WorldWideScience

Sample records for measure blade response

  1. System Identification of Mistuned Bladed Disks from Traveling Wave Response Measurements

    Science.gov (United States)

    Feiner, D. M.; Griffin, J. H.; Jones, K. W.; Kenyon, J. A.; Mehmed, O.; Kurkov, A. P.

    2003-01-01

    A new approach to modal analysis is presented. By applying this technique to bladed disk system identification methods, one can determine the mistuning in a rotor based on its response to a traveling wave excitation. This allows system identification to be performed under rotating conditions, and thus expands the applicability of existing mistuning identification techniques from integrally bladed rotors to conventional bladed disks.

  2. Inflow measurements from blade-mounted flow sensors: Flow analysis, application and aeroelastic response

    DEFF Research Database (Denmark)

    Pedersen, Mads Mølgaard

    -mounted flow sensor, BMFS, e.g. a five-hole pitot tube, which has been used in several research experiments over the last 30 years. The BMFS measured flow velocity is, however, located inside the induction zone and thereby influenced by the aerodynamic properties, the control strategy and the operational......The power and load performance of wind turbines are both crucial for the development and expansion of wind energy. The power and loads are highly dependent on the inflow conditions, which can be measured using different types of sensors mounted on nearby met masts, on the nacelle, at the spinner...... or at the blade. Each combination of sensor type and mounting position has advantages and shortcomings. To characterise the inflow that results in high and low fatigue loads, information about the temporal and spatial variations within the rotor area is required. This information can be obtained from a blade...

  3. Blade Vibration Measurement System for Unducted Fans

    Science.gov (United States)

    Marscher, William

    2014-01-01

    With propulsion research programs focused on new levels of efficiency and noise reduction, two avenues for advanced gas turbine technology are emerging: the geared turbofan and ultrahigh bypass ratio fan engines. Both of these candidates are being pursued as collaborative research projects between NASA and the engine manufacturers. The high bypass concept from GE Aviation is an unducted fan that features a bypass ratio of over 30 along with the accompanying benefits in fuel efficiency. This project improved the test and measurement capabilities of the unducted fan blade dynamic response. In the course of this project, Mechanical Solutions, Inc. (MSI) collaborated with GE Aviation to (1) define the requirements for fan blade measurements; (2) leverage MSI's radar-based system for compressor and turbine blade monitoring; and (3) develop, validate, and deliver a noncontacting blade vibration measurement system for unducted fans.

  4. Non-invasive dynamic measurement of helicopter blades

    Science.gov (United States)

    Serafini, J.; Bernardini, G.; Mattioni, L.; Vezzari, V.; Ficuciello, C.

    2017-08-01

    This paper presents the development and the application on helicopter blades of a measurement system based on FBG strain gauges. Here, the main goal is the structural characterization of the main rotor blades, with the aim of showing the potentialities of such a system in blades quality check applications, as well as in the development of structural health monitoring and rotor state feedback devices. The device has been used in both non-rotating and rotating tests, and does not require the presence of slip rings or optical joint since it is completely allocated in the rotating system. It has been successfully applied to characterize the frequency response of blades lead-lag, flap and torsion deformations, up to 250 Hz.

  5. Measurements of blade aerodynamics on a rotor in the field

    Energy Technology Data Exchange (ETDEWEB)

    Graham, J.M.R. [Imperical College, Dept. of Aeronautics, London (United Kingdom)

    1997-12-31

    This contribution describes the field test measurements undertaken on an instrumented rotor at the Rutherford Appleton Laboratory, Oxfordshire, UK, during the period 1994 - 97. The programme was directed at improving the prediction of the steady and unsteady rotor blade loading, particularly the loads arising from the stalling of the blade. The measured data consisted of blade surface pressure distributions sampled at 50Hz at 6 sections along the span of one blade of the 17m diameter, 3 bladed, fixed pitch, upwind H.A.W.T., together with measurements of the incident velocity. (au)

  6. Analysis and improvement of gas turbine blade temperature measurement error

    International Nuclear Information System (INIS)

    Gao, Shan; Wang, Lixin; Feng, Chi; Daniel, Ketui

    2015-01-01

    Gas turbine blade components are easily damaged; they also operate in harsh high-temperature, high-pressure environments over extended durations. Therefore, ensuring that the blade temperature remains within the design limits is very important. In this study, measurement errors in turbine blade temperatures were analyzed, taking into account detector lens contamination, the reflection of environmental energy from the target surface, the effects of the combustion gas, and the emissivity of the blade surface. In this paper, each of the above sources of measurement error is discussed, and an iterative computing method for calculating blade temperature is proposed. (paper)

  7. Analysis and improvement of gas turbine blade temperature measurement error

    Science.gov (United States)

    Gao, Shan; Wang, Lixin; Feng, Chi; Daniel, Ketui

    2015-10-01

    Gas turbine blade components are easily damaged; they also operate in harsh high-temperature, high-pressure environments over extended durations. Therefore, ensuring that the blade temperature remains within the design limits is very important. In this study, measurement errors in turbine blade temperatures were analyzed, taking into account detector lens contamination, the reflection of environmental energy from the target surface, the effects of the combustion gas, and the emissivity of the blade surface. In this paper, each of the above sources of measurement error is discussed, and an iterative computing method for calculating blade temperature is proposed.

  8. Research on the nonintrusive measurement of the turbine blade vibration

    Science.gov (United States)

    Zhang, Shi hai; Li, Lu-ping; Rao, Hong-de

    2008-11-01

    It's one of the important ways to monitor the change of dynamic characteristic of turbine blades for ensuring safety operation of turbine unit. Traditional measurement systems for monitoring blade vibration generally use strain gauges attached to the surface of turbine blades, each strain gauge gives out an analogue signal related to blade deformation, it's maximal defect is only a few blades could be monitored which are attached by strain gauge. But the noncontact vibration measurement will be discussed would solve this problem. This paper deals with noncontact vibration measurement on the rotor blades of turbine through experiments. In this paper, the noncontact vibration measurement - Tip Timing Measurement will be presented, and will be improved. The statistics and DFT will be used in the improved measurement. The main advantage of the improved measurement is that only two sensors over the top of blades and one synchronous sensor of the rotor are used to get the exact vibration characteristics of the each blade in a row. In our experiment, we adopt NI Company's DAQ equipment: SCXI1001 and PCI 6221, three optical sensors, base on the graphics program soft LabVIEW to develop the turbine blade monitor system. At the different rotational speed of the rotor (1000r/m and 1200r/m) we do several experiments on the bench of the Turbine characteristic. Its results indicated that the vibration of turbine blade could be real-time monitored and accurately measured by the improved Tip Timing Measurement.

  9. Measurements of UWB Pulse Propagation Along a Wind Turbine Blade at 1 to 20 GHz

    DEFF Research Database (Denmark)

    Hejselbæk, Johannes; Syrytsin, Igor A.; Eggers, Patrick Claus F.

    2018-01-01

    This paper describes propagation measurements of an Ultra Wide Band (UWB) pulse along a full-scale wind turbine blade. The aim is to use the UWB channel characteristics to determine the deflection of the wind turbine blade under different wind loads. The frequency response is measured from 1 to 20...... the reflection originates a ray-tracing study incorporating a model of the curvature of the blade have been conducted. This showed the area causing the reflections depended highly on the placement of the antenna on the wind turbine blade....

  10. Probabilistic SSME blades structural response under random pulse loading

    Science.gov (United States)

    Shiao, Michael; Rubinstein, Robert; Nagpal, Vinod K.

    1987-01-01

    The purpose is to develop models of random impacts on a Space Shuttle Main Engine (SSME) turbopump blade and to predict the probabilistic structural response of the blade to these impacts. The random loading is caused by the impact of debris. The probabilistic structural response is characterized by distribution functions for stress and displacements as functions of the loading parameters which determine the random pulse model. These parameters include pulse arrival, amplitude, and location. The analysis can be extended to predict level crossing rates. This requires knowledge of the joint distribution of the response and its derivative. The model of random impacts chosen allows the pulse arrivals, pulse amplitudes, and pulse locations to be random. Specifically, the pulse arrivals are assumed to be governed by a Poisson process, which is characterized by a mean arrival rate. The pulse intensity is modelled as a normally distributed random variable with a zero mean chosen independently at each arrival. The standard deviation of the distribution is a measure of pulse intensity. Several different models were used for the pulse locations. For example, three points near the blade tip were chosen at which pulses were allowed to arrive with equal probability. Again, the locations were chosen independently at each arrival. The structural response was analyzed both by direct Monte Carlo simulation and by a semi-analytical method.

  11. blades

    Directory of Open Access Journals (Sweden)

    Shashishekara S. Talya

    1999-01-01

    Full Text Available Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with an upper bound constraint on the average blade temperature. In the third formulation, the blade average and maximum temperatures are chosen as objective functions. Shape optimization is performed using geometric parameters associated with film cooling and blade external shape. A quasi-three-dimensional Navier–Stokes solver for turbomachinery flows is used to solve for the flow field external to the blade with appropriate modifications to incorporate the effect of film cooling. The heat transfer analysis for temperature distribution within the blade is performed by solving the heat diffusion equation using the finite element method. The multiobjective Kreisselmeier–Steinhauser function approach has been used in conjunction with an approximate analysis technique for optimization. The results obtained using both formulations are compared with reference geometry. All three formulations yield significant reductions in blade temperature with the multiobjective formulation yielding largest reduction in blade temperature.

  12. Multi-spectral temperature measurement method for gas turbine blade

    Science.gov (United States)

    Gao, Shan; Feng, Chi; Wang, Lixin; Li, Dong

    2016-02-01

    One of the basic methods to improve both the thermal efficiency and power output of a gas turbine is to increase the firing temperature. However, gas turbine blades are easily damaged in harsh high-temperature and high-pressure environments. Therefore, ensuring that the blade temperature remains within the design limits is very important. There are unsolved problems in blade temperature measurement, relating to the emissivity of the blade surface, influences of the combustion gases, and reflections of radiant energy from the surroundings. In this study, the emissivity of blade surfaces has been measured, with errors reduced by a fitting method, influences of the combustion gases have been calculated for different operational conditions, and a reflection model has been built. An iterative computing method is proposed for calculating blade temperatures, and the experimental results show that this method has high precision.

  13. Quantifying uncertainties in the structural response of SSME blades

    Science.gov (United States)

    Nagpal, Vinod K.

    1987-01-01

    To quantify the uncertainties associated with the geometry and material properties of a Space Shuttle Main Engine (SSME) turbopump blade, a computer code known as STAEBL was used. A finite element model of the blade used 80 triangular shell elements with 55 nodes and five degrees of freedom per node. The whole study was simulated on the computer and no real experiments were conducted. The structural response has been evaluated in terms of three variables which are natural frequencies, root (maximum) stress, and blade tip displacements. The results of the study indicate that only the geometric uncertainties have significant effects on the response. Uncertainties in material properties have insignificant effects.

  14. Force Measurements on a VAWT Blade in Parked Conditions

    Directory of Open Access Journals (Sweden)

    Anders Goude

    2017-11-01

    Full Text Available The forces on a turbine at extreme wind conditions when the turbine is parked is one of the most important design cases for the survivability of a turbine. In this work, the forces on a blade and its support arms have been measured on a 12 kW straight-bladed vertical axis wind turbine at an open site. Two cases are tested: one during electrical braking of the turbine, which allows it to rotate slowly, and one with the turbine mechanically fixed with the leading edge of the blade facing the main wind direction. The force variations with respect to wind direction are investigated, and it is seen that significant variations in forces depend on the wind direction. The measurements show that for the fixed case, when subjected to the same wind speed, the forces are lower when the blade faces the wind direction. The results also show that due to the lower forces at this particular wind direction, the average forces for the fixed blade are notably lower. Hence, it is possible to reduce the forces on a turbine blade, simply by taking the dominating wind direction into account when the turbine is parked. The measurements also show that a positive torque is generated from the blade for most wind directions, which causes the turbine to rotate in the electrically-braked case. These rotations will cause increased fatigue loads on the turbine blade.

  15. Helicopter blades running elevation measurement using omnidirectional vision

    Directory of Open Access Journals (Sweden)

    Chengtao CAI

    2017-12-01

    Full Text Available Omnidirectional dynamic space parameters of high-speed rotating helicopter blades are precise 3D vector description of the blades. In particular, the elevation difference is directly related to the aerodynamic performance and maneuverability of the helicopter. The state of the art detection techniques based on optics and common vision have several drawbacks, such as high demands on devices but poor extensibility, limited measurement range and fixed measurement position. In this paper, a novel approach of helicopter blades running elevation measurement is proposed based on omnidirectional vision. With the advantages of panoramic visual imaging integration, 360° field of view and rotation in-variance, high-resolution images of all rotating blades positions are obtained at one time. By studying the non-linear calibration and calculation model of omnidirectional vision system, aiming at solving the problem of inaccurate visual space mapping model, the omnidirectional and full-scale measurement of the elevation difference are finalized. Experiments are carried out on our multifunctional simulation blades test system and the practical blades test tower, respectively. The experimental results demonstrate the effectiveness of the proposed method and show that the proposed method can considerably reduce the complexity of measurement. Keywords: Full-scale measurement, Helicopter blades elevation, Non-linear calibration, Omnidirectional vision, Unified sphere model

  16. Aeroelastic stability and response of horizontal axis wind turbine blades

    Science.gov (United States)

    Kottapalli, S. B. R.; Friedmann, P. P.; Rosen, A.

    1979-01-01

    Coupled flap-lag-torsion equations of motion of an isolated horizontal axis wind turbine (HAWT) blade have been formulated. The analysis neglects blade-tower coupling. The final nonlinear equations have periodic coefficients. A new and convenient method of generating an appropriate time-dependent equilibrium position, required for the stability analysis, has been implemented and found to be computationally efficient. Steady-state response and stability boundaries for an existing (typical) HAWT blade are presented. Such stability boundaries have never been published in the literature. The results show that the isolated blade under study is basically stable. The tower shadow (wake) has a considerable effect on the out-of-plane response but leaves blade stability unchanged. Nonlinear terms can significantly affect linearized stability boundaries; however, they have a negligible effect on response, thus implying that a time-dependent equilibrium position (or steady-state response), based completely on the linear system, is appropriate for the type of HAWT blades under study.

  17. Blade Vibration Measurement System for Characterization of Closely Spaced Modes and Mistuning, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There are several ongoing challenges in non-contacting blade vibration and stress measurement systems that can address closely spaced modes and blade-to-blade...

  18. Multi-spectral pyrometer for gas turbine blade temperature measurement

    Science.gov (United States)

    Gao, Shan; Wang, Lixin; Feng, Chi

    2014-09-01

    To achieve the highest possible turbine inlet temperature requires to accurately measuring the turbine blade temperature. If the temperature of blade frequent beyond the design limits, it will seriously reduce the service life. The problem for the accuracy of the temperature measurement includes the value of the target surface emissivity is unknown and the emissivity model is variability and the thermal radiation of the high temperature environment. In this paper, the multi-spectral pyrometer is designed provided mainly for range 500-1000°, and present a model corrected in terms of the error due to the reflected radiation only base on the turbine geometry and the physical properties of the material. Under different working conditions, the method can reduce the measurement error from the reflect radiation of vanes, make measurement closer to the actual temperature of the blade and calculating the corresponding model through genetic algorithm. The experiment shows that this method has higher accuracy measurements.

  19. Rotor blade boundary layer measurement hardware feasibility demonstration

    Science.gov (United States)

    Clark, D. R.; Lawton, T. D.

    1972-01-01

    A traverse mechanism which allows the measurement of the three dimensional boundary layers on a helicopter rotor blade has been built and tested on a full scale rotor to full scale conditions producing centrifugal accelerations in excess of 400 g and Mach numbers of 0.6 and above. Boundary layer velocity profiles have been measured over a range of rotor speeds and blade collective pitch angles. A pressure scanning switch and transducer were also tested on the full scale rotor and found to be insensitive to centrifugal effects within the normal main rotor operating range. The demonstration of the capability to measure boundary layer behavior on helicopter rotor blades represents the first step toward obtaining, in the rotating system, data of a quality comparable to that already existing for flows in the fixed system.

  20. Techniques for blade tip clearance measurements with capacitive probes

    Science.gov (United States)

    Steiner, Alexander

    2000-07-01

    This article presents a proven but advantageous concept for blade tip clearance evaluation in turbomachinery. The system is based on heavy duty probes and a high frequency (HF) and amplifying electronic unit followed by a signal processing unit. Measurements are taken under high temperature and other severe conditions such as ionization. Every single blade can be observed. The signals are digitally filtered and linearized in real time. The electronic set-up is highly integrated. Miniaturized versions of the electronic units exist. The small and robust units can be used in turbo engines in flight. With several probes at different angles in one radial plane further information is available. Shaft eccentricity or blade oscillations can be calculated.

  1. Experimental measurements of out-of-plane vibrations of a simple blisk design using Blade Tip Timing and Scanning LDV measurement methods

    Science.gov (United States)

    Di Maio, D.; Ewins, D. J.

    2012-04-01

    The study of dynamic properties of rotating structures, such as bladed discs, can be conveniently done using simple bladed discs where the blades do not have staggering angles. Simplified design, although not truly representative of real structures, can be easy and economic to manufacture and, still, very helpful for studying specific dynamic properties. An example of this can be called as mass mistune blisk study. Experimental measurements of vibrations of bladed discs under rotating conditions can be performed using Scanning Laser Doppler Vibrometer (SLDV) systems. However, in the aerospace industry, the vibrations of complex bladed discs must be measured under operating conditions which are more hostile than laboratory simulations. The Blade Tip Timing (BTT) measurement method is a measurement technique, which can be used to measure vibrations of bladed discs of an engine aircraft under operating conditions. However, the BTT technique is ineffective when used with a flat bladed disc whose blade vibrations cannot be measured. This can be detrimental when the use of controlled dynamic parameters, such as those obtained from a simple bladed disc design, can improve the confidence for the validation of post-processing software. This paper presents a work about experimental measurements of a simple bladed disc design whose vibrations were measured synchronously by Scanning LDV and BTT measurement systems. A rotating test rig and its mechanical modifications for the installation of the BTT probes are introduced. Implications of rotating a specimen inconsistently are presented so as solutions to obtained constant revolving speed. The experimental comparisons of forced response vibrations measured synchronously at one blade are presented and explained.

  2. Real-time estimation of helicopter rotor blade kinematics through measurement of rotation induced acceleration

    Science.gov (United States)

    Allred, C. Jeff; Churchill, David; Buckner, Gregory D.

    2017-07-01

    This paper presents a novel approach to monitoring rotor blade flap, lead-lag and pitch using an embedded gyroscope and symmetrically mounted MEMS accelerometers. The central hypothesis is that differential accelerometer measurements are proportional only to blade motion; fuselage acceleration and blade bending are inherently compensated for. The inverse kinematic relationships (from blade position to acceleration and angular rate) are derived and simulated to validate this hypothesis. An algorithm to solve the forward kinematic relationships (from sensor measurement to blade position) is developed using these simulation results. This algorithm is experimentally validated using a prototype device. The experimental results justify continued development of this kinematic estimation approach.

  3. Dynamic response characteristics of dual flow-path integrally bladed rotors

    Science.gov (United States)

    Beck, Joseph A.; Brown, Jeffrey M.; Scott-Emuakpor, Onome E.; Cross, Charles J.; Slater, Joseph C.

    2015-02-01

    New turbine engine designs requiring secondary flow compression often look to dual flow-path integrally bladed rotors (DFIBRs) since these stages have the ability to perform work on the secondary, or bypassed, flow-field. While analogous to traditional integrally bladed rotor stages, DFIBR designs have many differences that result in unique dynamic response characteristics that must be understood to avoid fatigue. This work investigates these characteristics using reduced-order models (ROMs) that incorporate mistuning through perturbations to blade frequencies. This work provides an alternative to computationally intensive geometric-mistuning approaches for DFIBRs by utilizing tuned blade mode reductions and substructure coupling in cyclic coordinates. Free and forced response results are compared to full finite element model (FEM) solutions to determine if any errors are related to the reduced-order model formulation reduction methods. It is shown that DFIBRs have many more frequency veering regions than their single flow-path integrally blade rotor (IBR) counterparts. Modal families are shown to transition between system, inner-blade, and outer-blade motion. Furthermore, findings illustrate that while mode localization of traditional IBRs is limited to a single or small subset of blades, DFIBRs can have modal energy localized to either an inner- or outer-blade set resulting in many blades responding above tuned levels. Lastly, ROM forced response predictions compare well to full FEM predictions for the two test cases shown.

  4. A simulation study of active feedback supression of dynamic response in helicopter rotor blades

    Science.gov (United States)

    Kana, D. D.; Bessey, R. L.; Dodge, F. T.

    1975-01-01

    A parameter study is presented for active feedback control applied to a helicopter rotor blade during forward flight. The study was performed on an electromechanical apparatus which included a mechanical model rotor blade and electronic analog simulation of interaction between blade deflections and aerodynamic loading. Blade response parameters were obtained for simulated vortex impinging at the blade tip at one pulse per revolution, and for a pulse which traveled from the blade tip toward its root. Results show that the response in a 1 - 10-per-rev frequency band is diminished by the feedback action, but at the same time responses at frequencies above 10-per-rev become increasingly more prominent with increased feedback amplitude, and can even lead to instability at certain levels. It appears that the latter behavior results from limitations of the laboratory simulation apparatus, rather than genuine potential behavior for a prototype helicopter.

  5. Rotorcraft On-Blade Pressure and Strain Measurements Using Wireless Optical Sensor System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Experimental measurements of rotor blades are important for understanding the aerodynamics and dynamics of a rotorcraft. This understanding can help in solving...

  6. On the development of a magnetoresistive sensor for blade tip timing and blade tip clearance measurement systems

    Science.gov (United States)

    Tomassini, R.; Rossi, G.; Brouckaert, J.-F.

    2016-10-01

    A simultaneous blade tip timing (BTT) and blade tip clearance (BTC) measurement system enables the determination of turbomachinery blade vibrations and ensures the monitoring of the existing running gaps between the blade tip and the casing. This contactless instrumentation presents several advantages compared to the well-known telemetry system with strain gauges, at the cost of a more complex data processing procedure. The probes used can be optical, capacitive, eddy current as well as microwaves, everyone with its dedicated electronics and many existing different signal processing algorithms. Every company working in this field has developed its own processing method and sensor technology. Hence, repeating the same test with different instrumentations, the answer is often different. Moreover, rarely it is possible to achieve reliability for in-service measurements. Developments are focused on innovative instrumentations and a common standard. This paper focuses on the results achieved using a novel magnetoresistive sensor for simultaneous tip timing and tip clearance measurements. The sensor measurement principle is described. The sensitivity to gap variation is investigated. In terms of measurement of vibrations, experimental investigations were performed at the Air Force Institute of Technology (ITWL, Warsaw, Poland) in a real aeroengine and in the von Karman Institute (VKI) R2 compressor rig. The advantages and limitations of the magnetoresistive probe for turbomachinery testing are highlighted.

  7. Videometric research on deformation measurement of large-scale wind turbine blades

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Utilization of wind energy is a promising way to generate power,and wind turbine blades play a key role in collecting the wind energy effectively.This paper attempts to measure the deformation parameter of wind turbine blades in mechanics experiments using a videometric method. In view that the blades experience small buckling deformation and large integral deformation simultaneously, we proposed a parallel network measurement(PNM) method including the key techniques such as camera network construction,c...

  8. The prediction of rotor rotational noise using measured fluctuating blade loads

    Science.gov (United States)

    Hosier, R. N.; Pegg, R. J.; Ramakrishnan, R.

    1974-01-01

    In tests conducted at the NASA Langley Research Center Helicopter Rotor Test Facility, simultaneous measurements of the high-frequency fluctuating aerodynamic blade loads and far-field radiated noise were made on a full-scale, nontranslating rotor system. After their characteristics were determined, the measured blade loads were used in an existing theory to predict the far-field rotational noise. A comparison of the calculated and measured rotational noise is presented with specific attention given to the effect of blade loading coefficients, chordwise loading distributions, blade loading phases, and observer azimuthal position on the predictions.

  9. Measurement of Rotorcraft Blade Deformation Using Projection Moiré Interferometry

    Directory of Open Access Journals (Sweden)

    Gary A. Fleming

    2000-01-01

    Full Text Available Projection Moiré Interferometry (PMI has been used to obtain near instantaneous, quantitative blade deformation measurements of a generic rotorcraft model at several test conditions. These laser-based measurements provide quantitative, whole field, dynamic blade deformation profiles conditionally sampled as a function of rotor azimuth. The instantaneous nature of the measurements permits computation of the mean and unsteady blade deformation, blade bending, and twist. The PMI method is presented, and the image processing steps required to obtain quantitative deformation profiles from PMI interferograms are described. Experimental results are provided which show blade bending, twist, and unsteady motion. This initial proof-of-concept test has demonstrated the capability of PMI to acquire accurate, full field rotorcraft blade deformation data.

  10. Measurement and Modelling of Multicopter UAS Rotor Blades in Hover

    Science.gov (United States)

    Nowicki, Nathalie

    2016-01-01

    Multicopters are becoming one of the more common and popular type of unmanned aircraft systems (UAS) which have both civilian and military applications. One example being the concept of drone deliveries proposed by the distribution company Amazon [1]. The electrical propulsion is considered to have both faster and easier deliveries and also environmental benefits compared to other vehicles that still use fossil fuel. Other examples include surveillance and just simple entertainment. The reason behind their success is often said to be due to their small size, relatively low cost, simple structure and finally simple usage. With an increase in the UAS market comes challenges in terms of security, as both people and other aircrafts could be harmed if not used correctly. Therefore further studies and regulations are needed to ensure that future use of drones, especially in the civilian and public sectors, are safe and efficient. Thorough research has been done on full scale, man or cargo transporting, helicopters so that most parts of flight and performance are fairly well understood. Yet not much of it have been verified for small multicopters. Until today many studies and research projects have been done on the control systems, navigation and aerodynamics of multicopters. Many of the methods used today for building multicopters involve a process of trial an error of what will work well together, and once that is accomplished some structural analysis of the multicopter bodies might be done to verify that the product will be strong enough and have a decent aerodynamic performance. However, not much has been done on the research of the rotor blades, especially in terms of structural stress analyses and ways to ensure that the commonly used parts are indeed safe and follow safety measures. Some producers claim that their propellers indeed have been tested, but again that usually tends towards simple fluid dynamic analyses and even simpler stress analyses. There is no real

  11. Study on measurement of leading and trailing edges of blades based on optical scanning system

    Science.gov (United States)

    Chao, Bi; Liu, Hongguang; Bao, Longxiang; Li, Di

    2017-10-01

    In the field of aeronautics, the geometry and dimensional accuracy of the blade edges has a large influence on the aerodynamic performance of aero engine. Therefore, a non-contact optical scanning system is established to realize the measurement of leading and trailing edges of blades in a rapid, precise and efficient manner in the paper. Based on the mechanical framework of a traditional CMM, the system is equipped with a specified sensing device as the scanning probe, which is made up by two new-style laser scanning sensors installed at a certain angle to each other by a holder. In the measuring procedure, the geometric dimensions of the measured blade edges on every contour plane are determined by the contour information on five transversals at the leading or trailing edges, which can be used to determine the machining allowance of the blades. In order to verify the effectiveness and practicality of the system set up, a precision forging blade after grinded is adopted as the measured object and its leading and trailing edges are measured by the system respectively. In the experiment, the thickness of blade edges on three contour planes is measured by the optical scanning system several times. As the experiment results show, the repeatability accuracy of the system can meet its design requirements and the inspecting demands of the blade edges. As a result, the optical scanning system could serve as a component of the intelligent manufacturing system of blades to improve the machining quality of the blade edges.

  12. Measurement of Unsteady Aerodynamics Load on the Blade of Field Horizontal Axis Wind Turbine

    Science.gov (United States)

    Kamada, Yasunari; Maeda, Takao; Naito, Keita; Ouchi, Yuu; Kozawa, Masayoshi

    This paper describes an experimental field study of the rotor aerodynamics of wind turbines. The test wind turbine is a horizontal axis wind turbine, or: HAWT with a diameter of 10m. The pressure distributions on the rotating blade are measured with multi point pressure transducers. Sectional aerodynamic forces are analyzed from pressure distribution. Blade root moments are measured simultaneously by a pair of strain gauges. The inflow wind is measured by a three component sonic anemometer, the local inflow of the blade section are measured by a pair of 7 hole Pitot tubes. The relation between the aerodynamic moments on the blade root from pressure distribution and the mechanical moment from strain gauges is discussed. The aerodynamic moments are estimated from the sectional aerodynamic forces and show oscillation caused by local wind speed and direction change. The mechanical moment shows similar oscillation to the aerodynamic excepting the short period oscillation of the blade first mode frequency. The fluctuation of the sectional aerodynamic force triggers resonant blade oscillations. Where stall is present along the blade section, the blade's first mode frequency is dominant. Without stall, the rotating frequency is dominant in the blade root moment.

  13. Strain gauge measurement uncertainties on hydraulic turbine runner blade

    International Nuclear Information System (INIS)

    Arpin-Pont, J; Gagnon, M; Tahan, S A; Coutu, A; Thibault, D

    2012-01-01

    Strains experimentally measured with strain gauges can differ from those evaluated using the Finite Element (FE) method. This difference is due mainly to the assumptions and uncertainties inherent to each method. To circumvent this difficulty, we developed a numerical method based on Monte Carlo simulations to evaluate measurement uncertainties produced by the behaviour of a unidirectional welded gauge, its position uncertainty and its integration effect. This numerical method uses the displacement fields of the studied part evaluated by an FE analysis. The paper presents a study case using in situ data measured on a hydraulic turbine runner. The FE analysis of the turbine runner blade was computed, and our numerical method used to evaluate uncertainties on strains measured at five locations with welded strain gauges. Then, measured strains and their uncertainty ranges are compared to the estimated strains. The uncertainty ranges obtained extended from 74 με to 165 με. Furthermore, the biases observed between the median of the uncertainty ranges and the FE strains varied from −36 to 36 με. Note that strain gauge measurement uncertainties depend mainly on displacement fields and gauge geometry.

  14. Extreme Design Loads Calibration of Offshore Wind Turbine Blades through Real Time Measurements

    DEFF Research Database (Denmark)

    Natarajan, Anand; Vesth, Allan; Lamata, Rebeca Rivera

    2014-01-01

    Blade Root flap and Edge moments are measured on the blades of a 3.6MW offshore wind turbine in normal operation. Ten minute maxima of the measurements are sampled to determine the extreme blade root flap moment, edge moment and resultant moment over six month duration. A random subset of the mea......Blade Root flap and Edge moments are measured on the blades of a 3.6MW offshore wind turbine in normal operation. Ten minute maxima of the measurements are sampled to determine the extreme blade root flap moment, edge moment and resultant moment over six month duration. A random subset...... of the measurements over a week is taken as input to stochastic load extrapolation whereby the one year extrapolated design extreme is obtained, which are then compared with the maximum extremes obtained from direct measurements over a six month period to validate the magnification in the load levels for the blade...... root flap moment, edge moment obtained by extrapolation. The validation yields valuable information on prescribing the slope of the local extrapolation curve at each mean wind speed. As an alternative to determining the contemporaneous loads for each primary extrapolated load, the blade root resultant...

  15. Summary of Full-Scale Blade Displacement Measurements of the UH- 60A Airloads Rotor

    Science.gov (United States)

    Abrego, Anita I.; Meyn, Larry; Burner, Alpheus W.; Barrows, Danny A.

    2016-01-01

    Blade displacement measurements using multi-camera photogrammetry techniques were acquired for a full-scale UH-60A rotor, tested in the National Full-Scale Aerodynamic Complex 40-Foot by 80-Foot Wind Tunnel. The measurements, acquired over the full rotor azimuth, encompass a range of test conditions that include advance ratios from 0.15 to 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. The objective was to measure the blade displacements and deformations of the four rotor blades and provide a benchmark blade displacement database to be utilized in the development and validation of rotorcraft prediction techniques. An overview of the blade displacement measurement methodology, system development, and data analysis techniques are presented. Sample results based on the final set of camera calibrations, data reduction procedures and estimated corrections that account for registration errors due to blade elasticity are shown. Differences in blade root pitch, flap and lag between the previously reported results and the current results are small. However, even small changes in estimated root flap and pitch can lead to significant differences in the blade elasticity values.

  16. Enhancement to Non-Contacting Stress Measurement of Blade Vibration Frequency

    Science.gov (United States)

    Platt, Michael; Jagodnik, John

    2011-01-01

    A system for turbo machinery blade vibration has been developed that combines time-of-arrival sensors for blade vibration amplitude measurement and radar sensors for vibration frequency and mode identification. The enabling technology for this continuous blade monitoring system is the radar sensor, which provides a continuous time series of blade displacement over a portion of a revolution. This allows the data reduction algorithms to directly calculate the blade vibration frequency and to correctly identify the active modes of vibration. The work in this project represents a significant enhancement in the mode identification and stress calculation accuracy in non-contacting stress measurement system (NSMS) technology when compared to time-of-arrival measurements alone.

  17. LDV measurement of boundary layer on rotating blade surface in wind tunnel

    Science.gov (United States)

    Maeda, Takao; Kamada, Yasunari; Murata, Junsuke; Suzuki, Daiki; Kaga, Norimitsu; Kagisaki, Yosuke

    2014-12-01

    Wind turbines generate electricity due to extracting energy from the wind. The rotor aerodynamics strongly depends on the flow around blade. The surface flow on the rotating blade affects the sectional performance. The wind turbine surface flow has span-wise component due to span-wise change of airfoil section, chord length, twisted angle of blade and centrifugal force on the flow. These span-wise flow changes the boundary layer on the rotating blade and the sectional performance. Hence, the thorough understanding of blade surface flow is important to improve the rotor performance. For the purpose of clarification of the flow behaviour around the rotor blade, the velocity in the boundary layer on rotating blade surface of an experimental HAWT was measured in a wind tunnel. The velocity measurement on the blade surface was carried out by a laser Doppler velocimeter (LDV). As the results of the measurement, characteristics of surface flow are clarified. In optimum tip speed operation, the surface flow on leading edge and r/R=0.3 have large span-wise velocity which reaches 20% of sectional inflow velocity. The surface flow inboard have three dimensional flow patterns. On the other hand, the flow outboard is almost two dimensional in cross sectional plane.

  18. Effects of Mistuning on the Forced Response of Bladed Discs with Friction Dampers

    National Research Council Canada - National Science Library

    Petrov, E. P; Ewins, D. J

    2005-01-01

    A method recently developed by the authors allows efficient calculation of the periodic forced response to be performed for bladed discs with arbitrary nonlinearities, including friction contacts and gaps...

  19. Termovision and electricity capacitance measurements as a evaluation of a helicopter rotor’s blades delamination

    Directory of Open Access Journals (Sweden)

    Gębura Andrzej

    2015-12-01

    Full Text Available The article presents essential elements reached during investigations of heat section of rotor blades which have been done in AFIT. The investigations were related to a valuation of helicopter’s rotor blades delamination. They used a method of thermal field measurement as well as a electricity capacitance between an airframe and a heat element of the installation. A suggestion of such measurements appeared during the disassembly of rotor blade heat sections when some local unglue of heat element’s tape from the structure of blade’s heating pack has seen. Spots nearby separation of adhesive are a potential area of a local temperature increase, both the electric heating element and the mechanical structure of the blade. This is especially dangerous for composite structures. Overheated composite structures characterized by reduced flexibility and becomes prone to cracking. Therefore, the possibility of non-invasive monitoring adhesive spots, without removing the blades would be particularly useful.

  20. Noncontact measurement of rotating blade vibrations. Doyoku shindo no hisesshoku keisokuho no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Yukio; Endo, Masanori; Sugiyama, Nanahisa; Koshinuma, Takeshi

    1989-08-01

    The noncontact measurement method of rotating blade vibrations was developed for fans, compressors and turbines, and applied to turbofan engines and industrial gas turbines. The method required no machining of blades and rotor except sensors attached to a casing to detect blade-tips. The method allowed to measure simultaneously the vibration of all blades, by measuring elapsed times of blade-tips rotating from a measuring start point to a detecting point, and detecting the time differences between a vibration and non-vibration condition. The measuring system was composed of the detectors and subsystems for signal processing, control, calculation and display. The vibration wave forms of a few blades and the maximum vibration amplitudes of all the blades were displayed on a realtime basis in an on-line monitoring mode, and an off-line data processing mode was also available for subsequent analyses and reviews. The results of application to existing engines favorably agreed with those of strain gage measurements. 16 refs., 75 figs., 3 tabs.

  1. Calibration procedures for improved accuracy of wind turbine blade load measurement

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, J.Aa. [Aeronautical Research Inst. of Sweden, Bromma (Sweden); Johansson, Hjalmar [Teknikgruppen AB, Sollentuna (Sweden)

    1996-12-01

    External loads acting on wind turbine blades are mainly transferred via the hub to the rest of the structure. It is therefore a normal approach to measure the loads acting on the turbine by load measurements in the blade roots. The load measurement is often accomplished by measurements of strain on the surface of the blade or the hub. The strain signals are converted to loads by applying calibration factors to the measurements. This paper deals with difficulties associated with load measurements on two different wind turbines; one with strain gauges applied to a steel hub where a linear stress-load relationship is expected and the other with strain gauges applied to the GFRP blade close to the bearings where strong non-linearity`s and temperature effects are expected. This paper suggests calibration methods to overcome these problems. 2 refs, 11 figs

  2. Operational Measurement of Stationary Characteristics and Positions of Shrouded Steam Turbine Blades

    Czech Academy of Sciences Publication Activity Database

    Procházka, Pavel; Vaněk, František

    2016-01-01

    Roč. 65, č. 5 (2016), s. 1079-1086 ISSN 0018-9456 Institutional support: RVO:61388998 Keywords : displacement measurement * turbomachine blades * steam turbines Subject RIV: BI - Acoustics Impact factor: 2.456, year: 2016

  3. Development of Static Balance Measurement and Correction Compound Platform for Single Blade of Controllable Pitch Propeller

    Science.gov (United States)

    Chao, Zhang; Shijie, Su; Yilin, Yang; Guofu, Wang; Chao, Wang

    2017-11-01

    Aiming at the static balance of the controllable pitch propeller (CPP), a high efficiency static balance method based on the double-layer structure of the measuring table and gantry robot is adopted to realize the integration of torque measurement and corrected polish for controllable pitch propeller blade. The control system was developed by Microsoft Visual Studio 2015, and a composite platform prototype was developed. Through this prototype, conduct an experiment on the complete process of torque measurement and corrected polish based on a 300kg class controllable pitch propeller blade. The results show that the composite platform can correct the static balance of blade with a correct, efficient and labor-saving operation, and can replace the traditional method on static balance of the blade.

  4. Characterization of Deficiencies in the Frequency Domain Forced Response Analysis Technique for Turbine Bladed Disks

    Science.gov (United States)

    Brown, Andrew M.; Schmauch, Preston

    2012-01-01

    Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. The standard technique for forced response analysis to assess structural integrity is to decompose a CFD generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non-harmonic excitation sources that become present in complex flows. These complications suggest the question of whether frequency domain analysis is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, have been performed. The first is of a bladed disk with each blade modeled by simple beam elements. It was hypothesized that the randomness and other variation from the standard harmonic excitation would reduce the blade structural response, but the results showed little reduction. The second study was of a realistic model of a bladed-disk excited by the same CFD used in the J2X engine program. The results showed that the transient analysis results were up to 10% higher for "clean" nodal diameter excitations and six times larger for "messy" excitations, where substantial Fourier content around the main harmonic exists.

  5. Characterization of Deficiencies in the Frequency Domain Forced Response Analysis Technique for Supersonic Turbine Bladed Disks

    Science.gov (United States)

    Brown, Andrew M.; Schmauch, Preston

    2011-01-01

    Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. Assessing the blade structural integrity is a complex task requiring an initial characterization of whether resonance is possible and then performing a forced response analysis if that condition is met. The standard technique for forced response analysis in rocket engines is to decompose a CFD-generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non-harmonic excitation sources that become present in complex flows. A substantial effort has been made to account for this denser spatial Fourier content in frequency response analysis (described in another paper by the author), but the question still remains whether the frequency response analysis itself is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, of bladed-disks undergoing this complex flow environment have been performed. The first is of a bladed disk with each blade modeled by simple beam elements. Six loading cases were generated by varying a baseline harmonic excitation in different ways based upon cold-flow testing from Heritage Fuel Air Turbine Test. It was hypothesized that the randomness and other variation from the standard harmonic excitation would reduce the blade structural response, but the results showed little reduction. The second study was of a realistic model of a bladed-disk excited by the same CFD used in the J2X engine program. It was hypothesized that enforcing periodicity in the CFD (inherent in the frequency response technique) would overestimate the

  6. Design and construction of a simple blade pitch measurement system for small wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Whale, Jonathan [Research Institute of Sustainable Energy, Murdoch University, Perth, WA 6150 (Australia)

    2009-02-15

    For small wind turbines to be reliable they must have in place good mechanisms to protect themselves against very high winds or sudden removal of load. One common protection method in small wind turbines is that of blade feathering. It is important that the blade feathering mechanism of a small wind turbine is tested before the turbine is installed in the field. This paper presents a simple system for monitoring the blade feathering of a turbine with an overall component cost that small wind turbine manufacturers can afford. The Blade Pitch Measurement System (BPMS) has been designed and constructed by the Research Institute of Sustainable Energy (RISE) and aids small wind turbine manufacturers in testing and optimising the settings of the blade feathering mechanisms on their machines. The results show that the BPMS was successful in recording the behaviour of the blade feathering mechanism in field trials with a 20 kW and a 30 kW wind turbine. The BPMS displays significant potential as an effective, inexpensive system for small wind turbine manufacturers to ensure the reliability of their pitch regulating over-speed protection mechanisms. (author)

  7. Turbine-blade tip clearance and tip timing measurements using an optical fiber bundle sensor

    Science.gov (United States)

    Garcia, Iker; Beloki, Josu; Zubia, Joseba; Durana, Gaizka; Aldabaldetreku, Gotzon

    2013-04-01

    Traditional limitations of capacitive, inductive or discharging probe sensor for tip timing and tip clearance measurements are overcome by reflective intensity modulated optical fiber sensors. This paper presents the signals and results corresponding to a one stage turbine rig which rotor has 146 blades, obtained from a transonic wind-tunnel test. The probe is based on a trifurcated bundle of optical fibers that is mounted on turbine casing. It is composed of a central illuminating fiber that guides the light from a laser to the turbine blade, and two concentric rings of receiving fibers that collect the reflected light. Two photodetectors turn this reflected light signal from the receiving rings into voltage. The electrical signals are acquired and saved by a high-sample-rate oscilloscope. In tip clearance calculations the ratio of the signals provided by each ring of receiving fibers is evaluated and translated into distance. In the case of tip timing measurements, only one of the signals is considered to get the arrival time of the blade. The differences between the real and theoretical arrival times of the blades are used to obtain the deflections amplitude. The system provides the travelling wave spectrum, which presents the average vibration amplitude of the blades at a certain nodal diameter. The reliability of the results in the turbine rig testing facilities suggests the possibility of performing these measurements in real turbines under real working conditions.

  8. Wind-induced response analysis of a wind turbine tower including the blade-tower coupling effect

    Institute of Scientific and Technical Information of China (English)

    Xiao-bo CHEN; Jing LI; Jian-yun CHEN

    2009-01-01

    To analyze wind-induced response characteristics of a wind turbine tower more accurately, the blade-tower coupling effect was investigated. The mean wind velocity of the rotating blades and tower was simulated according to wind shear effects,and the fluctuating wind velocity time series of the wind turbine were simulated by a harmony superposition method. A dynamic finite element method (FEM) was used to calculate the wind-induced response of the blades and tower. Wind-induced responses of the tower were calculated in two cases (one included the blade-tower coupling effect, and the other only added the mass of blades and the hub at the top of the tower), and then the maximal displacements at the top of the tower of the tow cases were compared with each other. As a result of the influence of the blade-tower coupling effect and the total base shear of the blades, the maximal displacement of the first case increased nearly by 300% compared to the second case. To obtain more precise analysis, the blade-tower coupling effect and the total base shear of the blades should be considered simultaneously in the design of wind turbine towers.

  9. NedWind 25 Blade Testing at NREL for the European Standards Measurement and Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    Larwood, S.; Musial, W.; Freebury, G.; Beattie, A.G.

    2001-04-19

    In the mid-90s the European community initiated the Standards, Measurements, and Testing (SMT) program to harmonize testing and measurement procedures in several industries. Within the program, a project was carried out called the European Wind Turbine Testing Procedure Development. The second part of that project, called Blade Test Methods and Techniques, included the United States and was devised to help blade-testing laboratories harmonize their testing methods. This report provides the results of those tests conducted by the National Renewable Energy Laboratory.

  10. Combining Unsteady Blade Pressure Measurements and a Free-Wake Vortex Model to Investigate the Cycle-to-Cycle Variations in Wind Turbine Aerodynamic Blade Loads in Yaw

    Directory of Open Access Journals (Sweden)

    Moutaz Elgammi

    2016-06-01

    Full Text Available Prediction of the unsteady aerodynamic flow phenomenon on wind turbines is challenging and still subject to considerable uncertainty. Under yawed rotor conditions, the wind turbine blades are subjected to unsteady flow conditions as a result of the blade advancing and retreating effect and the development of a skewed vortical wake created downstream of the rotor plane. Blade surface pressure measurements conducted on the NREL Phase VI rotor in yawed conditions have shown that dynamic stall causes the wind turbine blades to experience significant cycle-to-cycle variations in aerodynamic loading. These effects were observed even though the rotor was subjected to a fixed speed and a uniform and steady wind flow. This phenomenon is not normally predicted by existing dynamic stall models integrated in wind turbine design codes. This paper couples blade pressure measurements from the NREL Phase VI rotor to a free-wake vortex model to derive the angle of attack time series at the different blade sections over multiple rotor rotations and three different yaw angles. Through the adopted approach it was possible to investigate how the rotor self-induced aerodynamic load fluctuations influence the unsteady variations in the blade angles of attack and induced velocities. The hysteresis loops for the normal and tangential load coefficients plotted against the angle of attack were plotted over multiple rotor revolutions. Although cycle-to-cycle variations in the angles of attack at the different blade radial locations and azimuth positions are found to be relatively small, the corresponding variations in the normal and tangential load coefficients may be significant. Following a statistical analysis, it was concluded that the load coefficients follow a normal distribution at the majority of blade azimuth angles and radial locations. The results of this study provide further insight on how existing engineering models for dynamic stall may be improved through

  11. Active load reduction using individual pitch, based on local blade flow measurements

    DEFF Research Database (Denmark)

    Larsen, Torben J.; Aagaard Madsen, H.; Thomsen, K.

    2005-01-01

    -of-the-art load-reducing concepts. Since the new flow-based concept deviates significantly from previous published load-reducing strategies, a comparison of the performance based on aeroelastic simulations is included. Advantages and drawbacks of the systems are discussed. Copyright (C) 2004 John Wiley Sons, Ltd.......A new load-reducing control strategy for individual blade control of large pitch-controlled wind turbines is presented This control concept is based on local blade inflow measurements and offers the possibility of larger load reductions, without loss of power production, than seen in other state...

