WorldWideScience

Sample records for measured binding energies

  1. Measuring Intermolecular Binding Energies by Laser Spectroscopy.

    Science.gov (United States)

    Knochenmuss, Richard; Maity, Surajit; Féraud, Géraldine; Leutwyler, Samuel

    2017-02-22

    The ground-state dissociation energy, D0(S0), of isolated intermolecular complexes in the gas phase is a fundamental measure of the interaction strength between the molecules. We have developed a three-laser, triply resonant pump-dump-probe technique to measure dissociation energies of jet-cooled M•S complexes, where M is an aromatic chromophore and S is a closed-shell 'solvent' molecule. Stimulated emission pumping (SEP) via the S0→S1 electronic transition is used to precisely 'warm' the complex by populating high vibrational levels v" of the S0 state. If the deposited energy E(v") is less than D0(S0), the complex remains intact, and is then mass- and isomer-selectively detected by resonant two-photon ionization (R2PI) with a third (probe) laser. If the pumped level is above D0(S0), the hot complex dissociates and the probe signal disappears. Combining the fluorescence or SEP spectrum of the cold complex with the SEP breakoff of the hot complex brackets D0(S0). The UV chromophores 1-naphthol and carbazole were employed; these bind either dispersively via the aromatic rings, or form a hydrogen bond via the -OH or -NH group. Dissociation energies have been measured for dispersively bound complexes with noble gases (Ne, Kr, Ar, Xe), diatomics (N2, CO), alkanes (methane to n-butane), cycloalkanes (cyclopropane to cycloheptane), and unsaturated compounds (ethene, benzene). Hydrogen-bond dissociation energies have been measured for H2O, D2O, methanol, ethanol, ethers (oxirane, oxetane), NH3 and ND3.

  2. Measurement of Exciton Binding Energy of Monolayer WS2

    Science.gov (United States)

    Chen, Xi; Zhu, Bairen; Cui, Xiaodong

    Excitonic effects are prominent in monolayer crystal of transition metal dichalcogenides (TMDCs) because of spatial confinement and reduced Coulomb screening. Here we use linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE) to measure the exciton binding energy of monolayer WS2. Peaks for excitonic absorptions of the direct gap located at K valley of the Brillouin zone and transitions from multiple points near Γ point of the Brillouin zone, as well as trion side band are shown in the linear absorption spectra of WS2. But there is no gap between distinct excitons and the continuum of the interband transitions. Strong electron-phonon scattering, overlap of excitons around Γ point and the transfer of the oscillator strength from interband continuum to exciton states make it difficult to resolve the electronic interband transition edge even down to 10K. The gap between excited states of the band-edge exciton and the single-particle band is probed by TP-PLE measurements. And the energy difference between 1s exciton and the single-particle gap gives the exciton binding energy of monolayer WS2 to be about 0.71eV. The work is supported by Area of excellency (AoE/P-04/08), CRF of Hong Kong Research Grant Council (HKU9/CRF/13G) and SRT on New Materials of The University of Hong Kong.

  3. Precision measurements of high-energy conversion electron lines and determination of neutron binding energies

    International Nuclear Information System (INIS)

    Braumandl, F.

    1979-01-01

    The paper first discusses the energy accuracy of the BILL conversion electron spectrometer at the Grenoble high flux reactor. With an improved temperature stabilisation of the magnets, an energy accuracy of ΔE/E -5 can be reached. After this, highly exact measurements of high-energy conversion electron lines of the 200 Hg, 114 Cd, 165 Dy, 168 Er, 239 U nuclei and the 13 C, 28 Al 3 H and 92 Zr photoelectron lines were carried out. Energy calibration of the spectrometer was carried out in the 1.5 MeV to 6.5 MeV range with intensive high-energy transitions of the 200 Hg nucleus. Systematic calibration errors could be investigated by means of combinations between the calibration lines. A calibration for absolute energies was obtained by comparing low-energy gamma transitions of 200 Hg with the 411.8 keV gold standard. (orig.) [de

  4. Binding energies of cluster ions

    International Nuclear Information System (INIS)

    Parajuli, R.; Matt, S.; Scheier, P.; Echt, O.; Stamatovic, A.; Maerk, T.D.

    2002-01-01

    The binding energy of charged clusters may be measured by analyzing the kinetic energy released in the metastable decay of mass selected parent ions. Using finite heat bath theory to determine the binding energies of argon, neon, krypton, oxygen and nitrogen from their respective average kinetic energy released were carried out. A high-resolution double focussing two-sector mass spectrometer of reversed Nier-Johnson type geometry was used. MIKE ( mass-analysed ion kinetic energy) were measured to investigate decay reactions of mass-selected ions. For the inert gases neon (Ne n + ), argon (Ar n + ) and krypton (Kr n + ), it is found that the binding energies initially decrease with increasing size n and then level off at a value above the enthalpy of vaporization of the condensed phase. Oxygen cluster ions shown a characteristic dependence on cluster size (U-shape) indicating a change in the metastable fragmentation mechanism when going from the dimer to the decamer ion. (nevyjel)

  5. P-shell hyperon binding energies

    International Nuclear Information System (INIS)

    Koetsier, D.; Amos, K.

    1991-01-01

    A shell model for lambda hypernuclei has been used to determine the binding energy of the hyperon in nuclei throughout the p shell. Conventional (Cohen and Kurath) potential energies for nucleon-nucleon interactions were used with hyperon-nucleon interactions taken from Nijmegen one boson exchange potentials. The hyperon binding energies calculated from these potentials compare well with measured values. 7 refs., 2 figs

  6. Exciton Binding Energy of Monolayer WS2

    Science.gov (United States)

    Zhu, Bairen; Chen, Xi; Cui, Xiaodong

    2015-03-01

    The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach to measuring the exciton binding energy of monolayer WS2 with linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71 +/- 0.01 eV around K valley in the Brillouin zone.

  7. Skyrmions with low binding energies

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, Mike, E-mail: m.n.gillard@leeds.ac.uk; Harland, Derek, E-mail: d.g.harland@leeds.ac.uk; Speight, Martin, E-mail: speight@maths.leeds.ac.uk

    2015-06-15

    Nuclear binding energies are investigated in two variants of the Skyrme model: the first replaces the usual Skyrme term with a term that is sixth order in derivatives, and the second includes a potential that is quartic in the pion fields. Solitons in the first model are shown to deviate significantly from ansätze previously assumed in the literature. The binding energies obtained in both models are lower than those obtained from the standard Skyrme model, and those obtained in the second model are close to the experimental values.

  8. Skyrmions with low binding energies

    International Nuclear Information System (INIS)

    Gillard, Mike; Harland, Derek; Speight, Martin

    2015-01-01

    Nuclear binding energies are investigated in two variants of the Skyrme model: the first replaces the usual Skyrme term with a term that is sixth order in derivatives, and the second includes a potential that is quartic in the pion fields. Solitons in the first model are shown to deviate significantly from ansätze previously assumed in the literature. The binding energies obtained in both models are lower than those obtained from the standard Skyrme model, and those obtained in the second model are close to the experimental values

  9. Skyrmions with low binding energies

    Directory of Open Access Journals (Sweden)

    Mike Gillard

    2015-06-01

    Full Text Available Nuclear binding energies are investigated in two variants of the Skyrme model: the first replaces the usual Skyrme term with a term that is sixth order in derivatives, and the second includes a potential that is quartic in the pion fields. Solitons in the first model are shown to deviate significantly from ansätze previously assumed in the literature. The binding energies obtained in both models are lower than those obtained from the standard Skyrme model, and those obtained in the second model are close to the experimental values.

  10. Binding-energy distribution and dephasing of localized biexcitons

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Hvam, Jørn Märcher; Umlauff, M.

    1997-01-01

    We report on the binding energy and dephasing of localized biexciton states in narrow ZnSe multiple quantum wells. The measured binding-energy distribution of the localized biexcitons shows a width of 2.2 meV centered at 8.5 meV, and is fairly independent of the exciton localization energy. In fo...

  11. On binding energy of trions in bulk materials

    Science.gov (United States)

    Filikhin, Igor; Kezerashvili, Roman Ya.; Vlahovic, Branislav

    2018-03-01

    We study the negatively T- and positively T+ charged trions in bulk materials in the effective mass approximation within the framework of a potential model. The binding energies of trions in various semiconductors are calculated by employing Faddeev equation in configuration space. Results of calculations of the binding energies for T- are consistent with previous computational studies and are in reasonable agreement with experimental measurements, while the T+ is unbound for all considered cases. The mechanism of formation of the binding energy of trions is analyzed by comparing contributions of a mass-polarization term related to kinetic energy operators and a term related to the Coulomb repulsion of identical particles.

  12. Binding energy of two-dimensional biexcitons

    DEFF Research Database (Denmark)

    Singh, Jai; Birkedal, Dan; Vadim, Lyssenko

    1996-01-01

    Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....

  13. Binding energies of hypernuclei and hypernuclear interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bodmer, A.R. [Argonne National Lab., IL (United States)]|[Univ. of Illinois, Chicago, IL (United States). Dept. of Physics; Murali, S.; Usmani, Q.N. [Jamia Millia Islamia, New Delhi (India). Dept. of Physics

    1996-05-01

    In part 1 the effect of nuclear core dynamics on the binding energies of {Lambda} hypernuclei is discussed in the framework of variational correlated wave functions. In particular, the authors discuss a new rearrangement energy contribution and its effect on the core polarization. In part 2 they consider the interpretation of the {Lambda} single-particle energy in terms of basic {Lambda}-nuclear interactions using a local density approximation based on a Fermi hypernetted chain calculation of the A binding to nuclear matter. To account for the data strongly repulsive 3-body {Lambda}NN forces are required. Also in this framework they discuss core polarization for medium and heavier hypernuclei.

  14. Binding energies of hypernuclei and hypernuclear interactions

    International Nuclear Information System (INIS)

    Bodmer, A.R.; Univ. of Illinois, Chicago, IL; Murali, S.; Usmani, Q.N.

    1996-01-01

    In part 1 the effect of nuclear core dynamics on the binding energies of Λ hypernuclei is discussed in the framework of variational correlated wave functions. In particular, the authors discuss a new rearrangement energy contribution and its effect on the core polarization. In part 2 they consider the interpretation of the Λ single-particle energy in terms of basic Λ-nuclear interactions using a local density approximation based on a Fermi hypernetted chain calculation of the A binding to nuclear matter. To account for the data strongly repulsive 3-body ΛNN forces are required. Also in this framework they discuss core polarization for medium and heavier hypernuclei

  15. Binding Energy and Equilibrium of Compact Objects

    Directory of Open Access Journals (Sweden)

    Germano M.

    2014-04-01

    Full Text Available The theoretical analysis of the existence of a limit mass for compact astronomic ob- jects requires the solution of the Einstein’s equations of g eneral relativity together with an appropriate equation of state. Analytical solutions exi st in some special cases like the spherically symmetric static object without energy sou rces that is here considered. Solutions, i.e. the spacetime metrics, can have a singular m athematical form (the so called Schwarzschild metric due to Hilbert or a nonsingula r form (original work of Schwarzschild. The former predicts a limit mass and, conse quently, the existence of black holes above this limit. Here it is shown that, the origi nal Schwarzschild met- ric permits compact objects, without mass limit, having rea sonable values for central density and pressure. The lack of a limit mass is also demonst rated analytically just imposing reasonable conditions on the energy-matter densi ty, of positivity and decreas- ing with radius. Finally the ratio between proper mass and to tal mass tends to 2 for high values of mass so that the binding energy reaches the lim it m (total mass seen by a distant observer. As it is known the negative binding energ y reduces the gravitational mass of the object; the limit of m for the binding energy provides a mechanism for stable equilibrium of any amount of mass to contrast the gravitatio nal collapse.

  16. Analysis of experimental positron-molecule binding energies

    International Nuclear Information System (INIS)

    Danielson, J R; Surko, C M; Young, J A

    2010-01-01

    Experiments show that positron annihilation on molecules frequently occurs via capture into vibrational Feshbach resonances. In these cases, the downshifts in the annihilation spectra from the vibrational mode spectra provide measures of the positron-molecule binding energies. An analysis of these binding energy data is presented in terms of the molecular dipole polarizability, the permanent dipole moment, and the number of π bonds in aromatic molecules. The results of this analysis are in reasonably good agreement with other information about positron-molecule bound states. Predictions for other targets and promising candidate molecules for further investigation are discussed.

  17. First calculation of the deuteron binding energy

    International Nuclear Information System (INIS)

    Schaegger, B.

    2012-01-01

    No universal constant characterizing the nuclear force has yet been found as for gravity and electromagnetism. The neutron is globally neutral with a zero net charge. The charges contained in a neutron may be separated by the electric field of a nearby proton and therefore being attracted by electrostatic induction in the same way as a rubbed plastic pen attracts small pieces of paper. There is also a magnetic force that may repel the nucleons like magnets in the proper relative orientation. In the deuteron, the heavy hydrogen nucleus, the induced electrostatic attraction is equilibrated by the magnetic repulsion between the opposite and colinear moments of the nucleons. Equilibrium is calculated by minimizing the electromagnetic interaction potential, giving a binding energy of 1.6 MeV, not much lower than the experimental value, 2.2 MeV. No fitting parameter is used: it is a true ab initio calculation

  18. Fitting theories of nuclear binding energies

    International Nuclear Information System (INIS)

    Bertsch, G.F.; Sabbey, B.; Uusnaekki, M.

    2005-01-01

    In developing theories of nuclear binding energy such as density-functional theory, the effort required to make a fit can be daunting because of the large number of parameters that may be in the theory and the large number of nuclei in the mass table. For theories based on the Skyrme interaction, the effort can be reduced considerably by using the singular value decomposition to reduce the size of the parameter space. We find that the sensitive parameters define a space of dimension four or so, and within this space a linear refit is adequate for a number of Skyrme parameters sets from the literature. We find no marked differences in the quality of the fit among the SLy4, the BSk4, and SkP parameter sets. The root-mean-square residual error in even-even nuclei is about 1.5 MeV, half the value of the liquid drop model. We also discuss an alternative norm for evaluating mass fits, the Chebyshev norm. It focuses attention on the cases with the largest discrepancies between theory and experiment. We show how it works with the liquid drop model and make some applications to models based on Skyrme energy functionals. The Chebyshev norm seems to be more sensitive to new experimental data than the root-mean-square norm. The method also has the advantage that candidate improvements to the theories can be assessed with computations on smaller sets of nuclei

  19. Conformational Transitions and Convergence of Absolute Binding Free Energy Calculations

    Science.gov (United States)

    Lapelosa, Mauro; Gallicchio, Emilio; Levy, Ronald M.

    2011-01-01

    The Binding Energy Distribution Analysis Method (BEDAM) is employed to compute the standard binding free energies of a series of ligands to a FK506 binding protein (FKBP12) with implicit solvation. Binding free energy estimates are in reasonably good agreement with experimental affinities. The conformations of the complexes identified by the simulations are in good agreement with crystallographic data, which was not used to restrain ligand orientations. The BEDAM method is based on λ -hopping Hamiltonian parallel Replica Exchange (HREM) molecular dynamics conformational sampling, the OPLS-AA/AGBNP2 effective potential, and multi-state free energy estimators (MBAR). Achieving converged and accurate results depends on all of these elements of the calculation. Convergence of the binding free energy is tied to the level of convergence of binding energy distributions at critical intermediate states where bound and unbound states are at equilibrium, and where the rate of binding/unbinding conformational transitions is maximal. This finding mirrors similar observations in the context of order/disorder transitions as for example in protein folding. Insights concerning the physical mechanism of ligand binding and unbinding are obtained. Convergence for the largest FK506 ligand is achieved only after imposing strict conformational restraints, which however require accurate prior structural knowledge of the structure of the complex. The analytical AGBNP2 model is found to underestimate the magnitude of the hydrophobic driving force towards binding in these systems characterized by loosely packed protein-ligand binding interfaces. Rescoring of the binding energies using a numerical surface area model corrects this deficiency. This study illustrates the complex interplay between energy models, exploration of conformational space, and free energy estimators needed to obtain robust estimates from binding free energy calculations. PMID:22368530

  20. Atom-solid binding energy shifts for K 2p and Rb 3d sublevels

    International Nuclear Information System (INIS)

    Holappa, M.; Aksela, S.; Patanen, M.; Urpelainen, S.; Aksela, H.

    2011-01-01

    Highlights: → Binding energy shifts between atom and solid. K 2p and Rb 3d sublevels were studied. → Simultaneous measurements give accurate results. → Results can be used as a reference for cluster studies. - Abstract: Binding energy shifts between free and solid state atoms for K 2p and Rb 3d photolines have been determined by measuring the vapor and solid state spectra simultaneously in similar experimental conditions applying synchrotron radiation excited photoelectron spectroscopy. This method has the important benefit that the work function is not needed to correct for different reference energy levels, therefore much more accurate values for binding energy shifts are obtained.

  1. Implicit ligand theory for relative binding free energies

    Science.gov (United States)

    Nguyen, Trung Hai; Minh, David D. L.

    2018-03-01

    Implicit ligand theory enables noncovalent binding free energies to be calculated based on an exponential average of the binding potential of mean force (BPMF)—the binding free energy between a flexible ligand and rigid receptor—over a precomputed ensemble of receptor configurations. In the original formalism, receptor configurations were drawn from or reweighted to the apo ensemble. Here we show that BPMFs averaged over a holo ensemble yield binding free energies relative to the reference ligand that specifies the ensemble. When using receptor snapshots from an alchemical simulation with a single ligand, the new statistical estimator outperforms the original.

  2. Perturbation method for calculating impurity binding energy in an ...

    Indian Academy of Sciences (India)

    Nilanjan Sil

    2017-12-18

    Dec 18, 2017 ... Abstract. In the present paper, we have studied the binding energy of the shallow donor hydrogenic impurity, which is confined in an inhomogeneous cylindrical quantum dot (CQD) of GaAs-AlxGa1−xAs. Perturbation method is used to calculate the binding energy within the framework of effective mass ...

  3. Extrapolations of nuclear binding energies from new linear mass relations

    DEFF Research Database (Denmark)

    Hove, D.; Jensen, A. S.; Riisager, K.

    2013-01-01

    We present a method to extrapolate nuclear binding energies from known values for neighboring nuclei. We select four specific mass relations constructed to eliminate smooth variation of the binding energy as function nucleon numbers. The fast odd-even variations are avoided by comparing nuclei...

  4. Multiple binding modes of ibuprofen in human serum albumin identified by absolute binding free energy calculations

    KAUST Repository

    Evoli, Stefania

    2016-11-10

    Human serum albumin possesses multiple binding sites and transports a wide range of ligands that include the anti-inflammatory drug ibuprofen. A complete map of the binding sites of ibuprofen in albumin is difficult to obtain in traditional experiments, because of the structural adaptability of this protein in accommodating small ligands. In this work, we provide a set of predictions covering the geometry, affinity of binding and protonation state for the pharmaceutically most active form (S-isomer) of ibuprofen to albumin, by using absolute binding free energy calculations in combination with classical molecular dynamics (MD) simulations and molecular docking. The most favorable binding modes correctly reproduce several experimentally identified binding locations, which include the two Sudlow\\'s drug sites (DS2 and DS1) and the fatty acid binding sites 6 and 2 (FA6 and FA2). Previously unknown details of the binding conformations were revealed for some of them, and formerly undetected binding modes were found in other protein sites. The calculated binding affinities exhibit trends which seem to agree with the available experimental data, and drastically degrade when the ligand is modeled in a protonated (neutral) state, indicating that ibuprofen associates with albumin preferentially in its charged form. These findings provide a detailed description of the binding of ibuprofen, help to explain a wide range of results reported in the literature in the last decades, and demonstrate the possibility of using simulation methods to predict ligand binding to albumin.

  5. Structure-function relationships of Na+, K+, ATP, or Mg2+ binding and energy transduction in Na,K-ATPase

    DEFF Research Database (Denmark)

    Jorgensen, Peter L.; Pedersen, Per Amstrup

    2000-01-01

    Na,K-ATPase; Mutagenesis; Na+ binding; K+ binding; Tl+ binding; Mg2+ binding; ATP binding; Cation binding site; Energy transduction......Na,K-ATPase; Mutagenesis; Na+ binding; K+ binding; Tl+ binding; Mg2+ binding; ATP binding; Cation binding site; Energy transduction...

  6. Measuring industrial energy savings

    International Nuclear Information System (INIS)

    Kelly Kissock, J.; Eger, Carl

    2008-01-01

    Accurate measurement of energy savings from industrial energy efficiency projects can reduce uncertainty about the efficacy of the projects, guide the selection of future projects, improve future estimates of expected savings, promote financing of energy efficiency projects through shared-savings agreements, and improve utilization of capital resources. Many efforts to measure industrial energy savings, or simply track progress toward efficiency goals, have had difficulty incorporating changing weather and production, which are frequently major drivers of plant energy use. This paper presents a general method for measuring plant-wide industrial energy savings that takes into account changing weather and production between the pre and post-retrofit periods. In addition, the method can disaggregate savings into components, which provides additional resolution for understanding the effectiveness of individual projects when several projects are implemented together. The method uses multivariable piece-wise regression models to characterize baseline energy use, and disaggregates savings by taking the total derivative of the energy use equation. Although the method incorporates search techniques, multi-variable least-squares regression and calculus, it is easily implemented using data analysis software, and can use readily available temperature, production and utility billing data. This is important, since more complicated methods may be too complex for widespread use. The method is demonstrated using case studies of actual energy assessments. The case studies demonstrate the importance of adjusting for weather and production between the pre- and post-retrofit periods, how plant-wide savings can be disaggregated to evaluate the effectiveness of individual retrofits, how the method can identify the time-dependence of savings, and limitations of engineering models when used to estimate future savings

  7. Using the fast fourier transform in binding free energy calculations.

    Science.gov (United States)

    Nguyen, Trung Hai; Zhou, Huan-Xiang; Minh, David D L

    2018-04-30

    According to implicit ligand theory, the standard binding free energy is an exponential average of the binding potential of mean force (BPMF), an exponential average of the interaction energy between the unbound ligand ensemble and a rigid receptor. Here, we use the fast Fourier transform (FFT) to efficiently evaluate BPMFs by calculating interaction energies when rigid ligand configurations from the unbound ensemble are discretely translated across rigid receptor conformations. Results for standard binding free energies between T4 lysozyme and 141 small organic molecules are in good agreement with previous alchemical calculations based on (1) a flexible complex ( R≈0.9 for 24 systems) and (2) flexible ligand with multiple rigid receptor configurations ( R≈0.8 for 141 systems). While the FFT is routinely used for molecular docking, to our knowledge this is the first time that the algorithm has been used for rigorous binding free energy calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Predicting accurate absolute binding energies in aqueous solution

    DEFF Research Database (Denmark)

    Jensen, Jan Halborg

    2015-01-01

    Recent predictions of absolute binding free energies of host-guest complexes in aqueous solution using electronic structure theory have been encouraging for some systems, while other systems remain problematic. In this paper I summarize some of the many factors that could easily contribute 1-3 kcal......-represented by continuum models. While I focus on binding free energies in aqueous solution the approach also applies (with minor adjustments) to any free energy difference such as conformational or reaction free energy differences or activation free energies in any solvent....

  9. An Accurate Redetermination of the $^{118}Sn$ Binding Energy

    CERN Document Server

    Borzakov, S B; Faikow-Stanczyk, H; Grigoriev, Yu V; Panteleev, T; Pospísil, S; Smotritsky, L M; Telezhnikov, S A

    2001-01-01

    The energy of well-known strong {gamma}-line from {{^198}Au}, the "gold standard", has been modified in the light of new adjustments in the fundamental constants and the value of 411.80176(12) keV was determined which is 0.29 eV lower than the latest 1999 value. An energy calibration procedure for determining the neutron binding energy, {B_n}, from complicated {(n , gamma)}-spectra has been developed. A mathematically simple minimization function consisting only of terms having as parameters the coefficients of the energy calibration curve (polynomial) is used. A priori information about the relationships among the energies of different peaks on the spectrum is taking into account by a Monte Carlo simulation. The procedure was used in obtaining of {B_n} for {{^118}Sn} and {{^64}Cu}. The {gamma}-ray spectrum from thermal neutron radiative capture by {{^117}Sn} has been measured on the IBR-2 pulsed reactor. {gamma}-rays were detected by a 72 cm^3 HPGe-detector. {B_n} for {{^64}Cu} was obtained from two {gamma}-...

  10. Binding energy and single-particle energies in the 16O Region

    International Nuclear Information System (INIS)

    Fiase, J.O.; Sharma, L.K.

    2004-01-01

    In this paper we present the binding energy of 16 O together with single-particle energies in the oxygen region by folding together a Hamiltonian in the rest-frame of the nucleus with two-body correlation functions based on the Nijmegen potential. We have found that the binding energies are very sensitive to the core radius rc and that the effects of tensor correlations are non-negligible.Our calculated binding energy, E B = - 127.8 MeV with r c = 0.241 fm compares well with the experimental binding energy, E B = - 127.6 MeV

  11. An accurate redetermination of the 118Sn binding energy

    International Nuclear Information System (INIS)

    Borzakov, S.B.; Panteleev, Ts.Ts.; Telezhnikov, S.A.; Chrien, R.E.; Faikow-Stanczyk, H.; Grigor'ev, Yu.V.; Pospisil, S.; Smotritskij, L.M.

    2001-01-01

    The energy of well-known strong γ-line from 198 Au, the 'gold standard', has been modified in the light of new adjustments in the fundamental constants and the value of 411.80176(12) keV was determined which is 0.29 eV lower than the latest 1999 value. An energy calibration procedure for determining the neutron binding energy, B n , from complicated (n,γ)-spectra has been developed. A mathematically simple minimization function consisting only of terms having as parameters the coefficients of the energy calibration curve (polynomial) is used. A priori information about the relationships among the energies of different peaks on the spectrum was taken into account by a Monte Carlo simulation. The procedure was used in obtaining of B n for 118 Sn and 64 Cu. The γ-ray spectrum from thermal neutron radiative capture by 117 Sn has been measured on the IBR-2 pulsed reactor. γ-rays were detected by a 72 cm 2 HPGe-detector. B n for 64 Cu was obtained from two γ-spectra. One spectrum was measured on the IBR-2 by the same detector. The other spectrum was measured with a pair spectrometer at the Brookhaven High Flux Beam Reactor. From these two spectra B n for 64 Cu was determined equal to 7915.52(8) keV. The mean value of two most precise results of B n for 118 Sn was determined to be 9326.35(9) keV. The B n for 57Fe was determined to be 7646.08(9) keV

  12. Photoelectron spectroscopy on the charge reorganization energy and small polaron binding energy of molecular film

    Energy Technology Data Exchange (ETDEWEB)

    Kera, Satoshi, E-mail: kera@ims.ac.jp [Institute for Molecular Science, Myodaiji, Okazaki 444-8585 (Japan); Department of Nanomaterial Science, Graduate School of Advanced Integration Science, Chiba University, Inage-ku, Chiba 263-8522 (Japan); Ueno, Nobuo [Department of Nanomaterial Science, Graduate School of Advanced Integration Science, Chiba University, Inage-ku, Chiba 263-8522 (Japan)

    2015-10-01

    Understanding of electron-phonon coupling as well as intermolecular interaction is required to discuss the mobility of charge carrier in functional molecular solids. This article summarizes recent progress in direct measurements of valence hole-vibration coupling in ultrathin films of organic semiconductors by using ultraviolet photoelectron spectroscopy (UPS). The experimental study of hole-vibration coupling of the highest occupied molecular orbital (HOMO) state in ordered monolayer film by UPS is essential to comprehend hole-hopping transport and small-polaron related transport in organic semiconductors. Only careful measurements can attain the high-resolution spectra and provide key parameters in hole-transport dynamics, namely the charge reorganization energy and small polaron binding energy. Analyses methods of the UPS HOMO fine feature and resulting charge reorganization energy and small polaron binding energy are described for pentacene and perfluoropentacene films. Difference between thin-film and gas-phase results is discussed by using newly measured high-quality gas-phase spectra of pentacene. Methodology for achieving high-resolution UPS measurements for molecular films is also described.

  13. Binding energy effects in cascade evolution and sputtering

    International Nuclear Information System (INIS)

    Robinson, M.T.

    1995-06-01

    The MARLOWE model was extended to include a binding energy dependent on the local crystalline order, so that atoms are bound less strongly to their lattice sites near surfaces or associated damage. Sputtering and cascade evolution were studied on the examples of self-ion irradiations of Cu and Au monocrystals. In cascades, the mean binding energy is reduced ∼8% in Cu with little dependence on the initial recoil energy; in Au, it is reduced ∼9% at 1 keV and ∼15% at 100 keV. In sputtering, the mean binding energy is reduced ∼8% in Cu and ∼15% in Au with little energy dependence; the yields are increased about half as much. Most sites from which sputtered atoms originate are isolated in both metals. Small clusters of such sites occur in Cu, but there are some large clusters in Au, especially in [111] targets. There are always more large clusters with damage-dependent binding than with a constant binding energy, but only a few clusters are compact enough to be regarded as pits

  14. Funnel metadynamics as accurate binding free-energy method

    Science.gov (United States)

    Limongelli, Vittorio; Bonomi, Massimiliano; Parrinello, Michele

    2013-01-01

    A detailed description of the events ruling ligand/protein interaction and an accurate estimation of the drug affinity to its target is of great help in speeding drug discovery strategies. We have developed a metadynamics-based approach, named funnel metadynamics, that allows the ligand to enhance the sampling of the target binding sites and its solvated states. This method leads to an efficient characterization of the binding free-energy surface and an accurate calculation of the absolute protein–ligand binding free energy. We illustrate our protocol in two systems, benzamidine/trypsin and SC-558/cyclooxygenase 2. In both cases, the X-ray conformation has been found as the lowest free-energy pose, and the computed protein–ligand binding free energy in good agreement with experiments. Furthermore, funnel metadynamics unveils important information about the binding process, such as the presence of alternative binding modes and the role of waters. The results achieved at an affordable computational cost make funnel metadynamics a valuable method for drug discovery and for dealing with a variety of problems in chemistry, physics, and material science. PMID:23553839

  15. Exciton binding energy in a pyramidal quantum dot

    Indian Academy of Sciences (India)

    A ANITHA

    2018-03-27

    Mar 27, 2018 ... screening function on exciton binding energy in a pyramid-shaped quantum dot of ... tures may generate unique properties and they show .... where Ee is the ground-state energy of the electron in ... Figure 1. The geometry of the pyramidal quantum dot. base and H is the height of the pyramid which is taken.

  16. Electroabsorption Spectroscopy Measurements of the Exciton Binding Energy, ElectronHole Reduced Effective Mass, and Band Gap in the Perovskite CHsub3NHsub3PbIsub3

    Science.gov (United States)

    2016-07-28

    optoelectronic devices such as lasers,1,2 LEDs ,3 and solar cells,4−6 despite requiring only inexpensive and relatively crude processing conditions...Spectroscopy. White light from a 75 W xenon arc lamp (Newport Co., Oriel PhotoMax) was filtered by a grating monochromator (Acton Research Co...incidence transmittance spectra (SI section S3.1) were measured on a Cary 5000i UV −vis−NIR spectrometer using the internal diffuse reflectance accessory

  17. High frequency energy measurements

    International Nuclear Information System (INIS)

    Stotlar, S.C.

    1981-01-01

    High-frequency (> 100 MHz) energy measurements present special problems to the experimenter. Environment or available electronics often limit the applicability of a given detector type. The physical properties of many detectors are frequency dependent and in some cases, the physical effect employed can be frequency dependent. State-of-the-art measurements generally involve a detection scheme in association with high-speed electronics and a method of data recording. Events can be single or repetitive shot requiring real time, sampling, or digitizing data recording. Potential modification of the pulse by the detector and the associated electronics should not be overlooked. This presentation will review typical applications, methods of choosing a detector, and high-speed detectors. Special considerations and limitations of some applications and devices will be described

  18. Transport Gap and exciton binding energy determination in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Stefan; Schoell, Achim; Reinert, Friedrich; Umbach, Eberhard [University of Wuerzburg (Germany). Experimental Physics II; Casu, Benedetta [Inst. f. Physik. u. Theor. Chemie, Tuebingen (Germany)

    2008-07-01

    The transport gap of an organic semiconductor is defined as the energy difference between the HOMO and LUMO levels in the presence of a hole or electron, respectively, after relaxation has occurred. Its knowledge is mandatory for the optimisation of electronic devices based on these materials. UV photoelectron spectroscopy (UPS) and inverse photoelectron spectroscopy (IPES) are routinely applied to measure these molecular levels. However, the precise determination of the transport gap on the basis of the respective data is not an easy task. It involves fundamental questions about the properties of organic molecules and their condensates, about their reaction on the experimental probe, and on the evaluation of the spectroscopic data. In particular electronic relaxation processes, which occur on the time scale of the photo excitation, have to be considered adequately. We determined the transport gap for the organic semiconductors PTCDA, Alq3, DIP, CuPc, and PBI-H4. After careful data analysis and comparison to the respective values for the optical gap we obtain values for the exciton binding energies between 0.1-0.5 eV. This is considerably smaller than commonly believed and indicates a significant delocalisation of the excitonic charge over various molecular units.

  19. Binding Energy and Lifetime of Excitons in InxGa1-xAs/GaAs Quantum Wells

    DEFF Research Database (Denmark)

    Orani, D.; Polimeni, A.; Patane, A.

    1997-01-01

    We report a systematic study of exciton binding energies and lifetimes in InGaAs/GaAs quantum wells. The experimental binding energies have been deduced from photoluminescence excitation measurements taking into account the contribution of the 2s state of the exciton and the line broadening...

  20. Nuclear Cartography: Patterns in Binding Energies and Subatomic Structure

    Science.gov (United States)

    Simpson, E. C.; Shelley, M.

    2017-01-01

    Nuclear masses and binding energies are some of the first nuclear properties met in high school physics, and can be used to introduce radioactive decays, fusion, and fission. With relatively little extension, they can also illustrate fundamental concepts in nuclear physics, such as shell structure and pairing, and to discuss how the elements…

  1. Polaron binding energy in polymers: poly[methyl(phenyl)silylene

    Czech Academy of Sciences Publication Activity Database

    Nožár, Juraj; Nešpůrek, Stanislav; Šebera, Jakub

    2012-01-01

    Roč. 18, č. 2 (2012), s. 623-629 ISSN 1610-2940 R&D Projects: GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40500505 Keywords : polaron * polaron binding energy * polysilane Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.984, year: 2012

  2. Binding energy and formation heat of UO2

    International Nuclear Information System (INIS)

    Almeida, M.R. de; Veado, J.T.; Siqueira, M.L. de

    The Born-Haber cycle is utilized for the calculation of the heat of formation of UO 2 , on the assumption that the binding energy is predominantly ionic in character. The ionization potentials of U and the repulsion energy are two critical values that influence calculations. Calculations of the ionization potentials with non-relativistic Hartree-Fock-Gaspar-Kohn-Sham approximation are presented [pt

  3. Energy balance measurement

    DEFF Research Database (Denmark)

    Dhurandhar, N V; Schoeller, D; Brown, A W

    2015-01-01

    Energy intake (EI) and physical activity energy expenditure (PAEE) are key modifiable determinants of energy balance, traditionally assessed by self-report despite its repeated demonstration of considerable inaccuracies. We argue here that it is time to move from the common view that self......-reports of EI and PAEE are imperfect, but nevertheless deserving of use, to a view commensurate with the evidence that self-reports of EI and PAEE are so poor that they are wholly unacceptable for scientific research on EI and PAEE. While new strategies for objectively determining energy balance...... of energy balance....

  4. Alternate Energy Sources for Thermalplastic Binding Agent Consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Frame, B.J.

    1999-01-01

    A study was conducted to investigate microwave and electron beam technologies as alternate energy sources to consolidate fiber coated with a thermoplastic binding agent into preforms for composite molding applications. Bench experiments showed that both microwave and electron beam energy can produce heat sufficient to melt and consolidate a thermoplastic binding agent applied to fiberglass mat, and several two- and three-dimensional fiberglass preforms were produced with each method. In both cases, it is postulated that the heating was accomplished by the effective interaction of the microwave or electron beam energy with the combination of the mat preform and the tooling used to shape the preform. Both methods contrast with conventional thermal energy applied via infrared heaters or from a heated tool in which the heat to melt the thermoplastic binding agent must diffuse over time from the outer surface of the preform toward its center under a thermal gradient. For these reasons, the microwave and electron beam energy techniques have the potential to rapidly consolidate thick fiber preforms more efficiently than the thermal process. With further development, both technologies have the potential to make preform production more cost effective by decreasing cycle time in the preform tool, reducing energy costs, and by enabling the use of less expensive tooling materials. Descriptions of the microwave and electron beam consolidation experiments and a summary of the results are presented in this report.

  5. Quantitative measurements of magnetic polaron binding on acceptors in CdMnTe alloys

    Science.gov (United States)

    Nhung, Tran Hong; Planel, R.

    1983-03-01

    The acceptor binding energy is measured as a function of Temperature and composition in Cd1-x Mnx Te alloys, by time resolved spectroscopy. The Bound magnetic polaron effect is measured and compared with a theory accouting for magnetic saturation and fluctuations.

  6. Binding Energy, Vapor Pressure and Melting Point of Semiconductor Nanoparticles

    International Nuclear Information System (INIS)

    H. H. Farrell; C. D. Van Siclen

    2007-01-01

    Current models for the cohesive energy of nanoparticles generally predict a linear dependence on the inverse particle diameter for spherical clusters, or, equivalently, on the inverse of the cube root of the number of atoms in the cluster. Although this is generally true for metals, we find that for the group IV semiconductors, C, Si and Ge, this linear dependence does not hold. Instead, using first principles, density functional theory calculations to calculate the binding energy of these materials, we find a quadratic dependence on the inverse of the particle size. Similar results have also been obtained for the metallic group IV elements Sn and Pb. This is in direct contradiction to current assumptions. Further, as a consequence of this quadratic behavior, the vapor pressure of semiconductor nanoparticles rises more slowly with decreasing size than would be expected. In addition, the melting point of these nanoparticles will experience less suppression than experienced by metal nanoparticles with comparable bulk binding energies. This non-linearity also affects sintering or Ostwald ripening behavior of these nanoparticles as well as other physical properties that depend on the nanoparticle binding energy. The reason for this variation in size dependence involves the covalent nature of the bonding in semiconductors, and even in the 'poor' metals. Therefore, it is expected that this result will hold for compound semiconductors as well as the elemental semiconductors

  7. Evaluation of binding energies by using quantum mechanical methods

    International Nuclear Information System (INIS)

    Postolache, Cristian; Matei, Lidia; Postolache, Carmen

    2002-01-01

    Evaluation of binding energies (BE) in molecular structure is needed for modelling chemical and radiochemical processes by quantum-chemical methods. An important field of application is evaluation of radiolysis and autoradiolysis stability of organic and inorganic compounds as well as macromolecular structures. The current methods of calculation do not allow direct determination of BE but only of total binding energies (TBE) and enthalpies. BEs were evaluated indirectly by determining the homolytic dissociation energies. The molecular structures were built and geometrically optimized by the molecular mechanics methods MM+ and AMBER. The energy minimizations were refined by semi-empirical methods. Depending on the chosen molecular structure, the CNDO, INDO, PM3 and AM1 methods were used. To reach a high confidence level the minimizations were done for gradients lower than 10 -3 RMS. The energy values obtained by the difference of the fragment TBLs, of the transition states and initial molecular structures, respectively, were associated to the hemolytic fragmentation energy and BE, respectively. In order to evaluate the method's accuracy and to establish the application fields of the evaluation methods, the obtained values of BEs were compared with the experimental data taken from literature. To this goal there were built, geometrically optimized by semi-empirical methods and evaluated the BEs for 74 organic and inorganic compounds (alkanes, alkene, alkynes, halogenated derivatives, alcohols, aldehydes, ketones, carboxylic acids, nitrogen and sulfur compounds, water, hydrogen peroxide, ammonia, hydrazine, etc. (authors)

  8. Experimental electron binding energies for thulium in different matrices

    Czech Academy of Sciences Publication Activity Database

    Inoyatov, A. K.; Kovalík, Alojz; Filosofov, D. V.; Ryšavý, Miloš; Perevoshchikov, L. L.; Yushkevich, Yu. V.; Zbořil, M.

    2015-01-01

    Roč. 202, JUL (2015), s. 46-55 ISSN 0368-2048 R&D Projects: GA MŠk LG14004; GA ČR(CZ) GAP203/12/1896 Institutional support: RVO:61389005 Keywords : Tm-169 * (169)yb * atomic environment * electron binding energy * chemical shift * natural atomic level width Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.561, year: 2015

  9. Estimating Atomic Contributions to Hydration and Binding Using Free Energy Perturbation.

    Science.gov (United States)

    Irwin, Benedict W J; Huggins, David J

    2018-05-08

    We present a general method called atom-wise free energy perturbation (AFEP), which extends a conventional molecular dynamics free energy perturbation (FEP) simulation to give the contribution to a free energy change from each atom. AFEP is derived from an expansion of the Zwanzig equation used in the exponential averaging method by defining that the system total energy can be partitioned into contributions from each atom. A partitioning method is assumed and used to group terms in the expansion to correspond to individual atoms. AFEP is applied to six example free energy changes to demonstrate the method. Firstly, the hydration free energies of methane, methanol, methylamine, methanethiol, and caffeine in water. AFEP highlights the atoms in the molecules that interact favorably or unfavorably with water. Finally AFEP is applied to the binding free energy of human immunodeficiency virus type 1 protease to lopinavir, and AFEP reveals the contribution of each atom to the binding free energy, indicating candidate areas of the molecule to improve to produce a more strongly binding inhibitor. FEP gives a single value for the free energy change and is already a very useful method. AFEP gives a free energy change for each "part" of the system being simulated, where part can mean individual atoms, chemical groups, amino acids, or larger partitions depending on what the user is trying to measure. This method should have various applications in molecular dynamics studies of physical, chemical, or biochemical phenomena, specifically in the field of computational drug discovery.

  10. Simple method for determining binding energies of fullerene and complex atomic negative ions

    Science.gov (United States)

    Felfli, Zineb; Msezane, Alfred

    2017-04-01

    A robust potential which embeds fully the vital core polarization interaction has been used in the Regge pole method to explore low-energy electron scattering from C60, Eu and Nb through the total cross sections (TCSs) calculations. From the characteristic dramatically sharp resonances in the TCSs manifesting negative ion formation in these systems, we extracted the binding energies for the C60, Euand Nbanions they are found to be in outstanding agreement with the measured electron affinities of C60, Eu and Nb. Common among these considered systems, including the standard atomic Au is the formation of their ground state negative ions at the second Ramsauer-Townsend (R-T) minima of their TCSs. Indeed, this is a signature of all the fullerenes and complex atoms considered thus far. Shape resonances, R-T minima and binding energies of the resultant anions are presented. This work was supported by U.S. DOE, Basic Energy Sciences, Office of Energy Research.

  11. Orbital momentum profiles and binding energy spectra for the complete valence shell of molecular fluorine

    International Nuclear Information System (INIS)

    Zheng, Y.; Brion, C.E.; Brunger, M.J.; Zhao, K.; Grisogono, A.M.; Braidwood, S.; Weigold, E.; Chakravorty, S.J.; Davidson, E.R.; Sgamellotti, A.; von Niessen, W.

    1996-01-01

    The first electronic structural study of the complete valence shell binding energy spectrum of molecular fluorine, encompassing both the outer and inner valence regions, is reported. These binding energy spectra as well as the individual orbital momentum profiles have been measured using an energy dispersive multichannel electron momentum spectrometer at a total energy of 1500 eV, with an energy resolution of 1.5 eV and a momentum resolution of 0.1 a.u. The measured binding energy spectra in the energy range of 14-60 eV are compared with the results of ADC(4) many-body Green's function and also direct-Configuration Interaction (CI) and MRSD-CI calculations. The experimental orbital electron momentum profiles are compared with SCF theoretical profiles calculated using the target Hartree-Fock approximation with a range of basis sets and with Density Functional Theory predictions in the target Kohn-Sham approximation with non-local potentials. The truncated (aug-cc-pv5z) Dunning basis sets were used for the Density Functional Theory calculations which also include some treatment of correlation via the exchange and correlation potentials. Comparisons are also made with the full ion-neutral overlap amplitude calculated with MRSD-CI wave functions. Large, saturated basis sets (199-GTO) were employed for both the high level SCF near Hartree-Fock limit and MRSD-CI calculations to investigate the effects of electron correlation and relaxation. 66 refs., 9 tabs., 9 figs

  12. A = 4 0+ - 1+ binding-energy difference

    International Nuclear Information System (INIS)

    Gibson, B.F.; Lehman, D.R.

    1982-01-01

    The A = 4 Λ-hypernuclei provide a rich source of information about the s-wave properties of the fundamental hyperon-nucleon (YN) force as well as offer a unique opportunity to investigate the complications that arise in calculations of the properties of bound systems in which one baryon (here the Λ) with a given isospin couples strongly to another (the Σ) with a different isospin. The Λ 4 H - Λ 4 He isodoublet ground-state energies are not consistent with a charge symmetry hypothesis for the YN interaction. The (spin-flip) excitation energies are quite sensitive to the ΛN - ΣN coupling of the YN interaction. In particular, when one represents the free YN interaction in terms of one-channel effective ΛN potentials, the resulting 0 + (ground) state and 1 + (excited) spin-flip state are inversely ordered in terms of binding energies, the 1 + state being more bound. It is the Σ suppression that results from the reduced strength of the ΛN - ΣN off-diagonal coupling potential when the trinucleon core is restricted to isospin-1/2 which we study here. We find this spin-isospin suppression of the Λ-Σ conversion, which is due to the composite nature of the nuclear cores of the Λ 4 H and Λ 4 He hypernuclei, to be a significant factor in understanding the 0 + - 1 + binding energy relationship

  13. Sampling and energy evaluation challenges in ligand binding protein design.

    Science.gov (United States)

    Dou, Jiayi; Doyle, Lindsey; Jr Greisen, Per; Schena, Alberto; Park, Hahnbeom; Johnsson, Kai; Stoddard, Barry L; Baker, David

    2017-12-01

    The steroid hormone 17α-hydroxylprogesterone (17-OHP) is a biomarker for congenital adrenal hyperplasia and hence there is considerable interest in development of sensors for this compound. We used computational protein design to generate protein models with binding sites for 17-OHP containing an extended, nonpolar, shape-complementary binding pocket for the four-ring core of the compound, and hydrogen bonding residues at the base of the pocket to interact with carbonyl and hydroxyl groups at the more polar end of the ligand. Eight of 16 designed proteins experimentally tested bind 17-OHP with micromolar affinity. A co-crystal structure of one of the designs revealed that 17-OHP is rotated 180° around a pseudo-two-fold axis in the compound and displays multiple binding modes within the pocket, while still interacting with all of the designed residues in the engineered site. Subsequent rounds of mutagenesis and binding selection improved the ligand affinity to nanomolar range, while appearing to constrain the ligand to a single bound conformation that maintains the same "flipped" orientation relative to the original design. We trace the discrepancy in the design calculations to two sources: first, a failure to model subtle backbone changes which alter the distribution of sidechain rotameric states and second, an underestimation of the energetic cost of desolvating the carbonyl and hydroxyl groups of the ligand. The difference between design model and crystal structure thus arises from both sampling limitations and energy function inaccuracies that are exacerbated by the near two-fold symmetry of the molecule. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  14. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.

    Science.gov (United States)

    Kaus, Joseph W; Harder, Edward; Lin, Teng; Abel, Robert; McCammon, J Andrew; Wang, Lingle

    2015-06-09

    Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the

  15. How To Deal with Multiple Binding Poses in Alchemical Relative Protein–Ligand Binding Free Energy Calculations

    Science.gov (United States)

    2016-01-01

    Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the

  16. Metastable decay and binding energies of van der Waals cluster ions

    International Nuclear Information System (INIS)

    Ernstberger, B.; Krause, H.; Neusser, H.J.

    1991-01-01

    In this work the appearance potentials for the metastable decay channel of a series of van der Waals dimer ions are presented. Ionization and metastable dissociation is achieved by resonance-enhanced two-photon absorption in a linear reflectron time-of-flight mass spectrometer. From the appearance potentials the binding energy of the neutral dimers is obtained and from the additionally measured ionization potentials binding energies of the dimer cations are achieved. The contribution of charge transfer resonance interaction to the binding in cluster ions is evaluated by investigation of several homo- and heterodimers of aromatic components and the heterodimer benzene/cyclohexane as an example for a dimer consisting of an aromatic and a nonaromatic component. (orig.)

  17. USING MICROSCALE THERMOPHORESIS TO EASILY MEASURE BINDING AFFINITY

    Directory of Open Access Journals (Sweden)

    Dennis Breitsprecher*

    2018-03-01

    Full Text Available While it’s very common for biologists and chemists to test whether or not two molecules interact with each other, it’s much more useful to gather information on the nature of that interaction. How strong is it? How long will it last? What does that mean for its biological function? One way to answer these questions is to study affinity. Binding affinity is defined as the strength of the binding interaction between a single biomolecule to its binding partner, or ligand, and it can be quantifiably measured, providing information on whether or not molecules are interacting, as well as assigning a value to the affinity. When measuring binding affinity, there are several parameters to look at, but the dissociation constant (Kd, which defines the likelihood that an interaction between two molecules will break, is a very common measurement. The smaller the dissociation constant, the more tightly bound the ligand is, and the higher the affinity is between the two molecules.

  18. Binding energy and single–particle Energies in the 16 0 region ...

    African Journals Online (AJOL)

    ... single-particle energies in the oxygen region by folding together a Hamiltonian in the rest-frame of the nucleus with two-body correlation functions based on the Njimegen potential. We have found that the binding energies are very sensitive to the core radius rc and that the effects of tensor correlations are non-negligible.

  19. Measuring transformers in energy measurement technology

    International Nuclear Information System (INIS)

    Vock, E.

    2009-01-01

    This article takes a look at the use of measurement transformers in energy measurement installations in the light of electricity market liberalisation. Such equipment is quoted as being long living and capital-intensive. Increasing requirements on the installation of measurement equipment between partners in a liberalised market are examined. The requirements placed by electricity market legislation on the systems for the various grid voltage levels are discussed. Both current and voltage measurement transformers are looked at and the requirements placed on their accuracy are discussed in detail.

  20. Charge compensation and binding energy referencing in XPS analysis

    International Nuclear Information System (INIS)

    Metson, J.B.

    1999-01-01

    Full text: The past decade has seen a number of significant advances in the capabilities of commercial X-ray Photoelectron spectrometers. Of note have been the near universal adoption of monochromatised X-ray sources, very useful advances in spatial resolution, particularly in spectroscopy, and radical developments in sample handling and automation. However one of the most significant advances has been the development of several relatively new concepts in charge compensation. Throughout the evolution of XPS, the ability to compensate for surface charging and accurately determine binding energies, particularly with electrically inhomogenous samples, has remained one of the most intractable problems. Beginning perhaps with the Kratos, 'in the lens' electrostatic mirror/electron source coupled with a magnetic snorkel lens, a number of concepts have been advanced which take a quite different conceptual approach to charge compensation. They differ in a number of quite fundamental ways to the electron flood type compensators widely used and absolutely essential with instruments based on monochromatised sources. The concept of the local return of secondary electrons to their point of emission, largely negates the problems associated with differential charging across different regions of the surface, and suggests the possibility of overcoming one of the central limitations of XPS, that is the inability to compare absolute binding energies of species in different electrical as well as chemical environments. The general status of charge compensation and the use of internal binding energy references in XPS will be reviewed, along with some practical examples of where these techniques work, and where there is clearly still room for further development. Copyright (1999) Australian X-ray Analytical Association Inc

  1. Solar Energy Measurement Using Arduino

    OpenAIRE

    Jumaat Siti Amely; Othman Mohamad Hilmi

    2018-01-01

    This project aims to develop a measurement of solar energy using Arduino Board technology. In this research, four parameters that been measured are temperature, light intensity, voltage and current. The temperature was measured using temperature sensor. The light intensity was measured using light dependent resistor (LDR) sensor. The voltage was measured using the voltage divider because the voltage generated by the solar panel are large for the Arduino as receiver. Lastly for the current was...

  2. Integrating water exclusion theory into βcontacts to predict binding free energy changes and binding hot spots

    Science.gov (United States)

    2014-01-01

    Background Binding free energy and binding hot spots at protein-protein interfaces are two important research areas for understanding protein interactions. Computational methods have been developed previously for accurate prediction of binding free energy change upon mutation for interfacial residues. However, a large number of interrupted and unimportant atomic contacts are used in the training phase which caused accuracy loss. Results This work proposes a new method, βACV ASA , to predict the change of binding free energy after alanine mutations. βACV ASA integrates accessible surface area (ASA) and our newly defined β contacts together into an atomic contact vector (ACV). A β contact between two atoms is a direct contact without being interrupted by any other atom between them. A β contact’s potential contribution to protein binding is also supposed to be inversely proportional to its ASA to follow the water exclusion hypothesis of binding hot spots. Tested on a dataset of 396 alanine mutations, our method is found to be superior in classification performance to many other methods, including Robetta, FoldX, HotPOINT, an ACV method of β contacts without ASA integration, and ACV ASA methods (similar to βACV ASA but based on distance-cutoff contacts). Based on our data analysis and results, we can draw conclusions that: (i) our method is powerful in the prediction of binding free energy change after alanine mutation; (ii) β contacts are better than distance-cutoff contacts for modeling the well-organized protein-binding interfaces; (iii) β contacts usually are only a small fraction number of the distance-based contacts; and (iv) water exclusion is a necessary condition for a residue to become a binding hot spot. Conclusions βACV ASA is designed using the advantages of both β contacts and water exclusion. It is an excellent tool to predict binding free energy changes and binding hot spots after alanine mutation. PMID:24568581

  3. Energy efficiency policies and measures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document makes a review of the energy efficiency and demand side management (DSM) policies and measures in European Union countries and Norway in 1999: institutional changes, measures and programmes, budget, taxation, existence of a national DSM programme, national budgets for DSM programmes, electricity pricing: energy/environment tax, national efficiency standards and regulation for new electrical appliances, implementation of Commission directives, efficiency requirements, labelling, fiscal and economic incentives. (J.S.)

  4. Exciton binding energy in a pyramidal quantum dot

    Science.gov (United States)

    Anitha, A.; Arulmozhi, M.

    2018-05-01

    The effects of spatially dependent effective mass, non-parabolicity of the conduction band and dielectric screening function on exciton binding energy in a pyramid-shaped quantum dot of GaAs have been investigated by variational method as a function of base width of the pyramid. We have assumed that the pyramid has a square base with area a× a and height of the pyramid H=a/2. The trial wave function of the exciton has been chosen according to the even mirror boundary condition, i.e. the wave function of the exciton at the boundary could be non-zero. The results show that (i) the non-parabolicity of the conduction band affects the light hole (lh) and heavy hole (hh) excitons to be more bound than that with parabolicity of the conduction band, (ii) the dielectric screening function (DSF) affects the lh and hh excitons to be more bound than that without the DSF and (iii) the spatially dependent effective mass (SDEM) affects the lh and hh excitons to be less bound than that without the SDEM. The combined effects of DSF and SDEM on exciton binding energy have also been calculated. The results are compared with those available in the literature.

  5. Non-abelian binding energies from the lightcone bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Li, Daliang [Department of Physics, Yale University,New Haven, CT 06511 (United States); Department of Physics and Astronomy, Johns Hopkins University,Baltimore, MD 21218 (United States); Meltzer, David [Department of Physics, Yale University,New Haven, CT 06511 (United States); Poland, David [Department of Physics, Yale University,New Haven, CT 06511 (United States); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States)

    2016-02-23

    We analytically study the lightcone limit of the conformal bootstrap for 4-point functions containing scalars charged under global symmetries. We show the existence of large spin double-twist operators in various representations of the global symmetry group. We then compute their anomalous dimensions in terms of the central charge C{sub T}, current central charge C{sub J}, and the OPE coefficients of low dimension scalars. In AdS, these results correspond to the binding energy of two-particle states arising from the exchange of gravitons, gauge bosons, and light scalar fields. Using unitarity and crossing symmetry, we show that gravity is universal and attractive among different types of two-particle states, while the gauge binding energy can have either sign as determined by the representation of the two-particle state, with universal ratios fixed by the symmetry group. We apply our results to 4D N=1 SQCD and the 3D O(N) vector models. We also show that in a unitary CFT, if the current central charge C{sub J} stays finite when the global symmetry group becomes infinitely large, such as the N→∞ limit of the O(N) vector model, then the theory must contain an infinite number of higher spin currents.

  6. Core electron binding energy shifts of AlBr3 and Al2Br6 vapor

    International Nuclear Information System (INIS)

    Mueller, Astrid M.; Plenge, Juergen; Leone, Stephen R.; Canton, Sophie E.; Rude, Bruce S.; Bozek, John D.

    2006-01-01

    The Al 2p and Br 3d inner-shell photoelectron spectra of aluminum tribromide monomer and dimer vapor were measured at 90 and 95 eV photon energy, respectively, to determine the core electron binding energies of the atoms in the two molecular species. While AlBr 3 has three identical Br atoms, Al 2 Br 6 exhibits four terminal and two bridging Br atoms. The species are identified by their distinct valence photoelectron spectra. Comparison of the observed Al 2p 1/2 and Al 2p 3/2 electron binding energies of AlBr 3 with those of Al 2 Br 6 shows that there is a chemical shift of (0.15 ± 0.03) eV to lower energy in the dimer. In Al 2 Br 6 , an assignment is proposed in which the Br 3d 3/2 and Br 3d 5/2 binding energies of terminal Br atoms are (1.18 ± 0.03) eV lower than those of bridging Br atoms. This assignment assumes that both types of Br atoms have similar cross-sections for ionization. With this result, the Br 3d 3/2 and Br 3d 5/2 binding energies of Br atoms in AlBr 3 are (0.81 ± 0.03) eV lower than those of bridging Br atoms of the dimer but (0.37 ± 0.03) eV higher than those of terminal Br atoms of the dimer. The obtained chemical shifts are considered in terms of the binding relations and electron density distributions in both molecules. Chemical shifts that are larger than a few hundred millielectron volts, as observed in the Al 2 Br 6 /AlBr 3 system, offer potential to study the dissociation dynamics of the dimer in a femtosecond visible or ultraviolet-pump/XUV-probe experiment

  7. Relative ultrasound energy measurement circuit

    OpenAIRE

    Gustafsson, E.Martin I.; Johansson, Jonny; Delsing, Jerker

    2005-01-01

    A relative ultrasound energy estimation circuit has been designed in a standard 0.35-μm CMOS process, to be a part of a thumb size internet connected wireless ultrasound measurement system. This circuit measures the relative energy between received ultrasound pulses, and presents an output signal that is linear to the received energy. Post-layout simulations indicate 7 bit linearity for 500 mV input signals, 5 μsec startup and stop times, 2.6 mW power consumption during active state. The acti...

  8. A radioreceptor assay for measurement of plasma glucocorticoid binding activity

    International Nuclear Information System (INIS)

    Fan Jie

    1990-01-01

    A radioreceptor assay (RRA) for plasma glucocorticoid binding activity (GCBA) has been developed using glucocorticoid receptor in rat thymocytes. Unlike other assays for natural and certain synthetic corticosteroids, RRA measures the GCBA of all natural and synthetic GC in plasma. The range of standard curve was 0 ∼ 1.00 mg/L. The sensitivity was 0.01 mg/l. The recovery rate was 92.1%, and the intra and inter assay CV was 0.7% (n = 3) and 4.4% (n = 3) respectively. The level of corticosterone in 9 rat plasma samples was determined by RRA and CBG-isotope binding assay. There was a general correlation over a wide range between the values determined by the two assays (r = 0.95; P < 0.001). The measuring condition was described in detail

  9. Energy measurements from betatron oscillations

    International Nuclear Information System (INIS)

    Himel, T.; Thompson, K.

    1989-03-01

    In the Stanford Linear Collider the electron beam is accelerated from 1--50 GeV in a distance of 3 km. The energy is measured and corrected at the end with an energy feedback loop. There are no bends within the linear accelerator itself, so no intermediate energy measurements are made. Errors in the energy profile due to mis-phasing of the rf, or due to calibration errors in the klystrons' rf outputs are difficult to detect. As the total betatron phase advance down the accelerator is about 30 /times/ 2π, an energy error of a few percent can cause a large error in the total phase advance. This in turn degrades the performance of auto-steering programs. We have developed a diagnostic program which generates and measures several betatron oscillations in the accelerator. It then analyzes this oscillation, looking for frequency changes which indicate energy errors. One can then compensate for or correct these energy errors. 6 refs., 1 fig

  10. Measuring resilience to energy shocks

    OpenAIRE

    Molyneaux, Lynette; Brown, Colin; Foster, John; Wagner, Liam

    2015-01-01

    Measuring energy security or resilience in energy is, in the main, confined to indicators which are used for comparative purposes or to show trends rather than provide empirical evidence of resilience to unpredicted crises. In this paper, the electricity systems of the individual states within the United States of America are analysed for their response to the 1973-1982 and the 2003-2012 oil price shocks. Empirical evidence is sought for elements which are present in systems that experience r...

  11. Forward energy measurement with CMS

    CERN Document Server

    Kheyn, Lev

    2016-01-01

    Energy flow is measured in the forward region of CMS at pseudorapidities up to 6.6 in pp interactions at 13 TeV with forward (HF) and very forward (CASTOR) calorimeters. The results are compared to model predictions. The CMS results at different center-of-mass energies are intercompared using pseudorapidity variable shifted by beam rapidity, thus studying applicability of hypothesis of limiting fragmentation.

  12. Universal binding energy relation for cleaved and structurally relaxed surfaces

    International Nuclear Information System (INIS)

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-01-01

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress–displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements. (paper)

  13. Universal binding energy relation for cleaved and structurally relaxed surfaces.

    Science.gov (United States)

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-02-05

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress-displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements.

