function that are usually hidden on conventional ECG.

  7. Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System

    Directory of Open Access Journals (Sweden)

    Hongqiang Li

    2016-10-01

    Full Text Available Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias.

  8. Impact of ECG gating in contrast-enhanced MR angiography for the assessment of the pulmonary veins and the left atrium anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, M.; Buecker, A.; Muehlenbruch, G.; Guenther, R.W.; Spuentrup, E. [Klinik fuer Radiologische Diagnostik, Universitaetsklinikum RWTH Aachen (Germany); Schauerte, P. [Medizinische Klinik 1, Universitaetsklinikum RWTH Aachen (Germany)

    2006-02-15

    Purpose: Implementation of ECG gating in contrast-enhanced MR angiography (ceMRA) for improved visualization of the pulmonary veins, the left atrium, and the thoracic vessels. Materials and Methods: CeMRA was performed on twelve patients with a history of recurrent atrial fibrillation for the purpose of an intra-individual comparison with and without ECG gating on a 1.5 Tesla MR system (Gyroscan Intera, Philips Medical Systems, Best, NL). Objective image quality parameters such as the signal-to-noise ratio (SNR) of the blood and the contrast-to-noise ratio (CNR) between the blood and myocardium or lung parenchyma were analyzed. The contour sharpness of the pulmonary veins, left atrium, ascending aorta, and pulmonary trunk was also measured. In addition, the artifact level was subjectively assessed by two observers blinded with respect to the sequence parameters. Statistically significant differences (p<0.05) between the procedures were analyzed using the Wilcoxon test and Pearson Chi-square test. Results: The use of ECG gating in ceMRA significantly reduced artifacts caused by cardiac motion and vessel pulsation. This in turn lead to a significant increase in the contour sharpness of the left atrium and the thoracic vessels. In addition, higher SNR and CNR were found using ECG-gated ceMRA compared to standard ceMRA. Conclusion: The use of ECG gating in ceMRA results in artifact-free and sharper delineation of the structures of the heart and thoracic vessels. (orig.)

  9. Impact of ECG gating in contrast-enhanced MR angiography for the assessment of the pulmonary veins and the left atrium anatomy

    International Nuclear Information System (INIS)

    Katoh, M.; Buecker, A.; Muehlenbruch, G.; Guenther, R.W.; Spuentrup, E.; Schauerte, P.

    2006-01-01

    Purpose: Implementation of ECG gating in contrast-enhanced MR angiography (ceMRA) for improved visualization of the pulmonary veins, the left atrium, and the thoracic vessels. Materials and Methods: CeMRA was performed on twelve patients with a history of recurrent atrial fibrillation for the purpose of an intra-individual comparison with and without ECG gating on a 1.5 Tesla MR system (Gyroscan Intera, Philips Medical Systems, Best, NL). Objective image quality parameters such as the signal-to-noise ratio (SNR) of the blood and the contrast-to-noise ratio (CNR) between the blood and myocardium or lung parenchyma were analyzed. The contour sharpness of the pulmonary veins, left atrium, ascending aorta, and pulmonary trunk was also measured. In addition, the artifact level was subjectively assessed by two observers blinded with respect to the sequence parameters. Statistically significant differences (p<0.05) between the procedures were analyzed using the Wilcoxon test and Pearson Chi-square test. Results: The use of ECG gating in ceMRA significantly reduced artifacts caused by cardiac motion and vessel pulsation. This in turn lead to a significant increase in the contour sharpness of the left atrium and the thoracic vessels. In addition, higher SNR and CNR were found using ECG-gated ceMRA compared to standard ceMRA. Conclusion: The use of ECG gating in ceMRA results in artifact-free and sharper delineation of the structures of the heart and thoracic vessels. (orig.)

  10. Basic principles of the ECG. The normal ECG

    African Journals Online (AJOL)

    Angel_D

    Southern Sudan Medical Journal vol 3. no 2. 26. How to read an ... Reduce some of the anxiety juniors often experience when faced with an ECG. ... This overall direction of travel of the electrical .... Anne Lancey, Education Centre, St Mary's Hospital, Isle of Wight, UK. .... 'method' section explains how the literature search.

  11. An ECG simulator for generating maternal-foetal activity mixtures on abdominal ECG recordings

    International Nuclear Information System (INIS)

    Behar, Joachim; Andreotti, Fernando; Li, Qiao; Oster, Julien; Clifford, Gari D; Zaunseder, Sebastian

    2014-01-01

    Accurate foetal electrocardiogram (FECG) morphology extraction from non-invasive sensors remains an open problem. This is partly due to the paucity of available public databases. Even when gold standard information (i.e derived from the scalp electrode) is present, the collection of FECG can be problematic, particularly during stressful or clinically important events. In order to address this problem we have introduced an FECG simulator based on earlier work on foetal and adult ECG modelling. The open source foetal ECG synthetic simulator, fecgsyn, is able to generate maternal-foetal ECG mixtures with realistic amplitudes, morphology, beat-to-beat variability, heart rate changes and noise. Positional (rotation and translation-related) movements in the foetal and maternal heart due to respiration, foetal activity and uterine contractions were also added to the simulator. The simulator was used to generate some of the signals that were part of the 2013 PhysioNet Computing in Cardiology Challenge dataset and has been posted on Physionet.org (together with scripts to generate realistic scenarios) under an open source license. The toolbox enables further research in the field and provides part of a standard for industry and regulatory testing of rare pathological scenarios. (paper)

  12. ECG Based Heart Arrhythmia Detection Using Wavelet Coherence and Bat Algorithm

    Science.gov (United States)

    Kora, Padmavathi; Sri Rama Krishna, K.

    2016-12-01

    Atrial fibrillation (AF) is a type of heart abnormality, during the AF electrical discharges in the atrium are rapid, results in abnormal heart beat. The morphology of ECG changes due to the abnormalities in the heart. This paper consists of three major steps for the detection of heart diseases: signal pre-processing, feature extraction and classification. Feature extraction is the key process in detecting the heart abnormality. Most of the ECG detection systems depend on the time domain features for cardiac signal classification. In this paper we proposed a wavelet coherence (WTC) technique for ECG signal analysis. The WTC calculates the similarity between two waveforms in frequency domain. Parameters extracted from WTC function is used as the features of the ECG signal. These features are optimized using Bat algorithm. The Levenberg Marquardt neural network classifier is used to classify the optimized features. The performance of the classifier can be improved with the optimized features.

  13. Performance Analysis of Ten Common QRS Detectors on Different ECG Application Cases

    Directory of Open Access Journals (Sweden)

    Feifei Liu

    2018-01-01

    Full Text Available A systematical evaluation work was performed on ten widely used and high-efficient QRS detection algorithms in this study, aiming at verifying their performances and usefulness in different application situations. Four experiments were carried on six internationally recognized databases. Firstly, in the test of high-quality ECG database versus low-quality ECG database, for high signal quality database, all ten QRS detection algorithms had very high detection accuracy (F1 >99%, whereas the F1 results decrease significantly for the poor signal-quality ECG signals (all 95% except RS slope algorithm with 94.24% on normal ECG database and 94.44% on arrhythmia database. Thirdly, for the paced rhythm ECG database, all ten algorithms were immune to the paced beats (>94% except the RS slope method, which only output a low F1 result of 78.99%. At last, the detection accuracies had obvious decreases when dealing with the dynamic telehealth ECG signals (all <80% except OKB algorithm with 80.43%. Furthermore, the time costs from analyzing a 10 s ECG segment were given as the quantitative index of the computational complexity. All ten algorithms had high numerical efficiency (all <4 ms except RS slope (94.07 ms and sixth power algorithms (8.25 ms. And OKB algorithm had the highest numerical efficiency (1.54 ms.

  14. A 58 nW ECG ASIC With Motion-Tolerant Heartbeat Timing Extraction for Wearable Cardiovascular Monitoring.

    Science.gov (United States)

    Da He, David; Sodini, Charles G

    2015-06-01

    An ASIC for wearable cardiovascular monitoring is implemented using a topology that takes advantage of the electrocardiogram's (ECG) waveform to replace the traditional ECG instrumentation amplifier, ADC, and signal processor with a single chip solution. The ASIC can extract heartbeat timings in the presence of baseline drift, muscle artifact, and signal clipping. The circuit can operate with ECGs ranging from the chest location to remote locations where the ECG magnitude is as low as 30 μV. Besides heartbeat detection, a midpoint estimation method can accurately extract the ECG R-wave timing, enabling the calculations of heart rate variability. With 58 nW of power consumption at 0.8 V supply voltage and 0.76 mm (2) of active die area in standard 0.18 μm CMOS technology, the ECG ASIC is sufficiently low power and compact to be suitable for long term and wearable cardiovascular monitoring applications under stringent battery and size constraints.

  15. Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology

    OpenAIRE

    Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M. B.

    2015-01-01

    This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has ...

  16. ECG changes in epilepsy patients

    DEFF Research Database (Denmark)

    Tigaran, S; Rasmussen, V; Dam, M

    1997-01-01

    To investigate the frequency of ECG abnormalities suggestive of myocardial ischaemia in patients with severe drug resistant epilepsy and without any indication of previous cardiac disease, assuming that these changes may be of significance for the group of epileptic patients with sudden unexpected...

  17. Wearable Current-Based ECG Monitoring System with Non-Insulated Electrodes for Underwater Application

    Directory of Open Access Journals (Sweden)

    Stefan Gradl

    2017-12-01

    Full Text Available The second most common cause of diving fatalities is cardiovascular diseases. Monitoring the cardiovascular system in actual underwater conditions is necessary to gain insights into cardiac activity during immersion and to trigger preventive measures. We developed a wearable, current-based electrocardiogram (ECG device in the eco-system of the FitnessSHIRT platform. It can be used for normal/dry ECG measuring purposes but is specifically designed to allow underwater signal acquisition without having to use insulated electrodes. Our design is based on a transimpedance amplifier circuit including active current feedback. We integrated additional cascaded filter components to counter noise characteristics specific to the immersed condition of such a system. The results of the evaluation show that our design is able to deliver high-quality ECG signals underwater with no interferences or loss of signal quality. To further evaluate the applicability of the system, we performed an applied study with it using 12 healthy subjects to examine whether differences in the heart rate variability exist between sitting and supine positions of the human body immersed in water and outside of it. We saw significant differences, for example, in the RMSSD and SDSD between sitting outside the water (36 ms and sitting immersed in water (76 ms and the pNN50 outside the water (6.4% and immersed in water (18.2%. The power spectral density for the sitting positions in the TP and HF increased significantly during water immersion while the LF/HF decreased significantly. No significant changes were found for the supine position.

  18. 'Brugada ECG' elicited by imipramine overdose

    NARCIS (Netherlands)

    van den Berg, M. P.; Tulleken, J. E.; Wilde, A. A. M.

    2004-01-01

    The ECG hallmark of the Brugada syndrome is ST-segment elevation in the right precordial leads. However, a 'Brugada ECG' may also occasionally be caused by other conditions. We report a case of a Brugada ECG due to an overdose of imipramine, a tricyclic antidepressant. The patient, a 66-year-old

  19. Development of signal acquisition device of rotating coil measurement system

    International Nuclear Information System (INIS)

    Zhou Jianxin; Li Li; Kang Wen; Deng Chengdong; Yin Baogui; Fu Shinian

    2013-01-01

    A new rotating coil magnetic measurement system using the technical solution of the combination of a dynamic signal acquisition card and software with specific functions was developed. The acquisition device of the system successfully implemented the function of the PDI-5025 integrator. The sampling rate, the range, the accuracy and the flexibility of the system were improved. The development program of signal acquisition equipment, the realization of the acquisition function and the reliability and stability of the system were introduced. (authors)

  20. Quantitative measurement of intervertebral disc signal using MRI

    Energy Technology Data Exchange (ETDEWEB)

    Niemelaeinen, R. [Faculty of Rehabilitation Medicine, University of Alberta, Edmonton (Canada)], E-mail: riikka.niemelainen@ualberta.ca; Videman, T. [Faculty of Rehabilitation Medicine, University of Alberta, Edmonton (Canada); Dhillon, S.S. [Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton (Canada); Battie, M.C. [Faculty of Rehabilitation Medicine, University of Alberta, Edmonton (Canada)

    2008-03-15

    Aim: To investigate the spinal cord as an alternative intra-body reference to cerebrospinal fluid (CSF) in evaluating thoracic disc signal intensity. Materials and methods: T2-weighted magnetic resonance imaging (MRI) images of T6-T12 were obtained using 1.5 T machines for a population-based sample of 523 men aged 35-70 years. Quantitative data on the signal intensities were acquired using an image analysis program (SpEx (copy right) ). A random sample of 30 subjects and intraclass correlation coeffcients (ICC) were used to examine the repeatability of the spinal cord measurements. The validity of using the spinal cord as a reference was examined by correlating cord and CSF samples. Finally, thoracic disc signal was validated by correlating it with age without adjustment and adjusting for either cord or CSF. Pearson's r was used for correlational analyses. Results: The repeatability of the spinal cord signal measurements was extremely high ({>=}0.99). The correlations between the signals of spinal cord and CSF by level were all above 0.9. The spinal cord-adjusted disc signal and age correlated similarly with CSF-adjusted disc signal and age (r = -0.30 to -0.40 versus r = -0.26 to -0.36). Conclusion: Adjacent spinal cord is a good alternative reference to the current reference standard, CSF, for quantitative measurements of disc signal intensity. Clearly fewer levels were excluded when using spinal cord as compared to CSF due to missing reference samples.

  1. Compressed Sensing with Linear Correlation Between Signal and Measurement Noise

    DEFF Research Database (Denmark)

    Arildsen, Thomas; Larsen, Torben

    2014-01-01

    reconstruction algorithms, but is not known in existing literature. The proposed technique reduces reconstruction error considerably in the case of linearly correlated measurements and noise. Numerical experiments confirm the efficacy of the technique. The technique is demonstrated with application to low......Existing convex relaxation-based approaches to reconstruction in compressed sensing assume that noise in the measurements is independent of the signal of interest. We consider the case of noise being linearly correlated with the signal and introduce a simple technique for improving compressed...... sensing reconstruction from such measurements. The technique is based on a linear model of the correlation of additive noise with the signal. The modification of the reconstruction algorithm based on this model is very simple and has negligible additional computational cost compared to standard...

  2. Advanced ECG in 2016: is there more than just a tracing?

    Science.gov (United States)

    Reichlin, Tobias; Abächerli, Roger; Twerenbold, Raphael; Kühne, Michael; Schaer, Beat; Müller, Christian; Sticherling, Christian; Osswald, Stefan

    2016-01-01

    The 12-lead electrocardiogram (ECG) is the most frequently used technology in clinical cardiology. It is critical for evidence-based management of patients with most cardiovascular conditions, including patients with acute myocardial infarction, suspected chronic cardiac ischaemia, cardiac arrhythmias, heart failure and implantable cardiac devices. In contrast to many other techniques in cardiology, the ECG is simple, small, mobile, universally available and cheap, and therefore particularly attractive. Standard ECG interpretation mainly relies on direct visual assessment. The progress in biomedical computing and signal processing, and the available computational power offer fascinating new options for ECG analysis relevant to all fields of cardiology. Several digital ECG markers and advanced ECG technologies have shown promise in preliminary studies. This article reviews promising novel surface ECG technologies in three different fields. (1) For the detection of myocardial ischaemia and infarction, QRS morphology feature analysis, the analysis of high frequency QRS components (HF-QRS) and methods using vectorcardiography as well as ECG imaging are discussed. (2) For the identification and management of patients with cardiac arrhythmias, methods of advanced P-wave analysis are discussed and the concept of ECG imaging for noninvasive localisation of cardiac arrhythmias is presented. (3) For risk stratification of sudden cardiac death and the selection of patients for medical device therapy, several novel markers including an automated QRS-score for scar quantification, the QRS-T angle or the T-wave peak-to-end-interval are discussed. Despite the existing preliminary data, none of the advanced ECG markers and technologies has yet accomplished the transition into clinical practice. Further refinement of these technologies and broader validation in large unselected patient cohorts are the critical next step needed to facilitate translation of advanced ECG technologies

  3. Using Intracardiac Vectorcardiographic Loop for Surface ECG Synthesis

    Directory of Open Access Journals (Sweden)

    G. Carrault

    2008-09-01

    Full Text Available Current cardiac implantable devices offer improved processing power and recording capabilities. Some of these devices already provide basic telemonitoring features that may help to reduce health care expenditure. A challenge is posed in particular for the telemonitoring of the patient's cardiac electrical activity. Indeed, only intracardiac electrograms (EGMs are acquired by the implanted device and these signals are difficult to analyze directly by clinicians. In this paper, we propose a patient-specific method to synthesize the surface electrocardiogram (ECG from a set of EGM signals, based on a 3D representation of the cardiac electrical activity and principal component analysis (PCA. The results, in the case of sinus rhythm, show a correlation coefficient between the real ECG and the synthesized ECG of about 0.85. Moreover, the application of the proposed method to the patients who present an abnormal heart rhythm exhibits promising results, especially for characterizing the bundle branch blocs. Finally, in order to evaluate the behavior of our procedure in some practical situations, the quality of the ECG reconstruction is studied as a function of the number of EGM electrodes provided by the CIDs.

  4. Using Intracardiac Vectorcardiographic Loop for Surface ECG Synthesis

    Science.gov (United States)

    Kachenoura, A.; Porée, F.; Hernández, A. I.; Carrault, G.

    2008-12-01

    Current cardiac implantable devices offer improved processing power and recording capabilities. Some of these devices already provide basic telemonitoring features that may help to reduce health care expenditure. A challenge is posed in particular for the telemonitoring of the patient's cardiac electrical activity. Indeed, only intracardiac electrograms (EGMs) are acquired by the implanted device and these signals are difficult to analyze directly by clinicians. In this paper, we propose a patient-specific method to synthesize the surface electrocardiogram (ECG) from a set of EGM signals, based on a 3D representation of the cardiac electrical activity and principal component analysis (PCA). The results, in the case of sinus rhythm, show a correlation coefficient between the real ECG and the synthesized ECG of about 0.85. Moreover, the application of the proposed method to the patients who present an abnormal heart rhythm exhibits promising results, especially for characterizing the bundle branch blocs. Finally, in order to evaluate the behavior of our procedure in some practical situations, the quality of the ECG reconstruction is studied as a function of the number of EGM electrodes provided by the CIDs.

  5. An Interoperable System toward Cardiac Risk Stratification from ECG Monitoring

    Directory of Open Access Journals (Sweden)

    Cristina Soguero-Ruiz

    2018-03-01

    Full Text Available Many indices have been proposed for cardiovascular risk stratification from electrocardiogram signal processing, still with limited use in clinical practice. We created a system integrating the clinical definition of cardiac risk subdomains from ECGs and the use of diverse signal processing techniques. Three subdomains were defined from the joint analysis of the technical and clinical viewpoints. One subdomain was devoted to demographic and clinical data. The other two subdomains were intended to obtain widely defined risk indices from ECG monitoring: a simple-domain (heart rate turbulence (HRT, and a complex-domain (heart rate variability (HRV. Data provided by the three subdomains allowed for the generation of alerts with different intensity and nature, as well as for the grouping and scrutinization of patients according to the established processing and risk-thresholding criteria. The implemented system was tested by connecting data from real-world in-hospital electronic health records and ECG monitoring by considering standards for syntactic (HL7 messages and semantic interoperability (archetypes based on CEN/ISO EN13606 and SNOMED-CT. The system was able to provide risk indices and to generate alerts in the health records to support decision-making. Overall, the system allows for the agile interaction of research and clinical practice in the Holter-ECG-based cardiac risk domain.

  6. An Interoperable System toward Cardiac Risk Stratification from ECG Monitoring

    Science.gov (United States)

    Mora-Jiménez, Inmaculada; Ramos-López, Javier; Quintanilla Fernández, Teresa; García-García, Antonio; Díez-Mazuela, Daniel; García-Alberola, Arcadi

    2018-01-01

    Many indices have been proposed for cardiovascular risk stratification from electrocardiogram signal processing, still with limited use in clinical practice. We created a system integrating the clinical definition of cardiac risk subdomains from ECGs and the use of diverse signal processing techniques. Three subdomains were defined from the joint analysis of the technical and clinical viewpoints. One subdomain was devoted to demographic and clinical data. The other two subdomains were intended to obtain widely defined risk indices from ECG monitoring: a simple-domain (heart rate turbulence (HRT)), and a complex-domain (heart rate variability (HRV)). Data provided by the three subdomains allowed for the generation of alerts with different intensity and nature, as well as for the grouping and scrutinization of patients according to the established processing and risk-thresholding criteria. The implemented system was tested by connecting data from real-world in-hospital electronic health records and ECG monitoring by considering standards for syntactic (HL7 messages) and semantic interoperability (archetypes based on CEN/ISO EN13606 and SNOMED-CT). The system was able to provide risk indices and to generate alerts in the health records to support decision-making. Overall, the system allows for the agile interaction of research and clinical practice in the Holter-ECG-based cardiac risk domain. PMID:29494497

  7. A Measurement System of Electric Signals on Standing Trees

    Directory of Open Access Journals (Sweden)

    Hao TIAN

    2014-01-01

    Full Text Available The standing tree electric signal (STES, defined as the electric potential difference between standing trees and the surrounding soil, can be utilized to reflect the biological nature of the trees. This signal should be measured precisely because it can also be collected and used as the electric power energy. In this paper, the automatic measurement system of standing tree biological electric signal based on MSP430 MCU. First of all, the basic structure of the presented system is introduced and it includes three modules: amplification module of the standing tree electric signal, the acquisition and processing of the signal module and the serial communication module. Then, the performances of the built system are respectively validated by the Poplar, Planetree, and Platanus in Beijing Forestry University. The result indicated that the relative error of this system is less than 2 %. The presented system can be considered as the foundation of the subsequent study on the mechanism of the biological electric signal and the application of the biological electric energy on standing trees.

  8. Bedside identification of patients at risk for PVC-induced cardiomyopathy: Is ECG useful?

    Science.gov (United States)

    Garster, Noelle C; Henrikson, Charles A

    2017-07-01

    Premature ventricular complexes (PVCs) are an underrecognized cause of cardiomyopathy. Standard 12-lead electrocardiogram (ECG) has potential to direct attention toward at-risk patients. We performed a single-center, retrospective chart review of 1,240 patients who completed ECG and Holter monitoring at Oregon Health and Science University Hospital between January 1, 2011 and December 31, 2013 to investigate the relationship of PVC frequency on ECG with burden on Holter. Primary outcome measures included PVC quantity on ECG, mean PVC quantity on Holter, and percentage of total beats on Holter recorded as PVCs. High PVC burden was defined as ≥10% of total beats. Weighted mean percentages of total beats on Holter monitor recorded as PVCs were calculated for 0, 1, 2, and ≥3 PVCs on ECG and found to be 1.4% (n = 1,128), 3.5% (n = 32), 4.3% (n = 25), and 16.6% (n = 55), respectively, which represent statistically significant differences (P ECG for ≥10% PVC Holter burden was 58%. Negative predictive value for 0 PVCs on ECG was 98%. The sensitivity and specificity of ECG to identify high PVC burden on Holter was 72% and 93.6%, respectively, when utilizing a positive ECG result as one PVC or more, and 44% and 98.9%, respectively, with ≥3 PVCs on ECG. The positive likelihood ratio corresponding to ≥3 PVCs on ECG was 40. These findings demonstrate that the number of PVCs on ECG can be utilized for quick bedside estimation of high PVC burden. © 2017 Wiley Periodicals, Inc.

  9. Reliability of the exercise ECG in detecting silent ischemia in patients with prior myocardial infarction

    International Nuclear Information System (INIS)

    Yamagishi, Takashi; Matsuda, Yasuo; Satoh, Akira

    1991-01-01

    To assess the reliability of the exercise ECG in detecting silent ischemia, ECG results were compared with those of stress-redistribution thallium-201 single-photon emission computed tomography (SPECT) in 116 patients with prior myocardial infarction and in 20 normal subjects used as a control. The left ventricle (LV) was divided into 20 segmental images, which were scored blindly on a 5-point scale. The redistribution score was defined as thallium defect score of exercise subtracted by that of redistribution image and was used as a measure of amount of ischemic but viable myocardium. The upper limit of normal redistribution score (=4.32) was defined as mean+2 standard deviations derived from 20 normal subjects. Of 116 patients, 47 had the redistribution score above the normal range. Twenty-five (53%) of the 47 patients showed positive ECG response. Fourteen (20%) of the 69 patients, who had the normal redistribution score, showed positive ECG response. Thus, the ECG response had a sensitivity of 53% and a specificity of 80% in detecting transient ischemia. Furthermore, the 116 patients were subdivided into 4 groups according to the presence or absence of chest pain and ECG change during exercise. Fourteen patients showed both chest pain and ECG change and all these patients had the redistribution score above the normal range. Twenty-five patients showed ECG change without chest pain and 11 (44%) of the 25 patients had the abnormal redistribution. Three (43%) of 7 patients who showed chest pain without ECG change had the abnormal redistribution score. Of 70 patients who had neither chest pain nor ECG change, 19 (27%) had the redistribution score above the normal range. Thus, limitations exist in detecting silent ischemia by ECG in patients with a prior myocardial infarction, because the ECG response to the exercise test may have a low degree of sensitivity and a high degree of false positive and false negative results in detecting silent ischemia. (author)

  10. A novel ECG data compression method based on adaptive Fourier decomposition

    Science.gov (United States)

    Tan, Chunyu; Zhang, Liming

    2017-12-01

    This paper presents a novel electrocardiogram (ECG) compression method based on adaptive Fourier decomposition (AFD). AFD is a newly developed signal decomposition approach, which can decompose a signal with fast convergence, and hence reconstruct ECG signals with high fidelity. Unlike most of the high performance algorithms, our method does not make use of any preprocessing operation before compression. Huffman coding is employed for further compression. Validated with 48 ECG recordings of MIT-BIH arrhythmia database, the proposed method achieves the compression ratio (CR) of 35.53 and the percentage root mean square difference (PRD) of 1.47% on average with N = 8 decomposition times and a robust PRD-CR relationship. The results demonstrate that the proposed method has a good performance compared with the state-of-the-art ECG compressors.