  12. Along-wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading

    Energy Technology Data Exchange (ETDEWEB)

    Murtagh, P J; Basu, B; Broderick, B M [Department of Civil, Structural and Environmental Engineering, Trinity College, Dublin (Ireland)

    2005-07-15

    This paper proposes an approach to investigate the along-wind forced vibration response of a wind turbine tower and rotating blades assembly subjected to rotationally sampled stationary wind loading. The wind turbine assembly consists of three rotating rotor blades connected to the top of a flexible annular tower, constituting a multi-body dynamic entity. The tower and rotating blades are each modelled as discretized multi-degree-of-freedom (MDOF) entities, allowing the free vibration characteristics of each to be obtained using a discrete parameter approach. The free vibration properties of the tower include the effect of a rigid mass at the top, representing the nacelle, and those of the blade include the effects of centrifugal stiffening due to rotation and blade gravity loadings. The blades are excited by drag force time-histories derived from discrete Fourier transform (DFT) representations of rotationally sampled wind turbulence spectra. Blade response time-histories are obtained using the mode acceleration method, which allows for the quantification of base shear forces due to flapping for the three blades to be obtained. This resultant base shear is imparted into the top of the tower. Wind drag loading on the tower is also considered, with a series of spatially correlated nodal force time-histories being derived using DFTs of wind force spectra. The tower/nacelle is then coupled with the rotating blades by combining their equations of motion and solving for the displacement at the top of the tower under compatibility conditions in the frequency domain. An inverse Fourier transform of the frequency domain response yields the response time-history of the coupled system. The response of an equivalent system that does not consider the blade/tower interaction is also investigated, and the results are compared. (Author)

  13. Study of the capacitance technique for measuring high-temperature blade tip clearance on ceramic rotors

    Science.gov (United States)

    Barranger, John P.

    1993-01-01

    Higher operating temperatures required for increased engine efficiency can be achieved by using ceramic materials for engine components. Ceramic turbine rotors are subject to the same limitations with regard to gas path efficiency as their superalloy predecessors. In this study, a modified frequency-modulation system is proposed for the measurement of blade tip clearance on ceramic rotors. It is expected to operate up to 1370 C (2500 F), the working temperature of present engines with ceramic turbine rotors. The design of the system addresses two special problems associated with nonmetallic blades: the capacitance is less than that of a metal blade and the effects of temperature may introduce uncertainty with regard to the blade tip material composition. To increase capacitance and stabilize the measurement, a small portion of the rotor is modified by the application of 5-micron-thick platinum films. The platinum surfaces on the probe electrodes and rotor that are exposed to the high-velocity gas stream are coated with an additional 10-micron-thick protective ceramic topcoat. A finite-element method is applied to calculate the capacitance as a function of clearance.

  14. Laser Displacement Measurements of Fan Blades in Resonance and Flutter During the Boundary Layer Ingesting Inlet and Distortion-Tolerant Fan Test

    Science.gov (United States)

    Duffy, Kirsten P.; Provenza, Andrew J.; Bakhle, Milind A.; Min, James B.; Abdul-Aziz, Ali

    2018-01-01

    NASA's Advanced Air Transport Technology Project is investigating boundary layer ingesting propulsors for future subsonic commercial aircraft to improve aircraft efficiency, thereby reducing fuel burn. To that end, a boundary layer ingesting inlet and distortion-tolerant fan stage was designed, fabricated, and tested within the 8' x 6' Supersonic Wind Tunnel at NASA Glenn Research Center. Because of the distortion in the air flow over the fan, the blades were designed to withstand a much higher aerodynamic forcing than for a typical clean flow. The blade response for several resonance modes were measured during start-up and shutdown, as well as at near 85% design speed. Flutter in the first bending mode was also observed in the fan at the design speed, at an off-design condition, although instabilities were difficult to instigate with this fan in general. Blade vibrations were monitored through twelve laser displacement probes that were placed around the inner circumference of the casing, at the blade leading and trailing edges. These probes captured the movement of all the blades during the entire test. Results are presented for various resonance mode amplitudes, frequencies and damping, as well as flutter amplitudes and frequency. Benefits and disadvantages of laser displacement probe measurements versus strain gage measurements are discussed.

  15. Aeroelastic response and blade loads of a composite rotor in forward flight

    Science.gov (United States)

    Smith, Edward C.; Chopra, Inderjit

    1992-01-01

    The aeroelastic response, blade and hub loads, and shaft-fixed aeroelastic stability is investigated for a helicopter with elastically tailored composite rotor blades. A new finite element based structural analysis including nonclassical effects such as transverse shear, torsion related warping and inplane elasticity is integrated with the University of Maryland Advanced Rotorcraft Code. The structural dynamics analysis is correlated against both experimental data and detailed finite element results. Correlation of rotating natural frequencies of coupled composite box-beams is generally within 5-10 percent. The analysis is applied to a soft-inplane hingeless rotor helicopter in free flight propulsive trim. For example, lag mode damping can be increased 300 percent over a range of thrust conditions and forward speeds. The influence of unsteady aerodynamics on the blade response and vibratory hub loads is also investigated. The magnitude and phase of the flap response is substantially altered by the unsteady aerodynamic effects. Vibratory hub loads increase up to 30 percent due to unsteady aerodynamic effects.

  16. Turbine blade tip clearance measurement using a skewed dual-beam fiber optic sensor

    Science.gov (United States)

    Ye, De-chao; Duan, Fa-jie; Guo, Hao-tian; Li, Yangzong; Wang, Kai

    2012-08-01

    Optimization and active control of the tip clearance of turbine blades has been identified as a key to improve fuel efficiency, reduce emission, and increase service life of the engine. However, reliable and real-time tip clearance measurement is difficult due to the adverse environmental conditions that are typically found in a turbine. We describe a dual-beam fiber optic measurement system that can measure the tip timing and tip clearance simultaneously. Because the tip timing information is used to calculate the tip clearance, the method is insensitive to the signal intensity variation caused by fluctuations in environmental conditions such as light source instability, contamination, and blade tip imperfection. The system was calibrated and tested using experimental rotors. The test results indicated a high resolution of 4.5 μm and measurement accuracy of ±20 μm over the rotation speed range of 2000 to 10,000 rpm.

  17. Contact Versus Non-Contact Measurement of a Helicopter Main Rotor Composite Blade

    Science.gov (United States)

    Luczak, Marcin; Dziedziech, Kajetan; Vivolo, Marianna; Desmet, Wim; Peeters, Bart; Van der Auweraer, Herman

    2010-05-01

    The dynamic characterization of lightweight structures is particularly complex as the impact of the weight of sensors and instrumentation (cables, mounting of exciters…) can distort the results. Varying mass loading or constraint effects between partial measurements may determine several errors on the final conclusions. Frequency shifts can lead to erroneous interpretations of the dynamics parameters. Typically these errors remain limited to a few percent. Inconsistent data sets however can result in major processing errors, with all related consequences towards applications based on the consistency assumption, such as global modal parameter identification, model-based damage detection and FRF-based matrix inversion in substructuring, load identification and transfer path analysis [1]. This paper addresses the subject of accuracy in the context of the measurement of the dynamic properties of a particular lightweight structure. It presents a comprehensive comparative study between the use of accelerometer, laser vibrometer (scanning LDV) and PU-probe (acoustic particle velocity and pressure) measurements to measure the structural responses, with as final aim the comparison of modal model quality assessment. The object of the investigation is a composite material blade from the main rotor of a helicopter. The presented results are part of an extensive test campaign performed with application of SIMO, MIMO, random and harmonic excitation, and the use of the mentioned contact and non-contact measurement techniques. The advantages and disadvantages of the applied instrumentation are discussed. Presented are real-life measurement problems related to the different set up conditions. Finally an analysis of estimated models is made in view of assessing the applicability of the various measurement approaches for successful fault detection based on modal parameters observation as well as in uncertain non-deterministic numerical model updating.

  18. Contact Versus Non-Contact Measurement of a Helicopter Main Rotor Composite Blade

    International Nuclear Information System (INIS)

    Luczak, Marcin; Dziedziech, Kajetan; Peeters, Bart; Van der Auweraer, Herman; Vivolo, Marianna; Desmet, Wim

    2010-01-01

    The dynamic characterization of lightweight structures is particularly complex as the impact of the weight of sensors and instrumentation (cables, mounting of exciters...) can distort the results. Varying mass loading or constraint effects between partial measurements may determine several errors on the final conclusions. Frequency shifts can lead to erroneous interpretations of the dynamics parameters. Typically these errors remain limited to a few percent. Inconsistent data sets however can result in major processing errors, with all related consequences towards applications based on the consistency assumption, such as global modal parameter identification, model-based damage detection and FRF-based matrix inversion in substructuring, load identification and transfer path analysis [1]. This paper addresses the subject of accuracy in the context of the measurement of the dynamic properties of a particular lightweight structure. It presents a comprehensive comparative study between the use of accelerometer, laser vibrometer (scanning LDV) and PU-probe (acoustic particle velocity and pressure) measurements to measure the structural responses, with as final aim the comparison of modal model quality assessment. The object of the investigation is a composite material blade from the main rotor of a helicopter. The presented results are part of an extensive test campaign performed with application of SIMO, MIMO, random and harmonic excitation, and the use of the mentioned contact and non-contact measurement techniques. The advantages and disadvantages of the applied instrumentation are discussed. Presented are real-life measurement problems related to the different set up conditions. Finally an analysis of estimated models is made in view of assessing the applicability of the various measurement approaches for successful fault detection based on modal parameters observation as well as in uncertain non-deterministic numerical model updating.

  19. Design optimization and uncertainty quantification for aeromechanics forced response of a turbomachinery blade

    Science.gov (United States)

    Modgil, Girish A.

    Gas turbine engines for aerospace applications have evolved dramatically over the last 50 years through the constant pursuit for better specific fuel consumption, higher thrust-to-weight ratio, lower noise and emissions all while maintaining reliability and affordability. An important step in enabling these improvements is a forced response aeromechanics analysis involving structural dynamics and aerodynamics of the turbine. It is well documented that forced response vibration is a very critical problem in aircraft engine design, causing High Cycle Fatigue (HCF). Pushing the envelope on engine design has led to increased forced response problems and subsequently an increased risk of HCF failure. Forced response analysis is used to assess design feasibility of turbine blades for HCF using a material limit boundary set by the Goodman Diagram envelope that combines the effects of steady and vibratory stresses. Forced response analysis is computationally expensive, time consuming and requires multi-domain experts to finalize a result. As a consequence, high-fidelity aeromechanics analysis is performed deterministically and is usually done at the end of the blade design process when it is very costly to make significant changes to geometry or aerodynamic design. To address uncertainties in the system (engine operating point, temperature distribution, mistuning, etc.) and variability in material properties, designers apply conservative safety factors in the traditional deterministic approach, which leads to bulky designs. Moreover, using a deterministic approach does not provide a calculated risk of HCF failure. This thesis describes a process that begins with the optimal aerodynamic design of a turbomachinery blade developed using surrogate models of high-fidelity analyses. The resulting optimal blade undergoes probabilistic evaluation to generate aeromechanics results that provide a calculated likelihood of failure from HCF. An existing Rolls-Royce High Work Single

  20. Structural damage detection in wind turbine blades based on time series representations of dynamic responses

    Science.gov (United States)

    Hoell, Simon; Omenzetter, Piotr

    2015-03-01

    The development of large wind turbines that enable to harvest energy more efficiently is a consequence of the increasing demand for renewables in the world. To optimize the potential energy output, light and flexible wind turbine blades (WTBs) are designed. However, the higher flexibilities and lower buckling capacities adversely affect the long-term safety and reliability of WTBs, and thus the increased operation and maintenance costs reduce the expected revenue. Effective structural health monitoring techniques can help to counteract this by limiting inspection efforts and avoiding unplanned maintenance actions. Vibration-based methods deserve high attention due to the moderate instrumentation efforts and the applicability for in-service measurements. The present paper proposes the use of cross-correlations (CCs) of acceleration responses between sensors at different locations for structural damage detection in WTBs. CCs were in the past successfully applied for damage detection in numerical and experimental beam structures while utilizing only single lags between the signals. The present approach uses vectors of CC coefficients for multiple lags between measurements of two selected sensors taken from multiple possible combinations of sensors. To reduce the dimensionality of the damage sensitive feature (DSF) vectors, principal component analysis is performed. The optimal number of principal components (PCs) is chosen with respect to a statistical threshold. Finally, the detection phase uses the selected PCs of the healthy structure to calculate scores from a current DSF vector, where statistical hypothesis testing is performed for making a decision about the current structural state. The method is applied to laboratory experiments conducted on a small WTB with non-destructive damage scenarios.

  1. Instrumented figure skating blade for measuring on-ice skating forces

    Science.gov (United States)

    Acuña, S. A.; Smith, D. M.; Robinson, J. M.; Hawks, J. C.; Starbuck, P.; King, D. L.; Ridge, S. T.; Charles, S. K.

    2014-12-01

    Competitive figure skaters experience substantial, repeated impact loading during jumps and landings. Although these loads, which are thought to be as high as six times body weight, can lead to overuse injuries, it is not currently possible to measure these forces on-ice. Consequently, efforts to improve safety for skaters are significantly limited. Here we present the development of an instrumented figure skating blade for measuring forces on-ice. The measurement system consists of strain gauges attached to the blade, Wheatstone bridge circuit boards, and a data acquisition device. The system is capable of measuring forces in the vertical and horizontal directions (inferior-superior and anterior-posterior directions, respectively) in each stanchion with a sampling rate of at least 1000 Hz and a resolution of approximately one-tenth of body weight. The entire system weighs 142 g and fits in the space under the boot. Calibration between applied and measured force showed excellent agreement (R > 0.99), and a preliminary validation against a force plate showed good predictive ability overall (R ≥ 0.81 in vertical direction). The system overestimated the magnitude of the first and second impact peaks but detected their timing with high accuracy compared to the force plate.

  2. Reactivity worth measurement of the control blades of the University of Florida training reactor

    International Nuclear Information System (INIS)

    Quintero-Leyva, Barbaro

    1997-01-01

    A series of experiments were carried out in order to measure the reactivity worth of the safety and regulating blades of the University of Florida Training Reactor (UFTR) using the Inverse Kinetics, the Inverse Kinetics-Rod Drop method and the Power Ratio. The reactor's own instrumentation (compensated ion chamber) and an independent counting system (fission chamber) were used. A very smooth exponential decay of the flux was observed after 6s of the beginning of the transients using the reading of the reactor detector. The results of the measurements of the reactivity using both detectors were consistent and in good agreement. The compensated ion chamber showed a very smooth exponential behavior; this suggests that if we could record the power for a small sample time, say 0.1 s from the beginning of the transient, several additional research projects could be accomplished. First, precise intercomparison of the methods could be achieved if the statistics level is acceptable. Second, a precise description of the bouncing of the blades and its effects on the reactivity could be achieved. Finally, the design of a reactivity-meter could be based on such study. (author)

  3. Experimental investigation on ultimate strength and failure response of composite box beams used in wind turbine blades

    DEFF Research Database (Denmark)

    Tang, Jing; Chen, Xiao

    2018-01-01

    This study focuses on the ultimate strength and failure response of composite box beams under three-point bending. The box beams consist of spar caps and shear webs and they are typically used in wind turbine blades as load-carrying members. Different spar cap configurations and loading directions...

  4. Turbulent kinetic energy balance measurements in the wake of a low-pressure turbine blade

    International Nuclear Information System (INIS)

    Sideridis, A.; Yakinthos, K.; Goulas, A.

    2011-01-01

    The turbulent kinetic energy budget in the wake generated by a high lift, low-pressure two-dimensional blade cascade of the T106 profile was investigated experimentally using hot-wire anemometry. The purpose of this study is to examine the transport mechanism of the turbulent kinetic energy and provide validation data for turbulence modeling. Point measurements were conducted on a high spatial resolution, two-dimensional grid that allowed precise derivative calculations. Positioning of the probe was achieved using a high accuracy traversing mechanism. The turbulent kinetic energy (TKE) convection, production, viscous diffusion and turbulent diffusion were all obtained directly from experimental measurements. Dissipation and pressure diffusion were calculated indirectly using techniques presented and validated by previous investigators. Results for all terms of the turbulent kinetic energy budget are presented and discussed in detail in the present work.

  5. Comprehensive Forced Response Analysis of J2X Turbine Bladed-Discs with 360 Degree Variation in CFD Loading

    Science.gov (United States)

    Elrod, David; Christensen, Eric; Brown, Andrew

    2011-01-01

    The temporal frequency content of the dynamic pressure predicted by a 360 degree computational fluid dynamics (CFD) analysis of a turbine flow field provides indicators of forcing function excitation frequencies (e.g., multiples of blade pass frequency) for turbine components. For the Pratt and Whitney Rocketdyne J-2X engine turbopumps, Campbell diagrams generated using these forcing function frequencies and the results of NASTRAN modal analyses show a number of components with modes in the engine operating range. As a consequence, forced response and static analyses are required for the prediction of combined stress, high cycle fatigue safety factors (HCFSF). Cyclically symmetric structural models have been used to analyze turbine vane and blade rows, not only in modal analyses, but also in forced response and static analyses. Due to the tortuous flow pattern in the turbine, dynamic pressure loading is not cyclically symmetric. Furthermore, CFD analyses predict dynamic pressure waves caused by adjacent and non-adjacent blade/vane rows upstream and downstream of the row analyzed. A MATLAB script has been written to calculate displacements due to the complex cyclically asymmetric dynamic pressure components predicted by CFD analysis, for all grids in a blade/vane row, at a chosen turbopump running speed. The MATLAB displacements are then read into NASTRAN, and dynamic stresses are calculated, including an adjustment for possible mistuning. In a cyclically symmetric NASTRAN static analysis, static stresses due to centrifugal, thermal, and pressure loading at the mode running speed are calculated. MATLAB is used to generate the HCFSF at each grid in the blade/vane row. When compared to an approach assuming cyclic symmetry in the dynamic flow field, the current approach provides better assurance that the worst case safety factor has been identified. An extended example for a J-2X turbopump component is provided.

  6. Comprehensive Forced Response Analysis of J2X Turbine Bladed-Discs with 36- Degree Variation in CFD Loading

    Science.gov (United States)

    Elrod, David; Christensen, Eric; Brown, Andrew

    2011-01-01

    At NASA/MSFC, Structural Dynamics personnel continue to perform advanced analysis for the turbomachinery in the J2X Rocket Engine, which is under consideration for the new Space Launch System. One of the most challenging analyses in the program is predicting turbine blade structural capability. Resonance was predicted by modal analysis, so comprehensive forced response analyses using high fidelity cyclic symmetric finite element models were initiated as required. Analysis methodologies up to this point have assumed the flow field could be fully described by a sector, so the loading on every blade would be identical as it travelled through it. However, in the J2X the CFD flow field varied over the 360 deg of a revolution because of the flow speeds and tortuous axial path. MSFC therefore developed a complex procedure using Nastran Dmap's and Matlab scripts to apply this circumferentially varying loading onto the cyclically symmetric structural models to produce accurate dynamic stresses for every blade on the disk. This procedure is coupled with static, spin, and thermal loading to produce high cycle fatigue safety factors resulting in much more accurate analytical assessments of the blades.

  7. Unobstructed particle image velocimetry measurements within an axial turbo-pump using liquid and blades with matched refractive indices

    Science.gov (United States)

    Uzol, O.; Chow, Y.-C.; Katz, J.; Meneveau, C.

    2002-08-01

    Performing PIV measurements within complex turbomachinery with multiple blade rows is difficult due to the optical obstruction to the illuminating sheet and to the camera caused by the blades. This paper introduces a refractive index matched facility that overcomes this problem. The rotor and stator blades are made of transparent acrylic, and the working fluid has the same optical refractive index as the blades. A 64% by weight solution of sodium iodide in water is used for this purpose. This liquid has a kinematic viscosity of about 1.1×10-6 m2/s, which is almost the same as that of water enabling operation at high Reynolds numbers. Issues related to operating with this fluid such as chemical stability, variations in transmittance and solutions to these problems are discussed. This setup allows full optical access to the entire rotor and stator passages both to the laser sheet and the camera. The experiments are conducted at different streamwise locations covering the entire flow fields around the rotor, the stator, the gap between them, and the wakes behind. Vector maps of the instantaneous and phase-averaged flow fields as well as the distribution of turbulent kinetic energy are obtained. Measurements at different magnifications enable us to obtain an overview of the flow structure, as well as detailed velocity distributions in the boundary layers and in the wakes.

  8. Wind turbine blades condition assessment based on vibration measurements and the level of an empirically decomposed feature

    International Nuclear Information System (INIS)

    Abouhnik, Abdelnasser; Albarbar, Alhussein

    2012-01-01

    Highlights: ► We used finite element method to model wind turbine induced vibration characteristics. ► We developed a technique for eliminating wind turbine’s vibration modulation problems. ► We use empirical mode decomposition to decompose the vibration into its fundamental elements. ► We show the area under shaft speed is a good indicator for assessing wind blades condition. ► We validate the technique under different wind turbine speeds and blade (cracks) conditions. - Abstract: Vibration based monitoring techniques are well understood and widely adopted for monitoring the condition of rotating machinery. However, in the case of wind turbines the measured vibration is complex due to the high number of vibration sources and modulation phenomenon. Therefore, extracting condition related information of a specific element e.g. blade condition is very difficult. In the work presented in this paper wind turbine vibration sources are outlined and then a three bladed wind turbine vibration was simulated by building its model in the ANSYS finite element program. Dynamic analysis was performed and the fundamental vibration characteristics were extracted under two healthy blades and one blade with one of four cracks introduced. The cracks were of length (10 mm, 20 mm, 30 mm and 40 mm), all had a consistent 3 mm width and 2 mm depth. The tests were carried out for three rotation speeds; 150, 250 and 360 r/min. The effects of the seeded faults were revealed by using a novel approach called empirically decomposed feature intensity level (EDFIL). The developed EDFIL algorithm is based on decomposing the measured vibration into its fundamental components and then determines the shaft rotational speed amplitude. A real model of the simulated wind turbine was constructed and the simulation outcomes were compared with real-time vibration measurements. The cracks were seeded sequentially in one of the blades and their presence and severity were determined by decomposing

  9. Damage Detection Based on Static Strain Responses Using FBG in a Wind Turbine Blade.

    Science.gov (United States)

    Tian, Shaohua; Yang, Zhibo; Chen, Xuefeng; Xie, Yong

    2015-08-14

    The damage detection of a wind turbine blade enables better operation of the turbines, and provides an early alert to the destroyed events of the blade in order to avoid catastrophic losses. A new non-baseline damage detection method based on the Fiber Bragg grating (FBG) in a wind turbine blade is developed in this paper. Firstly, the Chi-square distribution is proven to be an effective damage-sensitive feature which is adopted as the individual information source for the local decision. In order to obtain the global and optimal decision for the damage detection, the feature information fusion (FIF) method is proposed to fuse and optimize information in above individual information sources, and the damage is detected accurately through of the global decision. Then a 13.2 m wind turbine blade with the distributed strain sensor system is adopted to describe the feasibility of the proposed method, and the strain energy method (SEM) is used to describe the advantage of the proposed method. Finally results show that the proposed method can deliver encouraging results of the damage detection in the wind turbine blade.

  10. A blade deflection monitoring system

    DEFF Research Database (Denmark)

    2017-01-01

    A wind turbine blade comprising a system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication...

  11. Detection of Delamination in Laminate Wind Turbine Blades Using One-Dimensional Wavelet Analysis of Modal Responses

    Directory of Open Access Journals (Sweden)

    Łukasz Doliński

    2018-01-01

    Full Text Available This paper demonstrates the effectiveness of a nondestructive diagnostic technique used to determine the location and size of delamination in laminated coatings of wind turbine blades. This is realized based on results of numerical and experimental investigations obtained by the use of the finite element method (FEM and laser scanning vibrometry (LSV. The proposed method is based on the one-dimensional continuous wavelet transform of vibration parameters of a wind turbine blade. The investigations were conducted for a 1 : 10 scaled-down blade of a 36 m rotor wind turbine. Glass fibres and epoxy resin were used as laminate components. For numerical studies, a simple delamination model was proposed. The results obtained by the authors were used to determine the optimal set of parameters of the continuous wavelet transform. The application of high-quality LSV for experimental measurements allowed determining the optimal conditions of measuring procedures. At the same time the capabilities and limitations, resulting from the nature of the measurement method, were identified. In order to maximize the effectiveness of the detection method, preliminary signal processing was performed. Beside base wavelets also different waveform families were tested. The results obtained by the authors showed that it is possible to identify and localize even relatively small damage.

  12. Photovoltaic spectral responsivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Dunlavy, D.; Field, H.; Moriarty, T. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    This paper discusses the various elemental random and nonrandom error sources in typical spectral responsivity measurement systems. The authors focus specifically on the filter and grating monochrometer-based spectral responsivity measurement systems used by the Photovoltaic (PV) performance characterization team at NREL. A variety of subtle measurement errors can occur that arise from a finite photo-current response time, bandwidth of the monochromatic light, waveform of the monochromatic light, and spatial uniformity of the monochromatic and bias lights; the errors depend on the light source, PV technology, and measurement system. The quantum efficiency can be a function of he voltage bias, light bias level, and, for some structures, the spectral content of the bias light or location on the PV device. This paper compares the advantages and problems associated with semiconductor-detector-based calibrations and pyroelectric-detector-based calibrations. Different current-to-voltage conversion and ac photo-current detection strategies employed at NREL are compared and contrasted.

  13. Estimation of internal heat transfer coefficients and detection of rib positions in gas turbine blades from transient surface temperature measurements

    International Nuclear Information System (INIS)

    Heidrich, P; Wolfersdorf, J v; Schmidt, S; Schnieder, M

    2008-01-01

    This paper describes a non-invasive, non-destructive, transient inverse measurement technique that allows one to determine internal heat transfer coefficients and rib positions of real gas turbine blades from outer surface temperature measurements after a sudden flow heating. The determination of internal heat transfer coefficients is important during the design process to adjust local heat transfer to spatial thermal load. The detection of rib positions is important during production to fulfill design and quality requirements. For the analysis the one-dimensional transient heat transfer problem inside of the turbine blade's wall was solved. This solution was combined with the Levenberg-Marquardt method to estimate the unknown boundary condition by an inverse technique. The method was tested with artificial data to determine uncertainties with positive results. Then experimental testing with a reference model was carried out. Based on the results, it is concluded that the presented inverse technique could be used to determine internal heat transfer coefficients and to detect rib positions of real turbine blades.

  14. Development of a Wave Energy -Responsive Self-Actuated Blade Articulation Mechanism for an OWC Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Francis A. Di Bella

    2010-06-01

    The Phase I SBIR effort completed the feasibility design, fabrication, and wind tunnel testing of a self-actuated blade articulation mechanism that uses a torsion bar and a lightweight airfoil to affect the articulation of the Wells airfoil. The articulation is affected only by the air stream incident on the airfoil. The self-actuating blade eliminates the complex and costly linkage mechanism that is now needed to perform this function on either a variable pitch Wells-type or Dennis-Auld air turbine. Using the results reported by independent researchers, the projected improvement in the Wells-type turbine efficiency is 20-40%, in addition to an increase in the operating air flow range by 50-100%, therefore enabling a smaller or slower single turbine to be used.

  15. Large eddy simulation of a pitched blade impeller mixed vessel - Comparison with LDA measurements

    Czech Academy of Sciences Publication Activity Database

    Vlček, P.; Kysela, Bohuš; Jirout, T.; Fořt, I.

    2016-01-01

    Roč. 108, April (2016), s. 42-48 ISSN 0263-8762. [15th European Conference on Mixing. St. Petersburg, 28.06.2016-03.07.2016] Institutional support: RVO:67985874 Keywords : CFD * LES * mixed vessel * pitched six-blade impeller * ensemble averaged mean velocity * flow rate Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.538, year: 2016 http://www.sciencedirect.com/science/article/pii/S0263876216000836

  16. Local measurement and numerical modeling of mass/heat transfer from a turbine blade in a linear cascade with tip clearance

    Science.gov (United States)

    Jin, Peitong

    2000-11-01

    Local mass/heat transfer measurements from the turbine blade near-tip and the tip surfaces are performed using the naphthalene sublimation technique. The experiments are conducted in a linear cascade consisting of five high-pressure blades with a central test-blade configuration. The incoming flow conditions are close to those of the gas turbine engine environment (boundary layer displacement thickness is about 0.01 of chord) with an exit Reynolds number of 6.2 x 105. The effects of tip clearance level (0.86%--6.90% of chord), mainstream Reynolds number and turbulence intensity (0.2 and 12.0%) are investigated. Two methods of flow visualization---oil and lampblack, laser light sheet smoke wire---as well as static pressure measurement on the blade surface are used to study the tip leakage flow and vortex in the cascade. In addition, numerical modeling of the flow and heat transfer processes in the linear cascade with different tip clearances is conducted using commercial software incorporating advanced turbulence models. The present study confirms many important results on the tip leakage flow and vortex from the literature, contributes to the current understanding in the effects of tip leakage flow and vortex on local heat transfer from the blade near-tip and the tip surfaces, and provides detailed local and average heat/mass transfer data applicable to turbine blade tip cooling design.

  17. Piezoelectric actuation of helicopter rotor blades

    Science.gov (United States)

    Lieven, Nicholas A. J.

    2001-07-01

    The work presented in this paper is concerned with the application of embedded piezo-electric actuators in model helicopter rotor blades. The paper outlines techniques to define the optimal location of actuators to excite particular modes of vibration whilst the blade is rotating. Using composite blades the distribution of strain energy is defined using a Finite Element model with imposed rotor-dynamic and aerodynamics loads. The loads are specified through strip theory to determine the position of maximum bending moment and thus the optimal location of the embedded actuators. The effectiveness of the technique is demonstrated on a 1/4 scale fixed cyclic pitch rotor head. Measurement of the blade displacement is achieved by using strain gauges. In addition a redundant piezo-electric actuator is used to measure the blades' response characteristics. The addition of piezo-electric devices in this application has been shown to exhibit adverse aeroelastic effects, such as counter mass balancing and increased drag. Methods to minimise these effects are suggested. The outcome of the paper is a method for defining the location and orientation of piezo-electric devices in rotor-dynamic applications.

  18. Experimental measurements and analytical analysis related to gas turbine heat transfer. Part 1: Time-averaged heat-flux and surface-pressure measurements on the vanes and blades of the SSME fuel-side turbine and comparison with prediction. Part 2: Phase-resolved surface-pressure and heat-flux measurements on the first blade of the SSME fuel-side turbine

    Science.gov (United States)

    1994-01-01

    Time averaged Stanton number and surface-pressure distributions are reported for the first-stage vane row, the first stage blade row, and the second stage vane row of the Rocketdyne Space Shuttle Main Engine two-stage fuel-side turbine. Unsteady pressure envelope measurements for the first blade are also reported. These measurements were made at 10 percent, 50 percent, and 90 percent span on both the pressure and suction surfaces of the first stage components. Additional Stanton number measurements were made on the first stage blade platform blade tip, and shroud, and at 50 percent span on the second vane. A shock tube was used as a short duration source of heated and pressurized air to which the turbine was subjected. Platinum thin-film heat flux gages were used to obtain the heat flux measurements, while miniature silicon-diaphragm flush-mounted pressure transducers were used to obtain the pressure measurements. The first stage vane Stanton number distributions are compared with predictions obtained using a version of STAN5 and a quasi-3D Navier-Stokes solution. This same quasi-3D N-S code was also used to obtain predictions for the first blade and the second vane.

  19. Impact force identification for composite helicopter blades using minimal sensing

    Science.gov (United States)

    Budde, Carson N.

    In this research a method for online impact identification using minimal sensors is developed for rotor hubs with composite blades. Modal impact data and the corresponding responses are recorded at several locations to develop a frequency response function model for each composite blade on the rotor hub. The frequency response model for each blade is used to develop an impact identification algorithm which can be used to identify the location and magnitude of impacts. Impacts are applied in two experimental setups, including a four-blade spin test rig and a cantilevered full-sized composite blade. The impacts are estimated to have been applied at the correct location 92.3% of the time for static fiberglass blades, 97.4% of the time for static carbon fiber blades and 99.2% of the time for a full sized-static blade. The estimated location is assessed further and determined to have been estimated in the correct chord position 96.1% of the time for static fiberglass, 100% of the time for carbon fiber blades and 99.2% of the time for the full-sized blades. Projectile impacts are also applied statically and during rotation to the carbon fiber blades on the spin test rig at 57 and 83 RPM. The applied impacts can be located to the correct position 63.9%, 41.7% and 33.3% for the 0, 57 and 83 RPM speeds, respectively, while the correct chord location is estimated 100% of the time. The impact identification algorithm also estimates the force of an impact with an average percent difference of 4.64, 2.61 and 1.00 for static fiberglass, full sized, and carbon fiber blades, respectively. Using a load cell and work equations, the force of impact for a projectile fired from a dynamic firing setup is estimated at about 400 N. The average force measured for applied projectile impacts to the carbon fiber blades, rotating at 0, 57 and 83 RPM, is 368.8, 373.7 and 432.4 N, respectively.

  20. Effect of control activity on blade fatigue damage rate for a small horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, A F; Freris, L L; Graham, J M.R. [Imperial College, London (United Kingdom)

    1996-09-01

    An experiment into the effect of control activity on blade fatigue damage rate for a 5 kW, two bladed, teetered HAWT has been performed. It has been shown that control activity influences the distribution of strain in the blade but that in a high rotor speed, high cycle fatigue regime this has little influence on damage rate. The experiment was conducted on a small test turbine by implementing variable speed stall, pitch and yaw control strategies and measuring blade flapwise strain response at root and midspan locations. A full description of the investigation is provided. (au)

  1. Measurements of the Aerodynamic Normal Forces on a 12-kW Straight-Bladed Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Eduard Dyachuk

    2015-08-01

    Full Text Available The knowledge of unsteady forces is necessary when designing vertical axis wind turbines (VAWTs. Measurement data for turbines operating at an open site are still very limited. The data obtained from wind tunnels or towing tanks can be used, but have limited applicability when designing large-scale VAWTs. This study presents experimental data on the normal forces of a 12-kW straight-bladed VAWT operated at an open site north of Uppsala, Sweden. The normal forces are measured with four single-axis load cells. The data are obtained for a wide range of tip speed ratios: from 1.7 to 4.6. The behavior of the normal forces is analyzed. The presented data can be used in validations of aerodynamic models and the mechanical design for VAWTs.

  2. An Architecture for On-Line Measurement of the Tip Clearance and Time of Arrival of a Bladed Disk of an Aircraft Engine

    Directory of Open Access Journals (Sweden)

    José Miguel Gil-García

    2017-09-01

    Full Text Available Safety and performance of the turbo-engine in an aircraft is directly affected by the health of its blades. In recent years, several improvements to the sensors have taken place to monitor the blades in a non-intrusive way. The parameters that are usually measured are the distance between the blade tip and the casing, and the passing time at a given point. Simultaneously, several techniques have been developed that allow for the inference—from those parameters and under certain conditions—of the amplitude and frequency of the blade vibration. These measurements are carried out on engines set on a rig, before being installed in an airplane. In order to incorporate these methods during the regular operation of the engine, signal processing that allows for the monitoring of those parameters at all times should be developed. This article introduces an architecture, based on a trifurcated optic sensor and a hardware processor, that fulfills this need. The proposed architecture is scalable and allows several sensors to be simultaneously monitored at different points around a bladed disk. Furthermore, the results obtained by the electronic system will be compared with the results obtained by the validation of the optic sensor.

  3. Study on temperature measurement of gas turbine blade based on analysis of error caused by the reflected radiation and emission angle

    Science.gov (United States)

    Li, Dong; Feng, Chi; Gao, Shan; Chen, Liwei; Daniel, Ketui

    2018-06-01

    Accurate measurement of gas turbine blade temperature is of great significance as far as blade health monitoring is concerned. An important method for measuring this temperature is the use of a radiation pyrometer. In this research, error of the pyrometer caused by reflected radiation from the surfaces surrounding the target and the emission angle of the target was analyzed. Important parameters for this analysis were the view factor between interacting surfaces, spectral directional emissivity, pyrometer operating wavelength and the surface temperature distribution on the blades and the vanes. The interacting surface of the rotor blade and the vane models used were discretized using triangular surface elements from which contour integral was used to calculate the view factor between the surface elements. Spectral directional emissivities were obtained from an experimental setup of Ni based alloy samples. A pyrometer operating wavelength of 1.6 μm was chosen. Computational fluid dynamics software was used to simulate the temperature distribution of the rotor blade and the guide vane based on the actual gas turbine input parameters. Results obtained in this analysis show that temperature error introduced by reflected radiation and emission angle ranges from  ‑23 K to 49 K.

  4. A comparative study of finite element methodologies for the prediction of torsional response of bladed rotors

    International Nuclear Information System (INIS)

    Scheepers, R.; Heyns, P. S.

    2016-01-01

    The prevention of torsional vibration-induced fatigue damage to turbo-generators requires determining natural frequencies by either field testing or mathematical modelling. Torsional excitation methods, measurement techniques and mathematical modelling are active fields of research. However, these aspects are mostly considered in isolation and often without experimental verification. The objective of this work is to compare one dimensional (1D), full three dimensional (3D) and 3D cyclic symmetric (3DCS) Finite element (FE) methodologies for torsional vibration response. Results are compared to experimental results for a small-scale test rotor. It is concluded that 3D approaches are feasible given the current computing technology and require less simplification with potentially increased accuracy. Accuracy of 1D models may be reduced due to simplifications but faster solution times are obtained. For high levels of accuracy model updating using field test results is recommended

  5. Wind turbine blade shear web disbond detection using rotor blade operational sensing and data analysis.

    Science.gov (United States)

    Myrent, Noah; Adams, Douglas E; Griffith, D Todd

    2015-02-28

    A wind turbine blade's structural dynamic response is simulated and analysed with the goal of characterizing the presence and severity of a shear web disbond. Computer models of a 5 MW offshore utility-scale wind turbine were created to develop effective algorithms for detecting such damage. Through data analysis and with the use of blade measurements, a shear web disbond was quantified according to its length. An aerodynamic sensitivity study was conducted to ensure robustness of the detection algorithms. In all analyses, the blade's flap-wise acceleration and root-pitching moment were the clearest indicators of the presence and severity of a shear web disbond. A combination of blade and non-blade measurements was formulated into a final algorithm for the detection and quantification of the disbond. The probability of detection was 100% for the optimized wind speed ranges in laminar, 30% horizontal shear and 60% horizontal shear conditions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Database about blade faults

    DEFF Research Database (Denmark)

    Branner, Kim; Ghadirian, Amin

    This report deals with the importance of measuring the reliability of the rotor blades and describing how they can fail. The Challenge is that very little non-confidential data is available and that the quality and detail in the data is limited....

  7. 3D Blade Vibration Measurements on an 80 m Diameter Wind Turbine by Using Non-contact Remote Measurement Systems

    Science.gov (United States)

    Ozbek, Muammer; Rixen, Daniel J.

    Non-contact optical measurement systems photogrammetry and laser interferometry are introduced as cost efficient alternatives to the conventional wind turbine/farm monitoring systems that are currently in use. The proposed techniques are proven to provide an accurate measurement of the dynamic behavior of a 2.5 MW—80 m diameter—wind turbine. Several measurements are taken on the test turbine by using 4 CCD cameras and 1 laser vibrometer and the response of the turbine is monitored from a distance of 220 m. The results of the infield tests and the corresponding analyses show that photogrammetry (also can be called as videogrammetry or computer vision technique) enable the 3D deformations of the rotor to be measured at 33 different points simultaneously with an average accuracy of ±25 mm, while the turbine is rotating. Several important turbine modes can also be extracted from the recorded data. Similarly, laser interferometry (used for the parked turbine only) provides very valuable information on the dynamic properties of the turbine structure. Twelve different turbine modes can be identified from the obtained response data.

  8. Aeroelastic response and stability of tiltrotors with elastically-coupled composite rotor blades. Ph.D. Thesis

    Science.gov (United States)

    Nixon, Mark W.

    1993-01-01

    There is a potential for improving the performance and aeroelastic stability of tiltrotors through the use of elastically-coupled composite rotor blades. To study the characteristics of tiltrotors with these types of rotor blades it is necessary to formulate a new analysis which has the capabilities of modeling both a tiltrotor configuration and an anisotropic rotor blade. Background for these formulations is established in two preliminary investigations. In the first, the influence of several system design parameters on tiltrotor aeroelastic stability is examined for the high-speed axial flight mode using a newly-developed rigid-blade analysis with an elastic wing finite element model. The second preliminary investigation addresses the accuracy of using a one-dimensional beam analysis to predict frequencies of elastically-coupled highly-twisted rotor blades. Important aspects of the new aeroelastic formulations are the inclusion of a large steady pylon angle which controls tilt of the rotor system with respect to the airflow, the inclusion of elastic pitch-lag coupling terms related to rotor precone, the inclusion of hub-related degrees of freedom which enable modeling of a gimballed rotor system and engine drive-train dynamics, and additional elastic coupling terms which enable modeling of the anisotropic features for both the rotor blades and the tiltrotor wing. Accuracy of the new tiltrotor analysis is demonstrated by a comparison of the results produced for a baseline case with analytical and experimental results reported in the open literature. Two investigations of elastically tailored blades on a baseline tiltrotor are then conducted. One investigation shows that elastic bending-twist coupling of the rotor blade is a very effective means for increasing the flutter velocity of a tiltrotor, and the magnitude of coupling required does not have an adverse effect on performance or blade loads. The second investigation shows that passive blade twist control via

  9. Crack of a first stage blade in a steam turbine

    Directory of Open Access Journals (Sweden)

    M. Nurbanasari

    2014-10-01

    Full Text Available The failure of the first stage blade in a steam turbine of 55 MW was investigated. The blade was made of 17-4 PH stainless steel and has been used for 12 years before failure. The current work aims to find out the main cause of the first stage blade failure. The methods for investigation were metallurgical analysis, chemical composition test, and hardness measurement. The result showed that there was no evidence the blade failure was due to material. The damage found on the blade namely crack on the blade root. Two locations of the crack observed at the blade root, which was at the tang and the fillet, with different failure modes. In general, the damage of the blade was started by the corrosion occurred on the blade root. The crack at the blade root tang was due to corrosion fatigue and the crack occurred at the blade root fillet owing to stress corrosion cracking.

  10. In-flight measurements of propeller blade deformation on a VUT100 cobra aeroplane using a co-rotating camera system

    Science.gov (United States)

    Boden, F.; Stasicki, B.; Szypuła, M.; Ružička, P.; Tvrdik, Z.; Ludwikowski, K.

    2016-07-01

    Knowledge of propeller or rotor blade behaviour under real operating conditions is crucial for optimizing the performance of a propeller or rotor system. A team of researchers, technicians and engineers from Avia Propeller, DLR, EVEKTOR and HARDsoft developed a rotating stereo camera system dedicated to in-flight blade deformation measurements. The whole system, co-rotating with the propeller at its full speed and hence exposed to high centrifugal forces and strong vibration, had been successfully tested on an EVEKTOR VUT 100 COBRA aeroplane in Kunovice (CZ) within the project AIM2—advanced in-flight measurement techniques funded by the European Commission (contract no. 266107). This paper will describe the work, starting from drawing the first sketch of the system up to performing the successful flight test. Apart from a description of the measurement hardware and the applied IPCT method, the paper will give some impressions of the flight test activities and discuss the results obtained from the measurements.

  11. Validation of a wind tunnel testing facility for blade surface pressure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fuglsang, P.; Antoniou, I.; Soerensen, N.N.; Madsen, H.A.

    1998-04-01

    This report concerns development and validation of a 2d testing facility for airfoil pressure measurements. The VELUX open jet wind tunnel was used with a test stand inserted. Reynolds numbers until 1.3 million were achieved with an airfoil chord of 0.45 m. The aerodynamic load coefficients were found from pressure distribution measurements and the total drag coefficient was calculated from wake rake measurements. Stationary inflow as well as dynamic inflow through pitching motion was possible. Wind tunnel corrections were applied for streamline curvature and down-wash. Even though the wind tunnel is not ideal for 2d testing, the overall quality of the flow was acceptable with a uniform flow field at the test stand position and a turbulence intensity of 1 % at the inlet of the test section. Reference values for free stream static and total pressure were found upstream of the test stand. The NACA 63-215 airfoil was tested and the results were compared with measurements from FFA and NACA. The measurements agreed well except for lift coefficient values at high angles of attack and the drag coefficient values at low angles of attack, that were slightly high. Comparisons of the measured results with numerical predictions from the XFOIL code and the EllipSys2D code showed good agreement. Measurements with the airfoil in pitching motion were carried out to study the dynamic aerodynamic coefficients. Steady inflow measurements at high angles of attack were used to investigate the double stall phenomenon. (au) EFP-94; EFP-95; EFP-97. 8 tabs., 82 ills., 16 refs.

  12. Averaged cov-driven subspace identification for modal analysis of a modified troposkien blade with displacement measurement

    DEFF Research Database (Denmark)

    Najafi, Nadia; Panah, Mohammad Esmail Aryaee; Schmidt Paulsen, Uwe

    2015-01-01

    An operational modal analysis study has been carried out on a 1- kW, vertical-axis wind turbine rotor blade, using a stereo vision technique. Numerical simulation has also been carried out and results were compared to classical modal analysis and OMA results. The displacement time series used...

  13. Effects of Blade Boundary Layer Transition and Daytime Atmospheric Turbulence on Wind Turbine Performance Analyzed with Blade-Resolved Simulation and Field Data

    Science.gov (United States)

    Nandi, Tarak Nath

    Relevant to utility scale wind turbine functioning and reliability, the present work focuses on enhancing our understanding of wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and rotating blades of a GE 1.5 MW wind turbine using a unique data set from a GE field experiment and computer simulations at two levels of fidelity. Previous studies have shown that the stability state of the lower troposphere has a major impact on the coherent structure of the turbulence eddies, with corresponding differences in wind turbine loading response. In this study, time-resolved aerodynamic data measured locally at the leading edge and trailing edge of three outer blade sections on a GE 1.5 MW wind turbine blade and high-frequency SCADA generator power data from a daytime field campaign are combined with computer simulations that mimic the GE wind turbine within a numerically generated atmospheric boundary layer (ABL) flow field which is a close approximation of the atmospheric turbulence experienced by the wind turbine in the field campaign. By combining the experimental and numerical data sets, this study describes the time-response characteristics of the local loadings on the blade sections in response to nonsteady nonuniform energetic atmospheric turbulence eddies within a daytime ABL which have spatial scale commensurate with that of the turbine blade length. This study is the first of its kind where actuator line and blade boundary layer resolved CFD studies of a wind turbine field campaign are performed with the motivation to validate the numerical predictions with the experimental data set, and emphasis is given on understanding the influence of the laminar to turbulent transition process on the blade loadings. The experimental and actuator line method data sets identify three important response time scales quantified at the blade location: advective passage of energy-dominant eddies (≈25 - 50 s), blade rotation (1P

  14. Forced response of turbomachinery part span shrouds-linked blading; Reponse forcee des aubages de turbomachines liaisonnes par nageoires

    Energy Technology Data Exchange (ETDEWEB)

    Ravoux, J.