  14. Orbital momentum profiles and binding energy spectra for the complete valence shell of molecular fluorine

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y.; Brion, C.E. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemistry; Brunger, M.J.; Zhao, K.; Grisogono, A.M.; Braidwood, S.; Weigold, E. [Flinders Univ. of South Australia, Adelaide, SA (Australia). Electronic Structure of Materials Centre; Chakravorty, S.J.; Davidson, E.R. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry; Sgamellotti, A. [Univ di Perugia (Italy). Dipartimento di Chimica; von Niessen, W. [Technische Univ. Braunschweig (Germany). Inst fuer Physikalische

    1996-01-01

    The first electronic structural study of the complete valence shell binding energy spectrum of molecular fluorine, encompassing both the outer and inner valence regions, is reported. These binding energy spectra as well as the individual orbital momentum profiles have been measured using an energy dispersive multichannel electron momentum spectrometer at a total energy of 1500 eV, with an energy resolution of 1.5 eV and a momentum resolution of 0.1 a.u. The measured binding energy spectra in the energy range of 14-60 eV are compared with the results of ADC(4) many-body Green`s function and also direct-Configuration Interaction (CI) and MRSD-CI calculations. The experimental orbital electron momentum profiles are compared with SCF theoretical profiles calculated using the target Hartree-Fock approximation with a range of basis sets and with Density Functional Theory predictions in the target Kohn-Sham approximation with non-local potentials. The truncated (aug-cc-pv5z) Dunning basis sets were used for the Density Functional Theory calculations which also include some treatment of correlation via the exchange and correlation potentials. Comparisons are also made with the full ion-neutral overlap amplitude calculated with MRSD-CI wave functions. Large, saturated basis sets (199-GTO) were employed for both the high level SCF near Hartree-Fock limit and MRSD-CI calculations to investigate the effects of electron correlation and relaxation. 66 refs., 9 tabs., 9 figs.

  15. Measuring and Comparing Energy Flexibilities

    DEFF Research Database (Denmark)

    Valsomatzis, Emmanouil; Hose, Katja; Pedersen, Torben Bach

    2015-01-01

    induced by time and amount individually, and by their com- bination. To this end, we introduce several flexibility measures that take into account the combined effect of time and energy on flex-offer flexibility and discuss their respective pros and cons through a number of realistic examples....

  16. Measuring and monitoring energy poverty

    International Nuclear Information System (INIS)

    Pachauri, Shonali; Spreng, Daniel

    2011-01-01

    This article undertakes a review of alternative measures and indicators of energy poverty targeted to specific audiences and for particular purposes. At the national and international scales there have been some efforts for constructing measures of energy poverty. However, much more needs to be done to develop an internationally consistent measurement framework and to put in place data collection systems that will enable regular reporting. At the programme and project level, indicator systems by necessity need to be designed for specific purposes. Nevertheless, the article proposes that in many instances it is desirable to widen the scope of metrics used for designing and evaluating policies and programmes. In the past, monitoring and evaluation indicators have focused largely on outputs, service delivery or dissemination. Central to the recommendations laid out in the paper is the call for widening the focus of evaluation and necessity to design indicators that adequately assess the needs of beneficiaries and describe the living conditions of families and communities, who are targeted by such programmes and initiatives. - Highlights: ► Consistent measurement frameworks and regular data collection systems on energy poverty are needed. ► Metrics used for designing and evaluating energy access programmes should be widened. ► Indicators that adequately assess needs and describe living conditions of targeted beneficiaries are required.

  17. Quantum confinement effect and exciton binding energy of layered perovskite nanoplatelets

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2018-02-01

    Full Text Available We report the preparation of monolayer (n = 1, few-layer (n = 2–5 and 3D (n = ∞ organic lead bromide perovskite nanoplatelets (NPLs by tuning the molar ratio of methylammonium bromide (MABr and hexadecammonium bromide (HABr. The absorption spectrum of the monolayer (HA2PbBr4 perovskite NPLs shows about 138 nm blue shift from that of 3D MAPbBr3 perovskites, which is attributed to strong quantum confinement effect. We further investigate the two-photon photoluminescence (PL of the NPLs and measure the exciton binding energy of monolayer perovskite NPLs using linear absorption and two-photon PL excitation spectroscopy. The exciton binding energy of monolayer perovskite NPLs is about 218 meV, which is far larger than tens of meV in 3D lead halide perovskites.

  18. Momentum distributions and binding energies for the valence orbitals of methanol

    International Nuclear Information System (INIS)

    Minchinton, A.; Brion, C.E.; Weigold, E.

    1981-06-01

    Methanol has been studied by binary (e,2e) coincidence spectroscopy at 1200 eV using symmetric non-coplanar geometry. The binding energy spectrum has been determined in the energy range up to 46eV at azimuthal angles of 0 deg. and 7 deg. Momentum distributions measured for the valence orbitals are compared with calculations using the wave functions (essentially double-zeta quality) reported by Snyder and Basch. Agreement is generally quite good except for the outermost orbitals and the 5a' orbital which all show somewhat larger low momentum components than predicted by the calculations. This is indicative of a more spatially extended orbital than is predicted

  19. Effect of isovector coupling channel on the macroscopic part of the nuclear binding energy

    International Nuclear Information System (INIS)

    Haddad, S.

    2011-04-01

    The effect of the isovector coupling channel on the macroscopic part of the nuclear binding energy is determined utilizing the relativistic density dependent Thomas-Fermi approach for the calculation of the macroscopic part of the nuclear binding energy, and the dependency of this effect on the numbers of neutrons and protons is studied. The isovector coupling channel leads to increased nuclear binding energy, and this effect sharpens with growing excess of the number of neutrons on the number of protons. (author)

  20. Estimation of the Binding Free Energy of AC1NX476 to HIV-1 Protease Wild Type and Mutations Using Free Energy Perturbation Method.

    Science.gov (United States)

    Ngo, Son Tung; Mai, Binh Khanh; Hiep, Dinh Minh; Li, Mai Suan

    2015-10-01

    The binding mechanism of AC1NX476 to HIV-1 protease wild type and mutations was studied by the docking and molecular dynamics simulations. The binding free energy was calculated using the double-annihilation binding free energy method. It is shown that the binding affinity of AC1NX476 to wild type is higher than not only ritonavir but also darunavir, making AC1NX476 become attractive candidate for HIV treatment. Our theoretical results are in excellent agreement with the experimental data as the correlation coefficient between calculated and experimentally measured binding free energies R = 0.993. Residues Asp25-A, Asp29-A, Asp30-A, Ile47-A, Gly48-A, and Val50-A from chain A, and Asp25-B from chain B play a crucial role in the ligand binding. The mutations were found to reduce the receptor-ligand interaction by widening the binding cavity, and the binding propensity is mainly driven by the van der Waals interaction. Our finding may be useful for designing potential drugs to combat with HIV. © 2015 John Wiley & Sons A/S.

  1. Influence of host matrices on krypton electron binding energies and KLL Auger transition energies

    Czech Academy of Sciences Publication Activity Database

    Inoyatov, A. K.; Perevoshchikov, L. L.; Kovalík, Alojz; Filosofov, D. V.; Yushkevich, Yu. V.; Ryšavý, Miloš; Lee, B. Q.; Kibédi, T.; Stuchbery, A. E.; Zhdanov, V. S.

    2014-01-01

    Roč. 197, DEC (2014), s. 64-71 ISSN 0368-2048 R&D Projects: GA ČR(CZ) GAP203/12/1896; GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : Kr-83 * Rb-83 * Sr-83 * electron binding energy * KLL transitions * natural atomic level width * multiconfiguration Dirac-Fock calculations Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.436, year: 2014

  2. Semiphenomenological studies of the ground state binding energies of hypernuclei

    International Nuclear Information System (INIS)

    Mian, M.

    1987-01-01

    We show that the binding energies of /sub Λ/ 5 He and p-shell hypernuclei can be satisfactorily explained in the folding model approach using a density dependent effective ΛN interaction. Our analysis predicts a very reasonable value of the range of the ΛN interaction. The calculated value of B/sub Λ/ of /sub Λ/ 7 Li using the cluster model density for 6 Li and the best fit parameters of this potential supports the view that 6 Li possesses an α-d cluster structure. Using this potential we also determine the average size parameter (a 0 ) of the oscillator shell model density of nucleons in Nnot =Z core nuclei from fitting the B/sub Λ/ values of the corresponding hypernuclei. The effect of different forms of density distribution of core nuclei on the values of potential parameters is investigated and is found to be very small. As regards the form of density dependence, a rho/sup 2/3/ form is found to be the most appropriate for this purpose and is used throughout this work. Other forms do not give a satisfactory account of the data

  3. Relation between heat of vaporization, ion transport, molar volume, and cation-anion binding energy for ionic liquids.

    Science.gov (United States)

    Borodin, Oleg

    2009-09-10

    A number of correlations between heat of vaporization (H(vap)), cation-anion binding energy (E(+/-)), molar volume (V(m)), self-diffusion coefficient (D), and ionic conductivity for 29 ionic liquids have been investigated using molecular dynamics (MD) simulations that employed accurate and validated many-body polarizable force fields. A significant correlation between D and H(vap) has been found, while the best correlation was found for -log(DV(m)) vs H(vap) + 0.28E(+/-). A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids. A deviation of some ILs from the reported master curve is explained based upon ion packing and proposed diffusion pathways. No general correlations were found between the ion diffusion coefficient and molecular volume or the diffusion coefficient and cation/anion binding energy.

  4. Calculation of Relative Binding Free Energy in the Water-Filled Active Site of Oligopeptide-Binding Protein A.

    Science.gov (United States)

    Maurer, Manuela; de Beer, Stephanie B A; Oostenbrink, Chris

    2016-04-15

    The periplasmic oligopeptide binding protein A (OppA) represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK), but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated) unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data.

  5. An Energy Conservation Approach to Adsorbate-Induced Surface Stress and the Extraction of Binding Energy Using Nanomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, Lal A [ORNL; Boiadjiev, Vassil I [ORNL; Fernando, G. W. [University of Connecticut, Storrs; Hawk, J. E. [Oak Ridge National Laboratory (ORNL); Wijewardhana, L.C. R. [University of Cincinnati; Gehl, Anthony C [ORNL

    2008-01-01

    Microcantilevers are ideally-suited for the study of surface phenomena due to their large surface-to-volume ratios, which amplify surface effects. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. When the excess energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such experiments were conducted for three binding processes in vapor phase experiments: physisorption, hydrogen bonding, and chemisorption. To our knowledge, such an energy conservation approach has not been taken into account in adsorbate-induced surface effect investigations. Furthermore, these experiments illustrate that detailed molecular-level information on binding energies can be extracted from this simple micromechanical sensor.

  6. Resonance energy transfer study on the proximity relationship between the GTP binding site and the rifampicin binding site of Escherichia coli RNA polymerase

    International Nuclear Information System (INIS)

    Kumar, K.P.; Chatterji, D.

    1990-01-01

    Terbium(III) upon complexation with guanosine 5'-triphosphate showed remarkable enhancement of fluorescence emission at 488 and 545 nm when excited at 295 nm. Analysis of the binding data yielded a value for the mean K d between Tb(III) and GTP of 0.2 μM, with three binding sites for TB(III) on GTP. 31 P and 1 H NMR measurements revealed that Tb(III) mainly binds the phosphate moiety of GTP. Fluorescence titration of the emission signals of the TbGTP complex with varying concentrations of Escherichia coli RNA polymerase resulted in a K d values of 4 μM between the TbGTP and the enzyme. It was observed that TbGTP can be incorporated in the place of GTP during E. coli RNA polymerase catalyzed abortive synthesis of dinucleotide tetraphosphate at T7A2 promoter. Both the substrate TbGTP and the inhibitor of the initiation of transcription rifampicin bind to the β-subunit of E. coli RNA polymerase. This allows the measurement of the fluorescence excited-state energy transfer from the donor TbGTP-RNA polymerase to the acceptor rifampicin. Both emission bands of Tb(III) overlap with the rifampicin absorption, and the distances at 50% efficiency of energy transfer were calculated to be 28 and 24 angstrom for the 488- and 545-nm emission bands, respectively. The distance between the substrate binding site and the rifampicin binding site on the β-subunit of E. coli RNA polymerase was measured to be around 30 angstrom. This suggest that the nature of inhibition of transcription by rifampicin is essentially noncompetitive with the substrate

  7. Solar Energy Measurement Using Arduino

    Directory of Open Access Journals (Sweden)

    Jumaat Siti Amely

    2018-01-01

    Full Text Available This project aims to develop a measurement of solar energy using Arduino Board technology. In this research, four parameters that been measured are temperature, light intensity, voltage and current. The temperature was measured using temperature sensor. The light intensity was measured using light dependent resistor (LDR sensor. The voltage was measured using the voltage divider because the voltage generated by the solar panel are large for the Arduino as receiver. Lastly for the current was measured using the current sensor module that can sense the current generated by the solar panel. These parameters as the input value for the Arduino and the output was display at the Liquid Crystal Display (LCD screen. The LCD screen display output of the temperature, the light intensity, the voltage and the current value. The purpose of Arduino to convert the analog input of parameter to the digital output and display via LCD screen. Other than that, this project also involve with a design to ensure that device case are easy to be carry around.

  8. Renewable energy: Method and measures

    International Nuclear Information System (INIS)

    Nilsen, Trond Hartvedt

    2003-01-01

    The thesis presents various possibilities for renewable energy in Norway. The wind power would give a practical and economic alternative. The external costs for the wind power would be moderate. In chapter 3 the utility cost analysis for renewable alternatives are studied relative to the macroeconomic efficiency. Some methodical problems and how these analyses are used are reviewed. In the practical utility cost analyses wind power is studied relative to gas power which is the non-renewable alternative present in Norway today. A qualitative part is included. It is not possible to determine whether wind power is preferable to gas power in the macroeconomic perspective. Wind power would be the choice if high environmental and CO2 cleaning costs are expected. The first conclusion to be drawn is that it is difficult to decide whether wind power is the best solution based on cost benefit analysis. However, the alternative seems to be quite robust in the analysis. Due to the central position the energy supplies have in the society this business should be heavily regulated. The sector is also overtaxed as a reduction in consumption is desired. The analysis shows that the system does not function perfectly. The thesis surveys various measures for improving the renewable energy supply and focuses on the wind power. A model for and analysis of the measures are carried out and resulted in a second conclusion. The measures have various properties as to the influence on the market. A subsidy is a fine measure for stimulation production of green power while a tax reduces efficiently the production of black power. A system with green licenses in combination with a subsidy and a tax would be preferable as to increasing the part of renewable energy of the total production. It is therefore necessary to have clearly defined goals and use suitable measures for achieving them. The costs of wind power is falling and it would therefore soon be macroeconomic profitable. It is also

  9. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    Science.gov (United States)

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  10. Multiple binding modes of ibuprofen in human serum albumin identified by absolute binding free energy calculations

    KAUST Repository

    Evoli, Stefania; Mobley, David L.; Guzzi, Rita; Rizzuti, Bruno

    2016-01-01

    experiments, because of the structural adaptability of this protein in accommodating small ligands. In this work, we provide a set of predictions covering the geometry, affinity of binding and protonation state for the pharmaceutically most active form (S

  11. An energy conservation approach to adsorbate-induced surface stress and the extraction of binding energy using nanomechanics

    Science.gov (United States)

    Pinnaduwage, Lal A.; Boiadjiev, Vassil I.; Hawk, John E.; Gehl, Anthony C.; Fernando, Gayanath W.; Rohana Wijewardhana, L. C.

    2008-03-01

    Surface stress induced by molecular adsorption in three different binding processes has been studied experimentally using a microcantilever sensor. A comprehensive free-energy analysis based on an energy conservation approach is proposed to explain the experimental observations. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. The released binding energy appears to be almost exclusively channeled to the surface energy, and energy distribution to other channels, including heat, appears to be inactive for this micromechanical system. When this excess surface energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such vapor phase experiments were conducted for three binding processes: physisorption, hydrogen bonding, and chemisorption. Binding energies for these three processes were also estimated.

  12. An energy conservation approach to adsorbate-induced surface stress and the extraction of binding energy using nanomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, Lal A; Boiadjiev, Vassil I; Hawk, John E; Gehl, Anthony C [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6122 (United States); Fernando, Gayanath W [Physics Department, University of Connecticut, Storrs, CT 06269 (United States); Wijewardhana, L C Rohana [Physics Department, University of Cincinnati, Cincinnati, OH 45221 (United States)

    2008-03-12

    Surface stress induced by molecular adsorption in three different binding processes has been studied experimentally using a microcantilever sensor. A comprehensive free-energy analysis based on an energy conservation approach is proposed to explain the experimental observations. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. The released binding energy appears to be almost exclusively channeled to the surface energy, and energy distribution to other channels, including heat, appears to be inactive for this micromechanical system. When this excess surface energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such vapor phase experiments were conducted for three binding processes: physisorption, hydrogen bonding, and chemisorption. Binding energies for these three processes were also estimated.

  13. Binding energies and chemical shifts of least bound core electron excitations in cubic Asub(N)Bsub(8-N) semiconductors

    International Nuclear Information System (INIS)

    Bechstedt, F.; Enderlein, R.; Wischnewski, R.

    1981-01-01

    Core electron binding energies Esup(B) with respect to the vacuum level and their chemical shifts are calculated for the least bound core levels of cations and anions of cubic Asub(N)Bsub(8-N) semiconductors. Starting from the HF-binding energy of the free atom absolute values of Esup(B) are obtained by adding core level shifts and relaxation energies. Core level shifts are calculated by means of an electrostatic model with ionic and bond charges according to Phillips' bond charge model. For the calculation of relaxation energies the linear dielectric theory of electronic polarization is applied. Valence and core electrons, and diagonal and non-diagonal screening are taken into account. The theoretical results for chemical shifts of binding energies are compared with experimental values from XPS-measurements corrected by work function data. Good agreement is obtained in all cases within the error limit of about one eV. Chemical and atomic trends of core level shifts, relaxation energies, and binding energies are discussed in terms of changes of atomic and solid state parameters. Chemical shifts and relaxation energies are predicted for various ternary Asub(N)Bsub(8-N) compounds. (author)

  14. Constraining the gravitational binding energy of PSR J0737-3039B using terrestrial nuclear data

    International Nuclear Information System (INIS)

    Newton, W. G.; Li Baoan

    2009-01-01

    We show that the gravitational binding energy of a neutron star of a given mass is correlated with the slope of the nuclear symmetry energy at 1-2 times nuclear saturation density for equations of state without significant softening (i.e., those that predict maximum masses M max >1.44M · in line with the largest accurately measured neutron star mass). Applying recent laboratory constraints on the slope of the symmetry energy to this correlation we extract a constraint on the baryon mass of the lower mass member of the double pulsar binary system, PSR J0737-3039B. We compare with independent constraints derived from modeling the progenitor star of J0737-3039B up to and through its collapse under the assumption that it formed in an electron capture supernova. The two sets of constraints are consistent only if L < or approx. 70 MeV.

  15. Rearrangements under confinement lead to increased binding energy of Synaptotagmin-1 with anionic membranes in Mg2+ and Ca2.

    Science.gov (United States)

    Gruget, Clémence; Coleman, Jeff; Bello, Oscar; Krishnakumar, Shyam S; Perez, Eric; Rothman, James E; Pincet, Frederic; Donaldson, Stephen H

    2018-05-01

    Synaptotagmin-1 (Syt1) is the primary calcium sensor (Ca 2+ ) that mediates neurotransmitter release at the synapse. The tandem C2 domains (C2A and C2B) of Syt1 exhibit functionally critical, Ca 2+ -dependent interactions with the plasma membrane. With the surface forces apparatus, we directly measure the binding energy of membrane-anchored Syt1 to an anionic membrane and find that Syt1 binds with ~6 k B T in EGTA, ~10 k B T in Mg 2+ and ~18 k B T in Ca 2+ . Molecular rearrangements measured during confinement are more prevalent in Ca 2+ and Mg 2+ and suggest that Syt1 initially binds through C2B, then reorients the C2 domains into the preferred binding configuration. These results provide energetic and mechanistic details of the Syt1 Ca 2+ -activation process in synaptic transmission. © 2018 Federation of European Biochemical Societies.

  16. Effect of binding in cyclic phosphorylation-dephosphorylation process and in energy transformation.

    Science.gov (United States)

    Sarkar, A; Beard, D A; Franza, B R

    2006-07-01

    The effects of binding on the phosphorylation-dephosphorylation cycle (PDPC) - one of the key components of the signal transduction processes - is analyzed based on a mathematical model. The model shows that binding of proteins, forming a complex, diminishes the ultrasensitivity of the PDPC to the differences in activity between kinase and phosphatase in the cycle. It is also found that signal amplification depends upon the strength of the binding affinity of the protein (phosphorylated or dephosphorylated) to other proteins . It is also observed that the amplification of signal is not only dependent on phosphorylation potential but also on binding properties and resulting adjustments in binding energies.

  17. A portable measuring system for a competitive binding glucose biosensor

    Science.gov (United States)

    Colvin, Lydia E.; Means, A. Kristen; Grunlan, Melissa A.; Coté, Gerard L.

    2018-02-01

    Central to minimizing the long- and short-term complications associated with diabetes is careful monitoring and maintenance of blood glucose at normal levels. Towards replacing conventionally used finger-prick glucose testing, indwelling continuous glucose monitors (CGMs) based on amperometric electrodes have been introduced to the market. Envisioned to lead to a CGM with an increased lifetime, we report herein a fluorescently-labeled competitive binding assay contained within a hydrogel membrane whose glucose response is measured via a novel portable system. The optical system design included a laser source, bifurcated fiber, laser filter and simple fiber coupled spectrometer to obtain the change in FRET pair ratio of the assay. Glucose response of the assay in free solution was measured using this system across the physiologic range (0-200 mg/dL). The FRET pair ratio signal was seen to increase with glucose and the standard error of calibration was 22.42 mg/dL with a MARD value of 14.85%. When the assay was contained within the hydrogel membrane's central cavity and similarly analyzed, the standard error increased but the assay maintained its reversibility.

  18. Orbital momentum distributions and binding energies for the complete valence shell of molecular iodine

    International Nuclear Information System (INIS)

    Grisogono, A.M.; Pascual, R.; Weigold, E.

    1988-03-01

    The complete valence shell binding energy spectrum (8-43eV) of I 2 has been measured by using electron momentum spectroscopy at 1000eV. The complete inner valence region, corresponding to ionization from the 10 σ u and 10 σ g orbitals, has been measured for the first time and shows extensive splitting of the ionization strength due to electron correlation effects in the ion. Many-body calculations using the Green's function method have been carried out and are compared with the data. Momentum distributions, measured in both the outer and inner valence regions, are compared with those given by SCF orbital wave functions calculated with a number of different basis sets. Computed orbital position and momentum density maps for oriented I 2 molecules are discussed in comparison with the measured and calculated spherically averaged momentum distributions

  19. Measurement of free glucocorticoids: quantifying corticosteroid-binding globulin binding affinity and its variation within and among mammalian species.

    Science.gov (United States)

    Delehanty, Brendan; Hossain, Sabrina; Jen, Chao Ching; Crawshaw, Graham J; Boonstra, Rudy

    2015-01-01

    Plasma glucocorticoids (GCs) are commonly used as measures of stress in wildlife. A great deal of evidence indicates that only free GC (GC not bound by the specific binding protein, corticosteroid-binding globulin, CBG) leaves the circulation and exerts biological effects on GC-sensitive tissues. Free hormone concentrations are difficult to measure directly, so researchers estimate free GC using two measures: the binding affinity and the binding capacity in plasma. We provide an inexpensive saturation binding method for calculating the binding affinity (equilibrium dissociation constant, K d) of CBG that can be run without specialized laboratory equipment. Given that other plasma proteins, such as albumin, also bind GCs, the method compensates for this non-specific binding. Separation of bound GC from free GC was achieved with dextran-coated charcoal. The method provides repeatable estimates (12% coefficient of variation in the red squirrel, Tamiasciurus hudsonicus), and there is little evidence of inter-individual variation in K d (range 2.0-7.3 nM for 16 Richardson's ground squirrels, Urocitellus richardsonii). The K d values of 28 mammalian species we assessed were mostly clustered around a median of 4 nM, but five species had values between 13 and 61 nM. This pattern may be distinct from birds, for which published values are more tightly distributed (1.5-5.1 nM). The charcoal separation method provides a reliable and robust method for measuring the K d in a wide range of species. It uses basic laboratory equipment to provide rapid results at very low cost. Given the importance of CBG in regulating the biological activity of GCs, this method is a useful tool for physiological ecologists.

  20. Impact of domain knowledge on blinded predictions of binding energies by alchemical free energy calculations

    Science.gov (United States)

    Mey, Antonia S. J. S.; Jiménez, Jordi Juárez; Michel, Julien

    2018-01-01

    The Drug Design Data Resource (D3R) consortium organises blinded challenges to address the latest advances in computational methods for ligand pose prediction, affinity ranking, and free energy calculations. Within the context of the second D3R Grand Challenge several blinded binding free energies predictions were made for two congeneric series of Farsenoid X Receptor (FXR) inhibitors with a semi-automated alchemical free energy calculation workflow featuring FESetup and SOMD software tools. Reasonable performance was observed in retrospective analyses of literature datasets. Nevertheless, blinded predictions on the full D3R datasets were poor due to difficulties encountered with the ranking of compounds that vary in their net-charge. Performance increased for predictions that were restricted to subsets of compounds carrying the same net-charge. Disclosure of X-ray crystallography derived binding modes maintained or improved the correlation with experiment in a subsequent rounds of predictions. The best performing protocols on D3R set1 and set2 were comparable or superior to predictions made on the basis of analysis of literature structure activity relationships (SAR)s only, and comparable or slightly inferior, to the best submissions from other groups.

  1. Improved assay for measuring heparin binding to bull sperm

    International Nuclear Information System (INIS)

    Miller, D.J.; Ax, R.L.

    1988-01-01

    The binding of heparin to sperm has been used to study capacitation and to rank relative fertility of bulls. Previous binding assays were laborious, used 10 7 sperm per assay point, and required large amounts of radiolabeled heparin. A modified heparin-binding assay is described that used only 5 x 10 4 cells per incubation well and required reduced amounts of [ 3 H] heparin. The assay was performed in 96-well Millititer plates, enabling easy incubation and filtering. Dissociation constants and concentrations of binding sites did not differ if analyzed by Scatchard plots, Woolf plots, or by log-logit transformed weighted nonlinear least squares regression, except in the case of outliers. In such cases, Scatchard analysis was more sensitive to outliers. Nonspecific binding was insignificant using nonlinear logistic fit regression and a proportion graph. The effects were tested of multiple free-thawing of sperm in either a commercial egg yolk extender, 40 mM Tris buffer with 8% glycerol, or 40 mM Tris buffer without glycerol. Freeze-thawing in extender did not affect the dissociation constant or the concentration of binding sites. However, freeze-thawing three times in 40 mM Tris reduced the concentration of binding sites and lowered the dissociation constant (raised the affinity). The inclusion of glycerol in the 40 mM Tris did not significantly affect the estimated dissociation constant or the concentration of binding sites as compared to 40 mM Tris without glycerol

  2. Measuring energy poverty in Greece

    International Nuclear Information System (INIS)

    Papada, Lefkothea; Kaliampakos, Dimitris

    2016-01-01

    A comprehensive research in the field of energy poverty is undertaken in this paper, in an attempt to highlight the great vulnerability of Greek households on energy poverty, in the middle of a severe economic crisis. Till now, Greek energy policy has been considered insufficient to tackle energy poverty issues, as focusing mainly on short-term rather than permanent solutions. A primary survey has been conducted, recording objective data of energy expenses as well as subjective perceptions about housing conditions. The findings showed that, under the objective expenditure-based method, 58% of Greek households are energy poor. Among households under the poverty threshold, the energy poverty rate exceeds 90%. Existing and new subjective indicators shed light on other aspects of energy poverty, such as the level of thermal comfort at home, damp problems detected, restriction of other essential needs in order to manage energy payments, etc. Some interesting conclusions are also drawn by exploring the relationship between various indicators. It appears that households considered energy poor are not identical when examined by objective and subjective indicators. However, different indicators complement each other by capturing different aspects of the problem and provide a broader overview of the issue. - Highlights: •58% of Greek households are energy poor. •75% of Greek households have reduced other essentials in favor of energy needs. •Combination of objective and subjective indicators captures better energy poverty. •Greek energy policy has failed to tackle energy poverty issues.

  3. Molecular dynamics simulations and free energy calculations of netropsin and distamycin binding to an AAAAA DNA binding site

    Science.gov (United States)

    Dolenc, Jožica; Oostenbrink, Chris; Koller, Jože; van Gunsteren, Wilfred F.

    2005-01-01

    Molecular dynamics simulations have been performed on netropsin in two different charge states and on distamycin binding to the minor groove of the DNA duplex d(CGCGAAAAACGCG)·d(CGCGTTTTTCGCG). The relative free energy of binding of the two non-covalently interacting ligands was calculated using the thermodynamic integration method and reflects the experimental result. From 2 ns simulations of the ligands free in solution and when bound to DNA, the mobility and the hydrogen-bonding patterns of the ligands were studied, as well as their hydration. It is shown that even though distamycin is less hydrated than netropsin, the loss of ligand–solvent interactions is very similar for both ligands. The relative mobilities of the ligands in their bound and free forms indicate a larger entropic penalty for distamycin when binding to the minor groove compared with netropsin, partially explaining the lower binding affinity of the distamycin molecule. The detailed structural and energetic insights obtained from the molecular dynamics simulations allow for a better understanding of the factors determining ligand–DNA binding. PMID:15687382

  4. Molecular dynamics simulations and free energy calculations of netropsin and distamycin binding to an AAAAA DNA binding site.

    Science.gov (United States)

    Dolenc, Jozica; Oostenbrink, Chris; Koller, Joze; van Gunsteren, Wilfred F

    2005-01-01

    Molecular dynamics simulations have been performed on netropsin in two different charge states and on distamycin binding to the minor groove of the DNA duplex d(CGCGAAAAACGCG).d(CGCGTTTTTCGCG). The relative free energy of binding of the two non-covalently interacting ligands was calculated using the thermodynamic integration method and reflects the experimental result. From 2 ns simulations of the ligands free in solution and when bound to DNA, the mobility and the hydrogen-bonding patterns of the ligands were studied, as well as their hydration. It is shown that even though distamycin is less hydrated than netropsin, the loss of ligand-solvent interactions is very similar for both ligands. The relative mobilities of the ligands in their bound and free forms indicate a larger entropic penalty for distamycin when binding to the minor groove compared with netropsin, partially explaining the lower binding affinity of the distamycin molecule. The detailed structural and energetic insights obtained from the molecular dynamics simulations allow for a better understanding of the factors determining ligand-DNA binding.

  5. Orbital momentum distribution and binding energies for the complete valence shell of molecular bromine

    International Nuclear Information System (INIS)

    Frost, L.; Grisogono, A.M.; Weigold, E.

    1987-08-01

    The binding energy spectrum of Br 2 has been recorded in both the outer and inner valence regions using electron momentum spectroscopy. The measurements are compared with the results of several Green's function calculations using different approximations and based on both polarized and unpolarized wave functions. The inner valence region, observed for the first time, is found to exhibit complex structure that is shown to be due to many-body effects, thus indicating a breakdown of the simple MO picture for ionization in this region. Momentum distributions for the three outer valence orbitals are also measured and compared with spherically averaged calculations using the target Hartree-Fock and plane wave impulse approximations. The effect of polarization functions in the basis set is investigated. Orbital density maps in both momentum and position space have been calculated and compared with the experimental measurements

  6. Exciton binding energy in GaAsBiN spherical quantum dot heterostructures

    Science.gov (United States)

    Das, Subhasis; Dhar, S.

    2017-03-01

    The ground state exciton binding energies (EBE) of heavy hole excitons in GaAs1-x-yBixNy - GaAs spherical quantum dots (QD) are calculated using a variational approach under 1s hydrogenic wavefunctions within the framework of effective mass approximation. Both the nitrogen and the bismuth content in the material are found to affect the binding energy, in particular for larger nitrogen content and lower dot radii. Calculations also show that the ground state exciton binding energies of heavy holes increase more at smaller dot sizes as compared to that for the light hole excitons.

  7. Measure for Measure: Urban Water and Energy

    Science.gov (United States)

    Chini, C.; Stillwell, A. S.

    2017-12-01

    Urban environments in the United States account for a majority of the population and, as such, require large volumes of treated drinking water supply and wastewater removal, both of which need energy. Despite the large share of water that urban environments demand, there is limited accounting of these water resources outside of the city itself. In this study, we provide and analyze a database of drinking water and wastewater utility flows and energy that comprise anthropogenic fluxes of water through the urban environment. We present statistical analyses of the database at an annual, spatial, and intra-annual scale. The average daily per person water flux is estimated as 563 liters of drinking water and 496 liters of wastewater, requiring 340 kWh/1000 m3 and 430 kWh/1000 m3 of energy, respectively, to treat these resources. This energy demand accounts for 1% of the total annual electricity production of the United States. Additionally, the water and embedded energy loss associated with non-revenue water (estimated at 15.8% annually) accounts for 9.1 km3of water and 3600 GWh, enough electricity to power 300,000 U.S. households annually. Through the analysis and benchmarking of the current state of urban water fluxes, we propose the term `blue city,' which promotes urban sustainability and conservation policy focusing on water resources. As the nation's water resources become scarcer and more unpredictable, it is essential to include water resources in urban sustainability planning and continue data collection of these vital resources.

  8. Effects of flow changes on radiotracer binding: Simultaneous measurement of neuroreceptor binding and cerebral blood flow modulation.

    Science.gov (United States)

    Sander, Christin Y; Mandeville, Joseph B; Wey, Hsiao-Ying; Catana, Ciprian; Hooker, Jacob M; Rosen, Bruce R

    2017-01-01

    The potential effects of changes in blood flow on the delivery and washout of radiotracers has been an ongoing question in PET bolus injection studies. This study provides practical insight into this topic by experimentally measuring cerebral blood flow (CBF) and neuroreceptor binding using simultaneous PET/MRI. Hypercapnic challenges (7% CO 2 ) were administered to non-human primates in order to induce controlled increases in CBF, measured with pseudo-continuous arterial spin labeling. Simultaneously, dopamine D 2 /D 3 receptor binding of [ 11 C]raclopride or [ 18 F]fallypride was monitored with dynamic PET. Experiments showed that neither time activity curves nor quantification of binding through binding potentials ( BP ND ) were measurably affected by CBF increases, which were larger than two-fold. Simulations of experimental procedures showed that even large changes in CBF should have little effect on the time activity curves of radiotracers, given a set of realistic assumptions. The proposed method can be applied to experimentally assess the flow sensitivity of other radiotracers. Results demonstrate that CBF changes, which often occur due to behavioral tasks or pharmacological challenges, do not affect PET [ 11 C]raclopride or [ 18 F]fallypride binding studies and their quantification. The results from this study suggest flow effects may have limited impact on many PET neuroreceptor tracers with similar properties.

  9. Binding free energy analysis of protein-protein docking model structures by evERdock.

    Science.gov (United States)

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-14

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  10. Effect of magnetic field on the impurity binding energy of the excited ...

    Indian Academy of Sciences (India)

    The effect of external magnetic field on the excited state energies in a spherical quantum dot was studied. The impurity energy and binding energy were calculated using the variational method within the effective mass approximation and finite barrier potential. The results showed that by increasing the magnetic field, the ...

  11. Effect of magnetic field on the impurity binding energy of the excited ...

    Indian Academy of Sciences (India)

    Abstract. The effect of external magnetic field on the excited state energies in a spher- ical quantum dot was studied. The impurity energy and binding energy were calculated using the variational method within the effective mass approximation and finite barrier potential. The results showed that by increasing the magnetic ...

  12. Binding energy and dephasing of biexcitons in In0.18Ga0.82As/GaAs single quantum wells

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    1999-01-01

    Biexciton binding energies and biexciton dephasing in In0.18Ga0.82As/GaAs single quantum wells have been measured by time-integrated and spectrally resolved four-wave mixing. The biexciton binding energy increases from 1.5 to 2.6 meV for well widths increasing from 1 to 4 nm. The ratio between...... exciton and biexciton binding energy changes from 0.23 to 0.3 with increasing inhomogeneous broadening, corresponding to increasing well width. From the temperature dependence of the exciton and biexciton four-wave mixing signal decay, we have deduced the acoustic-phonon scattering of the exciton...

  13. Systematic studies of binding energy dependence of neutron-proton momentum correlation function

    International Nuclear Information System (INIS)

    Wei, Y B; Ma, Y G; Shen, W Q; Ma, G L; Wang, K; Cai, X Z; Zhong, C; Guo, W; Chen, J G; Fang, D Q; Tian, W D; Zhou, X F

    2004-01-01

    Hanbury Brown-Twiss (HBT) results of the neutron-proton correlation function have been systematically investigated for a series of nuclear reactions with light projectiles with the help of the isospin-dependent quantum molecular dynamics model. The relationship between the binding energy per nucleon of the projectiles and the strength of the neutron-proton HBT at small relative momentum has been obtained. Results show that neutron-proton HBT results are sensitive to the binding energy per nucleon

  14. Changes in the Zero-Point Energy of the Protons as the Source of the Binding Energy of Water to A-Phase DNA

    International Nuclear Information System (INIS)

    Reiter, G. F.; Senesi, R.; Mayers, J.

    2010-01-01

    The measured changes in the zero-point kinetic energy of the protons are entirely responsible for the binding energy of water molecules to A phase DNA at the concentration of 6 water molecules/base pair. The changes in kinetic energy can be expected to be a significant contribution to the energy balance in intracellular biological processes and the properties of nano-confined water. The shape of the momentum distribution in the dehydrated A phase is consistent with coherent delocalization of some of the protons in a double well potential, with a separation of the wells of 0.2 Angst .

  15. Changes in the zero-point energy of the protons as the source of the binding energy of water to A-phase DNA.

    Science.gov (United States)

    Reiter, G F; Senesi, R; Mayers, J

    2010-10-01

    The measured changes in the zero-point kinetic energy of the protons are entirely responsible for the binding energy of water molecules to A phase DNA at the concentration of 6  water molecules/base pair. The changes in kinetic energy can be expected to be a significant contribution to the energy balance in intracellular biological processes and the properties of nano-confined water. The shape of the momentum distribution in the dehydrated A phase is consistent with coherent delocalization of some of the protons in a double well potential, with a separation of the wells of 0.2 Å.

  16. Spin assignments of nuclear levels above the neutron binding energy in $^{88}$Sr

    CERN Multimedia

    Neutron resonances reveal nuclear levels in the highly excited region of the nucleus around the neutron binding energy. Nuclear level density models are therefore usually calibrated to the number of observed levels in neutron-induced reactions. The gamma-ray cascade from the decay of the highly excited compound nucleus state to the ground state show dierences dependent on the initial spin. This results in a dierence in the multiplicity distribution which can be exploited. We propose to use the 4${\\pi}$ total absorption calorimeter (TAC) at the n TOF facility to determine the spins of resonances formed by neutrons incident on a metallic $^{87}$Sr sample by measuring the gamma multiplicity distributions for the resolved resonances. In addition we would like to use the available enriched $^{87}$Sr target for cross section measurements with the C$\\scriptscriptstyle{6}$D$\\scriptscriptstyle{6}$ detector setup.

  17. An accurate redetermination of the sup 1 sup 1 sup 8 Sn binding energy

    CERN Document Server

    Borzakov, S B; Faikow-Stanczyk, H; Grigoriev, Y V; Panteleev, T; Pospísil, S; Smotritsky, L M; Telezhnikov, S A

    2002-01-01

    The energy of well-known strong gamma line from sup 1 sup 9 sup 8 Au, the 'gold standard', has been modified in the light of new adjustments in the fundamental constants and the value of 411.80176(12) keV was determined, which is 0.29 eV lower than the latest 1999 value. An energy calibration procedure for determining the neutron binding energy, B sub n , from complicated (n, gamma) spectra has been developed. A mathematically simple minimization function consisting only of terms having as parameters the coefficients of the energy calibration curve (polynomial) is used. A priori information about the relationships among the energies of different peaks on the spectrum is taken into account by a Monte-Carlo simulation. The procedure was used in obtaining B sub n for sup 1 sup 1 sup 8 Sn. The gamma-ray spectrum from thermal neutron radiative capture by sup 1 sup 1 sup 7 Sn has been measured on the IBR-2 pulsed reactor. gamma-rays were detected by a 72 cm sup 3 HPGe detector. For a better determination of B sub n...

  18. SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations.

    Science.gov (United States)

    Petukh, Marharyta; Dai, Luogeng; Alexov, Emil

    2016-04-12

    Predicting the effect of amino acid substitutions on protein-protein affinity (typically evaluated via the change of protein binding free energy) is important for both understanding the disease-causing mechanism of missense mutations and guiding protein engineering. In addition, researchers are also interested in understanding which energy components are mostly affected by the mutation and how the mutation affects the overall structure of the corresponding protein. Here we report a webserver, the Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) webserver, which addresses the demand for tools for predicting the change of protein binding free energy. SAAMBE is an easy to use webserver, which only requires that a coordinate file be inputted and the user is provided with various, but easy to navigate, options. The user specifies the mutation position, wild type residue and type of mutation to be made. The server predicts the binding free energy change, the changes of the corresponding energy components and provides the energy minimized 3D structure of the wild type and mutant proteins for download. The SAAMBE protocol performance was tested by benchmarking the predictions against over 1300 experimentally determined changes of binding free energy and a Pearson correlation coefficient of 0.62 was obtained. How the predictions can be used for discriminating disease-causing from harmless mutations is discussed. The webserver can be accessed via http://compbio.clemson.edu/saambe_webserver/.

  19. Ion Binding Energies Determining Functional Transport of ClC Proteins

    Science.gov (United States)

    Yu, Tao; Guo, Xu; Zou, Xian-Wu; Sang, Jian-Ping

    2014-06-01

    The ClC-type proteins, a large family of chloride transport proteins ubiquitously expressed in biological organisms, have been extensively studied for decades. Biological function of ClC proteins can be reflected by analyzing the binding situation of Cl- ions. We investigate ion binding properties of ClC-ec1 protein with the atomic molecular dynamics simulation approach. The calculated electrostatic binding energy results indicate that Cl- at the central binding site Scen has more binding stability than the internal binding site Sint. Quantitative comparison between the latest experimental heat release data isothermal titration calorimetry (ITC) and our calculated results demonstrates that chloride ions prefer to bind at Scen than Sint in the wild-type ClC-ec1 structure and prefer to bind at Sext and Scen than Sint in mutant E148A/E148Q structures. Even though the chloride ions make less contribution to heat release when binding to Sint and are relatively unstable in the Cl- pathway, they are still part contributors for the Cl- functional transport. This work provides a guide rule to estimate the importance of Cl- at the binding sites and how chloride ions have influences on the function of ClC proteins.

  20. Coordination-resolved local bond relaxation, electron binding-energy shift, and Debye temperature of Ir solid skins

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Maolin [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); Wang, Yan [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); School of Information and Electronic Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201 (China); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); Yang, Xuexian [Department of Physics, Jishou University, Jishou, Hunan 416000 (China); Yang, Yezi [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); Li, Can [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China); Sun, Chang Q., E-mail: ecqsun@ntu.edu.sg [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2014-11-30

    Highlights: • Cohesive energy of the representative bond determines the core-level shift. • XPS derives the energy level of an isolated atom and its bulk shift. • XPS derives the local bond length, bond energy, binding energy density. • Thermal XPS resolves the Debye temperature and atomic cohesive energy. - Abstract: Numerical reproduction of the measured 4f{sub 7/2} energy shift of Ir(1 0 0), (1 1 1), and (2 1 0) solid skins turns out the following: (i) the 4f{sub 7/2} level of an isolated Ir atom shifts from 56.367 eV to 60.332 eV by 3.965 eV upon bulk formation; (ii) the local energy density increases by up to 130% and the atomic cohesive energy decreases by 70% in the skin region compared with the bulk values. Numerical match to observation of the temperature dependent energy shift derives the Debye temperature that varies from 285.2 K (Surface) to 315.2 K (Bulk). We clarified that the shorter and stronger bonds between under-coordinated atoms cause local densification and quantum entrapment of electron binding energy, which perturbs the Hamiltonian and the core shifts in the skin region.

  1. Accurate determination of the binding energy of the formic acid dimer: The importance of geometry relaxation

    Science.gov (United States)

    Kalescky, Robert; Kraka, Elfi; Cremer, Dieter

    2014-02-01

    The formic acid dimer in its C2h-symmetrical cyclic form is stabilized by two equivalent H-bonds. The currently accepted interaction energy is 18.75 kcal/mol whereas the experimental binding energy D0 value is only 14.22 ±0.12 kcal/mol [F. Kollipost, R. W. Larsen, A. V. Domanskaya, M. Nörenberg, and M. A. Suhm, J. Chem. Phys. 136, 151101 (2012)]. Calculation of the binding energies De and D0 at the CCSD(T) (Coupled Cluster with Single and Double excitations and perturbative Triple excitations)/CBS (Complete Basis Set) level of theory, utilizing CCSD(T)/CBS geometries and the frequencies of the dimer and monomer, reveals that there is a 3.2 kcal/mol difference between interaction energy and binding energy De, which results from (i) not relaxing the geometry of the monomers upon dissociation of the dimer and (ii) approximating CCSD(T) correlation effects with MP2. The most accurate CCSD(T)/CBS values obtained in this work are De = 15.55 and D0 = 14.32 kcal/mol where the latter binding energy differs from the experimental value by 0.1 kcal/mol. The necessity of employing augmented VQZ and VPZ calculations and relaxing monomer geometries of H-bonded complexes upon dissociation to obtain reliable binding energies is emphasized.

  2. Measuring energy efficiency: Is energy intensity a good evidence base?

    International Nuclear Information System (INIS)

    Proskuryakova, L.; Kovalev, A.

    2015-01-01

    Highlights: • Energy intensity measure reflects consumption, not energy efficiency. • Thermodynamic indicators should describe energy efficiency at all levels. • These indicators should have no reference to economic or financial parameters. • A set of energy efficiency indicators should satisfy several basic principles. • There are trade-offs between energy efficiency, power and costs. - Abstract: There is a widespread assumption in energy statistics and econometrics that energy intensity and energy efficiency are equivalent measures of energy performance of economies. The paper points to the discrepancy between the engineering concept of energy efficiency and the energy intensity as it is understood in macroeconomic statistics. This double discrepancy concerns definitions (while engineering concept of energy efficiency is based on the thermodynamic definition, energy intensity includes economic measures) and use. With regard to the latter, the authors conclude that energy intensity can only provide indirect and delayed evidence of technological and engineering energy efficiency of energy conversion processes, which entails shortcomings for management and policymaking. Therefore, we suggest to stop considering subsectoral, sectoral and other levels of energy intensities as aggregates of lower-level energy efficiency. It is suggested that the insufficiency of energy intensity indicators can be compensated with the introduction of thermodynamic indicators describing energy efficiency at the physical, technological, enterprise, sub-sector, sectoral and national levels without references to any economic or financial parameters. Structured statistical data on thermodynamic efficiency is offered as a better option for identifying break-through technologies and technological bottle-necks that constrain efficiency advancements. It is also suggested that macro-level thermodynamic indicators should be based on the thermodynamic first law efficiency and the energy

  3. Photoionization cross section and binding energy of single dopant in hollow cylindrical core/shell quantum dot

    Science.gov (United States)

    Feddi, E.; El-Yadri, M.; Dujardin, F.; Restrepo, R. L.; Duque, C. A.

    2017-02-01

    In this study, we have investigated the confined donor impurity in a hollow cylindrical-shell quantum dot. The charges are assumed to be completely confined to the interior of the shell with rigid walls. Within the framework of the effective-mass approximation and by using a simple variational approach, we have computed the donor binding energy as a function of the shell sizes in order to study the behavior of the electron-impurity attraction for a very small thickness. Our results show that the binding energy of a donor impurity placed at the center of cylindrical core/shell dots depends strongly on the shell size. The binding energy increases when the shell-wideness becomes smaller and shows the same behavior as in a simple cylindrical quantum dot. A special case has been studied, which corresponds to the ratio between the inner and outer radii near to one (a/b → 1) for which our model gives a non-significant behavior of the impurity binding energy. This fact implies the existence of a critical value (a/b) for which the binding energy of the donor impurity tends to the limit value of 4 effective Rydbergs as in a 2D quantum well. We also analyse the photoionization cross section considering only the in-plane incident radiation polarization. We determine its behavior as a function of photon energy, shell size, and donor position. The measurement of photoionization in such systems would be of great interest to understand the optical properties of carriers in quantum dots.

  4. Decipher the mechanisms of protein conformational changes induced by nucleotide binding through free-energy landscape analysis: ATP binding to Hsp70.

    Directory of Open Access Journals (Sweden)

    Adrien Nicolaï

    Full Text Available ATP regulates the function of many proteins in the cell by transducing its binding and hydrolysis energies into protein conformational changes by mechanisms which are challenging to identify at the atomic scale. Based on molecular dynamics (MD simulations, a method is proposed to analyze the structural changes induced by ATP binding to a protein by computing the effective free-energy landscape (FEL of a subset of its coordinates along its amino-acid sequence. The method is applied to characterize the mechanism by which the binding of ATP to the nucleotide-binding domain (NBD of Hsp70 propagates a signal to its substrate-binding domain (SBD. Unbiased MD simulations were performed for Hsp70-DnaK chaperone in nucleotide-free, ADP-bound and ATP-bound states. The simulations revealed that the SBD does not interact with the NBD for DnaK in its nucleotide-free and ADP-bound states whereas the docking of the SBD was found in the ATP-bound state. The docked state induced by ATP binding found in MD is an intermediate state between the initial nucleotide-free and final ATP-bound states of Hsp70. The analysis of the FEL projected along the amino-acid sequence permitted to identify a subset of 27 protein internal coordinates corresponding to a network of 91 key residues involved in the conformational change induced by ATP binding. Among the 91 residues, 26 are identified for the first time, whereas the others were shown relevant for the allosteric communication of Hsp70 s in several experiments and bioinformatics analysis. The FEL analysis revealed also the origin of the ATP-induced structural modifications of the SBD recently measured by Electron Paramagnetic Resonance. The pathway between the nucleotide-free and the intermediate state of DnaK was extracted by applying principal component analysis to the subset of internal coordinates describing the transition. The methodology proposed is general and could be applied to analyze allosteric communication in

  5. Role of Electrostatics in Protein-RNA Binding: The Global vs the Local Energy Landscape.

    Science.gov (United States)

    Ghaemi, Zhaleh; Guzman, Irisbel; Gnutt, David; Luthey-Schulten, Zaida; Gruebele, Martin

    2017-09-14

    U1A protein-stem loop 2 RNA association is a basic step in the assembly of the spliceosomal U1 small nuclear ribonucleoprotein. Long-range electrostatic interactions due to the positive charge of U1A are thought to provide high binding affinity for the negatively charged RNA. Short range interactions, such as hydrogen bonds and contacts between RNA bases and protein side chains, favor a specific binding site. Here, we propose that electrostatic interactions are as important as local contacts in biasing the protein-RNA energy landscape toward a specific binding site. We show by using molecular dynamics simulations that deletion of two long-range electrostatic interactions (K22Q and K50Q) leads to mutant-specific alternative RNA bound states. One of these states preserves short-range interactions with aromatic residues in the original binding site, while the other one does not. We test the computational prediction with experimental temperature-jump kinetics using a tryptophan probe in the U1A-RNA binding site. The two mutants show the distinct predicted kinetic behaviors. Thus, the stem loop 2 RNA has multiple binding sites on a rough RNA-protein binding landscape. We speculate that the rough protein-RNA binding landscape, when biased to different local minima by electrostatics, could be one way that protein-RNA interactions evolve toward new binding sites and novel function.

  6. Measurement of Missing Tranverse Energy

    CERN Document Server

    The ATLAS Collaboration

    2009-01-01

    This note discusses the overall ATLAS detector performance for the reconstruction of the missing transverse energy, ETmiss. Two reconstruction algorithms are discussed and their performance is evaluated for a variety of simulated physics processes which probe different topologies and different total transverse energy regimes. In addition, effects of fake ETmiss, resulting from instrumental effects and from false reconstructions are investigated. Finally, studies with first data, corresponding to an integrated luminosity of 100 pb-1, are suggested which can be used to assess and calibrate the ETmiss performance at the startup of data taking.

  7. Low-energy neutrino measurements

    Indian Academy of Sciences (India)

    2012-10-05

    Oct 5, 2012 ... Abstract. Low-energy solar neutrino detection plays a fundamental role in ... the experimental point of view, there are multiple ways to shed light among the different .... compared to the two metallicity expectations [16]. ..... from the Earth; solar neutrinos; indirect dark matter searches) and GeV physics (pro-.

  8. Low-energy neutrino measurements

    Indian Academy of Sciences (India)

    Low-energy solar neutrino detection plays a fundamental role in understanding both solar astrophysics and particle physics. After introducing the open questions on both fields, we review here the major results of the last two years and expectations for the near future from Borexino, Super-Kamiokande, SNO and KamLAND ...

  9. Measures for energy efficiency improvement of buildings

    Directory of Open Access Journals (Sweden)

    Vukadinović Ana V.

    2015-01-01

    Full Text Available The increase in energy consumption in buildings causes the need to propose energy efficiency improvement measures. Urban planning in accordance with micro location conditions can lead to energy consumption reduction in buildings through the passive solar design. While satisfying the thermal comfort to the user space purpose, energy efficiency can be achieved by optimizing the architectural and construction parameters such as shape of the building, envelope structure and the percentage of glazing. The improvement of the proposed measures, including the use of renewable energy sources, can meet requirements of Directive 2010/31 / EU of 'nearly zero energy buildings'.

  10. Core-level binding energy shifts in Pt Ru nanoparticles: A puzzle resolved

    Science.gov (United States)

    Lewera, Adam; Zhou, Wei Ping; Hunger, Ralf; Jaegermann, Wolfram; Wieckowski, Andrzej; Yockel, Scott; Bagus, Paul S.

    2007-10-01

    Synchrotron measurements of Pt and Ru core-level binding energies, BE's, in Pt-Ru nanoparticles, as a function of Pt content, quantify earlier indications that the Pt 4f BE shift is much larger than the Ru 3d BE shift. A complementary theoretical analysis relates the BE shifts to changes in the metal-metal distances as the composition of the nanoparticle changes. We establish that the large Pt and small Ru BE shifts arise from the different response of these metals to changes in the bond distances, an unexpected result. Our results give evidence that the magnitudes of the BE shifts depend on whether the d band is open, as for Ru, or essentially filled, as for Pt.

  11. Operation of buildings: Energy supply and energy conservation measures

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, H

    1985-01-01

    Energy saving in public administration. A list-like collection of the measures to monitor the consumption, the measures of saving energy at existing buildings, new systems and by new techniques. Examples with figures for the savings achieved in the region of Marburg-Biedenkopf (Hesse). Guidelines are set up which are mainly based on energy saving, heat recovery, use of new technologies and renewable energy sources, fluidized-bed combustion also in smaller plants of ca. 2 MW, waste management separating wastes into burnable/unburnable, information of the public administration and the people and the setting up of energy concepts. (PJH).

  12. Contribution of charge symmetry breaking interactions in binding energy difference of mirror nuclei

    International Nuclear Information System (INIS)

    Asghari, M.

    2006-01-01

    Nolen-Schiffer Anomaly in mirror nuclei due to the NN interactions with isospin mixing between T=0 and T=1 mesons of the same spin and parity are investigated. With the computation of coulomb energy along with the charge symmetry breaking effects provide a reasonably accurate description of binding energy differences between 39 Ca- 39 K , 41 Sc- 41 Ca mirror nuclei

  13. Hypernuclear interactions and the binding energies of and hypernuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bodmer, A.R.; Usmani, Q.N.

    1988-01-01

    By use of variational calculations a reasonable hadronic description is obtained of the s-shell hypernuclei, of /sub /ZBe, and of the well depth, with N forces which are consistent with p scattering and which are quite strongly spin-dependent, with reasonable TPE NN forces with strongly repulsive dispersive-type NN forces. For the latter we also consider a spin-dependent version which is somewhat favored by our analysis. /sub /ZBe is treated as a 2ed + system and is significantly overbound, approx. =1 MeV, if only ed ed and ed potentials are used. An ed ed potential obtained from the NN forces nicely accounts for this overbinding. The hypernuclei /sub /WHe and /sub / Be are treated as ed + 2 and 2ed + 2 systems. Use of the /sub / Be event gives approx. =1.5 MeV too little binding for /sub /WHe. The S0 potential obtained from /sub / Be is quite strongly attractive, comparable to the N and also to the NN potential without OPE. 18 refs.

  14. Labor and energy impacts of energy-conservation measures

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Three papers are presented discussing the labor and energy impacts of energy-conservation measures, namely: Generation of the Industry/Occupation Wage Matrix and Related Matters, by Carole Green; Job Shifts from Energy Conservation (Salary Distribution Effects), by Robert A. Herendeen; and Energy and Labor Implication of Improving Thermal Integrity of New Houses, by John Joseph Nangle. A separate abstract was prepared for each paper.

  15. Polaron binding energy and effective mass in the GaAs film

    International Nuclear Information System (INIS)

    Wu Zhenhua; Yan Liangxing; Tian Qiang; Li Hua; Liu Bingcan

    2012-01-01

    The binding energy and effective mass of a polaron in a GaAs film deposited on the Al 0.3 Ga 0.7 As substrate are studied theoretically by using the fractional-dimensional space approach. Our calculations show that the polaron binding energy and mass shift decrease monotonously with increasing the film thickness. For the film thicknesses with L w ≤ 70Å and the substrate thicknesses with L b ≤ 200Å, the different values of the substrate thickness influence the polaron binding energy and mass shift in the GaAs film. The polaron binding energy and mass shift increase monotonously with increasing the substrate thickness. For the film thickness with L w ≥ 70Å or the substrate thicknesses with L b ≤ 200Å, the different values of the substrate thickness have no significant influence on the polaron binding energy and mass shift in the GaAs film deposited on the Al 0.3 Ga 0.7 As substrate.

  16. BFEE: A User-Friendly Graphical Interface Facilitating Absolute Binding Free-Energy Calculations.

    Science.gov (United States)

    Fu, Haohao; Gumbart, James C; Chen, Haochuan; Shao, Xueguang; Cai, Wensheng; Chipot, Christophe

    2018-03-26

    Quantifying protein-ligand binding has attracted the attention of both theorists and experimentalists for decades. Many methods for estimating binding free energies in silico have been reported in recent years. Proper use of the proposed strategies requires, however, adequate knowledge of the protein-ligand complex, the mathematical background for deriving the underlying theory, and time for setting up the simulations, bookkeeping, and postprocessing. Here, to minimize human intervention, we propose a toolkit aimed at facilitating the accurate estimation of standard binding free energies using a geometrical route, coined the binding free-energy estimator (BFEE), and introduced it as a plug-in of the popular visualization program VMD. Benefitting from recent developments in new collective variables, BFEE can be used to generate the simulation input files, based solely on the structure of the complex. Once the simulations are completed, BFEE can also be utilized to perform the post-treatment of the free-energy calculations, allowing the absolute binding free energy to be estimated directly from the one-dimensional potentials of mean force in simulation outputs. The minimal amount of human intervention required during the whole process combined with the ergonomic graphical interface makes BFEE a very effective and practical tool for the end-user.

  17. Lanthanide 4f-electron binding energies and the nephelauxetic effect in wide band gap compounds

    International Nuclear Information System (INIS)

    Dorenbos, Pieter

    2013-01-01

    Employing data from luminescence spectroscopy, the inter 4f-electron Coulomb repulsion energy U(6, A) in Eu 2+/3+ impurities together with the 5d-centroid energy shift ϵ c (1,3+,A) in Ce 3+ impurities in 40 different fluoride, chloride, bromide, iodide, oxide, sulfide, and nitride compounds has been determined. This work demonstrates that the chemical environment A affects the two energies in a similar fashion; a fashion that follows the anion nephelauxetic sequence F, O, Cl, Br, N, I, S, Se. One may then calculate U(6, A) from well established and accurate ϵ c (1,3+,A) values which are then used as input to the chemical shift model proposed in Dorenbos (2012) [19]. As output it provides the chemical shift of 4f-electron binding energy and therewith the 4f-electron binding energy relative to the vacuum energy. In addition this method provides a tool to routinely establish the binding energy of electrons at the top of the valence band (work function) and the bottom of the conduction band (electron affinity) throughout the entire family of inorganic compounds. How the electronic structure of the compound and lanthanide impurities therein change with type of compound and type of lanthanide is demonstrated. -- Highlights: ► A relationship between 5d centroid shift and 4f-electron Coulomb repulsion energy is established. ► Information on the absolute 4f-electron binding energy of lanthanides in 40 compounds is provided. ► A new tool to determine absolute binding energies of electrons in valence and conduction bands is demonstrated

  18. Formation Mechanism and Binding Energy for Body-Centred Regular Icosahedral Structure of Li13 Cluster

    International Nuclear Information System (INIS)

    Liu Weina; Li Ping; Gou Qingquan; Zhao Yanping

    2008-01-01

    The formation mechanism for the body-centred regular icosahedral structure of Li 13 cluster is proposed. The curve of the total energy versus the separation R between the nucleus at the centre and nuclei at the apexes for this structure of Li 13 has been calculated by using the method of Gou's modified arrangement channel quantum mechanics (MACQM). The result shows that the curve has a minimal energy of -96.951 39 a.u. at R = 5.46a 0 . When R approaches to infinity, the total energy of thirteen lithium atoms has the value of -96.564 38 a.u. So the binding energy of Li 13 with respect to thirteen lithium atoms is 0.387 01 a.u. Therefore the binding energy per atom for Li 13 is 0.029 77 a.u. or 0.810 eV, which is greater than the binding energy per atom of 0.453 eV for Li 2 , 0.494 eV for Li 3 , 0.7878 eV for Li 4 , 0.632 eV for Li 5 , and 0.674 eV for Li 7 calculated by us previously. This means that the Li 13 cluster may be formed stably in a body-centred regular icosahedral structure with a greater binding energy

  19. Binding energies of hypernuclei and Λ-nuclear interactions

    International Nuclear Information System (INIS)

    Bodmer, A.R.; Usmani, Q.N.