  11. Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology

    Directory of Open Access Journals (Sweden)

    José Vicente Lidón-Roger

    2018-01-01

    Full Text Available Among many of the electrode designs used in electrocardiography (ECG, concentric ring electrodes (CREs are one of the most promising due to their enhanced spatial resolution. Their development has undergone a great push due to their use in recent years; however, they are not yet widely used in clinical practice. CRE implementation in textiles will lead to a low cost, flexible, comfortable, and robust electrode capable of detecting high spatial resolution ECG signals. A textile CRE set has been designed and developed using screen-printing technology. This is a mature technology in the textile industry and, therefore, does not require heavy investments. Inks employed as conductive elements have been silver and a conducting polymer (poly (3,4-ethylenedioxythiophene polystyrene sulfonate; PEDOT:PSS. Conducting polymers have biocompatibility advantages, they can be used with flexible substrates, and they are available for several printing technologies. CREs implemented with both inks have been compared by analyzing their electric features and their performance in detecting ECG signals. The results reveal that silver CREs present a higher average thickness and slightly lower skin-electrode impedance than PEDOT:PSS CREs. As for ECG recordings with subjects at rest, both CREs allowed the uptake of bipolar concentric ECG signals (BC-ECG with signal-to-noise ratios similar to that of conventional ECG recordings. Regarding the saturation and alterations of ECGs captured with textile CREs caused by intentional subject movements, silver CREs presented a more stable response (fewer saturations and alterations than those of PEDOT:PSS. Moreover, BC-ECG signals provided higher spatial resolution compared to conventional ECG. This improved spatial resolution was manifested in the identification of P1 and P2 waves of atrial activity in most of the BC-ECG signals. It can be concluded that textile silver CREs are more suitable than those of PEDOT:PSS for obtaining

  12. Automatic screening of obstructive sleep apnea from the ECG based on empirical mode decomposition and wavelet analysis

    International Nuclear Information System (INIS)

    Mendez, M O; Cerutti, S; Bianchi, A M; Corthout, J; Van Huffel, S; Matteucci, M; Penzel, T

    2010-01-01

    This study analyses two different methods to detect obstructive sleep apnea (OSA) during sleep time based only on the ECG signal. OSA is a common sleep disorder caused by repetitive occlusions of the upper airways, which produces a characteristic pattern on the ECG. ECG features, such as the heart rate variability (HRV) and the QRS peak area, contain information suitable for making a fast, non-invasive and simple screening of sleep apnea. Fifty recordings freely available on Physionet have been included in this analysis, subdivided in a training and in a testing set. We investigated the possibility of using the recently proposed method of empirical mode decomposition (EMD) for this application, comparing the results with the ones obtained through the well-established wavelet analysis (WA). By these decomposition techniques, several features have been extracted from the ECG signal and complemented with a series of standard HRV time domain measures. The best performing feature subset, selected through a sequential feature selection (SFS) method, was used as the input of linear and quadratic discriminant classifiers. In this way we were able to classify the signals on a minute-by-minute basis as apneic or nonapneic with different best-subset sizes, obtaining an accuracy up to 89% with WA and 85% with EMD. Furthermore, 100% correct discrimination of apneic patients from normal subjects was achieved independently of the feature extractor. Finally, the same procedure was repeated by pooling features from standard HRV time domain, EMD and WA together in order to investigate if the two decomposition techniques could provide complementary features. The obtained accuracy was 89%, similarly to the one achieved using only Wavelet analysis as the feature extractor; however, some complementary features in EMD and WA are evident

  13. Competency in ECG Interpretation Among Medical Students

    Science.gov (United States)

    Kopeć, Grzegorz; Magoń, Wojciech; Hołda, Mateusz; Podolec, Piotr

    2015-01-01

    Background Electrocardiogram (ECG) is commonly used in diagnosis of heart diseases, including many life-threatening disorders. We aimed to assess skills in ECG interpretation among Polish medical students and to analyze the determinants of these skills. Material/Methods Undergraduates from all Polish medical schools were asked to complete a web-based survey containing 18 ECG strips. Questions concerned primary ECG parameters (rate, rhythm, and axis), emergencies, and common ECG abnormalities. Analysis was restricted to students in their clinical years (4th–6th), and students in their preclinical years (1st–3rd) were used as controls. Results We enrolled 536 medical students (females: n=299; 55.8%), aged 19 to 31 (23±1.6) years from all Polish medical schools. Most (72%) were in their clinical years. The overall rate of good response was better in students in years 4th–5th than those in years 1st–3rd (66% vs. 56%; pECG interpretation was higher in students who reported ECG self-learning (69% vs. 62%; pECG classes (66% vs. 66%; p=0.99). On multivariable analysis (pECG interpretation. Conclusions Polish medical students in their clinical years have a good level of competency in interpreting the primary ECG parameters, but their ability to recognize ECG signs of emergencies and common heart abnormalities is low. ECG interpretation skills are determined by self-education but not by attendance at regular ECG classes. Our results indicate qualitative and quantitative deficiencies in teaching ECG interpretation at medical schools. PMID:26541993

  14. An integrated bioimpedance—ECG gating technique for respiratory and cardiac motion compensation in cardiac PET

    International Nuclear Information System (INIS)

    Koivumäki, Tuomas; Nekolla, Stephan G; Fürst, Sebastian; Loher, Simone; Schwaiger, Markus; Vauhkonen, Marko; Hakulinen, Mikko A

    2014-01-01

    Respiratory motion may degrade image quality in cardiac PET imaging. Since cardiac PET studies often involve cardiac gating by ECG, a separate respiratory monitoring system is required increasing the logistic complexity of the examination, in case respiratory gating is also needed. Thus, we investigated the simultaneous acquisition of both respiratory and cardiac gating signals using II limb lead mimicking electrode configuration during cardiac PET scans of 11 patients. In addition to conventional static and ECG-gated images, bioimpedance technique was utilized to generate respiratory- and dual-gated images. The ability of the bioimpedance technique to monitor intrathoracic respiratory motion was assessed estimating cardiac displacement between end-inspiration and -expiration. The relevance of dual gating was evaluated in left ventricular volume and myocardial wall thickness measurements. An average 7.6  ±  3.3 mm respiratory motion was observed in the study population. Dual gating showed a small but significant increase (4 ml, p = 0.042) in left ventricular myocardial volume compared to plain cardiac gating. In addition, a thinner myocardial wall was observed in dual-gated images (9.3  ±  1.3 mm) compared to cardiac-gated images (11.3  ±  1.3 mm, p = 0.003). This study shows the feasibility of bioimpedance measurements for dual gating in a clinical setting. The method enables simultaneous acquisition of respiratory and cardiac gating signals using a single device with standard ECG electrodes. (paper)

  15. A Study on the Optimal Positions of ECG Electrodes in a Garment for the Design of ECG-Monitoring Clothing for Male.

    Science.gov (United States)

    Cho, Hakyung; Lee, Joo Hyeon

    2015-09-01

    Smart clothing is a sort of wearable device used for ubiquitous health monitoring. It provides comfort and efficiency in vital sign measurements and has been studied and developed in various types of monitoring platforms such as T-shirt and sports bra. However, despite these previous approaches, smart clothing for electrocardiography (ECG) monitoring has encountered a serious shortcoming relevant to motion artifacts caused by wearer movement. In effect, motion artifacts are one of the major problems in practical implementation of most wearable health-monitoring devices. In the ECG measurements collected by a garment, motion artifacts are usually caused by improper location of the electrode, leading to lack of contact between the electrode and skin with body motion. The aim of this study was to suggest a design for ECG-monitoring clothing contributing to reduction of motion artifacts. Based on the clothing science theory, it was assumed in this study that the stability of the electrode in a dynamic state differed depending on the electrode location in an ECG-monitoring garment. Founded on this assumption, effects of 56 electrode positions were determined by sectioning the surface of the garment into grids with 6 cm intervals in the front and back of the bodice. In order to determine the optimal locations of the ECG electrodes from the 56 positions, ECG measurements were collected from 10 participants at every electrode position in the garment while the wearer was in motion. The electrode locations indicating both an ECG measurement rate higher than 80.0 % and a large amplitude during motion were selected as the optimal electrode locations. The results of this analysis show four electrode locations with consistently higher ECG measurement rates and larger amplitudes amongst the 56 locations. These four locations were abstracted to be least affected by wearer movement in this research. Based on this result, a design of the garment-formed ECG monitoring platform

  16. A comprehensive survey of wearable and wireless ECG monitoring systems for older adults.

    Science.gov (United States)

    Baig, Mirza Mansoor; Gholamhosseini, Hamid; Connolly, Martin J

    2013-05-01

    Wearable health monitoring is an emerging technology for continuous monitoring of vital signs including the electrocardiogram (ECG). This signal is widely adopted to diagnose and assess major health risks and chronic cardiac diseases. This paper focuses on reviewing wearable ECG monitoring systems in the form of wireless, mobile and remote technologies related to older adults. Furthermore, the efficiency, user acceptability, strategies and recommendations on improving current ECG monitoring systems with an overview of the design and modelling are presented. In this paper, over 120 ECG monitoring systems were reviewed and classified into smart wearable, wireless, mobile ECG monitoring systems with related signal processing algorithms. The results of the review suggest that most research in wearable ECG monitoring systems focus on the older adults and this technology has been adopted in aged care facilitates. Moreover, it is shown that how mobile telemedicine systems have evolved and how advances in wearable wireless textile-based systems could ensure better quality of healthcare delivery. The main drawbacks of deployed ECG monitoring systems including imposed limitations on patients, short battery life, lack of user acceptability and medical professional's feedback, and lack of security and privacy of essential data have been also discussed.

  17. Quantum Measurement Backaction and Upconverting Microwave Signals with Mechanical Resonators

    Science.gov (United States)

    Peterson, R. W.

    The limits of optical measurement and control of mechanical motion are set by the quantum nature of light. The familiar shot noise limit can be avoided by increasing the optical power, but at high enough powers, the backaction of the randomly-arriving photons' radiation pressure can grow to become the dominant force on the system. This thesis will describe an experiment showing how backaction limits the laser cooling of macroscopic drumhead membranes, as well as work on how these membranes can be used to upconvert microwave signals to optical frequencies, potentially preserving the fragile quantum state of the upconverted signal.

  18. Measuring Radiofrequency and Microwave Radiation from Varying Signal Strengths

    Science.gov (United States)

    Davis, Bette; Gaul, W. C.

    2007-01-01

    This viewgraph presentation discusses the process of measuring radiofrequency and microwave radiation from various signal strengths. The topics include: 1) Limits and Guidelines; 2) Typical Variable Standard (IEEE) Frequency Dependent; 3) FCC Standard 47 CFR 1.1310; 4) Compliance Follows Unity Rule; 5) Multiple Sources Contribute; 6) Types of RF Signals; 7) Interfering Radiations; 8) Different Frequencies Different Powers; 9) Power Summing - Peak Power; 10) Contribution from Various Single Sources; 11) Total Power from Multiple Sources; 12) Are You Out of Compliance?; and 13) In Compliance.

  19. Simultaneous ECG-gated PET imaging of multiple mice

    International Nuclear Information System (INIS)

    Seidel, Jurgen; Bernardo, Marcelino L.; Wong, Karen J.; Xu, Biying; Williams, Mark R.; Kuo, Frank; Jagoda, Elaine M.; Basuli, Falguni; Li, Changhui; Griffiths, Gary L.

    2014-01-01

    Introduction: We describe and illustrate a method for creating ECG-gated PET images of the heart for each of several mice imaged at the same time. The method is intended to increase “throughput” in PET research studies of cardiac dynamics or to obtain information derived from such studies, e.g. tracer concentration in end-diastolic left ventricular blood. Methods: An imaging bed with provisions for warming, anesthetic delivery, etc., was fabricated by 3D printing to allow simultaneous PET imaging of two side-by-side mice. After electrode attachment, tracer injection and placement of the animals in the scanner field of view, ECG signals from each animal were continuously analyzed and independent trigger markers generated whenever an R-wave was detected in each signal. PET image data were acquired in “list” mode and these trigger markers were inserted into this list along with the image data. Since each mouse is in a different spatial location in the FOV, sorting of these data using trigger markers first from one animal and then the other yields two independent and correctly formed ECG-gated image sequences that reflect the dynamical properties of the heart during an “average” cardiac cycle. Results: The described method yields two independent ECG-gated image sequences that exhibit the expected properties in each animal, e.g. variation of the ventricular cavity volumes from maximum to minimum and back during the cardiac cycle in the processed animal with little or no variation in these volumes during the cardiac cycle in the unprocessed animal. Conclusion: ECG-gated image sequences for each of several animals can be created from a single list mode data collection using the described method. In principle, this method can be extended to more than two mice (or other animals) and to other forms of physiological gating, e.g. respiratory gating, when several subjects are imaged at the same time

  20. A novel LabVIEW-based multi-channel non-invasive abdominal maternal-fetal electrocardiogram signal generator.

    Science.gov (United States)

    Martinek, Radek; Kelnar, Michal; Koudelka, Petr; Vanus, Jan; Bilik, Petr; Janku, Petr; Nazeran, Homer; Zidek, Jan

    2016-02-01

    This paper describes the design, construction, and testing of a multi-channel fetal electrocardiogram (fECG) signal generator based on LabVIEW. Special attention is paid to the fetal heart development in relation to the fetus' anatomy, physiology, and pathology. The non-invasive signal generator enables many parameters to be set, including fetal heart rate (FHR), maternal heart rate (MHR), gestational age (GA), fECG interferences (biological and technical artifacts), as well as other fECG signal characteristics. Furthermore, based on the change in the FHR and in the T wave-to-QRS complex ratio (T/QRS), the generator enables manifestations of hypoxic states (hypoxemia, hypoxia, and asphyxia) to be monitored while complying with clinical recommendations for classifications in cardiotocography (CTG) and fECG ST segment analysis (STAN). The generator can also produce synthetic signals with defined properties for 6 input leads (4 abdominal and 2 thoracic). Such signals are well suited to the testing of new and existing methods of fECG processing and are effective in suppressing maternal ECG while non-invasively monitoring abdominal fECG. They may also contribute to the development of a new diagnostic method, which may be referred to as non-invasive trans-abdominal CTG +  STAN. The functional prototype is based on virtual instrumentation using the LabVIEW developmental environment and its associated data acquisition measurement cards (DAQmx). The generator also makes it possible to create synthetic signals and measure actual fetal and maternal ECGs by means of bioelectrodes.

  1. Resting ECG findings in elite football players.

    Science.gov (United States)

    Bohm, Philipp; Ditzel, Roman; Ditzel, Heribert; Urhausen, Axel; Meyer, Tim

    2013-01-01

    The purpose of the study was to evaluate ECG abnormalities in a large sample of elite football players. Data from 566 elite male football players (57 of them of African origin) above 16 years of age were screened retrospectively (age: 20.9 ± 5.3 years; BMI: 22.9 ± 1.7 kg · m(-2), training history: 13.8 ± 4.7 years). The resting ECGs were analysed and classified according to the most current ECG categorisation of the European Society of Cardiology (ESC) (2010) and a classification of Pelliccia et al. (2000) in order to assess the impact of the new ESC-approach. According to the classification of Pelliccia, 52.5% showed mildly abnormal ECG patterns and 12% were classified as distinctly abnormal ECG patterns. According to the classification of the ESC, 33.7% showed 'uncommon ECG patterns'. Short-QT interval was the most frequent ECG pattern in this group (41.9%), followed by a shortened PR-interval (19.9%). When assessed with a QTc cut-off-point of 340 ms (instead of 360 ms), only 22.2% would have had 'uncommon ECG patterns'. Resting ECG changes amongst elite football players are common. Adjustment of the ESC criteria by adapting proposed time limits for the ECG (e.g. QTc, PR) should further reduce the rate of false-positive results.

  2. Power-line Interference Removal from ECG in Case of Power-line Frequency Variations

    Directory of Open Access Journals (Sweden)

    Todor Stoyanov

    2008-10-01

    Full Text Available The original version of the most successful approach for power-line (PL interference removal from ECG, called subtraction procedure, is based on linear segment detection in the signal and hardware synchronised analogue-to-digital conversion to cope with the PL frequency variations. However, this is not feasible for battery supplied devices and some computer-aided ECG systems. Recent improvements of the procedure apply software measurement of the frequency variations that allow a re-sampling of the contaminated signal with the rated PL frequency followed by interference removal and back re-sampling for restoration of the original time intervals. This study deals with a more accurate software frequency measurement and introduces a notch filtration as alternative to the procedure when no linear segments are encountered for long time, e.g. in cases of ventricular fibrillation or tachycardia. The result obtained with large PL frequency variations demonstrate very small errors, usually in the range of ± 20 μV for the subtraction procedure and ± 60 μV for the notch filtration, the last values strongly depending on the frequency contents of the QRS complexes.

  3. Performance evaluation of carbon black based electrodes for underwater ECG monitoring.

    Science.gov (United States)

    Reyes, Bersain A; Posada-Quintero, Hugo F; Bales, Justin R; Chon, Ki H

    2014-01-01

    Underwater electrocardiogram (ECG) monitoring currently uses Ag/AgCl electrodes and requires sealing of the electrodes to avoid water intrusion, but this procedure is time consuming and often results in severe irritations or even tearing of the skin. To alleviate these problems, our research team developed hydrophobic electrodes comprised of a mixture of carbon black powder (CB) and polydimethylsiloxane (PDMS) that provide all morphological waveforms without distortion of an ECG signal for dry and water-immersed conditions. Performance comparison of CB/PDMS electrodes to adhesive Ag/AgCl hydrogel electrodes was carried out in three different scenarios which included recordings from a dry surface, water immersion, and post-water immersion conditions. CB/PDMS electrodes were able to acquire ECG signals highly correlated with those from adhesive Ag/AgCl electrodes during all conditions. Statistical reduction in ECG amplitude (pelectrodes when compared to Ag/AgCl electrodes sealed with their waterproof adhesive tape. Besides this reduction readability of the recordings was not obscured and all morphological waveforms of the ECG signal were discernible. The advantages of our CB/PDMS electrodes are that they are reusable, can be fabricated economically, and most importantly, high-fidelity underwater ECG signals can be acquired without relying on the heavy use of waterproof sealing.

  4. Measurement of transient two-phase flow velocity using statistical signal analysis of impedance probe signals

    International Nuclear Information System (INIS)

    Leavell, W.H.; Mullens, J.A.

    1981-01-01

    A computational algorithm has been developed to measure transient, phase-interface velocity in two-phase, steam-water systems. The algorithm will be used to measure the transient velocity of steam-water mixture during simulated PWR reflood experiments. By utilizing signals produced by two, spatially separated impedance probes immersed in a two-phase mixture, the algorithm computes the average transit time of mixture fluctuations moving between the two probes. This transit time is computed by first, measuring the phase shift between the two probe signals after transformation to the frequency domain and then computing the phase shift slope by a weighted least-squares fitting technique. Our algorithm, which has been tested with both simulated and real data, is able to accurately track velocity transients as fast as 4 m/s/s

  5. ECG-cryptography and authentication in body area networks.

    Science.gov (United States)

    Zhang, Zhaoyang; Wang, Honggang; Vasilakos, Athanasios V; Fang, Hua

    2012-11-01

    Wireless body area networks (BANs) have drawn much attention from research community and industry in recent years. Multimedia healthcare services provided by BANs can be available to anyone, anywhere, and anytime seamlessly. A critical issue in BANs is how to preserve the integrity and privacy of a person's medical data over wireless environments in a resource efficient manner. This paper presents a novel key agreement scheme that allows neighboring nodes in BANs to share a common key generated by electrocardiogram (ECG) signals. The improved Jules Sudan (IJS) algorithm is proposed to set up the key agreement for the message authentication. The proposed ECG-IJS key agreement can secure data communications over BANs in a plug-n-play manner without any key distribution overheads. Both the simulation and experimental results are presented, which demonstrate that the proposed ECG-IJS scheme can achieve better security performance in terms of serval performance metrics such as false acceptance rate (FAR) and false rejection rate (FRR) than other existing approaches. In addition, the power consumption analysis also shows that the proposed ECG-IJS scheme can achieve energy efficiency for BANs.

  6. Optimization of Ecg Gating in Quantitative Femoral Angiography

    International Nuclear Information System (INIS)

    Nilsson, S.; Berglund, I.; Erikson, U.; Johansson, J.; Walldius, G.

    2003-01-01

    Purpose: To determine which phase of the heart cycle would yield the highest reproducibility in measuring atherosclerosis-related variables such as arterial lumen volume and edge roughness. Material and Methods: 35 patients with hypercholesterolemia underwent select ive femoral angiography, repeated four times at 10-min intervals. The angiographies were performed with Ecg-gated exposures. In angiographies 1 and 2 the delay from R-wave maximum to each exposure was 0.1 s, in angiographies 3 and 4 the delay was 0.1, 0.3, 0.5 or 0.7 s or the exposures were performed 1/s without Ecg gating. Arterial lumen volume and edge roughness were measured in a 20-cm segment of the superficial femoral artery using a computer-based densitometric method. Measurement reproducibility was determined by comparing angiographies 1-2 and angiographies 3-4. Results: When measuring arterial lumen volume and edge roughness of a 20-cm segment of the femoral artery, reproducibility was not dependent on Ecg gating. In measuring single arterial diameters and cross-sectional areas, the reproducibility was better when exposures were made 0.1 s after the R-wave maximum than when using other settings of the Ecg gating device or without Ecg gating. Conclusion: The influence of pulsatile flow upon quantitative measurement in femoral angiograms seems to be the smallest possible in early systole, as can be demonstrated when measuring single diameters and cross-sectional areas. In variables based on integration over longer segments, measurement reproducibility seems to be independent of phase

  7. Optimization of Ecg Gating in Quantitative Femoral Angiography

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, S.; Berglund, I.; Erikson, U. [Univ. Hospital, Uppsala (Sweden). Dept. of Oncology, Radiology and Clinical Immunology; Johansson, J.; Walldius, G. [Karolinska Hospital, Stockholm (Sweden). King Gustav V Research Inst.

    2003-09-01

    Purpose: To determine which phase of the heart cycle would yield the highest reproducibility in measuring atherosclerosis-related variables such as arterial lumen volume and edge roughness. Material and Methods: 35 patients with hypercholesterolemia underwent select ive femoral angiography, repeated four times at 10-min intervals. The angiographies were performed with Ecg-gated exposures. In angiographies 1 and 2 the delay from R-wave maximum to each exposure was 0.1 s, in angiographies 3 and 4 the delay was 0.1, 0.3, 0.5 or 0.7 s or the exposures were performed 1/s without Ecg gating. Arterial lumen volume and edge roughness were measured in a 20-cm segment of the superficial femoral artery using a computer-based densitometric method. Measurement reproducibility was determined by comparing angiographies 1-2 and angiographies 3-4. Results: When measuring arterial lumen volume and edge roughness of a 20-cm segment of the femoral artery, reproducibility was not dependent on Ecg gating. In measuring single arterial diameters and cross-sectional areas, the reproducibility was better when exposures were made 0.1 s after the R-wave maximum than when using other settings of the Ecg gating device or without Ecg gating. Conclusion: The influence of pulsatile flow upon quantitative measurement in femoral angiograms seems to be the smallest possible in early systole, as can be demonstrated when measuring single diameters and cross-sectional areas. In variables based on integration over longer segments, measurement reproducibility seems to be independent of phase.

  8. Transform Domain Robust Variable Step Size Griffiths' Adaptive Algorithm for Noise Cancellation in ECG

    Science.gov (United States)

    Hegde, Veena; Deekshit, Ravishankar; Satyanarayana, P. S.

    2011-12-01

    The electrocardiogram (ECG) is widely used for diagnosis of heart diseases. Good quality of ECG is utilized by physicians for interpretation and identification of physiological and pathological phenomena. However, in real situations, ECG recordings are often corrupted by artifacts or noise. Noise severely limits the utility of the recorded ECG and thus needs to be removed, for better clinical evaluation. In the present paper a new noise cancellation technique is proposed for removal of random noise like muscle artifact from ECG signal. A transform domain robust variable step size Griffiths' LMS algorithm (TVGLMS) is proposed for noise cancellation. For the TVGLMS, the robust variable step size has been achieved by using the Griffiths' gradient which uses cross-correlation between the desired signal contaminated with observation or random noise and the input. The algorithm is discrete cosine transform (DCT) based and uses symmetric property of the signal to represent the signal in frequency domain with lesser number of frequency coefficients when compared to that of discrete Fourier transform (DFT). The algorithm is implemented for adaptive line enhancer (ALE) filter which extracts the ECG signal in a noisy environment using LMS filter adaptation. The proposed algorithm is found to have better convergence error/misadjustment when compared to that of ordinary transform domain LMS (TLMS) algorithm, both in the presence of white/colored observation noise. The reduction in convergence error achieved by the new algorithm with desired signal decomposition is found to be lower than that obtained without decomposition. The experimental results indicate that the proposed method is better than traditional adaptive filter using LMS algorithm in the aspects of retaining geometrical characteristics of ECG signal.

  9. Identification of the QRS Complex in the ECG

    Directory of Open Access Journals (Sweden)

    Martin Paralič

    2016-12-01

    Full Text Available The cardiovascular heart diseases are one of the most common causes of leading to death of man. Unfortunately, the symptoms vary and the most common reason for critical delays in medical treatment is lack of early warning and patient unawareness. In this paper, we present a development of the mobile application for Electrocardiogram measurements based on communication with a smart clothing using Bluetooth. The objectives of the application are a wireless data collection and analysis of ECG signal. The analysis is aimed for precise detection of QRS complex parameters plus detection of P-wave and T-wave. Measurement and evaluation of multiple PQRST parameters in a series allows detection of anomalies which leads to different heart diseases. Early warning system can help to make preventive actions to avoid severe heart disease. The recorded data are exported to format of the MIT/BIH arrhythmia database to be compatible with the professional medical software. This program will be devoted to the purposes of research and home healthcare instead of clinical diagnosis.

  10. Low-cost compact ECG with graphic LCD and phonocardiogram system design.

    Science.gov (United States)

    Kara, Sadik; Kemaloğlu, Semra; Kirbaş, Samil

    2006-06-01

    Till today, many different ECG devices are made in developing countries. In this study, low cost, small size, portable LCD screen ECG device, and phonocardiograph were designed. With designed system, heart sounds that take synchronously with ECG signal are heard as sensitive. Improved system consist three units; Unit 1, ECG circuit, filter and amplifier structure. Unit 2, heart sound acquisition circuit. Unit 3, microcontroller, graphic LCD and ECG signal sending unit to computer. Our system can be used easily in different departments of the hospital, health institution and clinics, village clinic and also in houses because of its small size structure and other benefits. In this way, it is possible that to see ECG signal and hear heart sounds as synchronously and sensitively. In conclusion, heart sounds are heard on the part of both doctor and patient because sounds are given to environment with a tiny speaker. Thus, the patient knows and hears heart sounds him/herself and is acquainted by doctor about healthy condition.

  11. Left Ventricular Hypertrophy: An allometric comparative analysis of different ECG markers

    International Nuclear Information System (INIS)

    Bonomini, MP; Valentinuzzi, M E; Arini, P D; Ingallina, F; Barone, V

    2011-01-01

    Allometry, in general biology, measures the relative growth of a part in relation to the whole living organism. Left ventricular hypertrophy (LVH) is the heart adaptation to excessive load (systolic or diastolic). The increase in left ventricular mass leads to an increase in the electrocardiographic voltages. Based on clinical data, we compared the allometric behavior of three different ECG markers of LVH. To do this, the allometric fit AECG δ + β (VM) relating left ventricular mass (estimated from ecocardiographic data) and ECG amplitudes (expressed as the Cornell-Voltage, Sokolow and the ECG overall voltage indexes) were compared. Besides, sensitivity and specificity for each index were analyzed. The more sensitive the ECG criteria, the better the allometric fit. In conclusion: The allometric paradigm should be regarded as the way to design new and more sensitive ECG-based LVH markers.

  12. Debuncher Momentum Cooling Systems Signal to Noise Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pasquinelli, Ralph J.; /Fermilab

    2001-12-18

    The Debuncher Momentum cooling systems were carefully measured for signal to noise. It was observed that cooling performance was not optimum. Closer inspection shows that the installed front-end bandpass filters are wider than the pickup response. (The original filters were specified to be wider so that none of the available bandwidth would be clipped.) The end result is excess noise is amplified and passed onto the kickers unimpeded, hence, reducing the achievable system gain. From this data, new filters should be designed to improve performance. New system bandwidths are specified on the data figures. Also included are the transfer function measurements that clearly show adjacent band response. In band 4 upper, the adjacent lobes are strong and out of phase. This is also degrading the system performance. The correlation between spectrum analyzer signal to noise and network analyzer system transfer functions is very strong. The table below has a calculation of expected improvement of front noise reduction by means of building new front-end bandpass filters. The calculation is based on a flat input noise spectrum and is a linear estimation of improvement. The listed 3dB bandwidths of the original filters are from measured data. The expected bandwidth is taken from the linear spectrum analyzer plots and is closer to a 10 dB bandwidth making the percentage improvement conservative. The signal to noise measurements are taken with circulating pbars in the Debuncher. One cooling system was measured at a time with all others off. Beam currents are below ten microamperes.

  13. Debuncher Momentum Cooling Systems Signal to Noise Measurements

    International Nuclear Information System (INIS)

    Pasquinelli, Ralph J.

    2001-01-01

    The Debuncher Momentum cooling systems were carefully measured for signal to noise. It was observed that cooling performance was not optimum. Closer inspection shows that the installed front-end bandpass filters are wider than the pickup response. (The original filters were specified to be wider so that none of the available bandwidth would be clipped.) The end result is excess noise is amplified and passed onto the kickers unimpeded, hence, reducing the achievable system gain. From this data, new filters should be designed to improve performance. New system bandwidths are specified on the data figures. Also included are the transfer function measurements that clearly show adjacent band response. In band 4 upper, the adjacent lobes are strong and out of phase. This is also degrading the system performance. The correlation between spectrum analyzer signal to noise and network analyzer system transfer functions is very strong. The table below has a calculation of expected improvement of front noise reduction by means of building new front-end bandpass filters. The calculation is based on a flat input noise spectrum and is a linear estimation of improvement. The listed 3dB bandwidths of the original filters are from measured data. The expected bandwidth is taken from the linear spectrum analyzer plots and is closer to a 10 dB bandwidth making the percentage improvement conservative. The signal to noise measurements are taken with circulating pbars in the Debuncher. One cooling system was measured at a time with all others off. Beam currents are below ten microamperes.