    2003-06-15

    This work treats of the design of blading systems fitted with part span shrouds (snubber) for turbo-machineries. The first chapter makes a status of the existing calculation techniques for blading systems. The second chapter presents the experimental system developed for the study, the different implementations of its exploitation and its potentialities. The third chapter presents the numerical and experimental results linked with a linear approach: this approach allows the validation of the experimental system and the adjustment of numerical models. The fourth chapter sets up and validates the numerical and experimental tools and techniques linked with the exhaustive exploitation of the system. Finally, a synthesis of the main results is presented with their perspectives for future works. (J.S.)

  15. Flapping inertia for selected rotor blades

    Science.gov (United States)

    Berry, John D.; May, Matthew J.

    1991-01-01

    Aerodynamics of helicopter rotor systems cannot be investigated without consideration for the dynamics of the rotor. One of the principal properties of the rotor which affects the rotor dynamics is the inertia of the rotor blade about its root attachment. Previous aerodynamic investigation have been performed on rotor blades with a variety of planforms to determine the performance differences due to blade planform. The blades tested for this investigation have been tested on the U.S. Army 2 meter rotor test system (2MRTS) in the NASA Langley 14 by 22 foot subsonic tunnel for hover performance. This investigation was intended to provide fundamental information on the flapping inertia of five rotor blades with differing planforms. The inertia of the bare cuff and the cuff with a blade extension were also measured for comparison with the inertia of the blades. Inertia was determined using a swing testing technique, using the period of oscillation to determine the effective flapping inertia. The effect of damping in the swing test was measured and described. A comparison of the flapping inertials for rectangular and tapered planform blades of approximately the same mass showed the tapered blades to have a lower inertia, as expected.

  16. Applied modal analysis of wind turbine blades

    DEFF Research Database (Denmark)

    Pedersen, H.B.; Kristensen, O.J.D.

    2003-01-01

    In this project modal analysis has been used to determine the natural frequencies, damping and the mode shapes for wind turbine blades. Different methods to measure the position and adjust the direction of the measuring points are discussed. Differentequipment for mounting the accelerometers...... is investigated by repeated measurement on the same wind turbine blade. Furthermore the flexibility of the test set-up is investigated, by use ofaccelerometers mounted on the flexible adapter plate during the measurement campaign. One experimental campaign investigated the results obtained from a loaded...... and unloaded wind turbine blade. During this campaign the modal analysis are performed on ablade mounted in a horizontal and a vertical position respectively. Finally the results obtained from modal analysis carried out on a wind turbine blade are compared with results obtained from the Stig Øyes blade_EV1...

  17. Turbomachine blade reinforcement

    Science.gov (United States)

    Garcia Crespo, Andres Jose

    2016-09-06

    Embodiments of the present disclosure include a system having a turbomachine blade segment including a blade and a mounting segment coupled to the blade, wherein the mounting segment has a plurality of reinforcement pins laterally extending at least partially through a neck of the mounting segment.

  18. Turbomachine blade assembly

    Science.gov (United States)

    Garcia Crespo, Andres Jose

    2016-11-01

    Embodiments of the present disclosure include a system comprising a turbomachine blade assembly having a blade portion, a shank portion, and a mounting portion, wherein the blade portion, the shank portion, and the mounting portion comprise a first plurality of plies extending from a tip of the airfoil to a base of the dovetail.

  19. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  20. Wind turbine blade vibration at standstill conditions — the effect of imposing lag on the aerodynamic response of an elastically mounted airfoil

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert; Gaunaa, Mac

    2015-01-01

    The present study investigated physical phenomena related to stall-induced vibrations potentially existing on wind turbine blades at standstill conditions. The study considered two-dimensional airfoil sections while it omitted three-dimensional effects. In the study, a new engineering-type...... computational model for the aeroelastic response of an elastically mounted airfoil was used to investigate the influence of temporal lag in the aerodynamic response on the aeroelastic stability in deep stall. The study indicated that even a relatively low lag significantly increases the damping of the model....... A comparison between the results from a model with lag imposed on all force components with the results from a model with lag imposed exclusively on the lift showed only marginal difference between the damping in the two cases. A parameter study involving positions of the elastic hinge point and the center...

  1. A New Adaptive Response Surface Model for Reliability Analysis of 2.5D C/SiC Composite Turbine Blade

    Science.gov (United States)

    Chang, Yaning; Sun, Zhigang; Sun, Weiyi; Song, Yingdong

    2017-11-01

    In order to calculate the failure probability of complex structures such as a 2.5D/SiC composites turbine blade and improve the structure safety, a new adaptive model of Response Surface (RS) analysis has been developed in this paper, which can improve the computational efficiency of structural failure problem while ensure the accuracy. The Gaussian Process Regression (GPR) theory was used to establish the RS and reconstruct the performance function of structure. And, an Adaptive Latin hypercube Sampling (ALHS) strategy was adopted in the process of establishing and correcting the RS. Finally the Direct Simulation Monte Carlo(DSMC)was utilized to calculate the failure probability of the performance function replacing the complex structure. Two numerical examples were calculated to validate the accuracy and computational efficiency of the proposed method. Additionally the finite element stress analysis results of 2.5D C/SiC composite turbine blade were used to structural reliability analysis by the proposed method. The approach in this paper provides a new way to evaluate the risk of the complex structures.

  2. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades

    Science.gov (United States)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas

    2012-01-01

    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  3. A deflection monitoring system for a wind turbine blade

    DEFF Research Database (Denmark)

    2017-01-01

    A wind turbine blade comprising a system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication...

  4. Design and fabrication of a wind turbine blade | Laryea | Ghana ...

    African Journals Online (AJOL)

    Dimensions and weights were measured to determine the possibilities of its performance. Factors that affect the spinning of the blade include the weight, blade count and its aerodynamic features. The new blades are assumed to be more reliable and efficient than wholly wood design. The calculated wind speed and power ...

  5. Rotor blade online monitoring and fault diagnosis technology research

    DEFF Research Database (Denmark)

    Tesauro, Angelo; Pavese, Christian; Branner, Kim

    Rotor blade online monitoring and fault diagnosis technology is an important way to find blade failure mechanisms and thereby improve the blade design. Condition monitoring of rotor blades is necessary in order to ensure the safe operation of the wind turbine, make the maintenance more economical...... of the rotor, icing and lightning. Research is done throughout the world in order to develop and improve such measurement systems. Commercial hardware and software available for the described purpose is presented in the report....

  6. Damage detection of engine bladed-disks using multivariate statistical analysis

    Science.gov (United States)

    Fang, X.; Tang, J.

    2006-03-01

    The timely detection of damage in aero-engine bladed-disks is an extremely important and challenging research topic. Bladed-disks have high modal density and, particularly, their vibration responses are subject to significant uncertainties due to manufacturing tolerance (blade-to-blade difference or mistuning), operating condition change and sensor noise. In this study, we present a new methodology for the on-line damage detection of engine bladed-disks using their vibratory responses during spin-up or spin-down operations which can be measured by blade-tip-timing sensing technique. We apply a principle component analysis (PCA)-based approach for data compression, feature extraction, and denoising. The non-model based damage detection is achieved by analyzing the change between response features of the healthy structure and of the damaged one. We facilitate such comparison by incorporating the Hotelling's statistic T2 analysis, which yields damage declaration with a given confidence level. The effectiveness of the method is demonstrated by case studies.

  7. Massachusetts Large Blade Test Facility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rahul Yarala; Rob Priore

    2011-09-02

    Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

  8. Assessment of Lightning Transients on a De-Iced Rotor Blade with Predictive Tools and Coaxial Return Measurements

    Science.gov (United States)

    Guillet, S.; Gosmain, A.; Ducoux, W.; Ponçon, M.; Fontaine, G.; Desseix, P.; Perraud, P.

    2012-05-01

    The increasing use of composite materials in aircrafts primary structures has led to different problematics in the field of safety of flight in lightning conditions. The consequences of this technological mutation, which occurs in a parallel context of extension of electrified critical functions, are addressed by aircraft manufacturers through the enhancement of their available assessment means of lightning transient. On the one hand, simulation tools, provided an accurate description of aircraft design, are today valuable assessment tools, in both predictive and operative terms. On the other hand, in-house test means allow confirmation and consolidation of design office hardening solutions. The combined use of predictive simulation tools and in- house test means offers an efficient and reliable support for all aircraft developments in their various life-time stages. The present paper provides PREFACE research project results that illustrate the above introduced strategy on the de-icing system of the NH90 composite main rotor blade.

  9. Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed

    Science.gov (United States)

    Beardsell, Alec; Collier, William; Han, Tao

    2016-09-01

    There is a trend in the wind industry towards ever larger and more flexible turbine blades. Blade tip deflections in modern blades now commonly exceed 10% of blade length. Historically, the dynamic response of wind turbine blades has been analysed using linear models of blade deflection which include the assumption of small deflections. For modern flexible blades, this assumption is becoming less valid. In order to continue to simulate dynamic turbine performance accurately, routine use of non-linear models of blade deflection may be required. This can be achieved by representing the blade as a connected series of individual flexible linear bodies - referred to in this paper as the multi-part approach. In this paper, Bladed is used to compare load predictions using single-part and multi-part blade models for several turbines. The study examines the impact on fatigue and extreme loads and blade deflection through reduced sets of load calculations based on IEC 61400-1 ed. 3. Damage equivalent load changes of up to 16% and extreme load changes of up to 29% are observed at some turbine load locations. It is found that there is no general pattern in the loading differences observed between single-part and multi-part blade models. Rather, changes in fatigue and extreme loads with a multi-part blade model depend on the characteristics of the individual turbine and blade. Key underlying causes of damage equivalent load change are identified as differences in edgewise- torsional coupling between the multi-part and single-part models, and increased edgewise rotor mode damping in the multi-part model. Similarly, a causal link is identified between torsional blade dynamics and changes in ultimate load results.

  10. Merenje vibracija i relevantnih parametara leta transportnog helikoptera Mi-8 sa revitalizovanim lopaticama nosećeg rotora / Vibration and flight data measurement on the transport helicopter Mi-8 with replaced main rotor blades

    Directory of Open Access Journals (Sweden)

    Veljko Rakonjac

    2004-11-01

    Full Text Available Rad se odnosi na merenje parametara leta transportnog helikoptera ruske proizvodnje Mi-8 sa ugrađenim originalnim, kao i revitalizovanim - delimično kompozitnim lopaticama nosećeg rotora. Cilj merenja bio je dobijanje relevantnih podataka za ocenu kvaliteta revitalizovanih lopatica usled zamene lopatica nosećeg rotora. Prikazani su oprema, postupak i analiza rezultata merenja parametara leta i vibracija, uz poseban osvrt na probleme izazvane uticajem vibracija na mernu opremu. / This paper presents helicopter flight data acquisition made on the Russian helicopter Mi-8 with its original main rotor blades as well as with regenerated, partially composite ones. The purpose of the measurement was collecting data for flight quality of the main rotor composite blades changing the actual main rotor blades. This paper also presents equipment procedures and analysis of flight data and vitration measurements with special attention to problems caused by vibration influence on equipment.

  11. Non-Destructive Measurement Methods (Neutron-, X-ray Radiography, Vibration Diagnostics and Ultrasound) in the Inspection of Helicopter Rotor Blades

    National Research Council Canada - National Science Library

    Balasko, M; Endroczi, G; Tarnai, Gy; Veres, I; Molnar, Gy; Svab, E

    2005-01-01

    The experiments regarding structural failures in helicopter rotor blade's composite structures causing water penetrations and bypasses were performed at the Dynamic Radiography Station (DRS) of the Budapest...

  12. Heat transfer measurements on an incidence-tolerant low pressure turbine blade in a high speed linear cascade at low to moderate Reynolds numbers

    Science.gov (United States)

    Moualeu, Leolein Patrick Gouemeni

    Runway-independent aircraft are expected to be the future for short-haul flights by improving air transportation and reducing area congestion encountered in airports. The Vehicle Systems Program of NASA identified a Large Civil Tilt-Rotor, equipped with variable-speed power-turbine engines, as the best concept. At cruise altitude, the engine rotor-speed will be reduced by as much as the 50% of take-off speed. The large incidence variation in the low pressure turbine associated with the change in speed can be detrimental to the engine performance. Low pressure turbine blades in cruise altitude are more predisposed to develop regions of boundary layer separation. Typical phenomenon such as impinging wakes on downstream blades and mainstream turbulences enhance the complexity of the flow in low pressure turbines. It is therefore important to be able to understand the flow behavior to accurately predict the losses. Research facilities are seldom able to experimentally reproduce low Reynolds numbers at relevant engine Mach number. Having large incidence swing as an additional parameter in the investigation of the boundary layer development, on a low pressure turbine blade, makes this topic unique and as a consequence requires a unique facility to conduct the experimental research. The compressible flow wind tunnel facility at the University of North Dakota had been updated to perform steady state experiments on a modular-cascade, designed to replicate a large variation of the incidence angles. The high speed and low Reynolds number facility maintained a sealed and closed loop configuration for each incidence angle. The updated facility is capable to produce experimental Reynolds numbers as low as 45,000 and as high as 570,000 at an exit Mach number of 0.72. Pressure and surface temperature measurements were performed at these low pressure turbine conditions. The present thesis investigates the boundary layer development on the surface of an Incidence-tolerant blade. The

  13. A Study of Active Rotor-Blade Vibration Control using Electro-Magnetic Actuation - Part II: Experiment

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    . The remaining two sets of actuators are applied to act directly onto the hub, working as an active radial bearing controlling the rotor lateral movement. The rig is equipped with sensors measuring blade and rotor vibrations. Actuators and sensors are connected to a digital signal processor running the control......This is the second paper in a two-part study on active rotor-blade vibration control. This part presents an experimental contribution into the work of active controller design for rotor-blade systems. The primary aim is to give an experimental validation and show the applicability...... algorithm. Measurement signals and actuator control signals from the sensors and actuators fixed in the rotating disc are transmitted to the control unit through a slip-ring device. Various measured responses of both the controlled and the non-controlled system with identical blades and with deliberately...

  14. LIDAR Wind Speed Measurement Analysis and Feed-Forward Blade Pitch Control for Load Mitigation in Wind Turbines: January 2010--January 2011

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, F.; Simley, E.; Pao, L.Y.

    2011-10-01

    This report examines the accuracy of measurements that rely on Doppler LIDAR systems to determine their applicability to wind turbine feed-forward control systems and discusses feed-forward control system designs that use preview wind measurements. Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feed-forward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. The first half of this report examines the accuracy of different measurement scenarios that rely on coherent continuous-wave or pulsed Doppler LIDAR systems to determine their applicability to feed-forward control. In particular, the impacts of measurement range and angular offset from the wind direction are studied for various wind conditions. A realistic case involving a scanning LIDAR unit mounted in the spinner of a wind turbine is studied in depth with emphasis on choices for scan radius and preview distance. The effects of turbulence parameters on measurement accuracy are studied as well. Continuous-wave and pulsed LIDAR models based on typical commercially available units were used in the studies present in this report. The second half of this report discusses feed-forward control system designs that use preview wind measurements. Combined feedback/feed-forward blade pitch control is compared to industry standard feedback control when simulated in realistic turbulent above-rated winds. The feed-forward controllers are designed to reduce fatigue loads, increasing turbine lifetime and therefore reducing the cost of energy. Three feed-forward designs are studied: non-causal series expansion, Preview Control, and optimized FIR filter. The input to the feed-forward controller is a measurement of

  15. Antenna Gain Impact on UWB Wind Turbine Blade Deflection Sensing

    DEFF Research Database (Denmark)

    Zhang, Shuai; Franek, Ondrej; Byskov, Claus

    2018-01-01

    effective (or equivalent) isotropic radiated power (EIRP), an HG tip antenna inside a blade gives stronger direct pulse amplitudes and better pulse waveforms for accurate and reliable distance estimations than the LG. Moreover, the direct pulse with the HG antenna is also closer to the blade surface, which...... in free space have similar realized gain when allocated inside blades, so that the emission power for the HG and LG antennas in blades can be the same. The antenna gain impacts on time-domain pulse waveforms and power distributions around a blade are carefully investigated (with the tip antenna inside...... a blade). Higher antenna gain enlarges both direct pulse and multipath but in different levels. To verify the simulations, time-domain measurements are performed with a full 37-meter blade. Pulse waveforms and power delay profiles are measured. From all the studies, it follows that: with the similar...

  16. Rocket Engine Turbine Blade Surface Pressure Distributions Experiment and Computations

    Science.gov (United States)

    Hudson, Susan T.; Zoladz, Thomas F.; Dorney, Daniel J.; Turner, James (Technical Monitor)

    2002-01-01

    Understanding the unsteady aspects of turbine rotor flow fields is critical to successful future turbine designs. A technology program was conducted at NASA's Marshall Space Flight Center to increase the understanding of unsteady environments for rocket engine turbines. The experimental program involved instrumenting turbine rotor blades with miniature surface mounted high frequency response pressure transducers. The turbine model was then tested to measure the unsteady pressures on the rotor blades. The data obtained from the experimental program is unique in two respects. First, much more unsteady data was obtained (several minutes per set point) than has been possible in the past. Also, an extensive steady performance database existed for the turbine model. This allowed an evaluation of the effect of the on-blade instrumentation on the turbine's performance. A three-dimensional unsteady Navier-Stokes analysis was also used to blindly predict the unsteady flow field in the turbine at the design operating conditions and at +15 degrees relative incidence to the first-stage rotor. The predicted time-averaged and unsteady pressure distributions show good agreement with the experimental data. This unique data set, the lessons learned for acquiring this type of data, and the improvements made to the data analysis and prediction tools are contributing significantly to current Space Launch Initiative turbine airflow test and blade surface pressure prediction efforts.

  17. Measurement of Tip Apex Distance and Migration of Lag Screws and Novel Blade Screw Used for the Fixation of Intertrochanteric Fractures.

    Directory of Open Access Journals (Sweden)

    Jesse Chieh-Szu Yang

    Full Text Available Fixation with a dynamic hip screw (DHS is one of the most common methods for stabilizing intertrochanteric fractures, except for unstable and reverse oblique fracture types. However, failure is often observed in osteoporotic patients whereby the lag screw effectively 'cuts out' through the weak bone. Novel anti-migration blades have been developed to be used in combination with a lag screw ('Blade Screw' to improve the fixation strength in osteoporotic intertrochanteric fractures. An in-vitro biomechanical study and a retrospective clinical study were performed to evaluate lag screw migration when using the novel Blade Screw and a traditional threaded DHS. The biomechanical study showed both the Blade Screw and DHS displayed excessive migration (≥10 mm before reaching 20,000 loading cycles in mild osteoporotic bone, but overall migration of the Blade Screw was significantly less (p ≤ 0.03. Among the patients implanted with a Blade Screw in the clinical study, there was no significant variation in screw migration at 3-months follow-up (P = 0.12. However, the patient's implanted with a DHS did display significantly greater migration (P<0.001 than those implanted with the Blade Screw. In conclusion, the Blade Screw stabilizes the bone fragments during dynamic loading so as to provide significantly greater resistance to screw migration in patients with mild osteoporosis.

  18. Applied modal analysis of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Broen Pedersen, H.; Dahl Kristensen, O.J.

    2003-02-01

    In this project modal analysis has been used to determine the natural frequencies, damping and the mode shapes for wind turbine blades. Different methods to measure the position and adjust the direction of the measuring points are discussed. Different equipment for mounting the accelerometers are investigated and the most suitable are chosen. Different excitation techniques are tried during experimental campaigns. After a discussion the pendulum hammer were chosen, and a new improved hammer was manufactured. Some measurement errors are investigated. The ability to repeat the measured results is investigated by repeated measurement on the same wind turbine blade. Furthermore the flexibility of the test set-up is investigated, by use of accelerometers mounted on the flexible adapter plate during the measurement campaign. One experimental campaign investigated the results obtained from a loaded and unloaded wind turbine blade. During this campaign the modal analysis are performed on a blade mounted in a horizontal and a vertical position respectively. Finally the results obtained from modal analysis carried out on a wind turbine blade are compared with results obtained from the Stig Oeyes blade{sub E}V1 program. (au)

  19. Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES.

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, Ganesh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennsylvania State Univ., University Park, PA (United States); Brasseur, James [Pennsylvania State Univ., University Park, PA (United States); Univ. of Colorado, Boulder, CO (United States); Lavely, Adam; Jayaraman, Balaji; Craven, Brent

    2016-01-04

    We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.

  20. Vibration and flutter of mistuned bladed-disk assemblies

    Science.gov (United States)

    Kaza, K. R. V.; Kielb, R. E.

    1984-01-01

    An analytical model for investigating vibration and flutter of mistuned bladed disk assemblies is presented. This model accounts for elastic, inertial and aerodynamic coupling between bending and torsional motions of each individual blade, elastic and inertial couplings between the blades and the disk, and aerodynamic coupling among the blades. The disk was modeled as a circular plate with constant thickness and each blade was represented by a twisted, slender, straight, nonuniform, elastic beam with a symmetric cross section. The elastic axis, inertia axis, and the tension axis were taken to be noncoincident and the structural warping of the section was explicitly considered. The blade aerodynamic loading in the subsonic and supersonic flow regimes was obtained from two-dimensional unsteady, cascade theories. All the possible standing wave modes of the disk and traveling wave modes of the blades were included. The equations of motion were derived by using the energy method in conjunction with the assumed mode shapes for the disk and the blades. Continuities of displacement and slope at the blade-disk junction were maintained. The equations were solved to investigate the effects of blade-disk coupling and blade frequency mistuning on vibration and flutter. Results showed that the flexibility of practical disks such as those used for current generation turbofans did not have a significant influence on either the tuned or mistuned flutter characteristics. However, the disk flexibility may have a strong influence on some of the system frequencies and on forced response.

  1. Genetic fuzzy system for online structural health monitoring of composite helicopter rotor blades

    Science.gov (United States)

    Pawar, Prashant M.; Ganguli, Ranjan

    2007-07-01

    A structural health monitoring (SHM) methodology is developed for composite rotor blades. An aeroelastic analysis of composite rotor blades based on the finite element method in space and time and with implanted matrix cracking and debonding/delamination damage is used to obtain measurable system parameters such as blade response, loads and strains. A rotor blade with a two-cell airfoil section and [0/±45/90]s family of laminates is used for numerical simulations. The model based measurements are contaminated with noise to simulate real data. Genetic fuzzy systems (GFS) are developed for global online damage detection using displacement and force-based measurement deviations between damaged and undamaged conditions and for local online damage detection using strains. It is observed that the success rate of the GFS depends on number of measurements, type of measurements and training and testing noise level. The GFS work quite well with noisy data and is recommended for online SHM of composite helicopter rotor blades.

  2. Methodology for wind turbine blade geometry optimization

    Energy Technology Data Exchange (ETDEWEB)

    Perfiliev, D.

    2013-11-01

    Nowadays, the upwind three bladed horizontal axis wind turbine is the leading player on the market. It has been found to be the best industrial compromise in the range of different turbine constructions. The current wind industry innovation is conducted in the development of individual turbine components. The blade constitutes 20-25% of the overall turbine budget. Its optimal operation in particular local economic and wind conditions is worth investigating. The blade geometry, namely the chord, twist and airfoil type distributions along the span, responds to the output measures of the blade performance. Therefore, the optimal wind blade geometry can improve the overall turbine performance. The objectives of the dissertation are focused on the development of a methodology and specific tool for the investigation of possible existing wind blade geometry adjustments. The novelty of the methodology presented in the thesis is the multiobjective perspective on wind blade geometry optimization, particularly taking simultaneously into account the local wind conditions and the issue of aerodynamic noise emissions. The presented optimization objective approach has not been investigated previously for the implementation in wind blade design. The possibilities to use different theories for the analysis and search procedures are investigated and sufficient arguments derived for the usage of proposed theories. The tool is used for the test optimization of a particular wind turbine blade. The sensitivity analysis shows the dependence of the outputs on the provided inputs, as well as its relative and absolute divergences and instabilities. The pros and cons of the proposed technique are seen from the practical implementation, which is documented in the results, analysis and conclusion sections. (orig.)

  3. Responsiveness of Clinical Outcome Measures

    DEFF Research Database (Denmark)

    Lauridsen, Henrik Hein

    Background The Oswestry Disability Index (ODI) is one of two standardised functional health measurement scales (HMS) recommended. Despite extensive psychometric testing, little is known about HMS behaviour and the minimal clinically important difference (MCID) in subgroups of LBP patients. Moreover...... obtainable by a certain treatment. Chronic LBP patients seem to have a reasonable idea of an acceptable change in pain but overestimate change in functional and psychological /affective domains....

  4. Ultimate strength of a large wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Moelholt Jensen, Find

    2008-05-15

    The present PhD project contains a study of the structural static strength of wind turbine blades loaded in flap-wise direction. A combination of experimental and numerical work has been used to address the most critical failure mechanisms and to get an understanding of the complex structural behaviour of wind turbine blades. Four failure mechanisms observed during the fullscale tests and the corresponding FE-analysis are presented. Elastic mechanisms associated with failure, such as buckling, localized bending and the Brazier effect, are studied. Six different types of structural reinforcements helping to prevent undesired structural elastic mechanisms are presented. The functionality of two of the suggested structural reinforcements was demonstrated in full-scale tests and the rest trough FE-studies. The blade design under investigation consisted of an aerodynamic airfoil and a load carrying box girder. In total, five full-scale tests have been performed involving one complete blade and two shortened box girders. The second box girder was submitted to three independent tests covering different structural reinforcement alternatives. The advantages and disadvantages of testing a shortened load carrying box girder vs. an entire blade are discussed. Changes in the boundary conditions, loads and additional reinforcements, which were introduced in the box girder tests in order to avoid undesired structural elastic mechanisms, are presented. New and advanced measuring equipment was used in the fullscale tests to detect the critical failure mechanisms and to get an understanding of the complex structural behaviour. Traditionally, displacement sensors and strain gauges in blade tests are arranged based on an assumption of a Bernoulli-Euler beam structural response. In the present study it is shown that when following this procedure important information about distortions of the cross sections is lost. In the tests presented here, one of the aims was to measure distortion

  5. An aerodynamic study on flexed blades for VAWT applications

    Science.gov (United States)

    Micallef, Daniel; Farrugia, Russell; Sant, Tonio; Mollicone, Pierluigi

    2014-12-01

    There is renewed interest in aerodynamics research of VAWT rotors. Lift type, Darrieus designs sometimes use flexed blades to have an 'egg-beater shape' with an optimum Troposkien geometry to minimize the structural stress on the blades. While straight bladed VAWTs have been investigated in depth through both measurements and numerical modelling, the aerodynamics of flexed blades has not been researched with the same level of detail. Two major effects may have a substantial impact on blade performance. First, flexing at the equator causes relatively strong trailing vorticity to be released. Secondly, the blade performance at each station along the blade is influenced by self-induced velocities due to bound vorticity. The latter is not present in a straight bladed configuration. The aim of this research is to investigate these effects in relation to an innovative 4kW wind turbine concept being developed in collaboration with industry known as a self-adjusting VAWT (or SATVAWT). The approach used in this study is based on experimental and numerical work. A lifting line free-wake vortex model was developed. Wind tunnel power and hot-wire velocity measurements were performed on a scaled down, 60cm high, three bladed model in a closed wind tunnel. Results show a substantial axial wake induction at the equator resulting in a lower power generation at this position. This induction increases with increasing degree of flexure. The self-induced velocities caused by blade bound vorticity at a particular station was found to be relatively small.

  6. Corrosion fatigue in LP steam turbine blading - experiences, causes and appropriate measures; Korrosionsutmattning i aangturbinskovlar - Erfarenheter, inverkande faktorer och moejliga aatgaerder

    Energy Technology Data Exchange (ETDEWEB)

    Tavast, J [ABB STAL AB, Finspaang (Sweden)

    1996-12-01

    Corrosion fatigue in LP steam turbine blading was reviewed together with result of tests performed in order to find blade materials with improved resistance against this. According to international experience, corrosion fatigue of 12Cr steam turbine blades in the transition zone between dry and wet steam, is one of the major causes, if not the major cause, for unavailability of steam turbines. Corrosion fatigue in LP blading is a frequent problem also in Swedish and Finnish nuclear power plants, especially in turbines of type D54 in BWR-plants. Corrosion fatigue has also been discovered in at least one type of nuclear turbine. Initiation times have been very long and the varying experiences in different types of turbines may simply reflect differing initiation times. Corrosion fatigue may therefore become more frequent in other types of turbines in the future. The type of water treatment (BWR/PWR) and possibly temperature after reheating seem to influence the risk for corrosion fatigue. Influence of inleakage of cooling water is less clear for these nuclear plants. The long initiation times together with the fact that very few of the cracked blades have actually failed, indicate that the cracks initiate and/or propagate during transients. Extensive laboratory tests show that there are alternative blade materials available with improved resistance against corrosion fatigue, with the most promising being 15/5 PH and A905, together with Ti6Al4V. The Ti alloy shows the best resistance against corrosion fatigue in most environments and is already used in some turbines. Disadvantage is a higher cost and possible need for redesign of the blades. The alternative materials are recommended for use for blades in the transition zone between dry and wet steam in LP turbines. The main disadvantage is a lack of references, even if 15%5 PH has been used to a very limited extent. 40 refs, 24 figs, 12 tabs, 9 appendices

  7. Blade attachment assembly

    Science.gov (United States)

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell; Miller, Diane Patricia

    2016-05-03

    An assembly and method for affixing a turbomachine rotor blade to a rotor wheel are disclosed. In an embodiment, an adaptor member is provided disposed between the blade and the rotor wheel, the adaptor member including an adaptor attachment slot that is complementary to the blade attachment member, and an adaptor attachment member that is complementary to the rotor wheel attachment slot. A coverplate is provided, having a coverplate attachment member that is complementary to the rotor wheel attachment slot, and a hook for engaging the adaptor member. When assembled, the coverplate member matingly engages with the adaptor member, and retains the blade in the adaptor member, and the assembly in the rotor wheel.

  8. Flow characteristics in nuclear steam turbine blade passage

    International Nuclear Information System (INIS)

    Ahn, H.J.; Yoon, W.H.; Kwon, S.B.

    1995-01-01

    The rapid expansion of condensable gas such as moist air or steam gives rise to nonequilibrium condensation. As a result of irreversibility of condensation process in the nuclear steam turbine blade passage, the entropy of the flow increases, and the efficiency of the turbine decreases. In the present study, in order to investigate the flow characteristics of moist air in two-dimensional turbine blade passage which is made from the configuration of the last stage tip section of the actual nuclear steam turbine moving blade, the static pressures along both pressure and suction sides of blade are measured by static pressure taps and the distribution of Mach number on both sides of the blade are obtained by using the measured static pressure. Also, the flow field is visualized by a Schlieren system. From the experimental results, the effects of the stagnation temperature and specific humidity on the flow properties in the two dimensional steam turbine blade passage are clearly identified

  9. Resonant vibration control of three-bladed wind turbine rotors

    DEFF Research Database (Denmark)

    Krenk, Steen; Svendsen, Martin Nymann; Høgsberg, Jan Becker

    2012-01-01

    Rotors with blades, as in wind turbines, are prone to vibrations due to the flexibility of the blades and the support. In the present paper a theory is developed for active control of a combined set of vibration modes in three-bladed rotors. The control system consists of identical collocated...... to influence of other nonresonant modes. The efficiency of the method isdemonstrated byapplication to a rotor with 42 m blades, where the sensor/actuator system is implemented in the form of an axial extensible strut near the root of each blade. The load is provided by a simple but fully threedimensional...... correlated wind velocity field. It is shown by numerical simulations that the active damping system can provide a significant reduction in the response amplitude of the targeted modes, while applying control moments to the blades that are about 1 order of magnitude smaller than the moments from the external...

  10. Estimation of the energy loss at the blades in rowing: common assumptions revisited.

    Science.gov (United States)

    Hofmijster, Mathijs; De Koning, Jos; Van Soest, A J

    2010-08-01

    In rowing, power is inevitably lost as kinetic energy is imparted to the water during push-off with the blades. Power loss is estimated from reconstructed blade kinetics and kinematics. Traditionally, it is assumed that the oar is completely rigid and that force acts strictly perpendicular to the blade. The aim of the present study was to evaluate how reconstructed blade kinematics, kinetics, and average power loss are affected by these assumptions. A calibration experiment with instrumented oars and oarlocks was performed to establish relations between measured signals and oar deformation and blade force. Next, an on-water experiment was performed with a single female world-class rower rowing at constant racing pace in an instrumented scull. Blade kinematics, kinetics, and power loss under different assumptions (rigid versus deformable oars; absence or presence of a blade force component parallel to the oar) were reconstructed. Estimated power losses at the blades are 18% higher when parallel blade force is incorporated. Incorporating oar deformation affects reconstructed blade kinematics and instantaneous power loss, but has no effect on estimation of power losses at the blades. Assumptions on oar deformation and blade force direction have implications for the reconstructed blade kinetics and kinematics. Neglecting parallel blade forces leads to a substantial underestimation of power losses at the blades.

  11. Wireless Inductive Power Device Suppresses Blade Vibrations

    Science.gov (United States)

    Morrison, Carlos R.; Provenza, Andrew J.; Choi, Benjamin B.; Bakhle, Milind A.; Min, James B.; Stefko, George L.; Duffy, Kirsten P.; Fougers, Alan J.

    2011-01-01

    Vibration in turbomachinery can cause blade failures and leads to the use of heavier, thicker blades that result in lower aerodynamic efficiency and increased noise. Metal and/or composite fatigue in the blades of jet engines has resulted in blade destruction and loss of lives. Techniques for suppressing low-frequency blade vibration, such as gtuned circuit resistive dissipation of vibratory energy, h or simply "passive damping," can require electronics incorporating coils of unwieldy dimensions and adding unwanted weight to the rotor. Other approaches, using vibration-dampening devices or damping material, could add undesirable weight to the blades or hub, making them less efficient. A wireless inductive power device (WIPD) was designed, fabricated, and developed for use in the NASA Glenn's "Dynamic Spin Rig" (DSR) facility. The DSR is used to simulate the functionality of turbomachinery. The relatively small and lightweight device [10 lb (approx.=4.5 kg)] replaces the existing venerable and bulky slip-ring. The goal is the eventual integration of this technology into actual turbomachinery such as jet engines or electric power generators, wherein the device will facilitate the suppression of potentially destructive vibrations in fan blades. This technology obviates slip rings, which require cooling and can prove unreliable or be problematic over time. The WIPD consists of two parts: a remote element, which is positioned on the rotor and provides up to 100 W of electrical power to thin, lightweight piezoelectric patches strategically placed on/in fan blades; and a stationary base unit that wirelessly communicates with the remote unit. The base unit supplies inductive power, and also acts as an input and output corridor for wireless measurement, and active control command to the remote unit. Efficient engine operation necessitates minimal disturbance to the gas flow across the turbine blades in any effort to moderate blade vibration. This innovation makes it

  12. Magnetic Field Response Measurement Acquisition System

    Science.gov (United States)

    Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2007-01-01

    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.

  13. 3X-100 blade field test.

    Energy Technology Data Exchange (ETDEWEB)

    Zayas, Jose R.; Johnson, Wesley D.

    2008-03-01

    In support of a Work-For-Other (WFO) agreement between the Wind Energy Technology Department at Sandia National Laboratories and 3TEX, one of the three Micon 65/13M wind turbines at the USDA Agriculture Research Service (ARS) center in Bushland, Texas, has been used to test a set of 9 meter wind turbine blades, manufactured by TPI composites using the 3TEX carbon material for the spar cap. Data collected from the test has been analyzed to evaluate both the aerodynamic performance and the structural response from the blades. The blades aerodynamic and structural performance, the meteorological inflow and the wind turbine structural response has been monitored with an array of 57 instruments: 15 to characterize the blades, 13 to characterize inflow, and 15 to characterize the time-varying state of the turbine. For the test, data was sampled at a rate of 40 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow, as well as both modeling and field testing results.

  14. A New Hoe Blade for Inter-Row Weeding

    DEFF Research Database (Denmark)

    Green, O.; Znova, L.; Melander, Bo

    2016-01-01

    and weeds are relatively small. The term ‘Ducksfoot’ covers a range of hoe blade configurations where all have some resemblance with the shape of a ducks foot. However, the ‘Ducksfoot’ blade is not an optimal solution for weed control in narrow inter-row spaces. Several disadvantages have been encountered...... and the draft forces needed to pull it were approx. half those measured for a ‘Ducksfoot’ blade. The weeding features of the new L-blade will be further studied under field conditions....

  15. Comparison of single-use and reusable metal laryngoscope blades for orotracheal intubation during rapid sequence induction of anesthesia: a multicenter cluster randomized study.

    Science.gov (United States)

    Amour, Julien; Le Manach, Yannick Le; Borel, Marie; Lenfant, François; Nicolas-Robin, Armelle; Carillion, Aude; Ripart, Jacques; Riou, Bruno; Langeron, Olivier

    2010-02-01

    Single-use metal laryngoscope blades are cheaper and carry a lower risk of infection than reusable metal blades. The authors compared single-use and reusable metal blades during rapid sequence induction of anesthesia in a multicenter cluster randomized trial. One thousand seventy-two adult patients undergoing general anesthesia under emergency conditions and requiring rapid sequence induction were randomly assigned on a weekly basis to either single-use or reusable metal blades (cluster randomization). After induction, a 60-s period was allowed to complete intubation. In the case of failed intubation, a second attempt was performed using the opposite type of blade. The primary endpoint was the rate of failed intubation, and the secondary endpoints were the incidence of complications (oxygen desaturation, lung aspiration, and/or oropharynx trauma) and the Cormack and Lehane score. Both groups were similar in their main characteristics, including the risk factors for difficult intubation. The rate of failed intubation was significantly decreased with single-use metal blades at the first attempt compared with reusable blades (2.8 vs. 5.4%, P < 0.05). In addition, the proportion of grades III and IV in Cormack and Lehane score were also significantly decreased with single-use metal blades (6 vs. 10%, P < 0.05). The global complication rate did not reach statistical significance, although the same trend was noted (6.8% vs. 11.5%, P = not significant). An investigator survey and a measure of illumination pointed that illumination might have been responsible for this result. The single-use metal blade was more efficient than a reusable metal blade in rapid sequence induction of anesthesia.

  16. Predicting and measuring fluid responsiveness with echocardiography

    Directory of Open Access Journals (Sweden)

    Ashley Miller

    2016-06-01

    Full Text Available Echocardiography is ideally suited to guide fluid resuscitation in critically ill patients. It can be used to assess fluid responsiveness by looking at the left ventricle, aortic outflow, inferior vena cava and right ventricle. Static measurements and dynamic variables based on heart–lung interactions all combine to predict and measure fluid responsiveness and assess response to intravenous fluid esuscitation. Thorough knowledge of these variables, the physiology behind them and the pitfalls in their use allows the echocardiographer to confidently assess these patients and in combination with clinical judgement manage them appropriately.

  17. Ceramic blade attachment system

    Science.gov (United States)

    Frey, G.A.; Jimenez, O.D.

    1996-12-03

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine flange having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine flange includes a first upstanding flange and a second upstanding flange having a groove formed between them. The turbine flange further includes a recess. Each of the first and second upstanding flanges have a plurality of bores therein. A turbine blade has a first member and a second member positioned in one of the groove and the recess. Each of the first member and the second member have a plurality of bores therein. A pin is positioned in respective ones of the plurality of bores in the first and second upstanding members and the first and second members and attach the blade to the turbine flange. The pin has a preestablished rate of thermal expansion being substantially equal to the rate of thermal expansion of the blade. 4 figs.

  18. Blade dynamic stress analysis of rotating bladed disks

    Directory of Open Access Journals (Sweden)

    Kellner J.

    2007-10-01

    Full Text Available The paper deals with mathematical modelling of steady forced bladed disk vibrations and with dynamic stress calculation of the blades. The blades are considered as 1D kontinuum elastic coupled with three-dimensional elastic disk centrally clamped into rotor rotating with constant angular speed. The steady forced vibrations are generated by the aerodynamic forces acting along the blade length. By using modal synthesis method the mathematical model of the rotating bladed disk is condensed to calculate steady vibrations. Dynamic stress analysis of the blades is based on calculation of the time dependent reduced stress in blade cross-sections by using Hubert-Misses-Hencky stress hypothesis. The presented method is applied to real turbomachinery rotor with blades connected on the top with shroud.

  19. Analysis of impact resistance of composite fan blade. Fukugozai fan blade no taishogekisei no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Miyachi, T; Okumura, H; Otake, K; Sofue, Y [Japan Society for Aeronautical and Space Sciences, Tokyo (Japan)

    1992-01-05

    Numerical analysis of impact response was carried out when a bird strike was simulated to study the applicability of fiber reinforced composite material to fan blades for turbo-fan engines. The validity of the numerical analysis was verified by comparing the analyzed results with impact tested results of a fan-blade model of Ti-alloy. The impact resistance was studied by applying this method to fan blades of composite materials such as carbon fiber, epoxy resin and carbon-silicate fiber reinforced Ti-alloy. The finite element method was used for the analysis by dividing the model into triangular flat elements. The relation between the impact load, the deformation of blade and the strain, the natural frequency characteristics, the elastic modulus and hetrogeneity of blade were considered to analyze the impact response. The impact load by the strike of 1.5 lbs bird is very severe to the fan blades for turbo-fan engines having the thrust of 5 ton class. 23 refs., 23 figs., 3 tabs.

  20. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction

    DEFF Research Database (Denmark)

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej

    2015-01-01

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1–5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists...... is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics...

  1. Multipath Suppression with an Absorber for UWB Wind Turbine Blade Deflection Sensing Systems

    DEFF Research Database (Denmark)

    Zhang, Shuai; Franek, Ondrej; Eggers, Patrick Claus F.

    2017-01-01

    The deflection of a wind turbine blade can be monitored with an ultra-wideband (UWB) deflection sensing system which consists of one transmitting antenna at the blade tip and two receiving antennas at the blade root. The blade deflection is calculated by two estimated tip-root antenna distances...... verifications of the proposed method are carried out with different full-blade measurements. From all the results, it is found that the proposed technique can efficiently suppress multipath for the in-blade tip antenna, and improve the pulse wave front fidelity, so that the UWB sensing system can also...

  2. Design of a 21 m blade with Risø-A1 airfoils for active stall controlled wind turbines

    DEFF Research Database (Denmark)

    Fuglsang, Peter; Sangill, O.; Hansen, P.

    2002-01-01

    This is the final report, from the project, "Design of a Rotor/Airfoil Family for Active Stall-regulated Wind Turbines by Use of Multi-point Optimization". It describes the full scale testing of a 21 m wind turbine blade specially designed for active stallregulation. Design objectives were...... increased ratio of produced energy to turbine loads and more stable power control characteristics. Both were taken directly into account during the design of the blade using numerical optimization. The blade used theRisø-A1 airfoil family, which was specially designed for operation on wind turbine blades....... The new blade was designed to replace the LM 21.0P blade. A measurement campaign was carried out simultaneously on two identical adjacent wind turbines where onehad the new blades and the other had LM 21.0P blades. Power and loads including blade section moments for the new blades were measured to assess...

  3. Compressor blade setting angle accuracy study, volume 1

    Science.gov (United States)

    Holman, F. F.; Kidwell, J. R.

    1976-01-01

    The aerodynamic test of a small, single stage, highly loaded, axial flow transonic compressor is covered. The stage was modified by fabricating a 24 blade rotor with mis-set blades in a repeating pattern - two degrees closed from nominal, two degrees open from nominal and nominal. The unit was instrumented to determine overall performance and average blade element data. High-response, dynamic pressure probes were installed to record pressure patterns at selected points in the flowpath. Testing was conducted at speeds from 70 to 94% of design equivalent speed with a conventional casing and also with circumferential grooves over the rotor tip. Testing indicated severe performance penalties were incurred as a result of the mis-set blading. Lower flow, pressure ratio, and efficiency were observed for the stage with or without casing treatment. Periodic pressure variations were detected at every location where high response pressure sensors were located and were directly related to blading geometry.

  4. Modal analysis of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Hansen, M.H.; Baumgart, A.; Carlen, I.

    2002-02-01

    The modal analysis technique has been used to identify essential dynamic properties of wind turbine blades like natural frequencies, damping characteristics and mode shapes. Different experimental procedures have been considered, and the most appropriate of these has been selected. Although the comparison is based on measurements on a LM 19 m blade, the recommendations given are believed to be valid for other wind turbine blades as well. The reliability of the selected experimental analysis has been quantified by estimating the unsystematic variations in the experimental findings. Satisfactory results have been obtained for natural frequencies, damping characteristics and for the dominating deflection direction of the investigated mode shapes. For the secondary deflection directions, the observed experimental uncertainty may be considerable - especially for the torsional deflection. The experimental analysis of the LM 19 m blade has been compared with results from a state-of-the-art FE-modeling of the same blade. For some of the higher modes substantial discrepancies between the natural frequencies originating from the FE-modeling and the modal analysis, respectively, are observed. In general the qualitative features of measured and computed modes shapes are in good agreement. However, for the secondary deflection directions, substantial deviations in the absolute values may occur (when normalizing with respect to the primary deflection direction). Finally, suggestions of potential future improvements of the experimental procedure are discussed. (au)

  5. Contactless Diagnostics of Turbine Blade Vibration and Damage

    International Nuclear Information System (INIS)

    Prochazka, Pavel; Vanek, Frantisek

    2011-01-01

    The study deals with the contactless diagnostic method used for the identification of steam turbine blade strain, vibration and damage. The tip-timing method based on the evaluation of time differences of blade passages in different rotor revolutions has been modified and improved to provide more precise and reliable results. A new approach to the analysis of the amplitude and time differences of impulse signals generated by a blade passage has been applied. Amplitudes and frequencies of vibrations and static position of blades ascertained by the diagnostic process are used to establish the state of blade damage. A contactless diagnostic system VDS-UT based on magneto-resistive sensors was developed in the Institute of Thermomechanics Academy of Sciences of the Czech Republic. The system provides on-line monitoring of vibration amplitudes and frequencies of all blades and notification of possible blade damage. Evaluation of the axial and circumferential components of the deflections by measuring the amplitude of blade impulse signals results in an overall improvement of the method. Using magneto-resistive sensors, blade elongation and untwisting can be determined as well.

  6. Vibration-based SHM System: Application to Wind Turbine Blades

    DEFF Research Database (Denmark)

    Tcherniak, D.; Mølgaard, Lasse Lohilahti

    2015-01-01

    propagate along the blade and are measured by an array of accelerometers. Unsupervised learning is applied to the data: the vibration patterns corresponding to the undamaged blade are used to create a statistical model of the reference state. During the detection stage, the current vibration pattern...

  7. Numerical simulation and PEPT measurements of a 3D conical helical-blade mixer: a high potential solids mixer for solid-state fermentation

    NARCIS (Netherlands)

    Schutyser, M.A.I.; Briels, W.J.; Rinzema, A.; Boom, R.M.