    1984-01-01

    Variational calculations indicate that a reasonable description of Λp scattering and of Λ separation energies can be obtained in terms of ΛN plus dispersive and TPE ΛNN forces. Results for the ΛΛ interaction and for 6 /sub Λ/He obtained from an analysis of 10 /sub ΛΛ/Be are discussed. Coulomb and ΛN charge symmetry breaking effects in the A = 4 hypernuclei are discussed

  20. Towards Automated Binding Affinity Prediction Using an Iterative Linear Interaction Energy Approach

    Directory of Open Access Journals (Sweden)

    C. Ruben Vosmeer

    2014-01-01

    Full Text Available Binding affinity prediction of potential drugs to target and off-target proteins is an essential asset in drug development. These predictions require the calculation of binding free energies. In such calculations, it is a major challenge to properly account for both the dynamic nature of the protein and the possible variety of ligand-binding orientations, while keeping computational costs tractable. Recently, an iterative Linear Interaction Energy (LIE approach was introduced, in which results from multiple simulations of a protein-ligand complex are combined into a single binding free energy using a Boltzmann weighting-based scheme. This method was shown to reach experimental accuracy for flexible proteins while retaining the computational efficiency of the general LIE approach. Here, we show that the iterative LIE approach can be used to predict binding affinities in an automated way. A workflow was designed using preselected protein conformations, automated ligand docking and clustering, and a (semi-automated molecular dynamics simulation setup. We show that using this workflow, binding affinities of aryloxypropanolamines to the malleable Cytochrome P450 2D6 enzyme can be predicted without a priori knowledge of dominant protein-ligand conformations. In addition, we provide an outlook for an approach to assess the quality of the LIE predictions, based on simulation outcomes only.

  1. Computational scheme for pH-dependent binding free energy calculation with explicit solvent.

    Science.gov (United States)

    Lee, Juyong; Miller, Benjamin T; Brooks, Bernard R

    2016-01-01

    We present a computational scheme to compute the pH-dependence of binding free energy with explicit solvent. Despite the importance of pH, the effect of pH has been generally neglected in binding free energy calculations because of a lack of accurate methods to model it. To address this limitation, we use a constant-pH methodology to obtain a true ensemble of multiple protonation states of a titratable system at a given pH and analyze the ensemble using the Bennett acceptance ratio (BAR) method. The constant pH method is based on the combination of enveloping distribution sampling (EDS) with the Hamiltonian replica exchange method (HREM), which yields an accurate semi-grand canonical ensemble of a titratable system. By considering the free energy change of constraining multiple protonation states to a single state or releasing a single protonation state to multiple states, the pH dependent binding free energy profile can be obtained. We perform benchmark simulations of a host-guest system: cucurbit[7]uril (CB[7]) and benzimidazole (BZ). BZ experiences a large pKa shift upon complex formation. The pH-dependent binding free energy profiles of the benchmark system are obtained with three different long-range interaction calculation schemes: a cutoff, the particle mesh Ewald (PME), and the isotropic periodic sum (IPS) method. Our scheme captures the pH-dependent behavior of binding free energy successfully. Absolute binding free energy values obtained with the PME and IPS methods are consistent, while cutoff method results are off by 2 kcal mol(-1) . We also discuss the characteristics of three long-range interaction calculation methods for constant-pH simulations. © 2015 The Protein Society.

  2. Flow Cytometry-Based Bead-Binding Assay for Measuring Receptor Ligand Specificity

    NARCIS (Netherlands)

    Sprokholt, Joris K.; Hertoghs, Nina; Geijtenbeek, Teunis B. H.

    2016-01-01

    In this chapter we describe a fluorescent bead-binding assay, which is an efficient and feasible method to measure interaction between ligands and receptors on cells. In principle, any ligand can be coated on fluorescent beads either directly or via antibodies. Binding between ligand-coated beads

  3. Neutron energy measurement for practical applications

    Science.gov (United States)

    Roshan, M. V.; Sadeghi, H.; Ghasabian, M.; Mazandarani, A.

    2018-03-01

    Industrial demand for neutrons constrains careful energy measurements. Elastic scattering of monoenergetic α -particles from neutron collision enables neutron energy measurement by calculating the amount of deviation from the position where collision takes place. The neutron numbers with specific energy is obtained by counting the number of α -particles in the corresponding location on the charged particle detector. Monte Carlo simulation and COMSOL Multiphysics5.2 are used to account for one-to-one collision of neutrons with α -particles.

  4. Distribution of binding energies of a water molecule in the water liquid-vapor interface

    Energy Technology Data Exchange (ETDEWEB)

    Chempath, Shaji [Los Alamos National Laboratory; Pratt, Lawrence R [TULANE UNIV

    2008-01-01

    Distributions of binding energies of a water molecule in the water liquid-vapor interface are obtained on the basis of molecular simulation with the SPC/E model of water. These binding energies together with the observed interfacial density profile are used to test a minimally conditioned Gaussian quasi-chemical statistical thermodynamic theory. Binding energy distributions for water molecules in that interfacial region clearly exhibit a composite structure. A minimally conditioned Gaussian quasi-chemical model that is accurate for the free energy of bulk liquid water breaks down for water molecules in the liquid-vapor interfacial region. This breakdown is associated with the fact that this minimally conditioned Gaussian model would be inaccurate for the statistical thermodynamics of a dilute gas. Aggressive conditioning greatly improves the performance of that Gaussian quasi-chemical model. The analogy between the Gaussian quasi-chemical model and dielectric models of hydration free energies suggests that naive dielectric models without the conditioning features of quasi-chemical theory will be unreliable for these interfacial problems. Multi-Gaussian models that address the composite nature of the binding energy distributions observed in the interfacial region might provide a mechanism for correcting dielectric models for practical applications.

  5. Binding energies of hypernuclei and Λ-nuclear interactions

    International Nuclear Information System (INIS)

    Bodmer, A.R.; Usmani, Q.N.

    1985-01-01

    Variational Monte Carlo calculations have been made for the s-shell hypernuclei and also of 9 Be hypernuclei with a 2α + Λ model. The well depth is calculated variationally with the Fermi hypernetted chain method. A satisfactory description of all the relevant experimental Λ separation energies and also of the Λp scattering can be obtained with reasonable TPE ΛN and ΛNN forces and strongly repulsive dispersive ΛNN forces which are preferred to be spin dependent. We discuss variational calculations for 6 He and 10 Be hypernuclei with α + 2Λ and 2α + 2Λ models, and the results obtained for the ΛΛ interaction and for 6 He hypernuclei from analysis of 10 Be hypernuclei Coulomb effects and charge symmetry breaking in the A = 4 hypernuclei are discussed. 24 refs., 5 figs

  6. Binding energies of hypernuclei and. lambda. -nuclear interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bodmer, A.R.; Usmani, Q.N.

    1985-01-01

    Variational Monte Carlo calculations have been made for the s-shell hypernuclei and also of /sup 9/Be hypernuclei with a 2..cap alpha.. + ..lambda.. model. The well depth is calculated variationally with the Fermi hypernetted chain method. A satisfactory description of all the relevant experimental ..lambda.. separation energies and also of the ..lambda..p scattering can be obtained with reasonable TPE ..lambda..N and ..lambda..NN forces and strongly repulsive dispersive ..lambda..NN forces which are preferred to be spin dependent. We discuss variational calculations for /sup 6/He and /sup 10/Be hypernuclei with ..cap alpha.. + 2..lambda.. and 2..cap alpha.. + 2..lambda.. models, and the results obtained for the ..lambda lambda.. interaction and for /sup 6/He hypernuclei from analysis of /sup 10/Be hypernuclei Coulomb effects and charge symmetry breaking in the A = 4 hypernuclei are discussed. 24 refs., 5 figs.

  7. Biexciton binding energy in ZnSe quantum wells and quantum wires

    DEFF Research Database (Denmark)

    Wagner, Hans-Peter; Langbein, Wolfgang; Hvam, Jørn Märcher

    2002-01-01

    The biexciton binding energy E-XX is investigated in ZnSe/ZnMgSe quantum wells and quantum wires as a function of the lateral confinement by transient four-wave mixing. In the quantum wells one observes for decreasing well width a significant increase in the relative binding energy, saturating...... for well widths less than 8 nm. In the quantum wires an increase of 30% is found in the smallest quantum wire structures compared to the corresponding quantum well value. A simple analytical model taking into account the quantum confinement in these low-dimensional systems is used to explain...

  8. Binding energy of impurity states in an inverse parabolic quantum well under magnetic field

    International Nuclear Information System (INIS)

    Kasapoglu, E.; Sari, H.; Soekmen, I.

    2007-01-01

    We have investigated the effects of the magnetic field which is directed perpendicular to the well on the binding energy of the hydrogenic impurities in an inverse parabolic quantum well (IPQW) with different widths as well as different Al concentrations at the well center. The Al concentration at the barriers was always x max =0.3. The calculations were performed within the effective mass approximation, using a variational method. We observe that IPQW structure turns into parabolic quantum well with the inversion effect of the magnetic field and donor impurity binding energy in IPQW strongly depends on the magnetic field, Al concentration at the well center and well dimensions

  9. Pressure-dependent shallow donor binding energy in InGaN/GaN square QWWs

    International Nuclear Information System (INIS)

    Ghazi, Haddou El; Jorio, Anouar; Zorkani, Izeddine

    2013-01-01

    Using a variational approach, we perform a theoretical study of hydrostatic pressure effect on the ground-state of axial hydrogenic shallow-donor impurity binding energy in InGaN/GaN square quantum well wire (SQWWs) as a function of the side length within the effective-mass scheme and finite potential barrier. The pressure dependence of wire length, effective mass, dielectric constant and potential barrier are taken into account. Numerical results show that: (i) the binding energy is strongly affected by the wire length and the external applied pressure and (ii) its maximum moves to the narrow wire in particular for height pressure.

  10. Structure-based prediction of free energy changes of binding of PTP1B inhibitors

    Science.gov (United States)

    Wang, Jing; Ling Chan, Shek; Ramnarayan, Kal

    2003-08-01

    The goals were (1) to understand the driving forces in the binding of small molecule inhibitors to the active site of PTP1B and (2) to develop a molecular mechanics-based empirical free energy function for compound potency prediction. A set of compounds with known activities was docked onto the active site. The related energy components and molecular surface areas were calculated. The bridging water molecules were identified and their contributions were considered. Linear relationships were explored between the above terms and the binding free energies of compounds derived based on experimental inhibition constants. We found that minimally three terms are required to give rise to a good correlation (0.86) with predictive power in five-group cross-validation test (q2 = 0.70). The dominant terms are the electrostatic energy and non-electrostatic energy stemming from the intra- and intermolecular interactions of solutes and from those of bridging water molecules in complexes.

  11. Experimental measurement of energy harvesting with backpack

    Science.gov (United States)

    Pavelkova, Radka; Vala, David; Suranek, Pavel; Mahdal, Miroslav

    2017-08-01

    This article deals with the energy harvesting systems, especially the energy harvesting backpack, which appears as a convenient means for energy harvesting for mobile sensors power. Before starting the experiment, it was necessary to verify whether this energy will be sufficient to get acquainted with the human kinematics and analyze problematics itself. For this purpose there was used motion capture technology from Xsens. Measured data on the position of a particle moving man and back when walking, these data were then used for experimental realization of energy harvesting backpack and as input data to the simulation in Simulink, which brought us a comparison between theoretical assumptions and practical implementation. When measuring characteristics of energy harvesting system we have a problem with measurements on backpack solved when redoing of the hydraulic cylinder as a source of a suitable movement corresponding to the amplitude and frequency of human walk.

  12. Energy and energy width measurement in the FNAL antiproton accumulator

    International Nuclear Information System (INIS)

    Church, M.; Hsueh, S.; Rapidis, P.; Werkema, S.

    1991-10-01

    The Fermilab Antiproton Accumulator has recently been used to produce Charmonium resonances (charm quark, anti-charm quark bound states) in proton-antiproton annihilations using an internal H 2 gas jet target. A measurement of the resonance mass and width may be obtained from a precise knowledge of the antiproton beam energy and energy spread. The beam energy is measured to an accuracy of 1 part in 10 4 in the range 6.3 Gev to 4.1 Gev by measuring the orbit length and revolution frequency of the beam. The beam momentum spread is measured to an accuracy of 10% by measuring the beam frequency spread and the parameter η = (P beam /F rev )·(dF rev /dP beam ). These two measurement techniques are described in this report

  13. Energy and energy width measurement in the FNAL antiproton accumulator

    Energy Technology Data Exchange (ETDEWEB)

    Church, M.; Hsueh, S.; Rapidis, P.; Werkema, S.

    1991-10-01

    The Fermilab Antiproton Accumulator has recently been used to produce Charmonium resonances (charm quark, anti-charm quark bound states) in proton-antiproton annihilations using an internal H{sub 2} gas jet target. A measurement of the resonance mass and width may be obtained from a precise knowledge of the antiproton beam energy and energy spread. The beam energy is measured to an accuracy of 1 part in 10{sup 4} in the range 6.3 Gev to 4.1 Gev by measuring the orbit length and revolution frequency of the beam. The beam momentum spread is measured to an accuracy of 10% by measuring the beam frequency spread and the parameter {eta} = (P{sub beam}/F{sub rev}){center_dot}(dF{sub rev}/dP{sub beam}). These two measurement techniques are described in this report.

  14. Dark energy as consequence of release of cosmological nuclear binding-energy, and its further extension towards a new theory of inflation

    International Nuclear Information System (INIS)

    Gupta, R.C.; Pradhan, Anirudh; Gupta, Sushant

    2012-01-01

    Comparatively recent observations on Type-Ia supernovae and low density (Um = 0.3) measurement of matter including dark matter suggest that the present day universe consists mainly of repulsive-gravity type 'exotic matter' with negative-pressure often said 'dark energy' (Ux = O7). But the nature of dark energy is mysterious and its puzzling questions, such as why, how, where and when about the dark energy, are intriguing. In the present paper the authors attempt to answer these questions while making an effort to reveal the genesis of dark energy, and suggest that the cosmological nuclear binding energy liberated during primordial nucleo-synthesis remains trapped dormant for a long time and then is released free which manifests itself as dark energy in the universe. It is also explained why for dark energy the parameter w = -2/3. Noting that w = 1 for stiff matter and w = 1/3 for radiation; w = -2/3 is for dark energy because '- 1' is due to 'deficiency of stiff- nuclear-matter' and that this binding energy is ultimately released as 'radiation' contributing '+ 1/3', making w = -1+ 1/3 = -2/3. When dark energy is released free at Z = 80, w = -2/3. But as on present day at Z = 0 when radiation strength has diminished to ä ? 0, the parameter w = -1 + ä 1/3 = -1. This, thus almost solves the dark- energy mystery of negative pressure and repulsive-gravity. The proposed theory makes several estimates/predictions which agree reasonably well with the astrophysical constraints and observations. Though there are many candidate-theories, the proposed model of this paper presents an entirely new approach (cosmological nuclear energy) as a possible candidate for dark energy. The secret of acceleration of big-universe is hidden in the small-nucleus. (author)

  15. Three methods to measure RH bond energies

    International Nuclear Information System (INIS)

    Berkowitz, J.; Ellison, G.B.; Gutman, D.

    1993-01-01

    In this paper the authors compare and contrast three powerful methods for experimentally measuring bond energies in polyatomic molecules. The methods are: radical kinetics; gas phase acidity cycles; and photoionization mass spectroscopy. The knowledge of the values of bond energies are a basic piece of information to a chemist. Chemical reactions involve the making and breaking of chemical bonds. It has been shown that comparable bonds in polyatomic molecules, compared to the same bonds in radicals, can be significantly different. These bond energies can be measured in terms of bond dissociation energies

  16. Light and energy - daylight measurements

    Energy Technology Data Exchange (ETDEWEB)

    Christoffersen, Jens; Logadottir, A.; Traberg-Borup, S.; Barrie-Nielsen, K.

    2009-07-01

    All measurements where conducted in the spring of 2007, except the Interpane panel. The solar cell panels have been evaluated by three performance indicators to assess the daylight quantity within the room and the systems ability to maintain view to the outside. In the study, we used two performance indicators to assess the daylight quantity within the room: 1. the daylight factor (overcast sky) 2. the relative work plane illuminance (clear sky condition) Overcast sky: In general, all panels provided less daylight than the recommended requirement in the Danish Building Regulation of 2% on the work plane. This will most likely result in additional need for electric lighting. However, larger window areas and more parts of the facade with clear unobstructed glass may be one solution. Clear sky: In general, all panels provided less interior light levels than the two reference systems in the back of the room. Almost all systems aloud more or less direct sunlight in the window perimeter through the clear openings and additional needs for some kind of shading device is to be expected. Some systems blocked a large portion of the light in the majority of the room, and additional electric light in this part of the room may be needed. Only one performance indicator where used to describe the quality of the panels. View: In general, all panels, except two, obstruct the view significantly and cause figure/background confusion for a view position close to the window and the discrepancies of colour judgements. Only two systems provided a fairly clear view to the outside without to much distortion of the view. (au)

  17. Hydrostatic-pressure effects on the donor binding energy in GaAs-(Ga, Al)As quantum dots

    International Nuclear Information System (INIS)

    Perez-Merchancano, S T; Paredes-Gutierrez, H; Silva-Valencia, J

    2007-01-01

    The binding energy of shallow hydrogenic impurities in a spherical quantum dot under isotropic hydrostatic pressure is calculated using a variational approach within the effective mass approximation. The binding energy is computed as a function of hydrostatic pressure, dot size and impurity position. The results show that the impurity binding energy increases with the pressure for any position of the impurity. Also, we have found that the binding energy depends on the location of the impurity and the pressure effects are less pronounced for impurities on the edge

  18. Incremental binding free energies of aluminum (III) vs. magnesium (II) complexes

    International Nuclear Information System (INIS)

    Mercero, Jose M.; Mujika, Jon I.; Matxain, Jon M.; Lopez, Xabier; Ugalde, Jesus M.

    2003-01-01

    A sequential ligand addition to the aluminum (III) cation has been studied using the B3LYP functional and a combined all-electron/pseudopotentials basis set. The aluminum complexes are compared with analogous magnesium (II) complexes. Different thermodynamical data, such as incremental binding energies, enthalpies, entropies and free energies, are presented for these addition reactions. While the magnesium (II) cation can only accommodate three negatively charged ligands, aluminum (III) accommodates four even after including bulk solvent effects. The main differences between both cations complexing with the neutral ligands, is that aluminum (III) is not able to form complexes with methanol until the number of methanol ligands is equal to 3. Magnesium (II) prefers to bind methanol and formamide when the number of ligands is small, while aluminum prefers formamide. For the largest complexes both cations prefer to bind water

  19. Procedure to Measure Indoor Lighting Energy Performance

    Energy Technology Data Exchange (ETDEWEB)

    Deru, M.; Blair, N.; Torcellini, P.

    2005-10-01

    This document provides standard definitions of performance metrics and methods to determine them for the energy performance of building interior lighting systems. It can be used for existing buildings and for proposed buildings. The primary users for whom these documents are intended are building energy analysts and technicians who design, install, and operate data acquisition systems, and who analyze and report building energy performance data. Typical results from the use of this procedure are the monthly and annual energy used for lighting, energy savings from occupancy or daylighting controls, and the percent of the total building energy use that is used by the lighting system. The document is not specifically intended for retrofit applications. However, it does complement Measurement and Verification protocols that do not provide detailed performance metrics or measurement procedures.

  20. Measuring and evaluating the soft energy efficiency measures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Suvilehto, H.-M.; Solid, D. [AaF-Industry Ltd, Solna (Sweden); Rouhiainen, V. [Adato Energia Ltd, Helsinki (Finland); Honkasalo, N.; Sarvaranta, A. [AaF-Consult Ltd, Solna (Sweden)

    2012-07-15

    This study discusses how to quantify the energy savings related to the companies' aims to enhance their customers' energy efficiency which is one target in the Action Plan for Energy Services in the Energy Efficiency Agreement for the Industries. In Finland, a majority of the energy utilities have signed this action plan and are providing their customers services to improve their energy efficiency. Dissemination of information is the most widely used service to the customers and it is provided in a number of ways including printed material, annual energy report, and an internet tool to access and report hourly measurements. Some of the internet tools cover electricity, district heat and water. The focus of the study is in the evaluation of 'soft' measures; in other words, those measures given by energy utilities that principally rely on communication instruments. However, monitoring the impact of information and communication is far from easy. Carrying out a properly designed evaluation of programmes aiming on enhanced energy efficiency is difficult. Evaluation of the impact of a magazine article on energy efficiency is even more challenging, costly and therefore also rare. Distribution of information as measure to enhance energy efficiency is an important part of EU.s energy policy but what are the ways and even more so, are there ways to actually quantify these savings? There has been excessive work by the member states and research institutes to find a common and robust methodology within the EU to evaluate and quantify energy savings from technical measures. The ex-ante and ex-post results from these evaluations can however differ considerably, e.g. the expected energy savings from installing air to air heat pumps in Denmark did not deliver the expected energy savings. The problems with finding a common robust methodology become even more visible when the 'soft' measures are put under the evaluation loop. The &apos

  1. Comparison of experimental and theoretical binding and transition energies in the actinide region

    International Nuclear Information System (INIS)

    Krause, M.O.; Nestor, C.W. Jr.

    1977-01-01

    The status of experimental and theoretical binding and transition energy determinations is reviewed extending the comparison between experiment and theory to encompass representative series of data for all actinides. This comprehensive comparison reveals areas where improvements may be indicated, showing whether theoretical treatments including all known contributions to the lowest order would be adequate in all instances. 45 references

  2. Analysis of binding energy activity of TIBO and HIV-RT based on ...

    African Journals Online (AJOL)

    Tetrahydro-imidazo[4,5,l-jk][1,4]-benzodiazepin-2 (1 H)one (TIBO) is a noncompetitive non nucleotide antiretroviral drug with a specific allosteric binding site of HIV-1 RT. The conformational analysis shows that the effect of the drug depends on the potential energy which varied due to the beta rotatable dihedral angles (N6 ...

  3. A test of Wigner's spin-isospin symmetry from double binding energy differences

    International Nuclear Information System (INIS)

    Van Isacker, P.; Warner, D.D.; Brenner, D.S.

    1995-01-01

    It is shown that the anomalously large double binding energy differences for even-even N = Z nuclei are a consequence of Wigner's SU(4) symmetry. These, and similar quantities for odd-mass and odd-odd nuclei, provide a simple and distinct signature of this symmetry in N ≅ Z nuclei. (authors). 16 refs., 2 figs., 1 tab

  4. Exciton binding energy in wurtzite InGaN/GaN quantum wells

    International Nuclear Information System (INIS)

    Park, Seoung-Hwan; Kim, Jong-Jae; Kim, Hwa-Min

    2004-01-01

    The internal field and carrier density effects on the exciton binding energies in wurtzite (WZ) InGaN/GaN quantum-well (QW) structures are investigated using the multiband effective-mass theory, and are compared with those obtained from the at-band model and with those of GaN/AlGaN QW structures. The exciton binding energy is significantly reduced with increasing sheet carrier density, suggesting that excitons are nearly bleached at densities around 10 12 cm -2 for both InGaN/GaN and GaN/AlGaN QW structures. With the inclusion of the internal field, the exciton binding energy is substantialy reduced compared to that of the at-band model in the investigated region of the wells. This can be explained by a decrease in the momentum matrix element and an increase in the inverse screening length due to the internal field. The exciton binding energy of the InGaN/GaN structure is smaller than that of the GaN/AlGaN structure because InGaN/GaN structures have a smaller momentum matrix element and a larger inverse screening length than GaN/AlGaN structures.

  5. Neutron energy measurement for practical applications

    Indian Academy of Sciences (India)

    M V Roshan

    2018-02-07

    . Elastic scattering of monoenergetic α-particles from neutron collision enables neutron energy measurement by calculating the amount of deviation from the position where collision takes place. The neutron numbers with ...

  6. Priorities for energy efficiency measures in agriculture

    NARCIS (Netherlands)

    Visser, de C.L.M.

    2013-01-01

    This report provides research gaps and priorities for energy efficiency measures in agriculture across Europe, based on the analysis of the Coordination and Support Action AGREE (Agriculture & Energy Efficiency) funded by the 7th research framework of the EU (www.agree.aua.gr). The analysis from

  7. Neutron energy response measurement of scintillation detectors

    International Nuclear Information System (INIS)

    Yang Hongqiong; Peng Taiping; Yang Jianlun; Tang Zhengyuan; Yang Gaozhao; Li Linbo; Hu Mengchun; Wang Zhentong; Zhang Jianhua; Li Zhongbao; Wang Lizong

    2004-01-01

    Neutron sensitivities of detectors composed of plastic scintillator ST401, ST1422, ST1423 and phyotomultiplier tube in primary energy range of fission neutron are calibrated by direct current. The energy response curve of the detectors is obtained in this experiment. The experimental result has been compared with the theoretical calculation and they are in agreement within measuring uncertainty. (authors)

  8. Automatic energy expenditure measurement for health science

    NARCIS (Netherlands)

    Catal, Cagatay; Akbulut, Akhan

    2018-01-01

    Background and objective: It is crucial to predict the human energy expenditure in any sports activity and health science application accurately to investigate the impact of the activity. However, measurement of the real energy expenditure is not a trivial task and involves complex steps. The

  9. Dynamic properties of energy affordability measures

    International Nuclear Information System (INIS)

    Heindl, Peter; Schuessler, Rudolf

    2015-01-01

    Measures of affordability and of fuel poverty are applied in practice to assess the affordability of energy services, for example, or of water or housing. The extensive body of literature on affordability measures has little overlap with the existing literature on poverty measurement. A comprehensive assessment of the response of affordability measures as a result of changes in the distribution of income or expenditure (the dynamic properties) is missing. This paper aims to fill this gap by providing a conceptual discussion on the ‘dynamics’ of both energy affordability measures and fuel poverty measures. Several types of measures are examined in a microsimulation framework. Our results indicate that some measures exhibit odd dynamic behavior. This includes measures used in practice, such as the low income/high cost measure and the double median of expenditure share indicator. Odd dynamic behavior causes the risk of drawing false policy recommendations from the measures. Thus, an appropriate response of affordability measures to changes in relevant variables is a prerequisite for defining meaningful measures that inform about affordability or deprivation in certain domains of consumption. - Highlights: • We investigate changes in fuel poverty measures as result from changes in income and expenditure. • More generally, we investigate dynamic behavior of affordability measures using microsimulation. • We propose axioms regarding dynamic behavior of affordability measures. • Some measures which are used in practice show unintuitive dynamic behavior. • Inappropriate dynamic behavior causes a risk of false policy implications.

  10. Towards accurate free energy calculations in ligand protein-binding studies.

    Science.gov (United States)

    Steinbrecher, Thomas; Labahn, Andreas

    2010-01-01

    Cells contain a multitude of different chemical reaction paths running simultaneously and quite independently next to each other. This amazing feat is enabled by molecular recognition, the ability of biomolecules to form stable and specific complexes with each other and with their substrates. A better understanding of this process, i.e. of the kinetics, structures and thermodynamic properties of biomolecule binding, would be invaluable in the study of biological systems. In addition, as the mode of action of many pharmaceuticals is based upon their inhibition or activation of biomolecule targets, predictive models of small molecule receptor binding are very helpful tools in rational drug design. Since the goal here is normally to design a new compound with a high inhibition strength, one of the most important thermodynamic properties is the binding free energy DeltaG(0). The prediction of binding constants has always been one of the major goals in the field of computational chemistry, because the ability to reliably assess a hypothetical compound's binding properties without having to synthesize it first would save a tremendous amount of work. The different approaches to this question range from fast and simple empirical descriptor methods to elaborate simulation protocols aimed at putting the computation of free energies onto a solid foundation of statistical thermodynamics. While the later methods are still not suited for the screenings of thousands of compounds that are routinely performed in computational drug design studies, they are increasingly put to use for the detailed study of protein ligand interactions. This review will focus on molecular mechanics force field based free energy calculations and their application to the study of protein ligand interactions. After a brief overview of other popular methods for the calculation of free energies, we will describe recent advances in methodology and a variety of exemplary studies of molecular dynamics

  11. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.

    Science.gov (United States)

    Fox, Stephen J; Pittock, Chris; Tautermann, Christofer S; Fox, Thomas; Christ, Clara; Malcolm, N O J; Essex, Jonathan W; Skylaris, Chris-Kriton

    2013-08-15

    Schemes of increasing sophistication for obtaining free energies of binding have been developed over the years, where configurational sampling is used to include the all-important entropic contributions to the free energies. However, the quality of the results will also depend on the accuracy with which the intermolecular interactions are computed at each molecular configuration. In this context, the energy change associated with the rearrangement of electrons (electronic polarization and charge transfer) upon binding is a very important effect. Classical molecular mechanics force fields do not take this effect into account explicitly, and polarizable force fields and semiempirical quantum or hybrid quantum-classical (QM/MM) calculations are increasingly employed (at higher computational cost) to compute intermolecular interactions in free-energy schemes. In this work, we investigate the use of large-scale quantum mechanical calculations from first-principles as a way of fully taking into account electronic effects in free-energy calculations. We employ a one-step free-energy perturbation (FEP) scheme from a molecular mechanical (MM) potential to a quantum mechanical (QM) potential as a correction to thermodynamic integration calculations within the MM potential. We use this approach to calculate relative free energies of hydration of small aromatic molecules. Our quantum calculations are performed on multiple configurations from classical molecular dynamics simulations. The quantum energy of each configuration is obtained from density functional theory calculations with a near-complete psinc basis set on over 600 atoms using the ONETEP program.

  12. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy.

    Science.gov (United States)

    Jakubík, J; Janíčková, H; El-Fakahany, E E; Doležal, V

    2011-03-01

    Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5'-γ-thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M₂ muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [³⁵S]GTPγS and [³H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M₂ muscarinic acetylcholine receptor. Agonists displayed biphasic competition curves with the antagonist [³H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [³H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from G(i/o) G-proteins but only its dissociation from G(s/olf) G-proteins. These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of G(i/o) versus G(s/olf) G-proteins that are not identified by conventional GTPγS binding. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  13. Cooper-pair size and binding energy for unconventional superconducting systems

    Science.gov (United States)

    Dinóla Neto, F.; Neto, Minos A.; Salmon, Octavio D. Rodriguez

    2018-06-01

    The main proposal of this paper is to analyze the size of the Cooper pairs composed by unbalanced mass fermions from different electronic bands along the BCS-BEC crossover and study the binding energy of the pairs. We are considering an interaction between fermions with different masses leading to an inter-band pairing. In addiction to the attractive interaction we have an hybridization term to couple both bands, which in general acts unfavorable for the pairing between the electrons. We get first order phase transitions as the hybridization breaks the Cooper pairs for the s-wave symmetry of the gap amplitude. The results show the dependence of the Cooper-pair size as a function of the hybridization for T = 0 . We also propose the structure of the binding energy of the inter-band system as a function of the two-bands quasi-particle energies.

  14. Microparticle impact sensor measures energy directly

    Science.gov (United States)

    Alexander, W. M.; Berg, O. E.

    1965-01-01

    Construction of a capacitor sensor consisting of a dielectric layer between two conductive surface layers and connected across a potential source through a sensing resistor permits measurement of energy of impinging particles without degradation of sensitivity. A measurable response is produced without penetration of the dielectric layer.

  15. Converging ligand-binding free energies obtained with free-energy perturbations at the quantum mechanical level.

    Science.gov (United States)

    Olsson, Martin A; Söderhjelm, Pär; Ryde, Ulf

    2016-06-30

    In this article, the convergence of quantum mechanical (QM) free-energy simulations based on molecular dynamics simulations at the molecular mechanics (MM) level has been investigated. We have estimated relative free energies for the binding of nine cyclic carboxylate ligands to the octa-acid deep-cavity host, including the host, the ligand, and all water molecules within 4.5 Å of the ligand in the QM calculations (158-224 atoms). We use single-step exponential averaging (ssEA) and the non-Boltzmann Bennett acceptance ratio (NBB) methods to estimate QM/MM free energy with the semi-empirical PM6-DH2X method, both based on interaction energies. We show that ssEA with cumulant expansion gives a better convergence and uses half as many QM calculations as NBB, although the two methods give consistent results. With 720,000 QM calculations per transformation, QM/MM free-energy estimates with a precision of 1 kJ/mol can be obtained for all eight relative energies with ssEA, showing that this approach can be used to calculate converged QM/MM binding free energies for realistic systems and large QM partitions. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  16. Converging ligand‐binding free energies obtained with free‐energy perturbations at the quantum mechanical level

    Science.gov (United States)

    Olsson, Martin A.; Söderhjelm, Pär

    2016-01-01

    In this article, the convergence of quantum mechanical (QM) free‐energy simulations based on molecular dynamics simulations at the molecular mechanics (MM) level has been investigated. We have estimated relative free energies for the binding of nine cyclic carboxylate ligands to the octa‐acid deep‐cavity host, including the host, the ligand, and all water molecules within 4.5 Å of the ligand in the QM calculations (158–224 atoms). We use single‐step exponential averaging (ssEA) and the non‐Boltzmann Bennett acceptance ratio (NBB) methods to estimate QM/MM free energy with the semi‐empirical PM6‐DH2X method, both based on interaction energies. We show that ssEA with cumulant expansion gives a better convergence and uses half as many QM calculations as NBB, although the two methods give consistent results. With 720,000 QM calculations per transformation, QM/MM free‐energy estimates with a precision of 1 kJ/mol can be obtained for all eight relative energies with ssEA, showing that this approach can be used to calculate converged QM/MM binding free energies for realistic systems and large QM partitions. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:27117350

  17. LINAC4 low energy beam measurements

    CERN Document Server

    Hein, L M; Lallement, J B; Lombardi, A M; Midttun, O; Posocco, P; Scrivens, R

    2012-01-01

    Linac4 is a 160 MeV normal-conducting linear accelerator for negative Hydrogen ions (H−), which will replace the 50 MeV proton Linac (Linac2) as linear injector for the CERN accelerators. The low energy part, comprising a 45 keV Low Energy Beam Transport system (LEBT), a 3 MeV Radiofrequency Quadrupole (RFQ) and a Medium Energy Beam Transport (MEBT) is being assembled in a dedicated test stand for pre-commissioning with a proton beam. During 2011 extensive measurements were done after the source and after the LEBT with the aim of preparing the RFQ commissioning and validating the simulation tools, indispensable for future source upgrades. The measurements have been thoroughly simulated with a multi-particle code, including 2D magnetic field maps, error studies, steering studies and the generation of beam distribution from measurements. Emittance, acceptance and transmission measurements will be presented and compared to the results of the simulations.

  18. A framework to characterize energy efficiency measures

    International Nuclear Information System (INIS)

    Trianni, Andrea; Cagno, Enrico; De Donatis, Alessio

    2014-01-01

    Highlights: • A novel framework to characterize energy efficiency measures is proposed. • It allows a greater knowledge sharing, facilitating the adoption of the best measures. • It supports policy-makers in developing drivers for industrial energy efficiency. - Abstract: The need to increase the diffusion of energy efficiency measures (EEMs) is of crucial importance to achieve a consistent reduction of energy consumption and green house gases (GHG) emissions. A clear comprehension of the characteristics of such EEMs could assist in gathering and capitalizing all the information needed by industrial firms in selecting and adopting technologies, as well as by policy-makers in designing appropriate policies for their diffusion. Therefore, in this study, starting from a literature review of the studies analyzing the attributes of EEMs, we aim at providing an innovative and comprehensive framework to characterize such measures, based on 17 attributes grouped according to six categories, such as: economic, energy, environmental, production-related, implementation-related and the possible interaction with other systems. We applied this scheme to an extensive range of EEMs in cross-cutting technologies, i.e. motors, compressed air, lighting and HVAC systems. The analysis provides a relevant contribution firstly to the structuring and the sharing of knowledge on EEMs and hence to the comprehension of the barriers currently hindering their adoption; secondly, it provides a structured basis for the analysis of the drivers that policy-makers should develop in order to promote industrial energy efficiency

  19. Measuring Income and Projecting Energy Use

    International Nuclear Information System (INIS)

    Pitcher, Hugh M.

    2009-01-01

    Energy is a key requirement for a healthy, productive life and a major driver of the emissions leading to an increasingly warm planet. The implications of a doubling and redoubling of per capita incomes over the remainder of this century for energy use are a critical input into understanding the magnitude of the carbon management problem. A substantial controversy about how the Special Report on Emssions Scenarios (SRES) measured income and the potential implications of how income was measured for long term levels of energy use is revisited again in the McKibbin, Pearce and Stegman article appearing elsewhere in this issue. The recent release of a new set of purchasing power estimates of national income, and the preparations for creating new scenarios to support the IPCC's fifth assessment highlight the importance of the issues which have arisen surrounding income and energy use. Comparing the 1993 and 2005 ICP results on Purchasing Power Parity (PPP) based measures of income reveals that not only do the 2005 ICP estimates share the same issue of common growth rates for real income as measured by PPP and US $, but the lack of coherence in the estimates of PPP incomes, especially for developing countries raises yet another obstacle to resolving the best way to measure income. Further, the common use of an income term to mediate energy demand (as in the Kaya identity) obscures an underlying reality about per capita energy demands, leading to unreasonable estimates of the impact of changing income measures and of the recent high GDP growth rates in India and China. Significant new research is required to create both a reasonable set of GDP growth rates and long term levels of energy use.

  20. Coordination-resolved local bond contraction and electron binding-energy entrapment of Si atomic clusters and solid skins

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Maolin; Huang, Yongli; Zhang, Ting [Key Laboratory of Low-Dimensional Materials and Application Technologies, Xiangtan University, Hunan 411105 (China); Wang, Yan, E-mail: ywang8@hnust.edu.cn, E-mail: ecqsun@ntu.edu.sg [Key Laboratory of Low-Dimensional Materials and Application Technologies, Xiangtan University, Hunan 411105 (China); School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Zhang, Xi [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Li, Can [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China); Sun, Chang Q., E-mail: ywang8@hnust.edu.cn, E-mail: ecqsun@ntu.edu.sg [Key Laboratory of Low-Dimensional Materials and Application Technologies, Xiangtan University, Hunan 411105 (China); School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China)

    2014-04-14

    Consistency between x-ray photoelectron spectroscopy measurements and density-function theory calculations confirms our bond order-length-strength notation-incorporated tight-binding theory predictions on the quantum entrapment of Si solid skin and atomic clusters. It has been revealed that bond-order deficiency shortens and strengthens the Si-Si bond, which results in the local densification and quantum entrapment of the core and valence electrons. Unifying Si clusters and Si(001) and (111) skins, this mechanism has led to quantification of the 2p binding energy of 96.089 eV for an isolated Si atom, and their bulk shifts of 2.461 eV. Findings evidence the significance of atomic undercoordination that is of great importance to device performance.

  1. Electron momentum distributions and binding energies for the valence orbitals of hydrogen bromide and hydrogen iodide

    International Nuclear Information System (INIS)

    Brion, C.E.; McCarthy, I.E.; Suzuki, I.H.; Weigold, E.; Williams, G.R.J.; Bedford, K.L.; Kunz, A.B.; Weidman, R.

    1981-12-01

    The electron binding energy spectra and momentum distributions have been obtained for the valence orbitals of HBr and HI using noncoplanar symmetric electron coincidence spectroscopy at 1200eV. The weakly bonding inner valence ns orbitals, which have not been previously observed, have their spectroscopic (pole) strength severely split among a number of ion states. For HBr the strength of the main inner valence (ns) transition is 0.42 0.03 whereas for HI it is 0.37 0.04, in close agreement with that observed for the valence s orbitals of the corresponding isoelectronic inert gas atoms. The spectroscopic strength for the two outermost orbitals is found to be close to unity, in agreement with many body Green's function calculations. The measured momentum distributions are compared with several spherically averaged MO momentum distributions, as well as (for HBr) with a Green's function calculation of the generalized overlap amplitude (GOA). The GOA momentum distributions are in excellent agreement with the HBr data, both in shape and relative magnitude. Not all of the MO momentum distributions are in reasonable agreement with the data. Comparison is also made with the calculated momentum distributions for Kr, Br, Xe and I

  2. Binding free energy calculations to rationalize the interactions of huprines with acetylcholinesterase.

    Science.gov (United States)

    Nascimento, Érica C M; Oliva, Mónica; Andrés, Juan

    2018-05-01

    In the present study, the binding free energy of a family of huprines with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation method, based on hybrid quantum mechanics and molecular mechanics potentials. Binding free energy calculations and the analysis of the geometrical parameters highlight the importance of the stereochemistry of huprines in AChE inhibition. Binding isotope effects are calculated to unravel the interactions between ligands and the gorge of AChE. New chemical insights are provided to explain and rationalize the experimental results. A good correlation with the experimental data is found for a family of inhibitors with moderate differences in the enzyme affinity. The analysis of the geometrical parameters and interaction energy per residue reveals that Asp72, Glu199, and His440 contribute significantly to the network of interactions between active site residues, which stabilize the inhibitors in the gorge. It seems that a cooperative effect of the residues of the gorge determines the affinity of the enzyme for these inhibitors, where Asp72, Glu199, and His440 make a prominent contribution.

  3. Binding free energy calculations to rationalize the interactions of huprines with acetylcholinesterase

    Science.gov (United States)

    Nascimento, Érica C. M.; Oliva, Mónica; Andrés, Juan

    2018-05-01

    In the present study, the binding free energy of a family of huprines with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation method, based on hybrid quantum mechanics and molecular mechanics potentials. Binding free energy calculations and the analysis of the geometrical parameters highlight the importance of the stereochemistry of huprines in AChE inhibition. Binding isotope effects are calculated to unravel the interactions between ligands and the gorge of AChE. New chemical insights are provided to explain and rationalize the experimental results. A good correlation with the experimental data is found for a family of inhibitors with moderate differences in the enzyme affinity. The analysis of the geometrical parameters and interaction energy per residue reveals that Asp72, Glu199, and His440 contribute significantly to the network of interactions between active site residues, which stabilize the inhibitors in the gorge. It seems that a cooperative effect of the residues of the gorge determines the affinity of the enzyme for these inhibitors, where Asp72, Glu199, and His440 make a prominent contribution.

  4. Computational identification of binding energy hot spots in protein-RNA complexes using an ensemble approach.

    Science.gov (United States)

    Pan, Yuliang; Wang, Zixiang; Zhan, Weihua; Deng, Lei

    2018-05-01

    Identifying RNA-binding residues, especially energetically favored hot spots, can provide valuable clues for understanding the mechanisms and functional importance of protein-RNA interactions. Yet, limited availability of experimentally recognized energy hot spots in protein-RNA crystal structures leads to the difficulties in developing empirical identification approaches. Computational prediction of RNA-binding hot spot residues is still in its infant stage. Here, we describe a computational method, PrabHot (Prediction of protein-RNA binding hot spots), that can effectively detect hot spot residues on protein-RNA binding interfaces using an ensemble of conceptually different machine learning classifiers. Residue interaction network features and new solvent exposure characteristics are combined together and selected for classification with the Boruta algorithm. In particular, two new reference datasets (benchmark and independent) have been generated containing 107 hot spots from 47 known protein-RNA complex structures. In 10-fold cross-validation on the training dataset, PrabHot achieves promising performances with an AUC score of 0.86 and a sensitivity of 0.78, which are significantly better than that of the pioneer RNA-binding hot spot prediction method HotSPRing. We also demonstrate the capability of our proposed method on the independent test dataset and gain a competitive advantage as a result. The PrabHot webserver is freely available at http://denglab.org/PrabHot/. leideng@csu.edu.cn. Supplementary data are available at Bioinformatics online.

  5. Accurate Estimation of the Standard Binding Free Energy of Netropsin with DNA

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2018-01-01

    Full Text Available DNA is the target of chemical compounds (drugs, pollutants, photosensitizers, etc., which bind through non-covalent interactions. Depending on their structure and their chemical properties, DNA binders can associate to the minor or to the major groove of double-stranded DNA. They can also intercalate between two adjacent base pairs, or even replace one or two base pairs within the DNA double helix. The subsequent biological effects are strongly dependent on the architecture of the binding motif. Discriminating between the different binding patterns is of paramount importance to predict and rationalize the effect of a given compound on DNA. The structural characterization of DNA complexes remains, however, cumbersome at the experimental level. In this contribution, we employed all-atom molecular dynamics simulations to determine the standard binding free energy of DNA with netropsin, a well-characterized antiviral and antimicrobial drug, which associates to the minor groove of double-stranded DNA. To overcome the sampling limitations of classical molecular dynamics simulations, which cannot capture the large change in configurational entropy that accompanies binding, we resort to a series of potentials of mean force calculations involving a set of geometrical restraints acting on collective variables.

  6. Analysis of oxygen binding-energy variations for BaO on W

    Science.gov (United States)

    Haas, G. A.; Shih, A.; Mueller, D.; Thomas, R. E.

    Interatomic Auger analyses have been made of different forms of BaO layers on W substrates. Variations in Auger spectroscopy energies of the Ba4dBa5pO2p interatomic Auger transition were found to be largely governed by the O2p binding energy of the BaO adsorbate. This was illustrated by comparing results of the Auger data values with values derived from O2p binding energies using ultraviolet photoelectron spectroscopy. Very good agreement was observed not only for the W substrate but also for the W substrate which showed two oxygen-induced electronics state. Variations in binding energy were noted for different states of BaO lattice formation and for different amounts of oxidation, ranging from the transition of Ba to BaO and continuing to the BaO 2 stoichiometry and beyond. Effects were also reported for adsorbate alignment and thermal activation (i.e., reduction) of the oxidized state. An empirical relationship was found suggesting that the more tightly bound the O2p states of the BaO adsorbate were, the lower its work function would be. This link between binding energy and work function was observed to be valid not only for cases of poisoning by oxidation, but held as well during reactivation by the subsequent reduction of the oxide. In addition, this relationship also appeared to predict the low work function obtained through the introduction of substances such as Sc to the BaO-W system. Possible qualitative reasons which might contribute to this are discussed in terms of enhanced dipole effects and shifts in band structure.

  7. Free energy profiles of cocaine esterase-cocaine binding process by molecular dynamics and potential of mean force simulations.

    Science.gov (United States)

    Zhang, Yuxin; Huang, Xiaoqin; Han, Keli; Zheng, Fang; Zhan, Chang-Guo

    2016-11-25

    The combined molecular dynamics (MD) and potential of mean force (PMF) simulations have been performed to determine the free energy profile of the CocE)-(+)-cocaine binding process in comparison with that of the corresponding CocE-(-)-cocaine binding process. According to the MD simulations, the equilibrium CocE-(+)-cocaine binding mode is similar to the CocE-(-)-cocaine binding mode. However, based on the simulated free energy profiles, a significant free energy barrier (∼5 kcal/mol) exists in the CocE-(+)-cocaine binding process whereas no obvious free energy barrier exists in the CocE-(-)-cocaine binding process, although the free energy barrier of ∼5 kcal/mol is not high enough to really slow down the CocE-(+)-cocaine binding process. In addition, the obtained free energy profiles also demonstrate that (+)-cocaine and (-)-cocaine have very close binding free energies with CocE, with a negligible difference (∼0.2 kcal/mol), which is qualitatively consistent with the nearly same experimental K M values of the CocE enzyme for (+)-cocaine and (-)-cocaine. The consistency between the computational results and available experimental data suggests that the mechanistic insights obtained from this study are reasonable. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Multiaspect measurement analysis of breaking energy recovery

    International Nuclear Information System (INIS)

    Bartłomiejczyk, Mikołaj; Połom, Marcin

    2016-01-01

    Highlights: • A case study of implementation of eco energy technologies in municipal transport. • The “ready to use” methods are presented. • The “niche” ways of increasing efficiency, e.g. “intelligent heating”. • Novel multi way measurement method using GPS localization system. • Confirmation of the results by means of research and experimental measurement. - Abstract: Nowadays the issue of electric energy saving in public transport is becoming a key area of interest, which is connected both with a growth of environmental awareness in the society and an increase in the prices of fuel and electricity. That is why the reduction of energy consumption by increasing electrified urban transport, such as trams, trolleybuses, light rail and underground is becoming an increasingly important issue. Energy recovery during braking is possible in all modern electric vehicles, but in many cases this possibility is not fully taken advantage of, inter alia, because of an inadequate power supply structure. The aim of this article is to present practical examples of implementation of eco-friendly solutions in urban municipal transport. The article shows a thorough analysis of braking energy dispatch in the urban traction power supply system, which was based on extensive measurement research conducted in Gdynia trolleybus network. The authors applied multi way measurement method using Global Positioning System. The optimal conditions for implementation of several methods of energy recovery (storage energy systems, reconfiguration of supply system, using auxiliaries) have been shown. Great emphasis has been put on the confirmation of the results by means of research and experimental measurement.

  9. Calculation of positron binding energies using the generalized any particle propagator theory

    International Nuclear Information System (INIS)

    Romero, Jonathan; Charry, Jorge A.; Flores-Moreno, Roberto; Varella, Márcio T. do N.; Reyes, Andrés

    2014-01-01

    We recently extended the electron propagator theory to any type of quantum species based in the framework of the Any-Particle Molecular Orbital (APMO) approach [J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)]. The generalized any particle molecular orbital propagator theory (APMO/PT) was implemented in its quasiparticle second order version in the LOWDIN code and was applied to calculate nuclear quantum effects in electron binding energies and proton binding energies in molecular systems [M. Díaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)]. In this work, we present the derivation of third order quasiparticle APMO/PT methods and we apply them to calculate positron binding energies (PBEs) of atoms and molecules. We calculated the PBEs of anions and some diatomic molecules using the second order, third order, and renormalized third order quasiparticle APMO/PT approaches and compared our results with those previously calculated employing configuration interaction (CI), explicitly correlated and quantum Montecarlo methodologies. We found that renormalized APMO/PT methods can achieve accuracies of ∼0.35 eV for anionic systems, compared to Full-CI results, and provide a quantitative description of positron binding to anionic and highly polar species. Third order APMO/PT approaches display considerable potential to study positron binding to large molecules because of the fifth power scaling with respect to the number of basis sets. In this regard, we present additional PBE calculations of some small polar organic molecules, amino acids and DNA nucleobases. We complement our numerical assessment with formal and numerical analyses of the treatment of electron-positron correlation within the quasiparticle propagator approach

  10. Fission cross section measurements at intermediate energies

    International Nuclear Information System (INIS)

    Laptev, Alexander

    2005-01-01

    The activity in intermediate energy particle induced fission cross-section measurements of Pu, U isotopes, minor actinides and sub-actinides in PNPI of Russia is reviewed. The neutron-induced fission cross-section measurements are under way in the wide energy range of incident neutrons from 0.5 MeV to 200 MeV at the GNEIS facility. In number of experiments at the GNEIS facility, the neutron-induced fission cross sections were obtained for many nuclei. In another group of experiments the proton-induced fission cross-section have been measured for proton energies ranging from 200 to 1000 MeV at 100 MeV intervals using the proton beam of PNPI synchrocyclotron. (author)

  11. CREAM for high energy composition measurements

    CERN Document Server

    Seo, E S; Allison, P S; Beatty, J J; Choi, M J; Conklin, N B; Coutu, S; DuVernois, M A; Ganel, O; Kim, K C; Lee, M H; Liu, L; Lutz, L; Maestro, P; Marrocchesi, P S; Minnick, S A; Min, K W; Mognet, S I; Nutter, S; Park, H; Schindhelm, E; Song, C; Swordy, S; Wu, J; Yang, J

    2003-01-01

    Ground-based indirect measurements have shown that the cosmic-ray allparticle spectrum extends many orders of magnitude beyond the energy thought possible for supernova acceleration. Our balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment is capable of extending direct measurements of cosmic-rays to the supernova energy scale of 1015 eV in a series of Ultra Long Duration Balloon (ULDB) flights. Identification of Z = 1 - 26 particles will be made with a timing-based charge detector and a pixelated silicon charge detector. Energy measurements will be made with a transition radiation detector and a tungsten/scintillating fiber calorimeter. The instrument has been tested with various particles in accelerated beams at the CERN SPS. The first flight is planned to be launched from Antarctica in December 2004.

  12. Energy Savings Measure Packages. Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booten, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-11-01

    This document presents the most cost effective Energy Savings Measure Packages (ESMP) for existing mixed-fuel and all electric homes to achieve 15% and 30% savings for each BetterBuildings grantee location across the United States. These packages are optimized for minimum cost to homeowners for source energy savings given the local climate and prevalent building characteristics (i.e. foundation types). Maximum cost savings are typically found between 30% and 50% energy savings over the reference home; this typically amounts to $300 - $700/year.

  13. Measurements of low energy auroral ions

    International Nuclear Information System (INIS)

    Urban, A.

    1981-01-01

    This paper summarizes ion measurements in the energy range 0.1 to 30 keV observed during the campaigns 'Substorm Phenomena' and 'Porcupine'. For a clear survey of the physical processes during extraordinary events, sometimes ion measurements of higher energies are also taken into account. Generally, the pitch angle distributions were isotropic during all flights except some remarkable events. In general the ion and electron flux intensities correlated, but sometimes revealed a spectral anti-correlation. Acceleration of the ions by an electrostatic field aligned parallel to the magnetic field could be identified accompanied by intense electron precipitation. On the other hand deceleration of the ions was observed in other field-aligned current sheets which are indicated by the electron and magnetic field measurements. Temporal successive monoenergetic ion variations pointed to energy dispersion and to the location of the source region at 9 Rsub(E). Furthermore, ion fluxes higher than those of the electrons were measured at pitch angles parallel to the magnetic field. The integral down-going number and energy flux of the ions contributed to the total particle or energy influx between 65% and less than 7% and did not clearly characterize the geophysical launch conditions or auroral activities. (author)

  14. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations.

    Science.gov (United States)

    Cournia, Zoe; Allen, Bryce; Sherman, Woody

    2017-12-26

    Accurate in silico prediction of protein-ligand binding affinities has been a primary objective of structure-based drug design for decades due to the putative value it would bring to the drug discovery process. However, computational methods have historically failed to deliver value in real-world drug discovery applications due to a variety of scientific, technical, and practical challenges. Recently, a family of approaches commonly referred to as relative binding free energy (RBFE) calculations, which rely on physics-based molecular simulations and statistical mechanics, have shown promise in reliably generating accurate predictions in the context of drug discovery projects. This advance arises from accumulating developments in the underlying scientific methods (decades of research on force fields and sampling algorithms) coupled with vast increases in computational resources (graphics processing units and cloud infrastructures). Mounting evidence from retrospective validation studies, blind challenge predictions, and prospective applications suggests that RBFE simulations can now predict the affinity differences for congeneric ligands with sufficient accuracy and throughput to deliver considerable value in hit-to-lead and lead optimization efforts. Here, we present an overview of current RBFE implementations, highlighting recent advances and remaining challenges, along with examples that emphasize practical considerations for obtaining reliable RBFE results. We focus specifically on relative binding free energies because the calculations are less computationally intensive than absolute binding free energy (ABFE) calculations and map directly onto the hit-to-lead and lead optimization processes, where the prediction of relative binding energies between a reference molecule and new ideas (virtual molecules) can be used to prioritize molecules for synthesis. We describe the critical aspects of running RBFE calculations, from both theoretical and applied perspectives

  15. Relativistic deformed mean-field calculation of binding energy differences of mirror nuclei

    International Nuclear Information System (INIS)

    Koepf, W.; Barreiro, L.A.

    1996-01-01

    Binding energy differences of mirror nuclei for A=15, 17, 27, 29, 31, 33, 39 and 41 are calculated in the framework of relativistic deformed mean-field theory. The spatial components of the vector meson fields and the photon are fully taken into account in a self-consistent manner. The calculated binding energy differences are systematically smaller than the experimental values and lend support to the existence of the Okamoto-Nolen-Schiffer anomaly found decades ago in nonrelativistic calculations. For the majority of the nuclei studied, however, the results are such that the anomaly is significantly smaller than the one obtained within state-of-the-art nonrelativistic calculations. (author). 35 refs

  16. Binding energies of double-Λ hypernuclei and ΛΛ G-matrix

    International Nuclear Information System (INIS)

    Himeno, Hiroyuki; Sakuda, Toshimi; Nagata, Sinobu; Yamamoto, Yasuo.

    1993-01-01

    Binding energies of double-Λ hypernuclei ΛΛ 10 Be, ΛΛ 13 B and ΛΛ 6 He are calculated on the basis of G-matrix theory in finite nuclei. The core + Λ + Λ three-body model is adopted and the G-matrix for ΛΛ interaction is treated consistently with the model space. As the bare interaction the Nijmegen model D and model F are used. It is discussed that the consistency of the interaction with the model space is very important to calculate reliably the binding energies. It is shown that if the new event of double-Λ hypernuclei is interpreted as ΛΛ 13 B, model D reproduces the experimental data very well, whereas model F does not. (author)

  17. Orbital momentum distribution and binding energies for the complete valence shell of molecular chlorine by electron momentum spectroscopy

    International Nuclear Information System (INIS)

    Frost, L.; Grisogono, A.M.; McCarthy, I.E.

    1986-10-01

    The complete valence shell binding energy spectrum (10-50 eV) of Cl 2 has been determined using electron momentum (binary (e,2e)) spectroscopy. The inner valence region, corresponding to 4σ u and 4σ g ionization, has been measured for the first time and shows extensive splitting of the ionization strength due to electron correlation effects. These measurements are compared with the results of many-body calculations using Green's function and CI methods employing unpolarised as well as polarised wave functions. Momentum distributions, measured in both the outer and inner valence regions, are compared with calculations using a range of unpolarised and polarised wave functions. Computed orbital density maps in momentum and position space for oriented Cl 2 molecules are discussed in comparison with the measured and calculated spherically averaged momentum distributions

  18. Binding energies of sd-shell nuclei with a realistic effective Hamiltonian

    International Nuclear Information System (INIS)

    Dalton, B.J.; Vary, J.P.; Baldridge, W.J.

    1977-01-01

    The nuclear shell model with a second-order effective Hamiltonian derived within Brueckner theory from the free nucleon-nucleon interaction is shown to yield accurate binding energies of nuclei with 16 < A < 40. This agreement is obtained by choosing the spectrum of low-lying unoccupied orbitals in a justified manner and, when necessary, by employing a statistical method to approximate the lowest eigenvalue of very large shell-model diagonalizations

  19. Prediction of trypsin/molecular fragment binding affinities by free energy decomposition and empirical scores

    Science.gov (United States)

    Benson, Mark L.; Faver, John C.; Ucisik, Melek N.; Dashti, Danial S.; Zheng, Zheng; Merz, Kenneth M.

    2012-05-01

    Two families of binding affinity estimation methodologies are described which were utilized in the SAMPL3 trypsin/fragment binding affinity challenge. The first is a free energy decomposition scheme based on a thermodynamic cycle, which included separate contributions from enthalpy and entropy of binding as well as a solvent contribution. Enthalpic contributions were estimated with PM6-DH2 semiempirical quantum mechanical interaction energies, which were modified with a statistical error correction procedure. Entropic contributions were estimated with the rigid-rotor harmonic approximation, and solvent contributions to the free energy were estimated with several different methods. The second general methodology is the empirical score LISA, which contains several physics-based terms trained with the large PDBBind database of protein/ligand complexes. Here we also introduce LISA+, an updated version of LISA which, prior to scoring, classifies systems into one of four classes based on a ligand's hydrophobicity and molecular weight. Each version of the two methodologies (a total of 11 methods) was trained against a compiled set of known trypsin binders available in the Protein Data Bank to yield scaling parameters for linear regression models. Both raw and scaled scores were submitted to SAMPL3. Variants of LISA showed relatively low absolute errors but also low correlation with experiment, while the free energy decomposition methods had modest success when scaling factors were included. Nonetheless, re-scaled LISA yielded the best predictions in the challenge in terms of RMS error, and six of these models placed in the top ten best predictions by RMS error. This work highlights some of the difficulties of predicting binding affinities of small molecular fragments to protein receptors as well as the benefit of using training data.

  20. Effect of the dielectric constant of mesoscopic particle on the exciton binding energy

    International Nuclear Information System (INIS)

    Lai Zuyou; Gu Shiwei

    1991-09-01

    For materials with big exciton reduced mass and big dielectric constant, such as TiO 2 , the variation of dielectric constant with the radius of an ultrafine particle (UFP) is important for determining the exciton binding energy. For the first time a phenomenological formula of the dielectric constant of a UFP with its radius in mesoscopic range is put forward in order to explain the optical properties of TiO 2 UFP. (author). 22 refs, 3 figs, 1 tab

  1. Enermet in the forefront of energy measurement

    Energy Technology Data Exchange (ETDEWEB)

    Takala, R.; Suonperae, J.; Alatalo-Korpi, H. [ed.

    1997-11-01

    The deregulation of energy markets presents increasing challenges to the traditional measurement business and at the same time puts special demands on system solutions. Power companies are placing emphasis on the remote accessibility of measurement data at customer sites and on a greater variety of rates. Enermet, a member of the IVO Group, is a frontrunner in this business area, investing 8 % of its turnover in product development

  2. Increase of internal energy due to measurement

    International Nuclear Information System (INIS)

    Daboul, J.