  14. Compressed ECG biometric: a fast, secured and efficient method for identification of CVD patient.

    Science.gov (United States)

    Sufi, Fahim; Khalil, Ibrahim; Mahmood, Abdun

    2011-12-01

    Adoption of compression technology is often required for wireless cardiovascular monitoring, due to the enormous size of Electrocardiography (ECG) signal and limited bandwidth of Internet. However, compressed ECG must be decompressed before performing human identification using present research on ECG based biometric techniques. This additional step of decompression creates a significant processing delay for identification task. This becomes an obvious burden on a system, if this needs to be done for a trillion of compressed ECG per hour by the hospital. Even though the hospital might be able to come up with an expensive infrastructure to tame the exuberant processing, for small intermediate nodes in a multihop network identification preceded by decompression is confronting. In this paper, we report a technique by which a person can be identified directly from his / her compressed ECG. This technique completely obviates the step of decompression and therefore upholds biometric identification less intimidating for the smaller nodes in a multihop network. The biometric template created by this new technique is lower in size compared to the existing ECG based biometrics as well as other forms of biometrics like face, finger, retina etc. (up to 8302 times lower than face template and 9 times lower than existing ECG based biometric template). Lower size of the template substantially reduces the one-to-many matching time for biometric recognition, resulting in a faster biometric authentication mechanism.

  15. Novel technical solutions for wireless ECG transmission & analysis in the age of the internet cloud.

    Science.gov (United States)

    Al-Zaiti, Salah S; Shusterman, Vladimir; Carey, Mary G

    2013-01-01

    Current guidelines recommend early reperfusion therapy for ST-elevation myocardial infarction (STEMI) within 90 min of first medical encounter. Telecardiology entails the use of advanced communication technologies to transmit the prehospital 12-lead electrocardiogram (ECG) to offsite cardiologists for early triage to the cath lab; which has been shown to dramatically reduce door-to-balloon time and total mortality. However, hospitals often find adopting ECG transmission technologies very challenging. The current review identifies seven major technical challenges of prehospital ECG transmission, including: paramedics inconvenience and transport delay; signal noise and interpretation errors; equipment malfunction and transmission failure; reliability of mobile phone networks; lack of compliance with the standards of digital ECG formats; poor integration with electronic medical records; and costly hardware and software pre-requisite installation. Current and potential solutions to address each of these technical challenges are discussed in details and include: automated ECG transmission protocols; annotatable waveform-based ECGs; optimal routing solutions; and the use of cloud computing systems rather than vendor-specific processing stations. Nevertheless, strategies to monitor transmission effectiveness and patient outcomes are essential to sustain initial gains of implementing ECG transmission technologies. © 2013.

  16. Mutual information measures applied to EEG signals for sleepiness characterization.

    Science.gov (United States)

    Melia, Umberto; Guaita, Marc; Vallverdú, Montserrat; Embid, Cristina; Vilaseca, Isabel; Salamero, Manel; Santamaria, Joan

    2015-03-01

    Excessive daytime sleepiness (EDS) is one of the main symptoms of several sleep related disorders with a great impact on the patient lives. While many studies have been carried out in order to assess daytime sleepiness, the automatic EDS detection still remains an open problem. In this work, a novel approach to this issue based on non-linear dynamical analysis of EEG signal was proposed. Multichannel EEG signals were recorded during five maintenance of wakefulness (MWT) and multiple sleep latency (MSLT) tests alternated throughout the day from patients suffering from sleep disordered breathing. A group of 20 patients with excessive daytime sleepiness (EDS) was compared with a group of 20 patients without daytime sleepiness (WDS), by analyzing 60-s EEG windows in waking state. Measures obtained from cross-mutual information function (CMIF) and auto-mutual-information function (AMIF) were calculated in the EEG. These functions permitted a quantification of the complexity properties of the EEG signal and the non-linear couplings between different zones of the scalp. Statistical differences between EDS and WDS groups were found in β band during MSLT events (p-value CMIF measures yielded sensitivity and specificity above 80% and AUC of ROC above 0.85 in classifying EDS and WDS patients. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. The electrocardiogram signal of Seba's short-tailed bat, Carollia perspicillata.

    Science.gov (United States)

    Mihova, Diana; Hechavarría, Julio C

    2016-07-01

    A number of studies have successfully used electrocardiogram (ECG) signals to characterize complex physiological phenomena such as associative learning in bats. However, at present, no thorough characterization of the structure of ECG signals is available for these animals. The aim of the present study was to quantitatively characterize features of the ECG signals in the bat species Carollia perspicillata, a species that is commonly used in neuroethology studies. Our results show that the ECG signals of C. perspicillata follow the typical mammalian pattern, in that they are composed by a P wave, QRS complex and a T wave. Peak-to-peak amplitudes in the bats' ECG signals were larger in measuring configurations in which one of the electrodes was attached to the right thumb. In addition, large differences in the instantaneous heart rate (HR) distributions were observed between ketamine/xylazine anesthetized and awake bats. Ketamine/xylazine might target the neural circuits that control HR, therefore, instantaneous HR measurements should only be used as physiological marker in awake animals.

  18. Analysis and classification of ECG-waves and rhythms using circular statistics and vector strength

    Directory of Open Access Journals (Sweden)

    Janßen Jan-Dirk

    2017-09-01

    Full Text Available The most common way to analyse heart rhythm is to calculate the RR-interval and the heart rate variability. For further evaluation, descriptive statistics are often used. Here we introduce a new and more natural heart rhythm analysis tool that is based on circular statistics and vector strength. Vector strength is a tool to measure the periodicity or lack of periodicity of a signal. We divide the signal into non-overlapping window segments and project the detected R-waves around the unit circle using the complex exponential function and the median RR-interval. In addition, we calculate the vector strength and apply circular statistics as wells as an angular histogram on the R-wave vectors. This approach enables an intuitive visualization and analysis of rhythmicity. Our results show that ECG-waves and rhythms can be easily visualized, analysed and classified by circular statistics and vector strength.

  19. Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology.

    Science.gov (United States)

    Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M B

    2015-01-01

    This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has been processed in Labview where the digital filter techniques have been implemented to remove the noise from the acquired signal. After processing, the algorithm was developed to calculate the heart rate and to analyze the arrhythmia condition. Finally, SMTP technology has been added in our work to make device more communicative and much more cost-effective solution in telemedicine technology which has been key-problem to realize the telediagnosis and monitoring of ECG signals. The technology also can be easily implemented over already existing Internet.

  20. Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach.

    Science.gov (United States)

    Elgendi, Mohamed; Al-Ali, Abdulla; Mohamed, Amr; Ward, Rabab

    2018-01-16

    Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG) signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B / K are evaluated based on compression ratio (CR), percentage root-mean-square difference (PRD), and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects), the new algorithm demonstrates the highest compression performance ( CR = 6 and PRD = 1.88 ) and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity) over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring.

  1. Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach

    Directory of Open Access Journals (Sweden)

    Mohamed Elgendi

    2018-01-01

    Full Text Available Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B / K are evaluated based on compression ratio (CR, percentage root-mean-square difference (PRD, and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects, the new algorithm demonstrates the highest compression performance ( CR = 6 and PRD = 1.88 and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring.

  2. Cohort Study of ECG Left Ventricular Hypertrophy Trajectories: Ethnic Disparities, Associations With Cardiovascular Outcomes, and Clinical Utility.

    Science.gov (United States)

    Iribarren, Carlos; Round, Alfred D; Lu, Meng; Okin, Peter M; McNulty, Edward J

    2017-10-05

    ECG left ventricular hypertrophy (LVH) is a well-known predictor of cardiovascular disease. However, no prior study has characterized patterns of presence/absence of ECG LVH ("ECG LVH trajectories") across the adult lifespan in both sexes and across ethnicities. We examined: (1) correlates of ECG LVH trajectories; (2) the association of ECG LVH trajectories with incident coronary heart disease, transient ischemic attack, ischemic stroke, hemorrhagic stroke, and heart failure; and (3) reclassification of cardiovascular disease risk using ECG LVH trajectories. We performed a cohort study among 75 412 men and 107 954 women in the Northern California Kaiser Permanente Medical Care Program who had available longitudinal exposures of ECG LVH and covariates, followed for a median of 4.8 (range ECG LVH was measured by Cornell voltage-duration product. Adverse trajectories of ECG LVH (persistent, new development, or variable pattern) were more common among blacks and Native American men and were independently related to incident cardiovascular disease with hazard ratios ranging from 1.2 for ECG LVH variable pattern and transient ischemic attack in women to 2.8 for persistent ECG LVH and heart failure in men. ECG LVH trajectories reclassified 4% and 7% of men and women with intermediate coronary heart disease risk, respectively. ECG LVH trajectories were significant indicators of coronary heart disease, stroke, and heart failure risk, independently of level and change in cardiovascular disease risk factors, and may have clinical utility. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  3. Signal validation in nuclear power plants using redundant measurements

    International Nuclear Information System (INIS)

    Glockler, O.; Upadhyaya, B.R.; Morgenstern, V.M.

    1989-01-01

    This paper discusses the basic principles of a multivariable signal validation software system utilizing redundant sensor readings of process variables in nuclear power plants (NPPs). The technique has been tested in numerical experiments, and was applied to actual data from a pressurized water reactor (PWR). The simultaneous checking within one redundant measurement set, and the cross-checking among redundant measurement sets of dissimilar process variables, results in an algorithm capable of detecting and isolating bias-type errors. A case in point occurs when a majority of the direct redundant measurements of more than one process variable has failed simultaneously by a common-mode or correlated failures can be detected by the developed approach. 5 refs

  4. Use of glycolytic pathways for inhibiting or measuring oncogenic signaling

    Science.gov (United States)

    Onodera, Yasuhito; Bissell, Mina

    2017-06-27

    Disclosed are methods in which glucose metabolism is correlated to oncogenesis through certain specific pathways; inhibition of certain enzymes is shown to interfere with oncogenic signaling, and measurement of certain enzyme levels is correlated with patient survival. The present methods comprise measuring level of expression of at least one of the enzymes involved in glucose uptake or metabolism, wherein increased expression of the at least one of the enzymes relative to expression in a normal cell correlates with poor prognosis of disease in a patient. Preferably the genes whose expression level is measured include GLUT3, PFKP, GAPDH, ALDOC, LDHA and GFPT2. Also disclosed are embodiments directed towards downregulating the expression of some genes in glucose uptake and metabolism.

  5. Expert knowledge for computerized ECG interpretation

    NARCIS (Netherlands)

    J.A. Kors (Jan)

    1992-01-01

    textabstractIn this study, two main questions are addressed: (1) Can the time consuming and cumbersome development and refinement of (heuristic) ECG classifiers be alleviated, and (2) Is it possible to increase diagnostic performance of ECG computer programs by combining knowledge from multiple

  6. Thickness measurement by using cepstrum ultrasonic signal processing

    International Nuclear Information System (INIS)

    Choi, Young Chul; Yoon, Chan Hoon; Choi, Heui Joo; Park, Jong Sun

    2014-01-01

    Ultrasonic thickness measurement is a non-destructive method to measure the local thickness of a solid element, based on the time taken for an ultrasound wave to return to the surface. When an element is very thin, it is difficult to measure thickness with the conventional ultrasonic thickness method. This is because the method measures the time delay by using the peak of a pulse, and the pulses overlap. To solve this problem, we propose a method for measuring thickness by using the power cepstrum and the minimum variance cepstrum. Because the cepstrums processing can divides the ultrasound into an impulse train and transfer function, where the period of the impulse train is the traversal time, the thickness can be measured exactly. To verify the proposed method, we performed experiments with steel and, acrylic plates of variable thickness. The conventional method is not able to estimate the thickness, because of the overlapping pulses. However, the cepstrum ultrasonic signal processing that divides a pulse into an impulse and a transfer function can measure the thickness exactly.

  7. Subcutaneous ICD screening with the Boston Scientific ZOOM programmer versus a 12-lead ECG machine.

    Science.gov (United States)

    Chang, Shu C; Patton, Kristen K; Robinson, Melissa R; Poole, Jeanne E; Prutkin, Jordan M

    2018-02-24

    The subcutaneous implantable cardioverter-defibrillator (S-ICD) requires preimplant screening to ensure appropriate sensing and reduce risk of inappropriate shocks. Screening can be performed using either an ICD programmer or a 12-lead electrocardiogram (ECG) machine. It is unclear whether differences in signal filtering and digital sampling change the screening success rate. Subjects were recruited if they had a transvenous single-lead ICD without pacing requirements or were candidates for a new ICD. Screening was performed using both a Boston Scientific ZOOM programmer (Marlborough, MA, USA) and General Electric MAC 5000 ECG machine (Fairfield, CT, USA). A pass was defined as having at least one lead that fit within the screening template in both supine and sitting positions. A total of 69 subjects were included and 27 sets of ECG leads had differing screening results between the two machines (7%). Of these sets, 22 (81%) passed using the ECG machine but failed using the programmer and five (19%) passed using the ECG machine but failed using the programmer (P machine but failed using the programmer. No subject passed screening with the programmer but failed with the ECG machine. There can be occasional disagreement in S-ICD patient screening between an ICD programmer and ECG machine, all of whom passed with the ECG machine but failed using the programmer. On a per lead basis, the ECG machine passes more subjects. It is unknown what the inappropriate shock rate would be if an S-ICD was implanted. Clinical judgment should be used in borderline cases. © 2018 Wiley Periodicals, Inc.

  8. Enhancement of low sampling frequency recordings for ECG biometric matching using interpolation.

    Science.gov (United States)

    Sidek, Khairul Azami; Khalil, Ibrahim

    2013-01-01

    Electrocardiogram (ECG) based biometric matching suffers from high misclassification error with lower sampling frequency data. This situation may lead to an unreliable and vulnerable identity authentication process in high security applications. In this paper, quality enhancement techniques for ECG data with low sampling frequency has been proposed for person identification based on piecewise cubic Hermite interpolation (PCHIP) and piecewise cubic spline interpolation (SPLINE). A total of 70 ECG recordings from 4 different public ECG databases with 2 different sampling frequencies were applied for development and performance comparison purposes. An analytical method was used for feature extraction. The ECG recordings were segmented into two parts: the enrolment and recognition datasets. Three biometric matching methods, namely, Cross Correlation (CC), Percent Root-Mean-Square Deviation (PRD) and Wavelet Distance Measurement (WDM) were used for performance evaluation before and after applying interpolation techniques. Results of the experiments suggest that biometric matching with interpolated ECG data on average achieved higher matching percentage value of up to 4% for CC, 3% for PRD and 94% for WDM. These results are compared with the existing method when using ECG recordings with lower sampling frequency. Moreover, increasing the sample size from 56 to 70 subjects improves the results of the experiment by 4% for CC, 14.6% for PRD and 0.3% for WDM. Furthermore, higher classification accuracy of up to 99.1% for PCHIP and 99.2% for SPLINE with interpolated ECG data as compared of up to 97.2% without interpolation ECG data verifies the study claim that applying interpolation techniques enhances the quality of the ECG data. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Energy-efficient ECG compression on wireless biosensors via minimal coherence sensing and weighted ℓ₁ minimization reconstruction.

    Science.gov (United States)

    Zhang, Jun; Gu, Zhenghui; Yu, Zhu Liang; Li, Yuanqing

    2015-03-01

    Low energy consumption is crucial for body area networks (BANs). In BAN-enabled ECG monitoring, the continuous monitoring entails the need of the sensor nodes to transmit a huge data to the sink node, which leads to excessive energy consumption. To reduce airtime over energy-hungry wireless links, this paper presents an energy-efficient compressed sensing (CS)-based approach for on-node ECG compression. At first, an algorithm called minimal mutual coherence pursuit is proposed to construct sparse binary measurement matrices, which can be used to encode the ECG signals with superior performance and extremely low complexity. Second, in order to minimize the data rate required for faithful reconstruction, a weighted ℓ1 minimization model is derived by exploring the multisource prior knowledge in wavelet domain. Experimental results on MIT-BIH arrhythmia database reveals that the proposed approach can obtain higher compression ratio than the state-of-the-art CS-based methods. Together with its low encoding complexity, our approach can achieve significant energy saving in both encoding process and wireless transmission.

  10. Low frequency phase signal measurement with high frequency squeezing

    OpenAIRE

    Zhai, Zehui; Gao, Jiangrui

    2011-01-01

    We calculate the utility of high-frequency squeezed-state enhanced two-frequency interferometry for low-frequency phase measurement. To use the high-frequency sidebands of the squeezed light, a two-frequency intense laser is used in the interferometry instead of a single-frequency laser as usual. We find that the readout signal can be contaminated by the high-frequency phase vibration, but this is easy to check and avoid. A proof-of-principle experiment is in the reach of modern quantum optic...

  11. A cancelable biometric scheme based on multi-lead ECGs.

    Science.gov (United States)

    Peng-Tzu Chen; Shun-Chi Wu; Jui-Hsuan Hsieh

    2017-07-01

    Biometric technologies offer great advantages over other recognition methods, but there are concerns that they may compromise the privacy of individuals. In this paper, an electrocardiogram (ECG)-based cancelable biometric scheme is proposed to relieve such concerns. In this scheme, distinct biometric templates for a given beat bundle are constructed via "subspace collapsing." To determine the identity of any unknown beat bundle, the multiple signal classification (MUSIC) algorithm, incorporating a "suppression and poll" strategy, is adopted. Unlike the existing cancelable biometric schemes, knowledge of the distortion transform is not required for recognition. Experiments with real ECGs from 285 subjects are presented to illustrate the efficacy of the proposed scheme. The best recognition rate of 97.58 % was achieved under the test condition N train = 10 and N test = 10.

  12. Disease Classification and Biomarker Discovery Using ECG Data

    Directory of Open Access Journals (Sweden)

    Rong Huang

    2015-01-01

    Full Text Available In the recent decade, disease classification and biomarker discovery have become increasingly important in modern biological and medical research. ECGs are comparatively low-cost and noninvasive in screening and diagnosing heart diseases. With the development of personal ECG monitors, large amounts of ECGs are recorded and stored; therefore, fast and efficient algorithms are called for to analyze the data and make diagnosis. In this paper, an efficient and easy-to-interpret procedure of cardiac disease classification is developed through novel feature extraction methods and comparison of classifiers. Motivated by the observation that the distributions of various measures on ECGs of the diseased group are often skewed, heavy-tailed, or multimodal, we characterize the distributions by sample quantiles which outperform sample means. Three classifiers are compared in application both to all features and to dimension-reduced features by PCA: stepwise discriminant analysis (SDA, SVM, and LASSO logistic regression. It is found that SDA applied to dimension-reduced features by PCA is the most stable and effective procedure, with sensitivity, specificity, and accuracy being 89.68%, 84.62%, and 88.52%, respectively.

  13. Check your biosignals here: a new dataset for off-the-person ECG biometrics.

    Science.gov (United States)

    da Silva, Hugo Plácido; Lourenço, André; Fred, Ana; Raposo, Nuno; Aires-de-Sousa, Marta

    2014-02-01

    The Check Your Biosignals Here initiative (CYBHi) was developed as a way of creating a dataset and consistently repeatable acquisition framework, to further extend research in electrocardiographic (ECG) biometrics. In particular, our work targets the novel trend towards off-the-person data acquisition, which opens a broad new set of challenges and opportunities both for research and industry. While datasets with ECG signals collected using medical grade equipment at the chest can be easily found, for off-the-person ECG data the solution is generally for each team to collect their own corpus at considerable expense of resources. In this paper we describe the context, experimental considerations, methods, and preliminary findings of two public datasets created by our team, one for short-term and another for long-term assessment, with ECG data collected at the hand palms and fingers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Evaluating ECG and carboxyhemoglobin changes due to smoking narghile.

    Science.gov (United States)

    Yıldırım, Fazıl; Çevik, Yunsur; Emektar, Emine; Çorbacıoğlu, Şeref Kerem; Katırcı, Yavuz

    2016-10-01

    This study aimed to investigate whether increased carboxyhemoglobin (COHB) levels and ECG changes, which associated with fatal ventricular dysrhythmias, including increased QT, P-wave and T peak (Tp)-Tend (Te) dispersion, can be detected after smoking narghile, which is a traditional method of smoking tobacco that is smoked from hookah device. After local ethics committee approval, this prospective study was conducted using healthy volunteer subjects at a "narghile café," which is used by people smoking narghile in an open area. Before beginning to smoke narghile, all subjects' 12-lead electrocardiographs (ECG), measurements of COHB levels, and vital signs were recorded. After smoking narghile for 30 min, the recording of the 12-lead ECGs and the measurements of COHB level and all vital signs were repeated. The mean age of subjects was 26.8 ± 6.2 years (min-max: 18-40), and 28 subjects (84.8%) were male. Before smoking narghile, the median value of subjects' COHB levels was 1.3% (min-max: 0-6), whereas after smoking, the median value of COHB was 23.7% (min-max: 6-44), a statistically significant increase (p < 0.001). Analysis of the subjects' ECG changes after smoking narghile showed that dispersions of QT, QTc, P-wave and Tp-Te were increased, and all changes were statistically significant (p < 0.001 for all parameters). Although, especially among young people, it is commonly thought that smoking narghile has less harmful or toxic effects than other tobacco products. The results of this study and past studies clearly demonstrated that smoking narghile can cause several ECG changes - including increased QT, P-wave and Tp-Te dispersion - which can be associated with ventricular dysrhythmias.

  15. Flow measurements using noise signals of axially displaced thermocouples

    Energy Technology Data Exchange (ETDEWEB)

    Kozma, R.; Hoogenboom, J.E. (Interuniversitair Reactor Inst., Delft (Netherlands))

    1990-01-01

    Determination of the flow rate of the coolant in the cooling channels of nuclear reactors is an important aspect of core monitoring. It is usually impossible to measure the flow by flowmeters in the individual channels due to the lack of space and safety reasons. An alternative method is based on the analysis of noise signals of the available in-core detectors. In such a noise method, a transit time which characterises the propagation of thermohydraulic fluctuations (density or temperature fluctuations) in the coolant is determined from the correlation between the noise signals of axially displaced detectors. In this paper, the results of flow measurements using axially displaced thermocouples in the channel wall will be presented. The experiments have been performed in a simulated MRT-type fuel assembly located in the research reactor HOR of the Interfaculty Reactor Institute, Delft. It was found that the velocities obtained via temperature noise correlation methods are significantly larger than the area-averaged velocity in the single-phase coolant flow. Model calculations show that the observed phenomenon can be explained by effects due to the radial velocity distribution in the channel. (author).

  16. Electrograms (ECG, EEG, EMG, EOG).

    Science.gov (United States)

    Reilly, Richard B; Lee, T Clive

    2010-01-01

    There is a constant need in medicine to obtain objective measurements of physical and cognitive function as the basis for diagnosis and monitoring of health. The body can be considered as a chemical and electrical system supported by a mechanical structure. Measuring and quantifying such electrical activity provides a means for objective examination of heath status. The term electrogram, from the Greek electro meaning electricity and gram meaning write or record, is the broad definition given to the recording of electrical signal from the body. In order that comparisons of electrical activity can be made against normative data, certain methods and procedures have been defined for different electrograms. This paper reviews these methods and procedures for the more typical electrograms associated with some of the major organs in the body, providing a first point of reference for the reader.

  17. Unobtrusive ECG monitoring in the NICU using a capacitive sensing array

    International Nuclear Information System (INIS)

    Atallah, L; Meftah, M; Schellekens, M; Serteyn, A; Vullings, R; Bergmans, J W M; Osagiator, A; Oetomo, S Bambang

    2014-01-01

    The thin skin of preterm babies is easily damaged by adhesive electrodes, tapes, chest drains and needle-marks. The scars caused could be disfiguring or disabling to 10% of preterm newborns. Capacitive sensors present an attractive option for pervasively monitoring neonatal ECG, and can be embedded in a support system or even a garment worn by the neonate. This could improve comfort and reduce pain aiding better recovery as well as avoiding the scars caused by adhesive electrodes. In this work, we investigate the use of an array of capacitive sensors unobtrusively embedded in a mattress and used in a clinical environment for 15 preterm neonates. We also describe the analysis framework including the fusion of information from all sensors to provide a more accurate ECG signal. We propose a channel selection strategy as well as a method using physiological information to obtain a reliable ECG signal. When sensor coverage is well attained, results for both instantaneous heart rate and ECG signal shape analysis are very encouraging. The study also provides several insights on important factors affecting the results. These include the effect of textile type, number of layers, interferences (e.g. people walking by), motion severity and interventions. Incorporating this knowledge in the design of a capacitive sensing system would be crucial in ensuring that these sensors provide a reliable ECG signal when embedded in a neonatal support system. (paper)

  18. Real-Time ECG Simulation for Hybrid Mock Circulatory Loops.

    Science.gov (United States)

    Korn, Leonie; Rüschen, Daniel; Zander, Niklas; Leonhardt, Steffen; Walter, Marian

    2018-02-01

    Classically, mock circulatory loops only simulate mechanical properties of the circulation. To connect the hydraulic world with electrophysiology, we present a real-time electrical activity model of the heart and show how to integrate this model into a real-time mock loop simulation. The model incorporates a predefined conduction pathway and a simplified volume conductor to solve the bidomain equations and the forward problem of electrocardiography, resulting in a physiological simulation of the electrocardiogram (ECG) at arbitrary electrode positions. A complete physiological simulation of the heart's excitation would be too CPU intensive. Thus, in our model, complexity was reduced to allow real-time simulation of ECG-triggered medical systems in vitro; this decreases time and cost in the development process. Conversely, the presented model can still be adapted to various pathologies by locally changing the properties of the heart's conduction pathway. To simulate the ECG, the heart is divided into suitable areas, which are innervated by the hierarchically structured conduction system. To distinguish different cardiac regions, a segmentation of the heart was performed. In these regions, Prim's algorithm was applied to identify the directed minimal spanning trees for conduction orientation. Each node of the tree was assigned to a cardiac action potential generated by its hybrid automaton to represent the heart's conduction system by the spatial distribution of action potentials. To generate the ECG output, the bidomain equations were implemented and a simple model of the volume conductor of the body was used to solve the forward problem of electrocardiography. As a result, the model simulates potentials at arbitrary electrode positions in real-time. To verify the developed real-time ECG model, measurements were made within a hybrid mock circulatory loop, including a simple ECG-triggered ventricular assist device control. The model's potential value is to simulate

  19. Improving ECG Services at a Children’s Hospital: Implementation of a Digital ECG System

    Directory of Open Access Journals (Sweden)

    Frank A. Osei

    2015-01-01

    Full Text Available Background. The use of digital ECG software and services is becoming common. We hypothesized that the introduction of a completely digital ECG system would increase the volume of ECGs interpreted at our children’s hospital. Methods. As part of a hospital wide quality improvement initiative, a digital ECG service (MUSE, GE was implemented at the Children’s Hospital at Montefiore in June 2012. The total volume of ECGs performed in the first 6 months of the digital ECG era was compared to 18 months of the predigital era. Predigital and postdigital data were compared via t-tests. Results. The mean ECGs interpreted per month were 53 ± 16 in the predigital era and 216 ± 37 in the postdigital era (p<0.001, a fourfold increase in ECG volume after introduction of the digital system. There was no significant change in inpatient or outpatient service volume during that time. The mean billing time decreased from 21 ± 27 days in the postdigital era to 12 ± 5 days in the postdigital era (p<0.001. Conclusion. Implementation of a digital ECG system increased the volume of ECGs officially interpreted and reported.