    2003-01-01

    Helical-blade solids mixers have a large potential as bioreactors for solid-state fermentation (SSF). Fundamental knowledge of the flow and mixing behavior is required for robust operation of these mixers. In this study predictions of a discrete particle model were compared to experiments with

  8. Blade Surface Pressure Distributions in a Rocket Engine Turbine: Experimental Work With On-Blade Pressure Transducers

    Science.gov (United States)

    Hudson, Susan T.; Zoladz, Thomas F.; Griffin, Lisa W.; Turner, James E. (Technical Monitor)

    2000-01-01

    Understanding the unsteady aspects of turbine rotor flowfields is critical to successful future turbine designs. A technology program was conducted at NASA's Marshall Space Flight Center to increase the understanding of unsteady environments for rocket engine turbines. The experimental program involved instrumenting turbine rotor blades with surface-mounted high frequency response pressure transducers. The turbine model was then tested to measure the unsteady pressures on the rotor blades. The data obtained from the experimental program is unique in three respects. First, much more unsteady data was obtained (several minutes per set point) than has been possible in the past. Also, two independent unsteady data acquisition systems and fundamental signal processing approaches were used. Finally, an extensive steady performance database existed for the turbine model. This allowed an evaluation of the effect of the on-blade instrumentation on the turbine's performance. This unique data set, the lessons learned for acquiring this type of data, and the improvements made to the data analysis and prediction tools will contribute to future turbine programs such as those for reusable launch vehicles.

  9. Analysis of improved and original designs of a 16 inch long penultimate stage turbine blade

    International Nuclear Information System (INIS)

    Carnero, A.; Kubiak, J.A.; Mendez, R.

    1994-01-01

    A finite element analysis of 16 inch long penultimate stage (L-1) blade was carried out to evaluate the improved and the original designs. The original design of the blade involved the ''blade-tenon-shroud'' system to make blade groups (6 blades per group). The improved design applied the concept of Integral Shroud Blade (ISB). Thus all the blades made a 360 degree group. The paper presents an application of the finite element analysis method to compute the natural frequencies, steady-state and alternating stresses, deformation due to forces acting on the blades and modal shapes of the blade group. In the case of the improved design it was also necessary to carry out computation of the dynamic response of a 360 degree blade-disk arc. This was to include the effect of the flexible disk fastening where blade and disk interaction were important to identify certain resonant conditions. It was concluded from the finite element results, that the steady-state stresses in the improved blade were lower, and the tangential mode shapes were eliminated. This was a great advantage since in the original design the first tangential mode shape and the higher steady-state stresses in the tenon contributed to the frequent failure of the ''blade-tenon-shroud'' system

  10. Test Rig for Evaluating Active Turbine Blade Tip Clearance Control Concepts

    Science.gov (United States)

    Lattime, Scott B.; Steinetz, Bruce M.; Robbie, Malcolm G.

    2003-01-01

    Improved blade tip sealing in the high pressure compressor and high pressure turbine can provide dramatic improvements in specific fuel consumption, time-on-wing, compressor stall margin and engine efficiency as well as increased payload and mission range capabilities of both military and commercial gas turbine engines. The preliminary design of a mechanically actuated active clearance control (ACC) system for turbine blade tip clearance management is presented along with the design of a bench top test rig in which the system is to be evaluated. The ACC system utilizes mechanically actuated seal carrier segments and clearance measurement feedback to provide fast and precise active clearance control throughout engine operation. The purpose of this active clearance control system is to improve upon current case cooling methods. These systems have relatively slow response and do not use clearance measurement, thereby forcing cold build clearances to set the minimum clearances at extreme operating conditions (e.g., takeoff, re-burst) and not allowing cruise clearances to be minimized due to the possibility of throttle transients (e.g., step change in altitude). The active turbine blade tip clearance control system design presented herein will be evaluated to ensure that proper response and positional accuracy is achievable under simulated high-pressure turbine conditions. The test rig will simulate proper seal carrier pressure and temperature loading as well as the magnitudes and rates of blade tip clearance changes of an actual gas turbine engine. The results of these evaluations will be presented in future works.

  11. Neutron energy response measurement of scintillation detectors

    International Nuclear Information System (INIS)

    Yang Hongqiong; Peng Taiping; Yang Jianlun; Tang Zhengyuan; Yang Gaozhao; Li Linbo; Hu Mengchun; Wang Zhentong; Zhang Jianhua; Li Zhongbao; Wang Lizong

    2004-01-01

    Neutron sensitivities of detectors composed of plastic scintillator ST401, ST1422, ST1423 and phyotomultiplier tube in primary energy range of fission neutron are calibrated by direct current. The energy response curve of the detectors is obtained in this experiment. The experimental result has been compared with the theoretical calculation and they are in agreement within measuring uncertainty. (authors)

  12. Fast response densitometer for measuring liquid density

    Science.gov (United States)

    1972-01-01

    Densitometer was developed which produces linear voltage proportional to changes in density of flowing liquid hydrogen. Unit has fast response time and good system stability, statistical variation, and thermal equilibrium. System accuracy is 2 percent of total density span. Basic design may be altered to include measurement of other flowing materials.

  13. Turbulent wind at the equatorial segment of an operating Darrieus wind turbine blade

    Science.gov (United States)

    Connell, J. R.; Morris, V. R.

    1989-09-01

    Six turbulent wind time series, measured at equally spaced equator-height locations on a circle 3 m outside a 34-m Darrieus rotor, are analyzed to approximate the wind fluctuations experienced by the rotor. The flatwise lower root-bending stress of one blade was concurrently recorded. The wind data are analyzed in three ways: wind components that are radial and tangential to the rotation of a blade were rotationally sampled; induction and wake effects of the rotor were estimated from the six Eulerian time series; and turbulence spectra of both the measured wind and the modeled wind from the PNL theory of rotationally sampled turbulence. The wind and the rotor response are related by computing the spectral response function of the flatwise lower root-bending stress. Two bands of resonant response that surround the first and second flatwise modal frequencies shift with the rotor rotation rate.

  14. BWR control blade replacement strategies

    Energy Technology Data Exchange (ETDEWEB)

    Kennard, M W [Stoller Nuclear Fuel, NAC International, Pleasantville, NY (United States); Harbottle, J E [Stoller Nuclear Fuel, NAC International, Thornbury, Bristol (United Kingdom)

    2000-02-01

    The reactivity control elements in a BWR, the control blades, perform three significant functions: provide shutdown margin during normal and accident operating conditions; provide overall core reactivity control; and provide axial power shaping control. As such, the blades are exposed to the core's neutron flux, resulting in irradiation of blade structural and absorber materials. Since the absorber depletes with time (if B{sub 4}C is used, it also swells) and the structural components undergo various degradation mechanisms (e.g., embrittlement, corrosion), the blades have limits on their operational lifetimes. Consequently, BWR utilities have implemented strategies that aim to maximize blade lifetimes while balancing operational costs, such as extending a refuelling outage to shuffle high exposure blades. This paper examines the blade replacement strategies used by BWR utilities operating in US, Europe and Asia by assembling information related to: the utility's specific blade replacement strategy; the impact the newer blade designs and changes in core operating mode were having on those strategies; the mechanical and nuclear limits that determined those strategies; the methods employed to ensure that lifetime limits were not exceeded during operation; and blade designs used (current and replacement blades). (author)

  15. BWR control blade replacement strategies

    International Nuclear Information System (INIS)

    Kennard, M.W.; Harbottle, J.E.

    2000-01-01

    The reactivity control elements in a BWR, the control blades, perform three significant functions: provide shutdown margin during normal and accident operating conditions; provide overall core reactivity control; and provide axial power shaping control. As such, the blades are exposed to the core's neutron flux, resulting in irradiation of blade structural and absorber materials. Since the absorber depletes with time (if B 4 C is used, it also swells) and the structural components undergo various degradation mechanisms (e.g., embrittlement, corrosion), the blades have limits on their operational lifetimes. Consequently, BWR utilities have implemented strategies that aim to maximize blade lifetimes while balancing operational costs, such as extending a refuelling outage to shuffle high exposure blades. This paper examines the blade replacement strategies used by BWR utilities operating in US, Europe and Asia by assembling information related to: the utility's specific blade replacement strategy; the impact the newer blade designs and changes in core operating mode were having on those strategies; the mechanical and nuclear limits that determined those strategies; the methods employed to ensure that lifetime limits were not exceeded during operation; and blade designs used (current and replacement blades). (author)

  16. Vortex-induced vibrations on a modern wind turbine blade

    DEFF Research Database (Denmark)

    Heinz, Joachim Christian; Sørensen, Niels N.; Zahle, Frederik

    2016-01-01

    This article investigates the aero-elastic response of the DTU 10-MW RWT blade in deep stall conditions with angles of attack in the vicinity of 90 degrees. The simulations were conducted with the high-fidelity fluid–structure interaction simulation tool HAWC2CFD employing the multi......-body-based structural model of HAWC2 and the incompressible computational fluid dynamics solver EllipSys3D. The study utilizes detached eddy simulation computations and considers the three-dimensional blade geometry including blade twist and taper. A preliminary frequency analysis of the load variations on a stiff....... Aero-elastic computations of the elastic blade confirmed the findings of the frequency analysis. Inflow conditions with inclination angles between Ψ = 20° and Ψ = 55° and relatively low to moderate wind speeds between V = 16 and V = 26 m s-1 were sufficient to trigger severe edgewise blade vibrations...

  17. Stiffness Characteristics of Composite Rotor Blades With Elastic Couplings

    Science.gov (United States)

    Piatak, David J.; Nixon, Mark W.; Kosmatka, John B.

    1997-01-01

    Recent studies on rotor aeroelastic response and stability have shown the beneficial effects of incorporating elastic couplings in composite rotor blades. However, none of these studies have clearly identified elastic coupling limits and the effects of elastic couplings on classical beam stiffnesses of representative rotor blades. Knowledge of these limits and effects would greatly enhance future aeroelastic studies involving composite rotor blades. The present study addresses these voids and provides a preliminary design database for investigators who may wish to study the effects of elastic couplings on representative blade designs. The results of the present study should provide a basis for estimating the potential benefits associated with incorporating elastic couplings without the need for first designing a blade cross section and then performing a cross-section analysis to obtain the required beam section properties as is customary in the usual one-dimensional beam-type approach.

  18. Probabilistic Structural Analysis of SSME Turbopump Blades: Probabilistic Geometry Effects

    Science.gov (United States)

    Nagpal, V. K.

    1985-01-01

    A probabilistic study was initiated to evaluate the precisions of the geometric and material properties tolerances on the structural response of turbopump blades. To complete this study, a number of important probabilistic variables were identified which are conceived to affect the structural response of the blade. In addition, a methodology was developed to statistically quantify the influence of these probabilistic variables in an optimized way. The identified variables include random geometric and material properties perturbations, different loadings and a probabilistic combination of these loadings. Influences of these probabilistic variables are planned to be quantified by evaluating the blade structural response. Studies of the geometric perturbations were conducted for a flat plate geometry as well as for a space shuttle main engine blade geometry using a special purpose code which uses the finite element approach. Analyses indicate that the variances of the perturbations about given mean values have significant influence on the response.

  19. Fluidic load control for wind turbines blades

    NARCIS (Netherlands)

    Boeije, C.S.; Vries, de H.; Cleine, I.; Emden, van E.; Zwart, G.G.M.; Stobbe, H.; Hirschberg, A.; Hoeijmakers, H.W.M.; Maureen Hand, xx

    2009-01-01

    This paper describes the initial steps into the investigation of the possibility of reducing fatigue loads on wind turbine blades by the application of fluidic jets. This investigation involves static pressure measurements as well as numerical simulations for a non-rotating NACA-0018 airfoil. The

  20. Gas Turbine Blade Damper Optimization Methodology

    Directory of Open Access Journals (Sweden)

    R. K. Giridhar

    2012-01-01

    Full Text Available The friction damping concept is widely used to reduce resonance stresses in gas turbines. A friction damper has been designed for high pressure turbine stage of a turbojet engine. The objective of this work is to find out effectiveness of the damper while minimizing resonant stresses for sixth and ninth engine order excitation of first flexure mode. This paper presents a methodology that combines three essential phases of friction damping optimization in turbo-machinery. The first phase is to develop an analytical model of blade damper system. The second phase is experimentation and model tuning necessary for response studies while the third phase is evaluating damper performance. The reduced model of blade is developed corresponding to the mode under investigation incorporating the friction damper then the simulations were carried out to arrive at an optimum design point of the damper. Bench tests were carried out in two phases. Phase-1 deals with characterization of the blade dynamically and the phase-2 deals with finding optimal normal load at which the blade resonating response is minimal for a given excitation. The test results are discussed, and are corroborated with simulated results, are in good agreement.

  1. Graphene in turbine blades

    Science.gov (United States)

    Das, D. K.; Swain, P. K.; Sahoo, S.

    2016-07-01

    Graphene, the two-dimensional (2D) nanomaterial, draws interest of several researchers due to its many superior properties. It has extensive applications in numerous fields. A turbine is a hydraulic machine which extracts energy from a fluid and converts it into useful work. Recently, Gudukeya and Madanhire have tried to increase the efficiency of Pelton turbine. Beucher et al. have also tried the same by reducing friction between fluid and turbine blades. In this paper, we study the advantages of using graphene as a coating on Pelton turbine blades. It is found that the efficiency of turbines increases, running and maintenance cost is reduced with more power output. By the application of graphene in pipes, cavitation will be reduced, durability of pipes will increase, operation and maintenance cost of water power plants will be less.

  2. Subsonic Swept Fan Blade

    Science.gov (United States)

    Gallagher, Edward J. (Inventor); Rogers, Thomas H. (Inventor)

    2017-01-01

    A gas turbine engine includes a spool, a turbine coupled to drive the spool, a propulsor coupled to be driven at a at a design speed by the turbine through the spool, and a gear assembly coupled between the propulsor and the spool. Rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extend from the hub. Each of the propulsor blades includes an airfoil body. The leading edge of the airfoil body has a swept profile such that, at the design speed, a component of a relative velocity vector of a working gas that is normal to the leading edge is subsonic along the entire radial span.

  3. A Long-Period Grating Sensor for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Glavind, Lars

    This PhD project concerns the applied research for providing a novel sensor for measurements on wind turbine blades, based on Long-Period Gratings. The idea is based on the utilization of a special asymmetrical optical fibre with Long-Period Gratings for directional sensitive bend sensing...... blade material, where a suitable process and recoating material were investigated. The sensor was implemented and tested on a full scale wind turbine blade placed on a test rig. This first prototype has demonstrated the capability of the sensor for wind turbine blade monitoring, particular...... the possibility to distinguish between the flap- and edge-wise bend directions on the wind turbine blade, providing a selective sensor. The sensor has proven to be very robust and suitable for this application....

  4. Accelerated fatigue testing of LM 19.1 blades

    DEFF Research Database (Denmark)

    Kristensen, Ole Jesper Dahl; Jørgensen, E.

    2003-01-01

    A series of 19.1 metre wind turbine blades manufactured by LM Glasfiber A/S of Lunderskov, Denmark were subjected to a series of flapwise fatigue tests. The object of these fatigue tests is to evaluate the impact of an increased load on the blade in afatigue test and to give information...... if it is possible to increase the load in fatigue test to shorten test time. The tests were carried out as a part of a project financed by the Danish Energy Agency. During the fatigue tests the blades have beensurveyed with thermal imaging equipment to determine how an increase in fatigue load affects the blade...... material. In addition to the thermal imaging surveillance the blades were instrumented with strain gauges. This report presents the temperature duringtest, calibration test results, moment range measurements, strain statistics, thermal imaging registrations and a determination of the size and cause...

  5. Performance of Savonius Blade Waterwheel with Variation of Blade Number

    Science.gov (United States)

    Sule, L.; Rompas, P. T. D.

    2018-02-01

    The utilization of water energy source is mainly used as a provider of electrical energy through hydroelectric power. The potential utilization of water flow energy is relatively small. The objective of this study is to know the best blade of Savonius waterwheel with various variables such as water discharge, blade number, and loading. The data used the efficiency of waterwheel, variation of blade number, variable water discharge, and loading in the shaft. The test results have shown that the performances of a top-water mill with the semicircular curve where the variation in the number of blades are 4, 6, and 8 at discharge and loading of 0.01587 m3/s and 1000 grams respectively were 9.945%, 13.929%, and 17.056% respectively. The blades number of 8 obtained the greatest performance. The more number of blades the greater the efficiency of the waterwheel Savonius.

  6. Calculation of blade-data for the Hamilton standard structural analysis of the composite blade for the 18 meter diameter rotor and a comparison with FFA-calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lundemo, C

    1979-04-01

    Section property data for the composite blade manufactured by Karlskronavarvet was calculated for the analysis performed by Hamilton Standard. The HS investigation was carried out for various operating conditions, including dynamic response loads, stresses, frequencies and dynamic stability. The Hamilton Standard results has been compared with the FFA (The Aeronautical Research Institute of Sweden) calculation. The results show that the stresses and moments calculated by HS never exceed the allowable levels for the hinged hub configuration. The natural frequencies seem to agree quite well with the measured frequencies. In the input data of the Hamilton Standard dynamic response analysis a too far aft position of the cordwise center of gravity of the outher third of the blade was used. Correct position will give lower stresses.

  7. Deflection estimation of a wind turbine blade using FBG sensors embedded in the blade bonding line

    International Nuclear Information System (INIS)

    Kim, Sang-Woo; Kang, Woo-Ram; Jeong, Min-Soo; Lee, In; Kwon, Il-Bum

    2013-01-01

    Estimating the deflection of flexible composite wind turbine blades is very important to prevent the blades from hitting the tower. Several researchers have used fiber Bragg grating (FBG) sensors—a type of optical fiber sensor (OFS)—to monitor the structural behavior of the blades. They can be installed on the surface and/or embedded in the interior of composites. However, the typical installation positions of OFSs present several problems, including delamination of sensing probes and a higher risk of fiber breakage during installation. In this study, we proposed using the bonding line between the shear web and spar cap as a new installation position of embedded OFSs for estimating the deflection of the blades. Laboratory coupon tests were undertaken preliminarily to confirm the strain measuring capability of embedded FBG sensors in adhesive layers, and the obtained values were verified by comparison with results obtained by electrical strain gauges and finite element analysis. We performed static loading tests on a 100 kW composite wind turbine blade to evaluate its deflections using embedded FBG sensors positioned in the bonding line. The deflections were estimated by classical beam theory considering a rigid body rotation near the tip of the blade. The evaluated tip deflections closely matched those measured by a linear variable differential transformer. Therefore, we verified the capability of embedded FBG sensors for evaluating the deflections of wind turbine blades. In addition, we confirmed that the bonding line between the shear web and spar cap is a practical location to embed the FBG sensors. (paper)

  8. Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine

    International Nuclear Information System (INIS)

    Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Murata, Junsuke; Furukawa, Kazuma; Yamamoto, Masayuki

    2015-01-01

    Small wind turbine performance and safety standard for straight-bladed Vertical Axis Wind Turbine (VAWT) have not been developed in the world because of the lack of fundament experimental data. This paper focuses on the evaluation of aerodynamic forces depending on several numbers of blades in wind tunnel experiment. In the present study, the test airfoil of blade is symmetry airfoil of NACA 0021 and the number of blades is from two to five. Pressure acting on the surface of rotor blade is measured during rotation by multiport pressure devices and transmitted to a stationary system through wireless LAN. And then, the aerodynamic forces (tangential force, normal force et al.) are discussed as a function of azimuth angle, achieving a quantitative analysis of the effect of numbers of blades. Finally, the loads are compared with the experimental data of six-component balance. As a result, it is clarified that the power coefficient decreases with the increase of numbers of blades. Furthermore, the power which is absorbed from wind by wind turbine mainly depends on upstream region of azimuth angle of θ = 0°∼180°. In this way, these results are very important for developing the simple design equations and applications for straight-bladed VAWT. - Highlights: • Aerodynamic forces are measured by not only torque meter but also six-component balance. • The pressure distribution on the surface of rotor blade is directly measured by multiport pressure devices. • The power coefficient decreases with the increase of numbers of blades. • The fluctuation amplitudes from six-component balance show larger value than the results of pressure distribution.

  9. An aerodynamic study on flexed blades for VAWT applications

    International Nuclear Information System (INIS)

    Micallef, Daniel; Farrugia, Russell; Sant, Tonio; Mollicone, Pierluigi

    2014-01-01

    There is renewed interest in aerodynamics research of VAWT rotors. Lift type, Darrieus designs sometimes use flexed blades to have an 'egg-beater shape' with an optimum Troposkien geometry to minimize the structural stress on the blades. While straight bladed VAWTs have been investigated in depth through both measurements and numerical modelling, the aerodynamics of flexed blades has not been researched with the same level of detail. Two major effects may have a substantial impact on blade performance. First, flexing at the equator causes relatively strong trailing vorticity to be released. Secondly, the blade performance at each station along the blade is influenced by self-induced velocities due to bound vorticity. The latter is not present in a straight bladed configuration. The aim of this research is to investigate these effects in relation to an innovative 4kW wind turbine concept being developed in collaboration with industry known as a self-adjusting VAWT (or SATVAWT). The approach used in this study is based on experimental and numerical work. A lifting line free-wake vortex model was developed. Wind tunnel power and hot-wire velocity measurements were performed on a scaled down, 60cm high, three bladed model in a closed wind tunnel. Results show a substantial axial wake induction at the equator resulting in a lower power generation at this position. This induction increases with increasing degree of flexure. The self-induced velocities caused by blade bound vorticity at a particular station was found to be relatively small

  10. Ceramic blade with tip seal

    Science.gov (United States)

    Glezer, B.; Bhardwaj, N.K.; Jones, R.B.

    1997-08-05

    The present gas turbine engine includes a disc assembly defining a disc having a plurality of blades attached thereto. The disc has a preestablished rate of thermal expansion and the plurality of blades have a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the disc. A shroud assembly is attached to the gas turbine engine and is spaced from the plurality of blades a preestablished distance forming an interface there between. Positioned in the interface is a seal having a preestablished rate of thermal expansion being generally equal to the rate of thermal expansion of the plurality of blades. 4 figs.

  11. Study on torsion arc blade type horizontal axis wind turbine; Nejire enko yokugata suihei jiku fusha ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, N; Kishimura, K [Meiji University, Tokyo (Japan)

    1996-10-27

    Discussing the rotor blades of the torsion arc blade type (TABT) wind turbine, difference in windmilling characteristics was determined between elliptic blades and rectangular blades by theoretical analysis and model experiment. Experimental generation of power was carried out using a test wind turbine in the natural wind. First, elliptic blades were bent into arcs and fixed to shaft. The action force was determined calculating the blade area and the wind velocity vertical thereto. Furthermore, the force in the direction to turn the rotor was determined with the effect of the part behind the blade taken into account. The rotation-curbing air resistance in the flank direction that a rotor experiences was subtracted to determine the torque generated. A formula was derived for the elliptic blade. Second, a formula was derived in the same way for the case of rectangular blades. In conclusion, in the case of 6-blade wind turbine, the rate of responsibility for wind turbine rotation of the part behind the blade was approximately 50% of the part in front of the blade. Shape coefficients were introduced into the theory, which resulted in values agreeing well with values obtained from experiments. Elliptic blades yielded more power than rectangular blades at the same wind velocity. High in durability, the TABT wind turbine is expected to be put into practical use as a compact auxiliary power generating device. 2 refs., 14 figs.

  12. Time response measurements of LASL diagnostic detectors

    International Nuclear Information System (INIS)

    Hocker, L.P.

    1970-07-01

    The measurement and data analysis techniques developed under the Los Alamos Scientific Laboratory's detector improvement program were used to characterize the time and frequency response of selected LASL Compton, fluor-photodiode (NPD), and fluor-photomultiplier (NPM) diagnostic detectors. Data acquisition procedures and analysis methods presently in use are summarized, and detector time and frequency data obtained using the EG and G/AEC electron linear accelerator fast pulse (approximately 50 psec FWHM) as the incident radiation driving function are presented. (U.S.)

  13. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction.

    Science.gov (United States)

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C F; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-08-12

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1-5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally.

  14. On damage diagnosis for a wind turbine blade using pattern recognition

    Science.gov (United States)

    Dervilis, N.; Choi, M.; Taylor, S. G.; Barthorpe, R. J.; Park, G.; Farrar, C. R.; Worden, K.

    2014-03-01

    With the increased interest in implementation of wind turbine power plants in remote areas, structural health monitoring (SHM) will be one of the key cards in the efficient establishment of wind turbines in the energy arena. Detection of blade damage at an early stage is a critical problem, as blade failure can lead to a catastrophic outcome for the entire wind turbine system. Experimental measurements from vibration analysis were extracted from a 9 m CX-100 blade by researchers at Los Alamos National Laboratory (LANL) throughout a full-scale fatigue test conducted at the National Renewable Energy Laboratory (NREL) and National Wind Technology Center (NWTC). The blade was harmonically excited at its first natural frequency using a Universal Resonant EXcitation (UREX) system. In the current study, machine learning algorithms based on Artificial Neural Networks (ANNs), including an Auto-Associative Neural Network (AANN) based on a standard ANN form and a novel approach to auto-association with Radial Basis Functions (RBFs) networks are used, which are optimised for fast and efficient runs. This paper introduces such pattern recognition methods into the wind energy field and attempts to address the effectiveness of such methods by combining vibration response data with novelty detection techniques.

  15. Probabilistic analysis of bladed turbine disks and the effect of mistuning

    Science.gov (United States)

    Shah, Ashwin; Nagpal, V. K.; Chamis, C. C.

    1990-01-01

    Probabilistic assessment of the maximum blade response on a mistuned rotor disk is performed using the computer code NESSUS. The uncertainties in natural frequency, excitation frequency, amplitude of excitation and damping have been included to obtain the cumulative distribution function (CDF) of blade responses. Advanced mean value first order analysis is used to compute CDF. The sensitivities of different random variables are identified. Effect of the number of blades on a rotor on mistuning is evaluated. It is shown that the uncertainties associated with the forcing function parameters have significant effect on the response distribution of the bladed rotor.

  16. Structural damage and chemical contaminants on reprocessed arthroscopic shaver blades.

    Science.gov (United States)

    Kobayashi, Masahiko; Nakagawa, Yasuaki; Okamoto, Yukihiro; Nakamura, Shinichiro; Nakamura, Takashi

    2009-02-01

    In response to socioeconomic pressure to cut budgets in medicine, single-use surgical instruments are often reprocessed despite potential biological hazard. To evaluate the quality and contaminants of reprocessed shaver blades. Reprocessed shaver blades have mechanical damage and chemical contamination. Controlled laboratory study. Seven blades and 3 abraders were reprocessed 1 time or 3 times and then were assessed. In the first part of the study, structural damage on the blades after 3 reprocessings was compared to that after 1 reprocessing using optical microscopy. In the second part, surface damage was observed using optical microscopy and scanning electron microscopy; elemental and chemical analyses of contaminants found by the microscopy were performed using scanning electron microscopy/energy dispersive x-ray spectroscopy, scanning Auger microscopy, and Fourier transform infrared spectroscopy. Optical microscopic examination revealed abrasion on the surface of the inner blade and cracks on the inner tube after 1 reprocessing. These changes were more evident after 3 reprocessings. Scanning electron microscopy/energy dispersive x-ray spectroscopy of the inner cutter of the blade reprocessed once showed contaminants containing calcium, carbon, oxygen, and silicon, and Fourier transform infrared spectroscopy demonstrated biological protein consisting mainly of collagen, some type of salts, and polycarbonate used in plastic molding. Scanning electron microscopy/energy dispersive x-ray spectroscopy of the inner cutter of the reprocessed abrader revealed contaminants containing carbon, calcium, phosphorous, and oxygen, and Fourier transform infrared spectroscopy showed H2O, hydroxyapatite, and hydroxyl proteins. Scanning Auger microscopy showed that the tin-nickel plating on the moving blade and abrader was missing in some locations. This is the first study to evaluate both mechanical damage and chemical contaminants containing collagen, hydroxyapatite, and salts

  17. Repair welding of cracked steam turbine blades

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Gill, T.P.S.; Albert, S.K.; Shanmugam, K.; Iyer, D.R.

    1999-01-01

    The procedure for repair welding of cracked steam turbine blades made of martensitic stainless steels has been developed using the gas tungsten arc welding process. Weld repair procedures were developed using both ER316L austenitic stainless steel filler wire and ER410 martensitic stainless steel filler wire. The repair welding procedure with austenitic filler wire was developed to avoid preheating of the blade as also hydrogen induced cold cracking, and involved evaluation of three different austenitic filler wires, viz. ER309L, ER316L and ERNiCr-3. The overall development of the repair welding procedure included selection of welding consumables (for austenitic filler metal), optimisation of post weld heat treatment parameters, selection of suitable method for local pre-heating and post-weld heat treatment (PWHT) of the blades, determination of mechanical properties of weldments in as-welded and PWHT conditions, and microstructural examination. After various trials using different procedures, the procedure of local PWHT using electrical resistance heating on the top surface of the weldment and monitoring the temperature by placing a thermocouple at the bottom of the weld, was found to give the most satisfactory results. A similar procedure was used for preheating while using ER410 filler metal. Mechanical testing of weldments before and after PWHT involved tensile tests at room temperature, face and root bend tests, and microhardness measurements across the fusion line and heat affected zone. During procedure qualification, mock-ups and actual repair welding, dye penetrant testing was used at different stages and where ever possible radiography was carried out. These procedures were developed for repair welding of cracked blades in the low-pressure (LP) steam turbines of Indian nuclear power plants. The procedure with ER316 L filler wire has so far been applied for repair welding of 2 cracked blades (made of AISI 410 SS) of LP steam turbines, while the procedure

  18. Integrated circuit cooled turbine blade

    Science.gov (United States)

    Lee, Ching-Pang; Jiang, Nan; Um, Jae Y.; Holloman, Harry; Koester, Steven

    2017-08-29

    A turbine rotor blade includes at least two integrated cooling circuits that are formed within the blade that include a leading edge circuit having a first cavity and a second cavity and a trailing edge circuit that includes at least a third cavity located aft of the second cavity. The trailing edge circuit flows aft with at least two substantially 180-degree turns at the tip end and the root end of the blade providing at least a penultimate cavity and a last cavity. The last cavity is located along a trailing edge of the blade. A tip axial cooling channel connects to the first cavity of the leading edge circuit and the penultimate cavity of the trailing edge circuit. At least one crossover hole connects the penultimate cavity to the last cavity substantially near the tip end of the blade.

  19. Verification of Thermal Models of Internally Cooled Gas Turbine Blades

    Directory of Open Access Journals (Sweden)

    Igor Shevchenko

    2018-01-01

    Full Text Available Numerical simulation of temperature field of cooled turbine blades is a required element of gas turbine engine design process. The verification is usually performed on the basis of results of test of full-size blade prototype on a gas-dynamic test bench. A method of calorimetric measurement in a molten metal thermostat for verification of a thermal model of cooled blade is proposed in this paper. The method allows obtaining local values of heat flux in each point of blade surface within a single experiment. The error of determination of local heat transfer coefficients using this method does not exceed 8% for blades with radial channels. An important feature of the method is that the heat load remains unchanged during the experiment and the blade outer surface temperature equals zinc melting point. The verification of thermal-hydraulic model of high-pressure turbine blade with cooling allowing asymmetrical heat removal from pressure and suction sides was carried out using the developed method. An analysis of heat transfer coefficients confirmed the high level of heat transfer in the leading edge, whose value is comparable with jet impingement heat transfer. The maximum of the heat transfer coefficients is shifted from the critical point of the leading edge to the pressure side.

  20. Study of Pumping Capacity of Pitched Blade Impellers

    Directory of Open Access Journals (Sweden)

    I. Fořt

    2002-01-01

    Full Text Available A study was made of the pumping capacity of pitched blade impellers in a cylindrical pilot plant vessel with four standard radial baffles at the wall under a turbulent regime of flow. The pumping capacity was calculated from the radial profile of the axial flow, under the assumption of axial symmetry of the discharge flow. The mean velocity was measured using laser Doppler anemometry in a transparent vessel of diameter T = 400 mm, provided with a standard dished bottom. Three and six blade pitched blade impellers (the pitch angle varied within the interval a Îá24°; 45°ń of impeller/vessel diameter ratio D/T = 0.36, as well as a three blade pitched blade impeller with folded blades of the same diameter, were tested. The calculated results were compared with the results of experiments mentioned in the literature, above all in cylindrical vessels with a flat bottom. Both arrangements of the agitated system were described by the impeller energetic efficiency, i.e, a criterion including in dimensionless form both the impeller energy consumption (impeller power input and the impeller pumping effect (impeller pumping capacity. It follows from the results obtained with various geometrical configurations that the energetic efficiency of pitched blade impellers is significantly lower for configurations suitable for mixing solid-liquid suspensions (low impeller off bottom clearances than for blending miscible liquids in mixing (higher impeller off bottom clearances.

  1. Measuring treatment response in psychotic depression

    DEFF Research Database (Denmark)

    Østergaard, Søren D; Meyers, Barnett S; Flint, Alastair J

    2014-01-01

    ). The response to the two regimens was compared using both a mixed effects model and effect size statistics on the total scores of three rating scales: the 17-item Hamilton Depression Rating Scale (HAM-D17), its 6-item melancholia subscale (HAM-D6), and the 11-item PDAS consisting of the HAM-D6 plus five items......BACKGROUND: There is no established psychometric instrument dedicated to the measurement of severity in psychotic depression (PD). The aim of this study was to investigate whether a new composite rating scale, the Psychotic Depression Assessment Scale (PDAS), covering both the psychotic...... and the depressive domains of PD, could detect differences in effect between two psychopharmacological treatment regimens. METHODS: We reanalyzed the data from the Study of Pharmacotherapy of Psychotic Depression (STOP-PD), which compared the effect of Olanzapine+Sertraline (n=129) versus Olanzapine+Placebo (n=130...

  2. Observations of dynamic stall on Darrieus wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, N.; Shibuya, S. [Department of Mechanical and Production Engineering, Niigata University, 8050 Ikarashi 2, 950-2181 Niigata (Japan)

    2001-02-01

    Flow field around a Darrieus wind turbine blade in dynamic stall is studied by flow visualization and particle image velocimetry (PIV) measurement in stationary and rotating frames of reference. The experiment is carried out using the small-scale Darrieus wind turbine in a water tunnel. The unsteady nature of the dynamic stall observed by the flow visualization is quantitatively reproduced in the instantaneous velocity distributions by PIV measurement, which describes the successive shedding of two pairs of stall vortices from the blade moving upstream. The mechanism of dynamic stall is due to the successive generation of separation on the inner surface of the blade followed by the formation of roll-up vortices from the outer surface. Although the qualitative nature of the dynamic stall is independent of the tip-speed ratios, the blade angle for stall appearance and the growth rate of the stall vortices are influenced by the change in tip-speed ratios.

  3. A new gaseous detector for tracking: The blade chamber

    International Nuclear Information System (INIS)

    Ambrosi, G.; Battiston, R.; Levi, G.; Barillari, T.; Susinno, G.; Bergsma, F.; Contin, A.; Labbe, J.C.; Laurenti, G.; Mattern, D.; Simonet, G.; Williams, M.C.S.; Zichichi, A.; Boscherini, D.; Bruni, G.; De Pasquale, S.; Giusti, P.; Maccarrone, G.; Nania, R.; O'Shea, V.; Castro, H.; Galvez, J.; Rivera, F.; Schioppa, M.; Sharma, A.

    1990-01-01

    As part of the LAA project at CERN a prototype of a streamer-chamber in which a blade, instead of a wire, is used as the amplification electrode has been built. A big advantage is that the blade can be bent to follow a curve so that a chamber can be built with cells ideally matched to the geometry of the experiment. Moreover, a blade is very rugged, it can withstand severe mechanical shocks and it is also resistant to damage by sparks. The drift time has been measured and a spatial resolution of 250μm has been achieved. Left-right ambiguity can be solved by measuring the charge asymmetry on the walls. The coordinate along the blade is read by external pickup strips. (orig.)

  4. The Performance Test of Three Different Horizontal Axis Wind Turbine (HAWT Blade Shapes Using Experimental and Numerical Methods

    Directory of Open Access Journals (Sweden)

    Wen-Tong Chong

    2013-06-01

    Full Text Available Three different horizontal axis wind turbine (HAWT blade geometries with the same diameter of 0.72 m using the same NACA4418 airfoil profile have been investigated both experimentally and numerically. The first is an optimum (OPT blade shape, obtained using improved blade element momentum (BEM theory. A detailed description of the blade geometry is also given. The second is an untapered and optimum twist (UOT blade with the same twist distributions as the OPT blade. The third blade is untapered and untwisted (UUT. Wind tunnel experiments were used to measure the power coefficients of these blades, and the results indicate that both the OPT and UOT blades perform with the same maximum power coefficient, Cp = 0.428, but it is located at different tip speed ratio, λ = 4.92 for the OPT blade and λ = 4.32 for the UOT blade. The UUT blade has a maximum power coefficient of Cp = 0.210 at λ = 3.86. After the tests, numerical simulations were performed using a full three-dimensional computational fluid dynamics (CFD method using the k-ω SST turbulence model. It has been found that CFD predictions reproduce the most accurate model power coefficients. The good agreement between the measured and computed power coefficients of the three models strongly suggest that accurate predictions of HAWT blade performance at full-scale conditions are also possible using the CFD method.

  5. CX-100 and TX-100 blade field tests.

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Adam (USDA-Agriculture Research Service, Bushland, TX); Jones, Perry L.; Zayas, Jose R.

    2005-12-01

    In support of the DOE Low Wind Speed Turbine (LWST) program two of the three Micon 65/13M wind turbines at the USDA Agricultural Research Service (ARS) center in Bushland, Texas will be used to test two sets of experimental blades, the CX-100 and TX-100. The blade aerodynamic and structural characterization, meteorological inflow and wind turbine structural response will be monitored with an array of 75 instruments: 33 to characterize the blades, 15 to characterize the inflow, and 27 to characterize the time-varying state of the turbine. For both tests, data will be sampled at a rate of 30 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow.

  6. Effect of Number of Blades on Performance of Ceiling Fans

    Directory of Open Access Journals (Sweden)

    Adeeb Ehsan

    2015-01-01

    Full Text Available In this paper, the effect of number of blades on ceiling fan performance is discussed. This approach helps to satisfy tradeoff between high air flow (performance and power consumption (energy efficiency. Specifically, variation from two to six blades is considered with nonlinear forward sweep profile. Reynolds Averaged Navier-Stokes (RANS technique is used to model the flow field induced by the ceiling fan inside a generic room. The performance is gauged through response parameters namely volumetric flow rate, mass flow rate, torque and energy efficiency. The results indicate that mass and volumetric flow rates are maximized for six blade configuration and energy efficiency is maximized for two blade configuration. The study indicates the importance of tradeoff between high air flow through ceiling fan and associated energy efficiency.

  7. Pitched Blade Turbine Efficiency at Particle Suspension

    Directory of Open Access Journals (Sweden)

    D. Ceres

    2010-01-01

    Full Text Available Mixing suspensions is a very important hydraulic operation. The pitched six-blade turbine is a widely-used axial-flow impeller. This paper deals with effect relative impeller size and particle content on theefficiency of a pitched six-blade turbine at particle suspension. Two pitched six-blade turbines were used in model measurements of just suspension impeller speed. The ratios of the vessel to agitator diameter D/d were 3 and 4.5. The measurements were carried out in a dish-bottomed vessel 300 mm in diameter. The just suspension impeller speeds were measured using an electrochemical method, and were checked visually. A 2.5 % NaCl water solution was used as the liquid phase, and glass particles with four equivalent diameters between 0.18 and 0.89 mmand volumetric concentration from 2.5 % to 40% were usedasthesolid phase. The criterion values πs=Po√Fr'3(d/D7 were calculated from the particle suspension and power consumption measurements. The dependencies of πs on particle content cv show that larger agitators are more efficient for higher particle content.

  8. Flowfield Analysis of Savonius-type Wind Turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Tae Hyun; Chang, Se Myong [Kunsan National Univ., Kunsan (Korea, Republic of); Seo, Hyun Soo [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2007-07-01

    In this paper, we researched flow of 8000 {approx} 24000 Reynolds number around a blade model of Savonius-type wind turbine with experimental and numerical method. For the blade shape of arc, we analyzed flowfield with streak-image flow visualization, measured wake, computed drag coefficients, and compared them for given angle of attacks. The result of research can be used to design aerodynamic performance of Savonius-type turbine rotor directly.

  9. WhalePower tubercle blade power performance test report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-15

    Toronto-based WhalePower Corporation has developed turbine blades that are modeled after humpback whale flippers. The blades, which incorporate tubercles along the leading edge of the blade, have been fitted to a Wenvor 25 kW turbine installed in North Cape, Prince Edward Island at a test site for the Wind Energy Institute of Canada (WEICan). A test was conducted to characterize the power performance of the prototype wind turbine. This report described the wind turbine configuration with particular reference to turbine information, power rating, blade information, tower information, control systems and grid connections. The test site was also described along with test equipment and measurement procedures. Information regarding power output as a function of wind speed was included along with power curves, power coefficient and annual energy production. The results for the power curve and annual energy production contain a level of uncertainty. While measurements for this test were collected and analyzed in accordance with International Electrotechnical Commission (IEC) standards for performance measurements of electricity producing wind turbines (IEC 61400-12-1), the comparative performance data between the prototype WhalePower wind turbine blade and the Wenvor standard blade was not gathered to IEC data standards. Deviations from IEC-61400-12-1 procedures were listed. 6 tabs., 16 figs., 3 appendices.

  10. Blade row dynamic digital compression program. Volume 2: J85 circumferential distortion redistribution model, effect of Stator characteristics, and stage characteristics sensitivity study

    Science.gov (United States)

    Tesch, W. A.; Steenken, W. G.

    1978-01-01

    The results of dynamic digital blade row compressor model studies of a J85-13 engine are reported. The initial portion of the study was concerned with the calculation of the circumferential redistribution effects in the blade-free volumes forward and aft of the compression component. Although blade-free redistribution effects were estimated, no significant improvement over the parallel-compressor type solution in the prediction of total-pressure inlet distortion stability limit was obtained for the J85-13 engine. Further analysis was directed to identifying the rotor dynamic response to spatial circumferential distortions. Inclusion of the rotor dynamic response led to a considerable gain in the ability of the model to match the test data. The impact of variable stator loss on the prediction of the stability limit was evaluated. An assessment of measurement error on the derivation of the stage characteristics and predicted stability limit of the compressor was also performed.

  11. Failure analysis of turbine blades

    International Nuclear Information System (INIS)

    Iorio, A.F.; Crespi, J.C.

    1989-01-01

    Two 20 MW gas turbines suffered damage in blades belonging to the 2nd. stage of the turbine after 24,000 hours of duty. From research it arises that the fuel used is not quite adequate to guarantee the blade's operating life due to the excess of SO 3 , C and Na existing in combustion gases which cause pitting to the former. Later, the corrosion phenomenon is presented under tension produced by working stress enhanced by pitting where Pb is its main agent. A change of fuel is recommended thus considering the blades will reach the operational life they were designed for. (Author) [es

  12. Measuring student responsibility in Physical Education ...

    African Journals Online (AJOL)

    The Contextual Self-Responsibility Questionnaire (CSRQ) and Personal and Social Responsibility Questionnaire (PSRQ) were developed to meausre student responsibility within the field of physical education. In the present study, the factor structure of the CSRQ and PSRQ was examined. Unlike previous structure ...

  13. Design Procedure of 4-Bladed Propeller

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    2013-09-01

    Sep 1, 2013 ... West African Journal of Industrial and Academic Research Vol.8 No.1 September 2013 ..... Number of blades. 5. Taylor's wake friction (w). The speed of ship (Vs), the number of propeller revolution (n), the blade number (Z) and the blade area ratio.... .... moment of inertia of a blade, the approximate.

  14. Pressure coefficient evolutions on the blades of a Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, A.; Guignard, S. [UMRR 7343, Marseilles (France). Lab. IUSTI; Kamoun, B. [Faculte des Sciences de Sfax (Tunisia). Lab. de Physique

    2012-07-01

    Measurements of the pressure field distribution on the blades of a vertical axis Savonius wind machine are presented. The rotor used in the wind tunnel is a two blades cylindrical shape with a central gap. Pressure gauges are placed on each side of a blade, so the pressure jumps between intrados and extrados of a blade during a whole rotation are drawn. In the static configuration, the machine is disposed at various incidences. The determination of pressure jumps allows to calculate the static torque of the machine versus the incidence angle. In the dynamic situation the machine is rotating at various frequencies and gauges signals are varying dynamically of course with the incidence. The dynamic torque coefficient is calculated. Evolutions of the starting torque and starting conditions are then described and dynamic effects on torque evolution are presented. (orig.)

  15. Bladed disc crack diagnostics using blade passage signals

    Science.gov (United States)

    Hanachi, Houman; Liu, Jie; Banerjee, Avisekh; Koul, Ashok; Liang, Ming; Alavi, Elham

    2012-12-01

    One of the major potential faults in a turbo fan engine is the crack initiation and propagation in bladed discs under cyclic loads that could result in the breakdown of the engines if not detected at an early stage. Reliable fault detection techniques are therefore in demand to reduce maintenance cost and prevent catastrophic failures. Although a number of approaches have been reported in the literature, it remains very challenging to develop a reliable technique to accurately estimate the health condition of a rotating bladed disc. Correspondingly, this paper presents a novel technique for bladed disc crack detection through two sequential signal processing stages: (1) signal preprocessing that aims to eliminate the noises in the blade passage signals; (2) signal postprocessing that intends to identify the crack location. In the first stage, physics-based modeling and interpretation are established to help characterize the noises. The crack initiation can be determined based on the calculated health monitoring index derived from the sinusoidal effects. In the second stage, the crack is located through advanced detrended fluctuation analysis of the preprocessed data. The proposed technique is validated using a set of spin rig test data (i.e. tip clearance and time of arrival) that was acquired during a test conducted on a bladed military engine fan disc. The test results have demonstrated that the developed technique is an effective approach for identifying and locating the incipient crack that occurs at the root of a bladed disc.

  16. A fast response miniature probe for wet steam flow field measurements

    International Nuclear Information System (INIS)

    Bosdas, Ilias; Mansour, Michel; Abhari, Reza S; Kalfas, Anestis I

    2016-01-01

    Modern steam turbines require operational flexibility due to renewable energies’ increasing share of the electrical grid. Additionally, the continuous increase in energy demand necessitates efficient design of the steam turbines as well as power output augmentation. The long turbine rotor blades at the machines’ last stages are prone to mechanical vibrations and as a consequence time-resolved experimental data under wet steam conditions are essential for the development of large-scale low-pressure steam turbines. This paper presents a novel fast response miniature heated probe for unsteady wet steam flow field measurements. The probe has a tip diameter of 2.5 mm, and a miniature heater cartridge ensures uncontaminated pressure taps from condensed water. The probe is capable of providing the unsteady flow angles, total and static pressure as well as the flow Mach number. The operating principle and calibration procedure are described in the current work and a detailed uncertainty analysis demonstrates the capability of the new probe to perform accurate flow field measurements under wet steam conditions. In order to exclude any data possibly corrupted by droplets’ impact or evaporation from the heating process, a filtering algorithm was developed and implemented in the post-processing phase of the measured data. In the last part of this paper the probe is used in an experimental steam turbine test facility and measurements are conducted at the inlet and exit of the last stage with an average wetness mass fraction of 8.0%. (paper)

  17. Adhesive Joints in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Jørgensen, Jeppe Bjørn

    to be determined in several different ways. The accuracy of different ways of measuring residual stresses in the adhesive was tested by applying five different methods on a single sandwich test specimen (laminate/adhesive/laminate) that was instrumented with strain gauges and fiber Bragg gratings. Quasi...... of the project is to develop new- and to improve the existing design rules for adhesive joints in wind turbine blades. The first scientific studies of adhesive joints were based on stress analysis, which requires that the bond-line is free of defects, but this is rarely the case for a wind turbine blade. Instead...... curing and test temperatures) on the formation of transverse cracks in the adhesive were tested experimentally. It was assumed that the transverse cracks evolved due to a combination of mechanical- and residual stresses in the adhesive. A new approach was developed that allows the residual stress...