    1991-01-01

    We argue that the internal energy E=(H) of a macroscopic system in thermal equilibrium must increase, if we measure an observable A which does not commute with the Hamiltonian H. We derive an expression for calculating a lower bound for this increase in E. We then generalize the above result, and show that under certain conditions the expectation value (C) of an observable C should increase by the measurement of another observable A, if A and C do not commute. (author)

  3. Binding mode and free energy prediction of fisetin/β-cyclodextrin inclusion complexes

    Directory of Open Access Journals (Sweden)

    Bodee Nutho

    2014-11-01

    Full Text Available In the present study, our aim is to investigate the preferential binding mode and encapsulation of the flavonoid fisetin in the nano-pore of β-cyclodextrin (β-CD at the molecular level using various theoretical approaches: molecular docking, molecular dynamics (MD simulations and binding free energy calculations. The molecular docking suggested four possible fisetin orientations in the cavity through its chromone or phenyl ring with two different geometries of fisetin due to the rotatable bond between the two rings. From the multiple MD results, the phenyl ring of fisetin favours its inclusion into the β-CD cavity, whilst less binding or even unbinding preference was observed in the complexes where the larger chromone ring is located in the cavity. All MM- and QM-PBSA/GBSA free energy predictions supported the more stable fisetin/β-CD complex of the bound phenyl ring. Van der Waals interaction is the key force in forming the complexes. In addition, the quantum mechanics calculations with M06-2X/6-31G(d,p clearly showed that both solvation effect and BSSE correction cannot be neglected for the energy determination of the chosen system.

  4. Electrostatics, structure prediction, and the energy landscapes for protein folding and binding.

    Science.gov (United States)

    Tsai, Min-Yeh; Zheng, Weihua; Balamurugan, D; Schafer, Nicholas P; Kim, Bobby L; Cheung, Margaret S; Wolynes, Peter G

    2016-01-01

    While being long in range and therefore weakly specific, electrostatic interactions are able to modulate the stability and folding landscapes of some proteins. The relevance of electrostatic forces for steering the docking of proteins to each other is widely acknowledged, however, the role of electrostatics in establishing specifically funneled landscapes and their relevance for protein structure prediction are still not clear. By introducing Debye-Hückel potentials that mimic long-range electrostatic forces into the Associative memory, Water mediated, Structure, and Energy Model (AWSEM), a transferable protein model capable of predicting tertiary structures, we assess the effects of electrostatics on the landscapes of thirteen monomeric proteins and four dimers. For the monomers, we find that adding electrostatic interactions does not improve structure prediction. Simulations of ribosomal protein S6 show, however, that folding stability depends monotonically on electrostatic strength. The trend in predicted melting temperatures of the S6 variants agrees with experimental observations. Electrostatic effects can play a range of roles in binding. The binding of the protein complex KIX-pKID is largely assisted by electrostatic interactions, which provide direct charge-charge stabilization of the native state and contribute to the funneling of the binding landscape. In contrast, for several other proteins, including the DNA-binding protein FIS, electrostatics causes frustration in the DNA-binding region, which favors its binding with DNA but not with its protein partner. This study highlights the importance of long-range electrostatics in functional responses to problems where proteins interact with their charged partners, such as DNA, RNA, as well as membranes. © 2015 The Protein Society.

  5. Productivity benefits of industrial energy efficiency measures

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  6. Identification and measurement of a folate-binding protein in human serum by radioimmunoassay

    International Nuclear Information System (INIS)

    Da Costa, M.; Rothenberg, S.P.; Fischer, C.; Rosenberg, Z.

    1978-01-01

    Antiserum raised in rabbits against the FBP obtained from CML cells, and the purified binder labeled with 125 I, have been used for an RIA which can measure an immunologically similar protein in human serum. The concentration of the binding protein in normal serums ranged from 1.2 to 9.3 ng/ml, with a mean +- S.E.M. of 3.8 +- 0.4 ng/ml. Elevated values of the binder protein were measured in the serums from patients with folate deficiency, vitamin B 12 deficiency, liver disease, uremia, myeloproliferative diseases, chronic lymphocytic leukemia, and various types of cancer and in the serum from pregnant women. The concentration of the binder protein and the capacity of the serum to specifically bind isotopically labeled PGA correlated poorly, indicating that the binding protein concentration and degree of saturation by endogenous serum folate vary independently in many instances

  7. Energy efficiency policies and measures in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2012-07-01

    This report represents the national case study of Norway for the IEE-project {sup M}onitoring of EU and national energy efficiency targets (ODYSSEE-MURE 2010)'. The Norwegian part of the project is co-funded by Enova. The report presents the recent energy efficiency trends in Norway on the basis of indicators extracted from the ODYSSEE database. The database contains information on energy use in a detailed level of the industry, transport, household and service sectors and other energy use. lt also contains information on energy drivers like heated square meters in the households and services sectors, transported passenger-km and ton-km of gods, value added, production index, production volumes etc. Final energy consumption has increased from 195 TWh in 1990 lo 229 TWh in 2010 The last ten years the energy consumption has varied between 212I Wh (2009) and 229 TWh (2010) with an annual average of 221TfUh. The sector using most energy is the industry, but the share has decreased from 40 % in 1990 to 31 % in 2010. From 1990 to 2010 the growth rate has been highest in the transport sector. Half of the energy end-use was electricity in 20,10, 42 % was fossil fuels and 6 % was biomass. The electricity use has an annual increase of 0.8 % since 1990, but the last decade the annual increase is reduced to 0.14 %. The consumption of oil products has decreased in stationary end-use (heating) and increased in the transport sector. In ODYSSEE, an aggregate bottom-up energy efficiency index, ODEX, is calculated. This energy efficiency index aggregates the trends in the detailed bottom-up indicators in one single indicator. This ODEX has improved by 26 o/o from 1990 to 2010 or by 1.3 o/o per year. This means that energy efficiency policies and measures implemented since 1990 have contributed to a decrease in the energy use of 2010 of approximately 59 TWh. (Author)

  8. Benchmark calculations with correlated molecular wave functions. VII. Binding energy and structure of the HF dimer

    International Nuclear Information System (INIS)

    Peterson, K.A.; Dunning, T.H. Jr.

    1995-01-01

    The hydrogen bond energy and geometry of the HF dimer have been investigated using the series of correlation consistent basis sets from aug-cc-pVDZ to aug-cc-pVQZ and several theoretical methods including Moller--Plesset perturbation and coupled cluster theories. Estimates of the complete basis set (CBS) limit have been derived for the binding energy of (HF) 2 at each level of theory by utilizing the regular convergence characteristics of the correlation consistent basis sets. CBS limit hydrogen bond energies of 3.72, 4.53, 4.55, and 4.60 kcal/mol are estimated at the SCF, MP2, MP4, and CCSD(T) levels of theory, respectively. CBS limits for the intermolecular F--F distance are estimated to be 2.82, 2.74, 2.73, and 2.73 A, respectively, for the same correlation methods. The effects of basis set superposition error (BSSE) on both the binding energies and structures have also been investigated for each basis set using the standard function counterpoise (CP) method. While BSSE has a negligible effect on the intramolecular geometries, the CP-corrected F--F distance and binding energy differ significantly from the uncorrected values for the aug-cc-pVDZ basis set; these differences decrease regularly with increasing basis set size, yielding the same limits in the CBS limit. Best estimates for the equilibrium properties of the HF dimer from CCSD(T) calculations are D e =4.60 kcal/mol, R FF =2.73 A, r 1 =0.922 A, r 2 =0.920 A, Θ 1 =7 degree, and Θ 2 =111 degree

  9. Locating Temporal Functional Dynamics of Visual Short-Term Memory Binding using Graph Modular Dirichlet Energy

    Science.gov (United States)

    Smith, Keith; Ricaud, Benjamin; Shahid, Nauman; Rhodes, Stephen; Starr, John M.; Ibáñez, Augustin; Parra, Mario A.; Escudero, Javier; Vandergheynst, Pierre

    2017-02-01

    Visual short-term memory binding tasks are a promising early marker for Alzheimer’s disease (AD). To uncover functional deficits of AD in these tasks it is meaningful to first study unimpaired brain function. Electroencephalogram recordings were obtained from encoding and maintenance periods of tasks performed by healthy young volunteers. We probe the task’s transient physiological underpinnings by contrasting shape only (Shape) and shape-colour binding (Bind) conditions, displayed in the left and right sides of the screen, separately. Particularly, we introduce and implement a novel technique named Modular Dirichlet Energy (MDE) which allows robust and flexible analysis of the functional network with unprecedented temporal precision. We find that connectivity in the Bind condition is less integrated with the global network than in the Shape condition in occipital and frontal modules during the encoding period of the right screen condition. Using MDE we are able to discern driving effects in the occipital module between 100-140 ms, coinciding with the P100 visually evoked potential, followed by a driving effect in the frontal module between 140-180 ms, suggesting that the differences found constitute an information processing difference between these modules. This provides temporally precise information over a heterogeneous population in promising tasks for the detection of AD.

  10. Long-term reproducibility of in vivo measures of specific binding of radioligands in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Kilbourn, Michael R. E-mail: mkilbour@umich.edu

    2004-07-01

    The long-term reproducibility of measures of in vivo specific binding of radiolabeled forms of (+)-{alpha}-dihydrotetrabenazine (DTBZ) and d-threo-methylphenidate (MPH) in rat brain was examined. All studies were done using a consistent bolus plus infusion protocol and calculation of equilibrium distribution volume ratios (DVR). Over a period of eight years striatal DVR values for DTBZ binding to the vesicular monoamine transporter 2 (VMAT2) in young adult (8-10 wks old) rats showed very good reproducibility (3.62{+-}0.33, N=35). Equivalent values were obtained using either tritiated or carbon-11 labeled DTBZ, and were irrespective of sex of animals. Older animals (78 wks old) showed losses (-45%) of specific binding. Striatal binding of MPH to the dopamine transporter (DAT) showed a similar reproducibility over a five year period (DVR=2.17{+-}0.39, N=52), again irrespective of radionuclide or sex. These studies demonstrate that use of a consistent in vivo technique can provide reliable measures of specific binding of radioligands to high affinity sites in the rat brain.

  11. New approach to energy loss measurements

    CERN Document Server

    Trzaska, W H; Alanko, T; Mutterer, M; Raeisaenen, J; Tjurin, G; Wojdyr, M

    2002-01-01

    A new approach to energy loss measurements is proposed. In the same experiment electronic stopping force (power) in gold, nickel, carbon, polycarbonate and Havar for sup 4 sup 0 Ar, sup 2 sup 8 Si, sup 1 sup 6 O, sup 4 He and sup 1 H ions in the energy range 0.12-11 MeV/u has been measured. In this paper we give the full results for gold, nickel, and carbon and for sup 4 sup 0 Ar, sup 1 sup 6 O, sup 4 He and sup 1 H ions. Good agreement of the measured stopping force values for light ions with literature data is interpreted as the positive test of the experimental technique. The same technique used with heavy ions yields agreement with the published data only for energies above 1 MeV/u. At lower energies we observe progressively increasing discrepancy. This discrepancy is removed completely as soon as we neglect pulse height defect compensation. This observation makes us believe that the majority of the published results as well as semi-empirical calculations based on them (like the popular SRIM) may be in er...

  12. Solid phase measurements of antibody and lectin binding to xenogenic carbohydrate antigens

    DEFF Research Database (Denmark)

    Kirkeby, Svend; André, Sabine; Gabius, Hans-Joachim

    2004-01-01

    OBJECTIVES: In future pig-to-man xenotransplantation it is important to master tools that identify potentially xenogenic alphagalactose (Galalpha) antigens in the doner tissue. DESIGN AND METHODS: We have measured the binding potentials of Galalpha detecting lectins and antibodies, including...

  13. Potential of [11C]DASB for measuring endogenous serotonin with PET: binding studies

    International Nuclear Information System (INIS)

    Lundquist, Pinelopi; Wilking, Helena; Hoeglund, A. Urban; Sandell, Johan; Bergstroem, Mats; Hartvig, Per; Langstroem, Bengt

    2005-01-01

    The serotonin transporter radioligand [ 11 C]-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile, or [ 11 C]DASB, was examined in order to assess its potential for measuring fluctuations in endogenous serotonin concentrations with positron emission tomography. Binding characteristics of [ 11 C]DASB and the propensity for serotonin to displace the tracer were explored in rat brain homogenates. Experiments showed that serotonin displaced [ 11 C]DASB in vitro. Ex vivo experiments performed after tranylcypromine injection (3 or 15 mg/kg) showed a dose-dependent trend in radioactivity uptake and suggested that serotonin may compete with [ 11 C]DASB for transporter binding

  14. Energy harvesting in high voltage measuring techniques

    International Nuclear Information System (INIS)

    Żyłka, Pawel; Doliński, Marcin

    2016-01-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed. (paper)

  15. Energy intensity ratios as net energy measures of United States energy production and expenditures

    International Nuclear Information System (INIS)

    King, C W

    2010-01-01

    In this letter I compare two measures of energy quality, energy return on energy invested (EROI) and energy intensity ratio (EIR) for the fossil fuel consumption and production of the United States. All other characteristics being equal, a fuel or energy system with a higher EROI or EIR is of better quality because more energy is provided to society. I define and calculate the EIR for oil, natural gas, coal, and electricity as measures of the energy intensity (units of energy divided by money) of the energy resource relative to the energy intensity of the overall economy. EIR measures based upon various unit prices for energy (e.g. $/Btu of a barrel of oil) as well as total expenditures on energy supplies (e.g. total dollars spent on petroleum) indicate net energy at different points in the supply chain of the overall energy system. The results indicate that EIR is an easily calculated and effective proxy for EROI for US oil, gas, coal, and electricity. The EIR correlates well with previous EROI calculations, but adds additional information on energy resource quality within the supply chain. Furthermore, the EIR and EROI of oil and gas as well as coal were all in decline for two time periods within the last 40 years, and both time periods preceded economic recessions.

  16. Measurement of biologically active interleukin-1 by a soluble receptor binding assay

    International Nuclear Information System (INIS)

    Riske, F.; Chizzonite, R.; Nunes, P.; Stern, A.S.

    1990-01-01

    A soluble receptor binding assay has been developed for measuring human interleukin-1 alpha (IL-1 alpha), human IL-1 beta, and mouse IL-1 alpha. The assay is based on a competition between unlabeled IL-1 and 125I-labeled mouse recombinant IL-1 alpha for binding to soluble IL-1 receptor prepared from mouse EL-4 cells. The assay measures only biologically active IL-1 folded in its native conformation. The ratio of human IL-1 alpha to human IL-1 beta can be measured in the same sample by a pretreatment step which removes human IL-1 beta from samples prior to assay. This technique has been used to monitor the purification of recombinant IL-1, and may be utilized to specifically and accurately measure bioactive IL-1 in human serum and cell culture supernatants

  17. The structure and binding energy of K+endash ether complexes: A comparison of MP2, RI-MP2, and density functional methods

    International Nuclear Information System (INIS)

    Feller, D.; Apra, E.; Nichols, J.A.; Bernholdt, D.E.

    1996-01-01

    The structures and binding energies of several cation:ether complexes (K + :dimethyl ether, K + :dimethoxyethane, K + :12-crown-4 and K + :18-crown-6) were determined with second and fourth order perturbation theory using correlation consistent basis sets. Several of these are the largest correlated calculations yet attempted on crown ethers. The observed systematic convergence to the complete basis set limit provides a standard by which the accuracy of previous studies can be measured and facilitates the calibration of density functional methods. Recent Fouier transform ion cyclotron resonance experiments predicted K + :18-crown-6 binding energies which were significantly smaller than ab initio calculations. None of the potential sources of error examined in the present study were large enough to explain this difference. Although the 6-31+G* basis set used in an earlier theoretical study was smaller than the smallest of the correlation consistent basis sets, with suitable correction for basis set superposition error, it appears capable of yielding binding energies within several kcal/mol of the basis set limit. Perturbation theory calculations exploiting the open-quote open-quote resolution of the identity close-quote close-quote approximation were found to faithfully reproduce binding energies and conformational differences. Although the cation endash ether interaction is dominated by classical electrostatics, the accuracy of density functional techniques was found to be quite sensitive to the choice of functionals. The local density SVWN procedure performed well for binding energies and conformational differences, while underestimating K + O distances by up to 0.08 A. The gradient-corrected Becke endash Lee endash Yang endash Parr functional underestimated the K + :12c4 binding energy by 4 endash 7 kcal/mol or 15%. copyright 1996 American Institute of Physics

  18. Measurement of magnetic fluctuation induced energy transport

    International Nuclear Information System (INIS)

    Fiksel, G.; Prager, S.C.; Shen, W.; Stoneking, M.

    1993-11-01

    The local electron energy flux produced by magnetic fluctuations has been measured directly in the MST reversed field pinch (over the radial range r/a > 0.75). The flux, produced by electrons traveling parallel to a fluctuating magnetic field, is obtained from correlation between the fluctuations in the parallel heat flux and the radial magnetic field. The fluctuation induced flux is large (100 kW/cm 2 ) in the ''core'' (r/a 2 ) in the edge

  19. Uncertainty in relative energy resolution measurements

    International Nuclear Information System (INIS)

    Volkovitsky, P.; Yen, J.; Cumberland, L.

    2007-01-01

    We suggest a new method for the determination of the detector relative energy resolution and its uncertainty based on spline approximation of experimental spectra and a statistical bootstrapping procedure. The proposed method is applied to the spectra obtained with NaI(Tl) scintillating detectors and 137 Cs sources. The spectrum histogram with background subtracted channel-by-channel is modeled by cubic spline approximation. The relative energy resolution (which is also known as pulse height resolution and energy resolution), defined as the full-width at half-maximum (FWHM) divided by the value of peak centroid, is calculated using the intercepts of the spline curve with the line of the half peak height. The value of the peak height is determined as the point where the value of the derivative goes to zero. The residuals, which are normalized over the square root of counts in a given bin (y-coordinate), obey the standard Gaussian distribution. The values of these residuals are randomly re-assigned to a different set of y-coordinates where a new 'pseudo-experimental' data set is obtained after 'de-normalization' of the old values. For this new data set a new spline approximation is found and the whole procedure is repeated several hundred times, until the standard deviation of relative energy resolution becomes stabilized. The standard deviation of relative energy resolutions calculated for each 'pseudo-experimental' data set (bootstrap uncertainty) is considered to be an estimate for relative energy resolution uncertainty. It is also shown that the relative bootstrap uncertainty is proportional to, and generally only two to three times bigger than, 1/√(N tot ), which is the relative statistical count uncertainty (N tot is the total number of counts under the peak). The newly suggested method is also applicable to other radiation and particle detectors, not only for relative energy resolution, but also for any of the other parameters in a measured spectrum, like

  20. On the binding energy of double Λ hypernuclei in the relativistic mean field theory

    International Nuclear Information System (INIS)

    Marcos, S.; Lombard, R.J.

    1997-01-01

    The binding energy of two Λ hyperons bound to a nuclear core is calculated within the relativistic mean field theory. The starting point is a two body relativistic equation of the Breit type suggested by the RMFT, and corrected for the two-particle interaction. The 2 Λ correlation energy is evaluated and the contribution of the δ and φ mesons, acting solely between hyperons, to the bond energy σB ΛΛ of ( ΛΛ ) 6 He, ( ΛΛ ) 10 Be and ( ΛΛ ) 13 B is calculated. Predictions of the ΔB ΛΛ A dependence are made for heavier Λ-hypernuclei. (K.A.)

  1. An extension of the fenske-hall LCAO method for approximate calculations of inner-shell binding energies of molecules

    Science.gov (United States)

    Zwanziger, Ch.; Reinhold, J.

    1980-02-01

    The approximate LCAO MO method of Fenske and Hall has been extended to an all-election method allowing the calculation of inner-shell binding energies of molecules and their chemical shifts. Preliminary results are given.

  2. Anisotropic Lithium Insertion Behavior in Silicon Nanowires: Binding Energy, Diffusion Barrier, and Strain Effect

    KAUST Repository

    Zhang, Qianfan; Cui, Yi; Wang, Enge

    2011-01-01

    Silicon nanowires (SiNWs) have recently been shown to be promising as high capacity lithium battery anodes. SiNWs can be grown with their long axis along several different crystallographic directions. Due to distinct atomic configuration and electronic structure of SiNWs with different axial orientations, their lithium insertion behavior could be different. This paper focuses on the characteristics of single Li defects, including binding energy, diffusion barriers, and dependence on uniaxial strain in [110], [100], [111], and [112] SiNWs. Our systematic ab initio study suggests that the Si-Li interaction is weaker when the Si-Li bond direction is aligned close to the SiNW long axis. This results in the [110] and [111] SiNWs having the highest and lowest Li binding energy, respectively, and it makes the diffusion barrier along the SiNW axis lower than other pathways. Under external strain, it was found that [110] and [001] SiNWs are the most and least sensitive, respectively. For diffusion along the axial direction, the barrier increases (decreases) under tension (compression). This feature results in a considerable difference in the magnitude of the energy barrier along different diffusion pathways. © 2011 American Chemical Society.

  3. Anisotropic Lithium Insertion Behavior in Silicon Nanowires: Binding Energy, Diffusion Barrier, and Strain Effect

    KAUST Repository

    Zhang, Qianfan

    2011-05-19

    Silicon nanowires (SiNWs) have recently been shown to be promising as high capacity lithium battery anodes. SiNWs can be grown with their long axis along several different crystallographic directions. Due to distinct atomic configuration and electronic structure of SiNWs with different axial orientations, their lithium insertion behavior could be different. This paper focuses on the characteristics of single Li defects, including binding energy, diffusion barriers, and dependence on uniaxial strain in [110], [100], [111], and [112] SiNWs. Our systematic ab initio study suggests that the Si-Li interaction is weaker when the Si-Li bond direction is aligned close to the SiNW long axis. This results in the [110] and [111] SiNWs having the highest and lowest Li binding energy, respectively, and it makes the diffusion barrier along the SiNW axis lower than other pathways. Under external strain, it was found that [110] and [001] SiNWs are the most and least sensitive, respectively. For diffusion along the axial direction, the barrier increases (decreases) under tension (compression). This feature results in a considerable difference in the magnitude of the energy barrier along different diffusion pathways. © 2011 American Chemical Society.

  4. Energy-loss measurements with heavy ions at relativistic energies

    International Nuclear Information System (INIS)

    Blank, B.; Gaimard, J.J.; Geissel, H.; Muenzenberg, G.; Schmidt, K.H.; Stelzer, H.; Suemmerer; Clerc, H.G.; Hanelt, E.; Steiner, M.; Voss, B.

    1990-03-01

    Using the magnetic spectrometer SPES I at SATURNE, energy-loss measurements have been performed for projectiles of 40 Ar (401 MeV/u), 36 P (362 MeV/u), 15 N (149 MeV/u), 11 Li (131 MeV/u) and 8 Li, 9 Li (130 MeV/u) in carbon, aluminum and lead targets. The experimental results are compared to calculations based on a modified relativistic Bethe formula and to a semi-empirical formula using a Z 2 scaling law for the stopping power and an effective charge parametrization for the heavy ions. (orig.)

  5. Prediction of binding free energy for adsorption of antimicrobial peptide lactoferricin B on a POPC membrane

    Science.gov (United States)

    Vivcharuk, Victor; Tomberli, Bruno; Tolokh, Igor S.; Gray, C. G.

    2008-03-01

    Molecular dynamics (MD) simulations are used to study the interaction of a zwitterionic palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayer with the cationic antimicrobial peptide bovine lactoferricin (LFCinB) in a 100 mM NaCl solution at 310 K. The interaction of LFCinB with POPC is used as a model system for studying the details of membrane-peptide interactions, with the peptide selected because of its antimicrobial nature. Seventy-two 3 ns MD simulations, with six orientations of LFCinB at 12 different distances from a POPC membrane, are carried out to determine the potential of mean force (PMF) or free energy profile for the peptide as a function of the distance between LFCinB and the membrane surface. To calculate the PMF for this relatively large system a new variant of constrained MD and thermodynamic integration is developed. A simplified method for relating the PMF to the LFCinB-membrane binding free energy is described and used to predict a free energy of adsorption (or binding) of -1.05±0.39kcal/mol , and corresponding maximum binding force of about 20 pN, for LFCinB-POPC. The contributions of the ions-LFCinB and the water-LFCinB interactions to the PMF are discussed. The method developed will be a useful starting point for future work simulating peptides interacting with charged membranes and interactions involved in the penetration of membranes, features necessary to understand in order to rationally design peptides as potential alternatives to traditional antibiotics.

  6. Specific binding of antigen-antibody in physiological environments: Measurement, force characteristics and analysis

    Science.gov (United States)

    Gu, Xin; Zhou, Jun; Zhou, Lu; Xie, Shusen; Petti, Lucia; Wang, Shaomin; Wang, Fuyan

    2018-05-01

    The specific recognition of the antigen by the antibody is the crucial step in immunoassays. Measurement and analysis of the specific recognition, including the ways in which it is influenced by external factors are of paramount significance for the quality of the immunoassays. Using prostate-specific antigen (PSA)/anti-PSA antibody and α-fetoprotein (AFP) /anti-AFP antibody as examples, we have proposed a novel solution for measuring the binding forces between the antigens and their corresponding antibodies in different physiological environments by combining laminar flow control technology and optical tweezers technology. On the basis of the experimental results, the different binding forces of PSA/anti-PSA antibody and AFP/anti-AFP antibody in the same phosphate-buffered saline (PBS) environments are analysed by comparing the affinity constant of the two antibodies and the number of antigenic determinants of the two antigens. In different electrolyte environments, the changes of the binding force of antigens-antibodies are explained by the polyelectrolyte effect and hydrophobic interaction. Furthermore, in different pH environments, the changes of binding forces of antigens-antibodies are attributed to the role of the denaturation of protein. The study aims to recognise the antigen-antibody immune mechanism, thus ensuring further understanding of the biological functions of tumour markers, and it promises to be very useful for the clinical diagnosis of early-stage cancer.

  7. Evolution of Structure in Nuclei: Meditation by Sub-Shell Modifications and Relation to Binding Energies

    Science.gov (United States)

    Casten, R. F.; Cakirli, R. B.

    2009-03-01

    Understanding the development of configuration mixing, coherence, collectivity, and deformation in nuclei is one of the crucial challenges in nuclear structure physics, and one which has become all the more important with the advent of next generation facilities for the study of exotic nuclei. We will discuss recent work on phase/shape transitional behavior in nuclei, and the role of changes in sub-shell structure in mediating such transitional regions. We will also discuss a newly found, much deeper, link between nuclear structure and nuclear binding energies.

  8. Simulation of core-level binding energy shifts in germanium-doped lead telluride crystals

    International Nuclear Information System (INIS)

    Zyubin, A.S.; Dedyulin, S.N.; Yashina, L.V.; Shtanov, V.I.

    2007-01-01

    To simulate the changes in core-level binding energies in germanium-doped lead telluride, cluster calculations of the changes in the electrostatic potential at the corresponding centers have been performed. Different locations of the Ge atom in the crystal bulk have been considered: near vacancies, near another dopant site, and near the surface. For calculating the potential in the clusters that model the bulk and the surface of the lead telluride crystal (c-PbTe), the electron density obtained in the framework of the Hartree-Fock and hybrid density functional theory (DFT) methods has been used [ru

  9. Accurate core-electron binding energy shifts from density functional theory

    International Nuclear Information System (INIS)

    Takahata, Yuji; Marques, Alberto Dos Santos

    2010-01-01

    Current review covers description of density functional methods of calculation of accurate core-electron binding energy (CEBE) of second and third row atoms; applications of calculated CEBEs and CEBE shifts (ΔCEBEs) in elucidation of topics such as: hydrogen-bonding, peptide bond, polymers, DNA bases, Hammett substituent (σ) constants, inductive and resonance effects, quantitative structure activity relationship (QSAR), and solid state effect (WD). This review limits itself to works of mainly Chong and his coworkers for the period post-2002. It is not a fully comprehensive account of the current state of the art.

  10. Free energy calculations on Transthyretin dissociation and ligand binding from Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Sørensen, Jesper; Hamelberg, Donald; McCammon, J. Andrew

    experimental results have helped to explain this aberrant behavior of TTR, however, structural insights of the amyloidgenic process are still lacking. Therefore, we have used all-atom molecular dynamics simulation and free energy calculations to study the initial phase of this process. We have calculated......Many questions about the nature of aggregation and the proteins that are involved in these events are still left unanswered. One of the proteins that is known to form amyloids is Transthyretine (TTR), the secondary transporter of thyroxine and transporter of retinol-binding-protein. Several...

  11. Folding model analysis of Λ binding energies and three-body ΛNN force

    International Nuclear Information System (INIS)

    Mian, M.; Rahman Khan, M.Z.

    1988-02-01

    Working within the framework of the folding model, we analyze the Λ binding energy data of light hypernuclei with effective two-body ΛN plus three-body ΛNN interaction. The two-body density for the core nucleus required for evaluating the three-body force contribution is obtained in terms of the centre of mass pair correlation. It is found that except for Λ 5 He the data are fairly well explained. The three-body force seems to account for the density dependence of the effective two-body ΛN interaction proposed earlier. (author). 13 refs, 2 tabs

  12. Positive XPS binding energy shift of supported Cu{sub N}-clusters governed by initial state effects

    Energy Technology Data Exchange (ETDEWEB)

    Peters, S.; Peredkov, S. [Technische Universität Berlin, IOAP, Strasse des 17. Juni 135, 10623 Berlin (Germany); Al-Hada, M. [Department of Physics, College of Education and Linguistics, University of Amran (Yemen); Neeb, M., E-mail: matthias.neeb@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, Wilhelm-Conrad-Röntgen-Campus Adlershof, Elektronenspeicherring BESSY II, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Eberhardt, W. [Technische Universität Berlin, IOAP, Strasse des 17. Juni 135, 10623 Berlin (Germany); DESY, Center for Free Electron Laser Science (CFEL), Notkestr. 85, 22607 Hamburg (Germany)

    2014-01-01

    Highlights: • Size dependent initial and final state effects of mass-selected deposited clusters. • Initial state effect dominates positive XPS shift in supported Cu-clusters. • Size dependent Coulomb correlation shift in the Auger final state of Cu cluster. • Size-dependent Auger parameter analysis. • Positive XPS shift differs from negative surface core level shift in crystalline copper. - Abstract: An initial state effect is established as origin for the positive 2p core electron binding energy shift found for Cu{sub N}-clusters supported by a thin silica layer of a p-doped Si(1 0 0) wafer. Using the concept of the Auger parameter and taking into account the usually neglected Coulomb correlation shift in the Auger final state (M{sub 4,5}M{sub 4,5}) it is shown that the initial state shift is comparable to the measured XPS shift while the final state relaxation shift contributes only marginally to the binding energy shift. The cluster results differ from the negative surface core-level shift of crystalline copper which has been explained in terms of a final state relaxation effect.

  13. Validation of tautomeric and protomeric binding modes by free energy calculations. A case study for the structure based optimization of d-amino acid oxidase inhibitors

    Science.gov (United States)

    Orgován, Zoltán; Ferenczy, György G.; Steinbrecher, Thomas; Szilágyi, Bence; Bajusz, Dávid; Keserű, György M.

    2018-02-01

    Optimization of fragment size d-amino acid oxidase (DAAO) inhibitors was investigated using a combination of computational and experimental methods. Retrospective free energy perturbation (FEP) calculations were performed for benzo[d]isoxazole derivatives, a series of known inhibitors with two potential binding modes derived from X-ray structures of other DAAO inhibitors. The good agreement between experimental and computed binding free energies in only one of the hypothesized binding modes strongly support this bioactive conformation. Then, a series of 1-H-indazol-3-ol derivatives formerly not described as DAAO inhibitors was investigated. Binding geometries could be reliably identified by structural similarity to benzo[d]isoxazole and other well characterized series and FEP calculations were performed for several tautomers of the deprotonated and protonated compounds since all these forms are potentially present owing to the experimental pKa values of representative compounds in the series. Deprotonated compounds are proposed to be the most important bound species owing to the significantly better agreement between their calculated and measured affinities compared to the protonated forms. FEP calculations were also used for the prediction of the affinities of compounds not previously tested as DAAO inhibitors and for a comparative structure-activity relationship study of the benzo[d]isoxazole and indazole series. Selected indazole derivatives were synthesized and their measured binding affinity towards DAAO was in good agreement with FEP predictions.

  14. Automatic energy expenditure measurement for health science.

    Science.gov (United States)

    Catal, Cagatay; Akbulut, Akhan

    2018-04-01

    It is crucial to predict the human energy expenditure in any sports activity and health science application accurately to investigate the impact of the activity. However, measurement of the real energy expenditure is not a trivial task and involves complex steps. The objective of this work is to improve the performance of existing estimation models of energy expenditure by using machine learning algorithms and several data from different sensors and provide this estimation service in a cloud-based platform. In this study, we used input data such as breathe rate, and hearth rate from three sensors. Inputs are received from a web form and sent to the web service which applies a regression model on Azure cloud platform. During the experiments, we assessed several machine learning models based on regression methods. Our experimental results showed that our novel model which applies Boosted Decision Tree Regression in conjunction with the median aggregation technique provides the best result among other five regression algorithms. This cloud-based energy expenditure system which uses a web service showed that cloud computing technology is a great opportunity to develop estimation systems and the new model which applies Boosted Decision Tree Regression with the median aggregation provides remarkable results. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Reaction of hydrogen with Ag(111): binding states, minimum energy paths, and kinetics.

    Science.gov (United States)

    Montoya, Alejandro; Schlunke, Anna; Haynes, Brian S

    2006-08-31

    The interaction of atomic and molecular hydrogen with the Ag(111) surface is studied using periodic density functional total-energy calculations. This paper focuses on the site preference for adsorption, ordered structures, and energy barriers for H diffusion and H recombination. Chemisorbed H atoms are unstable with respect to the H(2) molecule in all adsorption sites below monolayer coverage. The three-hollow sites are energetically the most favorable for H chemisorption. The binding energy of H to the surface decreases slightly up to one monolayer, suggesting a small repulsive H-H interaction on nonadjacent sites. Subsurface and vacancy sites are energetically less favorable for H adsorption than on-top sites. Recombination of chemisorbed H atoms leads to the formation of gas-phase H(2) with no molecular chemisorbed state. Recombination is an exothermic process and occurs on the bridge site with a pronounced energy barrier. This energy barrier is significantly higher than that inferred from experimental temperature-programmed desorption (TPD) studies. However, there is significant permeability of H atoms through the recombination energy barrier at low temperatures, thus increasing the rate constant for H(2) desorption due to quantum tunneling effects, and improving the agreement between experiment and theory.

  16. Uncertainty Estimation Improves Energy Measurement and Verification Procedures

    OpenAIRE

    Walter, Travis; Price, Phillip N.; Sohn, Michael D.

    2014-01-01

    Implementing energy conservation measures in buildings can reduce energy costs and environmental impacts, but such measures cost money to implement so intelligent investment strategies require the ability to quantify the energy savings by comparing actual energy used to how much energy would have been used in absence of the conservation measures (known as the baseline energy use). Methods exist for predicting baseline energy use, but a limitation of most statistical methods reported in the li...

  17. Energy spectrum of two-dimensional tight-binding electrons in a spatially varying magnetic field

    International Nuclear Information System (INIS)

    Oh, G.Y.; Lee, M.H.

    1996-01-01

    The electronic energy spectrum of a two-dimensional lattice in a spatially varying magnetic field is studied within the framework of the tight-binding model by using the scheme of the transfer matrix. It is found that, in comparison with the case of a uniform magnetic field, the energy spectrum exhibits more complicated behavior; band broadening (or gap closing) and band splitting (or gap opening) occur depending on characteristic parameters of the lattice. The origin of these phenomena lies in the existence of direct touching and indirect overlapping between neighboring subbands. Dependence of direct touching and indirect overlapping, and thus the electronic band structure together with the density of states, on characteristic parameters of the lattice is elucidated in detail. copyright 1996 The American Physical Society

  18. Effect of geometry on the pressure induced donor binding energy in semiconductor nanostructures

    Science.gov (United States)

    Kalpana, P.; Jayakumar, K.; Nithiananthi, P.

    2015-09-01

    The effect of geometry on an on-center hydrogenic donor impurity in a GaAs/(Ga,Al)As quantum wire (QWW) and quantum dot (QD) under the influence of Γ-X band mixing due to an applied hydrostatic pressure is theoretically studied. Numerical calculations are performed in an effective mass approximation. The ground state impurity energy is obtained by variational procedure. Both the effects of pressure and geometry are to exert an additional confinement on the impurity inside the wire as well as dot. We found that the donor binding energy is modified by the geometrical effects as well as by the confining potential when it is subjected to external pressure. The results are presented and discussed.

  19. 4He binding energy calculation including full tensor-force effects

    Science.gov (United States)

    Fonseca, A. C.

    1989-09-01

    The four-body equations of Alt, Grassberger, and Sandhas are solved in the version where the (2)+(2) subamplitudes are treated exactly by convolution, using one-term separable Yamaguchy nucleon-nucleon potentials in the 1S0 and 3S1-3D1 channels. The resulting jp=1/2+ and (3/2+ three-body subamplitudes are represented in a separable form using the energy-dependent pole expansion. Converged bound-state results are calculated for the first time using the full interaction, and are compared with those obtained from a simplified treatment of the tensor force. The Tjon line that correlates three-nucleon and four-nucleon binding energies is shown using different nucleon-nucleon potentials. In all calculations the Coulomb force has been neglected.

  20. CaFE: a tool for binding affinity prediction using end-point free energy methods.

    Science.gov (United States)

    Liu, Hui; Hou, Tingjun

    2016-07-15

    Accurate prediction of binding free energy is of particular importance to computational biology and structure-based drug design. Among those methods for binding affinity predictions, the end-point approaches, such as MM/PBSA and LIE, have been widely used because they can achieve a good balance between prediction accuracy and computational cost. Here we present an easy-to-use pipeline tool named Calculation of Free Energy (CaFE) to conduct MM/PBSA and LIE calculations. Powered by the VMD and NAMD programs, CaFE is able to handle numerous static coordinate and molecular dynamics trajectory file formats generated by different molecular simulation packages and supports various force field parameters. CaFE source code and documentation are freely available under the GNU General Public License via GitHub at https://github.com/huiliucode/cafe_plugin It is a VMD plugin written in Tcl and the usage is platform-independent. tingjunhou@zju.edu.cn. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Photoelectron binding energy shifts observed during oxidation of group IIA, IIIA and IVA elemental surfaces

    International Nuclear Information System (INIS)

    Heide, P.A.W. van der

    2006-01-01

    An extensive re-evaluation of XPS binding energies (BE's) and binding energy shifts (ΔBE's) from metals, oxides and the carbonates of the group II, III and IVA elements (exceptions are Be, Mg and Hf) has been carried out using a substrate specific BE referencing approach. From this, O-1s BE's are found to fall into surface oxide, bulk oxide and carbonate groupings, with bulk oxides showing the lowest BE's followed by surface oxides (+∼1.5 eV) and then carbonates (+∼3.0 eV). The O-1s BE's from the bulk oxides also appear to scale with 1/d, where d is inter-atomic distance. The same is noted in the ΔBE's observed from the metallic counterparts during oxidation of the elemental surfaces. This, and the decreasing BE exhibited by Ca, Sr and Ba on oxidation is explained within the charge potential model as resulting from competing inter- and intra-atomic effects, and is shown to be consistent with partial covalency arguments utilizing Madulung potentials. The ΔBE's also fall into groups according to the elements location in the periodic table, i.e. s, p or d block. These trends open up the possibility of approximating ΔBE's arising from initial and final state effects, and bond distances

  2. Measurement of the concentration of plasmatic cortisol by competition to the binding protein

    International Nuclear Information System (INIS)

    Okada, H.; Tambascia, M.A.; Wajchenberg, B.L.; Pieroni, R.R.

    1977-01-01

    The concentration of plasmatic cortisol was measured by competition to the binding protein (transcortin), after extracting the samples with dicloromethane. It is a suitable method for clinical routine, 100μl of plasma being used in each analysis. The normal mean +- standard error mean in 8:00 a.m. fasting subjects was 13,62 +- 5,43 μl/100 ml of plasma [pt

  3. Microassay for measurement of binding of radiolabelled ligands to cell surface molecules

    International Nuclear Information System (INIS)

    Woof, J.M.; Burton, D.R.

    1988-01-01

    An improved technique for measuring the binding of radiolabelled ligands to cell surface molecules has been developed by modification of a procedure using centrifugation through a water-immiscible oil to separate free and cell-bound ligand. It maximises the percentage of ligand bound since cell-bound and free ligand can be separated easily and reproducibly even when very small reaction volumes are used. This permits low levels of ligand radiolabelling and relatively low numbers of cells to be used

  4. Measurements of energy losses, distributions of energy loss and additivity of energy losses for 50 to 150 keV protons in hydrogen and nine hydrocarbon gases

    International Nuclear Information System (INIS)

    Thorngate, J.H.

    1976-05-01

    Measurements of energy-loss distributions were made for 51, 102, and 153 keV protons traversing hydrogen, methane, ethyne (acetylene), ethene (ethylene), ethane, propyne (methyl acetylene), propadiene (allene), propene (propylene), cyclopropane and propane. The objectives were to test the theories of energy-loss distribution in this energy range and to see if the type of carbon bonding in a hydrocarbon molecule affects the shape of the distribution. Stopping powers and stopping cross sections were also measured at these energies and at 76.5 and 127.5 keV to determine effects of chemical binding. All of the measurements were made at the gas density required to give a 4 percent energy loss. The mean energy, second central moment (a measure of the width of the distribution), and the third central moment (a measure of the skew) were calculated from the measured energy-loss distributions. Stopping power values, calculated using the mean energy, compared reasonably well with those calculated from the Bethe stopping power theory. For the second and third central moments, the best agreement between measurement and theory was when the classical scattering probability was used for the calculations, but even these did not agree well. In all cases, variations were found in the data that could be correlated to the type of carbon binding in the molecule. The differences were statistically significant at a 99 percent confidence interval for the stopping powers and second central moments measured with 51 keV protons. Similar trends were noted at other energies and for the third central moment, but the differences were not statistically significant at the 99 percent confidence interval

  5. The Effects of Noncellulosic Compounds on the Nanoscale Interaction Forces Measured between Carbohydrate-Binding Module and Lignocellulosic Biomass.

    Science.gov (United States)

    Arslan, Baran; Colpan, Mert; Ju, Xiaohui; Zhang, Xiao; Kostyukova, Alla; Abu-Lail, Nehal I

    2016-05-09

    The lack of fundamental understanding of the types of forces that govern how cellulose-degrading enzymes interact with cellulosic and noncellulosic components of lignocellulosic surfaces limits the design of new strategies for efficient conversion of biomass to bioethanol. In a step to improve our fundamental understanding of such interactions, nanoscale forces acting between a model cellulase-a carbohydrate-binding module (CBM) of cellobiohydrolase I (CBH I)-and a set of lignocellulosic substrates with controlled composition were measured using atomic force microscopy (AFM). The three model substrates investigated were kraft (KP), sulfite (SP), and organosolv (OPP) pulped substrates. These substrates varied in their surface lignin coverage, lignin type, and xylan and acetone extractives' content. Our results indicated that the overall adhesion forces of biomass to CBM increased linearly with surface lignin coverage with kraft lignin showing the highest forces among lignin types investigated. When the overall adhesion forces were decoupled into specific and nonspecific component forces via the Poisson statistical model, hydrophobic and Lifshitz-van der Waals (LW) forces dominated the binding forces of CBM to kraft lignin, whereas permanent dipole-dipole interactions and electrostatic forces facilitated the interactions of lignosulfonates to CBM. Xylan and acetone extractives' content increased the attractive forces between CBM and lignin-free substrates, most likely through hydrogen bonding forces. When the substrates treated differently were compared, it was found that both the differences in specific and nonspecific forces between lignin-containing and lignin-free substrates were the least for OPP. Therefore, cellulase enzymes represented by CBM would weakly bind to organosolv lignin. This will facilitate an easy enzyme recovery compared to other substrates treated with kraft or sulfite pulping. Our results also suggest that altering the surface hydrophobicity

  6. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015.

    Science.gov (United States)

    Deng, Nanjie; Flynn, William F; Xia, Junchao; Vijayan, R S K; Zhang, Baofeng; He, Peng; Mentes, Ahmet; Gallicchio, Emilio; Levy, Ronald M

    2016-09-01

    We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein-ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate

  7. Interaction Entropy: A New Paradigm for Highly Efficient and Reliable Computation of Protein-Ligand Binding Free Energy.

    Science.gov (United States)

    Duan, Lili; Liu, Xiao; Zhang, John Z H

    2016-05-04

    Efficient and reliable calculation of protein-ligand binding free energy is a grand challenge in computational biology and is of critical importance in drug design and many other molecular recognition problems. The main challenge lies in the calculation of entropic contribution to protein-ligand binding or interaction systems. In this report, we present a new interaction entropy method which is theoretically rigorous, computationally efficient, and numerically reliable for calculating entropic contribution to free energy in protein-ligand binding and other interaction processes. Drastically different from the widely employed but extremely expensive normal mode method for calculating entropy change in protein-ligand binding, the new method calculates the entropic component (interaction entropy or -TΔS) of the binding free energy directly from molecular dynamics simulation without any extra computational cost. Extensive study of over a dozen randomly selected protein-ligand binding systems demonstrated that this interaction entropy method is both computationally efficient and numerically reliable and is vastly superior to the standard normal mode approach. This interaction entropy paradigm introduces a novel and intuitive conceptual understanding of the entropic effect in protein-ligand binding and other general interaction systems as well as a practical method for highly efficient calculation of this effect.

  8. Calculation of absolute protein-ligand binding free energy using distributed replica sampling.

    Science.gov (United States)

    Rodinger, Tomas; Howell, P Lynne; Pomès, Régis

    2008-10-21

    Distributed replica sampling [T. Rodinger et al., J. Chem. Theory Comput. 2, 725 (2006)] is a simple and general scheme for Boltzmann sampling of conformational space by computer simulation in which multiple replicas of the system undergo a random walk in reaction coordinate or temperature space. Individual replicas are linked through a generalized Hamiltonian containing an extra potential energy term or bias which depends on the distribution of all replicas, thus enforcing the desired sampling distribution along the coordinate or parameter of interest regardless of free energy barriers. In contrast to replica exchange methods, efficient implementation of the algorithm does not require synchronicity of the individual simulations. The algorithm is inherently suited for large-scale simulations using shared or heterogeneous computing platforms such as a distributed network. In this work, we build on our original algorithm by introducing Boltzmann-weighted jumping, which allows moves of a larger magnitude and thus enhances sampling efficiency along the reaction coordinate. The approach is demonstrated using a realistic and biologically relevant application; we calculate the standard binding free energy of benzene to the L99A mutant of T4 lysozyme. Distributed replica sampling is used in conjunction with thermodynamic integration to compute the potential of mean force for extracting the ligand from protein and solvent along a nonphysical spatial coordinate. Dynamic treatment of the reaction coordinate leads to faster statistical convergence of the potential of mean force than a conventional static coordinate, which suffers from slow transitions on a rugged potential energy surface.

  9. Exploring the binding energy profiles of full agonists, partial agonists, and antagonists of the α7 nicotinic acetylcholine receptor.

    Science.gov (United States)

    Tabassum, Nargis; Ma, Qianyun; Wu, Guanzhao; Jiang, Tao; Yu, Rilei

    2017-09-01

    Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop receptor family and are important drug targets for the treatment of neurological diseases. However, the precise determinants of the binding efficacies of ligands for these receptors are unclear. Therefore, in this study, the binding energy profiles of various ligands (full agonists, partial agonists, and antagonists) were quantified by docking those ligands with structural ensembles of the α7 nAChR exhibiting different degrees of C-loop closure. This approximate treatment of interactions suggested that full agonists, partial agonists, and antagonists of the α7 nAChR possess distinctive binding energy profiles. Results from docking revealed that ligand binding efficacy may be related to the capacity of the ligand to stabilize conformational states with a closed C loop.

  10. Measuring Short-term Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Ensuring energy security has been at the centre of the IEA mission since its inception, following the oil crises of the early 1970s. While the security of oil supplies remains important, contemporary energy security policies must address all energy sources and cover a comprehensive range of natural, economic and political risks that affect energy sources, infrastructures and services. In response to this challenge, the IEA is currently developing a Model Of Short-term Energy Security (MOSES) to evaluate the energy security risks and resilience capacities of its member countries. The current version of MOSES covers short-term security of supply for primary energy sources and secondary fuels among IEA countries. It also lays the foundation for analysis of vulnerabilities of electricity and end-use energy sectors. MOSES contains a novel approach to analysing energy security, which can be used to identify energy security priorities, as a starting point for national energy security assessments and to track the evolution of a country's energy security profile. By grouping together countries with similar 'energy security profiles', MOSES depicts the energy security landscape of IEA countries. By extending the MOSES methodology to electricity security and energy services in the future, the IEA aims to develop a comprehensive policy-relevant perspective on global energy security. This Brochure provides and overview of the analysis and results. Readers interested in an in-depth discussion of methodology are referred to the MOSES Working Paper.

  11. Benchmarking NaI(Tl) Electron Energy Resolution Measurements

    International Nuclear Information System (INIS)

    Mengesha, Wondwosen; Valentine, J D.

    2002-01-01

    A technique for validating electron energy resolution results measured using the modified Compton coincidence technique (MCCT) has been developed. This technique relies on comparing measured gamma-ray energy resolution with calculated values that were determined using the measured electron energy resolution results. These gamma-ray energy resolution calculations were based on Monte Carlo photon transport simulations, the measured NaI(Tl) electron response, a simplified cascade sequence, and the measured electron energy resolution results. To demonstrate this technique, MCCT-measured NaI(Tl) electron energy resolution results were used along with measured gamma-ray energy resolution results from the same NaI(Tl) crystal. Agreement to within 5% was observed for all energies considered between the calculated and measured gamma-ray energy resolution results for the NaI(Tl) crystal characterized. The calculated gamma-ray energy resolution results were also compared with previously published gamma-ray energy resolution measurements with good agreement (<10%). In addition to describing the validation technique that was developed in this study and the results, a brief review of the electron energy resolution measurements made using the MCCT is provided. Based on the results of this study, it is believed that the MCCT-measured electron energy resolution results are reliable. Thus, the MCCT and this validation technique can be used in the future to characterize the electron energy resolution of other scintillators and to determine NaI(Tl) intrinsic energy resolution

  12. A Simple PB/LIE Free Energy Function Accurately Predicts the Peptide Binding Specificity of the Tiam1 PDZ Domain.

    Science.gov (United States)

    Panel, Nicolas; Sun, Young Joo; Fuentes, Ernesto J; Simonson, Thomas

    2017-01-01

    PDZ domains generally bind short amino acid sequences at the C-terminus of target proteins, and short peptides can be used as inhibitors or model ligands. Here, we used experimental binding assays and molecular dynamics simulations to characterize 51 complexes involving the Tiam1 PDZ domain and to test the performance of a semi-empirical free energy function. The free energy function combined a Poisson-Boltzmann (PB) continuum electrostatic term, a van der Waals interaction energy, and a surface area term. Each term was empirically weighted, giving a Linear Interaction Energy or "PB/LIE" free energy. The model yielded a mean unsigned deviation of 0.43 kcal/mol and a Pearson correlation of 0.64 between experimental and computed free energies, which was superior to a Null model that assumes all complexes have the same affinity. Analyses of the models support several experimental observations that indicate the orientation of the α 2 helix is a critical determinant for peptide specificity. The models were also used to predict binding free energies for nine new variants, corresponding to point mutants of the Syndecan1 and Caspr4 peptides. The predictions did not reveal improved binding; however, they suggest that an unnatural amino acid could be used to increase protease resistance and peptide lifetimes in vivo . The overall performance of the model should allow its use in the design of new PDZ ligands in the future.

  13. A Simple PB/LIE Free Energy Function Accurately Predicts the Peptide Binding Specificity of the Tiam1 PDZ Domain

    Directory of Open Access Journals (Sweden)

    Nicolas Panel

    2017-09-01

    Full Text Available PDZ domains generally bind short amino acid sequences at the C-terminus of target proteins, and short peptides can be used as inhibitors or model ligands. Here, we used experimental binding assays and molecular dynamics simulations to characterize 51 complexes involving the Tiam1 PDZ domain and to test the performance of a semi-empirical free energy function. The free energy function combined a Poisson-Boltzmann (PB continuum electrostatic term, a van der Waals interaction energy, and a surface area term. Each term was empirically weighted, giving a Linear Interaction Energy or “PB/LIE” free energy. The model yielded a mean unsigned deviation of 0.43 kcal/mol and a Pearson correlation of 0.64 between experimental and computed free energies, which was superior to a Null model that assumes all complexes have the same affinity. Analyses of the models support several experimental observations that indicate the orientation of the α2 helix is a critical determinant for peptide specificity. The models were also used to predict binding free energies for nine new variants, corresponding to point mutants of the Syndecan1 and Caspr4 peptides. The predictions did not reveal improved binding; however, they suggest that an unnatural amino acid could be used to increase protease resistance and peptide lifetimes in vivo. The overall performance of the model should allow its use in the design of new PDZ ligands in the future.

  14. Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines

    International Nuclear Information System (INIS)

    Zhao, Junhua; Lu, Lixin; Rabczuk, Timon

    2014-01-01

    Recently, Geblinger et al. [Nat. Nanotechnol. 3, 195 (2008)] and Machado et al. [Phys. Rev. Lett. 110, 105502 (2013)] reported the experimental and molecular dynamics realization of S-like shaped single-walled carbon nanotubes (CNTs), the so-called CNT serpentines. We reported here results from continuum modeling of the binding energy γ between different single- and multi-walled CNT serpentines and substrates as well as the mechanical stability of the CNT serpentine formation. The critical length for the mechanical stability and adhesion of different CNT serpentines are determined in dependence of E i I i , d, and γ, where E i I i and d are the CNT bending stiffness and distance of the CNT translation period. Our continuum model is validated by comparing its solution to full-atom molecular dynamics calculations. The derived analytical solutions are of great importance for understanding the interaction mechanism between different single- and multi-walled CNT serpentines and substrates

  15. Scaling Universality between Band Gap and Exciton Binding Energy of Two-Dimensional Semiconductors

    Science.gov (United States)

    Jiang, Zeyu; Liu, Zhirong; Li, Yuanchang; Duan, Wenhui

    2017-06-01

    Using first-principles G W Bethe-Salpeter equation calculations and the k .p theory, we unambiguously show that for two-dimensional (2D) semiconductors, there exists a robust linear scaling law between the quasiparticle band gap (Eg) and the exciton binding energy (Eb), namely, Eb≈Eg/4 , regardless of their lattice configuration, bonding characteristic, as well as the topological property. Such a parameter-free universality is never observed in their three-dimensional counterparts. By deriving a simple expression for the 2D polarizability merely with respect to Eg, and adopting the screened hydrogen model for Eb, the linear scaling law can be deduced analytically. This work provides an opportunity to better understand the fantastic consequence of the 2D nature for materials, and thus offers valuable guidance for their property modulation and performance control.

  16. Improving density functional tight binding predictions of free energy surfaces for peptide condensation reactions in solution

    Science.gov (United States)

    Kroonblawd, Matthew; Goldman, Nir

    First principles molecular dynamics using highly accurate density functional theory (DFT) is a common tool for predicting chemistry, but the accessible time and space scales are often orders of magnitude beyond the resolution of experiments. Semi-empirical methods such as density functional tight binding (DFTB) offer up to a thousand-fold reduction in required CPU hours and can approach experimental scales. However, standard DFTB parameter sets lack good transferability and calibration for a particular system is usually necessary. Force matching the pairwise repulsive energy term in DFTB to short DFT trajectories can improve the former's accuracy for chemistry that is fast relative to DFT simulation times (Contract DE-AC52-07NA27344.

  17. Improving Density Functional Tight Binding Predictions of Free Energy Surfaces for Slow Chemical Reactions in Solution

    Science.gov (United States)

    Kroonblawd, Matthew; Goldman, Nir

    2017-06-01

    First principles molecular dynamics using highly accurate density functional theory (DFT) is a common tool for predicting chemistry, but the accessible time and space scales are often orders of magnitude beyond the resolution of experiments. Semi-empirical methods such as density functional tight binding (DFTB) offer up to a thousand-fold reduction in required CPU hours and can approach experimental scales. However, standard DFTB parameter sets lack good transferability and calibration for a particular system is usually necessary. Force matching the pairwise repulsive energy term in DFTB to short DFT trajectories can improve the former's accuracy for reactions that are fast relative to DFT simulation times (Contract DE-AC52-07NA27344.

  18. Mechanical Control of ATP Synthase Function: Activation Energy Difference between Tight and Loose Binding Sites

    KAUST Repository

    Beke-Somfai, Tamás

    2010-01-26

    Despite exhaustive chemical and crystal structure studies, the mechanistic details of how FoF1-ATP synthase can convert mechanical energy to chemical, producing ATP, are still not fully understood. On the basis of quantum mechanical calculations using a recent highresolution X-ray structure, we conclude that formation of the P-O bond may be achieved through a transition state (TS) with a planar PO3 - ion. Surprisingly, there is a more than 40 kJ/mol difference between barrier heights of the loose and tight binding sites of the enzyme. This indicates that even a relatively small change in active site conformation, induced by the γ-subunit rotation, may effectively block the back reaction in βTP and, thus, promote ATP. © 2009 American Chemical Society.

  19. Comparison of experimental and theoretical binding and transition energies in the actinide region

    Energy Technology Data Exchange (ETDEWEB)

    Krause, M. O.; NESTOR, JR., C. W. [OAK RIDGE NATIONAL LAB., TENN. (USA)

    1977-11-15

    The present status of experimental and theoretical binding and transition energy determinations is reviewed. Experimental data and the most recent theoretical predictions are compared for the energies of K..cap alpha../sub 1/ X-rays, M series X-rays, K-LL Auger electrons, K, L/sub 3/, M and N levels, and the 4f spin-orbit splitting. In addition, the K..cap alpha../sub 1/ and L/sub 3/ data are fitted by Moseley-type diagrams, and data on the shallow levels and the valence bands of actinide oxides are discussed. Comparison shows that the single-particle Dirac-Fock theory and the inclusion of quantum-electrodynamic contributions predicts energies of the innermost levels generally within the accuracy of data, that is in the order of magnitude of 1 eV. However, in the N, O... shells large deviations do occur presumably due to strong many-electron interactions. The inclusion of many-electron effects in the relativistic theory remains a challenge, as do experimental investigations affording an accuracy of better than 1 eV for the various electronic levels.

  20. First lattice calculation of the B-meson binding and kinetic energies

    CERN Document Server

    Crisafulli, M; Martinelli, G; Sachrajda, Christopher T C

    1995-01-01

    We present the first lattice calculation of the B-meson binding energy \\labar and of the kinetic energy -\\lambda_1/2 m_Q of the heavy-quark inside the pseudoscalar B-meson. This calculation has required the non-perturbative subtraction of the power divergences present in matrix elements of the Lagrangian operator \\bar h D_4 h and of the kinetic energy operator \\bar h \\vec D^2 h. The non-perturbative renormalisation of the relevant operators has been implemented by imposing suitable renormalisation conditions on quark matrix elements, in the Landau gauge. Our numerical results have been obtained from several independent numerical simulations at \\beta=6.0 and 6.2, and using, for the meson correlators, the results obtained by the APE group at the same values of \\beta. Our best estimate, obtained by combining results at different values of \\beta, is \\labar =190 \\err{50}{30} MeV. For the \\overline{MS} running mass, we obtain \\overline {m}_b(\\overline {m}_b) =4.17 \\pm 0.06 GeV, in reasonable agreement with previous...

  1. An analysis of energy conservation measure costs

    International Nuclear Information System (INIS)

    Jones, R.; Ellis, R.; Gellineau, D.

    1990-01-01

    This paper reports on a Denver Support Office project to evaluate cost estimation in the Institutional Conservation Program. Unit cost characteristics and cost prediction accuracy were evaluated from 1,721 Energy Conservation Measures (ECMs) and 390 Technical Assistance (TA) reports funded in the last six years. This information is especially useful to state and DOE review engineers in determining the reasonableness of future cost estimates. The estimated cost provisions for TA report grants were generally adequate to cover the actual costs. Individually, there was a tendency for TA reports to cost less than estimated by about 10%. TA report unit costs averaged $.09 to $.11 per square foot, and decreased as the building size increased. Individually, there was a tendency for ECMs to cost more than estimated by about 17%. Overall, the estimated costs of the 1,721 measures were $20.4 minion, while the actual costs were $21.4 million. This 4.6% difference indicates that, overall, ECM cost estimates have provided a reasonable basis for grant awards. There was a high variation in ECM unit costs. The data did not support speculation that there is a tendency to manipulate cost estimates to fit ECMs within the simple payback eligibility criteria of 2 to 10 years

  2. Measurement of binding of adenine nucleotides and phosphate to cytosolic proteins in permeabilized rat-liver cells

    NARCIS (Netherlands)

    Gankema, H. S.; Groen, A. K.; Wanders, R. J.; Tager, J. M.

    1983-01-01

    1. A method is described for measuring the binding of metabolites to cytosolic proteins in situ in isolated rat-liver cells treated with filipin to render the plasma membrane permeable to compounds of low molecular weight. 2. There is no binding of ATP or inorganic phosphate to cytosolic proteins,

  3. Measurement of binding of ascorbic acid to myrosinase by rate of dialysis

    International Nuclear Information System (INIS)

    Ohtsuru, Masaru; Hata, Tadao

    1975-01-01

    The activation mechanism of myrosinase by L-ascorbic acid depends on the slight conformational change of enzyme protein induced by ascorbic acid. Ascorbic acid binds to enzyme like Michaelis-complex, and then the value of Km had been evaluated to be 1 x 10 -3 M. The authors determined the binding constant and the number of binding sites using dialysis rate technique. Rate dialysis was carried out with a dialysis cell, and the ordinary cellophane tubing membrane was used. ( 14 C) - ascorbic acid was added, and counted by liquid scintillation counting. By the time course of two dialysis rate measurement with and without enzyme. The concentrations of free and bound ascorbic acids were counted. From the results, the enzyme was activated to the maximum level at 10 -3 M of ascorbic acid, and four molecules of ascorbic acid bound to the enzyme on Kd=0.1x10 -4 M. However, when more than 4 molecules of L-ascorbic acid bound to the enzyme, Kd increased to 0.9x10 -4 M, and L-ascorbic acid acted as an inhibitor. (Kubatake, H.)