  20. Risk stratifying asymptomatic aortic stenosis: role of the resting 12-lead ECG.

    Science.gov (United States)

    Greve, Anders M

    2014-02-01

    Despite being routinely performed in the clinical follow-up of asymptomatic AS patients, little or no evidence describes the prognostic value of ECG findings in asymptomatic AS populations. This PhD thesis examined the correlates of resting 12-lead ECG variables with echocardiographic measures of AS severity and cardiovascular outcomes in the till date largest cohort (n=1,563) of asymptomatic patients with mild-to-moderate AS. Most importantly, this PhD thesis demonstrated that QRS-duration adds independent predictive value of sudden cardiac death and that the additional presence of ECG LVH/strain for fixed AS severity represents a lethal risk attribute. Finally, ECG abnormalities displayed low/moderate concordance with echocardiographic parameters. This argues that the ECG should be regarded as a separate tool for obtaining prognostically important information. Treatment was not randomized by ECG findings, future studies should therefore examine if and which ECG variables should elicit closer follow-up and/or earlier intervention to improve prognosis in asymptomatic AS populations.

  1. Signal Morphing techniques and possible application to Higgs properties measurements

    CERN Document Server

    Ecker, Katharina Maria; The ATLAS collaboration

    2016-01-01

    One way of describing deviations from the Standard Model is via Effective Field Theories or pseudo-observables, where higher order operators modify the couplings and the kinematics of the interaction of the Standard Model particles. Generating Monte Carlo events for every testable set of parameters for such a theory would require computing resources beyond the ones currently available in ATLAS. Up to now, Matrix-Element based reweighting techniques have been often used to model Beyond Standard Model process starting from Standard Model simulated events. In this talk, we review the advantages and the limitations of morphing techniques to construct continuous probability model for signal parameters, interpolating between a finite number of distributions obtained from the simulation chain. The technique will be exemplified by searching for deviations from the Standard Model predictions in Higgs properties measurements.

  2. The unbalanced signal measuring of automotive brake drum

    Science.gov (United States)

    Wang, Xiao-Dong; Ye, Sheng-Hua; Zhang, Bang-Cheng

    2005-04-01

    For the purpose of the research and development of automatic balancing system by mass removing, the dissertation deals with the measuring method of the unbalance signal, the design the automatic balance equipment and the software. This paper emphases the testing system of the balancer of automotive brake drum. The paper designs the band-pass filter product with favorable automatic follow of electronic product, and with favorable automatic follow capability, filtration effect and stability. The system of automatic balancing system by mass removing based on virtual instrument is designed in this paper. A lab system has been constructed. The results of contrast experiments indicate the notable effect of 1-plane automatic balance and the high precision of dynamic balance, and demonstrate the application value of the system.

  3. Robust electrocardiogram (ECG) beat classification using discrete wavelet transform

    International Nuclear Information System (INIS)

    Minhas, Fayyaz-ul-Amir Afsar; Arif, Muhammad

    2008-01-01

    This paper presents a robust technique for the classification of six types of heartbeats through an electrocardiogram (ECG). Features extracted from the QRS complex of the ECG using a wavelet transform along with the instantaneous RR-interval are used for beat classification. The wavelet transform utilized for feature extraction in this paper can also be employed for QRS delineation, leading to reduction in overall system complexity as no separate feature extraction stage would be required in the practical implementation of the system. Only 11 features are used for beat classification with the classification accuracy of ∼99.5% through a KNN classifier. Another main advantage of this method is its robustness to noise, which is illustrated in this paper through experimental results. Furthermore, principal component analysis (PCA) has been used for feature reduction, which reduces the number of features from 11 to 6 while retaining the high beat classification accuracy. Due to reduction in computational complexity (using six features, the time required is ∼4 ms per beat), a simple classifier and noise robustness (at 10 dB signal-to-noise ratio, accuracy is 95%), this method offers substantial advantages over previous techniques for implementation in a practical ECG analyzer

  4. Novel ultra-wideband photonic signal generation and transmission featuring digital signal processing bit error rate measurements

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Yu, Xianbin; Tafur Monroy, Idelfonso

    2009-01-01

    We propose the novel generation of photonic ultra-wideband signals using an uncooled DFB laser. For the first time we experimentally demonstrate bit-for-bit DSP BER measurements for transmission of a 781.25 Mbit/s photonic UWB signal.......We propose the novel generation of photonic ultra-wideband signals using an uncooled DFB laser. For the first time we experimentally demonstrate bit-for-bit DSP BER measurements for transmission of a 781.25 Mbit/s photonic UWB signal....

  5. Snow measurement Using P-Band Signals of Opportunity Reflectometry

    Science.gov (United States)

    Shah, R.; Yueh, S. H.; Xu, X.; Elder, K.

    2017-12-01

    Snow water storage in land is a critical parameter of the water cycle. In this study, we develop methods for estimating reflectance from bistatic scattering of digital communication Signals of Opportunity (SoOp) across the available microwave spectrum from VHF to Ka band and show results from proof-of-concept experiments at the Fraser Experimental Forest, Colorado to acquire measurements to relate the SoOp phase and reflectivity to a snow-covered soil surface. The forward modeling of this scenario will be presented and multiple sensitivities were conducted. Available SoOp receiver data along with a network of in situ sensor measurements collected since January 2016 will be used to validate theoretical modeling results. In the winter season of 2016 and 2017, we conducted a field experiment using VHF/UHF-band illuminating sources to detect SWE and surface reflectivity. The amplitude of the reflectivity showed sensitivity to the wetness of snow pack and ground reflectivity while the phase showed sensitivity to SWE. This use of this concept can be helpful to measure the snow water storage in land globally.

  6. Correntropy measures to detect daytime sleepiness from EEG signals

    International Nuclear Information System (INIS)

    Melia, Umberto; Vallverdú, Montserrat; Caminal, Pere; Guaita, Marc; Montserrat, Josep M; Vilaseca, Isabel; Salamero, Manel; Gaig, Carles; Santamaria, Joan

    2014-01-01

    Excessive daytime sleepiness (EDS) is one of the main symptoms of several sleep related disorders and has a great impact on patients’ lives. While many studies have been carried out in order to assess daytime sleepiness, automatic EDS detection still remains an open problem. In this work, a novel approach to this issue based on correntropy function analysis of EEG signals was proposed in order to detect patients suffering from EDS. Multichannel EEG signals were recorded during five Maintenance of Wakefulness Tests (MWT) and Multiple Sleep Latency Tests (MSLT) alternated throughout the day for patients suffering from sleep disordered breathing (SDB). A group of 20 patients with EDS was compared with a group of 20 patients without daytime sleepiness (WDS), by analyzing 60 s EEG windows in a waking state. Measures obtained from the cross-correntropy function (CCORR) and auto-correntropy function (ACORR) were calculated in the EEG frequency bands: δ, 0.1–4 Hz; θ, 4–8 Hz; α, 8–12 Hz; β, 12–30 Hz; total band TB, 0.1–45 Hz. These functions permitted the quantification of complex signal properties and the non-linear couplings between different areas of the scalp. Statistical differences between EDS and WDS groups were mainly found in the β band during MSLT events (p-value < 0.0001). The WDS group presented more complexity in the occipital zone than the EDS group, while a stronger nonlinear coupling between the occipital and frontal regions was detected in EDS patients than in the WDS group. At best, ACORR and CCORR measures yielded sensitivity and specificity above 80% and the area under ROC curve (AUC) was above 0.85 in classifying EDS and WDS patients. These performances represent an improvement with respect to classical EEG indices applied in the same database (sensitivity and specificity were never above 80% and AUC was under 0.75). (paper)

  7. The acquisition and retention of ECG interpretation skills after a standardized web-based ECG tutorial

    DEFF Research Database (Denmark)

    Rolskov Bojsen, Signe; Räder, Sune Bernd Emil Werner; Holst, Anders Gaardsdal

    2015-01-01

    BACKGROUND: Electrocardiogram (ECG) interpretation is of great importance for patient management. However, medical students frequently lack proficiency in ECG interpretation and rate their ECG training as inadequate. Our aim was to examine the effect of a standalone web-based ECG tutorial...... and to assess the retention of skills using multiple follow-up intervals. METHODS: 203 medical students were included in the study. All participants completed a pre-test, an ECG tutorial, and a post-test. The participants were also randomised to complete a retention-test after short (2-4 weeks), medium (10.......6), respectively). When comparing the pre-test to retention-test delta scores, junior students had learned significantly more than senior students (junior students improved 10.7 points and senior students improved 4.7 points, p = 0.003). CONCLUSION: A standalone web-based ECG tutorial can be an effective means...

  8. On the resolution of ECG acquisition systems for the reliable analysis of the P-wave

    International Nuclear Information System (INIS)

    Censi, Federica; Calcagnini, Giovanni; Mattei, Eugenio; Triventi, Michele; Bartolini, Pietro; Corazza, Ivan; Boriani, Giuseppe

    2012-01-01

    The analysis of the P-wave on surface ECG is widely used to assess the risk of atrial arrhythmias. In order to provide reliable results, the automatic analysis of the P-wave must be precise and reliable and must take into account technical aspects, one of those being the resolution of the acquisition system. The aim of this note is to investigate the effects of the amplitude resolution of ECG acquisition systems on the P-wave analysis. Starting from ECG recorded by an acquisition system with a less significant bit (LSB) of 31 nV (24 bit on an input range of 524 mVpp), we reproduced an ECG signal as acquired by systems with lower resolution (16, 15, 14, 13 and 12 bit). We found that, when the LSB is of the order of 128 µV (12 bit), a single P-wave is not recognizable on ECG. However, when averaging is applied, a P-wave template can be extracted, apparently suitable for the P-wave analysis. Results obtained in terms of P-wave duration and morphology revealed that the analysis of ECG at lowest resolutions (from 12 to 14 bit, LSB higher than 30 µV) could lead to misleading results. However, the resolution used nowadays in modern electrocardiographs (15 and 16 bit, LSB <10 µV) is sufficient for the reliable analysis of the P-wave. (note)

  9. Modulations of Heart Rate, ECG, and Cardio-Respiratory Coupling Observed in Polysomnography

    Directory of Open Access Journals (Sweden)

    Thomas Penzel

    2016-10-01

    Full Text Available The cardiac component of cardio-respiratory polysomnography is covered by ECG and heart rate recordings. However their evaluation is often underrepresented in summarizing reports. As complements to EEG, EOG, and EMG, these signals provide diagnostic information for autonomic nervous activity during sleep. This review presents major methodological developments in sleep research regarding heart rate, ECG and cardio-respiratory couplings in a chronological (historical sequence. It presents physiological and pathophysiological insights related to sleep medicine obtained by new technical developments. Recorded nocturnal ECG facilitates conventional heart rate variability analysis, studies of cyclical variations of heart rate, and analysis of ECG waveform. In healthy adults, the autonomous nervous system is regulated in totally different ways during wakefulness, slow-wave sleep, and REM sleep. Analysis of beat-to-beat heart-rate variations with statistical methods enables us to estimate sleep stages based on the differences in autonomic nervous system regulation. Furthermore, up to some degree, it is possible to track transitions from wakefulness to sleep by analysis of heart-rate variations. ECG and heart rate analysis allow assessment of selected sleep disorders as well. Sleep disordered breathing can be detected reliably by studying cyclical variation of heart rate combined with respiration-modulated changes in ECG morphology (amplitude of R wave and T wave.

  10. Modulations of Heart Rate, ECG, and Cardio-Respiratory Coupling Observed in Polysomnography.

    Science.gov (United States)

    Penzel, Thomas; Kantelhardt, Jan W; Bartsch, Ronny P; Riedl, Maik; Kraemer, Jan F; Wessel, Niels; Garcia, Carmen; Glos, Martin; Fietze, Ingo; Schöbel, Christoph

    2016-01-01

    The cardiac component of cardio-respiratory polysomnography is covered by ECG and heart rate recordings. However, their evaluation is often underrepresented in summarizing reports. As complements to EEG, EOG, and EMG, these signals provide diagnostic information for autonomic nervous activity during sleep. This review presents major methodological developments in sleep research regarding heart rate, ECG, and cardio-respiratory couplings in a chronological (historical) sequence. It presents physiological and pathophysiological insights related to sleep medicine obtained by new technical developments. Recorded nocturnal ECG facilitates conventional heart rate variability (HRV) analysis, studies of cyclical variations of heart rate, and analysis of ECG waveform. In healthy adults, the autonomous nervous system is regulated in totally different ways during wakefulness, slow-wave sleep, and REM sleep. Analysis of beat-to-beat heart-rate variations with statistical methods enables us to estimate sleep stages based on the differences in autonomic nervous system regulation. Furthermore, up to some degree, it is possible to track transitions from wakefulness to sleep by analysis of heart-rate variations. ECG and heart rate analysis allow assessment of selected sleep disorders as well. Sleep disordered breathing can be detected reliably by studying cyclical variation of heart rate combined with respiration-modulated changes in ECG morphology (amplitude of R wave and T wave).

  11. Association between obesity and ECG variables in children and adolescents: A cross-sectional study.

    Science.gov (United States)

    Sun, Guo-Zhe; Li, Yang; Zhou, Xing-Hu; Guo, Xiao-Fan; Zhang, Xin-Gang; Zheng, Li-Qiang; Li, Yuan; Jiao, Yun-DI; Sun, Ying-Xian

    2013-12-01

    Obesity exhibits a wide variety of electrocardiogram (ECG) abnormalities in adults, which often lead to cardiovascular events. However, there is currently no evidence of an association between obesity and ECG variables in children and adolescents. The present study aimed to explore the associations between obesity and ECG intervals and axes in children and adolescents. A cross-sectional observational study of 5,556 students aged 5-18 years was performed. Anthropometric data, blood pressure and standard 12-lead ECGs were collected for each participant. ECG variables were measured manually based on the temporal alignment of simultaneous 12 leads using a CV200 ECG Work Station. Overweight and obese groups demonstrated significantly longer PR intervals, wider QRS durations and leftward shifts of frontal P-wave, QRS and T-wave axes, while the obese group also demonstrated significantly higher heart rates, compared with normal weight groups within normotensive or hypertensive subjects (Pobesity was also associated with longer PR intervals, wider QRS duration and a leftward shift of frontal ECG axes compared with normal waist circumference (WC) within normotensive or hypertensive subjects (Paffecting the ECG variables. Furthermore, the ECG variables, including PR interval, QRS duration and frontal P-wave, QRS and T-wave axes, were significantly linearly correlated with body mass index, WC and waist-to-height ratio adjusted for age, gender, ethnicity and blood pressure. However, there was no significant association between obesity and the corrected QT interval (P>0.05). The results of the current study indicate that in children and adolescents, general and abdominal obesity is associated with longer PR intervals, wider QRS duration and a leftward shift of frontal P-wave, QRS and T-wave axes, independent of age, gender, ethnicity and blood pressure.

  12. Are ECG monitoring recommendations before prescription of QT-prolonging drugs applied in daily practice?

    DEFF Research Database (Denmark)

    Warnier, Miriam Jacoba; Rutten, Frans Hendrik; Souverein, Patrick Cyriel

    2015-01-01

    PURPOSE: Monitoring of the QT duration by electrocardiography (ECG) prior to treatment is frequently recommended in the label of QT-prolonging drugs. It is, however, unknown how often general practitioners in daily clinical practice are adhering to these risk-minimization measures. We assessed...... the frequency of ECG measurements in patients where haloperidol was initiated in primary care. METHODS: Patients (≥18 years) with a first prescription of haloperidol in the UK Clinical Practice Research Datalink (2009-2013) were included. The proportion of ECGs made was determined in two blocks of 4 weeks......: during the exposure period when haloperidol was initiated, and during the control period, 1 year before. Conditional logistic regression analysis was applied to calculate the relative risk of having an ECG in the exposure period compared with the control period. Subgroup analyses were performed to assess...

  13. Threshold-based system for noise detection in multilead ECG recordings

    International Nuclear Information System (INIS)

    Jekova, Irena; Krasteva, Vessela; Christov, Ivaylo; Abächerli, Roger

    2012-01-01

    This paper presents a system for detection of the most common noise types seen on the electrocardiogram (ECG) in order to evaluate whether an episode from 12-lead ECG is reliable for diagnosis. It implements criteria for estimation of the noise corruption level in specific frequency bands, aiming to identify the main sources of ECG quality disruption, such as missing signal or limited dynamics of the QRS components above 4 Hz; presence of high amplitude and steep artifacts seen above 1 Hz; baseline drift estimated at frequencies below 1 Hz; power–line interference in a band ±2 Hz around its central frequency; high-frequency and electromyographic noises above 20 Hz. All noise tests are designed to process the ECG series in the time domain, including 13 adjustable thresholds for amplitude and slope criteria which are evaluated in adjustable time intervals, as well as number of leads. The system allows flexible extension toward application-specific requirements for the noise levels in acceptable quality ECGs. Training of different thresholds’ settings to determine different positive noise detection rates is performed with the annotated set of 1000 ECGs from the PhysioNet database created for the Computing in Cardiology Challenge 2011. Two implementations are highlighted on the receiver operating characteristic (area 0.968) to fit to different applications. The implementation with high sensitivity (Se = 98.7%, Sp = 80.9%) appears as a reliable alarm when there are any incidental problems with the ECG acquisition, while the implementation with high specificity (Sp = 97.8%, Se = 81.8%) is less susceptible to transient problems but rather validates noisy ECGs with acceptable quality during a small portion of the recording. (paper)

  14. A Portable ECG Recorder for Shipboard Use

    National Research Council Canada - National Science Library

    Ryack, Bernard L

    1989-01-01

    ...) that would serve as a medical consultant to the Independent Duty Corpsman. The system was designed for use on submarines where such common tools as x-rays and electrocardiograms (ECGs) are not available...

  15. Specificity of elevated intercostal space ECG recording for the type 1 Brugada ECG pattern

    DEFF Research Database (Denmark)

    Holst, Anders G; Tangø, Mogens; Batchvarov, Velislav

    2012-01-01

    Right precordial (V1-3) elevated electrode placement ECG (EEP-ECG) is often used in the diagnosis of Brugada syndrome (BrS). However, the specificity of this has only been studied in smaller studies in Asian populations. We aimed to study this in a larger European population.......Right precordial (V1-3) elevated electrode placement ECG (EEP-ECG) is often used in the diagnosis of Brugada syndrome (BrS). However, the specificity of this has only been studied in smaller studies in Asian populations. We aimed to study this in a larger European population....

  16. Extracellular Electrophysiological Measurements of Cooperative Signals in Astrocytes Populations

    Science.gov (United States)

    Mestre, Ana L. G.; Inácio, Pedro M. C.; Elamine, Youssef; Asgarifar, Sanaz; Lourenço, Ana S.; Cristiano, Maria L. S.; Aguiar, Paulo; Medeiros, Maria C. R.; Araújo, Inês M.; Ventura, João; Gomes, Henrique L.

    2017-01-01

    Astrocytes are neuroglial cells that exhibit functional electrical properties sensitive to neuronal activity and capable of modulating neurotransmission. Thus, electrophysiological recordings of astroglial activity are very attractive to study the dynamics of glial signaling. This contribution reports on the use of ultra-sensitive planar electrodes combined with low noise and low frequency amplifiers that enable the detection of extracellular signals produced by primary cultures of astrocytes isolated from mouse cerebral cortex. Recorded activity is characterized by spontaneous bursts comprised of discrete signals with pronounced changes on the signal rate and amplitude. Weak and sporadic signals become synchronized and evolve with time to higher amplitude signals with a quasi-periodic behavior, revealing a cooperative signaling process. The methodology presented herewith enables the study of ionic fluctuations of population of cells, complementing the single cells observation by calcium imaging as well as by patch-clamp techniques. PMID:29109679

  17. Wavelet compression of multichannel ECG data by enhanced set partitioning in hierarchical trees algorithm.

    Science.gov (United States)

    Sharifahmadian, Ershad

    2006-01-01

    The set partitioning in hierarchical trees (SPIHT) algorithm is very effective and computationally simple technique for image and signal compression. Here the author modified the algorithm which provides even better performance than the SPIHT algorithm. The enhanced set partitioning in hierarchical trees (ESPIHT) algorithm has performance faster than the SPIHT algorithm. In addition, the proposed algorithm reduces the number of bits in a bit stream which is stored or transmitted. I applied it to compression of multichannel ECG data. Also, I presented a specific procedure based on the modified algorithm for more efficient compression of multichannel ECG data. This method employed on selected records from the MIT-BIH arrhythmia database. According to experiments, the proposed method attained the significant results regarding compression of multichannel ECG data. Furthermore, in order to compress one signal which is stored for a long time, the proposed multichannel compression method can be utilized efficiently.

  18. A sub-nJ CMOS ECG classifier for wireless smart sensor.

    Science.gov (United States)

    Chollet, Paul; Pallas, Remi; Lahuec, Cyril; Arzel, Matthieu; Seguin, Fabrice

    2017-07-01

    Body area sensor networks hold the promise of more efficient and cheaper medical care services through the constant monitoring of physiological markers such as heart beats. Continuously transmitting the electrocardiogram (ECG) signal requires most of the wireless ECG sensor energy budget. This paper presents the analog implantation of a classifier for ECG signals that can be embedded onto a sensor. The classifier is a sparse neural associative memory. It is implemented using the ST 65 nm CMOS technology and requires only 234 pJ per classification while achieving a 93.6% classification accuracy. The energy requirement is 6 orders of magnitude lower than a digital accelerator that performs a similar task. The lifespan of the resulting sensor is 191 times as large as that of a sensor sending all the data.

  19. Manifold learning based ECG-free free-breathing cardiac CINE MRI.

    Science.gov (United States)

    Usman, Muhammad; Atkinson, David; Kolbitsch, Christoph; Schaeffter, Tobias; Prieto, Claudia

    2015-06-01

    To present and validate a manifold learning (ML)-based method that can estimate both cardiac and respiratory navigator signals from electrocardiogram (ECG)-free free-breathing cardiac magnetic resonance imaging (MRI) data to achieve self-gated retrospective CINE reconstruction. In this work the use of the ML method is demonstrated for 2D cardiac CINE to achieve both cardiac and respiratory self-gating without the need of an external navigator or ECG signal. This is achieved by sequentially applying ML to two sets of retrospectively reconstructed real-time images with differing temporal resolutions. A 1D cardiac signal is estimated by applying ML to high temporal resolution real-time images reconstructed from the acquired data. Using the estimated cardiac signal, a 1D respiratory signal was obtained by applying the ML method to low temporal resolution images reconstructed from the same acquired data for each cardiac cycle. Data were acquired in five volunteers with a 2D golden angle radial trajectory in a balanced steady-state free precession (b-SSFP) acquisition. The accuracy of the estimated cardiac signal was calculated as the standard deviation of the temporal difference between the estimated signal and the recorded ECG. The correlation between the estimated respiratory signal and standard pencil beam navigator signal was evaluated. Gated CINE reconstructions (20 cardiac phases per cycle, temporal resolution ∼30 msec) using the estimated cardiac and respiratory signals were qualitatively compared against conventional ECG-gated breath-hold CINE acquisitions. Accurate cardiac signals were estimated with the proposed method, with an error standard deviation in comparison to ECG lower than 20 msec. Respiratory signals estimated with the proposed method achieved a mean cross-correlation of 94% with respect to standard pencil beam navigator signals. Good quality visual scores of 2.80 ± 0.45 (scores from 0, bad, to 4, excellent quality) were observed for the

  20. A Mobile Device System for Early Warning of ECG Anomalies

    Directory of Open Access Journals (Sweden)

    Adam Szczepański

    2014-06-01

    Full Text Available With the rapid increase in computational power of mobile devices the amount of ambient intelligence-based smart environment systems has increased greatly in recent years. A proposition of such a solution is described in this paper, namely real time monitoring of an electrocardiogram (ECG signal during everyday activities for identification of life threatening situations. The paper, being both research and review, describes previous work of the authors, current state of the art in the context of the authors’ work and the proposed aforementioned system. Although parts of the solution were described in earlier publications of the authors, the whole concept is presented completely for the first time along with the prototype implementation on mobile device—a Windows 8 tablet with Modern UI. The system has three main purposes. The first goal is the detection of sudden rapid cardiac malfunctions and informing the people in the patient’s surroundings, family and friends and the nearest emergency station about the deteriorating health of the monitored person. The second goal is a monitoring of ECG signals under non-clinical conditions to detect anomalies that are typically not found during diagnostic tests. The third goal is to register and analyze repeatable, long-term disturbances in the regular signal and finding their patterns.

  1. Automated Measurement and Signaling Systems for the Transactional Network

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Brown, Richard; Price, Phillip; Page, Janie; Granderson, Jessica; Riess, David; Czarnecki, Stephen; Ghatikar, Girish; Lanzisera, Steven

    2013-12-31

    The Transactional Network Project is a multi-lab activity funded by the US Department of Energy?s Building Technologies Office. The project team included staff from Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory and Oak Ridge National Laboratory. The team designed, prototyped and tested a transactional network (TN) platform to support energy, operational and financial transactions between any networked entities (equipment, organizations, buildings, grid, etc.). PNNL was responsible for the development of the TN platform, with agents for this platform developed by each of the three labs. LBNL contributed applications to measure the whole-building electric load response to various changes in building operations, particularly energy efficiency improvements and demand response events. We also provide a demand response signaling agent and an agent for cost savings analysis. LBNL and PNNL demonstrated actual transactions between packaged rooftop units and the electric grid using the platform and selected agents. This document describes the agents and applications developed by the LBNL team, and associated tests of the applications.

  2. An optimized compression algorithm for real-time ECG data transmission in wireless network of medical information systems.

    Science.gov (United States)

    Cho, Gyoun-Yon; Lee, Seo-Joon; Lee, Tae-Ro

    2015-01-01

    Recent medical information systems are striving towards real-time monitoring models to care patients anytime and anywhere through ECG signals. However, there are several limitations such as data distortion and limited bandwidth in wireless communications. In order to overcome such limitations, this research focuses on compression. Few researches have been made to develop a specialized compression algorithm for ECG data transmission in real-time monitoring wireless network. Not only that, recent researches' algorithm is not appropriate for ECG signals. Therefore this paper presents a more developed algorithm EDLZW for efficient ECG data transmission. Results actually showed that the EDLZW compression ratio was 8.66, which was a performance that was 4 times better than any other recent compression method widely used today.

  3. Revisiting QRS Detection Methodologies for Portable, Wearable, Battery-Operated, and Wireless ECG Systems

    Science.gov (United States)

    Elgendi, Mohamed; Eskofier, Björn; Dokos, Socrates; Abbott, Derek

    2014-01-01

    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices. PMID:24409290

  4. A Digital Compressed Sensing-Based Energy-Efficient Single-Spot Bluetooth ECG Node

    Directory of Open Access Journals (Sweden)

    Kan Luo

    2018-01-01

    Full Text Available Energy efficiency is still the obstacle for long-term real-time wireless ECG monitoring. In this paper, a digital compressed sensing- (CS- based single-spot Bluetooth ECG node is proposed to deal with the challenge in wireless ECG application. A periodic sleep/wake-up scheme and a CS-based compression algorithm are implemented in a node, which consists of ultra-low-power analog front-end, microcontroller, Bluetooth 4.0 communication module, and so forth. The efficiency improvement and the node’s specifics are evidenced by the experiments using the ECG signals sampled by the proposed node under daily activities of lay, sit, stand, walk, and run. Under using sparse binary matrix (SBM, block sparse Bayesian learning (BSBL method, and discrete cosine transform (DCT basis, all ECG signals were essentially undistorted recovered with root-mean-square differences (PRDs which are less than 6%. The proposed sleep/wake-up scheme and data compression can reduce the airtime over energy-hungry wireless links, the energy consumption of proposed node is 6.53 mJ, and the energy consumption of radio decreases 77.37%. Moreover, the energy consumption increase caused by CS code execution is negligible, which is 1.3% of the total energy consumption.