  18. New blades shape up for dozers

    Energy Technology Data Exchange (ETDEWEB)

    Chironis, N.P.

    1985-05-01

    This article discusses the design of blades used on dozers for the reclamation work following surface mining. Two blades are described which have led to a 50% reduction in reclamation costs and a 20% reduction in fuel requirements over conventional equipment. These results are from work carried out at the Kayenta mine in Arizona, USA. Design considerations in the development of the blades are described. Descriptions of both the centre flow blades and the universal blades are given.

  19. Large-area photogrammetry based testing of wind turbine blades

    Science.gov (United States)

    Poozesh, Peyman; Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter; Harvey, Eric; Yarala, Rahul

    2017-03-01

    An optically based sensing system that can measure the displacement and strain over essentially the entire area of a utility-scale blade leads to a measurement system that can significantly reduce the time and cost associated with traditional instrumentation. This paper evaluates the performance of conventional three dimensional digital image correlation (3D DIC) and three dimensional point tracking (3DPT) approaches over the surface of wind turbine blades and proposes a multi-camera measurement system using dynamic spatial data stitching. The potential advantages for the proposed approach include: (1) full-field measurement distributed over a very large area, (2) the elimination of time-consuming wiring and expensive sensors, and (3) the need for large-channel data acquisition systems. There are several challenges associated with extending the capability of a standard 3D DIC system to measure entire surface of utility scale blades to extract distributed strain, deflection, and modal parameters. This paper only tries to address some of the difficulties including: (1) assessing the accuracy of the 3D DIC system to measure full-field distributed strain and displacement over the large area, (2) understanding the geometrical constraints associated with a wind turbine testing facility (e.g. lighting, working distance, and speckle pattern size), (3) evaluating the performance of the dynamic stitching method to combine two different fields of view by extracting modal parameters from aligned point clouds, and (4) determining the feasibility of employing an output-only system identification to estimate modal parameters of a utility scale wind turbine blade from optically measured data. Within the current work, the results of an optical measurement (one stereo-vision system) performed on a large area over a 50-m utility-scale blade subjected to quasi-static and cyclic loading are presented. The blade certification and testing is typically performed using International

  20. Damage detection in carbon composite material typical of wind turbine blades using auto-associative neural networks

    Science.gov (United States)

    Dervilis, N.; Barthorpe, R. J.; Antoniadou, I.; Staszewski, W. J.; Worden, K.

    2012-04-01

    The structure of a wind turbine blade plays a vital role in the mechanical and structural operation of the turbine. As new generations of offshore wind turbines are trying to achieve a leading role in the energy market, key challenges such as a reliable Structural Health Monitoring (SHM) of the blades is significant for the economic and structural efficiency of the wind energy. Fault diagnosis of wind turbine blades is a "grand challenge" due to their composite nature, weight and length. The damage detection procedure involves additional difficulties focused on aerodynamic loads, environmental conditions and gravitational loads. It will be shown that vibration dynamic response data combined with AANNs is a robust and powerful tool, offering on-line and real time damage prediction. In this study the features used for SHM are Frequency Response Functions (FRFs) acquired via experimental methods based on an LMS system by which identification of mode shapes and natural frequencies is accomplished. The methods used are statistical outlier analysis which allows a diagnosis of deviation from normality and an Auto-Associative Neural Network (AANN). Both of these techniques are trained by adopting the FRF data for normal and damage condition. The AANN is a method which has not yet been widely used in the condition monitoring of composite materials of blades. This paper is trying to introduce a new scheme for damage detection, localisation and severity assessment by adopting simple measurements such as FRFs and exploiting multilayer neural networks and outlier novelty detection.

  1. Temperature transient response measurement in flowing water

    International Nuclear Information System (INIS)

    Rainbird, J.C.

    1980-01-01

    A specially developed procedure is described for determining the thermal transient response of thermocouples and other temperature transducers when totally immersed in flowing water. The high velocity heat transfer conditions associated with this facility enable thermocouple response times to be predicted in other fluids. These predictions can be confirmed by electrical analogue experiments. (author)

  2. Investigation of Structural Behavior due to Bend-Twist Couplings in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Fedorov, Vladimir; Dimitrov, Nikolay Krasimirov; Berggreen, Christian

    2010-01-01

    for predicting the torsional response of the wind turbine blades with built-in bend-twist couplings. Additionally, a number of improved full-scale tests using an advanced bi-axial servo-hydraulic load control have been performed on a wind turbine blade section provided by Vestas Wind Systems A/S. In the present......One of the problematic issues concerning the design of future large composite wind turbine blades is the prediction of bend-twist couplings and torsion behaviour. The current work is a continuation of a previous work [1,2], and it examines different finite element modelling approaches...... of the blade cross section as the defining surface, off-setting the location of the shell elements according to the specified thickness. The experimental full-scale tests were carried out on an 8 m section of a 23 m wind turbine blade with specially implemented bend-twist coupling. The blade was tested under...

  3. Experimental calibration of the mathematical model of Air Torque Position dampers with non-cascading blades

    Directory of Open Access Journals (Sweden)

    Bikić Siniša M.

    2016-01-01

    Full Text Available This paper is focused on the mathematical model of the Air Torque Position dampers. The mathematical model establishes a link between the velocity of air in front of the damper, position of the damper blade and the moment acting on the blade caused by the air flow. This research aims to experimentally verify the mathematical model for the damper type with non-cascading blades. Four different types of dampers with non-cascading blades were considered: single blade dampers, dampers with two cross-blades, dampers with two parallel blades and dampers with two blades of which one is a fixed blade in the horizontal position. The case of a damper with a straight pipeline positioned in front of and behind the damper was taken in consideration. Calibration and verification of the mathematical model was conducted experimentally. The experiment was conducted on the laboratory facility for testing dampers used for regulation of the air flow rate in heating, ventilation and air conditioning systems. The design and setup of the laboratory facility, as well as construction, adjustment and calibration of the laboratory damper are presented in this paper. The mathematical model was calibrated by using one set of data, while the verification of the mathematical model was conducted by using the second set of data. The mathematical model was successfully validated and it can be used for accurate measurement of the air velocity on dampers with non-cascading blades under different operating conditions. [Projekat Ministarstva nauke Republike Srbije, br. TR31058

  4. On the Cutting Performance of Segmented Diamond Blades when Dry-Cutting Concrete.

    Science.gov (United States)

    Sánchez Egea, A J; Martynenko, V; Martínez Krahmer, D; López de Lacalle, L N; Benítez, A; Genovese, G

    2018-02-09

    The objective of the present study is to analyze and compare the cutting performance of segmented diamond blades when dry-cutting concrete. A cutting criteria is proposed to characterize the wear of the blades by measuring the variation of the external diameter and the weight loss of the blade. The results exhibit the cutting blade SB-A, which has twice the density of diamonds and large contact area, exhibits less wear even though the material removal rate is higher compared with the other two cutting blades. Additionally, the surface topography of the different blades is evaluated to examine the impact of wear depending on the surface profile and the distribution of the diamonds in the blade's matrix. Large number of diamonds pull-out are found in blades type SB-C, which additionally shows the worst wear resistant capability. As a conclusion, the cutting efficiency of the blade is found to be related to the density of embedded diamonds and the type of the surface profile of the cutting blade after reaching the stop criteria.

  5. About the problems and perspectives of making precision compressor blades

    Directory of Open Access Journals (Sweden)

    V. E. Galiev

    2014-01-01

    Full Text Available The problems of manufacturing blades with high precision profile geometry are considered in the article. The variant of the technology under development rules out the use of mechanical processing methods for blades airfoil. The article consists of an introduction and six small sections.The introduction sets out the requirements for modern aircraft engines, makes a list of problems arisen in the process of their manufacturing, and marks the relevance of the work.The first section analyzes the existing technology of precision blades. There is an illustration reflecting the stages of the process. Their advantages and disadvantages are marked.The second section provides an illustration, which shows the system-based blades used in the manufacturing process and a model of the work piece using the technology being developed. An analysis of each basing scheme is presented.In the third section we list the existing control methods of geometrical parameters of blades airfoil and present the measurement error data of devices. The special attention is paid to the impossibility to control the accuracy of geometrical parameters of precision blades.The fourth section presents the advantages of the electrochemical machining method with a consistent vibration of tool-electrode and with feeding the pulses of technology current over the traditional method. The article presents data accuracy and surface roughness of the blades airfoil reached owing to precision electrochemical machining. It illustrates machines that implement the given method of processing and components manufactured on them.The fifth section describes the steps of the developed process with justification for the use of the proposed operations.Based on the analysis, the author argues that the application of the proposed process to manufacture the precision compressor blades ensures producing the items that meet the requirements of the drawing.

  6. Laparoscopic pyloromyotomy: comparing the arthrotomy knife to the Bovie blade.

    Science.gov (United States)

    Thomas, Priscilla G; Sharp, Nicole E; St Peter, Shawn D

    2014-07-01

    Laparoscopic pyloromyotomy was performed at our institution using an arthrotomy knife until it became unavailable in 2010. Thus, we adapted the use of the blunt Bovie tip, which can be used with or without electrocautery to perform the myotomy. This study compared the outcomes between using the arthrotomy knife versus the Bovie blade in laparoscopic pyloromyotomies. Retrospective review was performed on all laparoscopic pyloromyotomy patients from October 2007 to September 2012. Arthrotomy knife pyloromyotomy patients were compared with those performed with the Bovie blade. Patient demographics, diagnostic measurements, electrolyte levels, length of stay, operative time, and complications were compared. A total of 381 patients were included, with 191 in the arthrotomy group and 190 in the Bovie blade group. No significant differences existed between groups in age, weight, gender, pyloric dimensions, electrolyte levels, or length of stay. Mean operative times were 15.8±5.6 min with knife and 16.4±5.3 min for Bovie blade (P=0.24). In the arthrotomy knife group, there was one incomplete pyloromyotomy and one omental herniation. There was one wound infection in each group. Readmission rate was greater in the arthrotomy knife group (5.7%) versus the Bovie blade group (3.1%). The Bovie blade appears to offer no objective disadvantages compared with the arthrotomy knife when performing laparoscopic pyloromyotomy. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Blade size and weight effects in shovel design.

    Science.gov (United States)

    Freivalds, A; Kim, Y J

    1990-03-01

    The shovel is a basic tool that has undergone only nominal systematic design changes. Although previous studies found shovel-weight and blade-size effects of shovelling, the exact trade-off between the two has not been quantified. Energy expenditure, heart rate, ratings of perceived exertion and shovelling performance were measured on five subjects using five shovels with varying blade sizes and weights to move sand. Energy expenditure, normalised to subject weight and load handled, varied quadratically with the blade-size/shovel-weight (B/W) ratio. Minimum energy cost was at B/W = 0.0676 m2/kg, which for an average subject and average load would require an acceptable 5.16 kcal/min of energy expenditure. Subjects, through the ratings of perceived exertion, also strongly preferred the lighter shovels without regard to blade size. Too large a blade or too heavy a shovel increased energy expenditure beyond acceptable levels, while too small a blade reduced efficiency of the shovelling.

  8. Avoiding measurement dogma: a response to Rossiter

    NARCIS (Netherlands)

    Rigdon, E.E.; Preacher, K.J.; Lee, N.; Howell, R.D.; Franke, G.R.; Borsboom, D.

    2011-01-01

    Purpose - This paper aims to respond to John Rossiter's call for a "Marketing measurement revolution" in the current issue of EJM, as well as providing broader comment on Rossiter's C-OAR-SE framework, and measurement practice in marketing in general. Design/methodology/approach - The paper is

  9. Structural damage identification in wind turbine blades using piezoelectric active sensing with ultrasonic validation

    Energy Technology Data Exchange (ETDEWEB)

    Claytor, Thomas N [Los Alamos National Laboratory; Ammerman, Curtt N [Los Alamos National Laboratory; Park, Gyu Hae [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory; Atterbury, Marie K [Los Alamos National Laboratory

    2010-01-01

    This paper gives a brief overview of a new project at LANL in structural damage identification for wind turbines. This project makes use of modeling capabilities and sensing technology to understand realistic blade loading on large turbine blades, with the goal of developing the technology needed to automatically detect early damage. Several structural health monitoring (SHM) techniques using piezoelectric active materials are being investigated for the development of wireless, low power sensors that interrogate sections of the wind turbine blade using Lamb wave propagation data, frequency response functions (FRFs), and time-series analysis methods. The modeling and sensor research will be compared with extensive experimental testing, including wind tunnel experiments, load and fatigue tests, and ultrasonic scans - on small- to mid-scale turbine blades. Furthermore, this study will investigate the effect of local damage on the global response of the blade by monitoring low-frequency response changes.

  10. Wind tunnel study of helical and straight-bladed vertical-axis wind turbine wakes

    Science.gov (United States)

    Bagheri, Maryam; Araya, Daniel

    2017-11-01

    It is hypothesized that blade curvature can serve as a passive means to control fluid entrainment and wake recovery in vertical-axis wind turbine (VAWT) arrays. We test this experimentally in a wind tunnel using two different VAWT configurations, one with straight blades and another with helical blades, keeping all other experimental parameters fixed. A small-scale, commercially available VAWT (15W max power) is used as the baseline wind tunnel model in each case. The commercial VAWT blades are replaced with either straight or helical blades that are 3D-printed extrusions of the same airfoil cross-section. Results from smoke flow visualization, three-component wake velocity measurements, and turbine power data are presented. These results give insight into the potential use of VAWTs with curved blades in utility-scale wind farms.

  11. Design of Linear Control System for Wind Turbine Blade Fatigue Testing

    DEFF Research Database (Denmark)

    Toft, Anders; Roe-Poulsen, Bjarke Nørskov; Christiansen, Rasmus

    2016-01-01

    This paper proposes a linear method for wind turbine blade fatigue testing at Siemens Wind Power. The setup consists of a blade, an actuator (motor and load mass) that acts on the blade with a sinusoidal moment, and a distribution of strain gauges to measure the blade flexure. Based...... difficult to control. To make a linear controller, a different approach has been chosen, namely making a controller which is not regulating on the input frequency, but on the input amplitude. A non-linear mechanical model for the blade and the motor has been constructed. This model has been simplified based...... on the desired output, namely the amplitude of the blade. Furthermore, the model has been linearised to make it suitable for linear analysis and control design methods.\\\\ The controller is designed based on a simplified and linearised model, and its gain parameter determined using pole placement. The model...

  12. Full scale test SSP 34m blade, combined load. Data report

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Per H.; Nielsen, Magda; Jensen, Find M. (and others)

    2010-11-15

    This report is part of the research project where a 34m wind turbine blade from SSP-Technology A/S was tested in combined flap and edgewise load. The applied load is 55% of an imaginary extreme event based on the certification load of the blade. This report describes the reason for choosing the loads and the load direction and the method of applying the loads to the blade. A novel load introduction allows the blade to deform in a more realistic manner, allowing the observation of e.g. transverse shear distortion. The global and local deformation of the blade as well as the blades' respond to repeated tests has been studied and the result from these investigations are presented, including the measurements performed. (Author)

  13. Aerodynamic Analysis of Morphing Blades

    Science.gov (United States)

    Harris, Caleb; Macphee, David; Carlisle, Madeline

    2016-11-01

    Interest in morphing blades has grown with applications for wind turbines and other aerodynamic blades. This passive control method has advantages over active control methods such as lower manufacturing and upkeep costs. This study has investigated the lift and drag forces on individual blades with experimental and computational analysis. The goal has been to show that these blades delay stall and provide larger lift-to-drag ratios at various angles of attack. Rigid and flexible airfoils were cast from polyurethane and silicone respectively, then lift and drag forces were collected from a load cell during 2-D testing in a wind tunnel. Experimental data was used to validate computational models in OpenFOAM. A finite volume fluid-structure-interaction solver was used to model the flexible blade in fluid flow. Preliminary results indicate delay in stall and larger lift-to-drag ratios by maintaining more optimal angles of attack when flexing. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  14. A study of helicopter gust response alleviation by automatic control

    Science.gov (United States)

    Saito, S.

    1983-01-01

    Two control schemes designed to alleviate gust-induced vibration are analytically investigated for a helicopter with four articulated blades. One is an individual blade pitch control scheme. The other is an adaptive blade pitch control algorithm based on linear optimal control theory. In both controllers, control inputs to alleviate gust response are superimposed on the conventional control inputs required to maintain the trim condition. A sinusoidal vertical gust model and a step gust model are used. The individual blade pitch control, in this research, is composed of sensors and a pitch control actuator for each blade. Each sensor can detect flapwise (or lead-lag or torsionwise) deflection of the respective blade. The acturator controls the blade pitch angle for gust alleviation. Theoretical calculations to predict the performance of this feedback system have been conducted by means of the harmonic method. The adaptive blade pitch control system is composed of a set of measurements (oscillatory hub forces and moments), an identification system using a Kalman filter, and a control system based on the minimization of the quadratic performance function.

  15. Structural dynamics of shroudless, hollow fan blades with composite in-lays

    Science.gov (United States)

    Aiello, R. A.; Hirschbein, M. S.; Chamis, C. C.

    1982-01-01

    Structural and dynamic analyses are presented for a shroudless, hollow titanium fan blade proposed for future use in aircraft turbine engines. The blade was modeled and analyzed using the composite blade structural analysis computer program (COBSTRAN); an integrated program consisting of mesh generators, composite mechanics codes, NASTRAN, and pre- and post-processors. Vibration and impact analyses are presented. The vibration analysis was conducted with COBSTRAN. Results show the effect of the centrifugal force field on frequencies, twist, and blade camber. Bird impact analysis was performed with the multi-mode blade impact computer program. This program uses the geometric model and modal analysis from the COBSTRAN vibration analysis to determine the gross impact response of the fan blades to bird strikes. The structural performance of this blade is also compared to a blade of similar design but with composite in-lays on the outer surface. Results show that the composite in-lays can be selected (designed) to substantially modify the mechanical performance of the shroudless, hollow fan blade.

  16. Simple method for thick blade calculation. Part 2. Application to a thin blade; Kanbenna ichiatsuyoku keisanho (zokuho). Usui tsubasa eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Maita, S; Ando, J; Nakatake, K [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1996-04-10

    A source and QCM (SQCM) method has been developed, by which the blade performance can be calculated in a short time with satisfying the Kutta`s condition without repeating calculations even for the three-dimensional blade. Performances were calculated for the two-dimensional and three-dimensional blades. The SQCM has provided appropriate results. However, it was found that there are some problems for thin blades. In this study, the SQCM has been applied to a thin blade. The conventional eddy model equation of SQCM is not a continuous distribution in the strict sense. In this study, this problem has been modified. When point eddies with constant strength are in line continuously within the interval, the induced velocity at an arbitrary position can be expressed by the integral equation using a position of marginal point of the interval. This equation can be analyzed by the integral of influence coefficient. The position of marginal point of the interval is a position of control point determined by the QCM theory. As a result of the modification, it was found that the SQCM in response to a thin blade has provided precise calculation results stably even for an ultra thin blade with the blade thickness ratio of 0.001. 1 ref., 8 figs.

  17. Response Analysis and Comparison of a Spar-Type Floating Offshore Wind Turbine and an Onshore Wind Turbine under Blade Pitch Controller Faults

    DEFF Research Database (Denmark)

    Etemaddar, M.; Blanke, Mogens; Gao, Z.

    2016-01-01

    in the controller dynamic link library and a short-term extreme response analysis is performed using the HAWC2 simulation tool.The main objectives of this paper are to investigate how different faults affect the performance of wind turbines for condition monitoring purposes and which differences exist...... in the structural responses between onshore and offshore floating wind turbines. Statistical analysis of the selected response parameters are conducted using the six1-hour stochastic samples for each load case.For condition monitoring purpose,the effects of faults on the responses at different wind speeds and fault...... amplitudes are investigated by comparing the same response under normal operation.The severities of the individual faults are categorized by the extreme values of structural loads and the structural components are sorted based on the magnitude of the fault effects on the extreme values.The pitch sensor fixed...

  18. Noise aspects at aerodynamic blade optimisation projects

    International Nuclear Information System (INIS)

    Schepers, J.G.

    1997-06-01

    The Netherlands Energy Research Foundation (ECN) has often been involved in industrial projects, in which blade geometries are created automatic by means of numerical optimisation. Usually, these projects aim at the determination of the aerodynamic optimal wind turbine blade, i.e. the goal is to design a blade which is optimal with regard to energy yield. In other cases, blades have been designed which are optimal with regard to cost of generated energy. However, it is obvious that the wind turbine blade designs which result from these optimisations, are not necessarily optimal with regard to noise emission. In this paper an example is shown of an aerodynamic blade optimisation, using the ECN-program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. 11 figs., 8 refs

  19. Static/dynamic fluid-structure interaction analysis for 3-D rotary blade model

    International Nuclear Information System (INIS)

    Kim, Dong Hyun; Kim, Yu Sung; Kim, Dong Man; Park, Kang Kyun

    2009-01-01

    In this study, static/dynamic fluid-structure interaction analyses have been conducted for a 3D rotary blade model like a turbo-machinery or wind turbine blade. Advanced computational analysis system based on Computational Fluid Dynamics (CFD) and Computational Structural Dynamics (CSD) has been developed in order to investigate detailed dynamic responses of rotary type models. Fluid domains are modeled using the computational grid system with local grid deforming techniques. Reynolds-averaged Navier-Stokes equations with various turbulence model are solved for unsteady flow problems of the rotating blade model. Detailed static/dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating blades.

  20. Active Blade Pitch Control for Straight Bladed Darrieus Vertical Axis Wind Turbine of New Design

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.; Basu, Biswajit

    2013-01-01

    in a previous publication. Further, it is well know that the variation of the blade pitch angle during the rotation improves the power efficiency. A blade pitch variation is implemented by active blade pitch control, which operates as per wind speed and position of the blade with respect to the rotor. A double...

  1. Measuring long impulse responses with pseudorandom sequences and sweep signals

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Jacobsen, Finn

    2010-01-01

    In architectural acoustics, background noise, loudspeaker nonlinearities, and time variances are the most common disturbances that can compromise a measurement. The effects of such disturbances on measurement of long impulse responses with pseudorandom sequences (maximum-length sequences (MLS) an...

  2. Standard Specification for Steel Blades Used with the Photovoltaic Module Surface Cut Test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This specification specifies the recommended physical characteristics of the steel blades required for the surface cut test described in ANSI/UL 1703 (Section 24) and IEC 61730-2 (Paragraph 10.3). 1.2 ANSI/UL 1703 and IEC 61730-2 are standards for photovoltaic module safety testing. 1.3 This standard provides additional fabrication details for the surface cut test blades that are not provided in ANSI/UL 1703 or IEC 61730-2. Surface cut test blades that have out-of-tolerance corner radii or burrs are known to cause erroneous test results, either passes or failures. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  3. Probabilistic structural analysis to quantify uncertainties associated with turbopump blades

    Science.gov (United States)

    Nagpal, Vinod K.; Rubinstein, Robert; Chamis, Christos C.

    1987-01-01

    A probabilistic study of turbopump blades has been in progress at NASA Lewis Research Center for over the last two years. The objectives of this study are to evaluate the effects of uncertainties in geometry and material properties on the structural response of the turbopump blades to evaluate the tolerance limits on the design. A methodology based on probabilistic approach has been developed to quantify the effects of the random uncertainties. The results of this study indicate that only the variations in geometry have significant effects.

  4. Wind Turbine Blade with Angled Girders

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a reinforced blade for a wind turbine, particularly to a blade having a new arrangement of two or more girders in the blade, wherein each of the girders is connected to the upper part and the lower part of the shell and forms an angle with another girder thereby...

  5. Reliability of wind turbine blades: An overview of materials testing

    DEFF Research Database (Denmark)

    Holmes, John W.; Sørensen, Bent F.; Brøndsted, Povl

    2007-01-01

    an understanding of how damage develops in composite structures, composite materials and adhesives. Designing reliable wind turbine blades also requires the further development of laboratory scale and full scale test methods to evaluate the structural response and durability of new materials under various loading......The structural reliability of wind turbine components can have a profound impact on both the profitability and reputation of a wind turbine manufacturer or supplier of wind turbine components. The issue of reliability is of critical concern when large wind farm co-operatives are considered......, and when wind turbines are located in remote regions where the cost of inspections and repairs can be very high. From a structural viewpoint, wind turbine blades are subjected to very complex loading histories with coupled deformation modes. The long-term reliability of wind turbine blades requires...

  6. A comparison study of the two-bladed partial pitch turbine during normal operation and an extreme gust conditions

    International Nuclear Information System (INIS)

    Kim, T; Petersen, M M; Larsen, T J

    2014-01-01

    This paper shows the load comparisons between the numerical simulation and the full-scale load measurement data. First part of this paper includes the comparisons of statistic load in terms of maximum, mean, and minimum values for the selected normal operation cases. The blade root bending moments and tower top bending moments are compared. Second part of this paper introduces the dynamic response comparisons during an extreme wind gust condition where the wind speed changed approximately 10 m/s during three seconds. The rotor speed and blade root flapwise and edgewise bending moment are compared. The nonlinear aeroelastic simulation code HAWC2 is used for the simulations. A very fine agreement between the simulated and the full-scale measured loads is seen for the both comparisons

  7. Manufacturing issues which affect coating erosion performance in wind turbine blades

    Science.gov (United States)

    Cortés, E.; Sánchez, F.; Domenech, L.; Olivares, A.; Young, T. M.; O'Carroll, A.; Chinesta, F.

    2017-10-01

    Erosion damage, caused by repeated rain droplet impact on the leading edges of wind turbine blades, is a major cause for cost concern. Resin Infusion (RI) is used in wind energy blades where low weight and high mechanical performance materials are demanded. The surface coating plays a crucial role in the manufacturing and performance response. The Leading Edge coating is usually moulded, painted or sprayed onto the blade surface so adequate adhesion in the layers' characterization through the thickness is required for mechanical performance and durability reasons. In the current work, an investigation has been directed into the resulting rain erosion durability of the coating was undertaken through a combination of mass loss testing measurements with manufacturing processing parameter variations. The adhesion and erosion is affected by the shock wave caused by the collapsing water droplet on impact. The stress waves are transmitted to the substrate, so microestructural discontinuities in coating layers and interfaces play a key role on its degradation. Standard industrial systems are based on a multilayer system, with a high number of interfaces that tend to accelerate erosion by delamination. Analytical and numerical models are commonly used to relate lifetime prediction and to identify suitable coating and composite substrate combinations and their potential stress reduction on the interface. In this research, the input parameters for the appropriate definition of the Cohesive Zone Modelling (CZM) of the coating-substrate interface are outlined by means of Pull off testing and Peeling testing results. It allowed one to optimize manufacturing and coating process for blades into a knowledge-based guidance for leading edge coating material development. It was achieved by investigating the erosion degradation process using both numerical and laboratory techniques (Pull off, Peeling and Rain Erosion Testing in a whirling arm rain erosion test facility).

  8. Composite blade damaging under impact

    NARCIS (Netherlands)

    Menouillard, T.; Réthoré, J.; Bung, H.; Suffis, A.

    2006-01-01

    Composites materials are now being used in primary aircraft structures, and other domains because of numerous advantages. A part of a continuous in-flight operating costs, gas turbine engine manufacturers are always looking for ways to decrease engine weight. This is the case of compressor blades

  9. Advanced LP turbine blade design

    International Nuclear Information System (INIS)

    Jansen, M.; Pfeiffer, R.; Termuehlen, H.

    1990-01-01

    In the 1960's and early 1970's, the development of steam turbines for the utility industry was mainly influenced by the demand for increasing unit sizes. Nuclear plants in particular, required the design of LP turbines with large annulus areas for substantial mass and volumetric steam flows. Since then the development of more efficient LP turbines became an ongoing challenge. Extensive R and D work was performed in order to build efficient and reliable LP turbines often exposed to severe corrosion, erosion and dynamic excitation conditions. This task led to the introduction of an advanced disk-type rotor design for 1800 rpm LP turbines and the application of a more efficient, reaction-type blading for all steam turbine sections including the first stages of LP turbines. The most recent developments have resulted in an advanced design of large LP turbine blading, typically used in the last three stages of each LP turbine flow section. Development of such blading required detailed knowledge of the three dimensional, largely transonic, flow conditions of saturated steam. Also the precise assessment of blade stressing from dynamic conditions, such as speed and torsional resonance, as well as stochastic and aerodynamic excitation is of extreme importance

  10. Design of Wind Turbine Blades

    DEFF Research Database (Denmark)

    McGugan, Malcolm

    2016-01-01

    In this section the research program framework for European PhD network MARE-WINT is presented, particularly the technology development work focussing on reliability/maintenance and the models describing multi-body fluid structure interaction for the Rotor Blade structure. In order to give...

  11. A smart segmented blade system for reducing weight of the wind turbine rotor

    International Nuclear Information System (INIS)

    Lu, Hongya; Zeng, Pan; Lei, Liping; Yang, Yabin; Xu, Yuejie; Qian, Lingyun

    2014-01-01

    Highlights: • A segmented blade system to light the wind turbine rotor is proposed. • The experiments in the wind tunnel and the numerical calculation are combined to validate the effectiveness of the design. • The moment of the blade below the hinged location are alleviated. • The mounting locations of the hinged rods significantly affect the moment distribution on the blade. • The gross weight of the blade can be reduced by 35.4%. - Abstract: The paper proposes a novel design concept for the wind turbine rotors. The design is composed of the segmented blades and a hinged-rods support structure (SBHR) as a means of reducing weight through alleviating the moment on the blade. A prototype of the design is manufactured. Focusing on the hinged-rods support structure (HRSS), a method combining the experiments and numerical calculation is developed to analyze its feasibility. The experiments in the wind tunnel platform were conducted to measure the loads at the root of the isolated blade and in the rods. A numerical model was developed to describe the designed wind turbine rotor using the measured loads in experiments. In the model, the mounting locations of the hinged rods significantly affected the moment distribution on the blade. Thus, two dimensionless indexes were determined to analyze its influences. The model perfectly explain the characteristics of the novel structure under different configurations. The results demonstrated that the moment of the blade below the hinged location were alleviated, which reduced the requirements for the material. A 43.1% reduction of the maximum moment can be achieved in the design. In addition, the gross reduced weight of the blade was estimated to be 35.4% based on the blade mass distribution along the span

  12. Composite ceramic blade for a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rossmann, A; Hoffmueller, W; Krueger, W

    1980-06-26

    The gas turbine blade consists of a supporting metal core which has at its lower end a modelled root and a profile blade made of ceramics enclosing it at some distance. The invention deals with a reliable connection between these two parts of the rotor blade: from the top end of the blade core a head protrudes supporting the thin-walled profile blade from below with a projection each pointing into the interior. The design of the projections and supporting surfaces is described and illustrated by drawings.

  13. Parametric Blade Study Test Report Rotor Configuration. Number 4

    Science.gov (United States)

    1988-11-01

    Figure 2. The rotor shaft is mounted on an oil-damped roller bearing at the forward location and a ball bearing at the aft location; radial runout does...thermodynamic properties. 22 d. Corrections were made to measured compressor temperatures and pressures, facility flowrate, and rotor wheel speed to...1152 .Z660 .1024 STRM- BLADE BLADE WHEEL LINE SECT. LEAN SPEED NUMBER ANGLE ANGLE 1 -55.15 7.32 1497.9 2 -53.85 8.09 1434.7 3 -52.96 7.11 1372.1 4

  14. Parametric Blade Study Test Report Rotor Configuration. Number 1

    Science.gov (United States)

    1988-11-01

    location and a ball bearing at the aft location; radial runout does not exceed 0.001 inch. Forward and aft buffer controlled gap carbon seals were used...made to measured compressor temperatures and pressures, facility flowrate, and rotor wheel speed to correspond to standard inlet conditions of...0662 .1034 STRM- BLADE BLADE WHEEL LINE SECT. LEAN SPEED NUMBER ANGLE ANGLE I -53.96 7.35 1497.5 2 -52.68 8.11 1434.6 3 -51.88 7.15 1372.5 4 -50.49

  15. Achieving better cooling of turbine blades using numerical simulation methods

    Science.gov (United States)

    Inozemtsev, A. A.; Tikhonov, A. S.; Sendyurev, C. I.; Samokhvalov, N. Yu.

    2013-02-01

    A new design of the first-stage nozzle vane for the turbine of a prospective gas-turbine engine is considered. The blade's thermal state is numerically simulated in conjugate statement using the ANSYS CFX 13.0 software package. Critical locations in the blade design are determined from the distribution of heat fluxes, and measures aimed at achieving more efficient cooling are analyzed. Essentially lower (by 50-100°C) maximal temperature of metal has been achieved owing to the results of the performed work.

  16. Improved blade element momentum theory for wind turbine aerodynamic computations

    DEFF Research Database (Denmark)

    Sun, Zhenye; Chen, Jin; Shen, Wen Zhong

    2016-01-01

    Blade element momentum (BEM) theory is widely used in aerodynamic performance predictions and design applications for wind turbines. However, the classic BEM method is not quite accurate which often tends to under-predict the aerodynamic forces near root and over-predict its performance near tip....... for the MEXICO rotor. Results show that the improved BEM theory gives a better prediction than the classic BEM method, especially in the blade tip region, when comparing to the MEXICO measurements. (C) 2016 Elsevier Ltd. All rights reserved....

  17. Nonlinear modeling of tuned liquid dampers (TLDs) in rotating wind turbine blades for damping edgewise vibrations

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R. K.; Basu, Biswajit

    2015-01-01

    Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g. This facilit......Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g...... free-surface elevation equally well, the one-mode model can still be utilized for the design of TLD. Parametric optimization of the TLD is carried out based on the one-mode model, and the optimized damper effectively improves the dynamic response of wind turbine blades....

  18. Numerical Investigation of the Tip Vortex of a Straight-Bladed Vertical Axis Wind Turbine with Double-Blades

    Directory of Open Access Journals (Sweden)

    Yanzhao Yang

    2017-10-01

    Full Text Available Wind velocity distribution and the vortex around the wind turbine present a significant challenge in the development of straight-bladed vertical axis wind turbines (VAWTs. This paper is intended to investigate influence of tip vortex on wind turbine wake by Computational Fluid Dynamics (CFD simulations. In this study, the number of blades is two and the airfoil is a NACA0021 with chord length of c = 0.265 m. To capture the tip vortex characteristics, the velocity fields are investigated by the Q-criterion iso-surface (Q = 100 with shear-stress transport (SST k-ω turbulence model at different tip speed ratios (TSRs. Then, mean velocity, velocity deficit and torque coefficient acting on the blade in the different spanwise positions are compared. The wind velocities obtained by CFD simulations are also compared with the experimental data from wind tunnel experiments. As a result, we can state that the wind velocity curves calculated by CFD simulations are consistent with Laser Doppler Velocity (LDV measurements. The distribution of the vortex structure along the spanwise direction is more complex at a lower TSR and the tip vortex has a longer dissipation distance at a high TSR. In addition, the mean wind velocity shows a large value near the blade tip and a small value near the blade due to the vortex effect.

  19. Integral Twist Actuation of Helicopter Rotor Blades for Vibration Reduction

    Science.gov (United States)

    Shin, SangJoon; Cesnik, Carlos E. S.

    2001-01-01

    Active integral twist control for vibration reduction of helicopter rotors during forward flight is investigated. The twist deformation is obtained using embedded anisotropic piezocomposite actuators. An analytical framework is developed to examine integrally-twisted blades and their aeroelastic response during different flight conditions: frequency domain analysis for hover, and time domain analysis for forward flight. Both stem from the same three-dimensional electroelastic beam formulation with geometrical-exactness, and axe coupled with a finite-state dynamic inflow aerodynamics model. A prototype Active Twist Rotor blade was designed with this framework using Active Fiber Composites as the actuator. The ATR prototype blade was successfully tested under non-rotating conditions. Hover testing was conducted to evaluate structural integrity and dynamic response. In both conditions, a very good correlation was obtained against the analysis. Finally, a four-bladed ATR system is built and tested to demonstrate its concept in forward flight. This experiment was conducted at NASA Langley Tansonic Dynamics Tunnel and represents the first-of-a-kind Mach-scaled fully-active-twist rotor system to undergo forward flight test. In parallel, the impact upon the fixed- and rotating-system loads is estimated by the analysis. While discrepancies are found in the amplitude of the loads under actuation, the predicted trend of load variation with respect to its control phase correlates well. It was also shown, both experimentally and numerically, that the ATR blade design has the potential for hub vibratory load reduction of up to 90% using individual blade control actuation. Using the numerical framework, system identification is performed to estimate the harmonic transfer functions. The linear time-periodic system can be represented by a linear time-invariant system under the three modes of blade actuation: collective, longitudinal cyclic, and lateral cyclic. A vibration

  20. Structural investigation of composite wind turbine blade considering various load cases and fatigue life

    International Nuclear Information System (INIS)

    Kong, C.; Bang, J.; Sugiyama, Y.

    2005-01-01

    This study proposes a structural design for developing a medium scale composite wind turbine blade made of E-glass/epoxy for a 750 kW class horizontal axis wind turbine system. The design loads were determined from various load cases specified at the IEC61400-1 international specification and GL regulations for the wind energy conversion system. A specific composite structure configuration, which can effectively endure various loads such as aerodynamic loads and loads due to accumulation of ice, hygro-thermal and mechanical loads, was proposed. To evaluate the proposed composite wind turbine blade, structural analysis was performed by using the finite element method. Parametric studies were carried out to determine an acceptable blade structural design, and the most dominant design parameters were confirmed. In this study, the proposed blade structure was confirmed to be safe and stable under various load conditions, including the extreme load conditions. Moreover, the blade adapted a new blade root joint with insert bolts, and its safety was verified at design loads including fatigue loads. The fatigue life of a blade that has to endure for more than 20 years was estimated by using the well-known S-N linear damage theory, the service load spectrum, and the Spera's empirical equations. With the results obtained from all the structural design and analysis, prototype composite blades were manufactured. A specific construction process including the lay-up molding method was applied to manufacturing blades. Full-scale static structural test was performed with the simulated aerodynamic loads. From the experimental results, it was found that the designed blade had structural integrity. In addition, the measured results of deflections, strains, mass, and radial center of gravity agreed well with the analytical results. The prototype blade was successfully certified by an international certification institute, GL (Germanisher Lloyd) in Germany

  1. Structural modeling for multicell composite rotor blades

    Science.gov (United States)

    Rehfield, Lawrence W.; Atilgan, Ali R.

    1987-01-01

    Composite material systems are currently good candidates for aerospace structures, primarily for the design flexibility they offer, i.e., it is possible to tailor the material and manufacturing approach to the application. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics, and which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to present a new multicell beam model for composite rotor blades and to validate predictions based on the new model by comparison with a finite element simulation in three benchmark static load cases.

  2. A laser-optical sensor system for blade vibration detection of high-speed compressors

    Science.gov (United States)

    Neumann, Mathias; Dreier, Florian; Günther, Philipp; Wilke, Ulrich; Fischer, Andreas; Büttner, Lars; Holzinger, Felix; Schiffer, Heinz-Peter; Czarske, Jürgen

    2015-12-01

    Improved efficiency as well as increased lifetime of turbines and compressors are important goals in turbomachinery development. A significant enhancement to accomplish these aims can be seen in online monitoring of the operating parameters of the machines. During the operation of compressors it is of high interest to predict critical events like flutter or stall which can be achieved by observing blade deformations and vibrations. We have developed a laser Doppler distance sensor (LDDS), which is capable of simultaneously measuring the radial blade expansions, the circumferential blade deflections as well as the circumferential velocities of the rotor blade tips. As a result, an increase of blade vibrations is measured before stall at characteristic frequencies. While the detected vibration frequencies and the vibration increase are in agreement with the measurement results of a commercial capacitive blade tip timing system, the measured values of the vibration amplitudes differ by a factor of three. This difference can be mainly attributed to the different measurement locations and to the different measurement approaches. Since the LDDS is applicable to metal as well as ceramic, carbon-fiber and glass-fiber reinforced composite blades, a universally applicable sensor system for stall prediction and status monitoring is presented.

  3. CFD computations of wind turbine blade loads during standstill operation KNOW-BLADE, Task 3.1 report

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Johansen, Jeppe; Conway, S.

    2004-01-01

    Two rotors blades are computed during standstill conditions, using two different Navier-Stokes solvers EDGE and EllipSys3D. Both steady and transient linear k-? RANS turbulence models are applied, along with steady non-linear RANS and transient DESsimulations. The STORK 5.0 WPX blade is computed...... be explained by the difference in the applied turbulence models and the fact that the results from one of the solvers are presented as instantaneous valuesinstead of averaged values. The comparison of steady and transient RANS results show that the gain of using time true computations are very limited...... a three different tip pitch angles, 0, 26 and 50 degrees tip pitch angle, while the NREL Phase-VI blade is computed at 90 degrees tip pitch angle. Generally the CFD codes reproduce the measured trends quitewell and the two involved CFD codes give very similar results. The discrepancies observed can...

  4. Effect of position of blades in the treatment of IMRT

    International Nuclear Information System (INIS)

    Perez Azorin, J. F.; Ramos Garcia, L. I.; Ortiz de Zarate Vivanco, R.; Trueba Garayo, I.; Cacicedo, J.; Hoyo, O. del

    2013-01-01

    This paper presents a method of calculation of the positions of each blade measures during treatment for all segments and the subsequent reconstruction of these positions in the planning system on the patient's physical and anatomical data. (Author)

  5. Intubation of prehospital patients with curved laryngoscope blade is more successful than with straight blade.

    Science.gov (United States)

    Alter, Scott M; Haim, Eithan D; Sullivan, Alex H; Clayton, Lisa M

    2018-02-17

    Direct laryngoscopy can be performed using curved or straight blades, and providers usually choose the blade they are most comfortable with. However, curved blades are anecdotally thought of as easier to use than straight blades. We seek to compare intubation success rates of paramedics using curved versus straight blades. Design: retrospective chart review. hospital-based suburban ALS service with 20,000 annual calls. prehospital patients with any direct laryngoscopy intubation attempt over almost 9years. First attempt and overall success rates were calculated for attempts with curved and straight blades. Differences between the groups were calculated. 2299 patients were intubated by direct laryngoscopy. 1865 had attempts with a curved blade, 367 had attempts with a straight blade, and 67 had attempts with both. Baseline characteristics were similar between groups. First attempt success was 86% with a curved blade and 73% with a straight blade: a difference of 13% (95% CI: 9-17). Overall success was 96% with a curved blade and 81% with a straight blade: a difference of 15% (95% CI: 12-18). There was an average of 1.11 intubation attempts per patient with a curved blade and 1.13 attempts per patient with a straight blade (2% difference, 95% CI: -3-7). Our study found a significant difference in intubation success rates between laryngoscope blade types. Curved blades had higher first attempt and overall success rates when compared to straight blades. Paramedics should consider selecting a curved blade as their tool of choice to potentially improve intubation success. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Aeroelasticity and structural optimization of composite helicopter rotor blades with swept tips

    Science.gov (United States)

    Yuan, K. A.; Friedmann, P. P.

    1995-01-01

    This report describes the development of an aeroelastic analysis capability for composite helicopter rotor blades with straight and swept tips, and its application to the simulation of helicopter vibration reduction through structural optimization. A new aeroelastic model is developed in this study which is suitable for composite rotor blades with swept tips in hover and in forward flight. The hingeless blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. Arbitrary cross-sectional shape, generally anisotropic material behavior, transverse shears and out-of-plane warping are included in the blade model. The nonlinear equations of motion, derived using Hamilton's principle, are based on a moderate deflection theory. Composite blade cross-sectbnal properties are calculated by a separate linear, two-dimensional cross section analysis. The aerodynamic loads are obtained from quasi-steady, incompressible aerodynamics, based on an implicit formulation. The trim and steady state blade aeroelastic response are solved in a fully coupled manner. In forward flight, where the blade equations of motion are periodic, the coupled trim-aeroelastic response solution is obtained from the harmonic balance method. Subsequently, the periodic system is linearized about the steady state response, and its stability is determined from Floquet theory.

  7. Full scale wind turbine test of vortex generators mounted on the entire blade

    DEFF Research Database (Denmark)

    Bak, Christian; Skrzypinski, Witold Robert; Gaunaa, Mac

    2016-01-01

    Measurements on a heavily instrumented pitch regulated variable speed Vestas V52 850 kW wind turbine situated at the DTU Risø Campus are carried out, where the effect of vortex generators mounted on almost the entire blade is tested with and without leading edge roughness. The measurements...... are compared to the predictions carried out by a developed design tool, where the effect of vortex generators and leading edge roughness is simulated using engineering models. The measurements showed that if vortex generators are mounted there is an increase in flapwise blade moments if the blades are clean...

  8. Online monitoring of dynamic tip clearance of turbine blades in high temperature environments

    Science.gov (United States)

    Han, Yu; Zhong, Chong; Zhu, Xiaoliang; Zhe, Jiang

    2018-04-01

    Minimized tip clearance reduces the gas leakage over turbine blade tips and improves the thrust and efficiency of turbomachinery. An accurate tip clearance sensor, measuring the dynamic clearances between blade tips and the turbine case, is a critical component for tip clearance control. This paper presents a robust inductive tip clearance sensor capable of monitoring dynamic tip clearances of turbine machines in high-temperature environments and at high rotational speeds. The sensor can also self-sense the temperature at a blade tip in situ such that temperature effect on tip clearance measurement can be estimated and compensated. To evaluate the sensor’s performance, the sensor was tested for measuring the tip clearances of turbine blades under various working temperatures ranging from 700 K to 1300 K and at turbine rotational speeds ranging from 3000 to 10 000 rpm. The blade tip clearance was varied from 50 to 2000 µm. The experiment results proved that the sensor can accurately measure the blade tip clearances with a temporal resolution of 10 µm. The capability of accurately measuring the tip clearances at high temperatures (~1300 K) and high turbine rotation speeds (~30 000 rpm), along with its compact size, makes it promising for online monitoring and active control of blade tip clearances of high-temperature turbomachinery.

  9. Estimation of waves and ship responses using onboard measurements

    DEFF Research Database (Denmark)

    Montazeri, Najmeh

    This thesis focuses on estimation of waves and ship responses using ship-board measurements. This is useful for development of operational safety and performance efficiency in connection with the broader concept of onboard decision support systems. Estimation of sea state is studied using a set...... of measured ship responses, a parametric description of directional wave spectra (a generalised JONSWAP model) and the transfer functions of the ship responses. The difference between the spectral moments of the measured ship responses and the corresponding theoretically calculated moments formulates a cost...... information. The model is tested on simulated data based on known unimodal and bimodal wave scenarios. The wave parameters in the output are then compared with the true wave parameters. In addition to the numerical experiments, two sets of full-scale measurements from container ships are analysed. Herein...