  4. Time-resolved beam energy measurements at LAMPF

    International Nuclear Information System (INIS)

    Hudgings, D.W.; Clark, D.A.; Bryant, H.C.

    1979-01-01

    A narrow atomic photodetachment resonance is used to measure the LAMPF beam energy. Energy and time resolution are adequate to permit the use of this method in studying transient changes in accelerated beam energy

  5. Solute-vacancy binding in aluminum

    International Nuclear Information System (INIS)

    Wolverton, C.

    2007-01-01

    Previous efforts to understand solute-vacancy binding in aluminum alloys have been hampered by a scarcity of reliable, quantitative experimental measurements. Here, we report a large database of solute-vacancy binding energies determined from first-principles density functional calculations. The calculated binding energies agree well with accurate measurements where available, and provide an accurate predictor of solute-vacancy binding in other systems. We find: (i) some common solutes in commercial Al alloys (e.g., Cu and Mg) possess either very weak (Cu), or even repulsive (Mg), binding energies. Hence, we assert that some previously reported large binding energies for these solutes are erroneous. (ii) Large binding energies are found for Sn, Cd and In, confirming the proposed mechanism for the reduced natural aging in Al-Cu alloys containing microalloying additions of these solutes. (iii) In addition, we predict that similar reduction in natural aging should occur with additions of Si, Ge and Au. (iv) Even larger binding energies are found for other solutes (e.g., Pb, Bi, Sr, Ba), but these solutes possess essentially no solubility in Al. (v) We have explored the physical effects controlling solute-vacancy binding in Al. We find that there is a strong correlation between binding energy and solute size, with larger solute atoms possessing a stronger binding with vacancies. (vi) Most transition-metal 3d solutes do not bind strongly with vacancies, and some are even energetically strongly repelled from vacancies, particularly for the early 3d solutes, Ti and V

  6. Bacteroides gingivalis-Actinomyces viscosus cohesive interactions as measured by a quantitative binding assay

    International Nuclear Information System (INIS)

    Schwarz, S.; Ellen, R.P.; Grove, D.A.

    1987-01-01

    There is limited evidence, mostly indirect, to suggest that the adherence of Bacteroides gingivalis to teeth may be enhanced by the presence of gram-positive dental plaque bacteria like Actinomyces viscosus. The purpose of this study was to carry out direct quantitative assessments of the cohesion of B gingivalis and A. viscosus by using an in vitro assay modeled on the natural sequence in which these two species colonize the teeth. The assay allowed comparisons to be made of the adherence of 3 H-labeled B. gingivalis 2561 and 381 to saliva-coated hydroxyapatite beads (S-HA) and A. viscosus WVU627- or T14V-coated S-HA (actinobeads) in equilibrium and kinetics binding studies. A series of preliminary binding studies with 3H-labeled A. viscosus and parallel studies by scanning electron microscopy with unlabeled A. viscosus were conducted to establish a protocol by which actinobeads suitable for subsequent Bacteroides adherence experiments could be prepared. By scanning electron microscopy, the actinobeads had only small gaps of exposed S-HA between essentially irreversibly bound A. viscosus cells. Furthermore, B. gingivalis cells appeared to bind preferentially to the Actinomyces cells instead of the exposed S-HA. B. gingivalis binding to both S-HA and actinobeads was saturable with at least 2 X 10(9) to 3 X 10(9) cells per ml, and equilibrium with saturating concentrations was reached within 10 to 20 min. B. gingivalis always bound in greater numbers to the actinobeads than to S-HA. These findings provide direct measurements supporting the concept that cohesion with dental plaque bacteria like A. viscosus may foster the establishment of B. gingivalis on teeth by enhancing its adherence

  7. Computational prediction of binding affinity for CYP1A2-ligand complexes using empirical free energy calculations

    DEFF Research Database (Denmark)

    Poongavanam, Vasanthanathan; Olsen, Lars; Jørgensen, Flemming Steen

    2010-01-01

    , and methods based on statistical mechanics. In the present investigation, we started from an LIE model to predict the binding free energy of structurally diverse compounds of cytochrome P450 1A2 ligands, one of the important human metabolizing isoforms of the cytochrome P450 family. The data set includes both...... substrates and inhibitors. It appears that the electrostatic contribution to the binding free energy becomes negligible in this particular protein and a simple empirical model was derived, based on a training set of eight compounds. The root mean square error for the training set was 3.7 kJ/mol. Subsequent......Predicting binding affinities for receptor-ligand complexes is still one of the challenging processes in computational structure-based ligand design. Many computational methods have been developed to achieve this goal, such as docking and scoring methods, the linear interaction energy (LIE) method...

  8. Theoretical investigation of stark effect on shallow donor binding energy in InGaN spherical QD-QW

    Energy Technology Data Exchange (ETDEWEB)

    El Ghazi, Haddou, E-mail: hadghazi@gmail.com [Solid State Physics Laboratory, Faculty of Science, Dhar EL Mehrez, BP 1796 Fes-Atlas (Morocco); Mathématiques spéciales, CPGE Kénitra, Chakib Arsalane Street (Morocco); Jorio, Anouar; Zorkani, Izeddine [Solid State Physics Laboratory, Faculty of Science, Dhar EL Mehrez, BP 1796 Fes-Atlas (Morocco)

    2013-08-01

    In this paper, a simultaneous study of electric field and impurity's position effects on the ground-state shallow-donor binding energy in GaN|InGaN|GaN spherical quantum dot-quantum well (SQD-QW) as a function of the ratio of the inner and the outer radius is reported. The calculations are investigated using variational approach within the framework of the effective-mass approximation. The numerical results show that: (i) the binding energy is strongly affected by the external electric field and the SQD-QW dimension, (ii) a critical value of spherical system's radius is obtained constituting the limit of three dimension confinement and spherical thin layer confinement and (iii) the Stark shift increases with increasing electric field and it is more pronounced around the position of the impurity corresponding to the binding energy maxima than in the spherical layer extremities.

  9. Theoretical investigation of stark effect on shallow donor binding energy in InGaN spherical QD-QW

    International Nuclear Information System (INIS)

    El Ghazi, Haddou; Jorio, Anouar; Zorkani, Izeddine

    2013-01-01

    In this paper, a simultaneous study of electric field and impurity's position effects on the ground-state shallow-donor binding energy in GaN|InGaN|GaN spherical quantum dot-quantum well (SQD-QW) as a function of the ratio of the inner and the outer radius is reported. The calculations are investigated using variational approach within the framework of the effective-mass approximation. The numerical results show that: (i) the binding energy is strongly affected by the external electric field and the SQD-QW dimension, (ii) a critical value of spherical system's radius is obtained constituting the limit of three dimension confinement and spherical thin layer confinement and (iii) the Stark shift increases with increasing electric field and it is more pronounced around the position of the impurity corresponding to the binding energy maxima than in the spherical layer extremities

  10. Measuring energy efficiency in economics: Shadow value approach

    Science.gov (United States)

    Khademvatani, Asgar

    For decades, academic scholars and policy makers have commonly applied a simple average measure, energy intensity, for studying energy efficiency. In contrast, we introduce a distinctive marginal measure called energy shadow value (SV) for modeling energy efficiency drawn on economic theory. This thesis demonstrates energy SV advantages, conceptually and empirically, over the average measure recognizing marginal technical energy efficiency and unveiling allocative energy efficiency (energy SV to energy price). Using a dual profit function, the study illustrates how treating energy as quasi-fixed factor called quasi-fixed approach offers modeling advantages and is appropriate in developing an explicit model for energy efficiency. We address fallacies and misleading results using average measure and demonstrate energy SV advantage in inter- and intra-country energy efficiency comparison. Energy efficiency dynamics and determination of efficient allocation of energy use are shown through factors impacting energy SV: capital, technology, and environmental obligations. To validate the energy SV, we applied a dual restricted cost model using KLEM dataset for the 35 US sectors stretching from 1958 to 2000 and selected a sample of the four sectors. Following the empirical results, predicted wedges between energy price and the SV growth indicate a misallocation of energy use in stone, clay and glass (SCG) and communications (Com) sectors with more evidence in the SCG compared to the Com sector, showing overshoot in energy use relative to optimal paths and cost increases from sub-optimal energy use. The results show that energy productivity is a measure of technical efficiency and is void of information on the economic efficiency of energy use. Decomposing energy SV reveals that energy, capital and technology played key roles in energy SV increases helping to consider and analyze policy implications of energy efficiency improvement. Applying the marginal measure, we also

  11. Optimizing the Binding Energy of Hydrogen on Nanostructured Carbon Materials through Structure Control and Chemical Doping

    Energy Technology Data Exchange (ETDEWEB)

    Jie Liu

    2011-02-01

    The DOE Hydrogen Sorption Center of Excellence (HSCoE) was formed in 2005 to develop materials for hydrogen storage systems to be used in light-duty vehicles. The HSCoE and two related centers of excellence were created as follow-on activities to the DOE Office of Energy Efficiency and Renewable Energy’s (EERE’s) Hydrogen Storage Grand Challenge Solicitation issued in FY 2003. The Hydrogen Sorption Center of Excellence (HSCoE) focuses on developing high-capacity sorbents with the goal to operate at temperatures and pressures approaching ambient and be efficiently and quickly charged in the tank with minimal energy requirements and penalties to the hydrogen fuel infrastructure. The work was directed at overcoming barriers to achieving DOE system goals and identifying pathways to meet the hydrogen storage system targets. To ensure that the development activities were performed as efficiently as possible, the HSCoE formed complementary, focused development clusters based on the following four sorption-based hydrogen storage mechanisms: 1. Physisorption on high specific surface area and nominally single element materials 2. Enhanced H2 binding in Substituted/heterogeneous materials 3. Strong and/or multiple H2 binding from coordinated but electronically unsatruated metal centers 4. Weak Chemisorption/Spillover. As a member of the team, our group at Duke studied the synthesis of various carbon-based materials, including carbon nanotubes and microporous carbon materials with controlled porosity. We worked closely with other team members to study the effect of pore size on the binding energy of hydrogen to the carbon –based materials. Our initial project focus was on the synthesis and purification of small diameter, single-walled carbon nanotubes (SWNTs) with well-controlled diameters for the study of their hydrogen storage properties as a function of diameters. We developed a chemical vapor deposition method that synthesized gram quantities of carbon nanotubes with

  12. Measuring energy security. A conceptual note

    Energy Technology Data Exchange (ETDEWEB)

    Frondel, Manuel; Schmidt, Christoph M.

    2008-11-06

    Along with the oil price, concerns about the security of energy supply have soared once again in recent years.Yet, more than 30 years after the OPEC oil embargo in 1973, energy security still remains a diffuse concept. This paper conceives a statistical indicator that aims at characterizing the energy supply risk of nations that are heavily dependent on energy imports. Our indicator condenses the bulk of empirical information on the imports of fossil fuels originating from a multitude of export countries as well as data on the indigenous contribution to the domestic energy supply into a single parameter. Applying the proposed concept to empirical energy data on Germany and the U.S. (1980-2004), we find that there is a large gap in the energy supply risks between both countries, with Germany suffering much more from a tensed energy supply situation today than the U.S. (orig.)

  13. Energy performance contracting - energy saving potential of selected energy conservation measures (ECM)

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, M. (Dansk Energi Analyse A/S, Frederiksberg (Denmark)); Langkilde, G.; Olesen, Bjarne W. (Technical Univ. of Denmark, ICIEE, Kgs. Lyngby (Denmark)); Moerck, O. (Cenergia Energy Consultants, Herlev (Denmark)); Sundman, O. (DONG Energy, Copenhagen (Denmark)); Engelund Thomsen, K. (Aalborg Univ., SBi, Hoersholm (Denmark))

    2008-09-15

    This report has been developed under the research project 'Etablering af grundlag for energitjenester i Danmark' (project number: ENS-33031-0185) under the Danish research programme - EFP. The objective of this project has been to contribute to the utilisation of the large potential for energy conservations in the building sector within the public, industry and service sectors through the development of a better basis for decision making for both the Energy Service Companies (ESCOes) and the building owners. The EU directive on Energy Service Contracting points at the buildings as the area where the biggest potential market for energy services and energy efficiency improvements are. The EFP-project has two parts: (1) A Danish part and (2) participation in the international cooperation project 'Holistic Assesment Tool-Kit on Energy Efficient Retrofit Measures for Government Buildings (EnERGo)', Annex 46 under the IEA R and D program 'Energy Conservation In Buildings And Community Systems' (ECBCS). This report describes the Danish contributions to the IEA projects subtask B, which has a primary objective to develop a database of energy conservation measures (ECM) with descriptions and performance characteristics of these. (au)

  14. Energy performance contracting - energy saving potential of selected energy conservation measures (ECM)

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, M [Dansk Energi Analyse A/S, Frederiksberg (Denmark); Langkilde, G; Olesen, Bjarne W [Technical Univ. of Denmark, ICIEE, Kgs. Lyngby (Denmark); Moerck, O [Cenergia Energy Consultants, Herlev (Denmark); Sundman, O [DONG Energy, Copenhagen (Denmark); Engelund Thomsen, K [Aalborg Univ., SBi, Hoersholm (Denmark)

    2008-09-15

    This report has been developed under the research project 'Etablering af grundlag for energitjenester i Danmark' (project number: ENS-33031-0185) under the Danish research programme - EFP. The objective of this project has been to contribute to the utilisation of the large potential for energy conservations in the building sector within the public, industry and service sectors through the development of a better basis for decision making for both the Energy Service Companies (ESCOes) and the building owners. The EU directive on Energy Service Contracting points at the buildings as the area where the biggest potential market for energy services and energy efficiency improvements are. The EFP-project has two parts: (1) A Danish part and (2) participation in the international cooperation project 'Holistic Assesment Tool-Kit on Energy Efficient Retrofit Measures for Government Buildings (EnERGo)', Annex 46 under the IEA R and D program 'Energy Conservation In Buildings And Community Systems' (ECBCS). This report describes the Danish contributions to the IEA projects subtask B, which has a primary objective to develop a database of energy conservation measures (ECM) with descriptions and performance characteristics of these. (au)

  15. Magnetic field effect on the ground-state binding energy in InGaN/GaN parabolic QWW

    International Nuclear Information System (INIS)

    El Ghazi, Haddou; Jorio, Anouar; Zorkani, Izeddine

    2013-01-01

    Within the framework of the effective mass scheme, the ground-state binding energy of hydrogenic shallow-donor impurity in wurtzite (WZ) (In,Ga)N/GaN parabolic transversal-section quantum-well wire (PQWW) subjected to magnetic field is investigated. The finite-difference method within the quasi-one-dimensional effective potential model is used. A cylindrical QWW effective radius is introduced to describe the lateral confinement strength. The results show that: (i) the binding energy is the largest for the impurity located at a point corresponding to the largest electron probability density and (ii) it increases with increasing external magnetic field

  16. Magnetic field effect on the ground-state binding energy in InGaN/GaN parabolic QWW

    Energy Technology Data Exchange (ETDEWEB)

    El Ghazi, Haddou, E-mail: hadghazi@gmail.com [LPS, Faculty of sciences, Dhar EL Mehrez, B.P 1796 Atlas Fez (Morocco); Specials Mathematics, CPGE Kénitra, Chakib Arsalane Street, Kénitra (Morocco); Jorio, Anouar; Zorkani, Izeddine [LPS, Faculty of sciences, Dhar EL Mehrez, B.P 1796 Atlas Fez (Morocco)

    2013-07-15

    Within the framework of the effective mass scheme, the ground-state binding energy of hydrogenic shallow-donor impurity in wurtzite (WZ) (In,Ga)N/GaN parabolic transversal-section quantum-well wire (PQWW) subjected to magnetic field is investigated. The finite-difference method within the quasi-one-dimensional effective potential model is used. A cylindrical QWW effective radius is introduced to describe the lateral confinement strength. The results show that: (i) the binding energy is the largest for the impurity located at a point corresponding to the largest electron probability density and (ii) it increases with increasing external magnetic field.

  17. Selective binding of pyrene in subdomain IB of human serum albumin: Combining energy transfer spectroscopy and molecular modelling to understand protein binding flexibility

    Science.gov (United States)

    Ling, Irene; Taha, Mohamed; Al-Sharji, Nada A.; Abou-Zied, Osama K.

    2018-04-01

    The ability of human serum albumin (HSA) to bind medium-sized hydrophobic molecules is important for the distribution, metabolism, and efficacy of many drugs. Herein, the interaction between pyrene, a hydrophobic fluorescent probe, and HSA was thoroughly investigated using steady-state and time-resolved fluorescence techniques, ligand docking, and molecular dynamics (MD) simulations. A slight quenching of the fluorescence signal from Trp214 (the sole tryptophan residue in the protein) in the presence of pyrene was used to determine the ligand binding site in the protein, using Förster's resonance energy transfer (FRET) theory. The estimated FRET apparent distance between pyrene and Trp214 was 27 Å, which was closely reproduced by the docking analysis (29 Å) and MD simulation (32 Å). The highest affinity site for pyrene was found to be in subdomain IB from the docking results. The calculated equilibrium structure of the complex using MD simulation shows that the ligand is largely stabilized by hydrophobic interaction with Phe165, Phe127, and the nonpolar moieties of Tyr138 and Tyr161. The fluorescence vibronic peak ratio I1/I3 of bound pyrene inside HSA indicates the presence of polar effect in the local environment of pyrene which is less than that of free pyrene in buffer. This was clarified by the MD simulation results in which an average of 5.7 water molecules were found within 0.5 nm of pyrene in the binding site. Comparing the fluorescence signals and lifetimes of pyrene inside HSA to that free in buffer, the high tendency of pyrene to form dimer was almost completely suppressed inside HSA, indicating a high selectivity of the binding pocket toward pyrene monomer. The current results emphasize the ability of HSA, as a major carrier of several drugs and ligands in blood, to bind hydrophobic molecules in cavities other than subdomain IIA which is known to bind most hydrophobic drugs. This ability stems from the nature of the amino acids forming the binding

  18. Identification of DNA-binding protein target sequences by physical effective energy functions: free energy analysis of lambda repressor-DNA complexes.

    Directory of Open Access Journals (Sweden)

    Caselle Michele

    2007-09-01

    Full Text Available Abstract Background Specific binding of proteins to DNA is one of the most common ways gene expression is controlled. Although general rules for the DNA-protein recognition can be derived, the ambiguous and complex nature of this mechanism precludes a simple recognition code, therefore the prediction of DNA target sequences is not straightforward. DNA-protein interactions can be studied using computational methods which can complement the current experimental methods and offer some advantages. In the present work we use physical effective potentials to evaluate the DNA-protein binding affinities for the λ repressor-DNA complex for which structural and thermodynamic experimental data are available. Results The binding free energy of two molecules can be expressed as the sum of an intermolecular energy (evaluated using a molecular mechanics forcefield, a solvation free energy term and an entropic term. Different solvation models are used including distance dependent dielectric constants, solvent accessible surface tension models and the Generalized Born model. The effect of conformational sampling by Molecular Dynamics simulations on the computed binding energy is assessed; results show that this effect is in general negative and the reproducibility of the experimental values decreases with the increase of simulation time considered. The free energy of binding for non-specific complexes, estimated using the best energetic model, agrees with earlier theoretical suggestions. As a results of these analyses, we propose a protocol for the prediction of DNA-binding target sequences. The possibility of searching regulatory elements within the bacteriophage λ genome using this protocol is explored. Our analysis shows good prediction capabilities, even in absence of any thermodynamic data and information on the naturally recognized sequence. Conclusion This study supports the conclusion that physics-based methods can offer a completely complementary

  19. Measuring binding of protein to gel-bound ligands using magnetic levitation.

    Science.gov (United States)

    Shapiro, Nathan D; Mirica, Katherine A; Soh, Siowling; Phillips, Scott T; Taran, Olga; Mace, Charles R; Shevkoplyas, Sergey S; Whitesides, George M

    2012-03-28

    This paper describes the use of magnetic levitation (MagLev) to measure the association of proteins and ligands. The method starts with diamagnetic gel beads that are functionalized covalently with small molecules (putative ligands). Binding of protein to the ligands within the bead causes a change in the density of the bead. When these beads are suspended in a paramagnetic aqueous buffer and placed between the poles of two NbFeB magnets with like poles facing, the changes in the density of the bead on binding of protein result in changes in the levitation height of the bead that can be used to quantify the amount of protein bound. This paper uses a reaction-diffusion model to examine the physical principles that determine the values of rate and equilibrium constants measured by this system, using the well-defined model system of carbonic anhydrase and aryl sulfonamides. By tuning the experimental protocol, the method is capable of quantifying either the concentration of protein in a solution, or the binding affinities of a protein to several resin-bound small molecules simultaneously. Since this method requires no electricity and only a single piece of inexpensive equipment, it may find use in situations where portability and low cost are important, such as in bioanalysis in resource-limited settings, point-of-care diagnosis, veterinary medicine, and plant pathology. It still has several practical disadvantages. Most notably, the method requires relatively long assay times and cannot be applied to large proteins (>70 kDa), including antibodies. The design and synthesis of beads with improved characteristics (e.g., larger pore size) has the potential to resolve these problems.

  20. Role of codeposited impurities during growth. II. Dependence of morphology on binding and barrier energies

    Science.gov (United States)

    Sathiyanarayanan, Rajesh; Hamouda, Ajmi Bh.; Pimpinelli, A.; Einstein, T. L.

    2011-01-01

    In an accompanying article we showed that surface morphologies obtained through codeposition of a small quantity (2%) of impurities with Cu during growth (step-flow mode, θ = 40 ML) significantly depends on the lateral nearest-neighbor binding energy (ENN) to Cu adatom and the diffusion barrier (Ed) of the impurity atom on Cu(0 0 1). Based on these two energy parameters, ENN and Ed, we classify impurity atoms into four sets. We study island nucleation and growth in the presence of codeposited impurities from different sets in the submonolayer (θ⩽ 0.7 ML) regime. Similar to growth in the step-flow mode, we find different nucleation and growth behavior for impurities from different sets. We characterize these differences through variations of the number of islands (Ni) and the average island size with coverage (θ). Further, we compute the critical nucleus size (i) for all of these cases from the distribution of capture-zone areas using the generalized Wigner distribution.

  1. Infrared Dielectric Screening Determines the Low Exciton Binding Energy of Metal-Halide Perovskites.

    Science.gov (United States)

    Umari, Paolo; Mosconi, Edoardo; De Angelis, Filippo

    2018-02-01

    The performance of lead-halide perovskites in optoelectronic devices is due to a unique combination of factors, including highly efficient generation, transport, and collection of photogenerated charge carriers. The mechanism behind efficient charge generation in lead-halide perovskites is still largely unknown. Here, we investigate the factors that influence the exciton binding energy (E b ) in a series of metal-halide perovskites using accurate first-principles calculations based on solution of the Bethe-Salpeter equation, coupled to ab initio molecular dynamics simulations. We find that E b is strongly modulated by screening from low-energy phonons, which account for a factor ∼2 E b reduction, while dynamic disorder and rotational motion of the organic cations play a minor role. We calculate E b = 15 meV for MAPbI 3 , in excellent agreement with recent experimental estimates. We then explore how different material combinations (e.g., replacing Pb → Pb:Sn→ Sn; and MA → FA → Cs) may lead to different E b values and highlight the mechanisms underlying E b tuning.

  2. Implementation and rejection of industrial steam system energy efficiency measures

    International Nuclear Information System (INIS)

    Therkelsen, Peter; McKane, Aimee

    2013-01-01

    Steam systems consume approximately one third of energy applied at US industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of 5 years through the Energy Savings Assessment (ESA) program administered by the US Department of Energy (US DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well. - Highlights: ► We examine uptake/rejection of industrial steam system energy efficiency measures. ► We examine metrics that correspond to uptake/rejection of recommended measures. ► We examine barriers hindering steam system energy efficiency measure implementation. ► Uptake/rejection of steam measures is linked to potential cost metrics. ► Increased uptake of measures and uptake of more costly measures increases with time

  3. Hydrostatic pressure and conduction band non-parabolicity effects on the impurity binding energy in a spherical quantum dot

    International Nuclear Information System (INIS)

    Sivakami, A.; Mahendran, M.

    2010-01-01

    The binding energy of a shallow hydrogenic impurity in a spherical quantum dot under hydrostatic pressure with square well potential is calculated using a variational approach within the effective mass approximation. The effect of conduction band non-parabolicity on these energies is also estimated. The binding energy is computed for GaAs spherical quantum dot as a function of dot size, hydrostatic pressure both in the presence and absence of the band non-parabolicity effect. Our results show that (i) the hydrostatic pressure increases the impurity binding energy when dot radius increases for a given pressure, (ii) the hydrostatic pressure with the band non-parabolicity effect effectively increases the binding energy such that the variation is large for smaller dots and (iii) the maximum contribution by the non-parabolicity effect is about 15% for narrow dots. Our results are in good agreement with Perez-Merchancano et al. [J. Phys. Condens. Matter 19 (2007) 026225] who have not considered the conduction band non-parabolicity effect.

  4. A Printed Equilibrium Dialysis Device with Integrated Membranes for Improved Binding Affinity Measurements.

    Science.gov (United States)

    Pinger, Cody W; Heller, Andrew A; Spence, Dana M

    2017-07-18

    Equilibrium dialysis is a simple and effective technique used for investigating the binding of small molecules and ions to proteins. A three-dimensional (3D) printer was used to create a device capable of measuring binding constants between a protein and a small ion based on equilibrium dialysis. Specifically, the technology described here enables the user to customize an equilibrium dialysis device to fit their own experiments by choosing membranes of various material and molecular-weight cutoff values. The device has dimensions similar to that of a standard 96-well plate, thus being amenable to automated sample handlers and multichannel pipettes. The device consists of a printed base that hosts multiple windows containing a porous regenerated-cellulose membrane with a molecular-weight cutoff of ∼3500 Da. A key step in the fabrication process is a print-pause-print approach for integrating membranes directly into the windows subsequently inserted into the base. The integrated membranes display no leaking upon placement into the base. After characterizing the system's requirements for reaching equilibrium, the device was used to successfully measure an equilibrium dissociation constant for Zn 2+ and human serum albumin (K d = (5.62 ± 0.93) × 10 -7 M) under physiological conditions that is statistically equal to the constants reported in the literature.

  5. Predicting Binding Free Energy Change Caused by Point Mutations with Knowledge-Modified MM/PBSA Method.

    Directory of Open Access Journals (Sweden)

    Marharyta Petukh

    2015-07-01

    Full Text Available A new methodology termed Single Amino Acid Mutation based change in Binding free Energy (SAAMBE was developed to predict the changes of the binding free energy caused by mutations. The method utilizes 3D structures of the corresponding protein-protein complexes and takes advantage of both approaches: sequence- and structure-based methods. The method has two components: a MM/PBSA-based component, and an additional set of statistical terms delivered from statistical investigation of physico-chemical properties of protein complexes. While the approach is rigid body approach and does not explicitly consider plausible conformational changes caused by the binding, the effect of conformational changes, including changes away from binding interface, on electrostatics are mimicked with amino acid specific dielectric constants. This provides significant improvement of SAAMBE predictions as indicated by better match against experimentally determined binding free energy changes over 1300 mutations in 43 proteins. The final benchmarking resulted in a very good agreement with experimental data (correlation coefficient 0.624 while the algorithm being fast enough to allow for large-scale calculations (the average time is less than a minute per mutation.

  6. Implementation and Rejection of Industrial Steam System Energy Efficiency Measures

    Energy Technology Data Exchange (ETDEWEB)

    Therkelesen, Peter [Environmental Energy Technologies Division Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); McKane, Aimee [Environmental Energy Technologies Division Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2013-05-01

    Steam systems consume approximately one third of energy applied at U.S. industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of five years through the Energy Savings Assessment (ESA) program administered by the U.S. Department of Energy (U.S. DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well.

  7. Direct determination of monolayer MoS2 and WSe2 exciton binding energies on insulating and metallic substrates

    KAUST Repository

    Park, Soohyung; Mutz, Niklas; Schultz, Thorsten; Blumstengel, Sylke; Han, Ali; Aljarb, Areej; Li, Lain-Jong; List-Kratochvil, Emil J W; Amsalem, Patrick; Koch, Norbert

    2018-01-01

    Understanding the excitonic nature of excited states in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) is of key importance to make use of their optical and charge transport properties in optoelectronic applications. We contribute to this by the direct experimental determination of the exciton binding energy (E b,exc) of monolayer MoS2 and WSe2 on two fundamentally different substrates, i.e. the insulator sapphire and the metal gold. By combining angle-resolved direct and inverse photoelectron spectroscopy we measure the electronic band gap (E g), and by reflectance measurements the optical excitonic band gap (E exc). The difference of these two energies is E b,exc. The values of E g and E b,exc are 2.11 eV and 240 meV for MoS2 on sapphire, and 1.89 eV and 240 meV for WSe2 on sapphire. On Au E b,exc is decreased to 90 meV and 140 meV for MoS2 and WSe2, respectively. The significant E b,exc reduction is primarily due to a reduction of E g resulting from enhanced screening by the metal, while E exc is barely decreased for the metal support. Energy level diagrams determined at the K-point of the 2D TMDCs Brillouin zone show that MoS2 has more p-type character on Au as compared to sapphire, while WSe2 appears close to intrinsic on both. These results demonstrate that the impact of the dielectric environment of 2D TMDCs is more pronounced for individual charge carriers than for a correlated electron–hole pair, i.e. the exciton. A proper dielectric surrounding design for such 2D semiconductors can therefore be used to facilitate superior optoelectronic device function.

  8. Direct determination of monolayer MoS2 and WSe2 exciton binding energies on insulating and metallic substrates

    KAUST Repository

    Park, Soohyung

    2018-01-03

    Understanding the excitonic nature of excited states in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) is of key importance to make use of their optical and charge transport properties in optoelectronic applications. We contribute to this by the direct experimental determination of the exciton binding energy (E b,exc) of monolayer MoS2 and WSe2 on two fundamentally different substrates, i.e. the insulator sapphire and the metal gold. By combining angle-resolved direct and inverse photoelectron spectroscopy we measure the electronic band gap (E g), and by reflectance measurements the optical excitonic band gap (E exc). The difference of these two energies is E b,exc. The values of E g and E b,exc are 2.11 eV and 240 meV for MoS2 on sapphire, and 1.89 eV and 240 meV for WSe2 on sapphire. On Au E b,exc is decreased to 90 meV and 140 meV for MoS2 and WSe2, respectively. The significant E b,exc reduction is primarily due to a reduction of E g resulting from enhanced screening by the metal, while E exc is barely decreased for the metal support. Energy level diagrams determined at the K-point of the 2D TMDCs Brillouin zone show that MoS2 has more p-type character on Au as compared to sapphire, while WSe2 appears close to intrinsic on both. These results demonstrate that the impact of the dielectric environment of 2D TMDCs is more pronounced for individual charge carriers than for a correlated electron–hole pair, i.e. the exciton. A proper dielectric surrounding design for such 2D semiconductors can therefore be used to facilitate superior optoelectronic device function.

  9. Direct determination of monolayer MoS2 and WSe2 exciton binding energies on insulating and metallic substrates

    Science.gov (United States)

    Park, Soohyung; Mutz, Niklas; Schultz, Thorsten; Blumstengel, Sylke; Han, Ali; Aljarb, Areej; Li, Lain-Jong; List-Kratochvil, Emil J. W.; Amsalem, Patrick; Koch, Norbert

    2018-04-01

    Understanding the excitonic nature of excited states in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) is of key importance to make use of their optical and charge transport properties in optoelectronic applications. We contribute to this by the direct experimental determination of the exciton binding energy (E b,exc) of monolayer MoS2 and WSe2 on two fundamentally different substrates, i.e. the insulator sapphire and the metal gold. By combining angle-resolved direct and inverse photoelectron spectroscopy we measure the electronic band gap (E g), and by reflectance measurements the optical excitonic band gap (E exc). The difference of these two energies is E b,exc. The values of E g and E b,exc are 2.11 eV and 240 meV for MoS2 on sapphire, and 1.89 eV and 240 meV for WSe2 on sapphire. On Au E b,exc is decreased to 90 meV and 140 meV for MoS2 and WSe2, respectively. The significant E b,exc reduction is primarily due to a reduction of E g resulting from enhanced screening by the metal, while E exc is barely decreased for the metal support. Energy level diagrams determined at the K-point of the 2D TMDCs Brillouin zone show that MoS2 has more p-type character on Au as compared to sapphire, while WSe2 appears close to intrinsic on both. These results demonstrate that the impact of the dielectric environment of 2D TMDCs is more pronounced for individual charge carriers than for a correlated electron-hole pair, i.e. the exciton. A proper dielectric surrounding design for such 2D semiconductors can therefore be used to facilitate superior optoelectronic device function.

  10. DNA deformability changes of single base pair mutants within CDE binding sites in S. Cerevisiae centromere DNA correlate with measured chromosomal loss rates and CDE binding site symmetries

    Directory of Open Access Journals (Sweden)

    Marx Kenneth A

    2006-03-01

    Full Text Available Abstract Background The centromeres in yeast (S. cerevisiae are organized by short DNA sequences (125 bp on each chromosome consisting of 2 conserved elements: CDEI and CDEIII spaced by a CDEII region. CDEI and CDEIII are critical sequence specific protein binding sites necessary for correct centromere formation and following assembly with proteins, are positioned near each other on a specialized nucleosome. Hegemann et al. BioEssays 1993, 15: 451–460 reported single base DNA mutants within the critical CDEI and CDEIII binding sites on the centromere of chromosome 6 and quantitated centromere loss of function, which they measured as loss rates for the different chromosome 6 mutants during cell division. Olson et al. Proc Natl Acad Sci USA 1998, 95: 11163–11168 reported the use of protein-DNA crystallography data to produce a DNA dinucleotide protein deformability energetic scale (PD-scale that describes local DNA deformability by sequence specific binding proteins. We have used the PD-scale to investigate the DNA sequence dependence of the yeast chromosome 6 mutants' loss rate data. Each single base mutant changes 2 PD-scale values at that changed base position relative to the wild type. In this study, we have utilized these mutants to demonstrate a correlation between the change in DNA deformability of the CDEI and CDEIII core sites and the overall experimentally measured chromosome loss rates of the chromosome 6 mutants. Results In the CDE I and CDEIII core binding regions an increase in the magnitude of change in deformability of chromosome 6 single base mutants with respect to the wild type correlates to an increase in the measured chromosome loss rate. These correlations were found to be significant relative to 105 Monte Carlo randomizations of the dinucleotide PD-scale applied to the same calculation. A net loss of deformability also tends to increase the loss rate. Binding site position specific, 4 data-point correlations were also

  11. Conformational Dynamics and Binding Free Energies of Inhibitors of BACE-1: From the Perspective of Protonation Equilibria.

    Directory of Open Access Journals (Sweden)

    M Olivia Kim

    2015-10-01

    Full Text Available BACE-1 is the β-secretase responsible for the initial amyloidogenesis in Alzheimer's disease, catalyzing hydrolytic cleavage of substrate in a pH-sensitive manner. The catalytic mechanism of BACE-1 requires water-mediated proton transfer from aspartyl dyad to the substrate, as well as structural flexibility in the flap region. Thus, the coupling of protonation and conformational equilibria is essential to a full in silico characterization of BACE-1. In this work, we perform constant pH replica exchange molecular dynamics simulations on both apo BACE-1 and five BACE-1-inhibitor complexes to examine the effect of pH on dynamics and inhibitor binding properties of BACE-1. In our simulations, we find that solution pH controls the conformational flexibility of apo BACE-1, whereas bound inhibitors largely limit the motions of the holo enzyme at all levels of pH. The microscopic pKa values of titratable residues in BACE-1 including its aspartyl dyad are computed and compared between apo and inhibitor-bound states. Changes in protonation between the apo and holo forms suggest a thermodynamic linkage between binding of inhibitors and protons localized at the dyad. Utilizing our recently developed computational protocol applying the binding polynomial formalism to the constant pH molecular dynamics (CpHMD framework, we are able to obtain the pH-dependent binding free energy profiles for various BACE-1-inhibitor complexes. Our results highlight the importance of correctly addressing the binding-induced protonation changes in protein-ligand systems where binding accompanies a net proton transfer. This work comprises the first application of our CpHMD-based free energy computational method to protein-ligand complexes and illustrates the value of CpHMD as an all-purpose tool for obtaining pH-dependent dynamics and binding free energies of biological systems.

  12. Alpha-particle energy spectra measured at forward angles in heavy-ion-induced reactions

    International Nuclear Information System (INIS)

    Borcea, C.; Cierlic, E.; Kalpakchieva, R.; Oganessian, Yu.Ts.; Penionzhkevich, Yu.E.

    1980-01-01

    Energy spectra have been measured for α-particles emitted in the bombardment of 159 Tb, 181 Ta, 197 Au, and 232 Th nuclei by 20 Ne, 22 Ne, and 40 Ar projectiles. The reaction products emitted in the angular range (0+-2)deg relative to the beam direction were analyzed using a magnetic spectrometer and detected by means of a semiconductor ΔE-E telescope. It was found that in all cases the experimentally measured maximum α-particle energy almost amounts to the maximum possible value calculated from the reaction energy balance for a two-body exit channel. A correlation was found between the measured absolute cross section in different target-projectile combinations and the α-particle binding energy in the target nuclei. On the basis of the obtained results a conclusion has been drawn that the α-particles are emitted in the early stage of the reaction

  13. A Critical Review of Validation, Blind Testing, and Real- World Use of Alchemical Protein-Ligand Binding Free Energy Calculations.

    Science.gov (United States)

    Abel, Robert; Wang, Lingle; Mobley, David L; Friesner, Richard A

    2017-01-01

    Protein-ligand binding is among the most fundamental phenomena underlying all molecular biology, and a greater ability to more accurately and robustly predict the binding free energy of a small molecule ligand for its cognate protein is expected to have vast consequences for improving the efficiency of pharmaceutical drug discovery. We briefly reviewed a number of scientific and technical advances that have enabled alchemical free energy calculations to recently emerge as a preferred approach, and critically considered proper validation and effective use of these techniques. In particular, we characterized a selection bias effect which may be important in prospective free energy calculations, and introduced a strategy to improve the accuracy of the free energy predictions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Non-invasive, kinetic measurements of [3H]nitrendipine binding to isolated rat myocytes by condensed phase radioluminescence

    International Nuclear Information System (INIS)

    Tscharner, V. von; Bailey, I.A.

    1983-01-01

    The binding of 3 H-labelled drug molecules to membranes of living cells give rise to photon emission from tryptophan residues at proteinaceous binding sites. This phenomenon, called condensed phase radioluminescence, has been used to measure non-invasively the kinetics of [ 3 H]nitrendipine binding and dissociation on the same samples of cultured beating cardiac myocytes. Signal arose only from bound drug molecules. Binding was monoexponential (tau = 5.5 min) as was dissociation (14.3 min). Preincubating cells with non-radioactive nifedipine reduced the amplitude and rate of [ 3 H]nitrendipine but not of [ 3 H]dihydroalprenolol binding. The potential uses of this phenomenon are discussed. (Auth.)

  15. Extended fenske-hall calculation of inner-shell binding energies using ( Z + 1)-bazis sets: Sulfur-containing molecules

    Science.gov (United States)

    Zwanziger, Ch.; Zwanziger, H.; Szargan, R.; Reinhold, J.

    1981-08-01

    It is shown that the S1s and S2p binding energies and their chemical shifts in the molecules H 2S, SO 2, SF 6 and COS obtained with hole-state calculations using an extended Fenske-Hall method are in good agreement with experimental values if mixed ( Z + 1)-basis sets are applied.

  16. Investigating the relative influences of molecular dimensions and binding energies on diffusivities of guest species inside nanoporous crystalline materials

    NARCIS (Netherlands)

    Krishna, R.; van Baten, J.M.

    2012-01-01

    The primary objective of this article is to investigate the relative influences of molecular dimensions and adsorption binding energies on unary diffusivities of guest species inside nanoporous crystalline materials such as zeolites and metal-organic frameworks (MOFs). The investigations are based

  17. Effect of non-parabolicity on the binding energy of a hydrogenic donor in quantum well with a magnetic field

    International Nuclear Information System (INIS)

    Jayakumar, K.; Balasubramanian, S.; Tomak, M.

    1985-08-01

    A hydrogenic donor in a quantum well in the presence of a magnetic field perpendicular to the barrier is considered in the effective mass approximation. The non-parabolicity of the subband is included in the Hamiltonian by an energy-dependent effective mass. The donor binding energy is calculated variationally for different well widths and the effect of non-parabolicity is discussed in the light of recent experimental results. (author)

  18. Measurements of the acid-binding capacity of ingredients used in pig diets

    Directory of Open Access Journals (Sweden)

    Lawlor Peadar G

    2005-08-01

    Full Text Available Some feed ingredients bind more acid in the stomach than others and for this reason may be best omitted from pig starter foods if gastric acidity is to be promoted. The objective of this study was to measure the acid-binding capacity (ABC of ingredients commonly used in pig starter foods. Ingredients were categorised as follows: (i milk products (n = 6, (ii cereals (n = 10, (iii root and pulp products (n = 5, (iv vegetable proteins (n = 11, (v meat and fish meal (n = 2, (vi medication (n = 3, (vii amino acids (n = 4, (viii minerals (n = 16, (ix acid salts (n = 4, (x acids (n = 10. A 0.5 g sample of food was suspended in 50 ml distilled de-ionised water with continuous stirring. This suspension was titrated with 0.1 mol/L HCl or 0.1 mol/L NaOH so that approximately 10 additions of titrant was required to reach pH 3.0. The pH readings after each addition were recorded following equilibration for three minutes. ABC was calculated as the amount of acid in milliequivalents (meq required to lower the pH of 1 kg food to (a pH 4.0 (ABC-4 and (b pH 3.0 (ABC-3. Categories of food had significantly different (P

  19. The role of extra-atomic relaxation in determining Si2p binding energy shifts at silicon/silicon oxide interfaces

    International Nuclear Information System (INIS)

    Zhang, K.Z.; Greeley, J.N.; Banaszak Holl, M.M.; McFeely, F.R.

    1997-01-01

    The observed binding energy shift for silicon oxide films grown on crystalline silicon varies as a function of film thickness. The physical basis of this shift has previously been ascribed to a variety of initial state effects (Si endash O ring size, strain, stoichiometry, and crystallinity), final state effects (a variety of screening mechanisms), and extrinsic effects (charging). By constructing a structurally homogeneous silicon oxide film on silicon, initial state effects have been minimized and the magnitude of final state stabilization as a function of film thickness has been directly measured. In addition, questions regarding the charging of thin silicon oxide films on silicon have been addressed. From these studies, it is concluded that initial state effects play a negligible role in the thickness-dependent binding energy shift. For the first ∼30 Angstrom of oxide film, the thickness-dependent binding energy shift can be attributed to final state effects in the form of image charge induced stabilization. Beyond about 30 Angstrom, charging of the film occurs. copyright 1997 American Institute of Physics

  20. Energy upgrading measures improve also indoor climate

    DEFF Research Database (Denmark)

    Foldbjerg, Peter; Knudsen, Henrik Nellemose

    2014-01-01

    A new survey shows that the economy is what motivates Danish owners of single-family houses the most to start energy upgrading, and that improved indoor climate is also an important factor. After the upgrading, homeowners experience both improved economy and indoor climate. In a strategy...... to increase the number of homeowners who venture into a major energy upgrading of their house, the demonstrated positive side effects, more than energy savings, should be included in the communication to motivate homeowners. The barriers should be reduced by “taking the homeowners by the hand” and helping...... them to choose relevant energy-saving solutions as well as clarifying the financial consequences and opportunities....

  1. Procedure for Measuring and Reporting Commercial Building Energy Performance

    Energy Technology Data Exchange (ETDEWEB)

    Barley, D.; Deru, M.; Pless, S.; Torcellini, P.

    2005-10-01

    This procedure is intended to provide a standard method for measuring and characterizing the energy performance of commercial buildings. The procedure determines the energy consumption, electrical energy demand, and on-site energy production in existing commercial buildings of all types. The performance metrics determined here may be compared against benchmarks to evaluate performance and verify that performance targets have been achieved.

  2. Free energy calculations offer insights into the influence of receptor flexibility on ligand-receptor binding affinities.

    Science.gov (United States)

    Dolenc, Jožica; Riniker, Sereina; Gaspari, Roberto; Daura, Xavier; van Gunsteren, Wilfred F

    2011-08-01

    Docking algorithms for computer-aided drug discovery and design often ignore or restrain the flexibility of the receptor, which may lead to a loss of accuracy of the relative free enthalpies of binding. In order to evaluate the contribution of receptor flexibility to relative binding free enthalpies, two host-guest systems have been examined: inclusion complexes of α-cyclodextrin (αCD) with 1-chlorobenzene (ClBn), 1-bromobenzene (BrBn) and toluene (MeBn), and complexes of DNA with the minor-groove binding ligands netropsin (Net) and distamycin (Dist). Molecular dynamics simulations and free energy calculations reveal that restraining of the flexibility of the receptor can have a significant influence on the estimated relative ligand-receptor binding affinities as well as on the predicted structures of the biomolecular complexes. The influence is particularly pronounced in the case of flexible receptors such as DNA, where a 50% contribution of DNA flexibility towards the relative ligand-DNA binding affinities is observed. The differences in the free enthalpy of binding do not arise only from the changes in ligand-DNA interactions but also from changes in ligand-solvent interactions as well as from the loss of DNA configurational entropy upon restraining.

  3. Asymptotic theory of charge exchange for relativistic velocities and binding energies

    International Nuclear Information System (INIS)

    Demkov, Yu.N.; Ostrovskij, V.N.; Shevchenko, S.I.

    1983-01-01

    The asymptotic theory of charge exchange (ATCE) at a large shock parameter rho is applied to the case of relativistic velocities and binding energies. The charge exchange reaction (1+e)+2 → 1+(e+2), when an electron from the bound 1Ssub(1/2) state on one particle transforms to the 1Ssub(1/2) state on the other, is considered. Oasic features of the method are as follows: 1) the representation of the transition amplitude in the form of multidimensional integral over some hypersurface; 2) the use of the saddle-point method for calculating necessary multidimensional integrals; 3) the refinement of wave functions as compared with the case of the absence of the interaction. The ATCE (at rho → infinity) makes it possible to obtain analytical results whose accuracy is determined solely with the shock parameter rho. A basic term of charge exchange amplitude asymptotics for 1Ssub(1/2) → 1Ssub(1/2) transitions has been calculated. It is possible to consider the ATCE as a peculiar reference with which theoretical and experimental results can be compared as well as to use the ATCE as boundary conditions during numerical calculations

  4. Electron energy measurements in pulsating auroras

    International Nuclear Information System (INIS)

    McEwan, D.J.; Yee, E.; Whalen, B.A.; Yau, A.W.

    1981-01-01

    Electron spectra were obtained during two rocket flights into pulsating aurora from Southend, Saskatchewan. The first rocket launched at 1143:24 UT on February 15, 1980 flew into an aurora of background intensity 275 R of N 2 + 4278 A and showing regular pulsations with about a 17 s period. Electron spectra of Maxwellian energy distributions were observed with an average E 0 = 1.5 keV, rising to 1.8 keV during the pulsations. There was one-to-one correspondence between the electron energy modulation and the observed optical pulsations. The second rocket, launched at 1009:10 UT on February 23, flew into a diffuse auroral surface of intensity 800 R of N 2 + 4278 A and with somewhat irregular pulsations. The electron spectra were again of Maxwellian energy distribution with an average E 0 = 1.8 keV increasing to 2.1 keV during the pulsations. The results from these flights suggest that pulsating auroras occurring in the morning sector may be quite commonly excited by low energy electrons. The optical pulsations are due to periodic increases in the energy of the electrons with the source of modulation in the vicintiy of the geomagnetic equatorial plane. (auth)

  5. Are automated molecular dynamics simulations and binding free energy calculations realistic tools in lead optimization? An evaluation of the linear interaction energy (LIE) method

    NARCIS (Netherlands)

    Stjernschantz, E.M.; Marelius, J.; Medina, C.; Jacobsson, M.; Vermeulen, N.P.E.; Oostenbrink, C.

    2006-01-01

    An extensive evaluation of the linear interaction energy (LIE) method for the prediction of binding affinity of docked compounds has been performed, with an emphasis on its applicability in lead optimization. An automated setup is presented, which allows for the use of the method in an industrial

  6. Subsite binding energies of an exo-polygalacturonase using isothermal titration calorimetry

    Science.gov (United States)

    Thermodynamic parameters for binding of a series of galacturonic acid oligomers to an exo-polygalacturonase, RPG16 from Rhizopus oryzae, were determined by isothermal titration calorimetry. Binding of oligomers varying in chain length from two to five galacturonic acid residues is an exothermic proc...

  7. Aircraft Measurements of Atmospheric Kinetic Energy Spectra

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Lilly, D. K.

    1983-01-01

    Wind velocity data obtained from a jet airliner are used to construct kinetic energy spectra over the range of wavelengths from 2.5 to 2500 km. The spectra exhibit an approximate -5/3 slope for wavelengths of less than about 150 km, steepening to about -2.2 at larger scales. These results support...

  8. Transformation of cooperative free energies between ligation systems of hemoglobin: resolution of the carbon monoxide binding intermediates.

    Science.gov (United States)

    Huang, Y; Ackers, G K

    1996-01-23

    A strategy has been developed for quantitatively "translating" the distributions of cooperative free energy between different oxygenation analogs of hemoglobin (Hb). The method was used to resolve the cooperative free energies of all eight carbon monoxide binding intermediates. These parameters of the FeCOHb system were determined by thermodynamic transformation of corresponding free energies obtained previously for all species of the Co/FeCO system, i.e., where cobalt-substituted hemes comprise the unligated sites [Speros, P. C., et al. (1991) Biochemistry 30, 7254-7262]. Using hybridized combinations of normal and cobalt-substituted Hb, ligation analog systems Co/FeX (X = CO, CN) were constructed and experimentally quantified. Energetics of cobalt-induced structural perturbation were determined for all species of both the "mixed metal" Co/Fe system and also the ligated Co/FeCN system. It was found that major energetic perturbations of the Co/Fe hybrid species originate from a pure cobalt substitution effect on the alpha subunits. These perturbations are transduced to the beta subunit within the same dimeric half-tetramer, resulting in alteration of the free energies for binding at the nonsubstituted (Fe) sites. Using the linkage strategy developed in this study along with the determined energetics of these couplings, the experimental assembly free energies for the Co/FeCO species were transformed into cooperative free energies of the 10 Fe/FeCO species. The resulting values were found to distribute according to predictions of a symmetry rule mechanism proposed previously [Ackers, G. K., et al. (1992) Science 255, 54-63]. Their distribution is consistent with accurate CO binding data of normal Hb [Perrella, M., et al. (1990b) Biophys. Chem. 37, 211-223] and also with accurate O2 binding data obtained under the same conditions [Chu, A. H., et al. (1984) Biochemistry 23, 604-617].

  9. Quasiparticle Lagrangian for the binding energies and self-consistent fields of nuclei in the Fermi-liquid approach

    International Nuclear Information System (INIS)

    Sapershtein, E.E.; Khodel', V.A.

    1981-01-01

    The problem of calculating the binding energy and self-consistent field of a nucleus in terms of the effective interaction of quasiparticles at the Fermi surface is solved. It is shown that for this one can go over from the system of N Fermi particles to a system of N interacting quasiparticles described by an effective quasiparticle Lagrangian L/sub q/. It is shown that the corresponding quasiparticle energy is equal to the ground-state energy of the system. The connection between the parameters of the effective Lagrangian and the constants of the quasiparticle interaction introduced in the theory of finite Fermi systems is established

  10. DCARR: a spectrograph for measuring low-energy x rays

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    DCARR, the Differential Critical Angle Reflection Refraction detector system, is described. This detector was designed to measure low-energy x rays, 500 to 5000 eV, with a high degree of resolution, 250 eV. DCARR was developed because these low-energy measurements are of interest in the diagnostics of x-radiation in nuclear tests and available equipment could not make measurements at this low an energy in field tests. DCARR is a versatile piece of equipment that can also be used as a laboratory tool, such as in measuring the low-energy x rays emitted by lasers and various x-ray machines

  11. Measurements of energy resolution with hemispheric scintillators

    International Nuclear Information System (INIS)

    Mendonca, A.C.S.; Binns, D.A.C.; Tauhata, L.; Poledna, R.

    1980-01-01

    The hemispheric configuration is used for plastic scintillators type NE 102 with the aiming to optimize the light collect. Scintillators at this configuration, with radii of 3,81 cm and 2,54 cm, are showing improvement about 16-17% in the energy resolution, on cilyndric scintillators with the same volume, for gamma rays of 511-1275 KeV. (E.G.) [pt

  12. Measurement of energy efficiency based on economic foundations

    International Nuclear Information System (INIS)

    Filippini, Massimo; Hunt, Lester C.

    2015-01-01

    Energy efficiency policy is seen as a very important activity by almost all policy makers. In practical energy policy analysis, the typical indicator used as a proxy for energy efficiency is energy intensity. However, this simple indicator is not necessarily an accurate measure given changes in energy intensity are a function of changes in several factors as well as ‘true’ energy efficiency; hence, it is difficult to make conclusions for energy policy based upon simple energy intensity measures. Related to this, some published academic papers over the last few years have attempted to use empirical methods to measure the efficient use of energy based on the economic theory of production. However, these studies do not generally provide a systematic discussion of the theoretical basis nor the possible parametric empirical approaches that are available for estimating the level of energy efficiency. The objective of this paper, therefore, is to sketch out and explain from an economic perspective the theoretical framework as well as the empirical methods for measuring the level of energy efficiency. Additionally, in the second part of the paper, some of the empirical studies that have attempted to measure energy efficiency using such an economics approach are summarized and discussed.

  13. Hydrogenic-Donor Impurity Binding Energy Dependence of the Electric Field in GaAs/AlxGa1−xAs Quantum Rings

    Directory of Open Access Journals (Sweden)

    Guangxin Wang

    2013-01-01

    Full Text Available Using a variational method with two-parameter trial wave function and the effective mass approximation, the binding energy of a donor impurity in GaAs/AlxGa1−xAs cylindrical quantum ring (QR subjected to an external field is calculated. It is shown that the donor impurity binding energy is highly dependent on the QR structure parameters (radial thickness and height, impurity position, and external electric field. The binding energy increases inchmeal as the QR parameters (radial thickness and height decrease until a maximum value for a central impurity and then begins to drop quickly. The applied electric field can significantly modify the spread of electronic wave function in the QR and shift electronic wave function from the donor position and then leads to binding energy changes. In addition, results for the binding energies of a hydrogenic donor impurity as functions of the impurity position and applied electric field are also presented.

  14. Simultaneous measurement of hormone release and secretagogue binding by individual pituitary cells

    International Nuclear Information System (INIS)

    Smith, P.F.; Neill, J.D.

    1987-01-01

    The quantitative relationship between receptor binding and hormone secretion at the single-cell level was investigated in the present study by combining a reverse hemolytic plaque assay for measurement of luteinizing hormone (LH) secretion from individual pituitary cells with an autoradiographic assay of 125 I-labeled gonadontropin-releasing hormone (GnRH) agonist binding to the same cells. In the plaque assay, LH secretion induces complement-mediated lysis of the LH-antibody-coated erythrocytes around the gonadotropes, resulting in areas of lysis (plaques). LH release from individual gonadotropes was quantified by comparing radioimmunoassayable LH release to hemolytic area in similarly treated cohort groups of cells; plaque area was linearly related to the amount of LH secreted. Receptor autoradiography was performed using 125 I-labeled GnRH-A (a superagonist analog of GnRH) both as the ligand and as the stimulant for LH release in the plaque assay. The grains appeared to represent specific and high-affinity receptors for GnRH because (i) no pituitary cells other than gonadotropes bound the labeled ligand and (ii) grain development was progressively inhibited by coincubation with increasing doses of unlabeled GnRH-A. The authors conclude that GnRH receptor number for any individual gonadotrope is a weak determinant of the amount of LH it can secrete; nevertheless, full occupancy of all its GnRH receptors is required for any gonadotrope to reach its full LH-secretory capacity. Apparently the levels of other factors comprising the steps along the secretory pathway determine the secretory capacity of an individual cell

  15. Honey bee odorant-binding protein 14: effects on thermal stability upon odorant binding revealed by FT-IR spectroscopy and CD measurements.

    Science.gov (United States)

    Schwaighofer, Andreas; Kotlowski, Caroline; Araman, Can; Chu, Nam; Mastrogiacomo, Rosa; Becker, Christian; Pelosi, Paolo; Knoll, Wolfgang; Larisika, Melanie; Nowak, Christoph

    2014-03-01

    In the present work, we study the effect of odorant binding on the thermal stability of honey bee (Apis mellifera L.) odorant-binding protein 14. Thermal denaturation of the protein in the absence and presence of different odorant molecules was monitored by Fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD). FT-IR spectra show characteristic bands for intermolecular aggregation through the formation of intermolecular β-sheets during the heating process. Transition temperatures in the FT-IR spectra were evaluated using moving-window 2D correlation maps and confirmed by CD measurements. The obtained results reveal an increase of the denaturation temperature of the protein when bound to an odorant molecule. We could also discriminate between high- and low-affinity odorants by determining transition temperatures, as demonstrated independently by the two applied methodologies. The increased thermal stability in the presence of ligands is attributed to a stabilizing effect of non-covalent interactions between odorant-binding protein 14 and the odorant molecule.

  16. Displacement energies for Zr measured in a HVEM

    International Nuclear Information System (INIS)

    Griffiths, M.

    1989-01-01

    This paper describes direct measurements of threshold displacement energies for Zr obtained by electron irradiation in a high voltage microscope (HVEM) and compares the measurements with the earlier data.

  17. Hartree-Fock calculation of nuclear binding energy of sodium isotopes

    International Nuclear Information System (INIS)

    Campi, X.; Flocard, H.

    1975-01-01

    Mass spectrometer measurements of the neutron rich sodium isotopes show a sudden increase at 31 Na in the values of the two neutron separation energies. The spherical shell model naturally predicts a sudden decrease at 32 Na after the N=20 shell closure. It is proposed that the explanation for this disagreement lies in the fact that sodium isotopes in this mass region are strongly deformed due to the filling of negative parity orbitals from the 1f(7/2) shell. Hartree-Fock calculations are presented in support of this conjecture [fr

  18. High Energy Measurement of the Deuteron Photodisintegration Differential Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Elaine [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2002-05-01

    New measurements of the high energy deuteron photodisintegration differential cross section were made at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia. Two experiments were performed. Experiment E96-003 was performed in experimental Hall C. The measurements were designed to extend the highest energy differential cross section values to 5.5 GeV incident photon energy at forward angles. This builds upon previous high energy measurements in which scaling consistent with the pQCD constituent counting rules was observed at 90 degrees and 70 degrees in the center of mass. From the new measurements, a threshold for the onset of constituent counting rule scaling seems present at transverse momentum approximately 1.3 GeV/c. The second experiment, E99-008, was performed in experimental Hall A. The measurements were designed to explore the angular distribution of the differential cross section at constant energy. The measurements were made symmetric about 90 degrees

  19. Measuring industrial energy efficiency: Physical volume versus economic value

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, S.L.; Niefer, M.J.; Roop, J.M.

    1996-12-01

    This report examines several different measures of industrial output for use in constructing estimates of industrial energy efficiency and discusses some reasons for differences between the measures. Estimates of volume-based measures of output, as well as 3 value-based measures of output (value of production, value of shipments, and value added), are evaluated for 15 separate 4-digit industries. Volatility, simple growth rate, and trend growth rate estimates are made for each industry and each measure of output. Correlations are made between the volume- and value-based measures of output. Historical energy use data are collected for 5 of the industries for making energy- intensity estimates. Growth rates in energy use, energy intensity, and correlations between volume- and value-based measures of energy intensity are computed. There is large variability in growth trend estimates both long term and from year to year. While there is a high correlation between volume- and value-based measures of output for a few industries, typically the correlation is low, and this is exacerbated for estimates of energy intensity. Analysis revealed reasons for these low correlations. It appears that substantial work must be done before reliable measures of trends in the energy efficiency of industry can be accurately characterized.

  20. Measuring structure functions at SSC energies

    International Nuclear Information System (INIS)

    Morfin, J.G.; Owens, J.F.

    1985-01-01

    Topics discussed include measuring Λ, tests of QCD using hard scattering processes, and measuring parton distributions. In each case, any opportunities and advantages afforded by the unique features of the SSC are emphasized. The working group on structure functions was charged with investigating two specific questions: (1) How well are the various parton distributions known in the kinematic region relevant to calculations for the SSC. (2) What new information can be learned about parton distributions at the SSC. Especially for this working group, the advantages of having a fixed-target facility at the SSC for the measurement of the parton distributions with multi-TeV leptons, were to be examined. 15 references

  1. Measuring energy efficiency in the United States` economy: A beginning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Energy efficiency is a vital component of the Nation`s energy strategy. One of the Department of Energy`s missions are to promote energy efficiency to help the Nation manage its energy resources. The ability to define and measure energy efficiency is essential to this objective. In the absence of consistent defensible measures, energy efficiency is a vague, subjective concept that engenders directionless speculation and confusion rather than insightful analysis. The task of defining and measuring energy efficiency and creating statistical measures as descriptors is a daunting one. This publication is not a final product, but is EIA`s first attempt to define and measure energy efficiency in a systematic and robust manner for each of the sectors and the United States economy as a whole. In this process, EIA has relied on discussions, customer reviews, in-house reviews, and seminars that have focused on energy efficiency in each of the sectors. EIA solicits the continued participation of its customers in further refining this work.

  2. Electro-optic measurement of terahertz pulse energy distribution

    NARCIS (Netherlands)

    Sun, J.H.; Gallacher, J.G.; Brussaard, G.J.H.; Lemos, N.; Issac, R.; Huang, Z.X.; Dias, J.M.; Jaroszynski, D.A.