  5. An Adaptive and Time-Efficient ECG R-Peak Detection Algorithm.

    Science.gov (United States)

    Qin, Qin; Li, Jianqing; Yue, Yinggao; Liu, Chengyu

    2017-01-01

    R-peak detection is crucial in electrocardiogram (ECG) signal analysis. This study proposed an adaptive and time-efficient R-peak detection algorithm for ECG processing. First, wavelet multiresolution analysis was applied to enhance the ECG signal representation. Then, ECG was mirrored to convert large negative R-peaks to positive ones. After that, local maximums were calculated by the first-order forward differential approach and were truncated by the amplitude and time interval thresholds to locate the R-peaks. The algorithm performances, including detection accuracy and time consumption, were tested on the MIT-BIH arrhythmia database and the QT database. Experimental results showed that the proposed algorithm achieved mean sensitivity of 99.39%, positive predictivity of 99.49%, and accuracy of 98.89% on the MIT-BIH arrhythmia database and 99.83%, 99.90%, and 99.73%, respectively, on the QT database. By processing one ECG record, the mean time consumptions were 0.872 s and 0.763 s for the MIT-BIH arrhythmia database and QT database, respectively, yielding 30.6% and 32.9% of time reduction compared to the traditional Pan-Tompkins method.

  6. A Digital Compressed Sensing-Based Energy-Efficient Single-Spot Bluetooth ECG Node.

    Science.gov (United States)

    Luo, Kan; Cai, Zhipeng; Du, Keqin; Zou, Fumin; Zhang, Xiangyu; Li, Jianqing

    2018-01-01

    Energy efficiency is still the obstacle for long-term real-time wireless ECG monitoring. In this paper, a digital compressed sensing- (CS-) based single-spot Bluetooth ECG node is proposed to deal with the challenge in wireless ECG application. A periodic sleep/wake-up scheme and a CS-based compression algorithm are implemented in a node, which consists of ultra-low-power analog front-end, microcontroller, Bluetooth 4.0 communication module, and so forth. The efficiency improvement and the node's specifics are evidenced by the experiments using the ECG signals sampled by the proposed node under daily activities of lay, sit, stand, walk, and run. Under using sparse binary matrix (SBM), block sparse Bayesian learning (BSBL) method, and discrete cosine transform (DCT) basis, all ECG signals were essentially undistorted recovered with root-mean-square differences (PRDs) which are less than 6%. The proposed sleep/wake-up scheme and data compression can reduce the airtime over energy-hungry wireless links, the energy consumption of proposed node is 6.53 mJ, and the energy consumption of radio decreases 77.37%. Moreover, the energy consumption increase caused by CS code execution is negligible, which is 1.3% of the total energy consumption.

  7. Measures of metacognition on signal-detection theoretic models.

    Science.gov (United States)

    Barrett, Adam B; Dienes, Zoltan; Seth, Anil K

    2013-12-01

    Analyzing metacognition, specifically knowledge of accuracy of internal perceptual, memorial, or other knowledge states, is vital for many strands of psychology, including determining the accuracy of feelings of knowing and discriminating conscious from unconscious cognition. Quantifying metacognitive sensitivity is however more challenging than quantifying basic stimulus sensitivity. Under popular signal-detection theory (SDT) models for stimulus classification tasks, approaches based on Type II receiver-operating characteristic (ROC) curves or Type II d-prime risk confounding metacognition with response biases in either the Type I (classification) or Type II (metacognitive) tasks. A new approach introduces meta-d': The Type I d-prime that would have led to the observed Type II data had the subject used all the Type I information. Here, we (a) further establish the inconsistency of the Type II d-prime and ROC approaches with new explicit analyses of the standard SDT model and (b) analyze, for the first time, the behavior of meta-d' under nontrivial scenarios, such as when metacognitive judgments utilize enhanced or degraded versions of the Type I evidence. Analytically, meta-d' values typically reflect the underlying model well and are stable under changes in decision criteria; however, in relatively extreme cases, meta-d' can become unstable. We explore bias and variance of in-sample measurements of meta-d' and supply MATLAB code for estimation in general cases. Our results support meta-d' as a useful measure of metacognition and provide rigorous methodology for its application. Our recommendations are useful for any researchers interested in assessing metacognitive accuracy. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  8. Spatiotemporal Characteristics of QRS Complexes Enable the Diagnosis of Brugada Syndrome Regardless of the Appearance of a Type 1 ECG.

    Science.gov (United States)

    Guillem, Maria S; Climent, Andreu M; Millet, José; Berne, Paola; Ramos, Rafael; Brugada, Josep; Brugada, Ramon

    2016-05-01

    The diagnosis of Brugada syndrome based on the ECG is hampered by the dynamic nature of its ECG manifestations. Brugada syndrome patients are only 25% likely to present a type 1 ECG. The objective of this study is to provide an ECG diagnostic criterion for Brugada syndrome patients that can be applied consistently even in the absence of a type 1 ECG. We recorded 67-lead body surface potential maps from 94 Brugada syndrome patients and 82 controls (including right bundle branch block patients and healthy individuals). The spatial propagation direction during the last r' wave and the slope at the end of the QRS complex were measured and compared between patients groups. Receiver-operating characteristic curves were constructed for half of the database to identify optimal cutoff values; sensitivity and specificity for these cutoff values were measured in the other half of the database. A spontaneous type 1 ECG was present in only 30% of BrS patients. An orientation in the sagittal plane ECG recordings can enable a robust identification of BrS even without the presence of a type 1 ECG. © 2016 Wiley Periodicals, Inc.

  9. Ocean tidal signals in observatory and satellite magnetic measurements

    DEFF Research Database (Denmark)

    Maus, S.; Kuvshinov, A.

    2004-01-01

    , and P1 periods turn out to be dominated by unrelated external fields. In contrast, observed lunar M2 and N2 tidal signals are in fair agreement with predictions from motional induction. The lunar diurnal O1 signal, visible at some observatories, could be caused by ocean flow but disagrees in amplitude...

  10. Common ECG Lead Placement Errors. Part I: Limb Lead Reversals

    Directory of Open Access Journals (Sweden)

    Allison V. Rosen

    2015-10-01

    Full Text Available Background: Electrocardiography (ECG is a very useful diagnostic tool. However, errors in placement of ECG leads can create artifacts, mimic pathologies, and hinder proper ECG interpretation. It is important for members of the health care team to be able to recognize the common patterns resulting from lead placement errors. Methods: 12-lead ECGs were recorded in a single male healthy subject in his mid 20s. Six different limb lead reversals were compared to ECG recordings from correct lead placement. Results: Classic ECG patterns were observed when leads were reversed. Methods of discriminating these ECG patterns from true pathologic findings were described. Conclusion: Correct recording and interpretation of ECGs is key to providing optimal patient care. It is therefore crucial to be able to recognize common ECG patterns that are indicative of lead reversals.

  11. Mutual information measures applied to EEG signals for sleepiness characterization

    OpenAIRE

    Melia, Umberto Sergio Pio; Guaita, Marc; Vallverdú Ferrer, Montserrat; Embid, Cristina; Vilaseca, I; Salamero, Manuel; Santamaria, Joan

    2015-01-01

    Excessive daytime sleepiness (EDS) is one of the main symptoms of several sleep related disorders with a great impact on the patient lives. While many studies have been carried out in order to assess daytime sleepiness, the automatic EDS detection still remains an open problem. In this work, a novel approach to this issue based on non-linear dynamical analysis of EEG signal was proposed. Multichannel EEG signals were recorded during five maintenance of wakefulness (MWT) and multiple sleep lat...

  12. Correlation of Respiratory Signals and Electrocardiogram Signals via Empirical Mode Decomposition

    KAUST Repository

    El Fiky, Ahmed Osama

    2011-05-24

    Recently Electrocardiogram (ECG) signals are being broadly used as an essential diagnosing tool in different clinical applications as they carry a reliable representation not only for cardiac activities, but also for other associated biological processes, like respiration. However, the process of recording and collecting them has usually suffered from the presence of some undesired noises, which in turn affects the reliability of such representations.Therefore, de-noising ECG signals became a hot research field for signal processing experts to ensure better and clear representation of the different cardiac activities. Given the nonlinear and non-stationary properties of ECGs, it is not a simple task to cancel the undesired noise terms without affecting the biological physics of them. In this study, we are interested in correlating the ECG signals with respiratory parameters, specifically the lung volume and lung pressure. We have focused on the concept of de-noising ECG signals by means of signal decomposition using an algorithm called the Empirical Mode Decomposition (EMD) where the original ECG signals are being decomposed into a set of intrinsic mode functions (IMF). Then, we have provided criteria based on which some of these IMFs have been adapted to reconstruct de-noised ECG version. Finally, we have utilized de-noised ECGs as well as IMFs for to study the correlation with lung volume and lung pressure. These correlation studies have showed some clear resemblance especially between the oscillations of ECGs and lung pressures.

  13. ECG telemetry in conscious guinea pigs.

    Science.gov (United States)

    Ruppert, Sabine; Vormberge, Thomas; Igl, Bernd-Wolfgang; Hoffmann, Michael

    2016-01-01

    During preclinical drug development, monitoring of the electrocardiogram (ECG) is an important part of cardiac safety assessment. To detect potential pro-arrhythmic liabilities of a drug candidate and for internal decision-making during early stage drug development an in vivo model in small animals with translatability to human cardiac function is required. Over the last years, modifications/improvements regarding animal housing, ECG electrode placement, and data evaluation have been introduced into an established model for ECG recordings using telemetry in conscious, freely moving guinea pigs. Pharmacological validation using selected reference compounds affecting different mechanisms relevant for cardiac electrophysiology (quinidine, flecainide, atenolol, dl-sotalol, dofetilide, nifedipine, moxifloxacin) was conducted and findings were compared with results obtained in telemetered Beagle dogs. Under standardized conditions, reliable ECG data with low variability allowing largely automated evaluation were obtained from the telemetered guinea pig model. The model is sensitive to compounds blocking cardiac sodium channels, hERG K(+) channels and calcium channels, and appears to be even more sensitive to β-blockers as observed in dogs at rest. QT interval correction according to Bazett and Sarma appears to be appropriate methods in conscious guinea pigs. Overall, the telemetered guinea pig is a suitable model for the conduct of early stage preclinical ECG assessment. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. ECG-gated interventional cardiac reconstruction for non-periodic motion.

    Science.gov (United States)

    Rohkohl, Christopher; Lauritsch, Günter; Biller, Lisa; Hornegger, Joachim

    2010-01-01

    The 3-D reconstruction of cardiac vasculature using C-arm CT is an active and challenging field of research. In interventional environments patients often do have arrhythmic heart signals or cannot hold breath during the complete data acquisition. This important group of patients cannot be reconstructed with current approaches that do strongly depend on a high degree of cardiac motion periodicity for working properly. In a last year's MICCAI contribution a first algorithm was presented that is able to estimate non-periodic 4-D motion patterns. However, to some degree that algorithm still depends on periodicity, as it requires a prior image which is obtained using a simple ECG-gated reconstruction. In this work we aim to provide a solution to this problem by developing a motion compensated ECG-gating algorithm. It is built upon a 4-D time-continuous affine motion model which is capable of compactly describing highly non-periodic motion patterns. A stochastic optimization scheme is derived which minimizes the error between the measured projection data and the forward projection of the motion compensated reconstruction. For evaluation, the algorithm is applied to 5 datasets of the left coronary arteries of patients that have ignored the breath hold command and/or had arrhythmic heart signals during the data acquisition. By applying the developed algorithm the average visibility of the vessel segments could be increased by 27%. The results show that the proposed algorithm provides excellent reconstruction quality in cases where classical approaches fail. The algorithm is highly parallelizable and a clinically feasible runtime of under 4 minutes is achieved using modern graphics card hardware.

  15. Methods for Improving the Diagnosis of a Brugada ECG Pattern.

    Science.gov (United States)

    Gottschalk, Byron H; Garcia-Niebla, Javier; Anselm, Daniel D; Glover, Benedict; Baranchuk, Adrian

    2016-03-01

    Brugada syndrome (BrS) is an inherited channelopathy that predisposes individuals to malignant arrhythmias and can lead to sudden cardiac death. The condition is characterized by two electrocardiography (ECG) patterns: the type-1 or "coved" ECG and the type-2 or "saddleback" ECG. Although the type-1 Brugada ECG pattern is diagnostic for the condition, the type-2 Brugada ECG pattern requires differential diagnosis from conditions that produce a similar morphology. In this article, we present a case that is suspicious but not diagnostic for BrS and discuss the application of ECG methodologies for increasing or decreasing suspicion for a diagnosis of BrS. © 2015 Wiley Periodicals, Inc.

  16. A portable ECG monitoring device with Bluetooth and Holter capabilities for telemedicine applications.

    Science.gov (United States)

    Lucani, Daniel; Cataldo, Giancarlos; Cruz, Julio; Villegas, Guillermo; Wong, Sara

    2006-01-01

    A prototype of a portable ECG-monitoring device has been developed for clinical and non-clinical environments as part of a telemedicine system to provide remote and continuous surveillance of patients. The device can acquire, store and/or transmit ECG signals to computer-based platforms or specially configured access points (AP) with Intranet/Internet capabilities in order to reach remote monitoring stations. Acquired data can be stored in a flash memory card in FAT16 format for later recovery, or transmitted via Bluetooth or USB to a local station or AP. This data acquisition module (DAM) operates in two modes: Holter and on-line transmission.

  17. Comparison of JADE and canonical correlation analysis for ECG de-noising.

    Science.gov (United States)

    Kuzilek, Jakub; Kremen, Vaclav; Lhotska, Lenka

    2014-01-01

    This paper explores differences between two methods for blind source separation within frame of ECG de-noising. First method is joint approximate diagonalization of eigenmatrices, which is based on estimation of fourth order cross-cummulant tensor and its diagonalization. Second one is the statistical method known as canonical correlation analysis, which is based on estimation of correlation matrices between two multidimensional variables. Both methods were used within method, which combines the blind source separation algorithm with decision tree. The evaluation was made on large database of 382 long-term ECG signals and the results were examined. Biggest difference was found in results of 50 Hz power line interference where the CCA algorithm completely failed. Thus main power of CCA lies in estimation of unstructured noise within ECG. JADE algorithm has larger computational complexity thus the CCA perfomed faster when estimating the components.

  18. Mobile application development for Tele-ECG

    International Nuclear Information System (INIS)

    Srivastava, Shikha; Bharade, Sandeep; Sinha, Vineet; Sarade, Bhagyashree; Jindal, G.D.; Ananthakrishnan, T.S.; Pithawa, C.K.

    2010-01-01

    Mobile computing has caught the attention of research community for quite some time. The constant improvement of hardware and software related to mobile computing (e.g. better computing power, larger wireless network bandwidth) clearly enhance capabilities of mobile devices. The acceptance of mobile technology by the population at large would suggest that this could be the basis of a system for the communication of medical data from patients to remote physician and vice versa. This paper presents a mobile solution, which makes use of a Tele-ECG unit with a mobile phone to collect, store and forward ECG data to a cardiologist for diagnosis and recommendation. (author)

  19. Utility of the CORD ECG Database in Evaluating ECG Interpretation by Emergency Medicine Residents

    Directory of Open Access Journals (Sweden)

    Wong, Hubert E

    2002-10-01

    Full Text Available OBJECTIVES: Electrocardiograph (ECG interpretation is a vital component of Emergency Medicine (EM resident education, but few studies have formally examined ECG teaching methods used in residency training. Recently, the Council of EM Residency Directors (CORD developed an Internet database of 395 ECGs that have been extensively peer-reviewed to incorporate all findings and abnormalities. We examined the efficacy of this database in assessing EM residents' skills in ECG interpretation. METHODS: We used the CORD ECG database to evaluate residents at our academic three-year EM residency. Thirteen residents participated, including four first-year, four second-year, and five third-year residents. Twenty ECGs were selected using 14 search criteria representing a broad range of abnormalities, including infarction, rhythm, and conduction abnormalities. Exams were scored based on all abnormalities and findings listed in the teaching points accompanying each ECG. We assigned points to each abnormal finding based on clinical relevance. RESULTS: Out of a total of 183 points in our clinically weighted scoring system, first-year residents scored an average of 99 points (54.1% [9 1- 1191, second-year residents 11 1 points (60.4% [97-1261, and third-year residents 130 points (7 1.0% [94- 1501, p = 0.12. Clinically relevant abnormalities, including anterior and inferior myocardial infarctions, were most frequently diagnosed correctly, while posterior infarction was more frequently missed. Rhythm abnormalities including ventricular and supraventricular tachycardias were most frequently diagnosed correctly, while conduction abnormalities including left bundle branch block and atrioventricular (AV block were more frequently missed. CONCLUSION: The CORD database represents a valuable resource in the assessment and teaching of ECG skills, allowing more precise identification of areas upon which instruction should be further focused or individually tailored. Our

  20. Measurement of acoustic emission signal energy. Calibration and tests

    International Nuclear Information System (INIS)

    Chretien, N.; Bernard, P.; Fayolle, J.

    1975-01-01

    The possibility of using an Audimat W device for analyzing the electric energy of signals delivered by a piezo-electric sensor for acoustic emission was investigated. The characteristics of the prototype device could be improved. The tests performed revealed that the 7075-T651 aluminium alloy can be used as a reference material [fr

  1. Measurements of SIP Signaling over 802.11b Links

    NARCIS (Netherlands)

    Hesselman, C.E.W.; Eertink, Henk; Eertink, E.H.; Widya, I.A.; Huizer, E.

    The Session Initiation Protocol (SIP) is a popular application-level signaling protocol that is used for a wide variety of applications such as session control and mobility handling. In some of these applications, the exchange of SIP messages is time-critical, for instance when SIP is used to handle

  2. Washable and Reliable Textile Electrodes Embedded into Underwear Fabric for Electrocardiography (ECG Monitoring

    Directory of Open Access Journals (Sweden)

    Amale Ankhili

    2018-02-01

    Full Text Available A medical quality electrocardiogram (ECG signal is necessary for permanent monitoring, and an accurate heart examination can be obtained from instrumented underwear only if it is equipped with high-quality, flexible, textile-based electrodes guaranteeing low contact resistance with the skin. The main objective of this article is to develop reliable and washable ECG monitoring underwear able to record and wirelessly send an ECG signal in real time to a smart phone and further to a cloud. The article focuses on textile electrode design and production guaranteeing optimal contact impedance. Therefore, different types of textile fabrics were coated with modified poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate (PEDOT:PSS in order to develop and manufacture reliable and washable textile electrodes assembled to female underwear (bras, by sewing using commercially available conductive yarns. Washability tests of connected underwear containing textile electrodes and conductive threads were carried out up to 50 washing cycles. The influence of standardized washing cycles on the quality of ECG signals and the electrical properties of the textile electrodes were investigated and characterized.

  3. Washable and Reliable Textile Electrodes Embedded into Underwear Fabric for Electrocardiography (ECG) Monitoring.

    Science.gov (United States)

    Ankhili, Amale; Tao, Xuyuan; Cochrane, Cédric; Coulon, David; Koncar, Vladan

    2018-02-07

    A medical quality electrocardiogram (ECG) signal is necessary for permanent monitoring, and an accurate heart examination can be obtained from instrumented underwear only if it is equipped with high-quality, flexible, textile-based electrodes guaranteeing low contact resistance with the skin. The main objective of this article is to develop reliable and washable ECG monitoring underwear able to record and wirelessly send an ECG signal in real time to a smart phone and further to a cloud. The article focuses on textile electrode design and production guaranteeing optimal contact impedance. Therefore, different types of textile fabrics were coated with modified poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) in order to develop and manufacture reliable and washable textile electrodes assembled to female underwear (bras), by sewing using commercially available conductive yarns. Washability tests of connected underwear containing textile electrodes and conductive threads were carried out up to 50 washing cycles. The influence of standardized washing cycles on the quality of ECG signals and the electrical properties of the textile electrodes were investigated and characterized.

  4. Heartbeat Classification Using Abstract Features From the Abductive Interpretation of the ECG.

    Science.gov (United States)

    Teijeiro, Tomas; Felix, Paulo; Presedo, Jesus; Castro, Daniel

    2018-03-01

    This paper aims to prove that automatic beat classification on ECG signals can be effectively solved with a pure knowledge-based approach, using an appropriate set of abstract features obtained from the interpretation of the physiological processes underlying the signal. A set of qualitative morphological and rhythm features are obtained for each heartbeat as a result of the abductive interpretation of the ECG. Then, a QRS clustering algorithm is applied in order to reduce the effect of possible errors in the interpretation. Finally, a rule-based classifier assigns a tag to each cluster. The method has been tested with the MIT-BIH Arrhythmia Database records, showing a significantly better performance than any other automatic approach in the state-of-the-art, and even improving most of the assisted approaches that require the intervention of an expert in the process. The most relevant issues in ECG classification, related to a large extent to the variability of the signal patterns between different subjects and even in the same subject over time, will be overcome by changing the reasoning paradigm. This paper demonstrates the power of an abductive framework for time-series interpretation to make a qualitative leap in the significance of the information extracted from the ECG by automatic methods.

  5. Confidence Measurement in the Light of Signal Detection Theory

    Directory of Open Access Journals (Sweden)

    Sébastien eMassoni

    2014-12-01

    Full Text Available We compare three alternative methods for eliciting retrospective confidence in the context of a simple perceptual task: the Simple Confidence Rating (a direct report on a numerical scale, the Quadratic Scoring Rule (a post-wagering procedure and the Matching Probability (a generalization of the no-loss gambling method. We systematically compare the results obtained with these three rules to the theoretical confidence levels that can be inferred from performance in the perceptual task using Signal Detection Theory. We find that the Matching Probability provides better results in that respect. We conclude that Matching Probability is particularly well suited for studies of confidence that use Signal Detection Theory as a theoretical framework.

  6. Heartbeat Signal from Facial Video for Biometric Recognition

    DEFF Research Database (Denmark)

    Haque, Mohammad Ahsanul; Nasrollahi, Kamal; Moeslund, Thomas B.

    2015-01-01

    Different biometric traits such as face appearance and heartbeat signal from Electrocardiogram (ECG)/Phonocardiogram (PCG) are widely used in the human identity recognition. Recent advances in facial video based measurement of cardio-physiological parameters such as heartbeat rate, respiratory rate......, and blood volume pressure provide the possibility of extracting heartbeat signal from facial video instead of using obtrusive ECG or PCG sensors in the body. This paper proposes the Heartbeat Signal from Facial Video (HSFV) as a new biometric trait for human identity recognition, for the first time...... to the best of our knowledge. Feature extraction from the HSFV is accomplished by employing Radon transform on a waterfall model of the replicated HSFV. The pairwise Minkowski distances are obtained from the Radon image as the features. The authentication is accomplished by a decision tree based supervised...

  7. Correlation of resting ECG, stress ECG and thallium scan in the evaluation of coronary artery disease

    International Nuclear Information System (INIS)

    Khan, A.; Amin, W.; Khan, M.Z.A.; Ahmed, A.; Kiani, M.R.

    1987-01-01

    This study includes 70 cases who underwent myocardial perfusion studies with thallium 201 during the year 1984-85. They were studied clinically, had their resting ECGs, stress ECGs and coronary angiograms. Majority of these patients were males, their ages ranged between 34-70 years. The patients population included with typical/atypical chest pain, some with resting ECG abnormalities, after coronary angiography and a few after coronary artery bypass graft surgery. The result of all the modalities were compared with the conventional gold standard for ischaemic heart disease, i.e. coronary angiogram. It is concluded that the sensitivity of resting ECG in the diagnosis of ischaemic heart disease is very low. The exercise test alone was found conclusive in about 74% of patients while sensitivity of thallium scan was 66% in this particular group of patients. (author)

  8. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic ECG/respirator synchronizer. 892.1970... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic ECG/respirator synchronizer. (a) Identification. A radiographic ECG/respirator synchronizer is a device intended to be used to...

  9. Reliability of Computer Analysis of Electrocardiograms (ECG) of ...

    African Journals Online (AJOL)

    Background: Computer programmes have been introduced to electrocardiography (ECG) with most physicians in Africa depending on computer interpretation of ECG. This study was undertaken to evaluate the reliability of computer interpretation of the 12-Lead ECG in the Black race. Methodology: Using the SCHILLER ...

  10. Measuring long impulse responses with pseudorandom sequences and sweep signals

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Jacobsen, Finn

    2010-01-01

    In architectural acoustics, background noise, loudspeaker nonlinearities, and time variances are the most common disturbances that can compromise a measurement. The effects of such disturbances on measurement of long impulse responses with pseudorandom sequences (maximum-length sequences (MLS) an...

  11. An offset tone based gain stabilization technique for mixed-signal RF measurement systems

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Gopal, E-mail: gjos@barc.gov.in [BARC, Mumbai 400085 (India); Motiwala, Paresh D.; Randale, G.D.; Singh, Pitamber [BARC, Mumbai 400085 (India); Agarwal, Vivek; Kumar, Girish [IIT Bombay, Powai, Mumbai 400076 (India)

    2015-09-21

    This paper describes a gain stabilization technique for a RF signal measurement system. A sinusoidal signal of known amplitude, phase and close enough in frequency is added to the main, to be measured RF signal at the input of the analog section. The system stabilizes this offset tone in the digital domain, as it is sampled at the output of the analog section. This process generates a correction factor needed to stabilize the magnitude of the gain of the analog section for the main RF signal. With the help of a simple calibration procedure, the absolute amplitude of the main RF signal can be measured. The technique is especially suited for a system that processes signals around a single frequency, employs direct signal conversion into the digital domain, and processes subsequent steps in an FPGA. The inherent parallel signal processing in an FPGA-based implementation allows a real time stabilization of the gain. The effectiveness of the technique is derived from the fact, that the gain stabilization stamped to the main RF signal measurement branch requires only a few components in the system to be inherently stable. A test setup, along with experimental results is presented from the field of RF instrumentation for particle accelerators. Due to the availability of a phase synchronized RF reference signal in these systems, the measured phase difference between the main RF and the RF reference is also stabilized using this technique. A scheme of the signal processing is presented, where a moving average filter has been used to filter out not only the unwanted frequencies, but also to separate the main RF signal from the offset tone signal. This is achieved by a suitable choice of sampling and offset tone frequencies. The presented signal processing scheme is suitable to a variety of RF measurement applications.

  12. ECG gated magnetic resonance imaging in cardiovascular disease

    International Nuclear Information System (INIS)

    Park, Jae Hyung; Im, Chung Kie; Han, Man Chung; Kim, Chu Wan

    1985-01-01

    Using KAIS 0.15 Tesla resistive magnetic imaging system, ECG gated magnetic resonance (MR) image of various cardiovascular disease was obtained in 10 patients. The findings of MR image of the cardiovascular disease were analysed and the results were as follows: 1. In 6 cases of acquired and congenital cardiac diseases, there were 2 cases of myocardial infarction, 1 case of mitral stenosis and 3 cases of corrected transportation of great vessels. The others were 3 cases of aortic disease and 1 case of pericardial effusion with lymphoma. 2. Myocardial thinning and left ventricular aneurysm were detected in MR images of myocardial infarction. The left atrium was well delineated and enlarged in the case of mitral stenosis. And segmental analysis was possible in the cases of corrected transposition since all cardiac structures were well delineated anatomically. 3. In aortic diseases, the findings of MR image were enlarged lumen, compressed cardiac chambers in ascending aortic aneurysm, intimal flap, enhanced false lumen in dissecting aneurysm and irregular narrowing of aorta with arterial obstruction in Takayasu's arteritis. 4. Pericardial effusion revealed a conspicuous contrast with neighboring mediastinal fat and cardiac wall due to it low signal encircling cardiac wall. 5. ECG gated MR image is an accurate non-invasive imaging modality for the diagnosis of cardiovascular disease and better results of its clinical application are expected in the future with further development in the imaging system and more clinical experiences

  13. An XML based middleware for ECG format conversion.

    Science.gov (United States)

    Li, Xuchen; Vojisavljevic, Vuk; Fang, Qiang

    2009-01-01

    With the rapid development of information and communication technologies, various e-health solutions have been proposed. The digitized medical images as well as the mono-dimension medical signals are two major forms of medical information that are stored and manipulated within an electronic medical environment. Though a variety of industrial and international standards such as DICOM and HL7 have been proposed, many proprietary formats are still pervasively used by many Hospital Information System (HIS) and Picture Archiving and Communication System (PACS) vendors. Those proprietary formats are the big hurdle to form a nationwide or even worldwide e-health network. Thus there is an imperative need to solve the medical data integration problem. Moreover, many small clinics, many hospitals in developing countries and some regional hospitals in developed countries, which have limited budget, have been shunned from embracing the latest medical information technologies due to their high costs. In this paper, we propose an XML based middleware which acts as a translation engine to seamlessly integrate clinical ECG data from a variety of proprietary data formats. Furthermore, this ECG translation engine is designed in a way that it can be integrated into an existing PACS to provide a low cost medical information integration and storage solution.