  10. An Experimental Analysis of the Effect of Icing on Wind Turbine Rotor Blades

    DEFF Research Database (Denmark)

    Raja, Muhammad Imran; Hussain, Dil muhammed Akbar; Soltani, Mohsen

    2016-01-01

    Wind Turbine is highly nonlinear plant whose dynamics changes with change in aerodynamics of the rotor blade. Power extracted from the wind turbine is a function of coefficient of power (Cp). Wind turbine installed in the cold climate areas has an icing on its rotor blade which might change its...... aerodynamics. This paper is an experimental investigation of the aerodynamic changes occur due to effect of ice accumulated on the rotor blades of wind turbine. We have tested three small scale model of the NREL's 5MW rotor blade with same profile but simulated different icing effect on them. These models...... are printed with 3D printer and tested one by one in a Wind Tunnel. Lift, drag and moment coefficients are calculated from the measured experimental data and program WT-Perf based on blade-element momentum (BEM) theory is used to predict the performance of wind turbine. Cp curves generated from the test...

  11. Aerodynamical calculation of turbomachinery bladings

    International Nuclear Information System (INIS)

    Fruehauf, H.H.

    1978-01-01

    Various flow models are presented in comparison to one another, these flow models being obtained from the basic equations of turbomachinery aerodynamics by means of a series of simplifying assumptions on the spatial distribution of the flow quantities. The simplifying assumptions are analysed precisely. With their knowledge it is possible to construct more accurate simplified flow models, which are necessary for the efficient aerodynamical development of highperformance turbomachinery bladings by means of numerical methods. (orig.) 891 HP [de

  12. Blade-element/momentum theory

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2016-01-01

    Although there exists a large variety of methods for predicting performance and loadings of wind turbines, the only approach used today by wind turbine manufacturers is based on the blade-element/momentum (BEM) theory by Glauert (Aerodynamic theory. Springer, Berlin, pp. 169-360, 1935). A basic...... assumption in the BEM theory is that the flow takes place in independent stream tubes and that the loading is determined from two-dimensional sectional airfoil characteristics....

  13. Condensation phenomena in a turbine blade passage

    International Nuclear Information System (INIS)

    Skillings, S.A.

    1989-02-01

    The mechanisms associated with the formation and growth of water droplets in the large low-pressure (LP) turbines used for electrical power generation are poorly understood and recent measurements have indicated that an unusually high loss is associated with the initial nucleation of these droplets. In order to gain an insight into the phenomena which arise in the turbine situation, some experiments were performed to investigate the behaviour of condensing steam flows in a blade passage. This study has revealed the fundamental significance of droplet nucleation in modifying the single-phase flow structure and results are presented which show the change in shock wave pattern when inlet superheat and outlet Mach number are varied. The trailing-edge shock wave structure appears considerably more robust towards variation of inlet superheat than purely one-dimensional considerations may suggest and the inadequacies of adopting a one-dimensional theory to analyse multi-dimensional condensing flows are demonstrated. Over a certain range of outlet Mach numbers an oscillating shock wave will establish in the throat region of the blade passage and this has been shown to interact strongly with droplet nucleation, resulting in a considerably increased mean droplet size. The possible implications of these results for turbine performance are also discussed. (author)

  14. A Blade Tip Timing Method Based on a Microwave Sensor

    Directory of Open Access Journals (Sweden)

    Jilong Zhang

    2017-05-01

    Full Text Available Blade tip timing is an effective method for blade vibration measurements in turbomachinery. This method is increasing in popularity because it is non-intrusive and has several advantages over the conventional strain gauge method. Different kinds of sensors have been developed for blade tip timing, including optical, eddy current and capacitance sensors. However, these sensors are unsuitable in environments with contaminants or high temperatures. Microwave sensors offer a promising potential solution to overcome these limitations. In this article, a microwave sensor-based blade tip timing measurement system is proposed. A patch antenna probe is used to transmit and receive the microwave signals. The signal model and process method is analyzed. Zero intermediate frequency structure is employed to maintain timing accuracy and dynamic performance, and the received signal can also be used to measure tip clearance. The timing method uses the rising and falling edges of the signal and an auto-gain control circuit to reduce the effect of tip clearance change. To validate the accuracy of the system, it is compared experimentally with a fiber optic tip timing system. The results show that the microwave tip timing system achieves good accuracy.

  15. Measuring caloric response: comparison of different analysis techniques.

    Science.gov (United States)

    Mallinson, A I; Longridge, N S; Pace-Asciak, P; Ngo, R

    2010-01-01

    Electronystagmography (ENG) testing has been supplanted by newer techniques of measuring eye movement with infrared cameras (VNG). Most techniques of quantifying caloric induced nystagmus measure the slow phase velocity in some manner. Although our analysis is carried out by very experienced assessors, some systems have computer algorithms that have been "taught" to locate and quantify maximum responses. We wondered what differences in measurement might show up when measuring calorics using different techniques and systems, the relevance of this being that if there was a change in slow phase velocity between ENG and VNG testing when measuring caloric response, then normative data would have to be changed. There are also some subjective but important aspects of ENG interpretation which comment on the nature of the response (e.g. responses which might be "sporadic" or "scant"). Our experiment compared caloric responses in 100 patients analyzed four different ways. Each caloric was analyzed by our old ENG system, our new VNG system, an inexperienced assessor and the computer algorithm, and data was compared. All four systems made similar measurements but our inexperienced assessor failed to recognize responses as sporadic or scant, and we feel this is a limitation to be kept in mind in the rural setting, as it is an important aspect of assessment in complex patients. Assessment of complex VNGs should be left to an experienced assessor.

  16. Channel Control-Blade Interference Management at LaSalle 1 and 2 during 2007 and 2008

    Energy Technology Data Exchange (ETDEWEB)

    Cantonwine, Paul; Crawford, Doug; Downs, Mike [Global Nuclear Fuels, PO Box 780, Wilmington, NC 28402 (United States); Joe, Bertrum [GE-Hitachi, 1989 Little Orchard St., San Jose, CA 95125-1030 (United States); Bahensky, Ted [GE-Hitachi, PO Box 780, Wilmington, NC 28402 (United States); Reimer, John [Exelon Nuclear, 2601 North 21st Road, Marseilles, Il 61341-9757 (United States); Hoz, Carlos del la; Petersen, Ken [Exelon Nuclear, 4300 Winfield Road, Warrenville, IL 60555 (United States); Reitmeyer, Mike [Exelon Nuclear, 200 Exelon Way, Kennett Square, PA 19348 (United States); Morris, Jeff; Zbib, Ali [AREVA NP, 2101 Horn Rapids Road, Richland, WA. 99354 (United States)

    2009-06-15

    This paper provides a summary of the operational experience at LaSalle 1 and LaSalle 2 regarding channel control-blade interference that occurred in 2007 and 2008. Channel distortion data from LaSalle 1 provides a characterization of distortion in all four bundles in cells that experienced channel interference and cells that did not. Also, this paper provides a new channel distortion management strategy implemented at LaSalle 2 that avoided a mid-cycle outage. LaSalle 1 and LaSalle 2 are GE designed Boiling Water Reactors (BWR/5 Type) that generate 1195 MW electric. During 2007 and 2008, each core had 1. and 3. Cycle AREVA ATTRIUM{sup TM} 10 fuel with 100 mil Zr-2 channels and 2. Cycle GNF GE14 fuel with 120/75 mil Zr-2 channels. As a result of the channel control-blade interference observed in 2007 and 2008, two peripheral cells in LaSalle 1 and two (1 peripheral and 1 interior) cells in LaSalle 2 were declared inoperable. The first observations of channel control-blade friction occurred in September 2007 in LaSalle 1 about 6 months prior to the end of a 2-year cycle. LaSalle 2 had started up approximately 6 months earlier and had 18 months left the cycle. The initial observations (eventually seven cells with no-settle conditions were observed in LaSalle) were limited to the peripheral cells where fluence gradient-induced bow was the dominant distortion mechanism. However, near the end of cycle in LaSalle 1 in January 2008, a number of interior cells were unexpectedly found to not settle. These were later determined to be a result of shadow corrosion-induced bow. Further testing to determine the extent of condition found a total of nine interior cells that failed the no-settle criterion. These unexpected observations instigated a significant response that resulted in an extensive expansion of the work scope for the upcoming outage that began on February 4, 2008. Specifically, a large channel measurement campaign and a large re-channeling campaign were added. The

  17. Experimental evidence of inter-blade cavitation vortex development in Francis turbines at deep part load condition

    Science.gov (United States)

    Yamamoto, K.; Müller, A.; Favrel, A.; Avellan, F.

    2017-10-01

    Francis turbines are subject to various types of cavitation flow depending on the operating condition. To enable a smooth integration of the renewable energy sources, hydraulic machines are now increasingly required to extend their operating range, especially down to extremely low discharge conditions called deep part load operation. The inter-blade cavitation vortex is a typical cavitation phenomenon observed at deep part load operation. However, its dynamic characteristics are insufficiently understood today. In an objective of revealing its characteristics, the present study introduces a novel visualization technique with instrumented guide vanes embedding the visualization devices, providing unprecedented views on the inter-blade cavitation vortex. The binary image processing technique enables the successful evaluation of the inter-blade cavitation vortex in the images. As a result, it is shown that the probability of the inter-blade cavitation development is significantly high close to the runner hub. Furthermore, the mean vortex line is calculated and the vortex region is estimated in the three-dimensional domain for the comparison with numerical simulation results. In addition, the on-board pressure measurements on a runner blade is conducted, and the influence of the inter-blade vortex on the pressure field is investigated. The analysis suggests that the presence of the inter-blade vortex can magnify the amplitude of pressure fluctuations especially on the blade suction side. Furthermore, the wall pressure difference between pressure and suction sides of the blade features partially low or negative values near the hub at the discharge region where the inter-blade vortex develops. This negative pressure difference on the blade wall suggests the development of a backflow region caused by the flow separation near the hub, which is closely related to the development of the inter-blade vortex. The development of the backflow region is confirmed by the numerical

  18. Korean experience with steam turbine blade inspection

    International Nuclear Information System (INIS)

    Jung, Hyun Kyu; Park, D.Y.; Park, Hyung Jin; Chung, Min Hwa

    1990-01-01

    Several turbine blade accidents in Korea have emphasized the importance of their adequate periodic inspection. As a typical example, a broken blade was found in the Low Pressure (LP) turbine at the 950 MWe KORI unit 3 during the 1986 overhaul after one year commercial operation. Since then the Manufacturer and the Utility company (KEPCO) have been concerned about the need of blade root inspection. The ultrasonic testing was applied to detect cracks in the blade roots without removing the blades from rotor. Due to the complex geometry of the roots, the test results could not be evaluated easily. We feel that the currently applied UT technique seems to be less reliable and more effective method of inspection must be developed in the near future. This paper describes the following items: The causes and analysis of blade damage The inspection techniques and results The remedial action to be taken (Repair and Replacement) The future plan

  19. Non-Harmonic Fourier Analysis for bladed wheels damage detection

    Science.gov (United States)

    Neri, P.; Peeters, B.

    2015-11-01

    The interaction between bladed wheels and the fluid distributed by the stator vanes results in cyclic loading of the rotating components. Compressors and turbines wheels are subject to vibration and fatigue issues, especially when resonance conditions are excited. Even if resonance conditions can be often predicted and avoided, high cycle fatigue failures can occur, causing safety issues and economic loss. Rigorous maintenance programs are then needed, forcing the system to expensive shut-down. Blade crack detection methods are beneficial for condition-based maintenance. While contact measurement systems are not always usable in exercise conditions (e.g. high temperature), non-contact methods can be more suitable. One (or more) stator-fixed sensor can measure all the blades as they pass by, in order to detect the damaged ones. The main drawback in this situation is the short acquisition time available for each blade, which is shortened by the high rotational speed of the components. A traditional Discrete Fourier Transform (DFT) analysis would result in a poor frequency resolution. A Non-Harmonic Fourier Analysis (NHFA) can be executed with an arbitrary frequency resolution instead, allowing to obtain frequency information even with short-time data samples. This paper shows an analytical investigation of the NHFA method. A data processing algorithm is then proposed to obtain frequency shift information from short time samples. The performances of this algorithm are then studied by experimental and numerical tests.

  20. Section curve reconstruction and mean-camber curve extraction of a point-sampled blade surface.

    Directory of Open Access Journals (Sweden)

    Wen-long Li

    Full Text Available The blade is one of the most critical parts of an aviation engine, and a small change in the blade geometry may significantly affect the dynamics performance of the aviation engine. Rapid advancements in 3D scanning techniques have enabled the inspection of the blade shape using a dense and accurate point cloud. This paper proposes a new method to achieving two common tasks in blade inspection: section curve reconstruction and mean-camber curve extraction with the representation of a point cloud. The mathematical morphology is expanded and applied to restrain the effect of the measuring defects and generate an ordered sequence of 2D measured points in the section plane. Then, the energy and distance are minimized to iteratively smoothen the measured points, approximate the section curve and extract the mean-camber curve. In addition, a turbine blade is machined and scanned to observe the curvature variation, energy variation and approximation error, which demonstrates the availability of the proposed method. The proposed method is simple to implement and can be applied in aviation casting-blade finish inspection, large forging-blade allowance inspection and visual-guided robot grinding localization.

  1. Demonstration of partial pitch 2-bladed wind turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong; Zahle, Frederik; Troldborg, Niels

    -sections on the blade as well as fully resolved rotor simulations, and finally simulations coupling HAWC2 with EllipSys3D, investigating the behaviors of the rotor at standstill, has been performed. For the WP3, the state-of-the art aeroelastic analysis tool, HAWC2, has been updated in order to consider the partial......This is the final report for the EUDP project performed from January 2012 to December 2015. The main objective for the project was to demonstrate the potential of the partial pitch two-bladed (PP-2B) technology. DTU Wind Energy took a responsibility for three workpackages (WPs) among 6 WPs which...... were aerodynamic evaluation of partial pitch technology (WP2), aeroelastic analysis of two-bladed turbine (WP3) and On-site testing (WP4). For the WP2, a comprehensive set of 3D CFD simulations including the gap between inner and outer part of the blade and vortex generators (VGs) of both cross...

  2. Damage Identification of Wind Turbine Blades Using Piezoelectric Transducers

    Directory of Open Access Journals (Sweden)

    Seong-Won Choi

    2014-01-01

    Full Text Available This paper presents the experimental results of active-sensing structural health monitoring (SHM techniques, which utilize piezoelectric transducers as sensors and actuators, for determining the structural integrity of wind turbine blades. Specifically, Lamb wave propagations and frequency response functions at high frequency ranges are used to estimate the condition of wind turbine blades. For experiments, a 1 m section of a CX-100 blade is used. The goal of this study is to assess and compare the performance of each method in identifying incipient damage with a consideration given to field deployability. Overall, these methods yielded a sufficient damage detection capability to warrant further investigation. This paper also summarizes the SHM results of a full-scale fatigue test of a 9 m CX-100 blade using piezoelectric active sensors. This paper outlines considerations needed to design such SHM systems, experimental procedures and results, and additional issues that can be used as guidelines for future investigations.

  3. Structural Testing of the Blade Reliability Collaborative Effect of Defect Wind Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    Desmond, M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hughes, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Paquette, J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-08

    Two 8.3-meter (m) wind turbine blades intentionally constructed with manufacturing flaws were tested to failure at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) south of Boulder, Colorado. Two blades were tested; one blade was manufactured with a fiberglass spar cap and the second blade was manufactured with a carbon fiber spar cap. Test loading primarily consisted of flap fatigue loading of the blades, with one quasi-static ultimate load case applied to the carbon fiber spar cap blade. Results of the test program were intended to provide the full-scale test data needed for validation of model and coupon test results of the effect of defects in wind turbine blade composite materials. Testing was part of the Blade Reliability Collaborative (BRC) led by Sandia National Laboratories (SNL). The BRC seeks to develop a deeper understanding of the causes of unexpected blade failures (Paquette 2012), and to develop methods to enable blades to survive to their expected operational lifetime. Recent work in the BRC includes examining and characterizing flaws and defects known to exist in wind turbine blades from manufacturing processes (Riddle et al. 2011). Recent results from reliability databases show that wind turbine rotor blades continue to be a leading contributor to turbine downtime (Paquette 2012).

  4. Magnetic-Field-Response Measurement-Acquisition System

    Science.gov (United States)

    Woodward, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.

    2006-01-01

    A measurement-acquisition system uses magnetic fields to power sensors and to acquire measurements from sensors. The system alleviates many shortcomings of traditional measurement-acquisition systems, which include a finite number of measurement channels, weight penalty associated with wires, use limited to a single type of measurement, wire degradation due to wear or chemical decay, and the logistics needed to add new sensors. Eliminating wiring for acquiring measurements can alleviate potential hazards associated with wires, such as damaged wires becoming ignition sources due to arcing. The sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic-field-responses. One or more electrical parameters (inductance, capacitance, and resistance) of each sensor can be variable and corresponds to a measured physical state of interest. The magnetic-field- response attributes (frequency, amplitude, and bandwidth) of the inductor correspond to the states of physical properties for which each sensor measures. For each sensor, the measurement-acquisition system produces a series of increasing magnetic-field harmonics within a frequency range dedicated to that sensor. For each harmonic, an antenna electrically coupled to an oscillating current (the frequency of which is that of the harmonic) produces an oscillating magnetic field. Faraday induction via the harmonic magnetic fields produces an electromotive force and therefore a current in the sensor. Once electrically active, the sensor produces its own harmonic magnetic field as the inductor stores and releases magnetic energy. The antenna of the measurement- acquisition system is switched from a transmitting to a receiving mode to acquire the magnetic-field response of the sensor. The rectified amplitude of the received response is compared to previous responses to prior transmitted harmonics, to ascertain if the measurement system has detected a

  5. Adaptor assembly for coupling turbine blades to rotor disks

    Science.gov (United States)

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell

    2014-09-23

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is described. The adaptor assembly includes a turbine blade having a blade root and an adaptor body having an adaptor root. The adaptor body defines a slot having an open end configured to receive the blade root of the turbine blade such that the adaptor root of the adaptor body and the blade root of the turbine blade are adjacent to one another when the blade root of the turbine blade is positioned within the slot. Both the adaptor root of the adaptor body and the blade root of the turbine blade are configured to be received within the root slot of the rotor disk.

  6. Three-dimensional blade coating of complex fluid

    Science.gov (United States)

    Singh, Vachitar; Grimaldi, Emma; Sauret, Alban; Dressaire, Emilie

    2015-11-01

    The application of a layer of non-newtonian fluid on a solid substrate is an important industrial problem involved in polymer or paint coatings, and an everyday life challenge when it comes to spreading peanut butter on a toast. Most experimental and theoretical work has focused on the two-dimensional situation, i.e. the scraping of a fixed blade on a moving substrate to turn a thick layer of liquid into a thin coat. However the spreading of a finite volume of non-newtonian fluid using a blade has received less attention, despite significant practical and fundamental implications. In this study, we investigate experimentally the spreading of a finite volume of a model non-newtonian fluid, carbopol, initially deposited against the fixed blade. As the substrate is translated at constant speed, we characterize the dynamics of spreading and the final shape of the coated layer. We measure and rationalize the influence of the liquid volume, the height and orientation of the blade, and the speed of the substrate on the spreading.

  7. Multiple piece turbine rotor blade

    Science.gov (United States)

    Jones, Russell B; Fedock, John A

    2013-05-21

    A multiple piece turbine rotor blade with a shell having an airfoil shape and secured between a spar and a platform with the spar including a tip end piece. a snap ring fits around the spar and abuts against the spar tip end piece on a top side and abuts against a shell on the bottom side so that the centrifugal loads from the shell is passed through the snap ring and into the spar and not through a tip cap dovetail slot and projection structure.

  8. Use of Response Time for Measuring Cognitive Ability

    Directory of Open Access Journals (Sweden)

    Patrick C. Kyllonen

    2016-11-01

    Full Text Available The purpose of this paper is to review some of the key literature on response time as it has played a role in cognitive ability measurement, providing a historical perspective as well as covering current research. We discuss the speed-level distinction, dimensions of speed and level in cognitive abilities frameworks, speed–accuracy tradeoff, approaches to addressing speed–accuracy tradeoff, analysis methods, particularly item response theory-based, response time models from cognitive psychology (ex-Gaussian function, and the diffusion model, and other uses of response time in testing besides ability measurement. We discuss several new methods that can be used to provide greater insight into the speed and level aspects of cognitive ability and speed–accuracy tradeoff decisions. These include item-level time limits, the use of feedback (e.g., CUSUMs, explicit scoring rules that combine speed and accuracy information (e.g., count down timing, and cognitive psychology models. We also review some of the key psychometric advances in modeling speed and level, which combine speed and ability measurement, address speed–accuracy tradeoff, allow for distinctions between response times on items responded to correctly and incorrectly, and integrate psychometrics with information-processing modeling. We suggest that the application of these models and tools is likely to advance both the science and measurement of human abilities for theory and applications.

  9. Aeroelastic Analysis of Helicopter Rotor Blades Incorporating Anisotropic Piezoelectric Twist Actuation

    Science.gov (United States)

    Wilkie, W. Keats; Belvin, W. Keith; Park, K. C.

    1996-01-01

    A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consists of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for dynamics simulation using numerical integration. The twist actuation responses for three conceptual fullscale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.

  10. An aeroelastic analysis of helicopter rotor blades incorporating piezoelectric fiber composite twist actuation

    Science.gov (United States)

    Wilkie, W. Keats; Park, K. C.

    1996-01-01

    A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consist of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for numerical integration. The twist actuation responses for three conceptual full-scale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.

  11. Investigating dynamic stall, 3-D and rotational effects on wind turbine blades by means of an unsteady quasi-3D Navier-Stokes solver

    Energy Technology Data Exchange (ETDEWEB)

    Chaviaropoulos, P.K. [CRES-Center for Renewable Energy Sources, Pikermi Attiki (Greece)

    1997-08-01

    The blade element codes provide surprisingly accurate predictions of the aerodynamic loads provided that they are `fed` with proper lift and drag - incidence curves for the profiles mounted on the rotor blades. The evident question is how one can obtain such data. It is common experience that the use of the mostly available steady two-dimensional profile data may lead to serious discrepancies between measured and simulated loads. Although several correction techniques have been proposed as a remedy during the last years, from simplified dynamic stall models suitably tuned for wind turbines to 3-D correction schemes for profile data, the problem is by no means over-passed. Especially for the three-dimensional effects it seems that part of the difficulty is due to our limited understanding of the physical mechanism which is responsible for the extra loading of the inner part of the blades. Recognizing the importance of the above aspects two relevant Joule projects have been launched, the concluded `Dynamic Stall and 3-D Effects` JOU2-CT93-0345 and the ongoing `VISCWIND` JOR3-CT95-0007 project. Part of the activities in the first and all the activities in the second project are devoted to the identification and quantification of the dynamic stall and three-dimensional effects experienced by the wind turbine blades using Navier-Stokes computations. The contribution of CRES in these two projects is briefly presented in this paper. (EG)

  12. Measuring Emotional Responses to TV Commercials: The Warmth Monitor Modernized

    Directory of Open Access Journals (Sweden)

    Marc Roy

    2014-12-01

    Full Text Available Recently there has been a lot of interest in measuring emotional responses to advertising. This study focuses on the measurement of a specific emotional response to television advertising; warmth. Nearly thirty years ago, (Aaker, Stayman and Hagerty, 1986 developed a procedure they called the Warmth Monitor; “paper and pencil” self-report process recording method. The Warmth Monitor has been used in a large number of empirical studies in marketing since, but the most recent versions of the procedure are computerized. The two methods of administering the Warmth Monitor are compared in this research.

  13. Flow separation on wind turbines blades

    Science.gov (United States)

    Corten, G. P.

    2001-01-01

    the angle of attack. The art of designing stall rotors is to make the separated area on the blades extend in such a way, that the extracted power remains precisely constant, independent of the wind speed, while the power in the wind at cut-out exceeds the maximum power of the turbine by a factor of 8. Since the stall behaviour is influenced by many parameters, this demand cannot be easily met. However, if it can be met, the advantage of stall control is its passive operation, which is reliable and cheap. Problem Definition In practical application, stall control is not very accurate and many stall-controlled turbines do not meet their specifications. Deviations of the design-power in the order of tens of percent are regular. In the nineties, the aerodynamic research on these deviations focussed on: profile aerodynamics, computational fluid dynamics, rotational effects on separation and pressure measurements on test turbines. However, this did not adequately solve the actual problems with stall turbines. In this thesis, we therefore formulated the following as the essential question: "Does the separated blade area really extend with the wind speed, as we predict?" To find the answer a measurement technique was required, which 1) was applicable on large commercial wind turbines, 2) could follow the dynamic changes of the stall pattern, 3) was not influenced by the centrifugal force and 4) did not disturb the flow. Such a technique was not available, therefore we decided to develop it. Stall Flag Method For this method, a few hundred indicators are fixed to the rotor blades in a special pattern. These indicators, called "stall flags" are patented by the Netherlands Energy Research Foundation (ECN). They have a retro-reflective area which, depending on the flow direction, is or is not covered. A powerful light source in the field up to 500m behind the turbine illuminates the swept rotor area. The uncovered reflectors reflect the light to the source, where a digital video

  14. Rotational effects on turbine blade cooling

    Energy Technology Data Exchange (ETDEWEB)

    Govatzidakis, G.J.; Guenette, G.R.; Kerrebrock, J.L. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-10-01

    An experimental investigation of the influence of rotation on the heat transfer in a smooth, rectangular passage rotating in the orthogonal mode is presented. The passage simulates one of the cooling channels found in gas turbine blades. A constant heat flux is imposed on the model with either inward or outward flow. The effects of rotation and buoyancy on the Nusselt number were quantified by systematically varying the Rotation number, Density Ratio, Reynolds number, and Buoyancy parameter. The experiment utilizes a high resolution infrared temperature measurement technique in order to measure the wall temperature distribution. The experimental results show that the rotational effects on the Nusselt number are significant and proper turbine blade design must take into account the effects of rotation, buoyancy, and flow direction. The behavior of the Nusselt number distribution depends strongly on the particular side, axial position, flow direction, and the specific range of the scaling parameters. The results show a strong coupling between buoyancy and Corollas effects throughout the passage. For outward flow, the trailing side Nusselt numbers increase with Rotation number relative to stationary values. On the leading side, the Nusselt numbers tended to decrease with rotation near the inlet and subsequently increased farther downstream in the passage. The Nusselt numbers on the side walls generally increased with rotation. For inward flow, the Nusselt numbers generally improved relative to stationary results, but increases in the Nusselt number were relatively smaller than in the case of outward flow. For outward and inward flows, increasing the density ratio generally tended to decrease Nusselt numbers on the leading and trailing sides, but the exact behavior and magnitude depended on the local axial position and specific range of Buoyancy parameters.

  15. Assessment Report on Innovative Rotor Blades (MAREWINT WP1,D1.3)

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Leble, Vladimir; Pereira, Gilmar Ferreira

    The offshore wind energy industry faces many challenges in the short to medium term if it is to meet the ambitions of the global community for sustainable energy supply in the future. Not least among these challenges is the issue of rotor blades. Innovative design for “smart” rotor blades...... the innovative concept development for wind turbine blades. This covers models and experiments with damage measurement systems embedded within the composite material/structure and numerical methods investigating the effects of leading and trailing edge flaps on modifying the aerodynamic loads on the operating...... rotor....

  16. Using item response theory to measure extreme response style in marketing research

    NARCIS (Netherlands)

    de Jong, Martijn G.; Steenkamp, Jan-Benedict E.M.; Fox, Gerardus J.A.; Baumgartner, Hans

    2008-01-01

    Extreme response style (ERS) is an important threat to the validity of survey-based marketing research. In this article, the authors present a new item response theory–based model for measuring ERS. This model contributes to the ERS literature in two ways. First, the method improves on existing

  17. CFD computations of wind turbine blade loads during standstill operation KNOW-BLADE, Task 3.1 report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, N.N.; Johansen, J.; Conway, S.

    2004-06-01

    Two rotors blades are computed during standstill conditions, using two different Navier-Stokes solvers EDGE and EllipSys3D. Both steady and transient linear {kappa} - {omega} RANS turbulence models are applied, along with steady non-linear RANS and transient DES simulations. The STORK 5.0 WPX blade is computed a three different tip pitch angles, 0, 26 and 50 degrees tip pitch angle, while the NREL Phase-VI blade is computed at 90 degrees tip pitch angle. Generally the CFD codes reproduce the measured trends quite well and the two involved CFD codes give very similar results. The discrepancies observed can be explained by the difference in the applied turbulence models and the fact that the results from one of the solvers are presented as instantaneous values instead of averaged values. The comparison of steady and transient RANS results show that the gain of using time true computations are very limited for this case, with respect to mean quantities. The same can be said for the RANS/DES comparison performed for the NREL rotor, even though the DES computation shows improved agreement at the tip and root sections. Finally, it is shown that the DES methodology provides a much more physical representation of the heavily stalled part of the flow over blades at high angles of attack. (au)

  18. Flutter of Darrieus wind turbine blades

    Science.gov (United States)

    Ham, N. D.

    1978-01-01

    The testing of Darrieus wind turbines has indicated that under certain conditions, serious vibrations of the blades can occur, involving flatwise bending, torsion, and chordwise bending. A theoretical method of predicting the aeroelastic stability of the coupled bending and torsional motion of such blades with a view to determining the cause of these vibrations, and a means of suppressing them was developed.

  19. Estimation of gas turbine blades cooling efficiency

    NARCIS (Netherlands)

    Moskalenko, A.B.; Kozhevnikov, A.

    2016-01-01

    This paper outlines the results of the evaluation of the most thermally stressed gas turbine elements, first stage power turbine blades, cooling efficiency. The calculations were implemented using a numerical simulation based on the Finite Element Method. The volume average temperature of the blade

  20. Numerical analysis of turbine blade tip treatments

    Science.gov (United States)

    Gopalaswamy, Nath S.; Whitaker, Kevin W.

    1992-01-01

    Three-dimensional solutions of the Navier-Stokes equations for a turbine blade with a turning angle of 180 degrees have been computed, including blade tip treatments involving cavities. The geometry approximates a preliminary design for the GGOT (Generic Gas Oxidizer Turbine). The data presented here will be compared with experimental data to be obtained from a linear cascade using original GGOT blades. Results have been computed for a blade with 1 percent clearance, based on chord, and three different cavity sizes. All tests were conducted at a Reynolds number of 4 x 10 exp 7. The grid contains 39,440 points with 10 spanwise planes in the tip clearance region of 5.008E-04 m. Streamline plots and velocity vectors together with velocity divergence plots reveal the general flow behavior in the clearance region. Blade tip temperature calculations suggest placement of a cavity close to the upstream side of the blade tip for reduction of overall blade tip temperature. The solutions do not account for the relative motion between the endwall and the turbine blade. The solutions obtained are generally consistent with previous work done in this area,

  1. 49 CFR 236.707 - Blade, semaphore.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Blade, semaphore. 236.707 Section 236.707 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Blade, semaphore. The extended part of a semaphore arm which shows the position of the arm. ...

  2. Composite hub/metal blade compressor rotor

    Science.gov (United States)

    Yao, S.

    1978-01-01

    A low cost compressor rotor was designed and fabricated for a small jet engine. The rotor hub and blade keepers were compression molded with graphite epoxy. Each pair of metallic blades was held in the hub by a keeper. All keepers were locked in the hub with circumferential windings. Feasibility of fabrication was demonstrated in this program.

  3. Metallurgy of gas turbine blades with integral shroud and its influence on blades performance

    International Nuclear Information System (INIS)

    Mazur, Z.; Marino, C.; Kubiak, J.

    1999-01-01

    The influence of the microstructure of the gas turbine blades with integral shroud on the blades performance is presented. The analysis of the solidification process of the gas turbine blades during conventionally casting process (equiaxed grains) with all elements which has influence on the mode of its solidification and variation of the microstructure is carried out. Also, the evaluation of the failure of the gas turbine blade is present. A detailed analysis of the blade tip shroud microstructure (presence of the equiaxed and columnar grains) and its influence on the failure initiation and propagation is carried out. Finally, conclusions and some necessary improvements of the blades casting process to prevent blades failures are presented. (Author) 2 refs

  4. Design optimization for active twist rotor blades

    Science.gov (United States)

    Mok, Ji Won

    This dissertation introduces the process of optimizing active twist rotor blades in the presence of embedded anisotropic piezo-composite actuators. Optimum design of active twist blades is a complex task, since it involves a rich design space with tightly coupled design variables. The study presents the development of an optimization framework for active helicopter rotor blade cross-sectional design. This optimization framework allows for exploring a rich and highly nonlinear design space in order to optimize the active twist rotor blades. Different analytical components are combined in the framework: cross-sectional analysis (UM/VABS), an automated mesh generator, a beam solver (DYMORE), a three-dimensional local strain recovery module, and a gradient based optimizer within MATLAB. Through the mathematical optimization problem, the static twist actuation performance of a blade is maximized while satisfying a series of blade constraints. These constraints are associated with locations of the center of gravity and elastic axis, blade mass per unit span, fundamental rotating blade frequencies, and the blade strength based on local three-dimensional strain fields under worst loading conditions. Through pre-processing, limitations of the proposed process have been studied. When limitations were detected, resolution strategies were proposed. These include mesh overlapping, element distortion, trailing edge tab modeling, electrode modeling and foam implementation of the mesh generator, and the initial point sensibility of the current optimization scheme. Examples demonstrate the effectiveness of this process. Optimization studies were performed on the NASA/Army/MIT ATR blade case. Even though that design was built and shown significant impact in vibration reduction, the proposed optimization process showed that the design could be improved significantly. The second example, based on a model scale of the AH-64D Apache blade, emphasized the capability of this framework to

  5. Deterministic Predictions of Vessel Responses Based on Past Measurements

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Jensen, Jørgen Juncher

    2017-01-01

    The paper deals with a prediction procedure from which global wave-induced responses can be deterministically predicted a short time, 10-50 s, ahead of current time. The procedure relies on the autocorrelation function and takes into account prior measurements only; i.e. knowledge about wave...

  6. Using Arduino microcontroller boards to measure response latencies.

    Science.gov (United States)

    Schubert, Thomas W; D'Ausilio, Alessandro; Canto, Rosario

    2013-12-01

    Latencies of buttonpresses are a staple of cognitive science paradigms. Often keyboards are employed to collect buttonpresses, but their imprecision and variability decreases test power and increases the risk of false positives. Response boxes and data acquisition cards are precise, but expensive and inflexible, alternatives. We propose using open-source Arduino microcontroller boards as an inexpensive and flexible alternative. These boards connect to standard experimental software using a USB connection and a virtual serial port, or by emulating a keyboard. In our solution, an Arduino measures response latencies after being signaled the start of a trial, and communicates the latency and response back to the PC over a USB connection. We demonstrated the reliability, robustness, and precision of this communication in six studies. Test measures confirmed that the error added to the measurement had an SD of less than 1 ms. Alternatively, emulation of a keyboard results in similarly precise measurement. The Arduino performs as well as a serial response box, and better than a keyboard. In addition, our setup allows for the flexible integration of other sensors, and even actuators, to extend the cognitive science toolbox.

  7. BIAS IN THE MEASUREMENT OF QUALITY OF LIFE: RESPONSE SHIFT

    Directory of Open Access Journals (Sweden)

    Yesim SENOL

    2006-10-01

    Full Text Available Quality of Life (QoL is a descriptive term that refers to people’s emotional, social and physical wellbeing, and their ability to function in the ordinary task of living. The importance of QoL makes it critical to improve and refine measure to understand patients’ experience of health, illness and treatment. However individuals change with time and the basis on which they make a QoL judgment may also change, a phenomenon increasingly referred to as response shift. The definition of response shift is recalibration of internal standards of measurement and reconceptualization of the meaning of item. The purpose of study is to discuss the effects of response shift bias. [TAF Prev Med Bull 2006; 5(5.000: 382-389

  8. Imaging tools to measure treatment response in gout.

    Science.gov (United States)

    Dalbeth, Nicola; Doyle, Anthony J

    2018-01-01

    Imaging tests are in clinical use for diagnosis, assessment of disease severity and as a marker of treatment response in people with gout. Various imaging tests have differing properties for assessing the three key disease domains in gout: urate deposition (including tophus burden), joint inflammation and structural joint damage. Dual-energy CT allows measurement of urate deposition and bone damage, and ultrasonography allows assessment of all three domains. Scoring systems have been described that allow radiological quantification of disease severity and these scoring systems may play a role in assessing the response to treatment in gout. This article reviews the properties of imaging tests, describes the available scoring systems for quantification of disease severity and discusses the challenges and controversies regarding the use of imaging tools to measure treatment response in gout. © The Author 2018. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Variable reflectivity signal mirrors and signal response measurements

    International Nuclear Information System (INIS)

    Vine, Glenn de; Shaddock, Daniel A; McClelland, David E

    2002-01-01

    Future gravitational wave detectors will include some form of signal mirror in order to alter the signal response of the device. We introduce interferometer configurations which utilize a variable reflectivity signal mirror allowing a tunable peak frequency and variable signal bandwidth. A detector configured with a Fabry-Perot cavity as the signal mirror is compared theoretically with one using a Michelson interferometer for a signal mirror. A system for the measurement of the interferometer signal responses is introduced. This technique is applied to a power-recycled Michelson interferometer with resonant sideband extraction. We present broadband measurements of the benchtop prototype's signal response for a range of signal cavity detunings. This technique is also applicable to most other gravitational wave detector configurations

  10. Variable reflectivity signal mirrors and signal response measurements

    CERN Document Server

    Vine, G D; McClelland, D E

    2002-01-01

    Future gravitational wave detectors will include some form of signal mirror in order to alter the signal response of the device. We introduce interferometer configurations which utilize a variable reflectivity signal mirror allowing a tunable peak frequency and variable signal bandwidth. A detector configured with a Fabry-Perot cavity as the signal mirror is compared theoretically with one using a Michelson interferometer for a signal mirror. A system for the measurement of the interferometer signal responses is introduced. This technique is applied to a power-recycled Michelson interferometer with resonant sideband extraction. We present broadband measurements of the benchtop prototype's signal response for a range of signal cavity detunings. This technique is also applicable to most other gravitational wave detector configurations.

  11. Stochastic Measurement Models for Quantifying Lymphocyte Responses Using Flow Cytometry

    Science.gov (United States)

    Kan, Andrey; Pavlyshyn, Damian; Markham, John F.; Dowling, Mark R.; Heinzel, Susanne; Zhou, Jie H. S.; Marchingo, Julia M.; Hodgkin, Philip D.

    2016-01-01

    Adaptive immune responses are complex dynamic processes whereby B and T cells undergo division and differentiation triggered by pathogenic stimuli. Deregulation of the response can lead to severe consequences for the host organism ranging from immune deficiencies to autoimmunity. Tracking cell division and differentiation by flow cytometry using fluorescent probes is a major method for measuring progression of lymphocyte responses, both in vitro and in vivo. In turn, mathematical modeling of cell numbers derived from such measurements has led to significant biological discoveries, and plays an increasingly important role in lymphocyte research. Fitting an appropriate parameterized model to such data is the goal of these studies but significant challenges are presented by the variability in measurements. This variation results from the sum of experimental noise and intrinsic probabilistic differences in cells and is difficult to characterize analytically. Current model fitting methods adopt different simplifying assumptions to describe the distribution of such measurements and these assumptions have not been tested directly. To help inform the choice and application of appropriate methods of model fitting to such data we studied the errors associated with flow cytometry measurements from a wide variety of experiments. We found that the mean and variance of the noise were related by a power law with an exponent between 1.3 and 1.8 for different datasets. This violated the assumptions inherent to commonly used least squares, linear variance scaling and log-transformation based methods. As a result of these findings we propose a new measurement model that we justify both theoretically, from the maximum entropy standpoint, and empirically using collected data. Our evaluation suggests that the new model can be reliably used for model fitting across a variety of conditions. Our work provides a foundation for modeling measurements in flow cytometry experiments thus

  12. Lightning transient analysis in wind turbine blades

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Holbøll, Joachim; Madsen, Søren Find

    2013-01-01

    The transient behavior of lightning surges in the lightning protection system of wind turbine blades has been investigated in this paper. The study is based on PSCAD models consisting of electric equivalent circuits with lumped and distributed parameters involving different lightning current...... waveforms. The aim of the PSCAD simulations is to study the voltages induced by the lightning current in the blade that may cause internal arcing. With this purpose, the phenomenon of current reflections in the lightning down conductor of the blade and the electromagnetic coupling between the down conductor...... and other internal conductive elements of the blade is studied. Finally, several methods to prevent internal arcing are discussed in order to improve the lightning protection of the blade....

  13. The SNL100-01 blade :

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel

    2013-02-01

    A series of design studies to investigate the effect of carbon on blade weight and performance for large blades was performed using the Sandia 100-meter All-glass Baseline Blade design as a starting point. This document provides a description of the final carbon blade design, which is termed as SNL100-01. This report includes a summary of the design modifications applied to the baseline all-glass 100-meter design and a description of the NuMAD model files that are made publicly available. This document is intended primarily to be a companion document to the distribution of the NuMAD blade model files for SNL100-01.

  14. Advanced Blade Manufacturing Project - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    POORE, ROBERT Z.

    1999-08-01

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  15. A zero torsional stiffness twist morphing blade as a wind turbine load alleviation device

    International Nuclear Information System (INIS)

    Lachenal, X; Daynes, S; Weaver, P M

    2013-01-01

    This paper presents the design, analysis and realization of a zero stiffness twist morphing wind turbine blade. The morphing blade is designed to actively twist as a means of alleviating the gust loads which reduce the fatigue life of wind turbine blades. The morphing structure exploits an elastic strain energy balance within the blade to enable large twisting deformations with modest actuation requirements. While twist is introduced using the warping of the blade skin, internal pre-stressed members ensure that a constant strain energy balance is achieved throughout the deformation, resulting in a zero torsional stiffness structure. The torsional stability of the morphing blade is characterized by analysing the elastic strain energy in the device. Analytical models of the skin, the pre-stressed components and the complete blade are compared to their respective finite element models as well as experimental results. The load alleviation potential of the adaptive structure is quantified using a two-dimensional steady flow aerodynamic model which is experimentally validated with wind tunnel measurements. (paper)

  16. A zero torsional stiffness twist morphing blade as a wind turbine load alleviation device

    Science.gov (United States)

    Lachenal, X.; Daynes, S.; Weaver, P. M.

    2013-06-01

    This paper presents the design, analysis and realization of a zero stiffness twist morphing wind turbine blade. The morphing blade is designed to actively twist as a means of alleviating the gust loads which reduce the fatigue life of wind turbine blades. The morphing structure exploits an elastic strain energy balance within the blade to enable large twisting deformations with modest actuation requirements. While twist is introduced using the warping of the blade skin, internal pre-stressed members ensure that a constant strain energy balance is achieved throughout the deformation, resulting in a zero torsional stiffness structure. The torsional stability of the morphing blade is characterized by analysing the elastic strain energy in the device. Analytical models of the skin, the pre-stressed components and the complete blade are compared to their respective finite element models as well as experimental results. The load alleviation potential of the adaptive structure is quantified using a two-dimensional steady flow aerodynamic model which is experimentally validated with wind tunnel measurements.

  17. Influence of Thermodynamic Effect on Blade Load in a Cavitating Inducer

    Directory of Open Access Journals (Sweden)

    Kengo Kikuta

    2010-01-01

    Full Text Available Distribution of the blade load is one of the design parameters for a cavitating inducer. For experimental investigation of the thermodynamic effect on the blade load, we conducted experiments in both cold water and liquid nitrogen. The thermodynamic effect on cavitation notably appears in this cryogenic fluid although it can be disregarded in cold water. In these experiments, the pressure rise along the blade tip was measured. In water, the pressure increased almost linearly from the leading edge to the trailing edge at higher cavitation number. After that, with a decrease of cavitation number, pressure rise occurred only near the trailing edge. On the other hand, in liquid nitrogen, the pressure distribution was similar to that in water at a higher cavitation number, even if the cavitation number as a cavitation parameter decreased. Because the cavitation growth is suppressed by the thermodynamic effect, the distribution of the blade load does not change even at lower cavitation number. By contrast, the pressure distribution in liquid nitrogen has the same tendency as that in water if the cavity length at the blade tip is taken as a cavitation indication. From these results, it was found that the shift of the blade load to the trailing edge depended on the increase of cavity length, and that the distribution of blade load was indicated only by the cavity length independent of the thermodynamic effect.

  18. Modal response of interior mass based upon external measurements

    International Nuclear Information System (INIS)

    Chow, C T; Eli, M; Jorgensen, B R; Woehrle, T.

    1999-01-01

    Modal response testing has been used to predict the motion of interior masses of a system in which only external instrumentation is allowed. Testing of this form may occasionally be necessary in validation of a computer model, but also has potential as a tool for validating individual assemblies in a QA process. Examination of the external frequency response and mode shapes can offer insight into interior response. The interpretation of these results is improved through parallel analytical solutions. A simple, three-mass model has been examined experimentally and analytically to demonstrate modal theory. These results show the limitations of the external measurement in predicting internal response due to transmissibility. A procedure for utilizing external testing is described. The question posed through this research is whether or not modal correlation analysis can be adapted for use in systems for which instrumentation of critical components is missing

  19. Investigation of an Axial Fan—Blade Stress and Vibration Due to Aerodynamic Pressure Field and Centrifugal Effects

    Science.gov (United States)

    Xu, Cheng; Amano, Ryoichi Samuel; Lee, Eng Kwong

    A 1.829m (6ft) diameter industrial large flow-rate axial fan operated at 1770rpm was studied experimentally in laboratory conditions. The flow characteristics on the fan blade surfaces were investigated by measuring the pressure distributions on the blade suction and pressure surfaces and the results were discussed by comparing with analytical formulations and CFD. Flow visualizations were also performed to validate the flow characteristics near the blade surface and it was demonstrated that the flow characteristics near the fan blade surface were dominated by the centrifugal force of the fan rotation which resulted in strong three-dimensional flows. The time-dependent pressure measurement showed that the pressure oscillations on the fan blade were significantly dominated by vortex shedding from the fan blades. It was further demonstrated that the pressure distributions during the fan start-up were highly unsteady, and the main frequency variation of the static pressure was much smaller than the fan rotational frequency. The time-dependent pressure measurement when the fan operated at a constant speed showed that the magnitude of the blade pressure variation with time and the main variation frequency was much smaller than the fan rotational frequency. The pressure variations that were related to the vortex shedding were slightly smaller than the fan rotational frequency. The strain gages were used to measure the blade stress and the results were compared with FEA results.

  20. The use of an optical data acquisition system for bladed disk vibration analysis

    Science.gov (United States)

    Lawrence, C.; Meyn, E. H.