    2009-01-01

    An accurate and direct measurement of the energy distribution of a low repetition rate terahertz electromagnetic pulse is challenging because of the lack of sensitive detectors in this spectral range. In this paper, we show how the total energy and energy density distribution of a terahertz

  3. Evaluation of B3LYP, X3LYP, and M06-class density functionals for predicting the binding energies of neutral, protonated, and deprotonated water clusters

    OpenAIRE

    Bryantsev, Vyacheslav S.; Diallo, Mamadou S.; van Duin, Adri C. T.; Goddard, William A., III

    2009-01-01

    In this paper we assess the accuracy of the B3LYP, X3LYP, and newly developed M06-L, M06-2X, and M06 functionals to predict the binding energies of neutral and charged water clusters including (H_2O)_n, n = 2−8, 20), H_3O+(H_2O_)n, n = 1−6, and OH−(H_2O)_n, n = 1−6. We also compare the predicted energies of two ion hydration and neutralization reactions on the basis of the calculated binding energies. In all cases, we use as benchmarks calculated binding energies of water clusters extrapolate...

  4. Magnetic field-dependent of binding energy in GaN/InGaN/GaN spherical QDQW nanoparticles

    International Nuclear Information System (INIS)

    El Ghazi, Haddou; Jorio, Anouar; Zorkani, Izeddine

    2013-01-01

    Simultaneous study of magnetic field and impurity's position effects on the ground-state shallow-donor binding energy in GaN|InGaN|GaN (core|well|shell) spherical quantum dot–quantum well (SQDQW) as a function of the ratio of the inner and the outer radius is reported. The calculations are investigated within the framework of the effective-mass approximation and an infinite deep potential describing the quantum confinement effect. A Ritz variational approach is used taking into account of the electron-impurity correlation and the magnetic field effect in the trial wave-function. It appears that the binding energy depends strongly on the external magnetic field, the impurity's position and the structure radius. It has been found that: (i) the magnetic field effect is more marked in large layer than in thin layer and (ii) it is more pronounced in the spherical layer center than in its extremities

  5. Absence of a Scott correction for the total binding energy of noninteracting fermions in a smooth potential well

    International Nuclear Information System (INIS)

    Huxtable, B.D.

    1988-01-01

    It is shown, for V in a particular class of smooth functions, that the total binding energy, E(Z), of Z noninteracting Fermions in the potential well Z 4/3 V(Z 1/3 X) obeys E(Z) = c TF (V)Z 7/3 + O(Z 5/3 ) as Z → ∞. Here c TF (V) is the coefficient predicted by Thomas-Fermi theory. This result is consistent with the conjectured Scott correction, which occurs at order Z 2 , to the total binding energy of an atomic number Z. This correction is thought to arise only because V(x)∼ - |x| -1 near x = 0 in the atomic problem, and so V is not a smooth function

  6. The effect of including tensor forces in nucleon-nucleon interaction on three-nucleon binding energy

    International Nuclear Information System (INIS)

    Osman, A.; Ramadan, S.

    1986-01-01

    Separable two-body interactions are used in considering the three-nucleon problem. The nucleon-nucleon potentials are taken to include attraction and repulsion as well as tensor forces. The separable approximation is used in order to investigate the effect of the tensor forces. The separable expansion is introduced in the three-nucleon problem, by which the Faddeev equations are reduced to a well-behaved set of coupled integral equations. Numerical calculations are carried out for the obtained integral equations using potential functions of the Yamaguchi, Gaussian, Takabin, Mongan and Reid forms. The present calculated values of the binding energies of the 3 H and 3 He nuclei are in good agreement with the experimental values. The effect of including the tensor forces in the nucleon-nucleon interactions is found to improve the three-nucleon binding energy by about 4.490% to 8.324%. 37 refs., 2 tabs. (author)

  7. Application of the step-wise regression procedure to the semi-empirical formulae of the nuclear binding energy

    International Nuclear Information System (INIS)

    Eissa, E.A.; Ayad, M.; Gashier, F.A.B.

    1984-01-01

    Most of the binding energy semi-empirical terms without the deformation corrections used by P.A. Seeger are arranged in a multiple linear regression form. The stepwise regression procedure with 95% confidence levels for acceptance and rejection of variables is applied for seeking a model for calculating binding energies of even-even (E-E) nuclei through a significance testing of each basic term. Partial F-values are taken as estimates for the significance of each term. The residual standard deviation and the overall F-value are used for selecting the best linear regression model. (E-E) nuclei are taken into sets lying between two successive proton and neutron magic numbers. The present work is in favour of the magic number 126 followed by 164 for the neutrons and indecisive in supporting the recently predicted proton magic number 114 rather than the previous one, 126. (author)

  8. Lowest excited-state impurity binding energy in InGaN/GaN parabolic QWW: magnetic field effect

    International Nuclear Information System (INIS)

    Haddou El Ghazi; Anouar Jorio; Izeddine Zorkani

    2013-01-01

    In this paper, we have investigated the magnetic field effect on the lowest excited-state binding energy of hydrogenic shallow-donor impurity in wurtzite (In,Ga)N/GaN parabolic transversal-section quantum-well wire (PQWW) using the finite-difference method within the quasi-one-dimensional effective potential model. The calculations are performed within the framework of the effective mass approximation. A cylindrical QWW effective radius is taken into account to describe the lateral confinement strength. The numerical results show that: (i) the probability density is the largest on a circularity whose radius is the effective radius and (ii) the lowest excited-state binding energy is the largest when an impurity is located on this circularity while it starts to decrease as the impurity is away from the circularity. (author)

  9. Total-energy Assisted Tight-binding Method Based on Local Density Approximation of Density Functional Theory

    Science.gov (United States)

    Fujiwara, Takeo; Nishino, Shinya; Yamamoto, Susumu; Suzuki, Takashi; Ikeda, Minoru; Ohtani, Yasuaki

    2018-06-01

    A novel tight-binding method is developed, based on the extended Hückel approximation and charge self-consistency, with referring the band structure and the total energy of the local density approximation of the density functional theory. The parameters are so adjusted by computer that the result reproduces the band structure and the total energy, and the algorithm for determining parameters is established. The set of determined parameters is applicable to a variety of crystalline compounds and change of lattice constants, and, in other words, it is transferable. Examples are demonstrated for Si crystals of several crystalline structures varying lattice constants. Since the set of parameters is transferable, the present tight-binding method may be applicable also to molecular dynamics simulations of large-scale systems and long-time dynamical processes.

  10. Simultaneous integral measurement of electron energy and charge albedoes

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Miller, G.H.; Halbleib, J.A. Sr.

    Results of a series of experiments in which backscattered energy has been determined from precise energy deposition measurements using an improved technique are presented. The fraction of the energy backscattered for electrons incident on Be, Ti, Mo, and Ta is determined as a function of energy and angle of incidence. The improved technique for the absolute measurement of energy deposition using calorimeters involves square-wave (on-off) modulation of the beam. Uncertainties in the measured backscattered energy are 1 to 6 percent, except for Be at normal incidence where they must agree by definition. Experiment and theory agree quite well for Mo and Be at 60 0 . The measured data for Ta and Ti are clearly higher than the calculated results, which is not completely understood. (U.S.)

  11. Calorimetric sensors for energy deposition measurements

    International Nuclear Information System (INIS)

    Langenbrunner, J.; Cooper, R.; Morgan, G.

    1998-01-01

    A calorimetric sensor with several novel design features has been developed. These sensors will provide an accurate sampling of thermal power density and energy deposition from proton beams incident on target components of accelerator-based systems, such as the Accelerator Production of Tritium Project (APT) and the Spallation Neutron Source (SNS). A small, solid slug (volume = 0.347 cc) of target material is suspended by kevlar fibers and surrounded by an adiabatic enclosure in an insulating vacuum canister of stainless steel construction. The slug is in thermal contact with a low-mass, calibrated, 100-kΩ thermistor. Power deposition caused by the passage of radiation through the slug is calculated from the rate of temperature rise of the slug. The authors have chosen slugs composed of Pb, Al, and LiAl

  12. Implications of energy efficiency measures in wheat production

    DEFF Research Database (Denmark)

    Meyer-Aurich, Andreas; Ziegler, T.; Scholz, L.

    The economic and environmental effect of energy saving measures were analyzed for a typical wheat production system in Germany. The introduction of precision farming, reduced nitrogen fertilization and improved crop drying technologies proved to be efficient measures for enhancing energy efficiency...

  13. Binding energy and photoionization cross-section of hydrogen-like impurity in a Poschl-Teller quantum well

    International Nuclear Information System (INIS)

    Hakimifard, A.

    2010-01-01

    The effect of the donor impurity position and the form of confining potential on the binding energy and the photoionization cross-section if a semiconductor quantum well with Poschl-Teller potential is investigated. An analytical expression for the photoionization cross-section is obtained for the case when the polarization vector of light wave is directed along the direction of size quantization. It is shown that the photoionization cross-section has a threshold behavior

  14. Shedding Light on the EOS-Gravity Degeneracy and Constraining the Nuclear Symmetry Energy from the Gravitational Binding Energy of Neutron Stars

    Directory of Open Access Journals (Sweden)

    He Xiao-Tao

    2016-01-01

    Full Text Available A thorough understanding of properties of neutron stars requires both a reliable knowledge of the equation of state (EOS of super-dense nuclear matter and the strong-field gravity theories simultaneously. To provide information that may help break this EOS-gravity degeneracy, we investigate effects of nuclear symmetry energy on the gravitational binding energy of neutron stars within GR and the scalar-tensor subset of alternative gravity models. We focus on effects of the slope L of nuclear symmetry energy at saturation density and the high-density behavior of nuclear symmetry energy. We find that the variation of either the density slope L or the high-density behavior of nuclear symmetry energy leads to large changes in the binding energy of neutron stars. The difference in predictions using the GR and the scalar-tensor theory appears only for massive neutron stars, and even then is significantly smaller than the difference resulting from variations in the symmetry energy.

  15. Energy-saving measures in multi-storage housing construction

    Directory of Open Access Journals (Sweden)

    Мария Дмитриевна Коровина

    2017-05-01

    Full Text Available In this article the main directions of energy saving in multi-storey housing construction and methods for increasing energy efficiency are considered. The main problems of implementing energy-saving measures were touched; the need for their analysis during the development of each construction project with a view to choosing the most effective complex from the energy, economic, ecological and social points of view was justified. It is noted that such an approach can become an important factor of saving energy in the sphere of housing construction and reducing the energy intensity of the entire Russian economy.

  16. Jet energy measurements with the ZEUS prototype calorimeter

    International Nuclear Information System (INIS)

    Kroeger, W.

    1993-01-01

    The uranium scintillator calorimeter of the ZEUS detector is designed to achieve an excellent energy calibration and the best possible energy resolution for jets. Therefore the response of the prototype calorimeter to jets has been measured using an interaction trigger. The mean response and energy resolution was measured for jets of 50 GeV - 100 GeV and compared to the one for pions. Within the ZEUS detector dead material is placed in front of the calorimeter. The influence of 4 cm and 10 cm thick aluminium absorbers in front of the calorimeter was measured. The charged multiplicity was measured in front and behind the aluminium absorber. With these multiplicities the energy loss in the absorber is corrected. The correction has been done so that the mean response with absorber is equal to the mean response without absorber. The improvement of the energy resolution is investigated. The measured results are compared with Monte Carlo simulations. (orig.) [de

  17. Stark effect-dependent of ground-state donor binding energy in InGaN/GaN parabolic QWW

    International Nuclear Information System (INIS)

    El Ghazi, Haddou; Zorkani, Izeddine; Jorio, Anouar

    2013-01-01

    Using the finite-difference method within the quasi-one-dimensional effective potential model and effective mass approximation, the ground-state binding energy of hydrogenic shallow-donor impurity in wurtzite (WZ) (In,Ga)N/GaN parabolic transversal-section quantum-well wires (PQWWs) subjected to external electric field is investigated. An effective radius of a cylindrical QWW describing the strength of the lateral confinement is introduced. The results show that (i) the position of the largest electron probability density in x–y plane is located at a point and it is pushed along the negative sense by the electric field directed along the positive sense, (ii) the ground-state binding energy is largest for the impurity located at this point and starts to decrease when the impurity is away from this point, (iii) the ground-state binding energy decreases with increase in the external electric field and effective radius, and (iv) the Stark-shift increases with the increase of the external electric field and the effective radius

  18. Polarizability and binding energy of a shallow donor in spherical quantum dot-quantum well (QD-QW)

    Science.gov (United States)

    Rahmani, K.; Chrafih, Y.; M’Zred, S.; Janati, S.; Zorkani, I.; Jorio, A.; Mmadi, A.

    2018-03-01

    The polarizability and the binding energy is estimated for a shallow donor confined to move in inhomogeneous quantum dots (CdS/HgS/CdS). In this work, the Hass variational method within the effective mass approximation in used in the case of an infinitely deep well. The polarizability and the binding energy depend on the inner and the outer radius of the QDQW, also it depends strongly on the donor position. It’s found that the stark effect is more important when the impurity is located at the center of the (QDQW) and becomes less important when the donor moves toward the extremities of the spherical layer. When the electric field increases, the binding energy and the polarizability decreases. Its effects is more pronounced when the impurity is placed on the center of the spherical layer and decrease when the donor move toward extremities of this spherical layer. We have demonstrated the existence of a critical value {≤ft( {{{{R_1}} \\over {{R_2}}}} \\right)cri} which can be used to distinguish the tree dimension confinement from the spherical surface confinement and it’s may be important for the nanofabrication techniques.

  19. ICT energy efficiency in higher education. Continuous measurement and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ter Hofte, H. [Novay, Enschede (Netherlands)

    2011-11-15

    Power consumption of information and communications technology (ICT) is rising rapidly worldwide. Reducing (the growth in) energy demand helps to achieve sustainability goals in the area of energy resource depletion, energy security, economy, and ecology. Various governments and industry consortia have set out policies and agreements to reduce the (growth in) demand for energy. In the MJA3 agreements in the Netherlands, various organizations, including all 14 universities and 39 universities of applied sciences pledged to achieve 30% increase in energy efficiency in 2020 compared to 2005. In this report, we argue that using the number of kilowatt-hours of final electricity used for ICT per enrolled student per day (kWh/st/d), should be used as the primary metric for ICT energy efficiency in higher education. For other uses of electricity than ICT in higher education, we express electricity use in kilowatthours per person per day (kWh/p/d). Applying continuous monitoring and management of ICT energy is one approach one could take to increase ICT energy efficiency in education. In households, providing direct (i.e. real-time) feedback about energy use typically results in 5-15% energy savings, whereas indirect feedback (provided some time after consumption occurs), results in less energy savings, typically 0-10%. Continuous measurement of ICT electricity use can be done in a variety of ways. In this report, we distinguish and describe four major measurement approaches: (1) In-line meters, which require breaking the electrical circuit to install the meter; (2) clamp-on-meters, which can be wrapped around a wire; (3) add-ons to existing energy meters, which use analog or digital ports of existing energy meters; (4) software-only measurement, which uses existing network interfaces, protocols and APIs. A measurement approach can be used at one or more aggregation levels: at building level (to measure all electrical energy used in a building, e.g. a datacenter); at

  20. Energy storage cell impedance measuring apparatus, methods and related systems

    Science.gov (United States)

    Morrison, John L.; Morrison, William H.; Christophersen, Jon P.

    2017-12-26

    Energy storage cell impedance testing devices, circuits, and related methods are disclosed. An energy storage cell impedance measuring device includes a sum of sinusoids (SOS) current excitation circuit including differential current sources configured to isolate a ground terminal of the differential current sources from a positive terminal and a negative terminal of an energy storage cell. A method includes applying an SOS signal comprising a sum of sinusoidal current signals to the energy storage cell with the SOS current excitation circuit, each of the sinusoidal current signals oscillating at a different one of a plurality of different frequencies. The method also includes measuring an electrical signal at a positive terminal and a negative terminal of the energy storage cell, and computing an impedance of the energy storage cell at each of the plurality of different frequencies using the measured electrical signal.

  1. System Energy Assessment (SEA, Defining a Standard Measure of EROI for Energy Businesses as Whole Systems

    Directory of Open Access Journals (Sweden)

    Jay Zarnikau

    2011-10-01

    Full Text Available A more objective method for measuring the energy needs of businesses, System Energy Assessment (SEA, measures the combined impacts of material supply chains and service supply chains, to assess businesses as whole self-managing net-energy systems. The method is demonstrated using a model Wind Farm, and defines a physical measure of their energy productivity for society (EROI-S, a ratio of total energy delivered to total energy expended. Energy use records for technology and proxy measures for clearly understood but not individually recorded energy uses for services are combined for a whole system estimate of consumption required for production. Current methods count only energy needs for technology. Business services outsource their own energy needs to operate, leaving no traceable record. That uncounted business energy demand is often 80% of the total, an amount of “dark energy” hidden from view, discovered by finding the average energy estimated needs for businesses far below the world average energy consumed per dollar of GDP. Presently for lack of information the energy needs of business services are counted to be “0”. Our default assumption is to treat them as “average”. The result is a hard measure of total business demand for energy services, a “Scope 4” energy use or GHG impact assessment. Counting recorded energy uses and discounting unrecorded ones misrepresents labor intensive work as highly energy efficient. The result confirms a similar finding by Hall et al. in 1981 [1]. We use exhaustive search for what a business needs to operate as a whole, tracing internal business relationships rather than energy data, to locate its natural physical boundary as a working unit, and so define a business as a physical rather than statistical subject of scientific study. See also online resource materials and notes [2].

  2. External electric field effect on the binding energy of a hydrogenic donor impurity in InGaAsP/InP concentric double quantum rings

    Science.gov (United States)

    Hu, Min; Wang, Hailong; Gong, Qian; Wang, Shumin

    2018-04-01

    Within the framework of effective-mass envelope-function theory, the ground state binding energy of a hydrogenic donor impurity is calculated in the InGaAsP/InP concentric double quantum rings (CDQRs) using the plane wave method. The effects of geometry, impurity position, external electric field and alloy composition on binding energy are considered. It is shown that the peak value of the binding energy appears in two rings with large gap as the donor impurity moves along the radial direction. The binding energy reaches the peak value at the center of ring height when the donor impurity moves along the axial direction. The binding energy shows nonlinear variation with the increase of ring height. With the external electric field applied along the z-axis, the binding energy of the donor impurity located at zi ≥ 0 decreases while that located at zi < 0 increases. In addition, the binding energy decreases with increasing Ga composition, but increases with the increasing As composition.

  3. Measurement of specific [3H]-ouabain binding to different types of human leucocytes

    DEFF Research Database (Denmark)

    Boon, Arnold; Oh, V M; Taylor, John E.

    1984-01-01

    We have studied the specific binding of [3H]-ouabain to intact mononuclear leucocytes (82% lymphocytes) and polymorphonuclear leucocytes. In both types of cells [3H]-ouabain binding was saturable, confined to a single site of high affinity, slow to reach equilibrium, slow to reverse, temperature...... were expressed per square micron of cell surface area the difference between the two cell types was proportionately greater (83 and 186 sites per micron 2 respectively). We conclude that the [3H]-ouabain binding sites on mononuclear and polymorphonuclear leucocytes are similar in nature, but different...

  4. Binding behavior of CRP and anti-CRP antibody analyzed with SPR and AFM measurement

    International Nuclear Information System (INIS)

    Lee, Soo-Keun; Kim, Hyun-Chul; Cho, Sang-Joon; Jeong, Sang Won; Jeon, Won Bae

    2008-01-01

    Atomic force microscope (AFM) was exploited to take picture of the molecular topology of C-reactive protein (CRP) in phosphate-buffered saline (PBS) solution. An explicit molecular image of CRP demonstrated a pentagonal structure composed of five subunits. Dimensions of the doughnut-shaped CRP molecule measured by AFM were about 25 nm in outside diameter and 10 nm in central pore diameter, and the height of CRP molecule was about 4 nm which was comparable to the value determined by X-ray crystallography. Bis(N-succinimido)-11,11'-dithiobis (undecyl succinate) (DSNHS) was synthesized for use as a linker for immobilizing anti-CRP antibody (anti-CRP) onto the gold surface of a surface plasmon resonance (SPR) sensor chip. DSNHS formed self-assembled monolayer (SAM) on the gold surface. By use of an AFM tip, a pattern of ditch was engraved within the SAM of DSNHS, and anti-CRP was immobilized on the engraved SAM through replacement of N-hydroxysuccinimide group on the outside surface of DSNHS by the amine group of anti-CRP. Formation of CRP/anti-CRP complex on the gold surface of SPR sensor chip was clearly demonstrated by measuring SPR angle shift. A consecutive series of SAM, SAM/anti-CRP, and SAM/anti-CRP/CRP complexes was generated on a SPR sensor chip, and the changes in depth of the ditch were monitored by taking AFM images of the complexes. Comparative analysis of the depth differences indicates that binding of CRP to anti-CRP occurs in a planar mode

  5. A Framework for Comparative Assessments of Energy Efficiency Policy Measures

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Helcio; Atkinson, Barbara; Lekov, Alex

    2011-05-24

    When policy makers propose new policies, there is a need to assess the costs and benefits of the proposed policy measures, to compare them to existing and alternative policies, and to rank them according to their effectiveness. In the case of equipment energy efficiency regulations, comparing the effects of a range of alternative policy measures requires evaluating their effects on consumers’ budgets, on national energy consumption and economics, and on the environment. Such an approach should be able to represent in a single framework the particularities of each policy measure and provide comparable results. This report presents an integrated methodological framework to assess prospectively the energy, economic, and environmental impacts of energy efficiency policy measures. The framework builds on the premise that the comparative assessment of energy efficiency policy measures should (a) rely on a common set of primary data and parameters, (b) follow a single functional approach to estimate the energy, economic, and emissions savings resulting from each assessed measure, and (c) present results through a set of comparable indicators. This framework elaborates on models that the U.S. Department of Energy (DOE) has used in support of its rulemakings on mandatory energy efficiency standards. In addition to a rigorous analysis of the impacts of mandatory standards, DOE compares the projected results of alternative policy measures to those projected to be achieved by the standards. The framework extends such an approach to provide a broad, generic methodology, with no geographic or sectoral limitations, that is useful for evaluating any type of equipment energy efficiency market intervention. The report concludes with a demonstration of how to use the framework to compare the impacts estimated for twelve policy measures focusing on increasing the energy efficiency of gas furnaces in the United States.

  6. Low level chemiluminescence measurement of the binding of 8-methoxypsoralen to proteins and lymphocytic surfaces

    International Nuclear Information System (INIS)

    Lange, B.

    1980-01-01

    Photochemotherapy with 8-methoxypsoralen (8-MOP) and longwave ultraviolet light is beneficial in such different disorders like psoriasis, lichen planus, and mykosis fungoides. In contrast to a widely accepted hypothesis 8-MOP does not solely bind to nucleic acid, but also to certain proteins. The mechanism of this binding as well as the precise binding area are unknown. Therefore the UV-provoked reactions of 8-MOP with a lipid mixture, a glucosaminoglycan solution, a protein solution, and lymphocyte suspensions, respectively were investigated using low level chemiluminescence (LLCL). It was found an 8-MOP concentration-dependent decrease of LLCL intensity in the lymphocyte suspensions (10 3 to 10 4 cells/μl). This effect is result of the diminution of the photoactive 8-MOP content of the solution. 8-MOP binds quickly and in the course of a free radical reaction to lymphocytic surfaces and coincidentally loses its potency to start LLCL-detectable free radical chain responses. (author)

  7. Security of Energy Supply - Indicators for Measuring Vulnerability and Risk

    International Nuclear Information System (INIS)

    Heinrich, C.

    2010-01-01

    In an era of increasing globalization, secure and affordable energy supplies are an essential requirement for economies to work, much less develop and grow in the long term. The present study, Energy security of supply - indicators for measuring vulnerability and risk, develops a broad methodical assessment concept to raise awareness among policy makers and the public regarding the vulnerability of energy supplies to potential energy crises. It explores the different aspects of vulnerability, from the primary energy level to energy infrastructure (storage, networks, power plant parks) to the efficiency and cost of energy consumption for end users. The individual characteristics of the formal concept were quantitatively evaluated for several OECD regions (Germany, UK, Sweden, Poland, Italy, France and the US) using a comprehensive empirical database and reduced to a single indicator for assessing energy supply vulnerability. Part of the database comprises historical observations for the period between 1978 and 2007.(author).

  8. On the atomic-number similarity of the binding energies of electrons in filled shells of elements of the periodic table

    Science.gov (United States)

    Karpov, V. Ya.; Shpatakovskaya, G. V.

    2017-03-01

    An expression for the binding energies of electrons in the ground state of an atom is derived on the basis of the Bohr-Sommerfeld quantization rule within the Thomas-Fermi model. The validity of this relation for all elements from neon to uranium is tested within a more perfect quantum-mechanical model with and without the inclusion of relativistic effects, as well as with experimental binding energies. As a result, the ordering of electronic levels in filled atomic shells is established, manifested in an approximate atomic-number similarity. It is proposed to use this scaling property to analytically estimate the binding energies of electrons in an arbitrary atom.

  9. On the atomic-number similarity of the binding energies of electrons in filled shells of elements of the periodic table

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, V. Ya. [Bruk Institute of Electronic Control Machines (Russian Federation); Shpatakovskaya, G. V., E-mail: shpagalya@yandex.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation)

    2017-03-15

    An expression for the binding energies of electrons in the ground state of an atom is derived on the basis of the Bohr–Sommerfeld quantization rule within the Thomas–Fermi model. The validity of this relation for all elements from neon to uranium is tested within a more perfect quantum-mechanical model with and without the inclusion of relativistic effects, as well as with experimental binding energies. As a result, the ordering of electronic levels in filled atomic shells is established, manifested in an approximate atomic-number similarity. It is proposed to use this scaling property to analytically estimate the binding energies of electrons in an arbitrary atom.

  10. Energy saving and recovery measures in integrated urban water systems

    Science.gov (United States)

    Freni, Gabriele; Sambito, Mariacrocetta

    2017-11-01

    The present paper describes different energy production, recovery and saving measures which can be applied in an integrated urban water system. Production measures are often based on the installation of photovoltaic systems; the recovery measures are commonly based on hydraulic turbines, exploiting the available pressure potential to produce energy; saving measures are based on substitution of old pumps with higher efficiency ones. The possibility of substituting some of the pipes of the water supply system can be also considered in a recovery scenario in order to reduce leakages and recovery part of the energy needed for water transport and treatment. The reduction of water losses can be obtained through the Active Leakage Control (ALC) strategies resulting in a reduction in energy consumption and in environmental impact. Measures were applied to a real case study to tested it the efficiency, i.e., the integrated urban water system of the Palermo metropolitan area in Sicily (Italy).

  11. Measurement of the energy stored in alkalihalogenids by radiation defects

    International Nuclear Information System (INIS)

    Schrey, P.

    1976-01-01

    The energy stored in alkali-halogen crystals after X-ray irradiation is studied at 11 K. Using a heat flux calorimeter designed especially for this experiment, single crystals are irradiated and the energy release is recorded as the temperature is increased proportional to time from 10 K to 50 K. The energy release spectra are compared with relevant optical measurements and thus a relation between energy release and tempering of point defects is established. The energy release peaks can be assigned definitly to tempering stages of the Frenkel pairs. For explanation a simple model is proposed. (orig./HPOE) [de

  12. Catalogue of Energy Efficiency Measures for France: descriptive fact sheets

    International Nuclear Information System (INIS)

    2012-06-01

    ADEME wished to learn about existing effective energy efficiency measures implemented outside of France, whether cross-sectoral or targeted at a specific sector (industry, transport, buildings or agriculture). The objective of this survey was to determine whether any of these measures could be applied in France, with the goal of holding down the growth of energy consumption. This survey has led to the writing of a catalog of 53 two-page fact sheets describing the measures identified as interesting for France. These measures were analysed via classic criteria of evaluation such as cost-efficiency or impact, allowing to highlight the most successful measures for the French territory

  13. Mitigation technologies and measures in energy sector of Kazakstan

    Energy Technology Data Exchange (ETDEWEB)

    Pilifosova, O.; Danchuk, D.; Temertekov, T. [and others

    1996-12-31

    An important commitment in the UN Framework Convention on Climate Change is to conduct mitigation analysis and to communicate climate change measures and policies. In major part reducing CO{sub 2} as well as the other greenhouse gas emissions in Kazakstan, can be a side-product of measures addressed to increasing energy efficiency. Since such measures are very important for the national economy, mitigation strategies in the energy sector of Kazakstan are directly connected with the general national strategy of the energy sector development. This paper outlines the main measures and technologies in energy sector of Kazakstan which can lead to GHG emissions reduction and presents the results of current mitigation assessment. The mitigation analysis is addressed to energy production sector. A baseline and six mitigation scenarios were developed to evaluate the most attractive mitigation options, focusing on specific technologies which have been already included in sustainable energy programs. According to the baseline projection, Kazakstan`s CO{sub 2} emissions will not exceed their 1990 level until 2005. The potential for CO{sub 2} emission reduction is estimated to be about 11 % of the base line emission level by the end of considered period (in 2020). The main mitigation options in the energy production sector in terms of mitigation potential and technical and economical feasibility include rehabilitation of thermal power plants aimed to increasing efficiency, use of nuclear energy and further expansion in the use of hydro energy based on small hydroelectric power plants.

  14. Binding mode prediction and MD/MMPBSA-based free energy ranking for agonists of REV-ERBα/NCoR.

    Science.gov (United States)

    Westermaier, Yvonne; Ruiz-Carmona, Sergio; Theret, Isabelle; Perron-Sierra, Françoise; Poissonnet, Guillaume; Dacquet, Catherine; Boutin, Jean A; Ducrot, Pierre; Barril, Xavier

    2017-08-01

    The knowledge of the free energy of binding of small molecules to a macromolecular target is crucial in drug design as is the ability to predict the functional consequences of binding. We highlight how a molecular dynamics (MD)-based approach can be used to predict the free energy of small molecules, and to provide priorities for the synthesis and the validation via in vitro tests. Here, we study the dynamics and energetics of the nuclear receptor REV-ERBα with its co-repressor NCoR and 35 novel agonists. Our in silico approach combines molecular docking, molecular dynamics (MD), solvent-accessible surface area (SASA) and molecular mechanics poisson boltzmann surface area (MMPBSA) calculations. While docking yielded initial hints on the binding modes, their stability was assessed by MD. The SASA calculations revealed that the presence of the ligand led to a higher exposure of hydrophobic REV-ERB residues for NCoR recruitment. MMPBSA was very successful in ranking ligands by potency in a retrospective and prospective manner. Particularly, the prospective MMPBSA ranking-based validations for four compounds, three predicted to be active and one weakly active, were confirmed experimentally.

  15. RF Phase Scan for Beam Energy Measurement of KOMAC DTL

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hansung; Kwon, Hyeokjung; Kim, Seonggu; Lee, Seokgeun; Cho, Yongsub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The energy gain through the drift tube linac is a function of the synchronous phase, therefore, the output beam energy from DTL can be affected by the RF phase setting in low-level RF (LLRF) system. The DTL at Korea Multi-purpose Accelerator Complex (KOMAC) consists of 11 tanks and the RF phase setting in each tank should be matched for synchronous acceleration in successive tanks. That means a proper setting of RF phase in each DTL tank is critical for efficient and loss-free operation. The matching RF phase can be determined based on the output energy measurement from the DTL tank. The beam energy can be measured by several methods. For example, we can use a bending magnet to determine the beam energy because the higher momentum of beam means the less deflection angle in the fixed magnetic field. By measuring the range of proton beam through a material with known stopping power also can be utilized to determine the beam energy. We used a well-known time-of-flight method to determine the output beam energy from the DTL tank by measuring beam phase with a beam position monitor (BPM). Based on the energy measurement results, proper RF operating point could be obtained. We performed a RF phase scan to determine the output beam energy from KOMAC DTL by using a time-of-flight method and to set RF operating point precisely. The measured beam energy was compared with a beam dynamics simulation and showed a good agreement. RF phase setting is critical issue for the efficient operation of the proton accelerator, we have a plan to implement and integrate the RF phase measurement system into an accelerator control system for future need.

  16. Absolute binding free energy calculations of CBClip host–guest systems in the SAMPL5 blind challenge

    Science.gov (United States)

    Tofoleanu, Florentina; Pickard, Frank C.; König, Gerhard; Huang, Jing; Damjanović, Ana; Baek, Minkyung; Seok, Chaok; Brooks, Bernard R.

    2016-01-01

    Herein, we report the absolute binding free energy calculations of CBClip complexes in the SAMPL5 blind challenge. Initial conformations of CBClip complexes were obtained using docking and molecular dynamics simulations. Free energy calculations were performed using thermodynamic integration (TI) with soft-core potentials and Bennett’s acceptance ratio (BAR) method based on a serial insertion scheme. We compared the results obtained with TI simulations with soft-core potentials and Hamiltonian replica exchange simulations with the serial insertion method combined with the BAR method. The results show that the difference between the two methods can be mainly attributed to the van der Waals free energies, suggesting that either the simulations used for TI or the simulations used for BAR, or both are not fully converged and the two sets of simulations may have sampled difference phase space regions. The penalty scores of force field parameters of the 10 guest molecules provided by CHARMM Generalized Force Field can be an indicator of the accuracy of binding free energy calculations. Among our submissions, the combination of docking and TI performed best, which yielded the root mean square deviation of 2.94 kcal/mol and an average unsigned error of 3.41 kcal/mol for the ten guest molecules. These values were best overall among all participants. However, our submissions had little correlation with experiments. PMID:27677749

  17. The Energy Balance and Energy-Saving Measures in Greenhouse Tomato Cultivation

    NARCIS (Netherlands)

    Elings, A.; Kempkes, F.L.K.; Kaarsemaker, R.C.; Ruijs, M.N.A.; Braak, van de N.J.; Dueck, T.A.

    2005-01-01

    Reliable and quick assessment of energy conservation measures in greenhouse cultivation supports growers in their operations. Such an overview should quantify the consequences of changes in energy flows for total energy consumption, amount and quality of production, and farm economy. Using tomato as

  18. Analysis of Detailed Energy Audits and Energy Use Measures of University Buildings

    Directory of Open Access Journals (Sweden)

    Kęstutis Valančius

    2011-12-01

    Full Text Available The paper explains the results of a detailed energy audit of the buildings of Vilnius Gediminas Technical University. Energy audits were performed with reference to the international scientific project. The article presents the methodology and results of detailed measurements of energy balance characteristics.Article in Lithuanian

  19. Negative vacuum energy densities and the causal diamond measure

    International Nuclear Information System (INIS)

    Salem, Michael P.

    2009-01-01

    Arguably a major success of the landscape picture is the prediction of a small, nonzero vacuum energy density. The details of this prediction depend in part on how the diverging spacetime volume of the multiverse is regulated, a question that remains unresolved. One proposal, the causal diamond measure, has demonstrated many phenomenological successes, including predicting a distribution of positive vacuum energy densities in good agreement with observation. In the string landscape, however, the vacuum energy density is expected to take positive and negative values. We find the causal diamond measure gives a poor fit to observation in such a landscape - in particular, 99.6% of observers in galaxies seemingly just like ours measure a vacuum energy density smaller than we do, most of them measuring it to be negative.

  20. Could dark energy be measured in the lab?

    International Nuclear Information System (INIS)

    Beck, Christian; Mackey, Michael C.

    2005-01-01

    The experimentally measured spectral density of current noise in Josephson junctions provides direct evidence for the existence of zero-point fluctuations. Assuming that the total vacuum energy associated with these fluctuations cannot exceed the presently measured dark energy of the universe, we predict an upper cutoff frequency of ν c =(1.69+/-0.05)x10 12 Hz for the measured frequency spectrum of zero-point fluctuations in the Josephson junction. The largest frequencies that have been reached in the experiments are of the same order of magnitude as ν c and provide a lower bound on the dark energy density of the universe. It is shown that suppressed zero-point fluctuations above a given cutoff frequency can lead to 1/f noise. We propose an experiment which may help to measure some of the properties of dark energy in the lab

  1. Potential of energy efficiency measures in the world steel industry.

    NARCIS (Netherlands)

    Galama, Tjebbe

    2013-01-01

    SUMMARY The world steel industry plays a major role in energy use and Greenhouse Gas (GHG) emissions now and in the future. Implementing energy efficiency measures is among one of the most cost-effective investments that the industry could make in improv

  2. Measuring the security of energy exports demand in OPEC economies

    International Nuclear Information System (INIS)

    Dike, Jude Chukwudi

    2013-01-01

    One of the objectives of OPEC is the security of demand for the crude oil exports of its members. Achieving this objective is imperative with the projected decline in OECD countries' crude oil demand among other crude oil demand shocks. This paper focuses on determining the external crude oil demand security risks of OPEC member states. In assessing these risks, this study introduces two indexes. The first index, Risky Energy Exports Demand (REED), indicates the level of energy export demand security risks for OPEC members. It combines measures of export dependence, economic dependence, monopsony risk and transportation risk. The second index, Contribution to OPEC Risk Exposure (CORE), indicates the individual contribution of the OPEC members to OPEC's risk exposure. This study utilises the disaggregated index approach in measuring energy demand security risks for crude oil and natural gas and involves a country level analysis. With the disaggregated approach, the study shows that OPEC's energy export demand security risks differ across countries and energy types. - Highlights: • REED and CORE indexes are suitable measures for energy exports demand security risk. • The indexes show that energy demand security risk is different for each OPEC country. • The countries contribution to OPEC's energy demand security risk is also different. • The outcome is necessary for OPEC's common energy and climate change policies. • The outcome makes a case for oil demand security as a topical issue in the literature

  3. Energy conservation measures adopted at Heavy Water Plant, Manuguru

    International Nuclear Information System (INIS)

    Gupta, R.V.; Venugopal, M.

    1997-01-01

    The importance of conservation of energy is well recognised all over the world as the world reserves of fossil fuels will eventually run out depending on the rate of their use. This paper deals with various energy conservation schemes adopted at Heavy Water Plant, Manuguru (HWPM). Most energy conservation measures offer large financial saving with very short pay back periods. This fact has been well recognised by the management of HWPM as well as Heavy Water Board and their wholehearted and enthusiastic approach to energy conservation and energy management yielded very good results in reducing the operating cost. The process of energy conservation is not a one time exercise. Persistent efforts are on to identify the areas like condition of heat exchangers, margins in control valves, steam and condensate leakages etc. for further reduction in energy consumption

  4. Measuring the speed of dark: Detecting dark energy perturbations

    International Nuclear Information System (INIS)

    Putter, Roland de; Huterer, Dragan; Linder, Eric V.

    2010-01-01

    The nature of dark energy can be probed not only through its equation of state but also through its microphysics, characterized by the sound speed of perturbations to the dark energy density and pressure. As the sound speed drops below the speed of light, dark energy inhomogeneities increase, affecting both cosmic microwave background and matter power spectra. We show that current data can put no significant constraints on the value of the sound speed when dark energy is purely a recent phenomenon, but can begin to show more interesting results for early dark energy models. For example, the best fit model for current data has a slight preference for dynamics [w(a)≠-1], degrees of freedom distinct from quintessence (c s ≠1), and early presence of dark energy [Ω de (a<<1)≠0]. Future data may open a new window on dark energy by measuring its spatial as well as time variation.

  5. Highly Specific Binding on Antifouling Zwitterionic Polymer-Coated Microbeads as Measured by Flow Cytometry.

    Science.gov (United States)

    van Andel, Esther; de Bus, Ian; Tijhaar, Edwin J; Smulders, Maarten M J; Savelkoul, Huub F J; Zuilhof, Han

    2017-11-08

    Micron- and nano-sized particles are extensively used in various biomedical applications. However, their performance is often drastically hampered by the nonspecific adsorption of biomolecules, a process called biofouling, which can cause false-positive and false-negative outcomes in diagnostic tests. Although antifouling coatings have been extensively studied on flat surfaces, their use on micro- and nanoparticles remains largely unexplored, despite the widespread experimental (specifically, clinical) uncertainties that arise because of biofouling. Here, we describe the preparation of magnetic micron-sized beads coated with zwitterionic sulfobetaine polymer brushes that display strong antifouling characteristics. These coated beads can then be equipped with recognition elements of choice, to enable the specific binding of target molecules. First, we present a proof of principle with biotin-functionalized beads that are able to specifically bind fluorescently labeled streptavidin from a complex mixture of serum proteins. Moreover, we show the versatility of the method by demonstrating that it is also possible to functionalize the beads with mannose moieties to specifically bind the carbohydrate-binding protein concanavalin A. Flow cytometry was used to show that thus-modified beads only bind specifically targeted proteins, with minimal/near-zero nonspecific protein adsorption from other proteins that are present. These antifouling zwitterionic polymer-coated beads, therefore, provide a significant advancement for the many bead-based diagnostic and other biosensing applications that require stringent antifouling conditions.

  6. Using docking and alchemical free energy approach to determine the binding mechanism of eEF2K inhibitors and prioritizing the compound synthesis.

    Science.gov (United States)

    Wang, Qiantao; Edupuganti, Ramakrishna; Tavares, Clint D J; Dalby, Kevin N; Ren, Pengyu

    2015-01-01

    A-484954 is a known eEF2K inhibitor with submicromolar IC50 potency. However, the binding mechanism and the crystal structure of the kinase remains unknown. Here, we employ a homology eEF2K model, docking and alchemical free energy simulations to probe the binding mechanism of eEF2K, and in turn, guide the optimization of potential lead compounds. The inhibitor was docked into the ATP-binding site of a homology model first. Three different binding poses, hypothesis 1, 2, and 3, were obtained and subsequently applied to molecular dynamics (MD) based alchemical free energy simulations. The calculated relative binding free energy of the analogs of A-484954 using the binding pose of hypothesis 1 show a good correlation with the experimental IC50 values, yielding an r (2) coefficient of 0.96 after removing an outlier (compound 5). Calculations using another two poses show little correlation with experimental data, (r (2) of less than 0.5 with or without removing any outliers). Based on hypothesis 1, the calculated relative free energy suggests that bigger cyclic groups, at R1 e.g., cyclobutyl and cyclopentyl promote more favorable binding than smaller groups, such as cyclopropyl and hydrogen. Moreover, this study also demonstrates the ability of the alchemical free energy approach in combination with docking and homology modeling to prioritize compound synthesis. This can be an effective means of facilitating structure-based drug design when crystal structures are not available.

  7. RECOGNITION DYNAMICS OF ESCHERICHIA COLI THIOREDOXIN PROBED USING MOLECULAR DYNAMICS AND BINDING FREE ENERGY CALCULATIONS

    Directory of Open Access Journals (Sweden)

    M. S. Shahul Hameed

    2016-03-01

    Full Text Available E. coli thioredoxin has been regarded as a hub protein as it interacts with, and regulates, numerous target proteins involved in a wide variety of cellular processes. Thioredoxin can form complexes with a variety of target proteins with a wide range of affinity, using a consensus binding surface. In this study an attempt to deduce the molecular basis for the observed multispecificity of E. coli thioredoxin has been made. In this manuscript it has been shown that structural plasticity, adaptable and exposed hydrophobic binding surface, surface electrostatics, closely clustered multiple hot spot residues and conformational changes brought about by the redox status of the protein have been shown to account for the observed multispecificity and molecular recognition of thioredoxin. Dynamical differences between the two redox forms of the enzyme have also been studied to account for their differing interactions with some target proteins.

  8. Combined effects of hydrostatic pressure and electric field on the donor binding energy and polarizability in laterally coupled double InAs/GaAs quantum-well wires

    International Nuclear Information System (INIS)

    Tangarife, E.; Duque, C.A.

    2010-01-01

    This work is concerned with the theoretical study of the combined effects of applied electric field and hydrostatic pressure on the binding energy and impurity polarizability of a donor impurity in laterally coupled double InAs/GaAs quantum-well wires. calculations have been made in the effective mass and parabolic band approximations and using a variational method. The results are reported for different configurations of wire and barriers widths, impurity position, and electric field and hydrostatic pressure strengths. Our results show that for symmetrical structures the binding energy is an even function of the impurity position along the growth direction of the structure. Also, we found that for hydrostatic pressure strength up to 38 kbar, the binding energy increases linearly with hydrostatic pressure, while for larger values of hydrostatic pressure the binding energy has a nonlinear behavior. Finally, we found that the hydrostatic pressure can increase the coupling between the two parallel quantum well wires.

  9. Induced alignment and measurement of dipolar couplings of an SH2 domain through direct binding with filamentous phage

    International Nuclear Information System (INIS)

    Dahlke Ojennus, Deanna; Mitton-Fry, Rachel M.; Wuttke, Deborah S.

    1999-01-01

    Large residual 15 N- 1 H dipolar couplings have been measured in a Src homology II domain aligned at Pf1 bacteriophage concentrations an order of magnitude lower than used for induction of a similar degree of alignment of nucleic acids and highly acidic proteins. An increase in 1 H and 15 N protein linewidths and a decrease in T 2 and T 1 ρ relaxation time constants implicates a binding interaction between the protein and phage as the mechanism of alignment. However, the associated increased linewidth does not preclude the accurate measurement of large dipolar couplings in the aligned protein. A good correlation is observed between measured dipolar couplings and predicted values based on the high resolution NMR structure of the SH2 domain. The observation of binding-induced protein alignment promises to broaden the scope of alignment techniques by extending their applicability to proteins that are able to interact weakly with the alignment medium

  10. Petroleum substitution energy measuring analysis survey; Sekiyu daitai energy keiryo bunseki chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For analytical evaluation of effects of environmental protection measures, energy conservation measures, new energy promotion measures, etc., a very-long term energy supply/demand model was developed and used for a simulational study. The model is composed of the models of macro economics, secondary energy prices, new energy introduction, and energy supply/demand. The feature is that the amount of new energy introduction is measuringly analyzed based on the cost and market scale, and integratedly estimated in a frame of energy supply/demand of the whole Japan. As a result of the simulation, energy source as of 2030 is composed of coal (17%), oil (44%) and nuclear power (15%) in the case of the economic growth as viewed optimistically. Contrarily, in the case of it as viewed pesimistically, energy source is composed of coal (11%), oil (40%) and nuclear power (22%). CO2 emission is -12.4% in the case of the new energy promotion than in the standard case. 7 refs., 79 figs., 107 tabs.

  11. Tariffing of energy measured consumers in the distribution network

    International Nuclear Information System (INIS)

    2006-01-01

    Criteria for socio-economic effective tariffing of energy-measured clients in the distribution network are discussed (i.e. households, leisure homes and smaller business clients), this means consumers that do not have hourly measurements or effect measurements. The tariffs should be based on variable segments that reflect short-term marginal costs in the network (in practice loss of transfer) and fixed segments that to the least extent possible influence the consumers' decisions in the choice of energy solutions, both in short term and long term. High-priced energy segments and effect based fixed segments may give unfortunate socio-economic price signals compared to the marginal long-term network costs. A fixed segment per measurement unit is in principle completely neutral, but it is to some extent vulnerable to strategic adjustments if the consumers choose collective measurement. This is not necessarily a big problem in practice (author)

  12. Roles of binding energy and diffusion length of singlet and triplet excitons in organic heterojunction solar cells

    International Nuclear Information System (INIS)

    Narayan, Monishka Rita; Singh, Jai

    2012-01-01

    The influence of binding energy and diffusion length on the dissociation of excitons in organic solids is studied. The binding energy and excitonic Bohr radius of singlet and triplet excitons are calculated and compared using the dissociation energy of 0.3 eV, which is provided by the lowest unoccupied molecular orbital offset in heterojunction organic solar cells. A relation between the diffusion coefficient and diffusion length of singlet and triplet excitons is derived using the Foerster and Dexter transfer processes and are plotted as a function of the donor-acceptor separation. The diffusion length reduces nearly to a zero if the distance between donor and acceptor is increased to more than 1.5 nm. It is found that the donor-acceptor separation needs to be ≤ 1.5 nm for easy dissociation on singlet excitons leading to better conversion efficiency in heterojunction organic solar cells. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Roles of binding energy and diffusion length of singlet and triplet excitons in organic heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Monishka Rita [Centre for Renewable Energy and Low Emission Technology, Charles Darwin University, Darwin, NT 0909 (Australia); Singh, Jai [School of Engineering and IT, Charles Darwin University, Darwin, NT 0909 (Australia)

    2012-12-15

    The influence of binding energy and diffusion length on the dissociation of excitons in organic solids is studied. The binding energy and excitonic Bohr radius of singlet and triplet excitons are calculated and compared using the dissociation energy of 0.3 eV, which is provided by the lowest unoccupied molecular orbital offset in heterojunction organic solar cells. A relation between the diffusion coefficient and diffusion length of singlet and triplet excitons is derived using the Foerster and Dexter transfer processes and are plotted as a function of the donor-acceptor separation. The diffusion length reduces nearly to a zero if the distance between donor and acceptor is increased to more than 1.5 nm. It is found that the donor-acceptor separation needs to be {<=} 1.5 nm for easy dissociation on singlet excitons leading to better conversion efficiency in heterojunction organic solar cells. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Kinetics of Antibody Binding to Membranes of Living Bacteria Measured by a Photonic Crystal-Based Biosensor

    Directory of Open Access Journals (Sweden)

    Ekaterina Rostova

    2016-10-01

    Full Text Available Optical biosensors based on photonic crystal surface waves (PC SWs offer a possibility to study binding interactions with living cells, overcoming the limitation of rather small evanescent field penetration depth into a sample medium that is characteristic for typical optical biosensors. Besides this, simultaneous excitation of s- and p-polarized surface waves with different penetration depths is realized here, permitting unambiguous separation of surface and volume contributions to the measured signal. PC-based biosensors do not require a bulk signal correction, compared to widely used surface plasmon resonance-based devices. We developed a chitosan-based protocol of PC chip functionalization for bacterial attachment and performed experiments on antibody binding to living bacteria measured in real time by the PCSW-based biosensor. Data analysis reveals specific binding and gives the value of the dissociation constant for monoclonal antibodies (IgG2b against bacterial lipopolysaccharides equal to KD = 6.2 ± 3.4 nM. To our knowledge, this is a first demonstration of antibody-binding kinetics to living bacteria by a label-free optical biosensor.

  15. 7 key measures for France to enter energy transition

    International Nuclear Information System (INIS)

    Creach, Morgane; Vandaele, Diane; Richard, Marion; Fink, Meike; Quirion, Philippe; Bonduelle, Antoine; Berthier, Julien; Mossalgue, Marc; Louchard, Olivier; Lenoir, Didier; Vormus, Joel; Charru, Madeleine; Claustre, Raphael; Mathis, Paul; Gauthier, Raphaelle; Couturier, Christian; Mijeon, Charlotte; Gavand, Karine; Majnoni d'Intignano, Sophia; Delcroix, Julie

    2012-01-01

    The authors of this report propose, describe and discuss seven measures to be taken to promote and support energy transition in France: to introduce a climate-energy contribution, to adopt a law for a progressive and complete nuclear phasing out, to set local communities at the heart of energy transition, to introduce a mandatory thermal renewal of existing buildings, to develop a less greenhouse gas emitter agricultural model, to enter into a low-carbon and energy efficient transport infrastructure scheme, and to plan the struggle against urban sprawl at the scale of the living area

  16. Do energy efficiency measures promote the use of renewable sources?

    International Nuclear Information System (INIS)

    Marques, Antonio C.; Fuinhas, Jose A.

    2011-01-01

    This paper analyses the factors behind the deployment of renewable energy, focusing particularly on the effect of energy efficiency policies and measures. The impact of these factors is appraised within the context of several phases of the use of renewable sources. We therefore apply the quantile regression technique to a set of 21 European Countries in two time spans: from 1990 to 1998, and from 1999 to 2006. We control variables of policy, environment, socioeconomic characteristics, and electricity generation. For the second period, energy efficiency policies and measures concerning renewable sources effectively promote renewables, namely in the take-off phase. We shed light on the lobbying effect of traditional energy industries, showing that it depends both on the period under analysis, and on the kind of traditional energy source.

  17. The role of energy advisors on adoption of energy efficiency measures in detached houses

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Krushna; Nair, Gireesh; Gustavsson, Leif [Ecotechnology, Mid Sweden Univ., Oestersund (Sweden)

    2009-07-01

    External actors can influence potential adopters to adopt energy efficiency measures. In Sweden energy advisers are one such actor group who provides energy advice and information to the end users. Currently, all municipalities offer energy advisers' service. The success of such service for improvement of energy efficiency of detached houses depends on homeowners' perception towards it. In this context we conducted a national survey of about 3000 owners of detached houses through stratified random sampling method in 2008 summer. We found that majority of owners' of detached houses consider energy advisers as an important source of information. Furthermore, many homeowners who contacted energy advisers for advice had implemented the suggestions. However, only a few homeowners had actually contacted energy advisers. Our findings suggest that it is beneficial to continue the energy adviser service, but more efforts are needed to increase homeowners' awareness of and satisfaction with such services.

  18. The convergence of the binding energy expansion in the Brueckner-Bethe-Goldstone theory of nuclear matter

    International Nuclear Information System (INIS)

    Grange, P.; Lejeune, A.

    1979-01-01

    Two, three- and four-body contributions to the binding energy of nuclear matter are evaluated in the framework of the Bethe-Brueckner expansion. Special attention is devoted to the choice of the auxillary single particle field and to the potential diagrams at the level of three- and four-hole lines present when such a field is different from zero. Two nucleon-nucleon interactions are used: a model interaction V 1 and the Reid soft-core interaction. For V 1 our results are compared with those obtained from variational calculations; this comparison supports the reliability of the perturbative expansion. (Auth.)

  19. A study of core electron binding energies in technetium-99m complexes by internal conversion electron spectroscopy

    International Nuclear Information System (INIS)

    Burke, J.F.; Archer, C.M.; Wei Chiu, K.; Latham, I.A.; Egdell, R.G.

    1991-01-01

    Core electron binding energies in a series of 99m Tc complexes have been studied by internal conversion electron spectroscopy (ICES) in a conventional x-ray photoelectron spectrometer. In both 3d and 3p regions, a chemical shift of about 1 eV is observed per unit increase in oxidation state. The role of ICES in characterizing radiopharmaceutical agents is illustrated with studies of some novel 99m Tc-phosphine complexes that have been developed for myocardial perfusion imaging. (author)

  20. Calculation of relative free energies for ligand-protein binding, solvation, and conformational transitions using the GROMOS software.

    Science.gov (United States)

    Riniker, Sereina; Christ, Clara D; Hansen, Halvor S; Hünenberger, Philippe H; Oostenbrink, Chris; Steiner, Denise; van Gunsteren, Wilfred F

    2011-11-24

    The calculation of the relative free energies of ligand-protein binding, of solvation for different compounds, and of different conformational states of a polypeptide is of considerable interest in the design or selection of potential enzyme inhibitors. Since such processes in aqueous solution generally comprise energetic and entropic contributions from many molecular configurations, adequate sampling of the relevant parts of configurational space is required and can be achieved through molecular dynamics simulations. Various techniques to obtain converged ensemble averages and their implementation in the GROMOS software for biomolecular simulation are discussed, and examples of their application to biomolecules in aqueous solution are given. © 2011 American Chemical Society

  1. Energy Efficiency Measures to Incorporate into Remodeling Projects

    Energy Technology Data Exchange (ETDEWEB)

    Liaukus, C. [Building America Research Alliance, Kent, WA (United States)

    2014-12-01

    Energy improvements in a home are often approached as one concerted effort, beginning with a simple walk-through assessment or more in-depth energy audit and followed by the installation of recommended energy measures. While this approach allows for systems thinking to guide the efforts, comprehensive energy improvements of this nature are undertaken by a relatively small number of U.S. households compared to piecemeal remodeling efforts. In this report, the U.S Department of Energy Building America Retrofit Alliance research team examines the improvement of a home’s energy performance in an opportunistic way by examining what can be done to incorporate energy efficiency measures into general remodeling work and home repair projects. This allows for energy efficiency upgrades to occur at the same time as remodeling proejcts. There are challenges to this approach, not the least of which being that the work will take place over time in potentially many separate projects. The opportunity to improve a home’s energy efficiency at one time expands or contracts with the scope of the remodel. As such, guidance on how to do each piece thoughtfully and with consideration for potential future projects, is critical.

  2. Measurement of ion energy by a calorimetric method

    Energy Technology Data Exchange (ETDEWEB)

    Mizuhashi, Kiyoshi; Tajima, Satoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Bunak, Suwat

    1996-12-01

    In calorimetric method, ion energy is determined based on the temperature changes during radiation of an absorbing material, radiation current and heat capacity of the calorimeter. This method is convenient and its measuring procedures are simple as well as the measuring apparatus. Here, the temperature changes of the calorimeter during {sup 14}N ion beam radiation were determined. The temperature increased linearly when irradiated with {sup 14}N{sup 3+}, 8.3 MeV or {sup 14}N{sup 2+}, 6 MeV, but not linearly for {sup 14}N{sup 1+}, 3.6 MeV, resulting in a comparatively large error. Thus, the measurement of ion energy by calorimetric method was found available as a convenient method for an accelerator having an energy stability less than 10{sup -3}. Especially this method seems to be useful for low-energy ion accelerator or ion injecting apparatus. (M.N.)

  3. Analysis of Illinois Home Performance with ENERGY STAR® Measure Packages

    Energy Technology Data Exchange (ETDEWEB)

    Baker, J. [Partnership for Advanced Residential Retrofit (PARR), Chicago, IL (United States); Yee, S. [Partnership for Advanced Residential Retrofit (PARR), Chicago, IL (United States); Brand, L. [Partnership for Advanced Residential Retrofit (PARR), Chicago, IL (United States)

    2013-09-01

    Through the Chicagoland Single Family Housing Characterization and Retrofit Prioritization report, the Partnership for Advanced Residential Retrofit research team characterized 15 housing types in the Chicagoland region based on assessor data, utility billing history, and available data from prior energy efficiency programs. Within these 15 groups, a subset showed the greatest opportunity for energy savings based on BEopt Version 1.1 modeling of potential energy efficiency package options and the percent of the housing stock represented by each group. In this project, collected field data from a whole-home program in Illinois are utilized to compare marketplace-installed measures to the energy saving optimal packages previously developed for the 15 housing types. Housing type, conditions, energy efficiency measures installed, and retrofit cost information were collected from 19 homes that participated in the Illinois Home Performance with ENERGY STAR program in 2012, representing eight of the characterized housing groups. Two were selected for further case study analysis to provide an illustration of the differences between optimal and actually installed measures. Taken together, these homes are representative of 34.8% of the Chicagoland residential building stock. In one instance, actual installed measures closely matched optimal recommended measures.

  4. Quantum mechanics/molecular mechanics modeling of photoelectron spectra: the carbon 1s core-electron binding energies of ethanol-water solutions.

    Science.gov (United States)

    Löytynoja, T; Niskanen, J; Jänkälä, K; Vahtras, O; Rinkevicius, Z; Ågren, H

    2014-11-20

    Using ethanol-water solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solute-solvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics model-electrostatic, polarization, and van der Waals-with atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments.

  5. Simultaneous effects of hydrostatic pressure and electric field on impurity binding energy and polarizability in coupled InAs/GaAs quantum wires

    International Nuclear Information System (INIS)

    Tangarife, E.; Duque, C.A.

    2011-01-01

    This work is concerned with the theoretical study of the combined effects of applied electric field and hydrostatic pressure on the binding energy and impurity polarizability of a donor impurity in laterally coupled double InAs/GaAs quantum-well wires. Calculations have been made in the effective mass and parabolic band approximations and using a variational method. The results are reported for different configurations of wire and barriers widths, impurity position, and electric field and hydrostatic pressure strengths. Our results show that for symmetrical structures the binding energy is an even function of the impurity position along the growth direction of the structure. Also, we found that for hydrostatic pressure strength up to 38 kbar, the binding energy increases linearly with hydrostatic pressure, while for larger values of hydrostatic pressure the binding energy has a non-linear behavior. Finally, we found that the hydrostatic pressure can increase the coupling between the two parallel quantum-well wires. -- Research highlights: → Binding energy for donor impurity in coupled wires strongly depends on the confinement potential. → Polarizability for donor impurity in coupled wires strongly depends on the confinement potential. → Binding energy strongly depends on the direction of the applied electric field. → Polarizability strongly depends on the direction of the applied electric field. → The coupling between the two parallel wires increases with the hydrostatic pressure.

  6. Effects of mutants in bHLH region on structure stability and protein-DNA binding energy in DECs.

    Science.gov (United States)

    Kong, Yi; Wang, Zhen; Jia, Yanfei; Li, Ping; Hao, Shuhua; Wang, Yunshan

    2017-07-01

    The human DEC subfamily contains two highly conserved members belonging to basic helix-loop-helix (bHLH) transcription factors. This conserved family is spread widely among various species with the function of regulating various crucial molecular signaling pathways. Due to the significance of DECs for important biological processes, their relationship with diseases and the lack of experimentally proven structures, we have implemented a comparative modeling for the bHLH region of DECs as homodimers with themselves and heterodimers with HES-1. Three mutants with predicted roles in reducing intramolecular binding (H57A, R65A, and LL7879AA in DEC1 and LL7071AA in DEC2) were investigated on DEC monomers. Molecular dynamics (MD) simulations were also employed to evaluate the behavior of the mutant molecules in aqueous solution. The monomer was divided into subregions for accurate investigation. The fluctuation in the basic region of mutants was higher than that of wild-type molecules. The binding energy value between protein and DNA obviously increased in the homodimer harboring R65A mutants, which led to more unstable status between protein and DNA. Thus, the mutant R65A interfered DNA-binding affinity. A study on the spatial structures of wild-type and mutant DECs may facilitate functional prediction for mutation effects and dynamic behavior under various conditions and may ultimately help in targeted drug design.

  7. A Correlation between the Activity of Candida antarctica Lipase B and Differences in Binding Free Energies of Organic Solvent and Substrate

    DEFF Research Database (Denmark)

    Banik, Sindrila Dutta; Nordblad, Mathias; Woodley, John

    2016-01-01

    in an inhibitory effect which is also confirmed by the binding free energies for the solvent and substrate molecules estimated from the simulations. Consequently, the catalytic activity of CALB decreases in polar solvents. This effect is significant, and CALB is over 10 orders of magnitude more active in nonpolar...... of the enzyme may be ascribed to binding of solvent molecules to the enzyme active site region and the solvation energy of substrate molecules in the different solvents. Polar solvent molecules interact strongly with CALB and compete with the substrate to bind to the active site region, resulting...