  14. Graphene oxide based contacts as probes of biomedical signals

    Science.gov (United States)

    Hallfors, N. G.; Devarajan, A.; Farhat, I. A. H.; Abdurahman, A.; Liao, K.; Gater, D. L.; Elnaggar, M. I.; Isakovic, A. F.

    We have developed a series of graphene oxide (GOx) on polymer contacts and have demonstrated these to be useful for collection of standard biomedically relevant signals, such as electrocardiogram (ECG). The process is wet solution-based and allows for control and tuning of the basic physical parameters of GOx, such as electrical and optical properties, simply by choosing the number of GOx layers. Our GOx characterization measurements show spectral (FTIR, XPS, IR absorbance) features most relevant to such performance, and point towards the likely explanations about the mechanisms for controlling the physical properties relevant for the contact performance. Structural (X-ray topography) and surface characterization (AFM, SEM) indicates to what degree these contacts can be considered homogeneous and therefore provide information on yield and repeatability. We compare the ECG signals recorded by standard commercial probes (Ag/AgCl) and GOx probes, displaying minor differences the solution to which may lead to a whole new way we perform ECG data collection, including wearable electronics and IoT friendly ECG monitoring. We acknowledge support from Mubadala-SRC AC4ES and from SRC 2011-KJ-2190. We thank J. B. Warren and G. L. Carr (BNL) for assistance.

  15. Feasibility of Using Mobile ECG Recording Technology to Detect Atrial Fibrillation in Low-Resource Settings.

    Science.gov (United States)

    Evans, Grahame F; Shirk, Arianna; Muturi, Peter; Soliman, Elsayed Z

    2017-12-01

    Screening for atrial fibrillation (AF), a major risk factor for stroke that is on the rise in Africa, is becoming increasingly critical. This study sought to examine the feasibility of using mobile electrocardiogram (ECG) recording technology to detect AF. In this prospective observational study, we used a mobile ECG recorder to screen 50 African adults (66% women; mean age 54.3 ± 20.5 years) attending Kijabe Hospital (Kijabe, Kenya). Five hospital health providers involved in this study's data collection process also completed a self-administered survey to obtain information on their access to the Internet and mobile devices, both factors necessary to implement ECG mobile technology. Outcome measures included feasibility (completion of the study and recruitment of the patients on the planned study time frame) and the yield of the screening by the mobile ECG technology (ability to detect previously undiagnosed AF). Patients were recruited in a 2-week period as planned; only 1 of the 51 patients approached refused to participate (98% acceptance rate). All of the 50 patients who agreed to participate completed the test and produced readable ECGs (100% study completion rate). ECG tracings of 4 of the 50 patients who completed the study showed AF (8% AF yield), and none had been previously diagnosed with AF. When asked about continuous access to Internet and personal mobile devices, almost all of the health care providers surveyed answered affirmatively. Using mobile ECG technology in screening for AF in low-resource settings is feasible, and can detect a significant proportion of AF cases that will otherwise go undiagnosed. Further study is needed to examine the cost-effectiveness of this approach for detection of AF and its effect on reducing the risk of stroke in developing countries. Copyright © 2016 World Heart Federation (Geneva). Published by Elsevier B.V. All rights reserved.

  16. Measurement of weak low frequency pressure signal using stretchable polyurethane fiber sensor for application in wearables

    DEFF Research Database (Denmark)

    Kaysir, Md Rejvi; Stefani, Alessio; Lwin, Richard

    2017-01-01

    .e. a capillary) to measure a weak low frequency signal comparable to respiration/heart rate. We characterized the fiber and measured the sensitivity of a PU capillary using a speaker connected to a function generator. The frequency of the modulated signal was recovered using Fourier Transform (FT). This bodes...

  17. An intelligent telecardiology system using a wearable and wireless ECG to detect atrial fibrillation.

    Science.gov (United States)

    Lin, Chin-Teng; Chang, Kuan-Cheng; Lin, Chun-Ling; Chiang, Chia-Cheng; Lu, Shao-Wei; Chang, Shih-Sheng; Lin, Bor-Shyh; Liang, Hsin-Yueh; Chen, Ray-Jade; Lee, Yuan-Teh; Ko, Li-Wei

    2010-05-01

    This study presents a novel wireless, ambulatory, real-time, and autoalarm intelligent telecardiology system to improve healthcare for cardiovascular disease, which is one of the most prevalent and costly health problems in the world. This system consists of a lightweight and power-saving wireless ECG device equipped with a built-in automatic warning expert system. This device is connected to a mobile and ubiquitous real-time display platform. The acquired ECG signals are instantaneously transmitted to mobile devices, such as netbooks or mobile phones through Bluetooth, and then, processed by the expert system. An alert signal is sent to the remote database server, which can be accessed by an Internet browser, once an abnormal ECG is detected. The current version of the expert system can identify five types of abnormal cardiac rhythms in real-time, including sinus tachycardia, sinus bradycardia, wide QRS complex, atrial fibrillation (AF), and cardiac asystole, which is very important for both the subjects who are being monitored and the healthcare personnel tracking cardiac-rhythm disorders. The proposed system also activates an emergency medical alarm system when problems occur. Clinical testing reveals that the proposed system is approximately 94% accurate, with high sensitivity, specificity, and positive prediction rates for ten normal subjects and 20 AF patients. We believe that in the future a business-card-like ECG device, accompanied with a mobile phone, can make universal cardiac protection service possible.

  18. Measuring velocity by differentiation of analog encoder signals

    NARCIS (Netherlands)

    Winarto, R.F.; Steinbuch, M.; Molengraft, van de M.J.G.

    2013-01-01

    In this report a new method for measuring velocities has been introduced. During the research in literature an overview has been made of the existing methods of measuring velocities. From this research, it can be concluded that a lot of existing approaches only work in specific settings. Besides

  19. A Wearable Healthcare System With a 13.7 μA Noise Tolerant ECG Processor.

    Science.gov (United States)

    Izumi, Shintaro; Yamashita, Ken; Nakano, Masanao; Kawaguchi, Hiroshi; Kimura, Hiromitsu; Marumoto, Kyoji; Fuchikami, Takaaki; Fujimori, Yoshikazu; Nakajima, Hiroshi; Shiga, Toshikazu; Yoshimoto, Masahiko

    2015-10-01

    To prevent lifestyle diseases, wearable bio-signal monitoring systems for daily life monitoring have attracted attention. Wearable systems have strict size and weight constraints, which impose significant limitations of the battery capacity and the signal-to-noise ratio of bio-signals. This report describes an electrocardiograph (ECG) processor for use with a wearable healthcare system. It comprises an analog front end, a 12-bit ADC, a robust Instantaneous Heart Rate (IHR) monitor, a 32-bit Cortex-M0 core, and 64 Kbyte Ferroelectric Random Access Memory (FeRAM). The IHR monitor uses a short-term autocorrelation (STAC) algorithm to improve the heart-rate detection accuracy despite its use in noisy conditions. The ECG processor chip consumes 13.7 μA for heart rate logging application.

  20. A robust physiology-based source separation method for QRS detection in low amplitude fetal ECG recordings

    International Nuclear Information System (INIS)

    Vullings, R; Bergmans, J W M; Peters, C H L; Hermans, M J M; Wijn, P F F; Oei, S G

    2010-01-01

    The use of the non-invasively obtained fetal electrocardiogram (ECG) in fetal monitoring is complicated by the low signal-to-noise ratio (SNR) of ECG signals. Even after removal of the predominant interference (i.e. the maternal ECG), the SNR is generally too low for medical diagnostics, and hence additional signal processing is still required. To this end, several methods for exploiting the spatial correlation of multi-channel fetal ECG recordings from the maternal abdomen have been proposed in the literature, of which principal component analysis (PCA) and independent component analysis (ICA) are the most prominent. Both PCA and ICA, however, suffer from the drawback that they are blind source separation (BSS) techniques and as such suboptimum in that they do not consider a priori knowledge on the abdominal electrode configuration and fetal heart activity. In this paper we propose a source separation technique that is based on the physiology of the fetal heart and on the knowledge of the electrode configuration. This technique operates by calculating the spatial fetal vectorcardiogram (VCG) and approximating the VCG for several overlayed heartbeats by an ellipse. By subsequently projecting the VCG onto the long axis of this ellipse, a source signal of the fetal ECG can be obtained. To evaluate the developed technique, its performance is compared to that of both PCA and ICA and to that of augmented versions of these techniques (aPCA and aICA; PCA and ICA applied on preprocessed signals) in generating a fetal ECG source signal with enhanced SNR that can be used to detect fetal QRS complexes. The evaluation shows that the developed source separation technique performs slightly better than aPCA and aICA and outperforms PCA and ICA and has the main advantage that, with respect to aPCA/PCA and aICA/ICA, it performs more robustly. This advantage renders it favorable for employment in automated, real-time fetal monitoring applications

  1. A Survey on Wireless Transmitter Localization Using Signal Strength Measurements

    Directory of Open Access Journals (Sweden)

    Henri Nurminen

    2017-01-01

    Full Text Available Knowledge of deployed transmitters’ (Tx locations in a wireless network improves many aspects of network management. Operators and building administrators are interested in locating unknown Txs for optimizing new Tx placement, detecting and removing unauthorized Txs, selecting the nearest Tx to offload traffic onto it, and constructing radio maps for indoor and outdoor navigation. This survey provides a comprehensive review of existing algorithms that estimate the location of a wireless Tx given a set of observations with the received signal strength indication. Algorithms that require the observations to be location-tagged are suitable for outdoor mapping or small-scale indoor mapping, while algorithms that allow most observations to be unlocated trade off some accuracy to enable large-scale crowdsourcing. This article presents empirical evaluation of the algorithms using numerical simulations and real-world Bluetooth Low Energy data.

  2. A novel application of deep learning for single-lead ECG classification.

    Science.gov (United States)

    Mathews, Sherin M; Kambhamettu, Chandra; Barner, Kenneth E

    2018-06-04

    Detecting and classifying cardiac arrhythmias is critical to the diagnosis of patients with cardiac abnormalities. In this paper, a novel approach based on deep learning methodology is proposed for the classification of single-lead electrocardiogram (ECG) signals. We demonstrate the application of the Restricted Boltzmann Machine (RBM) and deep belief networks (DBN) for ECG classification following detection of ventricular and supraventricular heartbeats using single-lead ECG. The effectiveness of this proposed algorithm is illustrated using real ECG signals from the widely-used MIT-BIH database. Simulation results demonstrate that with a suitable choice of parameters, RBM and DBN can achieve high average recognition accuracies of ventricular ectopic beats (93.63%) and of supraventricular ectopic beats (95.57%) at a low sampling rate of 114 Hz. Experimental results indicate that classifiers built into this deep learning-based framework achieved state-of-the art performance models at lower sampling rates and simple features when compared to traditional methods. Further, employing features extracted at a sampling rate of 114 Hz when combined with deep learning provided enough discriminatory power for the classification task. This performance is comparable to that of traditional methods and uses a much lower sampling rate and simpler features. Thus, our proposed deep neural network algorithm demonstrates that deep learning-based methods offer accurate ECG classification and could potentially be extended to other physiological signal classifications, such as those in arterial blood pressure (ABP), nerve conduction (EMG), and heart rate variability (HRV) studies. Copyright © 2018. Published by Elsevier Ltd.

  3. Chaos weak signal detecting algorithm and its application in the ultrasonic Doppler bloodstream speed measuring

    International Nuclear Information System (INIS)

    Chen, H Y; Lv, J T; Zhang, S Q; Zhang, L G; Li, J

    2005-01-01

    At the present time, the ultrasonic Doppler measuring means has been extensively used in the human body's bloodstream speed measuring. The ultrasonic Doppler measuring means can achieve the measuring of liquid flux by detecting Doppler frequency shift of ultrasonic in the process of liquid spread. However, the detected sound wave is a weak signal that is flooded in the strong noise signal. The traditional measuring method depends on signal-to-noise ratio. Under the very low signal-to-noise ratio or the strong noise signal background, the signal frequency is not measured. This article studied on chaotic movement of Duffing oscillator and intermittent chaotic characteristic on chaotic oscillator of Duffing equation. In the light of the range of the bloodstream speed of human body and the principle of Doppler shift, the paper determines the frequency shift range. An oscillator array including many oscillators is designed according to it. The reflected ultrasonic frequency information can be ascertained accurately by the intermittent chaos quality of the oscillator. The signal-to-noise ratio of -26.5 dB is obtained by the result of the experiment. Compared with the tradition the frequency method compare, the dependence to signal-to-noise ratio is lowered consumedly. The measuring precision of the bloodstream speed is heightened

  4. Statistical measures of Planck scale signal correlations in interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Craig J. [Univ. of Chicago, Chicago, IL (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Kwon, Ohkyung [Univ. of Chicago, Chicago, IL (United States)

    2015-06-22

    A model-independent statistical framework is presented to interpret data from systems where the mean time derivative of positional cross correlation between world lines, a measure of spreading in a quantum geometrical wave function, is measured with a precision smaller than the Planck time. The framework provides a general way to constrain possible departures from perfect independence of classical world lines, associated with Planck scale bounds on positional information. A parametrized candidate set of possible correlation functions is shown to be consistent with the known causal structure of the classical geometry measured by an apparatus, and the holographic scaling of information suggested by gravity. Frequency-domain power spectra are derived that can be compared with interferometer data. As a result, simple projections of sensitivity for specific experimental set-ups suggests that measurements will directly yield constraints on a universal time derivative of the correlation function, and thereby confirm or rule out a class of Planck scale departures from classical geometry.

  5. Are ECG abnormalities in Noonan syndrome characteristic for the syndrome?

    Science.gov (United States)

    Raaijmakers, R; Noordam, C; Noonan, J A; Croonen, E A; van der Burgt, C J A M; Draaisma, J M T

    2008-12-01

    Of all patients with Noonan syndrome, 50-90% have one or more congenital heart defects. The most frequent occurring are pulmonary stenosis (PS) and hypertrophic cardiomyopathy. The electrocardiogram (ECG) of a patient with Noonan syndrome often shows a characteristic pattern, with a left axis deviation, abnormal R/S ratio over the left precordium, and an abnormal Q wave. The objective of this study was to determine if these ECG characteristics are an independent feature of the Noonan syndrome or if they are related to the congenital heart defect. A cohort study was performed with 118 patients from two university hospitals in the United States and in The Netherlands. All patients were diagnosed with definite Noonan syndrome and had had an ECG and echocardiography. Sixty-nine patients (58%) had characteristic abnormalities of the ECG. In the patient group without a cardiac defect (n = 21), ten patients had a characteristic ECG abnormality. There was no statistical relationship between the presence of a characteristic ECG abnormality and the presence of a cardiac defect (p = 0.33). Patients with hypertrophic cardiomyopathy had more ECG abnormalities in total (p = 0.05), without correlation with a specific ECG abnormality. We conclude that the ECG features in patients with Noonan syndrome are characteristic for the syndrome and are not related to a specific cardiac defect. An ECG is very useful in the diagnosis of Noonan syndrome; every child with a Noonan phenotype should have an ECG and echocardiogram for evaluation.

  6. Evaluation of a novel portable capacitive ECG system in the clinical practice for a fast and simple ECG assessment in patients presenting with chest pain: FIDET (Fast Infarction Diagnosis ECG Trial)

    OpenAIRE

    Rasenack, Eva C. L.; Oehler, Martin; Els?sser, Albrecht; Schilling, Meinhard; Maier, Lars S.

    2012-01-01

    Background Electrocardiogram (ECG) assessment plays a crucial role in patients presenting with chest pain and suspected acute coronary syndrome (ACS). In a pilot study, we previously evaluated a capacitive ECG system (cECG) as a novel ECG technique for a fast and simple ECG assessment in patients with ST-elevation myocardial infarction (STEMI). In a next step, the sensitivity and specificity of this novel ECG technique have to be assessed in patients with ACS. Hypothesis The Fast Infarction D...

  7. Bandwidth tunable amplifier for recording biopotential signals.

    Science.gov (United States)

    Hwang, Sungkil; Aninakwa, Kofi; Sonkusale, Sameer

    2010-01-01

    This paper presents a low noise, low power, bandwidth tunable amplifier for bio-potential signal recording applications. By employing depletion-mode pMOS transistor in diode configuration as a tunable sub pA current source to adjust the resistivity of MOS-Bipolar pseudo-resistor, the bandwidth is adjusted without any need for a separate band-pass filter stage. For high CMRR, PSRR and dynamic range, a fully differential structure is used in the design of the amplifier. The amplifier achieves a midband gain of 39.8dB with a tunable high-pass cutoff frequency ranging from 0.1Hz to 300Hz. The amplifier is fabricated in 0.18εm CMOS process and occupies 0.14mm(2) of chip area. A three electrode ECG measurement is performed using the proposed amplifier to show its feasibility for low power, compact wearable ECG monitoring application.

  8. Position difference regularity of corresponding R-wave peaks for maternal ECG components from different abdominal points

    International Nuclear Information System (INIS)

    Zhang Jie-Min; Liu Hong-Xing; Huang Xiao-Lin; Si Jun-Feng; Guan Qun; Tang Li-Ming; Liu Tie-Bing

    2014-01-01

    We collected 343 groups of abdominal electrocardiogram (ECG) data from 78 pregnant women and deleted the channels unable for experts to determine R-wave peaks from them; then, based on these filtered data, the statistics of position difference of corresponding R-wave peaks for different maternal ECG components from different points were studied. The resultant statistics showed the regularity that the position difference of corresponding maternal R-wave peaks between different abdominal points does not exceed the range of 30 ms. The regularity was also proved using the fECG data from MIT—BIH PhysioBank. Additionally, the paper applied the obtained regularity, the range of position differences of the corresponding maternal R-wave peaks, to accomplish the automatic detection of maternal R-wave peaks in the recorded all initial 343 groups of abdominal signals, including the ones with the largest fetal ECG components, and all 55 groups of ECG data from MIT—BIH PhysioBank, achieving the successful separation of the maternal ECGs. (interdisciplinary physics and related areas of science and technology)

  9. Pre-Hospital ECG E-Transmission for Patients with Suspected Myocardial Infarction in the Highlands of Scotland

    Directory of Open Access Journals (Sweden)

    Gordon F. Rushworth

    2014-02-01

    Full Text Available Patients with ST elevation myocardial infarction (STEMI require prompt treatment, best done by primary percutaneous coronary intervention (PPCI. However, for patients unable to receive PPCI, immediate pre-hospital thrombolysis (PHT is the best alternative. Evidence indicates that diagnostic and management support for staff increases the use of PHT. This study aimed to describe the patient demographics and management of patients, to determine any potential inter-area differences in referral rates to the ECG e-transmission service and to explore the views and experiences of key staff involved in ECG e-transmission within NHS Highland. Data from 2,025 patient episodes of ECG e-transmission identified a statistically significant geographical variation in ECG e-transmission and PHT delivery. Scottish Ambulance Service (SAS staff were more likely than GPs to deliver PHT overall, however, GPs were more likely to deliver in remote areas. Interviews with six Cardiac Care Unit (CCU nurses and six SAS staff highlighted their positive views of ECG e-transmission, citing perceived benefits to patients and interprofessional relationships. Poor access to network signal was noted to be a barrier to engaging in the system. This study has demonstrated that a specialist triage service based on e-transmission of ECGs in patients with suspected STEMI can be implemented in a diverse geographical setting. Work is needed to ensure equity of the service for all patients.

  10. Electrocardiogram signal denoising based on a new improved wavelet thresholding

    Science.gov (United States)

    Han, Guoqiang; Xu, Zhijun

    2016-08-01

    Good quality electrocardiogram (ECG) is utilized by physicians for the interpretation and identification of physiological and pathological phenomena. In general, ECG signals may mix various noises such as baseline wander, power line interference, and electromagnetic interference in gathering and recording process. As ECG signals are non-stationary physiological signals, wavelet transform is investigated to be an effective tool to discard noises from corrupted signals. A new compromising threshold function called sigmoid function-based thresholding scheme is adopted in processing ECG signals. Compared with other methods such as hard/soft thresholding or other existing thresholding functions, the new algorithm has many advantages in the noise reduction of ECG signals. It perfectly overcomes the discontinuity at ±T of hard thresholding and reduces the fixed deviation of soft thresholding. The improved wavelet thresholding denoising can be proved to be more efficient than existing algorithms in ECG signal denoising. The signal to noise ratio, mean square error, and percent root mean square difference are calculated to verify the denoising performance as quantitative tools. The experimental results reveal that the waves including P, Q, R, and S waves of ECG signals after denoising coincide with the original ECG signals by employing the new proposed method.

  11. Relationship between echocardiographic LV mass and ECG based left ventricular voltages in an adolescent population: related or random?

    Science.gov (United States)

    Czosek, Richard J; Cnota, James F; Knilans, Timothy K; Pratt, Jesse; Guerrier, Karine; Anderson, Jeffrey B

    2014-09-01

    In attempts to detect diseases that may place adolescents at risk for sudden death, some have advocated for population-based screening. Controversy exists over electrocardiography (ECG) screening due to the lack of specificity, cost, and detrimental effects of false positive or extraneous outcomes. Analyze the relationship between precordial lead voltage on ECG and left ventricle (LV) mass by echocardiogram in adolescent athletes. Retrospective cohort analysis of a prospectively obtained population of self-identified adolescent athletes during sports screening with ECG and echocardiogram. Correlation between ECG LV voltages (R wave in V6 [RV6] and S wave in lead V1 [SV1]) was compared to echocardiogram-based measurements of left ventricular mass. Potential effects on ECG voltages by body anthropometrics, including weight, body mass index (BMI), and body surface area were analyzed, and ECG voltages indexed to BMI were compared to LV mass indices to analyze for improved correlation. A total of 659 adolescents enrolled in this study (64% male). The mean age was 15.4 years (14-18). The correlations between LV mass and RV6, SV1, and RV6 + SV1 were all less than 0.20. The false positive rate for abnormal voltages was relatively high (5.5%) but improved if abnormal voltages in both RV6 and SV1 were mandated simultaneously (0%). Indexing ECG voltages to BMI significantly improved correlation to LV mass, though false positive findings were increased (12.9%). There is poor correlation between ECG precordial voltages and echocardiographic LV mass. This relationship is modified by BMI. This finding may contribute to the poor ECG screening characteristics. ©2014 Wiley Periodicals, Inc.

  12. ECG-derived Cheyne-Stokes respiration and periodic breathing in healthy and hospitalized populations.

    Science.gov (United States)

    Tinoco, Adelita; Drew, Barbara J; Hu, Xiao; Mortara, David; Cooper, Bruce A; Pelter, Michele M

    2017-11-01

    Cheyne-Stokes respiration (CSR) has been investigated primarily in outpatients with heart failure. In this study we compare CSR and periodic breathing (PB) between healthy and cardiac groups. We compared CSR and PB, measured during 24 hr of continuous 12-lead electrocardiographic (ECG) Holter recording, in a group of 90 hospitalized patients presenting to the emergency department with symptoms suggestive of acute coronary syndrome (ACS) to a group of 100 healthy ambulatory participants. We also examined CSR and PB in the 90 patients presenting with ACS symptoms, divided into a group of 39 (43%) with confirmed ACS, and 51 (57%) with a cardiac diagnosis but non-ACS. SuperECG software was used to derive respiration and then calculate CSR and PB episodes from the ECG Holter data. Regression analyses were used to analyze the data. We hypothesized SuperECG software would differentiate between the groups by detecting less CSR and PB in the healthy group than the group of patients presenting to the emergency department with ACS symptoms. Hospitalized patients with suspected ACS had 7.3 times more CSR episodes and 1.6 times more PB episodes than healthy ambulatory participants. Patients with confirmed ACS had 6.0 times more CSR episodes and 1.3 times more PB episodes than cardiac non-ACS patients. Continuous 12-lead ECG derived CSR and PB appear to differentiate between healthy participants and hospitalized patients. © 2017 Wiley Periodicals, Inc.

  13. Study design and rationale for biomedical shirt-based electrocardiography monitoring in relevant clinical situations: ECG-shirt study.

    Science.gov (United States)

    Balsam, Paweł; Lodziński, Piotr; Tymińska, Agata; Ozierański, Krzysztof; Januszkiewicz, Łukasz; Główczyńska, Renata; Wesołowska, Katarzyna; Peller, Michał; Pietrzak, Radosław; Książczyk, Tomasz; Borodzicz, Sonia; Kołtowski, Łukasz; Borkowski, Mariusz; Werner, Bożena; Opolski, Grzegorz; Grabowski, Marcin

    2018-01-01

    Today, the main challenge for researchers is to develop new technologies which may help to improve the diagnoses of cardiovascular disease (CVD), thereby reducing healthcare costs and improving the quality of life for patients. This study aims to show the utility of biomedical shirt-based electrocardiography (ECG) monitoring of patients with CVD in different clinical situations using the Nuubo® ECG (nECG) system. An investigator-initiated, multicenter, prospective observational study was carried out in a cardiology (adult and pediatric) and cardiac rehabilitation wards. ECG monitoring was used with the biomedical shirt in the following four independent groups of patients: 1) 30 patients after pulmonary vein isolation (PVI), 2) 30 cardiac resynchronization therapy (CRT) recipients, 3) 120 patients during cardiac rehabilitation after myocardial infarction, and 4) 40 pediatric patients with supraventricular tachycardia (SVT) before electrophysiology study. Approval for all study groups was obtained from the institutional review board. The biomedical shirt captures the electrocardiographic signal via textile electrodes integrated into a garment. The software allows the visualization and analysis of data such as ECG, heart rate, arrhythmia detecting algorithm and relative position of the body is captured by an electronic device. The major advantages of the nECG system are continuous ECG monitoring during daily activities, high quality of ECG recordings, as well as assurance of a proper adherence due to adequate comfort while wearing the shirt. There are only a few studies that have examined wearable systems, especially in pediatric populations. This study is registered in ClinicalTrials.gov: Identifier NCT03068169. (Cardiol J 2018; 25, 1: 52-59).

  14. ECG denoising and fiducial point extraction using an extended Kalman filtering framework with linear and nonlinear phase observations.

    Science.gov (United States)

    Akhbari, Mahsa; Shamsollahi, Mohammad B; Jutten, Christian; Armoundas, Antonis A; Sayadi, Omid

    2016-02-01

    In this paper we propose an efficient method for denoising and extracting fiducial point (FP) of ECG signals. The method is based on a nonlinear dynamic model which uses Gaussian functions to model ECG waveforms. For estimating the model parameters, we use an extended Kalman filter (EKF). In this framework called EKF25, all the parameters of Gaussian functions as well as the ECG waveforms (P-wave, QRS complex and T-wave) in the ECG dynamical model, are considered as state variables. In this paper, the dynamic time warping method is used to estimate the nonlinear ECG phase observation. We compare this new approach with linear phase observation models. Using linear and nonlinear EKF25 for ECG denoising and nonlinear EKF25 for fiducial point extraction and ECG interval analysis are the main contributions of this paper. Performance comparison with other EKF-based techniques shows that the proposed method results in higher output SNR with an average SNR improvement of 12 dB for an input SNR of -8 dB. To evaluate the FP extraction performance, we compare the proposed method with a method based on partially collapsed Gibbs sampler and an established EKF-based method. The mean absolute error and the root mean square error of all FPs, across all databases are 14 ms and 22 ms, respectively, for our proposed method, with an advantage when using a nonlinear phase observation. These errors are significantly smaller than errors obtained with other methods. For ECG interval analysis, with an absolute mean error and a root mean square error of about 22 ms and 29 ms, the proposed method achieves better accuracy and smaller variability with respect to other methods.