    1985-01-01

    A new concept in instrumentation was developed by engineers at NASA Lewis Research Center to collect vibration data from multi-bladed rotors. This new concept, known as the optical data acquisition system, uses optical transducers to measure bladed tip deflections by reflection of light beams off the tips of the blades as they pass in front of the optical transducer. By using an array of transducers around the perimeter of the rotor, detailed vibration signals can be obtained. In this study, resonant frequencies and mode shapes were determined for a 56 bladed rotor using the optical system. Frequency data from the optical system was also compared to data obtained from strain gauge measurements and finite element analysis and was found to be in good agreement.

  1. Anisotropic beam model for analysis and design of passive controlled wind turbine blades

    DEFF Research Database (Denmark)

    Branner, Kim; Blasques, José Pedro Albergaria Amaral; Kim, Taeseong

    . The developed fully coupled beam element and cross section analysis tool has been validated against both numerical calculations and experimental measurements. Numerical validation has been performed against beam type calculations including Variational Asymptotical Beam Section Analysis (VABS) and detailed shell...... and solid finite element analyses. Experimental validation included specially designed beams with built-in couplings, a full-scale blade section originally without couplings, which subsequently was modified with extra composite layers in order to obtain measurable couplings. Both static testing and dynamic...... modal analysis tests have been performed. The results from the project now make it possible to use structural couplings in an intelligent manner for the design of future wind turbine blades. The developed beam element is especially developed for wind turbine blades and can be used for modeling blades...

  2. Bayesian analysis applied to statistical uncertainties of extreme response distributions of offshore wind turbines

    NARCIS (Netherlands)

    Cheng, P.W.; Kuik, van G.A.M.; Bussel, van G.J.W.; Vrouwenvelder, A.C.W.M.

    2002-01-01

    Extreme response is an important design variable for wind turbines. The statistical uncertainties concerning the extreme response distribution are simulated here with data concerning physical characteristics obtained from measurements. The extreme responses are the flap moment at the blade root and

  3. Measure of the stability of the speed of the blades of a multi leaf collimator with a 2D array; Medida de la estabilidad de la velocidad de las laminas de un colimador multilaminas mediante un array 2D

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Bedoya, V.; Garcia Vicente, F.; Gomez Barrado, A.; Bermudez Luna, R.; Rodriguez Martin, G.; Perez Gonzalez, L.; Torres Escobar, J. J.

    2011-07-01

    The dynamic mode (sliding window) for intensity modulated radiotherapy (IMRT) assumes that the position of each pair of plates changes independently and at different rates for each field, while the accelerator is radiating, so it requires a step further multi leaf control to be necessary not only to control the accuracy in the position of the blades, but also perform a check on the speed and stability. The accuracy with which dynamic treatment is given depends on the accuracy with which control the speed of each sheet. We have developed a test based on the use of a 2a array to control the speed of the blades as part of quality control throttle to ensure the quality of IMRT treatments performed in our center. The literature describes tests to control this parameter based on the use of film, but desirable routine test a simpler and faster than the time to determine the mechanical condition of the blades. With this system you can check the set of 20 sheets at once central and do a visual analysis of the results through a program of acquisition and analysis. (Author)

  4. Genetic particle swarm parallel algorithm analysis of optimization arrangement on mistuned blades

    Science.gov (United States)

    Zhao, Tianyu; Yuan, Huiqun; Yang, Wenjun; Sun, Huagang

    2017-12-01

    This article introduces a method of mistuned parameter identification which consists of static frequency testing of blades, dichotomy and finite element analysis. A lumped parameter model of an engine bladed-disc system is then set up. A bladed arrangement optimization method, namely the genetic particle swarm optimization algorithm, is presented. It consists of a discrete particle swarm optimization and a genetic algorithm. From this, the local and global search ability is introduced. CUDA-based co-evolution particle swarm optimization, using a graphics processing unit, is presented and its performance is analysed. The results show that using optimization results can reduce the amplitude and localization of the forced vibration response of a bladed-disc system, while optimization based on the CUDA framework can improve the computing speed. This method could provide support for engineering applications in terms of effectiveness and efficiency.

  5. Application of a system modification technique to dynamic tuning of a spinning rotor blade

    Science.gov (United States)

    Spain, C. V.

    1987-01-01

    An important consideration in the development of modern helicopters is the vibratory response of the main rotor blade. One way to minimize vibration levels is to ensure that natural frequencies of the spinning main rotor blade are well removed from integer multiples of the rotor speed. A technique for dynamically tuning a finite-element model of a rotor blade to accomplish that end is demonstrated. A brief overview is given of the general purpose finite element system known as Engineering Analysis Language (EAL) which was used in this work. A description of the EAL System Modification (SM) processor is then given along with an explanation of special algorithms developed to be used in conjunction with SM. Finally, this technique is demonstrated by dynamically tuning a model of an advanced composite rotor blade.

  6. Effect of Turbulence on Power for Bend-Twist Coupled Blades

    DEFF Research Database (Denmark)

    Stäblein, Alexander; Hansen, Morten Hartvig

    2016-01-01

    that it might be related to the dynamic response of bend-twist coupled blades in turbulent flow. This paper contains estimations of the power curve from nonlinear time simulations, a linear frequency domain based method and a normal distribution weighted average method. It is shown that the frequency domain...... that changes in power due to turbulence are similar for coupled and uncoupled blades. Power gains at low wind speeds are related to the curvature of the steady state power curve. Losses around rated wind speed are caused by the effects of controller switching between partial and full power operation.......Bend-twist coupling of wind turbine blades reduces the structural loads of the turbine but it also results in a decrease of the annual energy production. The main part of the power loss can be mitigated by pretwisting the blade, but some power loss remains and previous studies indicate...

  7. Development of Self-Powered Wireless Structural Health Monitoring (SHM) for Wind Turbine Blades

    Science.gov (United States)

    Lim, Dong-Won

    Wind turbine blade failure can lead to unexpected power interruptions. Monitoring wind turbine blades is important to ensure seamless electricity delivery from power generation to consumers. Structural health monitoring (SHM) enables early recognition of structural problems so that the safety and reliability of operation can be enhanced. This dissertation focuses on the development of a wireless SHM system for wind turbine blades. The sensor is comprised of a piezoelectric energy harvester (EH) and a telemetry unit. The sensor node is mounted on the blade surface. As the blade rotates, the blade flexes, and the energy harvester captures the strain energy on the blade surface. Once sufficient electricity is captured, a pulse is sent from the sensing node to a gateway. Then, a central monitoring algorithm processes a series of pulses received from all three blades. This wireless SHM, which uses commercially available components, can be retrofitted to existing turbines. The harvested energy for sensing can be estimated in terms of two factors: the available strain energy and conversion efficiency. The available strain energy was evaluated using the FAST (Fatigue, Aerodynamics, Structures, and Turbulence) simulator. The conversion efficiency was studied analytically and experimentally. An experimental set-up was designed to mimic the expected strain frequency and amplitude for rotor blades. From a series of experiments, the efficiency of a piezoelectric EH at a typical rotor speed (0.2 Hz) was approximately 0.5%. The power requirement for sending one measurement (280 muJ) can be achieved in 10 minutes. Designing a detection algorithm is challenging due to this low sampling rate. A new sensing approach-the timing of pulses from the transmitter-was introduced. This pulse timing, which is tied to the charging time, is indicative of the structural health. The SHM system exploits the inherent triple redundancy of the three blades. The timing data of the three blades are

  8. Advances in Ceramic Matrix Composite Blade Damping Characteristics for Aerospace Turbomachinery Applications

    Science.gov (United States)

    Min, James B.; Harris, Donald L.; Ting, J. M.

    2011-01-01

    For advanced aerospace propulsion systems, development of ceramic matrix composite integrally-bladed turbine disk technology is attractive for a number of reasons. The high strength-to-weight ratio of ceramic composites helps to reduce engine weight and the one-piece construction of a blisk will result in fewer parts count, which should translate into reduced operational costs. One shortcoming with blisk construction, however, is that blisks may be prone to high cycle fatigue due to their structural response to high vibration environments. Use of ceramic composites is expected to provide some internal damping to reduce the vibratory stresses encountered due to unsteady flow loads through the bladed turbine regions. A goal of our research was to characterize the vibration viscous damping behavior of C/SiC composites. The vibration damping properties were measured and calculated. Damping appeared to decrease with an increase in the natural frequency. While the critical damping amount of approximately 2% is required for typical aerospace turbomachinery engines, the C/SiC damping at high frequencies was less than 0.2% from our study. The advanced high-performance aerospace propulsion systems almost certainly will require even more damping than what current vehicles require. A purpose of this paper is to review some work on C/SiC vibration damping by the authors for the NASA CMC turbine blisk development program and address an importance of the further investigation of the blade vibration damping characteristics on candidate CMC materials for the NASA s advanced aerospace turbomachinery engine systems.

  9. Taiwan's Travel and Border Health Measures in Response to Zika.

    Science.gov (United States)

    Ho, Li-Li; Tsai, Yu-Hui; Lee, Wang-Ping; Liao, Szu-Tsai; Wu, Li-Gin; Wu, Yi-Chun

    Zika virus has recently emerged as a worldwide public health concern. Travel and border health measures stand as one of the main strategies and frontline defenses in responding to international epidemics. As of October 31, 2016, Taiwan has reported 13 imported cases, 5 of which were detected through routine entry screening and active monitoring at international airports. This article shares Taiwan's disease surveillance activities at designated points of entry and travel and border health measures in response to Zika. The Taiwan government collaborates with its tourism industry to disseminate information about precautionary measures and encourages tour guides to report suspected individuals or events to activate early response measures. Taiwan also engages in vector control activities at points of entry, including targeting aircraft from countries where vector-borne diseases are endemic, implementing mosquito sweep measures, and collecting vector surveillance data. In future emerging and reemerging disease events, entry surveillance at designated points of entry may enable early detection of diseases of international origin and more rapid activation of public health preparedness activities and international collaboration. Taiwan will continue to maximize border and travel health measures in compliance with IHR (2005) requirements, which rely on continued risk assessment, practical implementation activities, and engagement with all stakeholders.

  10. Taiwan's Travel and Border Health Measures in Response to Zika

    Science.gov (United States)

    Ho, Li-Li; Tsai, Yu-Hui; Lee, Wang-Ping; Liao, Szu-Tsai; Wu, Li-Gin

    2017-01-01

    Zika virus has recently emerged as a worldwide public health concern. Travel and border health measures stand as one of the main strategies and frontline defenses in responding to international epidemics. As of October 31, 2016, Taiwan has reported 13 imported cases, 5 of which were detected through routine entry screening and active monitoring at international airports. This article shares Taiwan's disease surveillance activities at designated points of entry and travel and border health measures in response to Zika. The Taiwan government collaborates with its tourism industry to disseminate information about precautionary measures and encourages tour guides to report suspected individuals or events to activate early response measures. Taiwan also engages in vector control activities at points of entry, including targeting aircraft from countries where vector-borne diseases are endemic, implementing mosquito sweep measures, and collecting vector surveillance data. In future emerging and reemerging disease events, entry surveillance at designated points of entry may enable early detection of diseases of international origin and more rapid activation of public health preparedness activities and international collaboration. Taiwan will continue to maximize border and travel health measures in compliance with IHR (2005) requirements, which rely on continued risk assessment, practical implementation activities, and engagement with all stakeholders. PMID:28418744

  11. Turbine engine rotor blade fault diagnostics through casing pressure and vibration sensors

    International Nuclear Information System (INIS)

    Cox, J; Anusonti-Inthra, P

    2014-01-01

    In this study, an exact solution is provided for a previously indeterminate equation used for rotor blade fault diagnostics. The method estimates rotor blade natural frequency through turbine engine casing pressure and vibration sensors. The equation requires accurate measurements of low-amplitude sideband signals in the frequency domain. With this in mind, statistical evaluation was also completed with the goal of determining the effect of sampling time and frequency on sideband resolution in the frequency domain

  12. Ways of TPP and NPP powerful steam turbine blade erosion decreasing in low flow rate regimes

    International Nuclear Information System (INIS)

    Khrabrov, P.V.; Khaimov, V.A.; Matveenko, V.A.

    1986-01-01

    A systematized approach to the problem of efficient cooling of flow passage and exhaust parts of TPP and NPP steam turbines and prevention of erosion wear of inlet and outlet edges of operating blades is presented. Methods for LP casing cooling and sources of erosion-hazard moisture as well as the main technological and design measures to decrease the erosion of blades are determined

  13. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.L. [National Renewable Energy Laboratory, Golden, Colorado (United States)

    1997-08-01

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. (au)

  14. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.L. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. 8 refs., 6 figs.

  15. Modal properties and stability of bend–twist coupled wind turbine blades

    Directory of Open Access Journals (Sweden)

    A. R. Stäblein

    2017-06-01

    Full Text Available Coupling between bending and twist has a significant influence on the aeroelastic response of wind turbine blades. The coupling can arise from the blade geometry (e.g. sweep, prebending, or deflection under load or from the anisotropic properties of the blade material. Bend–twist coupling can be utilized to reduce the fatigue loads of wind turbine blades. In this study the effects of material-based coupling on the aeroelastic modal properties and stability limits of the DTU 10 MW Reference Wind Turbine are investigated. The modal properties are determined by means of eigenvalue analysis around a steady-state equilibrium using the aero-servo-elastic tool HAWCStab2 which has been extended by a beam element that allows for fully coupled cross-sectional properties. Bend–twist coupling is introduced in the cross-sectional stiffness matrix by means of coupling coefficients that introduce twist for flapwise (flap–twist coupling or edgewise (edge–twist coupling bending. Edge–twist coupling can increase or decrease the damping of the edgewise mode relative to the reference blade, depending on the operational condition of the turbine. Edge–twist to feather coupling for edgewise deflection towards the leading edge reduces the inflow speed at which the blade becomes unstable. Flap–twist to feather coupling for flapwise deflections towards the suction side increase the frequency and reduce damping of the flapwise mode. Flap–twist to stall reduces frequency and increases damping. The reduction of blade root flapwise and tower bottom fore–aft moments due to variations in mean wind speed of a flap–twist to feather blade are confirmed by frequency response functions.

  16. Microscale Fracture of Composite Materials for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Martyniuk, Karolina

    which are the most extensively used in the rotor blades, has been shown to play an important role on the overall response of the material. The properties of a fibre/matrix interface have been found to have a significant influence on the macroscopic behavior of composites. Therefore, the characterization......Due to the increase in wind turbines size it is essential that weight savings due to design changes do not compromise the reliability of the rotor blades. The reliability can be increased by improving design rules and the material models that describe the materials properties. More reliable...... materials models can be developed if the understanding of the microscale damage- the first stage of material failure- is increased. Therefore it is important to characterize materials’ microstructures and micro-cracks initiation and propagation.The microstructure of fibre reinforced composite materials...

  17. Design Optimization of a Centrifugal Fan with Splitter Blades

    Science.gov (United States)

    Heo, Man-Woong; Kim, Jin-Hyuk; Kim, Kwang-Yong

    2015-05-01

    Multi-objective optimization of a centrifugal fan with additionally installed splitter blades was performed to simultaneously maximize the efficiency and pressure rise using three-dimensional Reynolds-averaged Navier-Stokes equations and hybrid multi-objective evolutionary algorithm. Two design variables defining the location of splitter, and the height ratio between inlet and outlet of impeller were selected for the optimization. In addition, the aerodynamic characteristics of the centrifugal fan were investigated with the variation of design variables in the design space. Latin hypercube sampling was used to select the training points, and response surface approximation models were constructed as surrogate models of the objective functions. With the optimization, both the efficiency and pressure rise of the centrifugal fan with splitter blades were improved considerably compared to the reference model.

  18. Laser cladding of turbine blades

    International Nuclear Information System (INIS)

    Shepeleva, L.; Medres, B.; Kaplan, W.D.; Bamberger, M.

    2000-01-01

    A comparative study of two different techniques for the application of wear-resistant coatings for contact surfaces of shroud shelves of gas turbine engine blades (GTE) has been conducted. Wear-resistant coatings were applied on In713 by laser cladding with direct injection of the cladding powder into the melt pool. Laser cladding was conducted with a TRUMPF-2500, CW-CO 2 laser. The laser cladding was compared with commercially available plasma cladding with wire. Both plasma and laser cladded zones were characterized by optical and scanning electron microscopy. It was found that the laser cladded zone has a higher microhardness value (650-820 HV) compared with that of the plasma treated material (420-440 HV). This is a result of the significant reduction in grain size in the case of laser cladding. Unlike the plasma cladded zones, the laser treated material is free of micropores and microcracks. (orig.)

  19. The SNL100-02 blade :

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel

    2013-11-01

    A series of design studies are performed to investigate the effects of advanced core materials and a new core material strategy on blade weight and performance for large blades using the Sandia 100-meter blade designs as a starting point. The initial core material design studies were based on the SNL100-01 100- meter carbon spar design. Advanced core material with improved performance to weight was investigated with the goal to reduce core material content in the design and reduce blade weight. A secondary element of the core study was to evaluate the suitability of core materials from natural, regrowable sources such as balsa and recyclable foam materials. The new core strategy for the SNL100-02 design resulted in a design mass of 59 tons, which is a 20% reduction from the most recent SNL100-01 carbon spar design and over 48% reduction from the initial SNL100-00 all-glass baseline blade. This document provides a description of the final SNL100-02 design, includes a description of the major design modifications, and summarizes the pertinent blade design information. This document is also intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-02 that are made publicly available.

  20. Wind turbine blade waste in 2050.

    Science.gov (United States)

    Liu, Pu; Barlow, Claire Y

    2017-04-01

    Wind energy has developed rapidly over the last two decades to become one of the most promising and economically viable sources of renewable energy. Although wind energy is claimed to provide clean renewable energy without any emissions during operation, but it is only one side of the coin. The blades, one of the most important components in the wind turbines, made with composite, are currently regarded as unrecyclable. With the first wave of early commercial wind turbine installations now approaching their end of life, the problem of blade disposal is just beginning to emerge as a significant factor for the future. This paper is aimed at discovering the magnitude of the wind turbine blade waste problem, looking not only at disposal but at all stages of a blade's lifecycle. The first stage of the research, the subject of this paper, is to accurately estimate present and future wind turbine blade waste inventory using the most recent and most accurate data available. The result will provide a solid reference point to help the industry and policy makers to understand the size of potential environmental problem and to help to manage it better. This study starts by estimating the annual blade material usage with wind energy installed capacity and average blade weight. The effect of other waste contributing factors in the full lifecycle of wind turbine blades is then included, using industrial data from the manufacturing, testing and in-service stages. The research indicates that there will be 43 million tonnes of blade waste worldwide by 2050 with China possessing 40% of the waste, Europe 25%, the United States 16% and the rest of the world 19%. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  1. Testing and evaluation of a rototiller with new ridged blades

    Directory of Open Access Journals (Sweden)

    H Gholami

    2017-05-01

    Full Text Available Introduction Recently, employment of rotary tillers has been expanded in gardens and small farms, especially in the northern of Iran. However using the L-shaped blades in the conventional rotary tillers have some problems such as severe vibration problems, weeds stucking around the blades, forming the plow pan and lower performance due to the less powers of such small rototillers. Therefore in order to overcome the above mentioned problems, a rototiller with new ridged blades was designed, fabricated and tested in this research. Materials and Methods Experiments were carried out in one of the citrus orchards in Mazandaran, Sari. The experimental design was split plots based on randomized complete block design with three replications. The soil moisture as main plot varied in two levels of 13.5-21.9 and 21.9-30.3 percent based on dry weight and the rotational speed of blades as subplots varied in three levels of 140-170, 170-200 and 200-230 rpm. The measured parameters consist of soil particle mean weight diameter, soil bulk density, soil crumbling percentage, specific fuel consumption and machine efficiency. The diameter of soil particles was measured using a set of standard sieves with diameter ranging from 0.5 to 8 mm. Then a laboratory shaker was used to sift the samples. Each sample was shaken in 30 sec. The fuel consumption during the experiments was determined by the filled fuel tank method. Analysis of variance (ANOVA and mean comparisons and interaction between the parameters were performed using the SPSS 16 software. Results and Discussion The results indicated that the soil particle mean weight diameter reduced by increasing blades rotational speed in both examined soil moisture contents. Results indicated that the soil crumbling percent increases with increasing the rotational speed. The main reason for this effect could be due to the more energy transferring to the soil at higher rotational speeds, which result in further crumbling of

  2. Active load reduction by means of trailing edge flaps on a wind turbine blade

    DEFF Research Database (Denmark)

    Couchman, Ian; Castaignet, Damien; Poulsen, Niels Kjølstad

    2014-01-01

    This paper presents the blade fatigue load reduction achieved with a trailing edge flap during a full scale test on a Vestas V27 wind turbine. A frequency-weighted linear model predictive control (MPC) is tuned to decrease flapwise blade root fatigue loads at the frequencies where most of the blade...... damage occurs, i.e. the 1P and 2P frequencies (respectively 1 and 2 events per revolution). Frequency-weighted MPC is chosen for its ability to handle constraints on the trailing edge flap deflection and to optimise its actuation in order to decrease wear and tear of the actuator. The controller...... was first tested in aero-servo-elastic simulations, before being implemented on a Vestas V27 wind turbine. Consistent load reduction is achieved during the full-scale test. An average of 14% flapwise blade root fatigue load reduction is measured....

  3. Wind turbine rotor blade monitoring using digital image correlation: a comparison to aeroelastic simulations of a multi-megawatt wind turbine

    International Nuclear Information System (INIS)

    Winstroth, J; Ernst, B; Seume, J R; Schoen, L

    2014-01-01

    Optical full-field measurement methods such as Digital Image Correlation (DIC) provide a new opportunity for measuring deformations and vibrations with high spatial and temporal resolution. However, application to full-scale wind turbines is not trivial. Elaborate preparation of the experiment is vital and sophisticated post processing of the DIC results essential. In the present study, a rotor blade of a 3.2 MW wind turbine is equipped with a random black-and-white dot pattern at four different radial positions. Two cameras are located in front of the wind turbine and the response of the rotor blade is monitored using DIC for different turbine operations. In addition, a Light Detection and Ranging (LiDAR) system is used in order to measure the wind conditions. Wind fields are created based on the LiDAR measurements and used to perform aeroelastic simulations of the wind turbine by means of advanced multibody codes. The results from the optical DIC system appear plausible when checked against common and expected results. In addition, the comparison of relative out-ofplane blade deflections shows good agreement between DIC results and aeroelastic simulations

  4. Wind turbine rotor blade monitoring using digital image correlation: a comparison to aeroelastic simulations of a multi-megawatt wind turbine

    Science.gov (United States)

    Winstroth, J.; Schoen, L.; Ernst, B.; Seume, J. R.

    2014-06-01

    Optical full-field measurement methods such as Digital Image Correlation (DIC) provide a new opportunity for measuring deformations and vibrations with high spatial and temporal resolution. However, application to full-scale wind turbines is not trivial. Elaborate preparation of the experiment is vital and sophisticated post processing of the DIC results essential. In the present study, a rotor blade of a 3.2 MW wind turbine is equipped with a random black-and-white dot pattern at four different radial positions. Two cameras are located in front of the wind turbine and the response of the rotor blade is monitored using DIC for different turbine operations. In addition, a Light Detection and Ranging (LiDAR) system is used in order to measure the wind conditions. Wind fields are created based on the LiDAR measurements and used to perform aeroelastic simulations of the wind turbine by means of advanced multibody codes. The results from the optical DIC system appear plausible when checked against common and expected results. In addition, the comparison of relative out-ofplane blade deflections shows good agreement between DIC results and aeroelastic simulations.

  5. Structural Analysis of Basalt Fiber Reinforced Plastic Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Mengal Ali Nawaz

    2014-07-01

    Full Text Available In this study, Basalt fiber reinforced plastic (BFRP wind turbine blade was analyzed and compared with Glass fiber reinforced plastic blade (GFRP. Finite element analysis (FEA of blade was carried out using ANSYS. Data for FEA was obtained by using rule of mixture. The shell element in ANSYS was used to simulate the wind turbine blade and to conduct its strength analysis. The structural analysis and comparison of blade deformations proved that BFRP wind turbine blade has better strength compared to GFRP wind turbine blade.

  6. Method of detecting system function by measuring frequency response

    Science.gov (United States)

    Morrison, John L.; Morrison, William H.; Christophersen, Jon P.; Motloch, Chester G.

    2013-01-08

    Methods of rapidly measuring an impedance spectrum of an energy storage device in-situ over a limited number of logarithmically distributed frequencies are described. An energy storage device is excited with a known input signal, and a response is measured to ascertain the impedance spectrum. An excitation signal is a limited time duration sum-of-sines consisting of a select number of frequencies. In one embodiment, magnitude and phase of each frequency of interest within the sum-of-sines is identified when the selected frequencies and sample rate are logarithmic integer steps greater than two. This technique requires a measurement with a duration of one period of the lowest frequency. In another embodiment, where selected frequencies are distributed in octave steps, the impedance spectrum can be determined using a captured time record that is reduced to a half-period of the lowest frequency.

  7. KNOW-BLADE, task-3.2 report, tip shape study

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, N.N.; Johansen, J.; Conway, S.; Voutsinas, S.; Hansen, M.O.L.; Stuermer, A.

    2005-01-01

    For modern rotor blades with their very large aspect ratio, the blade tip is a very limited part of the overall rotor, and as such of limited importance for the overall aerodynamics of the rotor. Even though they may not be very important for the overall power production, the tip noise can be very important for the acoustics of the rotor [15], and the blade tips can as well be important for the aerodynamic damping properties of the rotor blades [13]. Unfortunately, not many options exists for predicting the aerodynamic behavior of blade tips using computational methods. Experimentally it is dicult to perform detailed measurements in the form of pressure and velocity measurements in natural wind conditions on modern large scale turbines due to the inherent unsteadiness in the natural wind. The present study describes the application of four different Navier-Stokes solvers to tip shape studies, and shows that these codes are well suited to study the flow around different tip shape geometries, and can predict the pressure distributions at the blade tip quite accurately. (au)

  8. Helicopter Rotor Blade Computation in Unsteady Flows Using Moving Overset Grids

    Science.gov (United States)

    Ahmad, Jasim; Duque, Earl P. N.

    1996-01-01

    An overset grid thin-layer Navier-Stokes code has been extended to include dynamic motion of helicopter rotor blades through relative grid motion. The unsteady flowfield and airloads on an AH-IG rotor in forward flight were computed to verify the methodology and to demonstrate the method's potential usefulness towards comprehensive helicopter codes. In addition, the method uses the blade's first harmonics measured in the flight test to prescribe the blade motion. The solution was impulsively started and became periodic in less than three rotor revolutions. Detailed unsteady numerical flow visualization techniques were applied to the entire unsteady data set of five rotor revolutions and exhibited flowfield features such as blade vortex interaction and wake roll-up. The unsteady blade loads and surface pressures compare well against those from flight measurements. Details of the method, a discussion of the resulting predicted flowfield, and requirements for future work are presented. Overall, given the proper blade dynamics, this method can compute the unsteady flowfield of a general helicopter rotor in forward flight.

  9. Modeling of Unsteady Sheet Cavitation on Marine Propeller Blades

    Directory of Open Access Journals (Sweden)

    Spyros A. Kinnas

    2003-01-01

    Full Text Available Unsteady sheet cavitation is very common on marine propulsor blades. The authors summarize a lifting-surface and a surface-panel model to solve for the unsteady cavitating flow around a propeller that is subject to nonaxisymmetric inflow. The time-dependent extent and thickness of the cavity were determined by using an iterative method. The cavity detachment was determined by applying the smooth detachment criterion in an iterative manner. A nonzeroradius developed vortex cavity model was utilized at the tip of the blade, and the trailing wake geometry was determined using a fully unsteady wake-alignment process. Comparisons of predictions by the two models and measurements from several experiments are given.

  10. Mechanical Design, Analysis, and Testing of a Two-Bladed Wind Turbine Hub

    Energy Technology Data Exchange (ETDEWEB)

    Cotrell, J.

    2002-06-01

    Researchers at the National Wind Technology Center (NWTC) in Golden, Colorado, began performing the Unsteady Aerodynamics Experiment in 1993 to better understand the unsteady aerodynamics and structural responses of horizontal-axis wind turbines. The experiment consists of an extensively instrumented, downwind, three-bladed, 20-kilowatt wind turbine. In May 1995, I received a request from the NWTC to design a two-bladed hub for the experiment. For my thesis, I present the results of the mechanical design, analysis, and testing of the hub. The hub I designed is unique because it runs in rigid, teetering, or independent blade-flapping modes. In addition, the design is unusual because it uses two servomotors to pitch the blades independently. These features are used to investigate new load reduction, noise reduction, blade pitch optimization, and yaw control techniques for two-bladed turbines. I used a methodology by G. Phal and W. Bietz to design the hub. The hub meets all the performance specifications except that it achieves only 90% of the specified teeter range. In my thesis, I focus on the analysis and testing of the hub body. I performed solid-mechanics calculations, ran a finite-element analysis simulation, and experimentally investigated the structural integrity of the hub body.

  11. Hover Testing of the NASA/Army/MIT Active Twist Rotor Prototype Blade

    Science.gov (United States)

    Wilbur, Matthew L.; Yeager, William T., Jr.; Wilkie, W. Keats; Cesnik, Carlos E. S.; Shin, Sangloon

    2000-01-01

    Helicopter rotor individual blade control promises to provide a mechanism for increased rotor performance and reduced rotorcraft vibrations and noise. Active material methods, such as piezoelectrically actuated trailing-edge flaps and strain-induced rotor blade twisting, provide a means of accomplishing individual blade control without the need for hydraulic power in the rotating system. Recent studies have indicated that controlled strain induced blade twisting can be attained using piezoelectric active fiber composite technology. In order to validate these findings experimentally, a cooperative effort between NASA Langley Research Center, the Army Research Laboratory, and the MIT Active Materials and Structures Laboratory has been developed. As a result of this collaboration an aeroelastically-scaled active-twist model rotor blade has been designed and fabricated for testing in the heavy gas environment of the Langley Transonic Dynamics Tunnel (TDT). The results of hover tests of the active-twist prototype blade are presented in this paper. Comparisons with applicable analytical predictions of active-twist frequency response in hovering flight are also presented.

  12. Torsional Stiffness Effects on the Dynamic Stability of a Horizontal Axis Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Min-Soo Jeong

    2013-04-01

    Full Text Available Aeroelastic instability problems have become an increasingly important issue due to the increased use of larger horizontal axis wind turbines. To maintain these large structures in a stable manner, the blade design process should include studies on the dynamic stability of the wind turbine blade. Therefore, fluid-structure interaction analyses of the large-scaled wind turbine blade were performed with a focus on dynamic stability in this study. A finite element method based on the large deflection beam theory is used for structural analysis considering the geometric nonlinearities. For the stability analysis, a proposed aerodynamic approach based on Greenberg’s extension of Theodorsen’s strip theory and blade element momentum method were employed in conjunction with a structural model. The present methods proved to be valid for estimations of the aerodynamic responses and blade behavior compared with numerical results obtained in the previous studies. Additionally, torsional stiffness effects on the dynamic stability of the wind turbine blade were investigated. It is demonstrated that the damping is considerably influenced by variations of the torsional stiffness. Also, in normal operating conditions, the destabilizing phenomena were observed to occur with low torsional stiffness.

  13. Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade

    Energy Technology Data Exchange (ETDEWEB)

    Bir, G. S.; Lawson, M. J.; Li, Y.

    2011-10-01

    This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

  14. Investigations on Vibration Characteristics of Sma Embedded Horizontal Axis Wind Turbine Blade

    Science.gov (United States)

    Jagadeesh, V.; Yuvaraja, M.; Chandhru, A.; Viswanathan, P.; Senthil kumar, M.

    2018-02-01

    Vibration induced in wind turbine blade is a solemn problem as it reduces the life of the blade and also it can create critical vibration onto the tower, which may cause serious damage to the tower. The aim of this paper is to investigate the vibration characteristics of the prototype horizontal axis wind turbine blade. Shape memory alloys (SMA), with its variable physical properties, provides an alternative actuating mechanism. Heating an SMA causes a change in the elastic modulus of the material and hence SMAs are used as a damping material. A prototype blade with S1223 profile has been manufactured and the natural frequency is found. The natural frequency is found by incorporating the single SMA wire of 0.5mm diameter over the surface of the blade for a length of 240 mm. Similarly, number of SMA wires over the blade is increased up to 3 and the natural frequency is found. Frequency responses showed that the embedment of SMA over the blade’s surface will increase the natural frequency and reduce the amplitude of vibration. This is because of super elastic nature of SMA. In this paper, when SMA wire of 0.5 mm diameter and of length of 720 mm is embedded on the blade, an increase in the natural frequency by 6.3% and reducing the amplitude by 64.8%. Results of the experimental modal and harmonic indicates the effectiveness of SMA as a passive vibration absorber and that it has potential as a modest and high-performance method for controlling vibration of the blade.

  15. Measuring older adults' sedentary time: reliability, validity, and responsiveness.

    Science.gov (United States)

    Gardiner, Paul A; Clark, Bronwyn K; Healy, Genevieve N; Eakin, Elizabeth G; Winkler, Elisabeth A H; Owen, Neville

    2011-11-01

    With evidence that prolonged sitting has deleterious health consequences, decreasing sedentary time is a potentially important preventive health target. High-quality measures, particularly for use with older adults, who are the most sedentary population group, are needed to evaluate the effect of sedentary behavior interventions. We examined the reliability, validity, and responsiveness to change of a self-report sedentary behavior questionnaire that assessed time spent in behaviors common among older adults: watching television, computer use, reading, socializing, transport and hobbies, and a summary measure (total sedentary time). In the context of a sedentary behavior intervention, nonworking older adults (n = 48, age = 73 ± 8 yr (mean ± SD)) completed the questionnaire on three occasions during a 2-wk period (7 d between administrations) and wore an accelerometer (ActiGraph model GT1M) for two periods of 6 d. Test-retest reliability (for the individual items and the summary measure) and validity (self-reported total sedentary time compared with accelerometer-derived sedentary time) were assessed during the 1-wk preintervention period, using Spearman (ρ) correlations and 95% confidence intervals (CI). Responsiveness to change after the intervention was assessed using the responsiveness statistic (RS). Test-retest reliability was excellent for television viewing time (ρ (95% CI) = 0.78 (0.63-0.89)), computer use (ρ (95% CI) = 0.90 (0.83-0.94)), and reading (ρ (95% CI) = 0.77 (0.62-0.86)); acceptable for hobbies (ρ (95% CI) = 0.61 (0.39-0.76)); and poor for socializing and transport (ρ < 0.45). Total sedentary time had acceptable test-retest reliability (ρ (95% CI) = 0.52 (0.27-0.70)) and validity (ρ (95% CI) = 0.30 (0.02-0.54)). Self-report total sedentary time was similarly responsive to change (RS = 0.47) as accelerometer-derived sedentary time (RS = 0.39). The summary measure of total sedentary time has good repeatability and modest validity and is

  16. Pin and roller attachment system for ceramic blades

    Science.gov (United States)

    Shaffer, J.E.

    1995-07-25

    In a turbine, a plurality of blades are attached to a turbine wheel by way of a plurality of joints which form a rolling contact between the blades and the turbine wheel. Each joint includes a pin and a pair of rollers to provide rolling contact between the pin and an adjacent pair of blades. Because of this rolling contact, high stress scuffing between the blades and the turbine wheel reduced, thereby inhibiting catastrophic failure of the blade joints. 3 figs.

  17. Multidisciplinary design optimization of film-cooled gas turbine blades

    OpenAIRE

    Shashishekara S. Talya; J. N. Rajadas; A. Chattopadhyay

    1999-01-01

    Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with ...

  18. Development of Standard Approach for Sickle Blade Manufacturing

    OpenAIRE

    Noordin, M. N. A; Hudzari, R. M; Azuan, H. N; Zainon, M. S; Mohamed, S. B; Wafi, S. A

    2016-01-01

    The sickle blade used in the motorised palm cutter known as “CANTAS” provides fast, easy and safe pruning and harvesting for those hard to reach applications. Jariz Technologies Company is experiencing problem in the consistency of sickle blade which was supplied by various blade manufacturers. Identifying the proper blade material with a certain hardness value would produce a consistent as well as long lasting sickle blade. A Standard Operating Procedure (SOP) in the manufacturing of the sic...

  19. Extracting Earth's Elastic Wave Response from Noise Measurements

    Science.gov (United States)

    Snieder, Roel; Larose, Eric

    2013-05-01

    Recent research has shown that noise can be turned from a nuisance into a useful seismic source. In seismology and other fields in science and engineering, the estimation of the system response from noise measurements has proven to be a powerful technique. To convey the essence of the method, we first treat the simplest case of a homogeneous medium to show how noise measurements can be used to estimate waves that propagate between sensors. We provide an overview of physics research—dating back more than 100 years—showing that random field fluctuations contain information about the system response. This principle has found extensive use in surface-wave seismology but can also be applied to the estimation of body waves. Because noise provides continuous illumination of the subsurface, the extracted response is ideally suited for time-lapse monitoring. We present examples of time-lapse monitoring as applied to the softening of soil after the 2011 Tohoku-oki earthquake, the detection of a precursor to a landslide, and temporal changes in the lunar soil.

  20. Measurement of TLD Albedo response on various calibration phantoms

    International Nuclear Information System (INIS)

    Momose, T.; Tsujimura, N.; Shinohara, K.; Ishiguro, H.; Nakamura, T.

    1996-01-01

    The International Commission on Radiation Units and Measurements (ICRU) has recommended that individual dosemeter should be calibrated on a suitable phantom and has pointed out that the calibration factor of a neutron dosemeter is strongly influenced by the the exact size and shape of the body and the phantom to which the dosemeter is attached. As the principle of an albedo type thermoluminescent personal dosemeter (albedo TLD) is essentially based on a detection of scattered and moderated neutron from a human body, the sensitivity of albedo TLD is strongly influenced by the incident neutron energy and the calibration phantom. (1) Therefore for albedo type thermoluminescent personal dosemeter (albedo TLD), the information of neutron albedo response on the calibration phantom is important for appropriate dose estimation. In order to investigate the effect of phantom type on the reading of the albedo TLD, measurement of the TLD energy response and angular response on some typical calibration phantoms was performed using dynamitron accelerator and 252 Cf neutron source. (author)

  1. Fatigue strength ofcomposite wind turbine blade structures

    DEFF Research Database (Denmark)

    Ardila, Oscar Gerardo Castro

    Wind turbines are normally designed to withstand 20-30 years of life. During this period, the blades, which are the main rotating structures of a wind turbine, are subjected to high fluctuating load conditions as a result of a combination of gravity, inertia, and aeroelastic forces. For this reason......, fatigue is one of the foremost concerns during the design of these structures. However, current standard fatigue methods used for designing wind turbine blades seem not to be completely appropriate for these structures because they are still based on methods developed for metals and not for composite...... materials from which the blades are made. In this sense, the aim of this work is to develop more accurate and reliable fatigue-life prediction models for composite wind turbine blades. In this project, two types of fatigue models are implemented: fatigue-life models and damage mechanics models. In the first...

  2. Aircraft rotor blade with passive tuned tab

    Science.gov (United States)

    Campbell, T. G. (Inventor)

    1985-01-01

    A structure for reducing vibratory airloading in a rotor blade with a leading edge and a trailing edge includes a cut out portion at the trailing edge. A substantially wedge shaped cross section, inertially deflectable tab, also with a leading edge and a trailing edge is pivotally mounted in the cut out portion. The trailing edge of the tab may move above and below the rotor blade. A torsion strap applies force against the tab when the trailing edge of the tab is above and below the rotor blade. A restraining member is slidably movable along the torsion strap to vary torsional biasing force supplied by the torsion bar to the tab. A plurality of movable weights positioned between plates vary a center of gravity of the tab. Skin of the tab is formed from unidirectional graphite and fiberglass layers. Sliders coupled with a pinned degree of freedom at rod eliminate bending of tab under edgewise blade deflection.

  3. Doctor Blade-Coated Polymer Solar Cells

    KAUST Repository

    Cho, Nam Chul

    2016-10-25

    In this work, we report polymer solar cells based on blade-coated P3HT:PC71BM and PBDTTT-EFT:PC71BM bulk heterojunction photoactive layers. Enhanced power conversion efficiency of 2.75 (conventional structure) and 3.03% (inverted structure) with improved reproducibility was obtained from blade-coated P3HT:PC71BM solar cells, compared to spin-coated ones. Furthermore, by demonstrating 3.10% efficiency flexible solar cells using blade-coated PBDTTT-EFT:PC71BM films on the plastic substrates, we suggest the potential applicability of blade coating technique to the high throughput roll-to-roll fabrication systems.

  4. A multi-frequency fatigue testing method for wind turbine rotor blades

    Science.gov (United States)

    Eder, M. A.; Belloni, F.; Tesauro, A.; Hanis, T.

    2017-02-01

    Rotor blades are among the most delicate components of modern wind turbines. Reliability is a crucial aspect, since blades shall ideally remain free of failure under ultra-high cycle loading conditions throughout their designated lifetime of 20-25 years. Full-scale blade tests are the most accurate means to experimentally simulate damage evolution under operating conditions, and are therefore used to demonstrate that a blade type fulfils the reliability requirements to an acceptable degree of confidence. The state-of-the-art testing method for rotor blades in industry is based on resonance excitation where typically a rotating mass excites the blade close to its first natural frequency. During operation the blade response due to external forcing is governed by a weighted combination of its eigenmodes. Current test methodologies which only utilise the lowest eigenfrequency induce a fictitious damage where additional tuning masses are required to recover the desired damage distribution. Even with the commonly adopted amplitude upscaling technique fatigue tests remain a time-consuming and costly endeavour. The application of tuning masses increases the complexity of the problem by lowering the natural frequency of the blade and therefore increasing the testing time. The novel method presented in this paper aims at shortening the duration of the state-of-the-art fatigue testing method by simultaneously exciting the blade with a combination of two or more eigenfrequencies. Taking advantage of the different shapes of the excited eigenmodes, the actual spatial damage distribution can be more realistically simulated in the tests by tuning the excitation force amplitudes rather than adding tuning masses. This implies that in portions of the blade the lowest mode is governing the damage whereas in others higher modes contribute more significantly due to their higher cycle count. A numerical feasibility study based on a publicly available large utility rotor blade is used to

  5. High efficiency turbine blade coatings

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, Dennis L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallis, Michail A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600°C and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the

  6. Output characteristics of torsion arc blade type horizontal axis windmill; Nejire enko yokugata suiheijiku fusha no shutsuryoku tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, N; Kishimura, K [Meiji University, Tokyo (Japan)

    1997-11-25

    The previous paper theoretically analyzes characteristics of a torsion arc blade type (TABT) horizontal axis windmill to derive the theoretical equations, which give the results in good agreement with the observed ones, when multiplied by a blade shape factor. This paper discusses that the theoretical and observed results are in good agreement with each other by taking into consideration shape-related solidity and number of blades. The following findings are obtained, when parameters related to a 6-blade TABT horizontal axis wind mill are introduced and hysteresis brake is used as the load resistance for torque measurement. Shape factor can be represented by two factors of blade number and solidity. The same equation for shape factor is applicable to both elliptical and rectangular blades. These blades need different theoretical equations to give the results in agreement with the observed ones, when operated at a tip speed ratio (TSR) of 1.77 and 1.58, respectively. Rotational force is affected by the rear blade shape when they are operated at a respective TSR below the above level, but unaffected at beyond the above level. 5 refs., 9 figs., 1 tab.

  7. Eddy current inspection of stationary blade rings

    International Nuclear Information System (INIS)

    Krzywosz, K.J.; Hastings, S.N.

    1994-01-01

    Stationary turbine blade rings in a US power plant have experienced chloride-induced cracking. Failure analysis determined two types of cracking mechanisms: corrosion fatigue cracking confined to the leading edge of the outer shroud; and stress corrosion cracking present all over the blade surface. Fluorescent dye penetrant is typically used to detect and size cracks. However, it requires cleaning the blade rings by sandblasting to obtain reliable inspection results. Sand blasting in turn requires sealing the lower half of the turbine housing to prevent sand from contaminating the rest of the power plant components. Furthermore, both the penetrant examination and the removal of the sand are time consuming and costly. An alternative NDE technique is desirable which requires no pre-cleaning of the blade and a quick go/no-go inspection with the capability of estimating the crack length. This paper presents an innovative eddy current technique which meets the desired objectives by incorporating the use of specially designed contoured scanners equipped with an array of pancake coils. A set of eddy current pancake coils housed in three different scanners is used to manually scan and inspect the convex side of the stationary blade rings. The pancake coils are operated in a transmit/receive mode using two separate eddy current instruments. This paper presents the inspection concept, including scanner and probe designs, and test results from the various stages of multiple blade rings

  8. Super titanium blades for advanced steam turbines

    International Nuclear Information System (INIS)

    Coulon, P.A.

    1990-01-01

    In 1986, the Alsthom Steam Turbines Department launched the manufacture of large titanium alloy blades: airfoil length of 1360 mm and overall length of 1520 mm. These blades are designed for the last-stage low pressure blading of advanced steam turbines operating at full speed (3000 rpm) and rating between 300 and 800 MW. Using titanium alloys for steam turbine exhaust stages as substitutes for chrome steels, due to their high strength/density ratio and their almost complete resistance to corrosion, makes it possible to increase the length of blades significantly and correspondingly that steam passage section (by up to 50%) with a still conservative stresses level in the rotor. Alsthom relies on 8 years of experience in the field of titanium, since as early as 1979 large titanium blades (airfoil length of 1240 mm, overall length of 1430 mm) were erected for experimental purposes on the last stage of a 900 MW unit of the Dampierre-sur-Loire power plant and now totals 45,000 operating hours without problems. The paper summarizes the main properties (chemical, mechanical and structural) recorded on very large blades and is based in particular on numerous fatigue corrosion test results to justify the use of the Ti 6 Al 4 V alloy in a specific context of micrographic structure

  9. Active Control of Parametric Vibrations in Coupled Rotor-Blade Systems

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2003-01-01

    of modes. The designed control scheme is applied to a coupled rotor-blade system and dynamic responses are numerically evaluated. Such responses show that the vibrations are efficiently reduced. Frequency response diagrams demonstrate that both basis and parametric vibration modes are significantly...... the model becomes periodic-variant. In order to reduce basis as well as parametric vibrations by means of active control in such systems a time-variant control strategy has to be adopted. This paper presents a methodology for designing an active controller to reduce vibrations in a coupled rotor......-blade system. The main aim is to control blade as well as hub vibrations in such a system by means of active control with focus on reducing the parametric vibration. A periodic state feedback controller is designed by transforming the system into a linear time-invariant form. Using this a controller...

  10. Performance/Noise Optimization of Centrifugal Fan Using Response Surface Method

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Donghui; Cheong, Cheolung [Pusan Nat’l Univ., Busan (Korea, Republic of); Heo Seung [Korea Aerospace Industries, Sacheon (Korea, Republic of); Kim, Tae-Hoon; Jung, Jiwon [LG Electronics, Seoul (Korea, Republic of)

    2017-03-15

    In this study, centrifugal fan blades used to circulate cold air inside a household refrigerator were optimized to achieve high performance and low noise by using the response surface method, which is frequently employed as an optimization algorithm when multiple independent variables affect one dependent variable. The inlet and outlet blade angles, and the inner radius, were selected as the independent variables. First, the fan blades were optimized to achieve the maximum volume flow rate. Based on this result, a prototype fan blade was manufactured using a 3-D printer. The measured P-Q curves confirmed the increased volume flow rate of the proposed fan. Then, the rotation speed of the new fan was decreased to match the P-Q curve of the existing fan. It was found that a noise reduction of 1.7 dBA could be achieved using the new fan at the same volume flow rate.