  8. MEV Energy Electrostatic Accelerator Ion Beam Emittance Measurement

    OpenAIRE

    I.G. Ignat’ev; M.I. Zakharets; S.V. Kolinko; D.P. Shulha

    2014-01-01

    The testing equipment was designed, manufactured and tried out permitting measurements of total current, current profile and emittance of an ion beam extracted from the ion beam. MeV energy electrostatic accelerator ion H + beam emittance measurement results are presented.

  9. Effectiveness of policy measures in transforming the energy system

    International Nuclear Information System (INIS)

    Lund, P.D.

    2007-01-01

    The effectiveness of public policy measures in creating energy impacts were investigated through 20 policy cases on renewable energy and efficient energy use. The policies were grouped into subsidy-type and catalyzing measures based on the use of the public financial resources. The policy cost of subsidies ranged from 1 Euro/MWh up to over 100 Euro/MWh, the feed-in tariffs being clearly the most expensive choice. The public measures that strive for catalyzing market breakthroughs lie in the range 0.1-1 Euro/MWh, but some business driven and procurement type measures could come down to even 0.01 Euro/MWh. The policy costs observed could decrease by 25-60% if accounting for lagging energy impacts. The better policy efficiency of catalytic measures is most likely due to a stronger market and business sensitiveness, understanding of market needs, and focusing more on the end-use sector with active stakeholder involvement. The magnitude of the energy impacts were in average larger from the subsidy instruments but a few end-use technologies linked to catalytic measures reached even higher effects due to the strong market penetration achieved. (author)

  10. Effectiveness of policy measures in transforming the energy system

    International Nuclear Information System (INIS)

    Lund, P.D.

    2007-01-01

    The effectiveness of public policy measures in creating energy impacts were investigated through 20 policy cases on renewable energy and efficient energy use. The policies were grouped into subsidy-type and catalyzing measures based on the use of the public financial resources. The policy cost of subsidies ranged from 1 Euro /MWh up to over 100 Euro /MWh, the feed-in tariffs being clearly the most expensive choice. The public measures that strive for catalyzing market breakthroughs lie in the range 0.1-1 Euro /MWh, but some business driven and procurement type measures could come down to even 0.01 Euro /MWh. The policy costs observed could decrease by 25-60% if accounting for lagging energy impacts. The better policy efficiency of catalytic measures is most likely due to a stronger market and business sensitiveness, understanding of market needs, and focusing more on the end-use sector with active stakeholder involvement. The magnitude of the energy impacts were in average larger from the subsidy instruments but a few end-use technologies linked to catalytic measures reached even higher effects due to the strong market penetration achieved

  11. Coherent Wave Measurement Buoy Arrays to Support Wave Energy Extraction

    Science.gov (United States)

    Spada, F.; Chang, G.; Jones, C.; Janssen, T. T.; Barney, P.; Roberts, J.

    2016-02-01

    Wave energy is the most abundant form of hydrokinetic energy in the United States and wave energy converters (WECs) are being developed to extract the maximum possible power from the prevailing wave climate. However, maximum wave energy capture is currently limited by the narrow banded frequency response of WECs as well as extended protective shutdown requirements during periods of large waves. These limitations must be overcome in order to maximize energy extraction, thus significantly decreasing the cost of wave energy and making it a viable energy source. Techno-economic studies of several WEC devices have shown significant potential to improve wave energy capture efficiency through operational control strategies that incorporate real-time information about local surface wave motions. Integral Consulting Inc., with ARPA-E support, is partnering with Sandia National Laboratories and Spoondrift LLC to develop a coherent array of wave-measuring devices to relay and enable the prediction of wave-resolved surface dynamics at a WEC location ahead of real time. This capability will provide necessary information to optimize power production of WECs through control strategies, thereby allowing for a single WEC design to perform more effectively across a wide range of wave environments. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000514.

  12. Measuring energy poverty in Japan, 2004–2013

    International Nuclear Information System (INIS)

    Okushima, Shinichiro

    2016-01-01

    This paper first examines energy (or fuel) poverty in Japan from 2004 to 2013, especially around the time of the 2011 Great East Japan Earthquake (GEJE). To analyze the issue, the paper employs various poverty and vulnerability measures with the assistance of our unique dataset. The results indicate the aggravation of energy poverty among lower-income and vulnerable households during the past decade, resulting from both the escalation of energy prices and lowering of income. The analysis also employs a new decomposition technique and identifies the explanatory factors associated with the increase in energy poverty. These results suggest there were major changes in the forces driving the increase in energy poverty before and after the GEJE. After 2011, income alleviates energy poverty in Japan, with energy prices becoming the main driving factor. - Highlights: • This study is the first evaluation of energy poverty in Japan by unique microdata. • Focus on the period of the 2011 Great East Japan Earthquake and Fukushima accident. • Shows the aggravation of energy poverty among lower-income and vulnerable households. • Identifies factors accounting for the changes in energy poverty by decomposition. • Major changes in the explanatory factors before and after the Fukushima accident.

  13. Linear Interaction Energy Based Prediction of Cytochrome P450 1A2 Binding Affinities with Reliability Estimation.

    Directory of Open Access Journals (Sweden)

    Luigi Capoferri

    Full Text Available Prediction of human Cytochrome P450 (CYP binding affinities of small ligands, i.e., substrates and inhibitors, represents an important task for predicting drug-drug interactions. A quantitative assessment of the ligand binding affinity towards different CYPs can provide an estimate of inhibitory activity or an indication of isoforms prone to interact with the substrate of inhibitors. However, the accuracy of global quantitative models for CYP substrate binding or inhibition based on traditional molecular descriptors can be limited, because of the lack of information on the structure and flexibility of the catalytic site of CYPs. Here we describe the application of a method that combines protein-ligand docking, Molecular Dynamics (MD simulations and Linear Interaction Energy (LIE theory, to allow for quantitative CYP affinity prediction. Using this combined approach, a LIE model for human CYP 1A2 was developed and evaluated, based on a structurally diverse dataset for which the estimated experimental uncertainty was 3.3 kJ mol-1. For the computed CYP 1A2 binding affinities, the model showed a root mean square error (RMSE of 4.1 kJ mol-1 and a standard error in prediction (SDEP in cross-validation of 4.3 kJ mol-1. A novel approach that includes information on both structural ligand description and protein-ligand interaction was developed for estimating the reliability of predictions, and was able to identify compounds from an external test set with a SDEP for the predicted affinities of 4.6 kJ mol-1 (corresponding to 0.8 pKi units.

  14. Effects of Energy Drinks on Economy and Cardiovascular Measures.

    Science.gov (United States)

    Peveler, Willard W; Sanders, Gabe J; Marczinski, Cecile A; Holmer, Brady

    2017-04-01

    Peveler, WW, Sanders, GJ, Marczinski, CA, and Holmer, B. Effects of energy drinks on economy and cardiovascular measures. J Strength Cond Res 31(4): 882-887, 2017-The use of energy drinks among athletes has risen greatly. Caffeine and taurine are the 2 primary performance enhancing ingredients found in energy drinks. The number of emergency department visits involving energy drinks doubled over the past 5 years. Reviews of the health complications have highlighted adverse cardiovascular events. The literature reveals that caffeine is known to moderately increase blood pressure (BP) and heart rate (HR). The purpose of this study was to determine the effect of 3 different energy drinks on cardiovascular and performance measures. Fifteen recreational runners completed 5 trials. The first trial consisted of a graded exercise protocol. The 4 remaining trials consisted of 15-minute economy trials at a treadmill speed consistent with 70% of subject's V[Combining Dot Above]O2max. An hour before subjects ingested 1 of the 3 energy drinks or a placebo. HR, BP, V[Combining Dot Above]O2, and rating of perceived exertion (RPE) were recorded during the 15-minute trial. Mean values for dependent measures were compared using repeated-measures analysis of variance. Fifteen-minute systolic BP readings were significantly lower in the placebo trials (156.93 ± 15.50) in relation to the 3 energy drink trials (163.87 ± 13.30, 166.47 ± 13.71, and 165.00 ± 15.23). There were no significant differences in diastolic BP and HR. There were no significant differences found in V[Combining Dot Above]O2 or RPE measures. Ingestion of energy drinks demonstrated no change in V[Combining Dot Above]O2 or RPE during the economy trials. The findings show no performance benefits under the conditions of this study. However, there does appear to be a significant increase in systolic BP.

  15. Measuring the energy security implications of fossil fuel resource concentration

    International Nuclear Information System (INIS)

    Lefevre, Nicolas

    2010-01-01

    Economic assessments of the welfare effects of energy insecurity are typically uncertain and fail to provide clear guidance to policy makers. As a result, governments have had little analytical support to complement expert judgment in the assessment of energy security. This is likely to be inadequate when considering multiple policy goals, and in particular the intersections between energy security and climate change mitigation policies. This paper presents an alternative approach which focuses on gauging the causes of energy insecurity as a way to assist policy making. The paper focuses on the energy security implications of fossil fuel resource concentration and distinguishes between the price and physical availability components of energy insecurity. It defines two separate indexes: the energy security price index (ESPI), based on the measure of market concentration in competitive fossil fuel markets, and the energy security physical availability index (ESPAI), based on the measure of supply flexibility in regulated markets. The paper illustrates the application of ESPI and ESPAI with two case studies-France and the United Kingdom-looking at the evolution of both indexes to 2030.

  16. Measuring the energy security implications of fossil fuel resource concentration

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Nicolas [Woodrow Wilson School of Public and International Affairs, Princeton University, New Jersey (United States)

    2010-04-15

    Economic assessments of the welfare effects of energy insecurity are typically uncertain and fail to provide clear guidance to policy makers. As a result, governments have had little analytical support to complement expert judgment in the assessment of energy security. This is likely to be inadequate when considering multiple policy goals, and in particular the intersections between energy security and climate change mitigation policies. This paper presents an alternative approach which focuses on gauging the causes of energy insecurity as a way to assist policy making. The paper focuses on the energy security implications of fossil fuel resource concentration and distinguishes between the price and physical availability components of energy insecurity. It defines two separate indexes: the energy security price index (ESPI), based on the measure of market concentration in competitive fossil fuel markets, and the energy security physical availability index (ESPAI), based on the measure of supply flexibility in regulated markets. The paper illustrates the application of ESPI and ESPAI with two case studies - France and the United Kingdom - looking at the evolution of both indexes to 2030. (author)

  17. Energy Efficiency Measures to Incorporate into Remodeling Projects

    Energy Technology Data Exchange (ETDEWEB)

    Liaukus, C.

    2014-12-01

    Energy improvements in a home are often approached as one concerted effort, beginning with a simple walk-through assessment or more in-depth energy audit and followed by the installation of recommended energy measures. While this approach allows for systems thinking to guide the efforts, comprehensive energy improvements of this nature are undertaken by a relatively small number of the households in our nation compared to more piecemeal remodeling efforts. Even when programs like the Weatherization Assistance Program and Home Performance with ENERGY STAR are considered, homes that have had a comprehensive energy makeover still represent a small fraction of the 111.1 million households. In this report, the U.S Department of Energy Building America Retrofit Alliance research team looks at the improvement of a home's energy performance in an opportunistic way: it examines what can be done to incorporate energy efficiency measures into general remodeling work and home repair projects. This allows for the possibility for people who would not normally pursue energy efficiency but will remodel their kitchen or re-side their home to improve their home's performance at the same time. There are challenges to this approach, not the least of which being that the work will take place over time in potentially many separate projects. The opportunity to improve a home's energy efficiency at one time expands or contracts with the scope of the remodel. As such, guidance on how to do each piece thoughtfully and with consideration for potential future projects, is critical.

  18. Direct Measurement of the Surface Energy of Graphene.

    Science.gov (United States)

    van Engers, Christian D; Cousens, Nico E A; Babenko, Vitaliy; Britton, Jude; Zappone, Bruno; Grobert, Nicole; Perkin, Susan

    2017-06-14

    Graphene produced by chemical vapor deposition (CVD) is a promising candidate for implementing graphene in a range of technologies. In most device configurations, one side of the graphene is supported by a solid substrate, wheras the other side is in contact with a medium of interest, such as a liquid or other two-dimensional material within a van der Waals stack. In such devices, graphene interacts on both faces via noncovalent interactions and therefore surface energies are key parameters for device fabrication and operation. In this work, we directly measured adhesive forces and surface energies of CVD-grown graphene in dry nitrogen, water, and sodium cholate using a modified surface force balance. For this, we fabricated large (∼1 cm 2 ) and clean graphene-coated surfaces with smooth topography at both macro- and nanoscales. By bringing two such surfaces into contact and measuring the force required to separate them, we measured the surface energy of single-layer graphene in dry nitrogen to be 115 ± 4 mJ/m 2 , which was similar to that of few-layer graphene (119 ± 3 mJ/m 2 ). In water and sodium cholate, we measured interfacial energies of 83 ± 7 and 29 ± 6 mJ/m 2 , respectively. Our work provides the first direct measurement of graphene surface energy and is expected to have an impact both on the development of graphene-based devices and contribute to the fundamental understanding of surface interactions.

  19. Atomistic modeling determination of placeholder binding energy of Ti, C, and N atoms on a-Fe (100) surfaces

    International Nuclear Information System (INIS)

    Wei, X J; Liu, Y P; Han, S P

    2015-01-01

    A Fe(100) surface containing Ti, C, and N was constructed and optimized to study the placeholder binding energy of the Ti, C, and N surface atoms; this was achieved by searching the transition state with the LST (linear synchronous transit) method of the CASTEP (Cambridge Serial Total Energy Package) module. Also, the authors analyzed electron structures to determine how Ti, C, and N atoms strengthen the Fe(100) surface. The results show that when Ti, C, or N atoms take placeholder alone, or simultaneously at the Fe(100) surface, the structure stability is at its best. When including Ti, C, and N as solid solutions on the Fe(100) surface, orbital electrons of Fe3d, Ti3d, C2p, and N2p hybridize near the Fermi level; the number of electronic bonding peaks increase and bonding capacity enhances. Also, a large amount of covalent bonds formed. Covalent bonds and metallic bond coexisted. (paper)

  20. Communication: Towards the binding energy and vibrational red shift of the simplest organic hydrogen bond: Harmonic constraints for methanol dimer

    International Nuclear Information System (INIS)

    Heger, Matthias; Suhm, Martin A.; Mata, Ricardo A.

    2014-01-01

    The discrepancy between experimental and harmonically predicted shifts of the OH stretching fundamental of methanol upon hydrogen bonding to a second methanol unit is too large to be blamed mostly on diagonal and off-diagonal anharmonicity corrections. It is shown that a decisive contribution comes from post-MP2 electron correlation effects, which appear not to be captured by any of the popular density functionals. We also identify that the major deficiency is in the description of the donor OH bond. Together with estimates for the electronic and harmonically zero-point corrected dimer binding energies, this work provides essential constraints for a quantitative description of this simple hydrogen bond. The spectroscopic dissociation energy is predicted to be larger than 18 kJ/mol and the harmonic OH-stretching fundamental shifts by about −121 cm −1 upon dimerization, somewhat more than in the anharmonic experiment (−111 cm −1 )

  1. Exercise, energy expenditure and energy balance, as measured with doubly labelled water.

    Science.gov (United States)

    Westerterp, Klaas R

    2018-02-01

    The doubly labelled water method for the measurement of total daily energy expenditure (TDEE) over 1-3 weeks under daily living conditions is the indicated method to study effects of exercise and extreme environments on energy balance. Subjects consume a measured amount of doubly labelled water (2H2 18O) to increase background enrichment of body water for 18O and 2H, and the subsequent difference in elimination rate between 18O and 2H, as measured in urine, saliva or blood samples, is a measure for carbon dioxide production and thus allows calculation of TDEE. The present review describes research showing that physical activity level (PAL), calculated as TDEE (assessed with doubly labelled water) divided by resting energy expenditure (REE, PAL = TDEE/REE), reaches a maximum value of 2·00-2·40 in subjects with a vigorously active lifestyle. Higher PAL values, while maintaining energy balance, are observed in professional athletes consuming additional energy dense foods to compete at top level. Exercise training can increase TDEE/REE in young adults to a value of 2·00-2·40, when energy intake is unrestricted. Furthermore, the review shows an exercise induced increase in activity energy expenditure can be compensated by a reduction in REE and by a reduction in non-exercise physical activity, especially at a negative energy balance. Additionally, in untrained subjects, an exercise-induced increase in activity energy expenditure is compensated by a training-induced increase in exercise efficiency.

  2. Magnetic field-dependent of binding energy in GaN/InGaN/GaN spherical QDQW nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    El Ghazi, Haddou, E-mail: hadghazi@gmail.com [Solid State Laboratory, Faculty of science, Dhar EL Mehrez, BP 1796 Fes-Atlas (Morocco); Special mathematics, CPGE Kénitra, Chakib Arsalane Street (Morocco); Jorio, Anouar; Zorkani, Izeddine [Solid State Laboratory, Faculty of science, Dhar EL Mehrez, BP 1796 Fes-Atlas (Morocco)

    2013-10-15

    Simultaneous study of magnetic field and impurity's position effects on the ground-state shallow-donor binding energy in GaN|InGaN|GaN (core|well|shell) spherical quantum dot–quantum well (SQDQW) as a function of the ratio of the inner and the outer radius is reported. The calculations are investigated within the framework of the effective-mass approximation and an infinite deep potential describing the quantum confinement effect. A Ritz variational approach is used taking into account of the electron-impurity correlation and the magnetic field effect in the trial wave-function. It appears that the binding energy depends strongly on the external magnetic field, the impurity's position and the structure radius. It has been found that: (i) the magnetic field effect is more marked in large layer than in thin layer and (ii) it is more pronounced in the spherical layer center than in its extremities.

  3. The DHG sum rule measured with medium energy photons

    International Nuclear Information System (INIS)

    Hicks, K.; Ardashev, K.; Babusci, D.

    1997-01-01

    The structure of the nucleon has many important features that are yet to be uncovered. Of current interest is the nucleon spin-structure which can be measured by doing double-polarization experiments with photon beams of medium energies (0.1 to 2 GeV). One such experiment uses dispersion relations, applied to the Compton scattering amplitude, to relate measurement of the total reaction cross section integrated over the incident photon energy to the nucleon anomalous magnetic moment. At present, no single facility spans the entire range of photon energies necessary to test this sum rule. The Laser-Electron Gamma Source (LEGS) facility will measure the double-polarization observables at photon energies between 0.15--0.47 MeV. Either the SPring8 facility, the GRAAL facility (France), or Jefferson Laboratory could make similar measurements at higher photon energies. A high-precision measurement of the spin-polarizability and the Drell-Hearn-Gerasimov sum rule is now possible with the advent of high-polarization solid HD targets at medium energy polarized photon facilities such as LEGS, GRAAL and SPring8. Other facilities with lower polarization in either the photon beam or target (or both) are also pursuing these measurements because of the high priority associated with this physics. The Spin-asymmetry (SASY) detector that will be used at LEGS has been briefly outlined in this paper. The detector efficiencies have been explored with simulations studies using the GEANT software, with the result that both charged and uncharged pions can be detected with a reasonable efficiency (> 30%) over a large solid angle. Tracking with a TPC, which will be built at LEGS over the next few years, will improve the capabilities of these measurements

  4. Measurements of sputtering yields for low-energy plasma ions

    International Nuclear Information System (INIS)

    Nishi, M.; Yamada, M.; Suckewer, S.; Rosengaus, E.

    1979-04-01

    Sputtering yields of various wall/limiter materials of fusion devices have been extensively measured in the relevant plasma environment for low-energy light ions (E 14 cm -3 and electron temperature up to 10eV. Target materials used were C (graphite), Ti, Mo, Ta, W, and Fe (stainless steel). In order to study the dependence of the sputtering yields on the incident energy of ions, the target samples were held at negative bias voltage up to 300V. The sputtering yields were determined by a weight-loss method and by spectral line intensity measurements. The data obtained in the present experiment agree well with those previously obtained at the higher energies (E greater than or equal to 200eV) by other authors using different schemes; the present data also extend to substantially lower energies (E approx. > 30eV) than hitherto

  5. Binding Energy of Quantum Bound States in X-shaped Nanowire Intersection

    Science.gov (United States)

    2014-01-01

    α0)〉 = 3~2 mb2 ( 2α0 + 2 11 ) = 6~2 mb2 ( α0 + 1 11 ) = 1.058 ~2 ma2 ∆2 (111) The threshold energy is found to be Et = π2~2 2mw2 (112) Since the...energy (Eb) of the electron taking the threshold energy as zero level is given by Eb = −Emin = −1.058 ~2 ma2 ∆2 = −4.232 ~ 2 mw2 cos2(θ1 − θ2

  6. Pion minus energy measurement by a multilayer semiconductor spectrometer

    International Nuclear Information System (INIS)

    Gornov, M.G.; Gurov, Yu.B.; Lapushkin, S.V.

    1981-01-01

    A technique for determining π - meson energy by a laminated semiconductor spectrometer is described. Results of experimental test of the technique carried out using beams of meson track of the JINR synchrocyclotron and three Si(Li) detectors are given. A specific feature of the technique is that chi 2 criterium with a functional written through exact thicknesses of semiconductor detectors was used for separating events with disturbance of ionization dependence and determining particle energy. It is shown that the absolute resolution can be not worse than 0.5 MeV in a wide energy range. It is concluded that the technique suggested is suitable for measuring energy of any charged particles with indefinite energy release during stoppage [ru

  7. Catalogue of Energy Efficiency Measures for France - Synthesis report

    International Nuclear Information System (INIS)

    2013-10-01

    ADEME wished to learn about existing effective energy efficiency measures implemented outside of France, whether cross-sectoral or targeted at a specific sector (industry, transport, buildings or agriculture). The objective of this survey was to determine whether any of these measures could be applied in France, with the goal of holding down the growth of energy consumption. This survey has led to the writing of a catalog of 53 two-page fact sheets describing the measures identified as interesting for France. These measures were analysed via classic criteria of evaluation such as cost-efficiency or impact, allowing to highlight the most successful measures for the French territory. ADEME presents you a synthesis of this survey in this document

  8. Black hole firewalls require huge energy of measurement

    Science.gov (United States)

    Hotta, Masahiro; Matsumoto, Jiro; Funo, Ken

    2014-06-01

    The unitary moving mirror model is one of the best quantum systems for checking the reasoning of the original firewall paradox of Almheiri et al. [J. High Energy Phys. 02 (2013) 062] in quantum black holes. Though the late-time part of radiations emitted from the mirror is fully entangled with the early part, no firewall exists with a deadly, huge average energy flux in this model. This is because the high-energy entanglement structure of the discretized systems in almost maximally entangled states is modified so as to yield the correct description of low-energy effective field theory. Furthermore, the strong subadditivity paradox of firewalls is resolved using nonlocality of general one-particle states and zero-point fluctuation entanglement. Due to the Reeh-Schlieder theorem in quantum field theory, another firewall paradox is inevitably raised with quantum remote measurements in the model. We resolve this paradox from the viewpoint of the energy cost of measurements. No firewall appears, as long as the energy for the measurement is much smaller than the ultraviolet cutoff scale.

  9. Brick industry: Technical and economic assessment of energy saving measures

    Energy Technology Data Exchange (ETDEWEB)

    Florio, G.; Romeo, G. (Calabria Univ., Arcavacata di Rende (Italy). Dipt. di Meccanica)

    Starting from a detailed energy analysis of the production cycle of bricks, the authors make a technical and economic assessment of any possible measure aimed at rationalizing energy. They take energy conservation into consideration not only through the use of exhausted oil residues, but also through the employment of a turboalternator or an internal combustion engine for cogeneration. Both applications of cogeneration prove to be highly interesting from an economic viewpoint even though the turboalternator is put at a disadvantage in competing with internal combustion engines since it increases the overall cogeneration plant costs with respect to the latter.

  10. Energy efficiency measures for offshore oil and gas platforms

    International Nuclear Information System (INIS)

    Nguyen, Tuong-Van; Voldsund, Mari; Breuhaus, Peter; Elmegaard, Brian

    2016-01-01

    Oil and gas platforms are energy-intensive systems – each facility uses from a few to several hundreds MW of energy, depending on the petroleum properties, export specifications and field lifetime. Several technologies for increasing the energy efficiency of these plants are investigated in this work. They include: (i) the installation of multiple pressure levels in production manifolds, (ii) the implementation of multiphase expanders, (iii) the promotion of energy and process integration, (iv) the limitation of gas recirculation around the compressors, (v) the exploitation of low-temperature heat from the gas cooling steps, (vi) the downsizing or replacement of the existing gas turbines, and (vii) the use of the waste heat from the power plant. The present study builds on four actual cases located in the North and Norwegian Seas, which differ by the type of oil processed, operating conditions and strategies. The benefits and practical limitations of each measure are discussed based on thermodynamic, economic and environmental factors. Significant energy savings and reductions in CO_2-emissions are depicted, reaching up to 15–20%. However, they strongly differ from one facility to another, which suggests that generic improvements can hardly be proposed, and that thorough techno-economic analyses should be conducted for each plant. - Highlights: • Energy efficiency measures for offshore platforms are assessed. • Energy savings and reductions in CO_2-emissions can reach up to 15-20%. • They differ strongly depending on the oil type, operating conditions and strategies.

  11. Numerical comparison of atomic binding energies calculated by Thomas-Fermi like formulas

    International Nuclear Information System (INIS)

    Donnamaria, M.C.; Castro, E.A.; Fernandez, F.M.

    1985-01-01

    We apply in an exhaustive way formulas of Thomas-Fermi nature to determine atomic ground state energies. Results are compared with Hartree-Fock SCF data and the different methods are analysed in a comparative fashion. (authors)

  12. Mechanical Control of ATP Synthase Function: Activation Energy Difference between Tight and Loose Binding Sites

    KAUST Repository

    Beke-Somfai, Tamás; Lincoln, Per; Nordén, Bengt

    2010-01-01

    Despite exhaustive chemical and crystal structure studies, the mechanistic details of how FoF1-ATP synthase can convert mechanical energy to chemical, producing ATP, are still not fully understood. On the basis of quantum mechanical calculations

  13. Analysis of energy demand, and evaluation of energy conservation measures in urban districts

    International Nuclear Information System (INIS)

    Nakamura, H.; Yoshida, N.

    1994-01-01

    Mitsubishi Research Institute has analyzed the energy demand of a typical Japanese city, Yokohama, as well as the distribution of fossil-energy flow, and the final consumption by sectors. It has evaluated the effectiveness of various energy conservation measures, (e.g., cogeneration, electric cars, insulation,...) in countering the global warming trend. This study defines a viable methodology which may be utilized, in the future, in examining the effectiveness of environmental policies. (TEC). 1 tab., 4 figs

  14. Binding energy and momentum distribution of nuclear matter using Green's function methods

    International Nuclear Information System (INIS)

    Ramos, A.; Dickhoff, W.H.; Polls, A.

    1991-01-01

    The influence of hole-hole (h-h) propagation in addition to the conventional particle-particle (p-p) propagation, on the energy per particle and the momentum distribution is investigated for the v 2 central interaction which is derived from Reid's soft-core potential. The results are compared to Brueckner-Hartree-Fock calculations with a continuous choice for the single-particle (SP) spectrum. Calculation of the energy from a self-consistently determined SP spectrum leads to a lower saturation density. This result is not corroborated by calculating the energy from the hole spectral function, which is, however, not self-consistent. A generalization of previous calculations of the momentum distribution, based on a Goldstone diagram expansion, is introduced that allows the inclusion of h-h contributions to all orders. From this result an alternative calculation of the kinetic energy is obtained. In addition, a direct calculation of the potential energy is presented which is obtained from a solution of the ladder equation containing p-p and h-h propagation to all orders. These results can be considered as the contributions of selected Goldstone diagrams (including p-p and h-h terms on the same footing) to the kinetic and potential energy in which the SP energy is given by the quasiparticle energy. The results for the summation of Goldstone diagrams leads to a different momentum distribution than the one obtained from integrating the hole spectral function which in general gives less depletion of the Fermi sea. Various arguments, based partly on the results that are obtained, are put forward that a self-consistent determination of the spectral functions including the p-p and h-h ladder contributions (using a realistic interaction) will shed light on the question of nuclear saturation at a nonrelativistic level that is consistent with the observed depletion of SP orbitals in finite nuclei

  15. Binding energy and momentum distribution of nuclear matter using Green's function methods

    International Nuclear Information System (INIS)

    Ramos, A.; Dickhoff, W.H.; Polls, A.

    1990-07-01

    The influence of hole-hole (hh) propagation in addition to the conventional particle-particle (pp) propagation on the energy per particle and the momentum distribution is investigated for two central interactions (v 2 and v 2 l=0 ) which are derived from Reid's soft core potential. The results are compared to Brueckner-Hartree-Fock calculations with a continuous choice for the single-particle (sp) spectrum. Calculation of the energy from a self-consistently determined sp spectrum leads to a lower saturation density. This result is not corroborated by calculating the energy from the hole spectral function which is, however, not self-consistent. A generalization of previous calculations of the momentum distribution based on a Goldstone diagram expansion is introduced which allows the inclusion of hh contributions to all orders. From this result an alternative calculation of the kinetic energy is obtained. In addition, a direct calculation of the potential energy is presented which is obtained from a solution of the ladder equation containing pp and hh propagation to all orders. These results can be considered as the contributions of selected Goldstone diagrams (including pp and hh terms on the same footing) to the kinetic and potential energy in which the sp energy is given by the quasi-article energy. The results for the summation of Goldstone diagrams leads to a different momentum distribution than the one obtained from integrating the hole spectral function which in general gives less depletion of the Fermi sea. Various arguments, based partly on the results that are obtained, are put forward that a self-consistent determination of the spectral functions including the pp and hh ladder contributions (using a realistic interaction) will shed light on the question of nuclear saturation at a non-relativistic level which is consistent with the observed depletion of sp orbitals in finite nuclei. (Author) (51 refs., 3 tabs., 15 figs)

  16. Developing a Novel Hydrogen Sponge with Ideal Binding Energy and High Surface Area for Practical Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Chung, T. C. Mike

    2018-04-19

    This Phase I (5 quarters) research project was to examine the validity of a new class of boron-containing polymer (B-polymer) frameworks, serving as the adsorbents for the practical onboard H2 storage applications. Three B-polymer frameworks were synthesized and investigated, which include B-poly(butyenylstyrene) (B-PBS) framework (A), B-poly(phenyldiacetyene) (B-PPDA) framework (B), and B-poly(phenyltriacetylene) (B-PPTA) framework (C). They are 2-D polymer structures with the repeating cyclic units that spontaneously form open morphology and the B-doped (p-type) π-electrons delocalized surfaces. The ideal B-polymer framework shall exhibit open micropores (pore size in the range of 1-1.5nm) with high surface area (>3000 m2/g), and the B-dopants in the conjugated framework shall provide high surface energy for interacting with H2 molecules (an ideal H2 binding energy in the range of 15-25 kJ/mol). The pore size distribution and H2 binding energy were investigated at both Penn State and NREL laboratories. So far, the experimental results show the successful synthesis of B-polymer frameworks with the relatively well-defined planar (2-D) structures. The intrinsically formed porous morphology exhibits a broad pore size distribution (in the range of 0.5-10 nm) with specific surface area (~1000 m2/g). The miss-alignment between 2-D layers may block some micropore channels and limit gas diffusion throughout the entire matrix. In addition, the 2-D planar conjugated structure may also allow free π-electrons delocalization throughout the framework, which significantly reduces the acidity of B-moieties (electron-deficiency).The resulting 2-D B-polymer frameworks only exhibit a small increase of H2 binding energy in the range of 8-9 KJ/mole (quite constant over the whole sorption range).

  17. Triplex DNA-binding proteins are associated with clinical outcomes revealed by proteomic measurements in patients with colorectal cancer

    Directory of Open Access Journals (Sweden)

    Nelson Laura D

    2012-06-01

    Full Text Available Abstract Background Tri- and tetra-nucleotide repeats in mammalian genomes can induce formation of alternative non-B DNA structures such as triplexes and guanine (G-quadruplexes. These structures can induce mutagenesis, chromosomal translocations and genomic instability. We wanted to determine if proteins that bind triplex DNA structures are quantitatively or qualitatively different between colorectal tumor and adjacent normal tissue and if this binding activity correlates with patient clinical characteristics. Methods Extracts from 63 human colorectal tumor and adjacent normal tissues were examined by gel shifts (EMSA for triplex DNA-binding proteins, which were correlated with clinicopathological tumor characteristics using the Mann-Whitney U, Spearman’s rho, Kaplan-Meier and Mantel-Cox log-rank tests. Biotinylated triplex DNA and streptavidin agarose affinity binding were used to purify triplex-binding proteins in RKO cells. Western blotting and reverse-phase protein array were used to measure protein expression in tissue extracts. Results Increased triplex DNA-binding activity in tumor extracts correlated significantly with lymphatic disease, metastasis, and reduced overall survival. We identified three multifunctional splicing factors with biotinylated triplex DNA affinity: U2AF65 in cytoplasmic extracts, and PSF and p54nrb in nuclear extracts. Super-shift EMSA with anti-U2AF65 antibodies produced a shifted band of the major EMSA H3 complex, identifying U2AF65 as the protein present in the major EMSA band. U2AF65 expression correlated significantly with EMSA H3 values in all extracts and was higher in extracts from Stage III/IV vs. Stage I/II colon tumors (p = 0.024. EMSA H3 values and U2AF65 expression also correlated significantly with GSK3 beta, beta-catenin, and NF- B p65 expression, whereas p54nrb and PSF expression correlated with c-Myc, cyclin D1, and CDK4. EMSA values and expression of all three splicing factors correlated

  18. Precision cosmological measurements: Independent evidence for dark energy

    International Nuclear Information System (INIS)

    Bothun, Greg; Hsu, Stephen D.H.; Murray, Brian

    2008-01-01

    Using recent precision measurements of cosmological parameters, we re-examine whether these observations alone, independent of type Ia supernova surveys, are sufficient to imply the existence of dark energy. We find that best measurements of the age of the Universe t 0 , the Hubble parameter H 0 and the matter fraction Ω m strongly favor an equation of state defined by (w<-1/3). This result is consistent with the existence of a repulsive, acceleration-causing component of energy if the Universe is nearly flat

  19. On the energy pattern factor in wind measurements

    Energy Technology Data Exchange (ETDEWEB)

    Buick, T R; Doherty, M A; McMullan, J.T., Morgan, R.; Murray, R B

    1977-01-01

    Measurements of energy pattern factor K/sub e/ were made using a continuous-analogue wind-power metering technique, rather than by the more usual sampling procedure. The values obtained were significantly larger than the usually accepted figure. The discrepancy is attributed partly to the method of measurement, which includes the actual power present rather than the amount that can be extracted, and partly to the use of rather more typical wind speeds. It is concluded, however, that more energy can be derived from wind schemes than was thought, even during periods of light wind. These conclusions improve the viability of wind power plants.

  20. Various high precision measurements of pressure in atomic energy industry

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Inoue, Akira; Hosoma, Takashi; Tanaka, Izumi; Gabane, Tsunemichi.

    1987-01-01

    As for the pressure measurement in atomic energy industry, it is mostly the measurement using differential pressure transmitters and pressure transmitters for process measurement with the general accuracy of measurement of 0.2 - 0.5 % FS/year. However, recently for the development of nuclear fusion reactors and the establishment of nuclear fuel cycle accompanying new atomic energy technology, there are the needs of the pressure measurement having higher accuracy of 0.01 % FS/year and high resolution, and quartz vibration type pressure sensors appeared. New high accuracy pressure measurement techniques were developed by the advance of data processing and the rationalization of data transmission. As the results, the measurement of the differential pressure of helium-lithium two-phase flow in the cooling system of nuclear fusion reactors, the high accuracy measuring system for the level of plutonium nitrate and other fuel substance in tanks in fuel reprocessing and conversion, the high accuracy measurement of atmospheric pressure and wind velocity in ducts, chimneys and tunnels in nuclear facilities and so on became feasible. The principle and the measured data of quartz vibration type pressure sensors are shown. (Kako, I.)

  1. Core-electron binding energies from self-consistent field molecular orbital theory using a mixture of all-electron real atoms and valence-electron model atoms

    International Nuclear Information System (INIS)

    Quinn, C.M.; Schwartz, M.E.

    1981-01-01

    The chemistry of large systems such as clusters may be readily investigated by valence-electron theories based on model potentials, but such an approach does not allow for the examination of core-electron binding energies which are commonly measured experimentally for such systems. Here we merge our previously developed Gaussian based valence-electron model potential theory with all-electron ab initio theory to allow for the calculation of core orbital binding energies when desired. For the atoms whose cores are to be examined, we use the real nuclear changes, all of the electrons, and the appropriate many-electron basis sets. For the rest of the system we use reduced nuclear charges, the Gaussian based model potentials, only the valence electrons, and appropriate valence-electron basis sets. Detailed results for neutral Al 2 are presented for the cases of all-electron, mixed real--model, and model--model SCF--MO calculations. Several different all-electron and valence electron calculations have been done to test the use of the model potential per se, as well as the effect of basis set choice. The results are in all cases in excellent agreement with one another. Based on these studies, a set of ''double-zeta'' valence and all-electron basis functions have been used for further SCF--MO studies on Al 3 , Al 4 , AlNO, and OAl 3 . For a variety of difference combinations of real and model atoms we find excellent agreement for relative total energies, orbital energies (both core and valence), and Mulliken atomic populations. Finally, direct core-hole-state ionic calculations are reported in detail for Al 2 and AlNO, and noted for Al 3 and Al 4 . Results for corresponding frozen-orbital energy differences, relaxed SCF--MO energy differences, and relaxation energies are in all cases in excellent agreement (never differing by more than 0.07 eV, usually by somewhat less). The study clearly demonstrates the accuracy of the mixed real--model theory

  2. Renewable energy and conservation measures for non-residential buildings

    Science.gov (United States)

    Grossman, Andrew James

    The energy demand in most countries is growing at an alarming rate and identifying economically feasible building retrofit solutions to decrease the need for fossil fuels so as to mitigate their environmental and societal impacts has become imperative. Two approaches are available for identifying feasible retrofit solutions: 1) the implementation of energy conservation measures; and 2) the production of energy from renewable sources. This thesis focuses on the development of retrofit software planning tools for the implementation of solar photovoltaic systems, and lighting system retrofits for mid-Michigan institutional buildings. The solar planning tool exploits the existing blueprint of a building's rooftop, and via image processing, the layouts of the solar photovoltaic arrays are developed based on the building's geographical location and typical weather patterns. The resulting energy generation of a PV system is estimated and is utilized to determine levelized energy costs. The lighting system retrofit analysis starts by a current utilization assessment of a building to determine the amount of energy used by the lighting system. Several LED lighting options are evaluated on the basis of color correlation temperature, color rendering index, energy consumption, and financial feasibility, to determine a retrofit solution. Solar photovoltaic installations in mid-Michigan are not yet financially feasible, but with the anticipated growth and dynamic complexity of the solar photovoltaic market, this solar planning tool is able to assist building proprietors make executive decisions regarding their energy usage. Additionally, a lighting system retrofit is shown to have significant financial and health benefits.

  3. Measurement of the nucleon structure function using high energy muons

    International Nuclear Information System (INIS)

    Meyers, P.D.

    1983-12-01

    We have measured the inclusive deep inelastic scattering of muons on nucleons in iron using beams of 93 and 215 GeV muons. To perform this measurement, we have built and operated the Multimuon Spectrometer (MMS) in the muon beam at Fermilab. The MMS is a magnetized iron target/spectrometer/calorimeter which provides 5.61 kg/cm 2 of target, 9% momentum resolution on scattered muons, and a direct measure of total hadronic energy with resolution sigma/sub nu/ = 1.4√nu(GeV). In the distributed target, the average beam energies at the interaction are 88.0 and 209 GeV. Using the known form of the radiatively-corrected electromagnetic cross section, we extract the structure function F 2 (x,Q 2 ) with a typical precision of 2% over the range 5 2 2 /c 2 . We compare our measurements to the predictions of lowest order quantum chromodynamics (QCD) and find a best fit value of the QCD scale parameter Λ/sub LO/ = 230 +- 40/sup stat/ +- 80/sup syst/ MeV/c, assuming R = 0 and without applying Fermi motion corrections. Comparing the cross sections at the two beam energies, we measure R = -0.06 +- 0.06/sup stat/ +- 0.11/sup syst/. Our measurements show qualitative agreement with QCD, but quantitative comparison is hampered by phenomenological uncertainties. The experimental situation is quite good, with substantial agreement between our measurements and those of others. 86 references

  4. Optimizing Lidar Scanning Strategies for Wind Energy Measurements (Invited)

    Science.gov (United States)

    Newman, J. F.; Bonin, T. A.; Klein, P.; Wharton, S.; Chilson, P. B.

    2013-12-01

    Environmental concerns and rising fossil fuel prices have prompted rapid development in the renewable energy sector. Wind energy, in particular, has become increasingly popular in the United States. However, the intermittency of available wind energy makes it difficult to integrate wind energy into the power grid. Thus, the expansion and successful implementation of wind energy requires accurate wind resource assessments and wind power forecasts. The actual power produced by a turbine is affected by the wind speeds and turbulence levels experienced across the turbine rotor disk. Because of the range of measurement heights required for wind power estimation, remote sensing devices (e.g., lidar) are ideally suited for these purposes. However, the volume averaging inherent in remote sensing technology produces turbulence estimates that are different from those estimated by a sonic anemometer mounted on a standard meteorological tower. In addition, most lidars intended for wind energy purposes utilize a standard Doppler beam-swinging or Velocity-Azimuth Display technique to estimate the three-dimensional wind vector. These scanning strategies are ideal for measuring mean wind speeds but are likely inadequate for measuring turbulence. In order to examine the impact of different lidar scanning strategies on turbulence measurements, a WindCube lidar, a scanning Halo lidar, and a scanning Galion lidar were deployed at the Southern Great Plains Atmospheric Radiation Measurement (ARM) site in Summer 2013. Existing instrumentation at the ARM site, including a 60-m meteorological tower and an additional scanning Halo lidar, were used in conjunction with the deployed lidars to evaluate several user-defined scanning strategies. For part of the experiment, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every 1 second. In another part of the experiment, one of

  5. Free energy of RNA-counterion interactions in a tight-binding model computed by a discrete space mapping

    International Nuclear Information System (INIS)

    Henke, Paul S.; Mak, Chi H.

    2014-01-01

    The thermodynamic stability of a folded RNA is intricately tied to the counterions and the free energy of this interaction must be accounted for in any realistic RNA simulations. Extending a tight-binding model published previously, in this paper we investigate the fundamental structure of charges arising from the interaction between small functional RNA molecules and divalent ions such as Mg 2+ that are especially conducive to stabilizing folded conformations. The characteristic nature of these charges is utilized to construct a discretely connected energy landscape that is then traversed via a novel application of a deterministic graph search technique. This search method can be incorporated into larger simulations of small RNA molecules and provides a fast and accurate way to calculate the free energy arising from the interactions between an RNA and divalent counterions. The utility of this algorithm is demonstrated within a fully atomistic Monte Carlo simulation of the P4-P6 domain of the Tetrahymena group I intron, in which it is shown that the counterion-mediated free energy conclusively directs folding into a compact structure

  6. Regulation of insulin-like growth factor binding proteins in young growing animals by alteration of energy status.

    Science.gov (United States)

    Dauncey, M J; Rudd, B T; White, D A; Shakespear, R A

    1993-09-01

    The regulation of plasma insulin-like growth factor binding proteins (IGFBPs) by energy status has been assessed in 2-month-old pigs. Energy balance was modified by altering thermoregulatory demand and energy intake, with litter-mates being kept for several weeks at either 35 or 10 degrees C on a high (H) or low (L) level of food intake (where H = 2L); plasma samples were taken 20-24 h after the last meal. The two major forms of circulating IGFBP, as estimated by Western blot analysis, were identified putatively as IGFBP-2 and IGFBP-3 (relative molecular weights of 34 and 40-45 kDa respectively). There were significant differences in IGFBP profiles between the four treatment groups of 35H, 35L, 10H and 10L: the 40-45 kDa IGFBP (putative IGFBP-3) was elevated both in the warm and on a high food intake (P < 0.001), and there was a marked reciprocal relation between the 40-45 and 34 kDa IGFBPs. The relative concentration of the 34 kDa IGFBP (putative IGFBP-2) was greatest in the 10L and least in the 35H group. It is concluded that long-term alterations in energy balance, induced by changes in either intake or thermoregulatory demand, can significantly affect the plasma profile of IGFBPs during the first two months of life.

  7. Free energy of RNA-counterion interactions in a tight-binding model computed by a discrete space mapping

    Energy Technology Data Exchange (ETDEWEB)

    Henke, Paul S. [Department of Chemistry, University of Southern California, Los Angeles, California 90089 (United States); Mak, Chi H., E-mail: cmak@usc.edu [Department of Chemistry, University of Southern California, Los Angeles, California 90089 (United States); Center of Applied Mathematical Sciences, University of Southern California, Los Angeles, California 90089 (United States)

    2014-08-14

    The thermodynamic stability of a folded RNA is intricately tied to the counterions and the free energy of this interaction must be accounted for in any realistic RNA simulations. Extending a tight-binding model published previously, in this paper we investigate the fundamental structure of charges arising from the interaction between small functional RNA molecules and divalent ions such as Mg{sup 2+} that are especially conducive to stabilizing folded conformations. The characteristic nature of these charges is utilized to construct a discretely connected energy landscape that is then traversed via a novel application of a deterministic graph search technique. This search method can be incorporated into larger simulations of small RNA molecules and provides a fast and accurate way to calculate the free energy arising from the interactions between an RNA and divalent counterions. The utility of this algorithm is demonstrated within a fully atomistic Monte Carlo simulation of the P4-P6 domain of the Tetrahymena group I intron, in which it is shown that the counterion-mediated free energy conclusively directs folding into a compact structure.

  8. Binding free energy and counterion release for adsorption of the antimicrobial peptide lactoferricin B on a POPG membrane

    Science.gov (United States)

    Tolokh, Igor S.; Vivcharuk, Victor; Tomberli, Bruno; Gray, C. G.

    2009-09-01

    Molecular dynamics (MD) simulations are used to study the interaction of an anionic palmitoyl-oleoyl-phosphatidylglycerol (POPG) bilayer with the cationic antimicrobial peptide bovine lactoferricin (LFCinB) in a 100 mM NaCl solution at 310 K. The interaction of LFCinB with a POPG bilayer is employed as a model system for studying the details of membrane adsorption selectivity of cationic antimicrobial peptides. Seventy eight 4 ns MD production run trajectories of the equilibrated system, with six restrained orientations of LFCinB at 13 different separations from the POPG membrane, are generated to determine the free energy profile for the peptide as a function of the distance between LFCinB and the membrane surface. To calculate the profile for this relatively large system, a variant of constrained MD and thermodynamic integration is used. A simplified method for relating the free energy profile to the LFCinB-POPG membrane binding constant is employed to predict a free energy of adsorption of -5.4±1.3kcal/mol and a corresponding maximum adsorption binding force of about 58 pN. We analyze the results using Poisson-Boltzmann theory. We find the peptide-membrane attraction to be dominated by the entropy increase due to the release of counterions and polarized water from the region between the charged membrane and peptide, as the two approach each other. We contrast these results with those found earlier for adsorption of LFCinB on the mammalianlike palmitoyl-oleoyl-phosphatidylcholine membrane.

  9. Effects of trihexyphenidyl and L-dopa on brain muscarinic cholinergic receptor binding measured by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Shinotoh, H; Asahina, M; Hirayama, K [Dept. of Neurology, School of Medicine, Chiba Univ., Chiba (Japan); Inoue, O; Suhara, T; Tateno, Y [Division of Clinical Research, National Inst. of Radiological Sciences, Chiba (Japan)

    1994-01-01

    The effects of pharmacological intervention on brain muscarinic cholinergic receptor (mAChR) binding were assessed in seven patients with Parkinson's disease by positron emission tomography and carbon-11 labelled N-methyl-4-piperidyl benzilate ([[sup 11]C]NMPB). [[sup 11]C]NMPB was injected twice, approximately 2 hours apart, in each patient, to assess the effect of single doses of 4 mg of trihexyphenidyl (n=5) or 400 mg of L-dopa with 57 mg of benserazide (n=2) on the binding parameter of mAChRs (K[sub 3]). There was a mean 28% inhibition of K[sub 3] values in the brain in the presence of trihexyphenidyl, which was assumed to reflect mAChR occupancy. No significant change in K[sub 3] was observed in the presence of L-dopa. This study demonstrates the feasibility of measuring mAChR occupancy by an anticholinergic medication with PET.

  10. submitter Experimental temperature measurements for the energy amplifier test

    CERN Document Server

    Calero, J; Gallego, E; Gálvez, J; García Tabares, L; González, E; Jaren, J; López, C; Lorente, A; Martínez Val, J M; Oropesa, J; Rubbia, C; Rubio, J A; Saldana, F; Tamarit, J; Vieira, S

    1996-01-01

    A uranium thermometer has been designed and built in order to make local power measurements in the First Energy Amplifier Test (FEAT). Due to the experimental conditions power measurements of tens to hundreds of nW were required, implying a sensitivity in the temperature change measurements of the order of 1 mK. A uranium thermometer accurate enough to match that sensitivity has been built. The thermometer is able to determine the absolute energetic gain obtained in a tiny subcritical uranium assembly exposed to a proton beam of kinetic energies between 600 MeV and 2.75 GeV. In addition, the thermometer measurements have provided information about the spatial power distribution and the shape of the neutron spallation cascade.

  11. Priority mitigation measures in non-energy sector in Kazakstan

    Energy Technology Data Exchange (ETDEWEB)

    Mizina, S.V.; Pilifosova, O.V.; Gossen, E.F.

    1996-12-31

    Fulfilling the Commitments on UN FCCC through the U.S. Country Studies Program, Kazakstan has developed the national GHG Inventory, vulnerability and adaptation assessment and estimated the possibility of mitigation measures in certain sectors. Next step is developing National Climate Change Action Plan. That process includes such major steps as setting priorities in mitigation measures and technologies, their comprehensive evaluation, preparation implementation strategies, developing the procedure of incorporation of the National Action Plan into other development plans and programs. This paper presents programs and measures that can reduce GHG emissions in non-energy sector. Measures in land-use change and forestry, agriculture and coal mining are considered. Current situation in non-energy sector of Kazakstan is discussed. The amount of GHG emissions reduction and cost analysis presented in this paper was developed with the use of IPCC recommendations.

  12. The role of charge symmetry breaking in binding energy difference of 17F-17O, 15O-15N mirror nuclei

    International Nuclear Information System (INIS)

    Asghari, M.

    2004-01-01

    Charge symmetry breaking potential due to the exchange of pseudoscalar(π-η),(π-η') and vector(ρ-ω) mesons in mirror nuclei are considered. With the computation of coulomb energy along with the present charge symmetry breaking effects provide a reasonably accurate description of the binding energy differences between mirror nuclei

  13. Analysis of electrical energy consumers operation in the heating plant with proposal of energy savings measures

    Directory of Open Access Journals (Sweden)

    Nikolić Aleksandar

    2016-01-01

    Full Text Available The results of power quality measurements, obtained during an energy audit in the heating plant Vreoci in the Electric Power System of Serbia, are presented in the paper. Two steam boilers, rated at 120MW each, are installed in this heating plant, using coal as a fuel. The energy audit encompassed the measurements of the complete set of parameters needed to determine the thermal efficacy of boilers and the entire heating plant. Based on the measurement results, several technical measures for improving energy efficiency of the plant are proposed. The measures evaluated in the paper should contribute to the reduction of fossil fuel usage and CO2 emissions, thereby resulting in a significant impact in both financial and ecological areas.

  14. The Minimum Binding Energy and Size of Doubly Muonic D3 Molecule

    Science.gov (United States)

    Eskandari, M. R.; Faghihi, F.; Mahdavi, M.

    The minimum energy and size of doubly muonic D3 molecule, which two of the electrons are replaced by the much heavier muons, are calculated by the well-known variational method. The calculations show that the system possesses two minimum positions, one at typically muonic distance and the second at the atomic distance. It is shown that at the muonic distance, the effective charge, zeff is 2.9. We assumed a symmetric planar vibrational model between two minima and an oscillation potential energy is approximated in this region.

  15. Suitability of magnetic single- and multi-core nanoparticles to detect protein binding with dynamic magnetic measurement techniques

    International Nuclear Information System (INIS)

    Remmer, Hilke; Dieckhoff, Jan; Schilling, Meinhard; Ludwig, Frank

    2015-01-01

    We investigated the binding of biotinylated proteins to various streptavidin functionalized magnetic nanoparticles with different dynamic magnetic measurement techniques to examine their potential for homogeneous bioassays. As particle systems, single-core nanoparticles with a nominal core diameter of 30 nm as well as multi-core nanoparticles with hydrodynamic sizes varying between nominally 60 nm and 100 nm were chosen. As experimental techniques, fluxgate magnetorelaxometry (MRX), complex ac susceptibility (ACS) and measurements of the phase lag between rotating field and sample magnetization are applied. MRX measurements are only suited for the detection of small analytes if the multivalency of functionalized nanoparticles and analytes causes cross-linking, thus forming larger aggregates. ACS measurements showed for all nanoparticle systems a shift of the imaginary part's maximum towards small frequencies. In rotating field measurements only the single-core nanoparticle systems with dominating Brownian mechanism exhibit an increase of the phase lag upon binding in the investigated frequency range. The coexistence of Brownian and Néel relaxation processes can cause a more complex phase lag change behavior, as demonstrated for multi-core nanoparticle systems. - Highlights: • Cealization of homogeneous magnetic bioassays using different magnetic techniques. • Comparison of single- and multi-core nanoparticle systems. • ac Susceptibility favorable for detection of small analytes. • Magnetorelaxometry favorable for detection of large analytes or cross-linking assays

  16. A Method to Measure the Bracelet Based on Feature Energy

    Science.gov (United States)

    Liu, Hongmin; Li, Lu; Wang, Zhiheng; Huo, Zhanqiang

    2017-12-01

    To measure the bracelet automatically, a novel method based on feature energy is proposed. Firstly, the morphological method is utilized to preprocess the image, and the contour consisting of a concentric circle is extracted. Then, a feature energy function, which is relevant to the distances from one pixel to the edge points, is defined taking into account the geometric properties of the concentric circle. The input image is subsequently transformed to the feature energy distribution map (FEDM) by computing the feature energy of each pixel. The center of the concentric circle is thus located by detecting the maximum on the FEDM; meanwhile, the radii of the concentric circle are determined according to the feature energy function of the center pixel. Finally, with the use of a calibration template, the internal diameter and thickness of the bracelet are measured. The experimental results show that the proposed method can measure the true sizes of the bracelet accurately with the simplicity, directness and robustness compared to the existing methods.

  17. Measurements of the energy spectrum of backscattered fast neutrons

    International Nuclear Information System (INIS)

    Segal, Y.

    1976-03-01

    Experimental measurements have been made of the energy spectra of neutrons transmitted through slabs of iron, lead and perspex for incident neutron energies of 0.5, 1.0, 1.5 and 1.8 MeV. The neutron energy measurements were made using a He-3 spectrometer. The dependence of the neutrons energy spectrum as a function of scattering thickness was determined. The neutrons source used was a 3MeV Van de Graaff accelerator with a tritium target using the H 3 (p,n) He 3 reaction. The results obtained by the investigator on energy dependence of transmitted neutrons as a function of thickness of scattering material were compared, where possible, with the results obtained by other workers. The comparisons indicated good agreement. The experiment's results are compared with MORSE Monte Carlo calculated values. It is worthwhile to note that direct comparison between measured cross section values and the recommended ones are very far from satisfactory. In almost all cases the calculated spectrum is harder than the experimental one, a situation common to the penetrating and the back-scattered flux

  18. Energy usage and technical potential for energy saving measures in the Swedish residential building stock

    International Nuclear Information System (INIS)

    Mata, Érika; Sasic Kalagasidis, Angela; Johnsson, Filip

    2013-01-01

    This paper provides an analysis of the current energy usage (net energy and final energy by fuels) and associated carbon dioxide (CO 2 ) emissions of the Swedish residential building stock, which includes single-family dwellings and multi-family dwellings. Twelve energy saving measures (ESMs) are assessed using a bottom–up modeling methodology, in which the Swedish residential stock is represented by a sample of 1400 buildings (based on data from the year 2005). Application of the ESMs studied gives a maximum technical reduction potential in energy demand of 53%, corresponding to a 63% reduction in CO 2 emissions. Although application of the investigated ESMs would reduce CO 2 emissions, the measures that reduce electricity consumption for lighting and appliances (LA) will increase CO 2 emissions, since the saved electricity production is less CO 2 -intensive than the fuel mix used for the increased space heating required to make up for the loss in indirect heating obtained from LA. - Highlights: ► Analysis of year 2005energy use and CO2 emissions of Swedish residential buildings. ► Includes all single-family dwellings and multi-family dwellings. ► Bottom–up modeling of building stock represented by 1400 buildings. ► Technical effects of 12 energy saving measures are assessed. ► Energy demand can be reduced by53% and associated CO 2 emissions by 63%

  19. Measured energy savings from using night temperature setback

    International Nuclear Information System (INIS)

    Szydlowski, R.F.; Wrench, L.E.; O'Neill, P.J.

    1993-01-01

    The measured energy savings resulting from using night temperature setback in typical light-construction wooden office buildings was determined. Researchers installed monitoring equipment in a six-building sample of two-story wooden buildings at Fort Devens, Massachusetts. Data obtained during both single-setting and night-setback operating modes were used to develop models of each building's heat consumption as a function of the difference between inside and outside temperature. These models were used to estimate seasonal savings that could be obtained from the use of night-setback thermostat control. The measured savings in heating energy from using night temperature setback for the six Fort Devens buildings ranged from 14% to 25%; the mean savings was 19.2%. Based on an energy cost of $0.65/therm of natural gas, the estimated average cost savings of using automatic setback thermostats in these buildings is $780 per year per building

  20. China building energy consumption: Situation, challenges and corresponding measures

    International Nuclear Information System (INIS)

    Cai, W.G.; Wu, Y.; Zhong, Y.; Ren, H.

    2009-01-01

    As one of the biggest parts of total national energy consumption (TNEC), building energy consumption (BEC) catches public eyes and has been regarded as a crucial problem of the current society. For the past 20 years, BEC in china has been increasing at a high speed. To curb the rapid growing of BEC, china has enforced and implemented a series of policies. These include enforcing BEC constraints on new building projects, promoting more environment friendly building designs, establishing a more sophisticated legislation for building energy conservation, and increasing the total budget in the area of BEC control. This article analyzed china BEC situation and the challenges. As the main point, the measures required by China government to improve building energy efficiency were introduced as well.

  1. Measurements of radiated elastic wave energy from dynamic tensile cracks

    Science.gov (United States)

    Boler, Frances M.

    1990-01-01

    The role of fracture-velocity, microstructure, and fracture-energy barriers in elastic wave radiation during a dynamic fracture was investigated in experiments in which dynamic tensile cracks of two fracture cofigurations of double cantilever beam geometry were propagating in glass samples. The first, referred to as primary fracture, consisted of fractures of intact glass specimens; the second configuration, referred to as secondary fracture, consisted of a refracture of primary fracture specimens which were rebonded with an intermittent pattern of adhesive to produce variations in fracture surface energy along the crack path. For primary fracture cases, measurable elastic waves were generated in 31 percent of the 16 fracture events observed; the condition for radiation of measurable waves appears to be a local abrupt change in the fracture path direction, such as occurs when the fracture intersects a surface flaw. For secondary fractures, 100 percent of events showed measurable elastic waves; in these fractures, the ratio of radiated elastic wave energy in the measured component to fracture surface energy was 10 times greater than for primary fracture.

  2. Automating Energy Bandgap Measurements in Semiconductors Using LabVIEW

    Science.gov (United States)

    Garg, Amit; Sharma, Reena; Dhingra, Vishal

    2010-01-01

    In this paper, we report the development of an automated system for energy bandgap and resistivity measurement of a semiconductor sample using Four-Probe method for use in the undergraduate laboratory of Physics and Electronics students. The automated data acquisition and analysis system has been developed using National Instruments USB-6008 DAQ…

  3. High energy spin waves in iron measured by neutron scattering

    International Nuclear Information System (INIS)

    Boothroyd, A.T.; Paul, D.M.; Mook, H.A.

    1991-01-01

    We present new results for the spin were dispersion relation measured along the [ζζ0] direction in bcc iron (12% silicon) by time-of-flight, neutron inelastic scattering. The excitations were followed to the zone boundary, where they are spread over a range of energies around 300meV. 6 refs., 2 figs

  4. Measurement of the pion form factor at higher energies

    Energy Technology Data Exchange (ETDEWEB)

    Mack, D.J. [CEBAF, Newport News, VA (United States)

    1994-04-01

    One of the strongest arguments for increasing the nominal CEBAF beam energy to equal or exceed 6 GeV is that one would be able to make quality high Q{sup 2} measurements of the charged pion form factor.

  5. Ambient RF energy scavenging: GSM and WLAN power density measurements

    NARCIS (Netherlands)

    Visser, H.J.; Reniers, A.C.F.; Theeuwes, J.A.C.

    2009-01-01

    To assess the feasibility of ambient RF energy scavenging, a survey of expected power density levels distant from GSM-900 and GSM-1800 base stations has been conducted and power density measurements have been performed in a WLAN environment. It appears that for distances ranging from 25 m to 100 m

  6. Measurement of energy deposition near high energy, heavy ion tracks. Progress report, December 1982-April 1985

    Energy Technology Data Exchange (ETDEWEB)

    Metting, N.F.; Braby, L.A.; Rossi, H.H.; Kliauga, P.J.; Howard, J.; Schimmerling, W.; Wong, M.; Rapkin, M.