  15. Evaluation of Heart Rate Variability by means of Laser Doppler Vibrometry measurements

    International Nuclear Information System (INIS)

    Cosoli, G; Casacanditella, L; Tomasini, EP; Scalise, L

    2015-01-01

    Heart Rate Variability (HRV) analysis aims to study the physiological variability of the Heart Rate (HR), which is related to the health conditions of the subject. HRV is assessed measuring heart periods (HP) on a time window of >5 minutes (1)-(2). HPs are determined from signals of different nature: electrocardiogram (ECG), photoplethysmogram (PPG), phonocardiogram (PCG) or vibrocardiogram (VCG) (3)-(4)-(5). The fundamental aspect is the identification of a feature in each heartbeat that allows to accurately compute cardiac periods (such as R peaks in ECG), in order to make possible the measurement of all the typical HRV evaluations on those intervals. VCG is a non-contact technique (4), very favourable in medicine, which detects the vibrations on the skin surface (e.g. on the carotid artery) resulting from vascular blood motion consequent to electrical signal (ECG).In this paper, we propose the use of VCG for the measurement of a signal related to HRV and the use of a novel algorithm based on signal geometry (7) to detect signal peaks, in order to accurately determine cardiac periods and the Poincare plot (9)-(10). The results reported are comparable to the ones reached with the gold standard (ECG) and in literature (3)-(5). We report mean values of HP of 832±54 ms and 832±55 ms by means of ECG and VCG, respectively. Moreover, this algorithm allow us to identify particular features of ECG and VCG signals, so that in the future we will be able to evaluate specific correlations between the two. (paper)

  16. A simple 5-DoF MR-compatible motion signal measurement system.

    Science.gov (United States)

    Chung, Soon-Cheol; Kim, Hyung-Sik; Yang, Jae-Woong; Lee, Su-Jeong; Choi, Mi-Hyun; Kim, Ji-Hye; Yeon, Hong-Won; Park, Jang-Yeon; Yi, Jeong-Han; Tack, Gye-Rae

    2011-09-01

    The purpose of this study was to develop a simple motion measurement system with magnetic resonance (MR) compatibility and safety. The motion measurement system proposed here can measure 5-DoF motion signals without deteriorating the MR images, and it has no effect on the intense and homogeneous main magnetic field, the temporal-gradient magnetic field (which varies rapidly with time), the transceiver radio frequency (RF) coil, and the RF pulse during MR data acquisition. A three-axis accelerometer and a two-axis gyroscope were used to measure 5-DoF motion signals, and Velcro was used to attach a sensor module to a finger or wrist. To minimize the interference between the MR imaging system and the motion measurement system, nonmagnetic materials were used for all electric circuit components in an MR shield room. To remove the effect of RF pulse, an amplifier, modulation circuit, and power supply were located in a shielded case, which was made of copper and aluminum. The motion signal was modulated to an optic signal using pulse width modulation, and the modulated optic signal was transmitted outside the MR shield room using a high-intensity light-emitting diode and an optic cable. The motion signal was recorded on a PC by demodulating the transmitted optic signal into an electric signal. Various kinematic variables, such as angle, acceleration, velocity, and jerk, can be measured or calculated by using the motion measurement system developed here. This system also enables motion tracking by extracting the position information from the motion signals. It was verified that MR images and motion signals could reliably be measured simultaneously.

  17. Signal Processing for the Impedance Measurement on an Electrochemical Generator

    Directory of Open Access Journals (Sweden)

    El-Hassane AGLZIM

    2008-04-01

    Full Text Available Improving the life time of batteries or fuel cells requires the optimization of components such as membranes and electrodes and enhancement of the flow of gases [1], [2]. These goals could be reached by using a real time measurement on loaded generator. The impedance spectroscopy is a new way that was recently investigated. In this paper, we present an electronic measurement instrumentation developed in our laboratory to measure and plot the impedance of a loaded electrochemical generator like batteries and fuel cells. Impedance measures were done according to variations of the frequency in a larger band than what is usually used. The electronic instrumentation is controlled by Hpvee® software which allows us to plot the Nyquist graph of the electrochemical generator impedance. The theoretical results obtained in simulation under Pspice® confirm the choice of the method and its advantage. For safety reasons, the experimental preliminary tests were done on a 12 V vehicle battery, having an input current of 330 A and a capacity of 40 Ah and are now extended to a fuel cell. The results were plotted at various nominal voltages of the battery (12.7 V, 10 V, 8 V and 5 V and with two imposed currents (0.6 A and 4 A. The Nyquist diagram resulting from the experimental data enable us to show an influence of the load of the battery on its internal impedance. The similitude in the graph form and in order of magnitude of the values obtained (both theoretical and practical enables us to validate our electronic measurement instrumentation. Different sensors (temperature, pressure were placed around the device under test (DUT. These influence parameters were permanently recorded. Results presented here concern a classic loaded 12 V vehicle battery. The Nyquist diagram resulting from the experimental data confirms the influence of the load of the DUT on its internal impedance.

  18. HiggsSignals. Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bechtle, Philip [Bonn Univ. (Germany). Physikalisches Inst.; Heinemeyer, Sven [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Staal, Oscar [Stockholm Univ. (Sweden). The Oskar Klein Centre; Stefaniak, Tim [Bonn Univ. (Germany). Physikalisches Inst.; Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-05-15

    HiggsSignals is a Fortran90 computer code that allows to test the compatibility of Higgs sector predictions against Higgs rates and masses measured at the LHC or the Tevatron. Arbitrary models with any number of Higgs bosons can be investigated using a model-independent input scheme based on HiggsBounds. The test is based on the calculation of a {chi}{sup 2} measure from the predictions and the measured Higgs rates and masses, with the ability of fully taking into account systematics and correlations for the signal rate predictions, luminosity and Higgs mass predictions. It features two complementary methods for the test. First, the peak-centered method, in which each observable is defined by a Higgs signal rate measured at a specific hypothetical Higgs mass, corresponding to a tentative Higgs signal. Second, the mass-centered method, where the test is evaluated by comparing the signal rate measurement to the theory prediction at the Higgs mass predicted by the model. The program allows for the simultaneous use of both methods, which is useful in testing models with multiple Higgs bosons. The code automatically combines the signal rates of multiple Higgs bosons if their signals cannot be resolved by the experimental analysis. We compare results obtained with HiggsSignals to official ATLAS and CMS results for various examples of Higgs property determinations and find very good agreement. A few examples of HiggsSignals applications are provided, going beyond the scenarios investigated by the LHC collaborations. For models with more than one Higgs boson we recommend to use HiggsSignals and HiggsBounds in parallel to exploit the full constraining power of Higgs search exclusion limits and the measurements of the signal seen at m{sub H} {approx} 125.5 GeV.

  19. Fetal electrocardiogram (ECG) for fetal monitoring during labour.

    Science.gov (United States)

    Neilson, James P

    2015-12-21

    fewer fetal scalp samples taken during labour (average RR 0.61, 95% CI 0.41 to 0.91; four trials, 9671 babies; high quality evidence) although the findings were heterogeneous and there were no data from the largest trial (from the USA). There were marginally fewer operative vaginal births (RR 0.92, 95% CI 0.86 to 0.99; six trials, 26,446 women); but no obvious difference in the number of babies with low Apgar scores at five minutes or babies requiring neonatal intubation, or babies requiring admission to the special care unit (RR 0.96, 95% CI 0.89 to 1.04, six trials, 26,410 babies; high quality evidence). There was little evidence that monitoring by PR interval analysis conveyed any benefit of any sort. The modest benefits of fewer fetal scalp samplings during labour (in settings in which this procedure is performed) and fewer instrumental vaginal births have to be considered against the disadvantages of needing to use an internal scalp electrode, after membrane rupture, for ECG waveform recordings. We found little strong evidence that ST waveform analysis had an effect on the primary outcome measures in this systematic review.There was a lack of evidence showing that PR interval analysis improved any outcomes; and a larger future trial may possibly demonstrate beneficial effects.There is little information about the value of fetal ECG waveform monitoring in preterm fetuses in labour. Information about long-term development of the babies included in the trials would be valuable.

  20. Use of electrocardiogram (ECG) electrodes for Bioelectrical Impedance Analysis (BIA)

    International Nuclear Information System (INIS)

    Caicedo-Eraso, J C; González-Correa, C H; González-Correa, C A

    2012-01-01

    BIA is a safe, noninvasive, portable and relatively inexpensive method of estimating body composition that is practical and suitable for individual use and large-scale studies. However, the cost of the electrodes recommended by some BIA manufacturers is too high for developing countries; where very often the long and complicated process of importation reduces the time they can be used. The purpose of this study was to evaluate the use of two types of ECG electrodes (2290 and 2228 by 3M ® ) in BIA measurements to decrease the costs of the test. The results showed that the 2228 ECG electrodes can be used in BIA measurements for adult's body composition assessment. These electrodes are available in the domestic market and their costs are 92% lower than the electrodes recommended by manufacturer. The results show a new cost-benefit relation for BIA method and make this a more accessible tool for individual tests, large-scale researches and studies in the community.

  1. Association between QRS duration on prehospital ECG and mortality in patients with suspected STEMI

    DEFF Research Database (Denmark)

    Hansen, Rikke; Frydland, Martin; Møller-Helgestad, Ole Kristian

    2017-01-01

    BACKGROUND: QRS duration has previously shown association with mortality in patients with acute myocardial infarction treated with thrombolytics, less is known in patients with suspected ST segment elevation myocardial infarction (STEMI) when assessing QRS duration on prehospital ECG. Thus......, the objective was to investigate the prognostic effect of QRS duration on prehospital ECG and presence of classic left and right bundle branch block (LBBB/RBBB) for all-cause mortality in patients with suspected STEMI. METHOD: In total 2105 consecutive patients (mean age 64±13years, 72% men) with suspected...... STEMI were prospectively included. QRS duration was registered from automated QRS measurement on prehospital ECG and patients were divided according to quartiles of QRS duration (111ms). Primary endpoint was all-cause 30-day mortality. Predictors of all-cause mortality were...

  2. Continuous ECG Monitoring in Patients With Acute Coronary Syndrome or Heart Failure: EASI Versus Gold Standard.

    Science.gov (United States)

    Lancia, Loreto; Toccaceli, Andrea; Petrucci, Cristina; Romano, Silvio; Penco, Maria

    2018-05-01

    The purpose of the study was to compare the EASI system with the standard 12-lead surface electrocardiogram (ECG) for the accuracy in detecting the main electrocardiographic parameters (J point, PR, QT, and QRS) commonly monitored in patients with acute coronary syndromes or heart failure. In this observational comparative study, 253 patients who were consecutively admitted to the coronary care unit with acute coronary syndrome or heart failure were evaluated. In all patients, two complete 12-lead ECGs were acquired simultaneously. A total of 6,072 electrocardiographic leads were compared (3,036 standard and 3,036 EASI). No significant differences were found between the investigate parameters of the two measurement methods, either in patients with acute coronary syndrome or in those with heart failure. This study confirmed the accuracy of the EASI system in monitoring the main ECG parameters in patients admitted to the coronary care unit with acute coronary syndrome or heart failure.

  3. Clinical usefullness of ECG-triggered single photon emission comuter tomography of blood-pool

    International Nuclear Information System (INIS)

    Eilles, Chr.; Boerner, W.; Strauss, P.; Gerhards, W.; Reiners, Ch.

    1982-01-01

    ECT allows direct measurement of the volume of an organ and imaging without disturbing background-superposition. This makes ECT to an useful instrument for ECG-gated blood-pool imaging. Acquisition is made after the injection of 25 mCi Tc-99m HSA with a rotating Anger-Camera-System. ECG-gated imaging is done for each projection; herewith 50-70 cycles per projection are added according to the phase of the heart-cycle. Transversal-Sections of the heart are reconstructed with filtered-back-projection. For each slice a representative cycle, consisting of 10-16 frames, is computed. As shown by our group before a good quality of the reconstructed images can be obtained. Comparison is made with the results of the ECG-gated blood-pool-ECT, the results of the conventional blood-pool-studies and with the results of Laevo-Cardiography. (Author)

  4. New system for digital to analog transformation and reconstruction of 12-lead ECGs.

    Science.gov (United States)

    Kothadia, Roshni; Kulecz, Walter B; Kofman, Igor S; Black, Adam J; Grier, James W; Schlegel, Todd T

    2013-01-01

    We describe initial validation of a new system for digital to analog conversion (DAC) and reconstruction of 12-lead ECGs. The system utilizes an open and optimized software format with a commensurately optimized DAC hardware configuration to accurately reproduce, from digital files, the original analog electrocardiographic signals of previously instrumented patients. By doing so, the system also ultimately allows for transmission of data collected on one manufacturer's 12-lead ECG hardware/software into that of any other. To initially validate the system, we compared original and post-DAC re-digitized 12-lead ECG data files (∼5-minutes long) in two types of validation studies in 10 patients. The first type quantitatively compared the total waveform voltage differences between the original and re-digitized data while the second type qualitatively compared the automated electrocardiographic diagnostic statements generated by the original versus re-digitized data. The grand-averaged difference in root mean squared voltage between the original and re-digitized data was 20.8 µV per channel when re-digitization involved the same manufacturer's analog to digital converter (ADC) as the original digitization, and 28.4 µV per channel when it involved a different manufacturer's ADC. Automated diagnostic statements generated by the original versus reconstructed data did not differ when using the diagnostic algorithm from the same manufacturer on whose device the original data were collected, and differed only slightly for just 1 of 10 patients when using a third-party diagnostic algorithm throughout. Original analog 12-lead ECG signals can be reconstructed from digital data files with accuracy sufficient for clinical use. Such reconstructions can readily enable automated second opinions for difficult-to-interpret 12-lead ECGs, either locally or remotely through the use of dedicated or cloud-based servers.

  5. New system for digital to analog transformation and reconstruction of 12-lead ECGs.

    Directory of Open Access Journals (Sweden)

    Roshni Kothadia

    Full Text Available INTRODUCTION: We describe initial validation of a new system for digital to analog conversion (DAC and reconstruction of 12-lead ECGs. The system utilizes an open and optimized software format with a commensurately optimized DAC hardware configuration to accurately reproduce, from digital files, the original analog electrocardiographic signals of previously instrumented patients. By doing so, the system also ultimately allows for transmission of data collected on one manufacturer's 12-lead ECG hardware/software into that of any other. MATERIALS AND METHODS: To initially validate the system, we compared original and post-DAC re-digitized 12-lead ECG data files (∼5-minutes long in two types of validation studies in 10 patients. The first type quantitatively compared the total waveform voltage differences between the original and re-digitized data while the second type qualitatively compared the automated electrocardiographic diagnostic statements generated by the original versus re-digitized data. RESULTS: The grand-averaged difference in root mean squared voltage between the original and re-digitized data was 20.8 µV per channel when re-digitization involved the same manufacturer's analog to digital converter (ADC as the original digitization, and 28.4 µV per channel when it involved a different manufacturer's ADC. Automated diagnostic statements generated by the original versus reconstructed data did not differ when using the diagnostic algorithm from the same manufacturer on whose device the original data were collected, and differed only slightly for just 1 of 10 patients when using a third-party diagnostic algorithm throughout. CONCLUSION: Original analog 12-lead ECG signals can be reconstructed from digital data files with accuracy sufficient for clinical use. Such reconstructions can readily enable automated second opinions for difficult-to-interpret 12-lead ECGs, either locally or remotely through the use of dedicated or cloud

  6. A wavelet-based ECG delineation algorithm for 32-bit integer online processing.

    Science.gov (United States)

    Di Marco, Luigi Y; Chiari, Lorenzo

    2011-04-03

    Since the first well-known electrocardiogram (ECG) delineator based on Wavelet Transform (WT) presented by Li et al. in 1995, a significant research effort has been devoted to the exploitation of this promising method. Its ability to reliably delineate the major waveform components (mono- or bi-phasic P wave, QRS, and mono- or bi-phasic T wave) would make it a suitable candidate for efficient online processing of ambulatory ECG signals. Unfortunately, previous implementations of this method adopt non-linear operators such as root mean square (RMS) or floating point algebra, which are computationally demanding. This paper presents a 32-bit integer, linear algebra advanced approach to online QRS detection and P-QRS-T waves delineation of a single lead ECG signal, based on WT. The QRS detector performance was validated on the MIT-BIH Arrhythmia Database (sensitivity Se = 99.77%, positive predictive value P+ = 99.86%, on 109010 annotated beats) and on the European ST-T Database (Se = 99.81%, P+ = 99.56%, on 788050 annotated beats). The ECG delineator was validated on the QT Database, showing a mean error between manual and automatic annotation below 1.5 samples for all fiducial points: P-onset, P-peak, P-offset, QRS-onset, QRS-offset, T-peak, T-offset, and a mean standard deviation comparable to other established methods. The proposed algorithm exhibits reliable QRS detection as well as accurate ECG delineation, in spite of a simple structure built on integer linear algebra.

  7. Female False Positive Exercise Stress ECG Testing - Fact Verses Fiction.

    Science.gov (United States)

    Fitzgerald, Benjamin T; Scalia, William M; Scalia, Gregory M

    2018-03-07

    Exercise stress testing is a well validated cardiovascular investigation. Accuracy for treadmill stress electrocardiograph (ECG) testing has been documented at 60%. False positive stress ECGs (exercise ECG changes with non-obstructive disease on anatomical testing) are common, especially in women, limiting the effectiveness of the test. This study investigates the incidence and predictors of false positive stress ECG findings, referenced against stress echocardiography (SE) as a standard. Stress echocardiography was performed using the Bruce treadmill protocol. False positive stress ECG tests were defined as greater than 1mm of ST depression on ECG during exertion, without pain, with a normal SE. Potential causes for false positive tests were recorded before the test. Three thousand consecutive negative stress echocardiograms (1036 females, 34.5%) were analysed (age 59+/-14 years. False positive (F+) stress ECGs were documented in 565/3000 tests (18.8%). F+ stress ECGs were equally prevalent in females (194/1036, 18.7%) and males (371/1964, 18.9%, p=0.85 for the difference). Potential causes (hypertension, left ventricular hypertrophy, known coronary disease, arrhythmia, diabetes mellitus, valvular heart disease) were recorded in 36/194 (18.6%) of the female F+ ECG tests and 249/371 (68.2%) of the male F+ ECG tests (preinforce the value of stress imaging, particularly in women. Copyright © 2018 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). All rights reserved.

  8. Measurement of signal-to-noise ratio performance of TV fluoroscopy systems

    International Nuclear Information System (INIS)

    Geluk, R.J.

    1985-01-01

    A method has been developed for direct measurement of Signal-to-Noise ratio performance on X-ray TV systems. To this end the TV signal resulting from a calibrated test object, is compared with the noise level in the image. The method is objective and produces instantaneous readout, which makes it very suitable for system evaluation under dynamic conditions. (author)

  9. Magnetic Resonance Signal Intensity Ratio Measurement Before Uterine Artery Embolization

    DEFF Research Database (Denmark)

    Duvnjak, Stevo; Ravn, Pernille; Green, Anders

    2017-01-01

    , 52 patients were included in this prospective study. The SI ratio before UFE was calculated using circular region of interests placed on the dominant fibroid and the iliac muscle. The SI fibroid-to-iliac muscle ratio was calculated as SI of the dominant fibroid/SI of the iliac muscle on T1-, T2......-, and T1 post-contrast-weighted sequences. The dominant fibroid volume was measured and analyzed before and after UFE. RESULTS: In all, 46 patients who completed the three-month follow-up MRI were available for analysis. The correlation between SI fibroid-to-muscle ratio at the T2-weighted sequence...... positive correlation (r = 0.439, p T2-weighted sequence. The area under curve (AUC) for SI fibroid-to-muscle ratio on T2-weighted sequence was 0.776. For the other parameters, the AUC values were 0.512, 0.671, and 0.578, respectively. CONCLUSION: SI...

  10. Fetal QRS extraction from abdominal recordings via model-based signal processing and intelligent signal merging

    International Nuclear Information System (INIS)

    Haghpanahi, Masoumeh; Borkholder, David A

    2014-01-01

    Noninvasive fetal ECG (fECG) monitoring has potential applications in diagnosing congenital heart diseases in a timely manner and assisting clinicians to make more appropriate decisions during labor. However, despite advances in signal processing and machine learning techniques, the analysis of fECG signals has still remained in its preliminary stages. In this work, we describe an algorithm to automatically locate QRS complexes in noninvasive fECG signals obtained from a set of four electrodes placed on the mother’s abdomen. The algorithm is based on an iterative decomposition of the maternal and fetal subspaces and filtering of the maternal ECG (mECG) components from the fECG recordings. Once the maternal components are removed, a novel merging technique is applied to merge the signals and detect the fetal QRS (fQRS) complexes. The algorithm was trained and tested on the fECG datasets provided by the PhysioNet/CinC challenge 2013. The final results indicate that the algorithm is able to detect fetal peaks for a variety of signals with different morphologies and strength levels encountered in clinical practice. (paper)

  11. Theory and Measurement of Signal-to-Noise Ratio in Continuous-Wave Noise Radar.

    Science.gov (United States)

    Stec, Bronisław; Susek, Waldemar

    2018-05-06

    Determination of the signal power-to-noise power ratio on the input and output of reception systems is essential to the estimation of their quality and signal reception capability. This issue is especially important in the case when both signal and noise have the same characteristic as Gaussian white noise. This article considers the problem of how a signal-to-noise ratio is changed as a result of signal processing in the correlation receiver of a noise radar in order to determine the ability to detect weak features in the presence of strong clutter-type interference. These studies concern both theoretical analysis and practical measurements of a noise radar with a digital correlation receiver for 9.2 GHz bandwidth. Firstly, signals participating individually in the correlation process are defined and the terms signal and interference are ascribed to them. Further studies show that it is possible to distinguish a signal and a noise on the input and output of a correlation receiver, respectively, when all the considered noises are in the form of white noise. Considering the above, a measurement system is designed in which it is possible to represent the actual conditions of noise radar operation and power measurement of a useful noise signal and interference noise signals—in particular the power of an internal leakage signal between a transmitter and a receiver of the noise radar. The proposed measurement stands and the obtained results show that it is possible to optimize with the use of the equipment and not with the complex processing of a noise signal. The radar parameters depend on its prospective application, such as short- and medium-range radar, ground-penetrating radar, and through-the-wall detection radar.

  12. Signals and noise in measurements of low-frequency geomagnetic fields

    International Nuclear Information System (INIS)

    Nichols, E.A.; Morrison, H.F.; Clarke, J.

    1988-01-01

    The apparent magnetic noise, obtained from the coherency function for two parallel magnetic sensors, generally overstimates sensor noise because the sensors do not measure the same signal. The different signals result from the nonparallel alignment of the sensors and from the additional magnetic signal induced in each sensor by its motion in the Earth's magnetic field. A magnetometer array experiment was completed in Grass Valley, Nevada, to determine the minimum magnetic signal that could be detected in the presence of background natural field variations and motion of the sensor. Superconducting quantum interference device (SQUID) magnetometers with interval biaxial tiltmeters were used to record the magnetic fields and the motion of the sensors

  13. Low-power signal processing devices for portable ECG detection.

    Science.gov (United States)

    Lee, Shuenn-Yuh; Cheng, Chih-Jen; Wang, Cheng-Pin; Kao, Wei-Chun

    2008-01-01

    An analog front end for diagnosing and monitoring the behavior of the heart is presented. This sensing front end has two low-power processing devices, including a 5(th)-order Butterworth operational transconductance-C (OTA-C) filter and an 8-bit successive approximation analog-to-digital converter (SAADC). The components fabricated in a 0.18-microm CMOS technology feature with power consumptions of 453 nW (filter) and 940 nW (ADC) at a supply voltage of 1 V, respectively. The system specifications in terms of output noise and linearity associated with the two integrated circuits are described in this paper.

  14. Unconstrained and Noninvasive Measurement of Swimming Behavior of Small Fish Based on Ventilatory Signals

    Science.gov (United States)

    Kitayama, Shigehisa; Soh, Zu; Hirano, Akira; Tsuji, Toshio; Takiguchi, Noboru; Ohtake, Hisao

    Ventilatory signal is a kind of bioelectric signals reflecting the ventilatory conditions of fish, and has received recent attention as an indicator for assessment of water quality, since breathing is adjusted by the respiratory center according to changes in the underwater environment surrounding the fish. The signals are thus beginning to be used in bioassay systems for water examination. Other than ventilatory conditions, swimming behavior also contains important information for water examination. The conventional bioassay systems, however, only measure either ventilatory signals or swimming behavior. This paper proposes a new unconstrained and noninvasive measurement method that is capable of conducting ventilatory signal measurement and behavioral analysis of fish at the same time. The proposed method estimates the position and the velocity of a fish in free-swimming conditions using power spectrum distribution of measured ventilatory signals from multiple electrodes. This allowed the system to avoid using a camera system which requires light sources. In order to validate estimation accuracy, the position and the velocity estimated by the proposed method were compared to those obtained from video analysis. The results confirmed that the estimated error of the fish positions was within the size of fish, and the correlation coefficient between the velocities was 0.906. The proposed method thus not only can measure the ventilatory signals, but also performs behavioral analysis as accurate as using a video camera.

  15. NInFEA: an embedded framework for the real-time evaluation of fetal ECG extraction algorithms.

    Science.gov (United States)

    Pani, Danilo; Barabino, Gianluca; Raffo, Luigi

    2013-02-01

    Fetal electrocardiogram (ECG) extraction from non-invasive biopotential recordings is a long-standing research topic. Despite the significant number of algorithms presented in the scientific literature, it is difficult to find information about embedded hardware implementations able to provide real-time support for the required features, bridging the gap between theory and practice. This article presents the NInFEA (non-invasive fetal ECG analysis) tool, an embedded hardware/software framework based on the hybrid dual-core OMAP-L137 low-power processor for the real-time evaluation of fetal ECG extraction algorithms. The hybrid platform, including a digital signal processor (DSP) and a general-purpose processor (GPP), allows achieving the best performance compared with single-core architectures. The GPP provides a portable graphical user interface, whereas the DSP is extensively used for advanced signal processing tasks. As a case study, three state-of-the-art fetal ECG extraction algorithms have been ported onto NInFEA, along with some support routines needed to provide the additional information required by the clinicians and supported by the user interface. NInFEA can be regarded both as a reference design for similar applications and as a common embedded low-power testbed for real-time fetal ECG extraction algorithms.

  16. Influence of Wilbraham-Gibbs Phenomenon on Digital Stochastic Measurement of EEG Signal Over an Interval

    Directory of Open Access Journals (Sweden)

    Sovilj P.

    2014-10-01

    Full Text Available Measurement methods, based on the approach named Digital Stochastic Measurement, have been introduced, and several prototype and small-series commercial instruments have been developed based on these methods. These methods have been mostly investigated for various types of stationary signals, but also for non-stationary signals. This paper presents, analyzes and discusses digital stochastic measurement of electroencephalography (EEG signal in the time domain, emphasizing the problem of influence of the Wilbraham-Gibbs phenomenon. The increase of measurement error, related to the Wilbraham-Gibbs phenomenon, is found. If the EEG signal is measured and measurement interval is 20 ms wide, the average maximal error relative to the range of input signal is 16.84 %. If the measurement interval is extended to 2s, the average maximal error relative to the range of input signal is significantly lowered - down to 1.37 %. Absolute errors are compared with the error limit recommended by Organisation Internationale de Métrologie Légale (OIML and with the quantization steps of the advanced EEG instruments with 24-bit A/D conversion

  17. Accurate measurement of imaging photoplethysmographic signals based camera using weighted average

    Science.gov (United States)

    Pang, Zongguang; Kong, Lingqin; Zhao, Yuejin; Sun, Huijuan; Dong, Liquan; Hui, Mei; Liu, Ming; Liu, Xiaohua; Liu, Lingling; Li, Xiaohui; Li, Rongji

    2018-01-01

    Imaging Photoplethysmography (IPPG) is an emerging technique for the extraction of vital signs of human being using video recordings. IPPG technology with its advantages like non-contact measurement, low cost and easy operation has become one research hot spot in the field of biomedicine. However, the noise disturbance caused by non-microarterial area cannot be removed because of the uneven distribution of micro-arterial, different signal strength of each region, which results in a low signal noise ratio of IPPG signals and low accuracy of heart rate. In this paper, we propose a method of improving the signal noise ratio of camera-based IPPG signals of each sub-region of the face using a weighted average. Firstly, we obtain the region of interest (ROI) of a subject's face based camera. Secondly, each region of interest is tracked and feature-based matched in each frame of the video. Each tracked region of face is divided into 60x60 pixel block. Thirdly, the weights of PPG signal of each sub-region are calculated, based on the signal-to-noise ratio of each sub-region. Finally, we combine the IPPG signal from all the tracked ROI using weighted average. Compared with the existing approaches, the result shows that the proposed method takes modest but significant effects on improvement of signal noise ratio of camera-based PPG estimated and accuracy of heart rate measurement.

  18. Combining and benchmarking methods of foetal ECG extraction without maternal or scalp electrode data

    International Nuclear Information System (INIS)

    Behar, Joachim; Oster, Julien; Clifford, Gari D

    2014-01-01

    Despite significant advances in adult clinical electrocardiography (ECG) signal processing techniques and the power of digital processors, the analysis of non-invasive foetal ECG (NI-FECG) is still in its infancy. The Physionet/Computing in Cardiology Challenge 2013 addresses some of these limitations by making a set of FECG data publicly available to the scientific community for evaluation of signal processing techniques. The abdominal ECG signals were first preprocessed with a band-pass filter in order to remove higher frequencies and baseline wander. A notch filter to remove power interferences at 50 Hz or 60 Hz was applied if required. The signals were then normalized before applying various source separation techniques to cancel the maternal ECG. These techniques included: template subtraction, principal/independent component analysis, extended Kalman filter and a combination of a subset of these methods (FUSE method). Foetal QRS detection was performed on all residuals using a Pan and Tompkins QRS detector and the residual channel with the smoothest foetal heart rate time series was selected. The FUSE algorithm performed better than all the individual methods on the training data set. On the validation and test sets, the best Challenge scores obtained were E1 = 179.44, E2 = 20.79, E3 = 153.07, E4 = 29.62 and E5 = 4.67 for events 1–5 respectively using the FUSE method. These were the best Challenge scores for E1 and E2 and third and second best Challenge scores for E3, E4 and E5 out of the 53 international teams that entered the Challenge. The results demonstrated that existing standard approaches for foetal heart rate estimation can be improved by fusing estimators together. We provide open source code to enable benchmarking for each of the standard approaches described. (paper)

  19. Comparison of Electrocardiogram Signals in Men and Women during Creativity with Classification Approaches

    Directory of Open Access Journals (Sweden)

    Sahar ZAKERI

    2016-07-01

    Full Text Available Electrocardiogram (ECG analysis is mostly used as a valuable tool in the evaluation of cognitive tasks. By taking and analyzing measurements in vast quantities, researchers are working toward a better understanding of how human physiological systems work. For the first time, this study investigated the function of the cardiovascular system during creative thinking. In addition, the difference between male/female and normal/creativity states from ECG signals was investigated. Overall, the purpose of this paper was to illustrate the heart working during the creativity, and discover the creative men or women subjects. For these goals, six nonlinear features of the ECG signal were extracted to detect creativity states. During the three tasks of the Torrance Tests of Creative Thinking (TTCT- Figural B, ECG signals were recorded from 52 participants (26 men and 26 women. Then, the proficiency of two kinds of classification approaches was evaluated: Artificial Neural Network (ANN and Support Vector Machine (SVM. The results indicated the high accuracy rate of discriminations between male/female (96.09% and normal/creativity states (95.84% using ANN classifier. Therefore, the proposed method can be useful to detect the creativity states.

  20. Effect of Hadron Contamination on Dielectron Signal Reconstruction in Heavy Flavor Production Measurements

    International Nuclear Information System (INIS)

    Kikoła, Daniel

    2015-01-01

    Dielectron signal reconstruction is an important tool for heavy flavor measurements because of its trigger feasibility and its relatively straightforward particle identification process. However, in the case of time projection chamber detectors, some hadron contamination is unavoidable, even if additional means are used to improve the particle identification process. In this paper, we investigate the effects of hadron (protons, pions, and kaons) contamination on the dielectron signal reconstruction process in the measurement of J/ψ and electrons from heavy flavor hadron decays

  1. Approximation of Measurement Results of “Emergency” Signal Reception Probability

    Directory of Open Access Journals (Sweden)

    Gajda Stanisław

    2017-08-01

    Full Text Available The intended aim of this article is to present approximation results of the exemplary measurements of EMERGENCY signal reception probability. The probability is under-stood as a distance function between the aircraft and a ground-based system under established conditions. The measurements were approximated using the properties of logistic functions. This probability, as a distance function, enables to determine the range of the EMERGENCY signal for a pre-set confidence level.

  2. Validation of Nonlinear Bipolar Transistor Model by Small-Signal Measurements

    DEFF Research Database (Denmark)

    Vidkjær, Jens; Porra, V.; Zhu, J.

    1992-01-01

    A new method for the validity analysis of nonlinear transistor models is presented based on DC-and small-signal S-parameter measurements and realistic consideration of the measurement and de-embedding errors and singularities of the small-signal equivalent circuit. As an example, some analysis...... results for an extended Gummel Poon model are presented in the case of a UHF bipolar power transistor....

  3. ECG-gating in non-cardiac digital subtraction angiography

    International Nuclear Information System (INIS)

    Gattoni, F.; Baldini, V.; Cairo, F.

    1987-01-01

    This paper reports the results of the ECG-gating in non-cardiac digital subtraction angiography (DSA). One hundred and fifteen patients underwent DSA (126 examinations); ECG-gating was applied in 66/126 examinations: images recorded at 70% of R wave were subtracted. Artifacts produced by vascular movements were evaluated in all patients: only 40 examinations, carried out whithout ECG-gating, showed vascular artifacts. The major advantage of the ECG-gated DSA is the more efficent subtraction because of the better images superimposition: therefore, ECG-gating can be clinically helpful. On the contrary, it could be a problem in arrhytmic or bradycardic patients. ECG-gating is helpful in DSA imaging of the thoracic and abdominal aorta and of the cervical and renal arteries. In the examinations of peripheral vessels of the limbs it is not so efficent as in the trunk or in the neck

  4. Interchangeability of electrocardiography and blood pressure measurement for determining heart rate and heart rate variability in free-moving domestic pigs in various behavioral contexts

    Directory of Open Access Journals (Sweden)

    Annika eKrause

    2015-11-01

    Full Text Available This study assessed the interchangeability between heart rate (HR and heart rate variability (HRV measures derived from a series of interbeat intervals (IBIs recorded via electrocardiogram (ECG and intra-arterial blood pressure (BP in various behavioral contexts. Five minutes of simultaneously recorded IBIs from ECG and BP signals in 11 female domestic pigs during resting, feeding and active behavior were analyzed. Comparisons were made for measures of HR, SDNN (the standard deviation of IBIs and RMSSD (the root mean of the squared distances of subsequent IBIs derived from ECG and BP signals for each behavior category using statistical procedures with different explanatory power (linear regression, intraclass correlation coefficient (ICC, Bland and Altman plots and analysis of variance (ANOVA. Linear regression showed a strong relationship for HR during all behaviors and for HRV during resting. Excellent ICCs (lower 95% CI > 0.75 and narrow limits of agreement (LoA in all behavior categories were found for HR. ICCs for HRV reached the critical lower 95% CI value of 0.75 only during resting. Using Bland and Altman plots, HRV agreement was unacceptable for all of the behavior categories. ANOVA showed significant differences between the methods in terms of HRV. BP systematically overestimated HRV compared with ECG. Our findings reveal that HR data recorded via BP agree well those recorded using ECG independently of the activity of the subject, whereas ECG and BP cannot be used interchangeably in the context of HRV in free-moving domestic pigs.

  5. Measurement of the Low Frequency Noise of MOSFETs under Large Signal RF Excitation

    NARCIS (Netherlands)

    van der Wel, A.P.; Klumperink, Eric A.M.; Nauta, Bram

    2002-01-01

    A measurement technique [1] is presented that allows measurement of MOSFET low frequency (LF) noise under large signal RF (Radio Frequency) excitation. Measurements indicate that MOSFETS exhibit a reduction in LF noise when they are cycled from inversion to accummulation and that this reduction does

  6. Features of measurement and processing of vibration signals registered on the moving parts of electrical machines

    OpenAIRE

    Gyzhko, Yuri

    2011-01-01

    Measurement and processing of vibration signals registered on the moving parts of the electrical machines using the diagnostic information-measuring system that uses Bluetooth wireless standard for the transmission of the measured data from moving parts of electrical machine is discussed.

  7. Spectral composition of a measuring signal during measurements of vibration rates of a moving body

    Science.gov (United States)

    Daynauskas, I. A. I.; Slepov, N. N.

    1973-01-01

    Cybernetics diagnostics of machines and mechanisms using the spectral approach is discussed. The problem of establishing the accuracy of determination of the spectral composition is investigated. In systems with rectilinear or rotary movement, the vibrations appear in the form of movement rate vibrations, which are equivalent to frequency modulation of the signal, in proportion to the mean movement rate of the body. The case of a harmonic signal which reproduces and analyzes the characteristics of the frequency modulated signal is discussed. Mathematical models are developed to show the relationships of the parameters.

  8. Grey signal processing and data reconstruction in the non-diffracting beam triangulation measurement system

    Science.gov (United States)

    Meng, Hao; Wang, Zhongyu; Fu, Jihua

    2008-12-01

    The non-diffracting beam triangulation measurement system possesses the advantages of longer measurement range, higher theoretical measurement accuracy and higher resolution over the traditional laser triangulation measurement system. Unfortunately the measurement accuracy of the system is greatly degraded due to the speckle noise, the CCD photoelectric noise and the background light noise in practical applications. Hence, some effective signal processing methods must be applied to improve the measurement accuracy. In this paper a novel effective method for removing the noises in the non-diffracting beam triangulation measurement system is proposed. In the method the grey system theory is used to process and reconstruct the measurement signal. Through implementing the grey dynamic filtering based on the dynamic GM(1,1), the noises can be effectively removed from the primary measurement data and the measurement accuracy of the system can be improved as a result.

  9. ECG changes after a session of regional intraarterial hyperglycemia

    International Nuclear Information System (INIS)

    Korobchenko, Z.A.; Livshits, L.I.

    1988-01-01

    ECG changes after a session of regional intraarterial hyperglycemia (RIH) in 13 patients (the mean age of 49 years) with locally advanced cancer of the tongue, oral mucosa and oropharynx were presented. Taking into account the mean age of patients and the negative ECG time course after a RIH session, the necessity of patients' examination (including ECG after a RIH session and, when indicated, a consultation by a cardiologist) was emphasized

  10. Fetal ECG extraction via Type-2 adaptive neuro-fuzzy inference systems.

    Science.gov (United States)

    Ahmadieh, Hajar; Asl, Babak Mohammadzadeh

    2017-04-01

    We proposed a noninvasive method for separating the fetal ECG (FECG) from maternal ECG (MECG) by using Type-2 adaptive neuro-fuzzy inference systems. The method can extract FECG components from abdominal signal by using one abdominal channel, including maternal and fetal cardiac signals and other environmental noise signals, and one chest channel. The proposed algorithm detects the nonlinear dynamics of the mother's body. So, the components of the MECG are estimated from the abdominal signal. By subtracting estimated mother cardiac signal from abdominal signal, fetal cardiac signal can be extracted. This algorithm was applied on synthetic ECG signals generated based on the models developed by McSharry et al. and Behar et al. and also on DaISy real database. In environments with high uncertainty, our method performs better than the Type-1 fuzzy method. Specifically, in evaluation of the algorithm with the synthetic data based on McSharry model, for input signals with SNR of -5dB, the SNR of the extracted FECG was improved by 38.38% in comparison with the Type-1 fuzzy method. Also, the results show that increasing the uncertainty or decreasing the input SNR leads to increasing the percentage of the improvement in SNR of the extracted FECG. For instance, when the SNR of the input signal decreases to -30dB, our proposed algorithm improves the SNR of the extracted FECG by 71.06% with respect to the Type-1 fuzzy method. The same results were obtained on synthetic data based on Behar model. Our results on real database reflect the success of the proposed method to separate the maternal and fetal heart signals even if their waves overlap in time. Moreover, the proposed algorithm was applied to the simulated fetal ECG with ectopic beats and achieved good results in separating FECG from MECG. The results show the superiority of the proposed Type-2 neuro-fuzzy inference method over the Type-1 neuro-fuzzy inference and the polynomial networks methods, which is due to its

  11. Effect of uncompensated SPN detector cables on neutron noise signals measured in VVER-440 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, S. E-mail: kisss@sunserv.kfki.hu; Lipcsei, S. E-mail: lipcsei@sunserv.kfki.hu; Hazi, G. E-mail: gah@sunserv.kfki.hu

    2003-03-01

    The Self Powered Neutron Detector (SPND) noise measurements of an operating VVER-440 nuclear reactor are described and characterised. Signal characteristics may be radically influenced by the geometrical properties of the detector and the cable, and by the measuring arrangement. Simulator is used as a means of studying the structure of those phase spectra that show propagating perturbations measured on uncompensated SPN detectors. The paper presents measurements with detectors of very different sizes (i.e. 20 cm length SPNDs and the 200 cm length compensation cables), where the ratios of the global and local component differ significantly for the different detector sizes. This phenomenon is used up for signal compensation.

  12. Dry Electrode Harness System For Wireless 12-LEAD ECG

    Data.gov (United States)

    National Aeronautics and Space Administration — Human spaceflight requires the ability to obtain diagnostic quality 12-lead electrocardiograms (ECGs). Current systems require significant upmass, volume, and crew...

  13. Telemetry-assisted early detection of STEMI in patients with atypical symptoms by paramedic-performed 12-lead ECG with subsequent cardiological analysis.

    Science.gov (United States)

    Campo Dell' Orto, Marco; Hamm, Christian; Liebetrau, Christoph; Hempel, Dorothea; Merbs, Reinhold; Cuca, Colleen; Breitkreutz, Raoul

    2017-08-01

    ECG is an essential diagnostic tool in patients with acute coronary syndrome. We aimed to determine how many patients presenting with atypical symptoms for an acute myocardial infarction show ST-segment elevations on prehospital ECG. We also aimed to study the feasibility of telemetric-assisted prehospital ECG analysis. Between April 2010 and February 2011, consecutive emergency patients presenting with atypical symptoms such as nausea, vomiting, atypical chest pain, palpitations, hypertension, syncope, or dizziness were included in the study. After basic measures were completed, a 12-lead ECG was written and telemetrically transmitted to the cardiac center, where it was analyzed by attending physicians. Any identification of an ST-elevation myocardial infarction resulted in patient admission at the closest coronary angiography facility. A total of 313 emergency patients presented with the following symptoms: dyspnea, nausea, vomiting, dizziness/collapse, or acute hypertension. Thirty-four (11%) patients of this cohort were found to show ST-segment elevations on the 12-lead ECG. These patients were directly admitted to the closest coronary catheterization facility rather than the closest hospital. The time required for transmission and analysis of the ECG was 3.6±1.2 min. Telemetry-assisted 12-lead ECG analysis in a prehospital setting may lead to earlier detection of ST-elevation myocardial infarction in patients with atypical symptoms. Thus, a 12-lead ECG should be considered in all prehospital patients both with typical and atypical symptoms.

  14. Reliability of Left Ventricular Hypertrophy by ECG Criteria in Children with Syncope: Do the Criteria Need to be Revised?

    Science.gov (United States)

    Banerjee, Maalika M; Ramesh Iyer, V; Nandi, Deipanjan; Vetter, Victoria L; Banerjee, Anirban

    2016-04-01

    In the outpatient setting, children who present with syncope routinely undergo electrocardiograms (ECG). Because of concerns for hypertrophic cardiomyopathy, children with syncope meeting ECG criteria for left ventricular hypertrophy (LVH) will frequently undergo an echocardiogram. Our objectives were to determine whether Davignon criteria for ECG waves overestimate LVH in children presenting with syncope, and to study the usefulness of echocardiography in these children. We hypothesize that the Davignon criteria presently used for interpretation of ECGs overestimate LVH, resulting in unnecessary echocardiography in this clinical setting. The clinical database of The Children's Hospital of Philadelphia was evaluated from 2002 to 2012 to identify children between 9 and 16 years of age, who presented with non-exercise-induced, isolated syncope. From this group of patients, only those with clear-cut evidence of LVH (by Davignon criteria), who also underwent an echocardiogram, were selected. A total of 136 children with syncope were identified as having LVH by Davignon ECG criteria. None of these patients manifested any evidence of hypertrophic cardiomyopathy, with normal ventricular septum (average Z-score -0.68 ± 0.84), LV posterior wall (average Z-score -0.66 ± 1.18) and LV mass (average Z-score 0.52 ± 1.29). No significant correlation was found between summed RV6 plus SV1 and LV mass. Correlations between additional ECG parameters and measures of LVH by echocardiography were similarly poor. In children presenting with syncope and LVH by ECG, there was no evidence of true LVH by echocardiography. We propose that the Davignon ECG criteria for interpreting LVH in children overestimate the degree of hypertrophy in these children and the yield of echocardiography is extremely low.

  15. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals.

    Science.gov (United States)

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Tzallas, Paraskevas; Loppinet, Benoit; Rakitzis, T Peter

    2015-09-14

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces.

  16. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals

    International Nuclear Information System (INIS)

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E.; Spiliotis, Alexandros K.; Rakitzis, T. Peter; Tzallas, Paraskevas; Loppinet, Benoit

    2015-01-01

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces

  17. ECG based Atrial Fibrillation detection using Sequency Ordered Complex Hadamard Transform and Hybrid Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Padmavathi Kora

    2017-06-01

    Full Text Available Electrocardiogram (ECG, a non-invasive diagnostic technique, used for detecting cardiac arrhythmia. From last decade industry dealing with biomedical instrumentation and research, demanding an advancement in its ability to distinguish different cardiac arrhythmia. Atrial Fibrillation (AF is an irregular rhythm of the human heart. During AF, the atrial moments are quicker than the normal rate. As blood is not completely ejected out of atria, chances for the formation of blood clots in atrium. These abnormalities in the heart can be identified by the changes in the morphology of the ECG. The first step in the detection of AF is preprocessing of ECG, which removes noise using filters. Feature extraction is the next key process in this research. Recent feature extraction methods, such as Auto Regressive (AR modeling, Magnitude Squared Coherence (MSC and Wavelet Coherence (WTC using standard database (MIT-BIH, yielded a lot of features. Many of these features might be insignificant containing some redundant and non-discriminatory features that introduce computational burden and loss of performance. This paper presents fast Conjugate Symmetric Sequency Ordered Complex Hadamard Transform (CS-SCHT for extracting relevant features from the ECG signal. The sparse matrix factorization method is used for developing fast and efficient CS-SCHT algorithm and its computational performance is examined and compared to that of the HT and NCHT. The applications of the CS-SCHT in the ECG-based AF detection is also discussed. These fast CS-SCHT features are optimized using Hybrid Firefly and Particle Swarm Optimization (FFPSO to increase the performance of the classifier.

  18. The Telemetric and Holter ECG Warehouse Initiative (THEW): a Data Repository for the Design, Implementation and Validation of ECG-related Technologies

    Science.gov (United States)

    Couderc, Jean-Philippe

    2011-01-01

    We present an initiative supported by the National Heart Lung, and Blood Institute and the Food and Drug Administration for the development of a repository containing continuous electrocardiographic information to be shared with the worldwide scientific community. We believe that sharing data reinforces open scientific inquiry. It encourages diversity of analysis and opinion while promoting new research and facilitating the education of new researchers. In this paper, we present the resources available in this initiative for the scientific community. We describe the set of ECG signals currently hosted and we briefly discuss the associated clinical information (medical history. Disease and study-specific endpoints) and software tools we propose. Currently, the repository contains more than 250GB of data from eight clinical studies including healthy individuals and cardiac patients. This data is available for the development, implementation and validation of technologies related to body-surface ECGs. To conclude, the Telemetric and Holter ECG Warehouse (THEW) is an initiative developed to benefit the scientific community and to advance the field of quantitative electrocardiography and cardiac safety. PMID:21097349

  19. Design and measurement of signal processing system for cavity beam position monitor

    International Nuclear Information System (INIS)

    Wang Baopeng; Leng Yongbin; Yu Luyang; Zhou Weimin; Yuan Renxian; Chen Zhichu

    2013-01-01

    In this paper, in order to achieve the output signal processing of cavity beam position monitor (CBPM), we develop a digital intermediate frequency receiver architecture based signal processing system, which consists of radio frequency (RF) front end and high speed data acquisition board. The beam position resolution in the CBPM signal processing system is superior to 1 μm. Two signal processing algorithms, fast Fourier transform (FFT) and digital down converter (DDC), are evaluated offline using MATLAB platform, and both can be used to achieve, the CW input signal, position resolutions of 0.31 μm and 0.10 μm at -16 dBm. The DDC algorithm for its good compatibility is downloaded into the FPGA to realize online measurement, reaching the position resolution of 0.49 μm due to truncation error. The whole system works well and the performance meets design target. (authors)

  20. Application of near-infrared spectroscopy to measurement of hemodynamic signals accompanying stimulated saliva secretion.

    Science.gov (United States)

    Sato, Hiroki; Obata, Akiko N; Moda, Ichiro; Ozaki, Kazutaka; Yasuhara, Takaomi; Yamamoto, Yukari; Kiguchi, Masashi; Maki, Atsushi; Kubota, Kisou; Koizumi, Hideaki

    2011-04-01

    We aim to test the feasibility of using near-infrared spectroscopy (NIRS) for indirect measurement of human saliva secretion in response to taste stimuli for potential application to organoleptic testing. We use an NIRS system to measure extracranial hemodynamics (Hb-signals around the temples) of healthy participants when taste stimuli are taken in their mouths. First, the Hb-signals and volume of expelled saliva (stimulated by distilled-water or sucrose-solution intake) are simultaneously measured and large Hb-signal changes in response to the taste stimuli (Hb-responses) are found. Statistical analysis show that both the Hb response and saliva volume are larger for the sucrose solution than for the distilled water with a significant correlation between them (r = 0.81). The effects of swallowing on the Hb-signals are investigated. Similar Hb responses, differing from the sucrose solution and distilled water, are obtained even though the participants swallow the mouth contents. Finally, functional magnetic resonance imaging is used to identify possible sources of the Hb signals corresponding to salivation. Statistical analysis indicates similar responses in the extracranial regions, mainly around the middle meningeal artery. In conclusion, the identified correlation between extracranial hemodynamics and the saliva volume suggests that NIRS is applicable to the measurement of hemodynamic signals accompanying stimulated saliva secretion.

  1. Test results of the signal processing and amplifier unit for the emittance measurement system

    International Nuclear Information System (INIS)

    Stawiszynski, L.; Schneider, S.

    1984-01-01

    The signal processing and amplifier unit for the emittance measurement system is the unit with which the beam current on the harp-wires and the slit is measured and converted to a digital output. Temperature effects are very critical at low currents and the purpose of the test measurements described in this report was mainly to establish the accuracy and repeatability of the measurements under the influence of temperature variations

  2. The evolution of ambulatory ECG monitoring.

    Science.gov (United States)

    Kennedy, Harold L

    2013-01-01

    Ambulatory Holter electrocardiographic (ECG) monitoring has undergone continuous technological evolution since its invention and development in the 1950s era. With commercial introduction in 1963, there has been an evolution of Holter recorders from 1 channel to 12 channel recorders with increasingly smaller storage media, and there has evolved Holter analysis systems employing increasingly technologically advanced electronics providing a myriad of data displays. This evolution of smaller physical instruments with increasing technological capacity has characterized the development of electronics over the past 50 years. Currently the technology has been focused upon the conventional continuous 24 to 48 hour ambulatory ECG examination, and conventional extended ambulatory monitoring strategies for infrequent to rare arrhythmic events. However, the emergence of the Internet, Wi-Fi, cellular networks, and broad-band transmission has positioned these modalities at the doorway of the digital world. This has led to an adoption of more cost-effective strategies to these conventional methods of performing the examination. As a result, the emergence of the mobile smartphone coupled with this digital capacity is leading to the recent development of Holter smartphone applications. The potential of point-of-care applications utilizing the Holter smartphone and a vast array of new non-invasive sensors is evident in the not too distant future. The Holter smartphone is anticipated to contribute significantly in the future to the field of global health. © 2013.

  3. A Study of Fatigue in Multiple Sclerosis Using a New Wireless Medical Sensor Measurements System

    DEFF Research Database (Denmark)

    Yu, Fei; Bilberg, Arne

    2010-01-01

    of patients continuously for 24 hours. The measurements includes ECG module, EMG module, Motion detection, Skin temperature module, and wireless data acquisition module. LabView is used for signal processing and data analysis. This paper presents the brief procedures of developing the wireless medical sensor...

  4. Correlation techniques for the improvement of signal-to-noise ratio in measurements with stochastic processes

    CERN Document Server

    Reddy, V R; Reddy, T G; Reddy, P Y; Reddy, K R

    2003-01-01

    An AC modulation technique is described to convert stochastic signal variations into an amplitude variation and its retrieval through Fourier analysis. It is shown that this AC detection of signals of stochastic processes when processed through auto- and cross-correlation techniques improve the signal-to-noise ratio; the correlation techniques serve a similar purpose of frequency and phase filtering as that of phase-sensitive detection. A few model calculations applied to nuclear spectroscopy measurements such as Angular Correlations, Mossbauer spectroscopy and Pulse Height Analysis reveal considerable improvement in the sensitivity of signal detection. Experimental implementation of the technique is presented in terms of amplitude variations of harmonics representing the derivatives of normal spectra. Improved detection sensitivity to spectral variations is shown to be significant. These correlation techniques are general and can be made applicable to all the fields of particle counting where measurements ar...

  5. A method for measuring power signal background and source strength in a fission reactor

    International Nuclear Information System (INIS)

    Baers, B.; Kall, L.; Visuri, P.

    1977-01-01

    Theory and experimental verification of a novel method for measuring power signal bias and source strength in a fission reactor are reported. A minicomputer was applied in the measurements. The method is an extension of the inverse kinetics method presented by Mogilner et al. (Auth.)

  6. Measurement of Rank and Other Properties of Direct and Scattered Signals

    Directory of Open Access Journals (Sweden)

    Svante Björklund

    2016-01-01

    Full Text Available We have designed an experiment for low-cost indoor measurements of rank and other properties of direct and scattered signals with radar interference suppression in mind. The signal rank is important also in many other applications, for example, DOA (Direction of Arrival estimation, estimation of the number of and location of transmitters in electronic warfare, and increasing the capacity in wireless communications. In real radar applications, such measurements can be very expensive, for example, involving airborne radars with array antennas. We have performed the measurements in an anechoic chamber with several transmitters, a receiving array antenna, and a moving reflector. Our experiment takes several aspects into account: transmitted signals with different correlation, decorrelation of the signals during the acquisition interval, covariance matrix estimation, noise eigenvalue spread, calibration, near-field compensation, scattering in a rough surface, and good control of the influencing factors. With our measurements we have observed rank, DOA spectrum, and eigenpatterns of direct and scattered signals. The agreement of our measured properties with theoretic and simulated results in the literature shows that our experiment is realistic and sound. The detailed description of our experiment could serve as help for conducting other well-controlled experiments.

  7. A New Method to Detect Driver Fatigue Based on EMG and ECG Collected by Portable Non-Contact Sensors

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2017-11-01

    Full Text Available Recently, detection and prediction on driver fatigue have become interest of research worldwide. In the present work, a new method is built to effectively evaluate driver fatigue based on electromyography (EMG and electrocardiogram (ECG collected by portable real-time and non-contact sensors. First, under the non-disturbance condition for driver’s attention, mixed physiological signals (EMG, ECG and artefacts are collected by non-contact sensors located in a cushion on the driver’s seat. EMG and ECG are effectively separated by FastICA, and de-noised by empirical mode decomposition (EMD. Then, three physiological features, complexity of EMG, complexity of ECG, and sample entropy (SampEn of ECG, are extra