    1986-08-01

    The microscopic spatial distribution of energy deposition in irradiated tissue plays a significant role in the final biological effect produced. Therefore, it is important to have accurate microdosimetric spectra of radiation fields used for radiobiology and radiotherapy. The experiments desribed here were designed to measure the distributions of energy deposition around high energy heavy ion tracks generated at Lawrence Berkeley Laboratory's Bevalac Biomedical Facility. A small proportional counter mounted in a large (0.6 by 2.5 m) vacuum chamber was used to measure energy deposition distributions as a function of the distance between detector and primary ion track. The microdosimetric distributions for a homogeneous radiation field were then calculated by integrating over radial distance. This thesis discusses the rationale of the experimental design and the analysis of measurements on 600 MeV/amu iron tracks. 53 refs., 19 figs.

  7. Measurement of energy deposition near high energy, heavy ion tracks. Progress report, December 1982-April 1985

    International Nuclear Information System (INIS)

    Metting, N.F.; Braby, L.A.; Rossi, H.H.; Kliauga, P.J.; Howard, J.; Schimmerling, W.; Wong, M.; Rapkin, M.

    1986-08-01

    The microscopic spatial distribution of energy deposition in irradiated tissue plays a significant role in the final biological effect produced. Therefore, it is important to have accurate microdosimetric spectra of radiation fields used for radiobiology and radiotherapy. The experiments desribed here were designed to measure the distributions of energy deposition around high energy heavy ion tracks generated at Lawrence Berkeley Laboratory's Bevalac Biomedical Facility. A small proportional counter mounted in a large (0.6 by 2.5 m) vacuum chamber was used to measure energy deposition distributions as a function of the distance between detector and primary ion track. The microdosimetric distributions for a homogeneous radiation field were then calculated by integrating over radial distance. This thesis discusses the rationale of the experimental design and the analysis of measurements on 600 MeV/amu iron tracks. 53 refs., 19 figs

  8. Hypernuclear interactions and the binding energies of Λ and ΛΛ hypernuclei

    International Nuclear Information System (INIS)

    Bodmer, A.R.; Usmani, Q.N.

    1988-01-01

    By use of variational calculations a reasonable hadronic description is obtained of the s-shell hypernuclei, of /sub Λ/ 9 Be, and of the well depth, with ΛN forces which are consistent with Λp scattering and which are quite strongly spin-dependent, with reasonable TPE ΛNN forces with strongly repulsive dispersive-type ΛNN forces. For the latter we also consider a spin-dependent version which is somewhat favored by our analysis. /sub Λ/ 9 Be is treated as a 2α + Λ system and is significantly overbound, ≅1 MeV, if only αα and αΛ potentials are used. An ααΛ potential obtained from the ΛNN forces nicely accounts for this overbinding. The ΛΛ hypernuclei /sub ΛΛ/ 6 He and /sub ΛΛ/ 10 Be are treated as α + 2Λ and 2α + 2Λ systems. Use of the /sub ΛΛ/ 10 Be event gives ≅1.5 MeV too little binding for /sub ΛΛ/ 6 He. The 1 S 0 ΛΛ potential obtained from /sub ΛΛ/ 10 Be is quite strongly attractive, comparable to the ΛN and also to the NN potential without OPE. 18 refs

  9. Conceptualizing and measuring energy security: A synthesized approach

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.; Mukherjee, Ishani

    2011-01-01

    This article provides a synthesized, workable framework for analyzing national energy security policies and performance. Drawn from research interviews, survey results, a focused workshop, and an extensive literature review, this article proposes that energy security ought to be comprised of five dimensions related to availability, affordability, technology development, sustainability, and regulation. We then break these five dimensions down into 20 components related to security of supply and production, dependency, and diversification for availability; price stability, access and equity, decentralization, and low prices for affordability; innovation and research, safety and reliability, resilience, energy efficiency, and investment for technology development; land use, water, climate change, and air pollution for sustainability; and governance, trade, competition, and knowledge for sound regulation. Further still, our synthesis lists 320 simple indicators and 52 complex indicators that policymakers and scholars can use to analyze, measure, track, and compare national performance on energy security. The article concludes by offering implications for energy policy more broadly. -- Highlights: → Energy security should consist of five dimensions related to availability, affordability, technology development, sustainability, and regulation. → The dimensions of energy security can be broken down into 20 components. → These components can be distilled into 320 simple indicators and 52 complex indicators.

  10. Exploring Societal Preferences for Energy Sufficiency Measures in Switzerland

    International Nuclear Information System (INIS)

    Moser, Corinne; Rösch, Andreas; Stauffacher, Michael

    2015-01-01

    Many countries are facing a challenging transition toward more sustainable energy systems, which produce more renewables and consume less energy. The latter goal can only be achieved through a combination of efficiency measures and changes in people’s lifestyles and routine behaviors (i.e., sufficiency). While research has shown that acceptance of technical efficiency is relatively high, there is a lack of research on societal preferences for sufficiency measures. However, this is an important prerequisite for designing successful interventions to change behavior. This paper analyses societal preferences for different energy-related behaviors in Switzerland. We use an online choice-based conjoint analysis (N = 150) to examine preferences for behaviors with high technical potentials for energy demand reduction in the following domains: mobility, heating, and food. Each domain comprises different attributes across three levels of sufficiency. Respondents were confronted with trade-off situations evoked through different fictional lifestyles that comprised different combinations of attribute levels. Through a series of trade-off decisions, participants were asked to choose their preferred lifestyle. The results revealed that a vegetarian diet was considered the most critical issue that respondents were unwilling to trade off, followed by distance to workplace and means of transportation. The highest willingness to trade off was found for adjustments in room temperature, holiday travel behaviors, and living space. Participants’ preferences for the most energy-sufficient lifestyles were rather low. However, the study showed that there were lifestyles with substantive energy-saving potentials that were well accepted among respondents. Our study results suggest that the success of energy-sufficiency interventions might depend strongly on the targeted behavior. We speculate that they may face strong resistance (e.g., vegetarian diet). Thus, it seems promising to

  11. Exploring Societal Preferences for Energy Sufficiency Measures in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Corinne, E-mail: corinne.moser@zhaw.ch [Institute of Sustainable Development, School of Engineering, Zurich University of Applied Sciences, Winterthur (Switzerland); Natural and Social Science Interface, Institute for Environmental Decisions, Department of Environmental Systems Science, ETH Zürich, Zürich (Switzerland); Rösch, Andreas [Natural and Social Science Interface, Institute for Environmental Decisions, Department of Environmental Systems Science, ETH Zürich, Zürich (Switzerland); Stauffacher, Michael [Natural and Social Science Interface, Institute for Environmental Decisions, Department of Environmental Systems Science, ETH Zürich, Zürich (Switzerland); Transdisciplinarity Laboratory, Department of Environmental Systems Science, ETH Zürich, Zürich (Switzerland)

    2015-09-16

    Many countries are facing a challenging transition toward more sustainable energy systems, which produce more renewables and consume less energy. The latter goal can only be achieved through a combination of efficiency measures and changes in people’s lifestyles and routine behaviors (i.e., sufficiency). While research has shown that acceptance of technical efficiency is relatively high, there is a lack of research on societal preferences for sufficiency measures. However, this is an important prerequisite for designing successful interventions to change behavior. This paper analyses societal preferences for different energy-related behaviors in Switzerland. We use an online choice-based conjoint analysis (N = 150) to examine preferences for behaviors with high technical potentials for energy demand reduction in the following domains: mobility, heating, and food. Each domain comprises different attributes across three levels of sufficiency. Respondents were confronted with trade-off situations evoked through different fictional lifestyles that comprised different combinations of attribute levels. Through a series of trade-off decisions, participants were asked to choose their preferred lifestyle. The results revealed that a vegetarian diet was considered the most critical issue that respondents were unwilling to trade off, followed by distance to workplace and means of transportation. The highest willingness to trade off was found for adjustments in room temperature, holiday travel behaviors, and living space. Participants’ preferences for the most energy-sufficient lifestyles were rather low. However, the study showed that there were lifestyles with substantive energy-saving potentials that were well accepted among respondents. Our study results suggest that the success of energy-sufficiency interventions might depend strongly on the targeted behavior. We speculate that they may face strong resistance (e.g., vegetarian diet). Thus, it seems promising to

  12. Donor impurity binding energies of coaxial GaAs / Alx Ga1 - x As cylindrical quantum wires in a parallel applied magnetic field

    Science.gov (United States)

    Tshipa, M.; Winkoun, D. P.; Nijegorodov, N.; Masale, M.

    2018-04-01

    Theoretical investigations are carried out of binding energies of a donor charge assumed to be located exactly at the center of symmetry of two concentric cylindrical quantum wires. The intrinsic confinement potential in the region of the inner cylinder is modeled in any one of the three profiles: simple parabolic, shifted parabolic or the polynomial potential. The potential inside the shell is taken to be a potential step or potential barrier of a finite height. Additional confinement of the charge carriers is due to the vector potential of the axial applied magnetic field. It is found that the binding energies attain maxima in their variations with the radius of the inner cylinder irrespective of the particular intrinsic confinement of the inner cylinder. As the radius of the inner cylinder is increased further, the binding energies corresponding to either the parabolic or the polynomial potentials attain minima at some critical core-radius. Finally, as anticipated, the binding energies increase with the increase of the parallel applied magnetic field. This behaviour of the binding energies is irrespective of the particular electric potential of the nanostructure or its specific dimensions.

  13. Distance measurements from supernovae and dark energy constraints

    International Nuclear Information System (INIS)

    Wang Yun

    2009-01-01

    Constraints on dark energy from current observational data are sensitive to how distances are measured from Type Ia supernova (SN Ia) data. We find that flux averaging of SNe Ia can be used to test the presence of unknown systematic uncertainties, and yield more robust distance measurements from SNe Ia. We have applied this approach to the nearby+SDSS+ESSENCE+SNLS+HST set of 288 SNe Ia, and the 'Constitution' set of 397 SNe Ia. Combining the SN Ia data with cosmic microwave background anisotropy data from Wilkinson Microwave Anisotropy Probe 5 yr observations, the Sloan Digital Sky Survey baryon acoustic oscillation measurements, the data of 69 gamma-ray bursts (GRBs) , and the Hubble constant measurement from the Hubble Space Telescope project SHOES, we measure the dark energy density function X(z)≡ρ X (z)/ρ X (0) as a free function of redshift (assumed to be a constant at z>1 or z>1.5). Without the flux averaging of SNe Ia, the combined data using the Constitution set of SNe Ia seem to indicate a deviation from a cosmological constant at ∼95% confidence level at 0 98% confidence level for z≤0.75 using the combined data with 288 SNe Ia from nearby+SDSS+ESSENCE+SNLS+HST, independent of the assumptions about X(z≥1). We quantify dark energy constraints without assuming a flat Universe using the dark energy figure of merit for both X(z) and a dark energy equation-of-state linear in the cosmic scale factor.

  14. Measurements for the energy calibration of the TANSY neutron detectors

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Hoek, M.; Aronsson, D.

    1990-05-01

    The report describes measurements performed for the energy calibration of the TANSY neutron detectors (two arrays of 16 detectors each one). The calibration procedure determines four calibration parameters for each detector. Results of the calibration measurements are given and test measurements are presented. A relation of the neutron detector calibration parameters to producer's data for the photomulipliers is analysed. Also the tests necessary during normal operation of the TANSY neutron spectrometer are elaborated (passive and active tests). A method how to quickly get the calibration parameters for a spare detector in an array of the neutron detectors is included

  15. Chromaticity measurement during beam energy ramp in Indus-2

    International Nuclear Information System (INIS)

    Husain, Riyasat; Vats, D.K.; Ghodke, A.D.

    2013-01-01

    Chromaticity is one of the important parameters of circular accelerators and plays crucial role in its operation. In Indus-2 storage ring the natural chromaticity is -19 and -12 in horizontal and vertical planes respectively. For the good injection at 550 MeV in Indus-2, chromaticity needs to be kept at (+1, +1). The corrected chromaticity does not remain constant during the energy ramp up to 2.5 GeV. We measured Indus-2 storage ring chromaticity by the conventional RF frequency change method. The measurement method and the result of the measurement are reported in this paper. (author)

  16. The location as an energy efficiency and renewable energy supply measure for data centres in Europe

    International Nuclear Information System (INIS)

    Depoorter, Victor; Oró, Eduard; Salom, Jaume

    2015-01-01

    Highlights: • A data centre energy model was developed using TRNSYS. • The potential of direct air free cooling integration was evaluated around Europe. • A set of energy indicators describing the operation of data centres were defined. • The location of a data centre could significantly affect its operation and impact. • Smart management of the IT load can reduce energy consumption and CO 2 emission. - Abstract: The massive data centre energy consumption has motivated significant efforts to use energy efficiency strategies and the implementation of renewable energy sources that reduce their operational costs and environmental impact. Considering that the potential of many of these measures is often closely linked to the climate conditions, the location of data centres can have a major impact on their energy demand. Moreover, from a holistic approach, differences among regions become even more important when accounting for the electricity attributes from the grid. To assess these differences this work compares by the use of energy indicators the behaviour of a data centre located at different representative emplacements in Europe. To do so, a dynamic energy model which incorporates free cooling strategy and photovoltaic energy is developed. The paper concludes by suggesting that future data centre developments could consider site selection as a new strategy to limit the environmental impact attributable to this sector

  17. Total binding energy of heavy positive ions including density treatment of Darwin and Breit corrections

    International Nuclear Information System (INIS)

    Hill, S.H.; Grout, P.J.; March, N.H.

    1987-01-01

    Previous work on the relativistic Thomas-Fermi treatment of total energies of neutral atoms is first generalised to heavy positive ions. To facilitate quantitative contact with the numerical predictions of Dirac-Fock theory, Darwin and Breit corrections are expressed in terms of electron density, and computed using input again from relativistic Thomas-Fermi theory. These corrections significantly improve the agreement between the two seemingly very different theories. (author)

  18. Effects of the atomic environment on the electron binding energies in samarium

    Czech Academy of Sciences Publication Activity Database

    Inoyatov, A. K.; Kovalík, Alojz; Filosofov, D. V.; Ryšavý, Miloš; Vénos, Drahoslav; Yushkevich, Y. V.; Perevoshchikov, L. L.; Zhdanov, V. S.

    2016-01-01

    Roč. 207, FEB (2016), s. 38-49 ISSN 0368-2048 R&D Projects: GA ČR(CZ) GAP203/12/1896; GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : Sm-149 * atomic environment * electron ginding energy * intermediate-valence state * chemical shift * natural atomic level width Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.661, year: 2016

  19. Measuring and improving the public perceptions on nuclear energy

    International Nuclear Information System (INIS)

    Choi, Young Sung

    2001-01-01

    The purpose of this paper is to measure the public's perception on risk and benefit of nuclear power and to find ways to improve the perceptions. Latent Class Analysis is adopted for the perception measures, which quantify people's perception and reveal the perception structure. The measures resulted from Latent Class Analysis show that women perceive risks to be more existent and benefits to be less than men do. Moreover there is a tendency that if education level is high, perceived risk is low and perceived benefit is high. The perception of risk and benefit also depends on different channels through which people get information about nuclear energy. Comparing seven different information channels, the most effective ways of communicating with people to improve the risk and benefit perception of nuclear energy are found to be the visit to nuclear plants and the education through the regular schooling. Information dissemination through mass media is only effective to the benefit perception

  20. A beam energy measurement system at NIRS-930 cyclotron

    International Nuclear Information System (INIS)

    Hojo, S.; Honma, T.; Sakamoto, Y.; Miyahara, N.; Okada, T.; Komatsu, K.; Tsuji, N.; Yamada, S.

    2005-01-01

    A beam energy measurement system employing a set of capacitive probes has been developed at NIRS-930 cyclotron. Principle of the measurement is applying a modified-TOF method, so that the two proves are installed at one of the straight section in the beam transport line. Usually they are separated about 5.8 m, which is equivalent to the almost final path length of the beam extracted in the cyclotron. In the measurement, two beam signals are superimposed by adjusting a position of the downstream-probe along the beam direction with watching an oscilloscope screen roughly. In order to determine the beam energy accurately the signals are processed by MCA with suitable electric module. (author)

  1. Measuring and evaluating energy consumption in street lighting networks

    International Nuclear Information System (INIS)

    Janiga, P.; Gasparovsky, D.

    2012-01-01

    Smart metering and smart grid are incoming technologies that provide new opportunities in various fields. In connection with the issue of evaluation of the energy aspects of public lighting networks opens up the possibility of evaluating and measuring consumption. Based on the obtained values would be possible to determine energy consumption of lighting systems. This obtained value could serve as a basis for comparing the relevant networks and thus the optimality assessment of lighting designs. Currently, the measure placed in the switchboard of public lighting. If we have considered sections parametramim same lighting, it is necessary to obtain more value from the measured or determined to assess the consumption of time. Proposal of such methods is still under construction but the basic methods have already been outlined. (Authors)

  2. Binding energy of large icosahedral and cuboctahedral Lennard-Jones clusters

    International Nuclear Information System (INIS)

    Northby, J.A.; Xie, J.

    1989-01-01

    It is widely believed that the lowest energy configurations for small rare gas clusters have icosahedral symmetry. This contrasts with the bulk crystal structures which have cuboctahedral fcc symmetry. It is of interest to understand the transition between this finite and bulk behavior. To model this transition in rare gas clusters we have undertaken optimization studies within the Lennard-Jones pair potential model. Using a combination of Monte Carlo and Partan Search optimization methods, the lowest energy relaxed structures of Lennard-Jones clusters having icosahedral and cuboctahedral symmetry were found. Studies were performed for complete shell clusters ranging in size from one shell having 13 atoms to 14 shells having 10,179 atoms. It was found that the icosahedral structures are lower in energy than the cuboctahedral structures for cluster sizes having 13 shells or fewer. Additional studies were performed using the more accurate Aziz-Chen [HFD-C] pair potential parameterized for argon. The conclusions appear to be relatively insensitive to the form of the potential. (orig.)

  3. Considering fluctuation energy as a measure of gyrokinetic turbulence

    International Nuclear Information System (INIS)

    Plunk, G G; Tatsuno, T; Dorland, W

    2012-01-01

    In gyrokinetic theory, there are two quadratic measures of fluctuation energy, left invariant under nonlinear interactions, that constrain turbulence. In a recent work (Plunk and Tatsuno 2011 Phys. Rev. Lett. 106 165003) we reported on the novel consequences that this constraint has for the direction and locality of spectral energy transfer. This paper builds on that previous work. We provide a detailed analysis in support of the results of Plunk and Tatsuno (2011 Phys. Rev. Lett. 106 165003), but significantly broaden the scope and use additional methods to address the problem of energy transfer. The perspective taken here is that the fluctuation energies are not merely formal invariants of an idealized model (two-dimensional gyrokinetics (Plunk et al 2010 J. Fluid Mech. 664 407–35)) but also general measures of gyrokinetic turbulence, i.e. quantities that can be used to predict the behavior of turbulence. Although many questions remain open, this paper collects evidence in favor of this perspective by demonstrating in several contexts that constrained spectral energy transfer governs the dynamics. (paper)

  4. On sulfur core level binding energies in thiol self-assembly and alternative adsorption sites: An experimental and theoretical study

    International Nuclear Information System (INIS)

    Jia, Juanjuan; Kara, Abdelkader; Pasquali, Luca; Bendounan, Azzedine; Sirotti, Fausto; Esaulov, Vladimir A.

    2015-01-01

    Characteristic core level binding energies (CLBEs) are regularly used to infer the modes of molecular adsorption: orientation, organization, and dissociation processes. Here, we focus on a largely debated situation regarding CLBEs in the case of chalcogen atom bearing molecules. For a thiol, this concerns the case when the CLBE of a thiolate sulfur at an adsorption site can be interpreted alternatively as due to atomic adsorption of a S atom, resulting from dissociation. Results of an investigation of the characteristics of thiol self-assembled monolayers (SAMs) obtained by vacuum evaporative adsorption are presented along with core level binding energy calculations. Thiol ended SAMs of 1,4-benzenedimethanethiol (BDMT) obtained by evaporation on Au display an unconventional CLBE structure at about 161.25 eV, which is close to a known CLBE of a S atom on Au. Adsorption and CLBE calculations for sulfur atoms and BDMT molecules are reported and allow delineating trends as a function of chemisorption on hollow, bridge, and atop sites and including the presence of adatoms. These calculations suggest that the 161.25 eV peak is due to an alternative adsorption site, which could be associated to an atop configuration. Therefore, this may be an alternative interpretation, different from the one involving the adsorption of atomic sulfur resulting from the dissociation process of the S–C bond. Calculated differences in S(2p) CLBEs for free BDMT molecules, SH group sulfur on top of the SAM, and disulfide are also reported to clarify possible errors in assignments

  5. On sulfur core level binding energies in thiol self-assembly and alternative adsorption sites: An experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Juanjuan [Institut des Sciences Moléculaires d’Orsay, Université-Paris Sud, 91405 Orsay (France); CNRS, UMR 8214, Institut des Sciences Moléculaires d’Orsay, Orsay ISMO, Bâtiment 351, Université Paris Sud, 91405 Orsay (France); Kara, Abdelkader, E-mail: abdelkader.kara@ucf.edu, E-mail: vladimir.esaulov@u-psud.fr [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Pasquali, Luca [Dipartimento di Ingegneria “E. Ferrari,” Università di Modena e Reggio Emilia, Via Vignolese 905, 41125 Modena (Italy); IOM-CNR, s.s. 14, Km. 163.5 in AREA Science Park, 34149 Basovizza, Trieste (Italy); Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa); Bendounan, Azzedine; Sirotti, Fausto [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex (France); Esaulov, Vladimir A., E-mail: abdelkader.kara@ucf.edu, E-mail: vladimir.esaulov@u-psud.fr [Institut des Sciences Moléculaires d’Orsay, Université-Paris Sud, 91405 Orsay (France); CNRS, UMR 8214, Institut des Sciences Moléculaires d’Orsay, Orsay ISMO, Bâtiment 351, Université Paris Sud, 91405 Orsay (France); IOM-CNR, s.s. 14, Km. 163.5 in AREA Science Park, 34149 Basovizza, Trieste (Italy)

    2015-09-14

    Characteristic core level binding energies (CLBEs) are regularly used to infer the modes of molecular adsorption: orientation, organization, and dissociation processes. Here, we focus on a largely debated situation regarding CLBEs in the case of chalcogen atom bearing molecules. For a thiol, this concerns the case when the CLBE of a thiolate sulfur at an adsorption site can be interpreted alternatively as due to atomic adsorption of a S atom, resulting from dissociation. Results of an investigation of the characteristics of thiol self-assembled monolayers (SAMs) obtained by vacuum evaporative adsorption are presented along with core level binding energy calculations. Thiol ended SAMs of 1,4-benzenedimethanethiol (BDMT) obtained by evaporation on Au display an unconventional CLBE structure at about 161.25 eV, which is close to a known CLBE of a S atom on Au. Adsorption and CLBE calculations for sulfur atoms and BDMT molecules are reported and allow delineating trends as a function of chemisorption on hollow, bridge, and atop sites and including the presence of adatoms. These calculations suggest that the 161.25 eV peak is due to an alternative adsorption site, which could be associated to an atop configuration. Therefore, this may be an alternative interpretation, different from the one involving the adsorption of atomic sulfur resulting from the dissociation process of the S–C bond. Calculated differences in S(2p) CLBEs for free BDMT molecules, SH group sulfur on top of the SAM, and disulfide are also reported to clarify possible errors in assignments.

  6. Global decrease of serotonin-1A receptor binding after electroconvulsive therapy in major depression measured by PET

    Science.gov (United States)

    Lanzenberger, R; Baldinger, P; Hahn, A; Ungersboeck, J; Mitterhauser, M; Winkler, D; Micskei, Z; Stein, P; Karanikas, G; Wadsak, W; Kasper, S; Frey, R

    2013-01-01

    Electroconvulsive therapy (ECT) is a potent therapy in severe treatment-refractory depression. Although commonly applied in psychiatric clinical routine since decades, the exact neurobiological mechanism regarding its efficacy remains unclear. Results from preclinical and clinical studies emphasize a crucial involvement of the serotonin-1A receptor (5-HT1A) in the mode of action of antidepressant treatment. This includes associations between treatment response and changes in 5-HT1A function and density by antidepressants. Further, alterations of the 5-HT1A receptor are consistently reported in depression. To elucidate the effect of ECT on 5-HT1A receptor binding, 12 subjects with severe treatment-resistant major depression underwent three positron emission tomography (PET) measurements using the highly selective radioligand [carbonyl-11C]WAY100635, twice before (test–retest variability) and once after 10.08±2.35 ECT sessions. Ten patients (∼83%) were responders to ECT. The voxel-wise comparison of the 5-HT1A receptor binding (BPND) before and after ECT revealed a widespread reduction in cortical and subcortical regions (P<0.05 corrected), except for the occipital cortex and the cerebellum. Strongest reductions were found in regions consistently reported to be altered in major depression and involved in emotion regulation, such as the subgenual part of the anterior cingulate cortex (−27.5%), the orbitofrontal cortex (−30.1%), the amygdala (−31.8%), the hippocampus (−30.6%) and the insula (−28.9%). No significant change was found in the raphe nuclei. There was no significant difference in receptor binding in any region comparing the first two PET scans conducted before ECT. This PET study proposes a global involvement of the postsynaptic 5-HT1A receptor binding in the effect of ECT. PMID:22751491

  7. Efficiency calibration of x-ray HPGe detectors for photons with energies above the Ge K binding energy

    Energy Technology Data Exchange (ETDEWEB)

    Maidana, Nora L., E-mail: nmaidana@if.usp.br [Instituto de Física, Universidade de São Paulo, Travessa R 187, Cidade Universitária, CEP:05508-900 São Paulo, SP (Brazil); Vanin, Vito R.; Jahnke, Viktor [Instituto de Física, Universidade de São Paulo, Travessa R 187, Cidade Universitária, CEP:05508-900 São Paulo, SP (Brazil); Fernández-Varea, José M. [Facultat de Física (ECM and ICC), Universitat de Barcelona, Diagonal 645, E-08028 Barcelona (Spain); Martins, Marcos N. [Instituto de Física, Universidade de São Paulo, Travessa R 187, Cidade Universitária, CEP:05508-900 São Paulo, SP (Brazil); Brualla, Lorenzo [NCTeam, Strahlenklinik, Universitätsklinikum Essen, Hufelandstraße 55, D-45122 Essen (Germany)

    2013-11-21

    We report on the efficiency calibration of a HPGe x-ray detector using radioactive sources and an analytical expression taken from the literature, in two different arrangements, with and without a broad-angle collimator. The frontal surface of the Ge crystal was scanned with pencil beams of photons. The Ge dead layer was found to be nonuniform, with central and intermediate regions that have thin (μm range) and thick (mm range) dead layers, respectively, surrounded by an insensitive ring. We discuss how this fact explains the observed efficiency curves and generalize the adopted model. We show that changes in the thickness of the Ge-crystal dead layer affect the efficiency of x-ray detectors, but the use of an appropriate broad-beam external collimator limiting the photon flux to the thin dead layer in the central region leads to the expected efficiency dependence with energy and renders the calibration simpler.

  8. Measurements of proton energy spectra using a radiochromic film stack

    Science.gov (United States)

    Filkins, T. M.; Steidle, Jessica; Ellison, D. M.; Steidle, Jeffrey; Freeman, C. G.; Padalino, S. J.; Fiksel, G.; Regan, S. P.; Sangster, T. C.

    2014-10-01

    The energy spectrum of protons accelerated from the rear-side of a thin foil illuminated with ultra-intense laser light from the OMEGA EP laser system at the University of Rochester's Laboratory for Laser Energetics (LLE) was measured using a stack of radiochromic film (RCF). The film stack consisted of four layers of Gafchromic HD-V2 film and four layers of Gafchromic MD-V2-55 film. Aluminum foils of various thicknesses were placed between each piece of RCF in the stack. This arrangement allowed protons with energies of 30 MeV to reach the back layer of RCF in the stack. The stack was placed in the detector plane of a Thomson parabola ion energy (TPIE) spectrometer. Each piece of film in the stack was scanned using a commercially available flat-bed scanner (Epson 10000XL). The resulting optical density was converted into proton fluence using an absolute calibration of the RCF obtained at the SUNY Geneseo 1.7 MV Pelletron accelerator laboratory. In these calibration measurements, the sensitivity of the radiochromic film was measured using monoenergetic protons produced by the accelerator. Details of the analysis procedure and the resulting proton energy spectra will be presented. Funded in part by a grant from the DOE through the Laboratory for Laser Energetics.

  9. Is there a link between selectivity and binding thermodynamics profiles?

    Science.gov (United States)

    Tarcsay, Ákos; Keserű, György M

    2015-01-01

    Thermodynamics of ligand binding is influenced by the interplay between enthalpy and entropy contributions of the binding event. The impact of these binding free energy components, however, is not limited to the primary target only. Here, we investigate the relationship between binding thermodynamics and selectivity profiles by combining publicly available data from broad off-target assay profiling and the corresponding thermodynamics measurements. Our analysis indicates that compounds binding their primary targets with higher entropy contributions tend to hit more off-targets compared with those ligands that demonstrated enthalpy-driven binding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Evaluation of B3LYP, X3LYP, and M06-Class Density Functionals for Predicting the Binding Energies of Neutral, Protonated, and Deprotonated Water Clusters.

    Science.gov (United States)

    Bryantsev, Vyacheslav S; Diallo, Mamadou S; van Duin, Adri C T; Goddard, William A

    2009-04-14

    In this paper we assess the accuracy of the B3LYP, X3LYP, and newly developed M06-L, M06-2X, and M06 functionals to predict the binding energies of neutral and charged water clusters including (H2O)n, n = 2-8, 20), H3O(+)(H2O)n, n = 1-6, and OH(-)(H2O)n, n = 1-6. We also compare the predicted energies of two ion hydration and neutralization reactions on the basis of the calculated binding energies. In all cases, we use as benchmarks calculated binding energies of water clusters extrapolated to the complete basis set limit of the second-order Møller-Plesset perturbation theory with the effects of higher order correlation estimated at the coupled-cluster theory with single, double, and perturbative triple excitations in the aug-cc-pVDZ basis set. We rank the accuracy of the functionals on the basis of the mean unsigned error (MUE) between calculated benchmark and density functional theory energies. The corresponding MUE (kcal/mol) for each functional is listed in parentheses. We find that M06-L (0.73) and M06 (0.84) give the most accurate binding energies using very extended basis sets such as aug-cc-pV5Z. For more affordable basis sets, the best methods for predicting the binding energies of water clusters are M06-L/aug-cc-pVTZ (1.24), B3LYP/6-311++G(2d,2p) (1.29), and M06/aug-cc-PVTZ (1.33). M06-L/aug-cc-pVTZ also gives more accurate energies for the neutralization reactions (1.38), whereas B3LYP/6-311++G(2d,2p) gives more accurate energies for the ion hydration reactions (1.69).

  11. Measuring energy expenditure in sports by thermal video analysis

    DEFF Research Database (Denmark)

    Gade, Rikke; Larsen, Ryan Godsk; Moeslund, Thomas B.

    2017-01-01

    Estimation of human energy expenditure in sports and exercise contributes to performance analyses and tracking of physical activity levels. The focus of this work is to develop a video-based method for estimation of energy expenditure in athletes. We propose a method using thermal video analysis...... to automatically extract the cyclic motion pattern, in walking and running represented as steps, and analyse the frequency. Experiments are performed with one subject in two different tests, each at 5, 8, 10, and 12 km/h. The results of our proposed video-based method is compared to concurrent measurements...

  12. Free energy surfaces from nonequilibrium processes without work measurement

    Science.gov (United States)

    Adib, Artur B.

    2006-04-01

    Recent developments in statistical mechanics have allowed the estimation of equilibrium free energies from the statistics of work measurements during processes that drive the system out of equilibrium. Here a different class of processes is considered, wherein the system is prepared and released from a nonequilibrium state, and no external work is involved during its observation. For such "clamp-and-release" processes, a simple strategy for the estimation of equilibrium free energies is offered. The method is illustrated with numerical simulations and analyzed in the context of tethered single-molecule experiments.

  13. 10 CFR 431.444 - Test procedures for the measurement of energy efficiency.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Test procedures for the measurement of energy efficiency. 431.444 Section 431.444 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR... procedures for the measurement of energy efficiency. (a) Scope. Pursuant to section 346(b)(1) of EPCA, this...

  14. 10 CFR 431.16 - Test procedures for the measurement of energy efficiency.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Test procedures for the measurement of energy efficiency. 431.16 Section 431.16 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR... Methods of Determining Efficiency § 431.16 Test procedures for the measurement of energy efficiency. For...

  15. 10 CFR 431.193 - Test procedures for measuring energy consumption of distribution transformers.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Test procedures for measuring energy consumption of distribution transformers. 431.193 Section 431.193 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY... § 431.193 Test procedures for measuring energy consumption of distribution transformers. The test...

  16. Competitive cation binding computations of proton balance for reactions of the phosphagen and glycolytic energy systems within skeletal muscle

    Science.gov (United States)

    2017-01-01

    Limited research and data has been published for the H+ coefficients for the metabolites and reactions involved in non-mitochondrial energy metabolism. The purpose of this investigation was to compute the fractional binding of H+, K+, Na+ and Mg2+ to 21 metabolites of skeletal muscle non-mitochondrial energy metabolism, resulting in 104 different metabolite-cation complexes. Fractional binding of H+ to these metabolite-cation complexes were applied to 17 reactions of skeletal muscle non-mitochondrial energy metabolism, and 8 conditions of the glycolytic pathway based on the source of substrate (glycogen vs. glucose), completeness of glycolytic flux, and the end-point of pyruvate vs. lactate. For pH conditions of 6.0 and 7.0, respectively, H+ coefficients (-‘ve values = H+ release) for the creatine kinase, adenylate kinase, AMP deaminase and ATPase reactions were 0.8 and 0.97, -0.13 and -0.02, 1.2 and 1.09, and -0.01 and -0.66, respectively. The glycolytic pathway is net H+ releasing, regardless of lactate production, which consumes 1 H+. For glycolysis fueled by glycogen and ending in either pyruvate or lactate, H+ coefficients for pH 6.0 and 7.0 were -3.97 and -2.01 (pyruvate), and -1.96 and -0.01 (lactate), respectively. When starting with glucose, the same conditions result in H+ coefficients of -3.98 and -2.67, and -1.97 and –0.67, respectively. The most H+ releasing reaction of glycolysis is the glyceraldehyde-3-phosphate dehydrogenase reaction, with H+ coefficients for pH 6.0 and 7.0 of -1.58 and -0.76, respectively. Incomplete flux of substrate through glycolysis would increase net H+ release due to the absence of the pyruvate kinase and lactate dehydrogenase reactions, which collectively result in H+ coefficients for pH 6.0 and 7.0 of 1.35 and 1.88, respectively. The data presented provide an extensive reference source for academics and researchers to accurately profile the balance of protons for all metabolites and reactions of non-mitochondrial energy

  17. Competitive cation binding computations of proton balance for reactions of the phosphagen and glycolytic energy systems within skeletal muscle.

    Science.gov (United States)

    Robergs, Robert Andrew

    2017-01-01

    Limited research and data has been published for the H+ coefficients for the metabolites and reactions involved in non-mitochondrial energy metabolism. The purpose of this investigation was to compute the fractional binding of H+, K+, Na+ and Mg2+ to 21 metabolites of skeletal muscle non-mitochondrial energy metabolism, resulting in 104 different metabolite-cation complexes. Fractional binding of H+ to these metabolite-cation complexes were applied to 17 reactions of skeletal muscle non-mitochondrial energy metabolism, and 8 conditions of the glycolytic pathway based on the source of substrate (glycogen vs. glucose), completeness of glycolytic flux, and the end-point of pyruvate vs. lactate. For pH conditions of 6.0 and 7.0, respectively, H+ coefficients (-'ve values = H+ release) for the creatine kinase, adenylate kinase, AMP deaminase and ATPase reactions were 0.8 and 0.97, -0.13 and -0.02, 1.2 and 1.09, and -0.01 and -0.66, respectively. The glycolytic pathway is net H+ releasing, regardless of lactate production, which consumes 1 H+. For glycolysis fueled by glycogen and ending in either pyruvate or lactate, H+ coefficients for pH 6.0 and 7.0 were -3.97 and -2.01 (pyruvate), and -1.96 and -0.01 (lactate), respectively. When starting with glucose, the same conditions result in H+ coefficients of -3.98 and -2.67, and -1.97 and -0.67, respectively. The most H+ releasing reaction of glycolysis is the glyceraldehyde-3-phosphate dehydrogenase reaction, with H+ coefficients for pH 6.0 and 7.0 of -1.58 and -0.76, respectively. Incomplete flux of substrate through glycolysis would increase net H+ release due to the absence of the pyruvate kinase and lactate dehydrogenase reactions, which collectively result in H+ coefficients for pH 6.0 and 7.0 of 1.35 and 1.88, respectively. The data presented provide an extensive reference source for academics and researchers to accurately profile the balance of protons for all metabolites and reactions of non-mitochondrial energy

  18. Competitive cation binding computations of proton balance for reactions of the phosphagen and glycolytic energy systems within skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Robert Andrew Robergs

    Full Text Available Limited research and data has been published for the H+ coefficients for the metabolites and reactions involved in non-mitochondrial energy metabolism. The purpose of this investigation was to compute the fractional binding of H+, K+, Na+ and Mg2+ to 21 metabolites of skeletal muscle non-mitochondrial energy metabolism, resulting in 104 different metabolite-cation complexes. Fractional binding of H+ to these metabolite-cation complexes were applied to 17 reactions of skeletal muscle non-mitochondrial energy metabolism, and 8 conditions of the glycolytic pathway based on the source of substrate (glycogen vs. glucose, completeness of glycolytic flux, and the end-point of pyruvate vs. lactate. For pH conditions of 6.0 and 7.0, respectively, H+ coefficients (-'ve values = H+ release for the creatine kinase, adenylate kinase, AMP deaminase and ATPase reactions were 0.8 and 0.97, -0.13 and -0.02, 1.2 and 1.09, and -0.01 and -0.66, respectively. The glycolytic pathway is net H+ releasing, regardless of lactate production, which consumes 1 H+. For glycolysis fueled by glycogen and ending in either pyruvate or lactate, H+ coefficients for pH 6.0 and 7.0 were -3.97 and -2.01 (pyruvate, and -1.96 and -0.01 (lactate, respectively. When starting with glucose, the same conditions result in H+ coefficients of -3.98 and -2.67, and -1.97 and -0.67, respectively. The most H+ releasing reaction of glycolysis is the glyceraldehyde-3-phosphate dehydrogenase reaction, with H+ coefficients for pH 6.0 and 7.0 of -1.58 and -0.76, respectively. Incomplete flux of substrate through glycolysis would increase net H+ release due to the absence of the pyruvate kinase and lactate dehydrogenase reactions, which collectively result in H+ coefficients for pH 6.0 and 7.0 of 1.35 and 1.88, respectively. The data presented provide an extensive reference source for academics and researchers to accurately profile the balance of protons for all metabolites and reactions of non

  19. Measuring specific receptor binding of a PET radioligand in human brain without pharmacological blockade: The genomic plot.

    Science.gov (United States)

    Veronese, Mattia; Zanotti-Fregonara, Paolo; Rizzo, Gaia; Bertoldo, Alessandra; Innis, Robert B; Turkheimer, Federico E

    2016-04-15

    PET studies allow in vivo imaging of the density of brain receptor species. The PET signal, however, is the sum of the fraction of radioligand that is specifically bound to the target receptor and the non-displaceable fraction (i.e. the non-specifically bound radioligand plus the free ligand in tissue). Therefore, measuring the non-displaceable fraction, which is generally assumed to be constant across the brain, is a necessary step to obtain regional estimates of the specific fractions. The nondisplaceable binding can be directly measured if a reference region, i.e. a region devoid of any specific binding, is available. Many receptors are however widely expressed across the brain, and a true reference region is rarely available. In these cases, the nonspecific binding can be obtained after competitive pharmacological blockade, which is often contraindicated in humans. In this work we introduce the genomic plot for estimating the nondisplaceable fraction using baseline scans only. The genomic plot is a transformation of the Lassen graphical method in which the brain maps of mRNA transcripts of the target receptor obtained from the Allen brain atlas are used as a surrogate measure of the specific binding. Thus, the genomic plot allows the calculation of the specific and nondisplaceable components of radioligand uptake without the need of pharmacological blockade. We first assessed the statistical properties of the method with computer simulations. Then we sought ground-truth validation using human PET datasets of seven different neuroreceptor radioligands, where nonspecific fractions were either obtained separately using drug displacement or available from a true reference region. The population nondisplaceable fractions estimated by the genomic plot were very close to those measured by actual human blocking studies (mean relative difference between 2% and 7%). However, these estimates were valid only when mRNA expressions were predictive of protein levels (i

  20. Binding Energy calculation of GSK-3 protein of Human against some anti-diabetic compounds of Momordica charantia linn (Bitter melon).

    Science.gov (United States)

    Hazarika, Ridip; Parida, Pratap; Neog, Bijoy; Yadav, Raj Narain Singh

    2012-01-01

    Diabetes is one of the major life threatening diseases worldwide. It creates major health problems in urban India. Glycogen Synthase Kinase-3 (GSK-3) protein of human is known for phosphorylating and inactivating glycogen synthase which also acts as a negative regulator in the hormonal control of glucose homeostasis. In traditional medicine, Momordica charantia is used as antidiabetic plant because of its hypoglycemic effect. Hence to block the active site of the GSK-3 protein three anti-diabetic compounds namely, charantin, momordenol & momordicilin were taken from Momordica charantia for docking study and calculation of binding energy. The aim of present investigation is to find the binding energy of three major insulin-like active compounds against glycogen synthase kinase-3 (GSK-3), one of the key proteins involved in carbohydrate metabolism, with the help of molecular docking using ExomeTM Horizon suite. The study recorded minimum binding energy by momordicilin in comparison to the others.

  1. Measurement of the nucleon structure function using high energy muons

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, P.D.

    1983-12-01

    We have measured the inclusive deep inelastic scattering of muons on nucleons in iron using beams of 93 and 215 GeV muons. To perform this measurement, we have built and operated the Multimuon Spectrometer (MMS) in the muon beam at Fermilab. The MMS is a magnetized iron target/spectrometer/calorimeter which provides 5.61 kg/cm/sup 2/ of target, 9% momentum resolution on scattered muons, and a direct measure of total hadronic energy with resolution sigma/sub nu/ = 1.4..sqrt..nu(GeV). In the distributed target, the average beam energies at the interaction are 88.0 and 209 GeV. Using the known form of the radiatively-corrected electromagnetic cross section, we extract the structure function F/sub 2/(x,Q/sup 2/) with a typical precision of 2% over the range 5 < Q/sup 2/ < 200 GeV/sup 2//c/sup 2/. We compare our measurements to the predictions of lowest order quantum chromodynamics (QCD) and find a best fit value of the QCD scale parameter ..lambda../sub LO/ = 230 +- 40/sup stat/ +- 80/sup syst/ MeV/c, assuming R = 0 and without applying Fermi motion corrections. Comparing the cross sections at the two beam energies, we measure R = -0.06 +- 0.06/sup stat/ +- 0.11/sup syst/. Our measurements show qualitative agreement with QCD, but quantitative comparison is hampered by phenomenological uncertainties. The experimental situation is quite good, with substantial agreement between our measurements and those of others. 86 references.

  2. A method for predicting individual residue contributions to enzyme specificity and binding-site energies, and its application to MTH1.

    Science.gov (United States)

    Stewart, James J P

    2016-11-01

    A new method for predicting the energy contributions to substrate binding and to specificity has been developed. Conventional global optimization methods do not permit the subtle effects responsible for these properties to be modeled with sufficient precision to allow confidence to be placed in the results, but by making simple alterations to the model, the precisions of the various energies involved can be improved from about ±2 kcal mol -1 to ±0.1 kcal mol -1 . This technique was applied to the oxidized nucleotide pyrophosphohydrolase enzyme MTH1. MTH1 is unusual in that the binding and reaction sites are well separated-an advantage from a computational chemistry perspective, as it allows the energetics involved in docking to be modeled without the need to consider any issues relating to reaction mechanisms. In this study, two types of energy terms were investigated: the noncovalent interactions between the binding site and the substrate, and those responsible for discriminating between the oxidized nucleotide 8-oxo-dGTP and the normal dGTP. Both of these were investigated using the semiempirical method PM7 in the program MOPAC. The contributions of the individual residues to both the binding energy and the specificity of MTH1 were calculated by simulating the effect of mutations. Where comparisons were possible, all calculated results were in agreement with experimental observations. This technique provides fresh insight into the binding mechanism that enzymes use for discriminating between possible substrates.

  3. Derivation of binding energies on the basis of fundamental nuclear theory

    International Nuclear Information System (INIS)

    Kouki, Tuomo.

    1975-10-01

    An attempt to assess the degree of consistency between the underlying ideas of two different approaches to nuclear energy relations is described. The fundamental approach in the form of density dependent Hartree-Fock theory, as well as the method of renormalizing shell model energies have both met with fair success. Whereas the former method is based on nuclear matter theory, the latter's central idea is to combine shell structure with an average liquid drop behaviour. The shell smoothing procedure employed there has been subject to intense theoretical study. Only little attention has been paid to the liquid drop aspect of the method. It is purposed to derive the liquid drop mass formula by means of a model force fitted to results of some nuclear matter calculations. Moreover, the force is tested by applying it to finite nuclei. Because of this, the present work could also be regarded as an attempt to find a very direct way of relating nuclear matter properties to those of finite nuclei. As the results in this respect are worse than expected, we conclude with a discussion of possible directions of improvement. (author)

  4. TLD gamma-ray energy deposition measurements in the zero energy fast reactor ZEBRA

    International Nuclear Information System (INIS)

    Knipe, A.D.

    1977-01-01

    A recent study of gamma-ray energy deposition was carried out in the Zebra reactor at AEE Winfrith during a collaborative programme between the UKAEA and PNC of Japan. The programme was given the title MOZART. This paper describes the TLD experiments in the MOZART MZB assembly and discusses the technique and various corrections necessary to relate the measured quantity to the calculated energy deposition

  5. Binding energy and preferred adsorption sites of CO on gold and silver-gold cluster cations: adsorption kinetics and quantum chemical calculations.

    Science.gov (United States)

    Neumaier, Marco; Weigend, Florian; Hampe, Oliver; Kappes, Manfred M

    2008-01-01

    We revisit the reactivity of trapped pure gold (Au(n)+, n cations (Ag(m)Au(n)+, m + n carbon monoxide as studied in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The experimental results are discussed in terms of ab initio computations which provide a comprehensive picture of the chemical binding behaviour (like binding energy, adsorption sites, associated vibrational frequencies) of CO to the noble metal as a function of cluster size and composition. Starting from results for pure gold cluster cations for which an overall decrease of CO binding energy with increasing cluster size was experimentally observed--from about 1.09 +/- 0.1 eV (for n = 6) to below 0.65 +/- 0.1 eV (for n > 26) we demonstrate that metal--CO bond energies correlate with the total electron density and with the energy of the lowest unoccupied molecular orbital (LUMO) on the bare metal cluster cation as obtained by density functional theory (DFT) computations. This is a consequence of the predominantly sigma-donating character of the CO-M bond. Further support for this concept is found by contrasting the predictions of binding energies to the experimental results for small alloy cluster cations (Ag(m)Au(n)+, 4 < m + n < 7) as a function of composition. Here, binding energy drops with increasing silver content, while CO still binds always in a head-on fashion to a gold atom. Finally we show how the CO stretch frequency of Ag(m)Au(n)CO+ may be used to identify possible adsorption sites and pre-screen favorable isomers.

  6. Resource Evaluation and Energy Production Estimate for a Tidal Energy Conversion Installation using Acoustic Flow Measurements

    Science.gov (United States)

    Gagnon, Ian; Baldwin, Ken; Wosnik, Martin

    2015-11-01

    The ``Living Bridge'' project plans to install a tidal turbine at Memorial Bridge in the Piscataqua River at Portsmouth, NH. A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers ADCP. Two locations were evaluated: at the planned deployment location and mid-channel. The goal was to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Differences in the tidal characteristics between the two measurement locations are highlighted. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP ``bin'' vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin sizes affect the standard deviation of measurements, and measurement uncertainties are evaluated. Supported by NSF-IIP grant 1430260.

  7. Thermal indoor environment and energy consumption in a plus-energy house: cooling season measurements

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Olesen, Bjarne W.

    2015-01-01

    indoor environment. For the energy consumption of the HVAC system, air-to-brine heat pump, mixing station and controller of the radiant floor, and the air handling unit were considered. The measurements were analyzed based on the achieved indoor environment category (according to EN 15251...... the floor cooling system) and increasing the ventilation rate provided a better thermal indoor environment but with increased energy consumption. The thermal indoor environment and energy performance of the house can be improved with decreased glazing area, increased thermal mass, installation of solar...

  8. Photodetachment of Isolated Bicarbonate Anion: Electron Binding Energy of HCO3-

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xue B.; Xantheas, Sotiris S.

    2011-04-29

    We report the first direct photodetachment photoelectron spectroscopy of HCO3 in the gas phase under low temperature conditions. The observed photoelectron spectra are complicated due to excitations of manifolds in both vibrational and electronic states. A long and single vibrational progression with a frequency of 530 ± 20 cm-1 is partially resolved in the threshold of the T=20 K, 266 nm spectrum. The adiabatic electron detachment energy (ADE) of HCO3, or in other words the electron affinity (EA) of neutral HCO3, is experimentally determined from the (0-0) transition to be 3.680 ± 0.015 eV. High-level ab initio calculations at the CCSD(T) level of theory produce an anharmonic frequency of 546 cm-1 for HCO3 and a value of 3.62 eV for the (0,0) transition, both in excellent agreement with the experimentally determined values.

  9. Effect of Γ-X band mixing on the donor binding energy in a Quantum Wire

    Science.gov (United States)

    Vijaya Shanthi, R.; Jayakumar, K.; Nithiananthi, P.

    2015-02-01

    To invoke the technological applications of heterostructure semiconductors like Quantum Well (QW), Quantum Well Wire (QWW) and Quantum Dot (QD), it is important to understand the property of impurity energy which is responsible for the peculiar electronic & optical behavior of the Low Dimensional Semiconductor Systems (LDSS). Application of hydrostatic pressure P>35kbar drastically alters the band offsets leading to the crossover of Γ band of the well & X band of the barrier resulting in an indirect transition of the carrier and this effect has been studied experimentally and theoretically in a QW structure. In this paper, we have investigated the effect of Γ-X band mixing due to the application of hydrostatic pressure in a GaAs/AlxGa1-xAs QWW system. The results are presented and discussed for various widths of the wire.

  10. Blinded evaluation of farnesoid X receptor (FXR) ligands binding using molecular docking and free energy calculations

    Science.gov (United States)

    Selwa, Edithe; Elisée, Eddy; Zavala, Agustin; Iorga, Bogdan I.

    2018-01-01

    Our participation to the D3R Grand Challenge 2 involved a protocol in two steps, with an initial analysis of the available structural data from the PDB allowing the selection of the most appropriate combination of docking software and scoring function. Subsequent docking calculations showed that the pose prediction can be carried out with a certain precision, but this is dependent on the specific nature of the ligands. The correct ranking of docking poses is still a problem and cannot be successful in the absence of good pose predictions. Our free energy calculations on two different subsets provided contrasted results, which might have the origin in non-optimal force field parameters associated with the sulfonamide chemical moiety.

  11. Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2

    Science.gov (United States)

    Athanasiou, Christina; Vasilakaki, Sofia; Dellis, Dimitris; Cournia, Zoe

    2018-01-01

    Computer-aided drug design has become an integral part of drug discovery and development in the pharmaceutical and biotechnology industry, and is nowadays extensively used in the lead identification and lead optimization phases. The drug design data resource (D3R) organizes challenges against blinded experimental data to prospectively test computational methodologies as an opportunity for improved methods and algorithms to emerge. We participated in Grand Challenge 2 to predict the crystallographic poses of 36 Farnesoid X Receptor (FXR)-bound ligands and the relative binding affinities for two designated subsets of 18 and 15 FXR-bound ligands. Here, we present our methodology for pose and affinity predictions and its evaluation after the release of the experimental data. For predicting the crystallographic poses, we used docking and physics-based pose prediction methods guided by the binding poses of native ligands. For FXR ligands with known chemotypes in the PDB, we accurately predicted their binding modes, while for those with unknown chemotypes the predictions were more challenging. Our group ranked #1st (based on the median RMSD) out of 46 groups, which submitted complete entries for the binding pose prediction challenge. For the relative binding affinity prediction challenge, we performed free energy perturbation (FEP) calculations coupled with molecular dynamics (MD) simulations. FEP/MD calculations displayed a high success rate in identifying compounds with better or worse binding affinity than the reference (parent) compound. Our studies suggest that when ligands with chemical precedent are available in the literature, binding pose predictions using docking and physics-based methods are reliable; however, predictions are challenging for ligands with completely unknown chemotypes. We also show that FEP/MD calculations hold predictive value and can nowadays be used in a high throughput mode in a lead optimization project provided that crystal structures of

  12. Possible Measurable Effects of Dark Energy in Rotating Superconductors

    Directory of Open Access Journals (Sweden)

    Clovis Jacinto de Matos

    2009-01-01

    Full Text Available We discuss recent laboratory experiments with rotating superconductors and show that three so far unexplained experimentally observed effects (anomalous acceleration signals, anomalous gyroscope signals, Cooper pair mass excess can be physically explained in terms of a possible interaction of dark energy with Cooper pairs. Our approach is based on a Ginzburg-Landau-like model of electromagnetic dark energy, where gravitationally active photons obtain mass in the superconductor. We show that this model can account simultaneously for the anomalous acceleration and anomalous gravitomagnetic fields around rotating superconductors measured by Tajmar et al. and for the anomalous Cooper pair mass in superconductive Niobium, measured by Cabrera and Tate. It is argued that these three different physical effects are ultimately different experimental manifestations of the simultaneous spontaneous breaking of gauge invariance and of the principle of general covariance in superconductive materials.

  13. Emittance measurements in low energy ion storage rings

    Science.gov (United States)

    Hunt, J. R.; Carli, C.; Resta-López, J.; Welsch, C. P.

    2018-07-01

    The development of the next generation of ultra-low energy antiproton and ion facilities requires precise information about the beam emittance to guarantee optimum performance. In the Extra-Low ENergy Antiproton storage ring (ELENA) the transverse emittances will be measured by scraping. However, this diagnostic measurement faces several challenges: non-zero dispersion, non-Gaussian beam distributions due to effects of the electron cooler and various systematic errors such as closed orbit offsets and inaccurate rms momentum spread estimation. In addition, diffusion processes, such as intra-beam scattering might lead to emittance overestimates. Here, we present algorithms to efficiently address the emittance reconstruction in presence of the above effects, and present simulation results for the case of ELENA.

  14. Neutron dose and energy spectra measurements at Savannah River Plant

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Soldat, K.L.; Haggard, D.L.; Faust, L.G.; Tomeraasen, P.L.

    1987-08-01

    Because some workers have a high potential for significant neutron exposure, the Savannah River Plant (SRP) contracted with Pacific Northwest Laboratory (PNL) to verify the accuracy of neutron dosimetry at the plant. Energy spectrum and neutron dose measurements were made at the SRP calibrations laboratory and at several other locations. The energy spectra measurements were made using multisphere or Bonner sphere spectrometers, 3 He spectrometers, and NE-213 liquid scintillator spectrometers. Neutron dose equivalent determinations were made using these instruments and others specifically designed to determine dose equivalent, such as the tissue equivalent proportional counter (TEPC). Survey instruments, such as the Eberline PNR-4, and the thermoluminescent dosimeter (TLD)-albedo and track etch dosimeters (TEDs) were also used. The TEPC, subjectively judged to provide the most accurate estimation of true dose equivalent, was used as the reference for comparison with other devices. 29 refs., 43 figs., 13 tabs

  15. Low-energy house in Sisimiut - Measurement equipment

    Energy Technology Data Exchange (ETDEWEB)

    Hvidthoeft Delff Andersen, P.; Rode, C.; Madsen, Henrik

    2013-08-15

    This paper documents the measurement equipment in a low-energy house in Sisimiut, Greenland. Detailed measurements are being taken on energy consumption, indoor temperatures, floor heating, ventilation, open/closed state of doors and windows, and indoors climate. Equipped with a central control unit, experiments can be designed in order to study heat dynamics of the building. It is described how to plan and execute such experiments in one apartment in the building. The building also features both a solar thermal system and extra buffer tank facilitating testing of storage strategies on the power generated by the solar thermal system. A weather station equipped with thermometer, pyranometer and anemometer is installed on the building as well. Finally, it is described how to retrieve data from an SQL server which is configured to take monthly backups. R functions have been implemented to fetch and prepare the data for time series analysis. Examples are given on the use of these. (Author)

  16. The Bi{sup 3+} 6s and 6p electron binding energies in relation to the chemical environment of inorganic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Awater, Roy H.P., E-mail: R.H.P.Awater@tudelft.nl; Dorenbos, Pieter

    2017-04-15

    This paper provides an overview and interpretation of the spectroscopic data of the Bi{sup 3+} activator ion in 117 different inorganic compounds. The energies of the metal-to-metal charge transfer and the interconfigurational transitions of Bi{sup 3+} were collected from the archival literature. Using these energies, in combination with the electron binding energies in the host conduction and valence band, the binding energies in the 6s ground state and 6p excited state were determined relative to the vacuum level. The locations of the Bi{sup 3+} energy levels within the forbidden gap of the host compound provides valuable insight in the physical properties of the Bi{sup 3+} activator ion in different compounds.

  17. An Energy-Based Similarity Measure for Time Series

    Directory of Open Access Journals (Sweden)

    Pierre Brunagel

    2007-11-01

    Full Text Available A new similarity measure, called SimilB, for time series analysis, based on the cross-ΨB-energy operator (2004, is introduced. ΨB is a nonlinear measure which quantifies the interaction between two time series. Compared to Euclidean distance (ED or the Pearson correlation coefficient (CC, SimilB includes the temporal information and relative changes of the time series using the first and second derivatives of the time series. SimilB is well suited for both nonstationary and stationary time series and particularly those presenting discontinuities. Some new properties of ΨB are presented. Particularly, we show that ΨB as similarity measure is robust to both scale and time shift. SimilB is illustrated with synthetic time series and an artificial dataset and compared to the CC and the ED measures.

  18. Measurement of energy deposition near heavy ion tracks

    International Nuclear Information System (INIS)

    Metting, N.F.; Brady, L.A.; Rossi, H.H.; Kliauga, P.J.; Howard, J.; Wong, M.; Schimmerling, W.; Rapkin, M.

    1985-01-01

    In November of 1982 work was begun in collaboration with Columbia University and Lawrence Berkeley Laboratory to use microdosimetric methods to measure energy deposition of heavy ions produced at LBL's Bevalac Biomedical Facility. Last year the authors reported preliminary results indicating that secondary charged particle equilibrium was probably obtained using this experimental setup, but that there seemed to be poor spatial resolution in the solid state position-sensitive detector. Further analysis of the measurements taken in August 1983 shows that because of this electronic noise in the position-sensitive detector, only the 56 Fe data yielded useful microdosimetric spectra

  19. Measures of International Manufacturing and Trade of Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Engel-Cox, Jill; Sandor, Debbie; Keyser, David; Mann, Margaret

    2017-05-25

    The technologies that produce clean energy, such as solar photovoltaic panels and lithium ion batteries for electric vehicles, are globally manufactured and traded. As demand and deployment of these technologies grows exponentially, the innovation to reach significant economies of scale and drive down energy production costs becomes less in the technology and more in the manufacturing of the technology. Manufacturing innovations and other manufacturing decisions can reduce costs of labor, materials, equipment, operating costs, and transportation, across all the links in the supply chain. To better understand the manufacturing aspect of the clean energy economy, we have developed key metrics for systematically measuring and benchmarking international manufacturing of clean energy technologies. The metrics are: trade, market size, manufacturing value-added, and manufacturing capacity and production. These metrics were applied to twelve global economies and four representative technologies: wind turbine components, crystalline silicon solar photovoltaic modules, vehicle lithium ion battery cells, and light emitting diode packages for efficient lighting and other consumer products. The results indicated that clean energy technologies are being developed via complex, dynamic, and global supply chains, with individual economies benefiting from different technologies and links in the supply chain, through both domestic manufacturing and global trade.

  20. Marginal costs for intensified energy-efficiency measures

    International Nuclear Information System (INIS)

    Jakob, J.; Jochem, E.; Christen, K.

    2002-01-01

    The costs and benefits of investments in measures designed to improve the energy efficiency of residential buildings (in particular investments in heat insulation) were calculated as a function of increasing energy efficiency for new and renovated buildings and for single-family homes and apartment buildings. These investments in measures to improve efficiency mostly involve with the building envelope and ventilation systems and aim to successively reduce the space-heating needs of the buildings. The measures range from present-day building and renovation methods through to the 'Minergie' and 'Passive House' ('Minergie-P' in Switzerland) standards for low and very-low energy consumption buildings. Cost-benefit ratios were determined for individual building components, individual building concepts and for the whole of Switzerland, using both the average-cost as well as the pure marginal-cost methods (energy-economics level). The collection of empirical data (especially on costs) was an integral and important part of the project. The marginal costs were then compared with the benefits arising from the costs for space heating that were avoided, and, using a few typical cases as examples, with the so-called co-benefits, which are to be implemented in part by private persons and companies. For their quantification, methods were developed and used in case studies; in addition, avoided external costs are also considered. The marginal costs were also calculated for periods of time in the future, whereby they were made dynamic, according to their share of innovation, using the learning-curve method (learning and scaling effects). As far as the findings are concerned, there can be no doubt that the potential to be opened up for increasing energy efficiency using heat insulation measures is high, both for renovations and new construction work. A large portion of this potential is already economically viable and even more so when the possible risks of energy price increases