  11. Performance/Noise Optimization of Centrifugal Fan Using Response Surface Method

    International Nuclear Information System (INIS)

    Shin, Donghui; Cheong, Cheolung; Heo Seung; Kim, Tae-Hoon; Jung, Jiwon

    2017-01-01

    In this study, centrifugal fan blades used to circulate cold air inside a household refrigerator were optimized to achieve high performance and low noise by using the response surface method, which is frequently employed as an optimization algorithm when multiple independent variables affect one dependent variable. The inlet and outlet blade angles, and the inner radius, were selected as the independent variables. First, the fan blades were optimized to achieve the maximum volume flow rate. Based on this result, a prototype fan blade was manufactured using a 3-D printer. The measured P-Q curves confirmed the increased volume flow rate of the proposed fan. Then, the rotation speed of the new fan was decreased to match the P-Q curve of the existing fan. It was found that a noise reduction of 1.7 dBA could be achieved using the new fan at the same volume flow rate.

  12. Measurement of human normal tissue and tumour responses

    International Nuclear Information System (INIS)

    Ross, G.; Yarnold, J.R.

    1988-01-01

    The scarcity of quantitative measures of normal tissue damage and tumour response in patients undergoing radiotherapy is an obstacle to the clinical evaluation of new treatment strategies. Retrospective studies of complications in critical normal tissues taught important lessons in the past concerning the potential dangers of hypofractionation. However, it is unethical to use serious complications as planned end-points in prospective studies. This paper reviews the desirable characteristics of clinical end-points required to compare alternative treatments employing radiotherapy, with emphasis on simple scales applied by clinicians or even the patients themselves

  13. Fundamentals for remote structural health monitoring of wind turbine blades - a preproject. Annex E. Full-scale test of wind turbine blade, using sensors and NDT

    DEFF Research Database (Denmark)

    Kristensen, O.J.D.; McGugan, Malcolm; Sendrup, P.

    2002-01-01

    A 19.1 metre wind turbine blade was subjected to static tests. The purpose of the test series was to verify the abilities of different types of sensors to detect damage in wind turbine blades. Prior to each of the static test-series an artificial damagewas made on the blade. The damage made...... for each test-series was surveyed during each series by acoustic emission, fiber optic micro bend displacement transducers and strain gauges. The propagation of the damage was determined by use of ultra sonic andX-ray surveillance during stops in the test-series. By use of acoustic emission it was possible...... to measure damage propagation before the propagation was of visible size. By use of fiber optic micro bend displacement transducers and strain gauges it waspossible to measure minor damage propagation. By use of both ultra sonic, and X-ray NDT-equipment it were possible to determine the size of propagated...

  14. Estimation of road profile variability from measured vehicle responses

    Science.gov (United States)

    Fauriat, W.; Mattrand, C.; Gayton, N.; Beakou, A.; Cembrzynski, T.

    2016-05-01

    When assessing the statistical variability of fatigue loads acting throughout the life of a vehicle, the question of the variability of road roughness naturally arises, as both quantities are strongly related. For car manufacturers, gathering information on the environment in which vehicles evolve is a long and costly but necessary process to adapt their products to durability requirements. In the present paper, a data processing algorithm is proposed in order to estimate the road profiles covered by a given vehicle, from the dynamic responses measured on this vehicle. The algorithm based on Kalman filtering theory aims at solving a so-called inverse problem, in a stochastic framework. It is validated using experimental data obtained from simulations and real measurements. The proposed method is subsequently applied to extract valuable statistical information on road roughness from an existing load characterisation campaign carried out by Renault within one of its markets.

  15. Direct measurement of the plasma response to electrostatic ion waves

    International Nuclear Information System (INIS)

    Sarfaty, M.; DeSouza-Machado, S.; Skiff, F.

    1995-01-01

    Plasma wave-wave and wave-particle interactions are studied in a linear magnetized plasma. The relatively quiet plasma is produced by an argon gas-discharge. The plasma density is n e ≅ 10 9 cm -3 and the electron/ion temperatures are T e ≅ 5eV and T i = 0.05eV. A grid and a four ring antenna, both mounted on a scanning carriage, are used to launch electrostatic ion waves in the plasma. Laser Induced Fluorescence measurements of both the linear and the nonlinear plasma response to the wave fields are presented. The Vlasov-Poisson equations are used to explain the measured zero, first and second order terms of the ion distribution function in the presence of wave fields. In addition to the broadening (heating) of the ion distribution as the authors increase the wave amplitudes, induced plasma flows are observed both along and across the magnetic field

  16. A combined piezoelectric composite actuator and its application to wing/blade tips

    Science.gov (United States)

    Ha, Kwangtae

    A novel combined piezoelectric-composite actuator configuration is proposed and analytically modeled in this work. The actuator is a low complexity, active compliant mechanism obtained by coupling a modified star cross sectional configuration composite beam with a helicoidal bimorph piezoelectric actuator coiled around it. This novel actuator is a good candidate as a hinge tension-torsion bar actuator for a helicopter rotor blade flap or blade tip and mirror rotational positioning. In the wing tip case, the tip deflection angle is different only according to the aerodynamic moment depending on the hinge position of the actuator along the chord and applied voltage because there is no centrifugal force. For an active blade tip subject to incompressible flow and 2D quasi steady airloads, its twist angle is related not only to aerodynamic moment and applied voltage but also to coupling terms, such as the trapeze effect and the tennis racquet effect. Results show the benefit of hinge position aft of the aerodynamic center, such that the blade tip response is amplified by airloads. Contrary to this effect, results also show that the centrifugal effects and inertial effect cause an amplitude reduction in the response. Summation of these effects determines the overall blade tip response. The results for a certain hinge position of Xh=1.5% chord aft of the quarter chord point proves that the tip deflection target design range of beta ∈ [-2,+2] can be achieved for all pitch angle configurations chosen.

  17. Experimental investigation of turbine blade-tip excitation forces

    Science.gov (United States)

    Martinez-Sanchez, Manuel; Jaroux, Belgacem; Song, Seung Jin; Yoo, Soom-Yung; Palczynski, Taras

    1994-01-01

    Results of a program to investigate the magnitude and parametric variations of rotordynamic forces which arise in high power turbines due to blade-tip leakage effects are presented. Five different unshrouded turbine configurations and one configuration shrouded with a labyrinth seal were tested with static offsets of the turbine shaft. The forces along and perpendicular to the offset were measured directly with a rotating dynometer. Exploration of casing pressure and flow velocity distributions was used to investigate the force-generating mechanisms. For unshrouded turbines, the cross-forces originate mainly from the classical Alford mechanisms while the direct forces arise mainly from a slightly skewed pressure pattern. The Alford coefficient for cross-force was found to vary between 2.4 and 4.0, while the similar direct force coefficient varied from 1.5 to 3.5. The cross-forces are found to increase substantially when the gap is reduced from 3.0 to 1.9% of blade height, probably due to viscous blade-tip effects. The forces also increase when the hub gap between stator and rotor decreases. The force coefficient decreased with operating flow coefficient. In the case of the shrouded turbine, most of the forces arise from nonuniform seal pressures. This includes about 80% for the transverse forces. The rest appears to come from uneven work extraction. Their level is about 50% higher in the shrouded case.

  18. Femtosecond response time measurements of a Cs2Te photocathode

    Science.gov (United States)

    Aryshev, A.; Shevelev, M.; Honda, Y.; Terunuma, N.; Urakawa, J.

    2017-07-01

    Success in design and construction of a compact, high-brightness accelerator system is strongly related to the production of ultra-short electron beams. Recently, the approach to generate short electron bunches or pre-bunched beams in RF guns directly illuminating a high quantum efficiency semiconductor photocathode with femtosecond laser pulses has become attractive. The measurements of the photocathode response time in this case are essential. With an approach of the interferometer-type pulse splitter deep integration into a commercial Ti:Sa laser system used for RF guns, it has become possible to generate pre-bunched electron beams and obtain continuously variable electron bunch separation. In combination with a well-known zero-phasing technique, it allows us to estimate the response time of the most commonly used Cs2Te photocathode. It was demonstrated that the peak-to-peak rms time response of Cs2Te is of the order of 370 fs, and thereby, it is possible to generate and control a THz sequence of relativistic electron bunches by a conventional S-band RF gun. This result can also be applied for investigation of other cathode materials and electron beam temporal shaping and further opens a possibility to construct wide-range tunable, table-top THz free electron laser.

  19. Integrity assessment of stationary blade ring for nuclear power plant

    International Nuclear Information System (INIS)

    Park, Jung Yong; Chung, Yong Keun; Park, Jong Jin; Kang, Yong Ho

    2004-01-01

    The inner side between HP stationary blades in no.1 turbine of nuclear power plant A is damaged by the FAC(Flow Assisted Corrosion) which is exposed to moisture. For many years the inner side is repaired by welding the damaged part, however, the FAC continues to deteriorate the original material of the welded blade ring. In this study, we have two stages to verify the integrity of stationary blade ring in nuclear power plant A. In the stage I, replication of blade ring is performed to survey the microstructure of blade ring. In the stage II, the stress analysis of blade ring is performed to verify the structural safety of blade ring. Throughout the two stages analysis of blade ring, the stationary blade ring had remained undamaged

  20. Design considerations for a Space Shuttle Main Engine turbine blade made of single crystal material

    Science.gov (United States)

    Abdul-Aziz, A.; August, R.; Nagpal, V.

    1993-01-01

    Nonlinear finite-element structural analyses were performed on the first stage high-pressure fuel turbopump blade of the Space Shuttle Main Engine. The analyses examined the structural response and the dynamic characteristics at typical operating conditions. Single crystal material PWA-1480 was considered for the analyses. Structural response and the blade natural frequencies with respect to the crystal orientation were investigated. The analyses were conducted based on typical test stand engine cycle. Influence of combined thermal, aerodynamic, and centrifugal loadings was considered. Results obtained showed that the single crystal secondary orientation effects on the maximum principal stresses are not highly significant.

  1. Measurement and Analysis of Horizontal Vibration Response of Pile Foundations

    Directory of Open Access Journals (Sweden)

    A. Boominathan

    2007-01-01

    Full Text Available Pile foundations are frequently used in very loose and weak deposits, in particular soft marine clays deposits to support various industrial structures, power plants, petrochemical complexes, compressor stations and residential multi-storeyed buildings. Under these circumstances, piles are predominantly subjected to horizontal dynamic loads and the pile response to horizontal vibration is very critical due to its low stiffness. Though many analytical methods have been developed to estimate the horizontal vibration response, but they are not well validated with the experimental studies. This paper presents the results of horizontal vibration tests carried out on model aluminium single piles embedded in a simulated Elastic Half Space filled with clay. The influence of various soil and pile parameters such as pile length, modulus of clay, magnitude of dynamic load and frequency of excitation on the horizontal vibration response of single piles was examined. Measurement of various response quantities, such as the load transferred to the pile, pile head displacement and the strain variation along the pile length were done using a Data Acquisition System. It is found that the pile length, modulus of clay and dynamic load, significantly influences the natural frequency and peak amplitude of the soil-pile system. The maximum bending moment occurs at the fundamental frequency of the soil-pile system. The maximum bending moment of long piles is about 2 to 4 times higher than that of short piles and it increases drastically with the increase in the shear modulus of clay for both short and long piles. The active or effective pile length is found to be increasing under dynamic load and empirical equations are proposed to estimate the active pile length under dynamic loads.

  2. Distribution of defects in wind turbine blades and reliability assessment of blades containing defects

    DEFF Research Database (Denmark)

    Stensgaard Toft, Henrik; Branner, Kim; Berring, Peter

    2009-01-01

    on the assumption that one error in the production process tends to trigger several defects. For both models additional information about number, type and size of the defects is included as stochastic variables. The probability of failure for a wind turbine blade will not only depend on variations in the material......In the present paper two stochastic models for the distribution of defects in wind turbine blades are proposed. The first model assumes that the individual defects are completely randomly distributed in the blade. The second model assumes that the defects occur in clusters of different size based...... properties and the load but also on potential defects in the blades. As a numerical example the probability of failure is calculated for the main spar both with and without defects in terms of delaminations. The delaminations increase the probability of failure compared to a perfect blade, but by applying...

  3. Full-Scale Field Test of a Blade-Integrated Dual-Telescope Wind Lidar

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Sjöholm, Mikael; Angelou, Nikolas

    . Simultaneously, data regarding wind speed, rotational speed, and pitch angle recorded by the turbine was logged as well as data from a nearby met mast. The encouraging results of this first campaign include wind speed measurements at 20 Hz data rate along the rotor plane, acquired during the co...... in the top and bottom of the rotor plane. Conclusion We present here what we believe is the first successful wind speed measurements from a dual-telescope lidar installed on the blade of an operating wind turbine. The full-scale field test performed in the summer of 2012 has clearly demonstrated...... the possibility of integrating lidar telescopes into turbine blades as well as the capability of the lidar to measure the required wind speeds and to operate in the challenging environment of a rotating spinner and vibrating blade. The use of two separate telescopes allows a direct measurement of the blade’s AOA...

  4. Intra-examiner repeatability and agreement in accommodative response measurements.

    Science.gov (United States)

    Antona, B; Sanchez, I; Barrio, A; Barra, F; Gonzalez, E

    2009-11-01

    Clinical measurement of the accommodative response (AR) identifies the focusing plane of a subject with respect to the accommodative target. To establish whether a significant change in AR has occurred, it is important to determine the repeatability of this measurement. This study had two aims: First, to determine the intraexaminer repeatability of AR measurements using four clinical methods: Nott retinoscopy, monocular estimate method (MEM) retinoscopy, binocular crossed cylinder test (BCC) and near autorefractometry. Second, to study the level of agreement between AR measurements obtained with the different methods. The AR of the right eye at one accommodative demand of 2.50 D (40 cm) was measured on two separate occasions in 61 visually normal subjects of mean age 19.7 years (range 18-32 years). The intraexaminer repeatability of the tests, and agreement between them, were estimated by the Bland-Altman method. We determined mean differences (MD) and the 95% limits of agreement [coefficient of repeatability (COR) and coefficient of agreement (COA)]. Nott retinoscopy and BCC offered the best repeatability, showing the lowest MD and narrowest 95% interval of agreement (Nott: -0.10 +/- 0.66 D, BCC: -0.05 +/- 0.75 D). The 95% limits of agreement for the four techniques were similar (COA = +/- 0.92 to +/-1.00 D) yet clinically significant, according to the expected values of the AR. The two dynamic retinoscopy techniques (Nott and MEM) had a better agreement (COA = +/-0.64 D) although this COA must be interpreted in the context of the low MEM repeatability (COR = +/-0.98 D). The best method of assessing AR was Nott retinoscopy. The BCC technique was also repeatable, and both are recommended as suitable methods for clinical use. Despite better agreement between MEM and Nott, agreement among the remaining methods was poor such that their interchangeable use in clinical practice is not recommended.

  5. Experimental Study of under-platform Damper Kinematics in Presence of Blade Dynamics

    Science.gov (United States)

    Botto, D.; Gastaldi, C.; Gola, M. M.; Umer, M.

    2018-01-01

    Among the different devices used in the aerospace industries under-platform dampers are widely used in turbo engines to mitigate the blade vibration. Nevertheless, the damper behaviour is not easy to simulate and engineers have been working in order to improve the accuracy with which theoretical contact models predict the damper behaviour. Majority of the experimental setups collect experimental data in terms of blade amplitude reduction which do not increase the knowledge about the damper dynamics and therefore the uncertainty on the damper behaviour remains a big issue. In this paper, a novel test rig has been purposely designed to accommodate a single blade and two under-platform dampers to deeply investigate the damper-blade interactions. In this test bench, a contact force measuring system was designed to extensively measure the damper contact forces. Damper kinematics is rebuilt by using the relative displacement measured between damper and blade. This paper describes the concept behind the new approach, shows the details of new test rig and discusses experimental results by comparing with previously measured results on an old experimental setup.

  6. Validation of Heat-Flux Predictions on the Outer Air Seal of a Transonic Turbine Blade (Preprint)

    National Research Council Canada - National Science Library

    Clark, John P; Polanka, Marc D; Meininger, Matthew; Praisner, Thomas J

    2006-01-01

    .... So, a set of predictions of the heat flux on the Blade Outer Air Seal (BOAS) of a transonic turbine is here validated with time-resolved measurements obtained in a single-stage high pressure turbine rig...

  7. Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, M.H.; Janiga, G.; Pap, E.; Thevenin, D. [Lab. of Fluid Dynamics and Technical Flows, University of Magdeburg ' ' Otto von Guericke' ' (Germany)

    2011-01-15

    Due to the worldwide energy crisis, research and development activities in the field of renewable energy have been considerably increased in many countries. Wind energy is becoming particularly important. Although considerable progress have already been achieved, the available technical design is not yet adequate to develop reliable wind energy converters for conditions corresponding to low wind speeds and urban areas. The Savonius turbine appears to be particularly promising for such conditions, but suffers from a poor efficiency. The present study considers a considerably improved design in order to increase the output power of a classical Savonius turbine. In previous works, the efficiency of the classical Savonius turbine has been increased by placing in an optimal manner an obstacle plate shielding the returning blade. The present study now aims at improving further the output power of the Savonius turbine as well as the static torque, which measures the self-starting capability of the turbine. In order to achieve both objectives, the geometry of the blade shape (skeleton line) is now optimized in presence of the obstacle plate. Six free parameters are considered in this optimization process, realized by coupling an in-house optimization library (OPAL, relying in the present case on Evolutionary Algorithms) with an industrial flow simulation code (ANSYS-Fluent). The target function is the output power coefficient. Compared to a standard Savonius turbine, a relative increase of the power output coefficient by almost 40% is finally obtained at {lambda} = 0.7. The performance increase exceeds 30% throughout the useful operating range. Finally, the static torque is investigated and found to be positive at any angle, high enough to obtain self-starting conditions. (author)

  8. Icing Problems of Wind Turbine Blades in Cold Climates

    DEFF Research Database (Denmark)

    Hudecz, Adriána

    Climatic Wind Tunnel located at FORCE Technology. The aerodynamic forces acting on the blade during ice accretion for different angles of attack at various air temperatures were measured along with the mass of ice and the final ice shape. For all three types of ice accretion, glaze, mixed and rime ice...... and on the aerodynamic characteristics of the airfoil. The trend of the reduction of lift coefficients agrees quite well with the wind tunnel test results, although based on the measured and the numerical lift coefficients of the clean airfoil, the presence of the wind tunnel walls had significant influence...

  9. Spacer grid with mixing blades for nuclear fuel assembly

    International Nuclear Information System (INIS)

    Noailly, J.

    1986-01-01

    The spacer grid for nuclear fuel assembly has two sets of intersecting metal plates provided with blades and defining cells. The plates are fitted only with half-blades associated with a single grid opening. The half-blades of adjacent cells are arranged at 90deg C to each other and each plate has at most one half-blade at each corner of a cell. The invention concerns fuel assemblies of pressurized water reactors. The blades arranged on a single side of the plate provide a good hydraulic uniformity. The invention provides a uniform distribution of blades (and thus of absorbing material in each hydraulic cell) [fr

  10. Comprehensive Structural Dynamic Analysis of the SSME/AT Fuel Pump First-Stage Turbine Blade

    Science.gov (United States)

    Brown, A. M.

    1998-01-01

    A detailed structural dynamic analysis of the Pratt & Whitney high-pressure fuel pump first-stage turbine blades has been performed to identify the cause of the tip cracking found in the turbomachinery in November 1997. The analysis was also used to help evaluate potential fixes for the problem. Many of the methods available in structural dynamics were applied, including modal displacement and stress analysis, frequency and transient response to tip loading from the first-stage Blade Outer Gas Seals (BOGS), fourier analysis, and shock spectra analysis of the transient response. The primary findings were that the BOGS tip loading is impulsive in nature, thereby exciting many modes of the blade that exhibit high stress at the tip cracking location. Therefore, a proposed BOGS count change would not help the situation because a clearly identifiable resonance situation does not exist. The recommendations for the resolution of the problem are to maintain the existing BOGS count, eliminate the stress concentration in the blade due to its geometric design, and reduce the applied load on the blade by adding shiplaps in the BOGS.

  11. Vibration Characteristics of a Mistuned Bladed Disk considering the Effect of Coriolis Forces

    Directory of Open Access Journals (Sweden)

    Xuanen Kan

    2016-01-01

    Full Text Available To investigate the influence of Coriolis force on vibration characteristics of mistuned bladed disk, a bladed disk with 22 blades is employed and the effects of different rotational speeds and excitation engine orders on the maximum forced response are discussed considering the effects of Coriolis forces. The results show that if there are frequency veering regions, the largest split of double natural frequencies of each modal family considering the effects of Coriolis forces appears at frequency veering region. In addition, the amplitude magnification factor considering the Coriolis effects is increased by 1.02% compared to the system without considering the Coriolis effects as the rotating speed is 3000 rpm, while the amplitude magnification factor is increased by 2.76% as the rotating speed is 10000 rpm. The results indicate that the amplitude magnification factor may be moderately enhanced with the increasing of rotating speed. Moreover, the position of the maximum forced response of bladed disk may shift from one blade to another with the increasing of the rotational speed, when the effects of Coriolis forces are considered.

  12. Design Optimization of An Axial Flow Fan Blade Considering Airfoil Shape and Stacking Line

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Sang; Kim, Kwang Yong; Samad, Abdus [Inha Univ., Incheon (Korea, Republic of)

    2007-07-01

    This work presents a numerical optimization procedure for a low-speed axial flow fan blade with polynomial response surface approximation model. Reynolds-averaged Navier-Stokes equations with Shear Stress Turbulence (SST) model are discretized by finite volume approximations and solved on hexahedral grids for flow analyses. The airfoil shape as well as stacking line is modified to enhance blade total efficiency, i.e., the objective function. The design variables of blade lean, maximum thickness and location of maximum thickness are selected, and a design of experiments technique produces design points where flow analyses are performed to obtain values of the objective function. A gradient-based search algorithm is used to find the optimal design in the design space from the constructed response surface model for the objective function. As a main result, the efficiency is increased effectively by the present optimization procedure. And, it is also shown that the modification of blade lean is more effective to improve the efficiency rather than modifying blade profile.

  13. Investigation of Blade-row Flow Distributions in Axial-flow-compressor Stage Consisting of Guide Vanes and Rotor-blade Row

    Science.gov (United States)

    Mahoney, John J; Dugan, Paul D; Budinger, Raymond E; Goelzer, H Fred

    1950-01-01

    A 30-inch tip-diameter axial-flow compressor stage was investigated with and without rotor to determine individual blade-row performance, interblade-row effects, and outer-wall boundary-layer conditions. Velocity gradients at guide-vane outlet without rotor approximated design assumptions, when the measured variation of leaving angle was considered. With rotor in operation, Mach number and rotor-blade effects changed flow distribution leaving guide vanes and invalidated design assumption of radial equilibrium. Rotor-blade performance correlated interpolated two-dimensional results within 2 degrees, although tip stall was indicated in experimental and not two-dimensional results. Boundary-displacement thickness was less than 1.0 and 1.5 percent of passage height after guide vanes and after rotor, respectively, but increased rapidly after rotor when tip stall occurred.

  14. Reduced order modeling, statistical analysis and system identification for a bladed rotor with geometric mistuning

    Science.gov (United States)

    Vishwakarma, Vinod

    Modified Modal Domain Analysis (MMDA) is a novel method for the development of a reduced-order model (ROM) of a bladed rotor. This method utilizes proper orthogonal decomposition (POD) of Coordinate Measurement Machine (CMM) data of blades' geometries and sector analyses using ANSYS. For the first time ROM of a geometrically mistuned industrial scale rotor (Transonic rotor) with large size of Finite Element (FE) model is generated using MMDA. Two methods for estimating mass and stiffness mistuning matrices are used a) exact computation from sector FE analysis, b) estimates based on POD mistuning parameters. Modal characteristics such as mistuned natural frequencies, mode shapes and forced harmonic response are obtained from ROM for various cases, and results are compared with full rotor ANSYS analysis and other ROM methods such as Subset of Nominal Modes (SNM) and Fundamental Model of Mistuning (FMM). Accuracy of MMDA ROM is demonstrated with variations in number of POD features and geometric mistuning parameters. It is shown for the aforementioned case b) that the high accuracy of ROM studied in previous work with Academic rotor does not directly translate to the Transonic rotor. Reasons for such mismatch in results are investigated and attributed to higher mistuning in Transonic rotor. Alternate solutions such as estimation of sensitivities via least squares, and interpolation of mass and stiffness matrices on manifolds are developed, and their results are discussed. Statistics such as mean and standard deviations of forced harmonic response peak amplitude are obtained from random permutations, and are shown to have similar results as those of Monte Carlo simulations. These statistics are obtained and compared for 3 degree of freedom (DOF) lumped parameter model (LPM) of rotor, Academic rotor and Transonic rotor. A state -- estimator based on MMDA ROM and Kalman filter is also developed for offline or online estimation of harmonic forcing function from

  15. Measurement of amplitude fluctuations in a rapid response photomultiplier

    International Nuclear Information System (INIS)

    Raimbault, P.

    1961-01-01

    In order to measure amplitude fluctuations in a rapid response photomultiplier, two independent random variables are introduced which determine the shape of the anode pulse. The energy of each pulse, which depends directly on the gain and the variance, is the first variable; amplitude fluctuations, functions of the first variable, depend as well on the pulse width which in turn constitutes the second variable. The results obtained on the variations of the maximum impulse, using a steep-edged pulse broadening circuit, and those obtained on the statistical variations of the gain, are compared to show that the variance relative to the maximum amplitude of the signal is greater than that of the gain. Within the limits of these fluctuations are shown the contribution of the secondary emission coefficient of the first dynode, and that of the mean secondary emission coefficient of the multiplier. (author) [fr

  16. Structural health monitoring of wind turbine blades

    Science.gov (United States)

    Rumsey, Mark A.; Paquette, Joshua A.

    2008-03-01

    As electric utility wind turbines increase in size, and correspondingly, increase in initial capital investment cost, there is an increasing need to monitor the health of the structure. Acquiring an early indication of structural or mechanical problems allows operators to better plan for maintenance, possibly operate the machine in a de-rated condition rather than taking the unit off-line, or in the case of an emergency, shut the machine down to avoid further damage. This paper describes several promising structural health monitoring (SHM) techniques that were recently exercised during a fatigue test of a 9 meter glass-epoxy and carbon-epoxy wind turbine blade. The SHM systems were implemented by teams from NASA Kennedy Space Center, Purdue University and Virginia Tech. A commercial off-the-shelf acoustic emission (AE) NDT system gathered blade AE data throughout the test. At a fatigue load cycle rate around 1.2 Hertz, and after more than 4,000,000 fatigue cycles, the blade was diagnostically and visibly failing at the out-board blade spar-cap termination point at 4.5 meters. For safety reasons, the test was stopped just before the blade completely failed. This paper provides an overview of the SHM and NDT system setups and some current test results.

  17. Individual blade pitch for yaw control

    International Nuclear Information System (INIS)

    Navalkar, S T; Van Wingerden, J W; Van Kuik, G A M

    2014-01-01

    Individual pitch control (IPC) for reducing blade loads has been investigated and proven successful in recent literature. For IPC, the multi-blade co-ordinate (MBC) transformation is used to process the blade load signals from the rotating to a stationary frame of reference. In the stationary frame of reference, the yaw error of a turbine can be appended to generate IPC actions that are able to achieve turbine yaw control for a turbine in free yaw. In this paper, IPC for yaw control is tested on a high-fidelity numerical model of a commercially produced wind turbine in free yaw. The tests show that yaw control using IPC has the distinct advantage that the yaw system loads and support structure loading are substantially reduced. However, IPC for yaw control also shows a reduction in IPC blade load reduction potential and causes a slight increase in pitch activity. Thus, the key contribution of this paper is the concept demonstration of IPC for yaw control. Further, using IPC for yaw as a tuning parameter, it is shown how the best trade-off between blade loading, pitch activity and support structure loading can be achieved for wind turbine design

  18. Measurement of the open loop plasma equilibrium response in TCV

    International Nuclear Information System (INIS)

    Coutlis, A.; Bandyopadhyay, I.; Lister, J.B.; Vyas, P.; Albanese, R.; Limebeer, D.J.N.; Villone, F.; Wainwright, J.P.

    1999-01-01

    A new technique and results are presented for the estimation of the open loop frequency response of the plasma on TCV. Voltages were applied to poloidal field coils and the resulting plasma current, position and shape related parameters were measured. The results are compared with the CREATE-L model, and good agreement is confirmed. The results are a significant advance on previous comparisons with closed loop data, which were limited by the role of feedback in the system. A simpler circuit equation model has also been developed in order to understand the reasons for the good agreement and identify which plasma properties are important in determining the response. The reasons for the good agreement with this model are discussed. An alternative modelling method has been developed, combining features of both the theoretical and experimental techniques. Its advantage is that it incorporates well defined knowledge of the electromagnetic properties of the tokamak with experimental data to derive plasma related parameters. This new model provides further insight into the plasma behaviour. (author)

  19. Measuring Maize Seedling Drought Response in Search of Tolerant Germplasm

    Directory of Open Access Journals (Sweden)

    Dirk Hays

    2013-02-01

    Full Text Available To identify and develop drought tolerant maize (Zea mays L., high-throughput and cost-effective screening methods are needed. In dicot crops, measuring survival and recovery of seedlings has been successful in predicting drought tolerance but has not been reported in C4 grasses such as maize. Seedlings of sixty-two diverse maize inbred lines and their hybrid testcross progeny were evaluated for germination, survival and recovery after a series of drought cycles. Genotypic differences among inbred lines and hybrid testcrosses were best explained approximately 13 and 18 days after planting, respectively. Genotypic effects were significant and explained over 6% of experimental variance. Specifically three inbred lines had significant survival, and 14 hybrids had significant recovery. However, no significant correlation was observed between hybrids and inbreds (R2 = 0.03, indicating seedling stress response is more useful as a secondary screening parameter in hybrids than in inbred lines per se. Field yield data under full and limited irrigation indicated that seedling drought mechanisms were independent of drought responses at flowering in this study.

  20. Damping measurements in flowing water

    Science.gov (United States)

    Coutu, A.; Seeley, C.; Monette, C.; Nennemann, B.; Marmont, H.

    2012-11-01

    Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Water added mass and damping are both critical quantities in evaluating the dynamic response of the turbine component. Although the effect of fluid added mass is well documented, fluid damping, a critical quantity to limit vibration amplitudes during service, and therefore to help avoiding possible failure of the turbines, has received much less attention in the literature. This paper presents an experimental investigation of damping due to FSI. The experimental setup, designed to create dynamic characteristics similar to the ones of Francis turbine blades is discussed, together with the experimental protocol and examples of measurements obtained. The paper concludes with the calculated damping values and a discussion on the impact of the observed damping behaviour on the response of hydraulic turbine blades to FSI.

  1. Damping measurements in flowing water

    International Nuclear Information System (INIS)

    Coutu, A; Monette, C; Nennemann, B; Marmont, H; Seeley, C

    2012-01-01

    Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Water added mass and damping are both critical quantities in evaluating the dynamic response of the turbine component. Although the effect of fluid added mass is well documented, fluid damping, a critical quantity to limit vibration amplitudes during service, and therefore to help avoiding possible failure of the turbines, has received much less attention in the literature. This paper presents an experimental investigation of damping due to FSI. The experimental setup, designed to create dynamic characteristics similar to the ones of Francis turbine blades is discussed, together with the experimental protocol and examples of measurements obtained. The paper concludes with the calculated damping values and a discussion on the impact of the observed damping behaviour on the response of hydraulic turbine blades to FSI.

  2. Anisotropic beam model for analysis and design of passive controlled wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Branner, K; Blasques, J P; Kim, T; Fedorov, V A; Berring, P; Bitsche, R D; Berggreen, C

    2012-02-15

    The main objective of the project was, through theoretical and experimental research, to develop and validate a fully coupled, general beam element that can be used for advanced and rapid analysis of wind turbine blades. This is fully achieved in the project and the beam element has even been implemented in the aeroelastic code HAWC2. It has also been demonstrated through a parametric study in the project that a promising possibility with the tool is to reduce fatigue loads through structural couplings. More work is needed before these possibilities are fully explored and blades with structural couplings can be put into production. A cross section analysis tool BECAS (BEam Cross section Analysis Software) has been developed and validated in the project. BECAS is able to predict all geometrical and material induced couplings. This tool has obtained great interest from both industry and academia. The developed fully coupled beam element and cross section analysis tool has been validated against both numerical calculations and experimental measurements. Numerical validation has been performed against beam type calculations including Variational Asymptotical Beam Section Analysis (VABS) and detailed shell and solid finite element analyses. Experimental validation included specially designed beams with built-in couplings, a full-scale blade section originally without couplings, which subsequently was modified with extra composite layers in order to obtain measurable couplings. Both static testing and dynamic modal analysis tests have been performed. The results from the project now make it possible to use structural couplings in an intelligent manner for the design of future wind turbine blades. The developed beam element is especially developed for wind turbine blades and can be used for modeling blades with initial curvature (pre-bending), initial twist and taper. Finally, it have been studied what size of structural couplings can be obtained in current and future

  3. Impulse response measurements as dependent on crack depth. Delamination

    International Nuclear Information System (INIS)

    Ulriksen, Peter

    2011-02-01

    The purpose of the project is to investigate the impulse-response method's ability to detect delamination at different depths. This method is of particular interest, since some of it's realizations strongly resembles established methods like 'bomknackning' . Since the personnel that will be responsible for future measurements with new technology, should feel confidence in new methods, it is an advantage if the new methods connect to older, accepted methods. The project consists of three parts and a fourth is planned. The first part of the investigation is made with a vibrator connected to an impedance head which in turn is connected to the surface of the concrete test specimen with internal delaminations at different depths. The vibrator is controlled by a dynamic signal analyze, which also measures the force- and acceleration signals from the impedance head and convert them to impedance. Since the impedance head must be glued to the surface of the concrete this method is only of laboratory interest. This method gives a complete description of the behavior of the concrete for the frequencies investigated. Thus in following investigations the frequencies of interest are known. From the experiment it follows that delamination down to a depth of 80-100 mm can be detected through a clear and solitary resonance peak. This resonance frequency is a function of concrete slab thickness and extension, so if the extension can be measured it may be possible to calculate depth. The second part of the investigation is about using an instrumented hammer to hit the different delamination specimens. The hammer is equipped with a force transducer giving an opportunity to measure the force exerted by the strike against the concrete surface. When a hammer is struck against a concrete surface a spectrum of vibrations is created, dependent on the weight of the hammer and the elasticity of the concrete. A light hammer generates higher frequencies than a heavy one. Three different hammer

  4. Response function measurement of plastic scintillator for high energy neutrons

    International Nuclear Information System (INIS)

    Sanami, Toshiya; Ban, Syuichi; Takahashi, Kazutoshi; Takada, Masashi

    2003-01-01

    The response function and detection efficiency of 2''φ x 2''L plastic (PilotU) and NE213 liquid (2''NE213) scintillators, which were used for the measurement of secondary neutrons from high energy electron induced reactions, were measured at Heavy Ion Medical Accelerator in Chiba (HIMAC). High energy neutrons were produced via 400 MeV/n C beam bombardment on a thick graphite target. The detectors were placed at 15 deg with respect to C beam axis, 5 m away from the target. As standard, a 5''φ x 5''L NE213 liquid scintillator (5''NE213) was also placed at same position. Neutron energy was determined by the time-of-flight method with the beam pickup scintillator in front of the target. In front of the detectors, veto scintillators were placed to remove charged particle events. All detector signals were corrected with list mode event by event. We deduce neutron spectrum for each detectors. The efficiency curves for pilotU and 2''NE213 were determined on the bases of 5 N E213 neutron spectrum and its efficiency calculated by CECIL code. (author)

  5. Transverse impedance measurement using response matrix fit method at APS

    International Nuclear Information System (INIS)

    Sajaev, V.

    2007-01-01

    of an accelerator. The orbit bump method was done at BINP, APS, and ESRF. All these methods have one common feature: they employ the fact that the beam sees the impedance as an additional defocusing quadrupole whose strength depends on the beam current. At APS we use an orbit response matrix fit to determine the distribution of focusing errors around the machine, and then use these errors to calculate beta functions. Since the beam sees the impedance as a quadrupole whose strength depends on the beam current, the measurement of the beta functions with different currents could be used to determine the impedance distribution around the machine. This approach was first used at APS and reported in.

  6. Measures of the inflammatory response in cryptogenic fibrosing alveolitis

    International Nuclear Information System (INIS)

    Pantin, C.F.; Valind, S.O.; Sweatman, M.; Lawrence, R.; Rhodes, C.G.; Brudin, L.; Britten, A.; Hughes, J.M.; Turner-Warwick, M.

    1988-01-01

    Cryptogenic fibrosing alveolitis (CFA) is characterized by interstitial fibrosis and parenchymal inflammation. Eleven patients with CFA (10 proved by lung biopsy) were followed over 2 yr using clinical symptoms, radiographic change, and pulmonary function tests to adjust their treatment. Lung lavage, positron camera (PET) measurements of regional extravascular lung density (Dev), pulmonary blood volume (Vb), and the metabolic rate for 18F-deoxyglucose (MRglc), clearance of 99mTc-diethylenetriaminepentacetate (99mTc-DTPA) aerosol, and lung uptake of 67Ga were measured initially and at the end of the first year to give a profile of the inflammatory response. Compared with normal subjects, there was an increased percentage of neutrophils and eosinophils in the lung lavage, increased Dev (p less than 0.002) with no significant difference in Vb, increased MRglc (p less than 0.02), 99mTc-DTPA clearance (p less than 0.002), and 67Ga uptake (p less than 0.02). The smallest increases in Dev were seen in the two patients with most destruction shown by lung biopsy. There were inverse correlations between Dev and both FVC and TLC, but a direct correlation between Vb and transfer factor. 99mTc-DTPA clearance changed concordantly with clinical status and radiographic and respiratory function changes during the first year. If glucose utilization (MRglc) remained in the normal range between the initial and first yearly assessment, the patient improved or remained stable during the second year as shown by clinical status and radiographic and respiratory function measurements. If it rose or remained high, the patient's condition deteriorated

  7. Discussion paper on managing composite blade waste

    DEFF Research Database (Denmark)

    Skelton, Kristen

    A sustainable process for dealing with wind turbines at the end of their service life is needed in order to maximize the environmental benefits of wind power from a life cycle approach. Most components of a wind turbine such as foundation, tower, components of the gear box and generator are alrea...... as practical examples and experiences from research and industry projects. Important sources have been obtained from researchers, the original equipment manufacturers (OEMs), operators and maintainers (O&Ms), waste handlers and those that use the recyclates from blade waste....... recyclable and treated accordingly. Nevertheless, wind turbine blades represent a challenge due to the materials used and their complex composition. The objective of this research note is to provide an overview of the different methods used for sectioning and recycling wind turbine blades as well...

  8. Resonant vibration control of wind turbine blades

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker

    2010-01-01

    . The efficiency of the resonant controller is demonstrated for a representative turbine blade exposed to turbulent wind loading. It is found that the present explicit tuning procedure yields close to optimal tuning, with very limited modal spill-over and effective reduction of the vibration amplitudes.......The paper deals with introduction of damping to specific vibration modes of wind turbine blades, using a resonant controller with acceleration feedback. The wind turbine blade is represented by three-dimensional, two-node finite elements in a local, rotating frame of reference. The element...... formulation accounts for arbitrary mass density distributions, general elastic crosssection properties and geometric stiffness effects due to internal stresses. A compact, linear formulation for aerodynamic forces with associated stiffness and damping terms is established and added to the structural model...

  9. Research overview on vibration damping of mistuned bladed disk assemblies

    Directory of Open Access Journals (Sweden)

    Liang ZHANG

    2016-04-01

    Full Text Available Bladed disk assemblies are very important parts in auto engine and gas turbine, and is widely used in practical engineering. The mistuning existing commonly in the bladed disk assemblies can destroy the vibration characteristics of the bladed disk assemblies, which is one of the reasons for the high cycle fatigue failure of bladed disk assemblies, so it is necessary to research how to reduce the vibration of the bladed disk assemblies. On the basis of the review of relevant research at home and abroad, the mistuning vibration mechanism of the bladed disk assemblies is introduced, and the main technical methods of the vibration damping of bladed disk assemblies are reviewed, such as artificially active mistuning, collision damping, friction damping and optimization of the blade position. Some future research directions are presented.

  10. Advances in wind turbine blade design and materials

    DEFF Research Database (Denmark)

    Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world’s consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades...... as well as the requirements and challenges for composite materials used in both current and future designs of wind turbine blades. Part one outlines the challenges and developments in wind turbine blade design, including aerodynamic and aeroelastic design features, fatigue loads on wind turbine blades......, and characteristics of wind turbine blade airfoils. Part two discusses the fatigue behavior of composite wind turbine blades, including the micromechanical modelling and fatigue life prediction of wind turbine blade composite materials, and the effects of resin and reinforcement variations on the fatigue resistance...

  11. Magnus wind turbines as an alternative to the blade ones

    International Nuclear Information System (INIS)

    Bychkov, N M; Dovgal, A V; Kozlov, V V

    2007-01-01

    Experimental and calculated data on a wind turbine equipped with rotating cylinders instead of traditional blades are reported. Optimal parameters and the corresponding operational characteristics of the windwheel are given in comparison with those of the blade wind turbines

  12. Computational method for the design of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, A.J. [Instituto Argentino de Oceanografia, Camino La Carrindanga Km. 7.5, CC 804, B8000FWB Bahia Blanca (Argentina); Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Universidad Nacional del Sur, Dpto. de Ing. Electrica y de Computadoras, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Rossi, A.P. [Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Universidad Nacional del Sur, Dpto. de Ing. Electrica y de Computadoras, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2008-07-15

    Zeus Disenador was developed to design low-power, horizontal-axis wind turbine blades, by means of an iterative algorithm. With this software, it is possible to obtain the optimum blade shape for a wind turbine to satisfy energy requirements of an electric system with optimum rotor efficiency. The number of blades, the airfoil curves and the average wind velocity can be specified by the user. The user can also request particular edge conditions for the width of the blades and for the pitch angle. Results are provided in different windows. Two- and three-dimensional graphics show the aspect of the resultant blade. Numerical results are displayed for blade length, blade surface, pitch angle variation along the blade span, rotor angular speed, rotor efficiency and rotor output power. Software verifications were made by comparing rotor power and rotor efficiency for different designs. Results were similar to those provided by commercial wind generator manufacturers. (author)

  13. Wind blade spar cap and method of making

    Science.gov (United States)

    Mohamed, Mansour H [Raleigh, NC

    2008-05-27

    A wind blade spar cap for strengthening a wind blade including an integral, unitary three-dimensional woven material having a first end and a second end, corresponding to a root end of the blade and a tip end of the blade, wherein the material tapers in width from the first to the second end while maintaining a constant thickness and decreasing weight therebetween, the cap being capable of being affixed to the blade for providing increased strength with controlled variation in weight from the root end to the tip end based upon the tapered width of the material thereof. The present inventions also include the method of making the wind blade spar cap and a wind blade including the wind blade spar cap.

  14. Repairing methods of steam turbine blades using welding procedures

    International Nuclear Information System (INIS)

    Mazur, Z.; Cristalinas, V.; Kubiak, J.

    1995-01-01

    The steam turbine blades are subjected to the natural permanent wear or damage, which may be of mechanical or metallurgical origin. The typical damage occurring during the lifetime of turbine blading may be erosion, corrosion, foreign objects damage, rubbing and cracking caused by high cycle fatigue and creep crack growth. The nozzle and diaphragm vanes (stationary blades) of the steam turbine are elements whose damage is commonly occurring and they require special repair processes. The damage of the blade trailing edge of nozzle and diaphragm vanes, due to the former causes, may be refurbished by welding deposits or stainless steel inserts welded to the blades. Both repair methods of the stationary steam turbine blades are presented. The results of the blades refurbishment are an increase of the turbine availability, reliability and efficiency, and a decrease of the risk that failure will occur. Also, the repair cost versus the spare blades cost represent significant reduction of expenditure. 7 refs

  15. New airfoil sections for straight bladed turbine

    Science.gov (United States)

    Boumaza, B.

    1987-07-01

    A theoretical investigation of aerodynamic performance for vertical axis Darrieus wind turbine with new airfoils sections is carried out. The blade section aerodynamics characteristics are determined from turbomachines cascade model. The model is also adapted to the vertical Darrieus turbine for the performance prediction of the machine. In order to choose appropriate value of zero-lift-drag coefficient in calculation, an analytical expression is introduced as function of chord-radius ratio and Reynolds numbers. New airfoils sections are proposed and analyzed for straight-bladed turbine.

  16. New airfoil sections for straight bladed turbine

    International Nuclear Information System (INIS)

    Boumaza, B.

    1987-07-01

    A theoretical investigation of aerodynamic performance for vertical axis Darrieus wind turbine with new airfoils sections is carried out. The blade section aerodynamics characteristics are determined from turbomachines cascade model. The model is also adapted to the vertical Darrieus turbine for the performance prediction of the machine. In order to choose appropriate value of zero-lift-drag coefficient in calculation, an analytical expression is introduced as function of chord-radius ratio and Reynolds numbers. New airfoils sections are proposed and analyzed for straight-bladed turbine

  17. Simple theoretical models for composite rotor blades

    Science.gov (United States)

    Valisetty, R. R.; Rehfield, L. W.

    1984-01-01

    The development of theoretical rotor blade structural models for designs based upon composite construction is discussed. Care was exercised to include a member of nonclassical effects that previous experience indicated would be potentially important to account for. A model, representative of the size of a main rotor blade, is analyzed in order to assess the importance of various influences. The findings of this model study suggest that for the slenderness and closed cell construction considered, the refinements are of little importance and a classical type theory is adequate. The potential of elastic tailoring is dramatically demonstrated, so the generality of arbitrary ply layup in the cell wall is needed to exploit this opportunity.

  18. Designing for hot-blade cutting

    DEFF Research Database (Denmark)

    Brander, David; Bærentzen, Jakob Andreas; Clausen, Kenn

    2016-01-01

    In this paper we present a novel method for the generation of doubly-curved, architectural design surfaces using swept Euler elastica and cubic splines. The method enables a direct design to production workflow with robotic hot-blade cutting, a novel robotic fabrication method under development......-trivial constraints of blade-cutting in a bottom-up fashion, enabling an exploration of the unique architectural potential of this fabrication approach. The method is implemented as prototype design tools in MatLAB, C++, GhPython, and Python and demonstrated through cutting of expanded polystyrene foam design...

  19. A critique of response strategies: Measures to induce a paradigmatic shift in response to student writing

    Directory of Open Access Journals (Sweden)

    Spencer, Brenda

    2009-08-01

    Full Text Available This paper explores response to student writing in entry-level English modules in an Open and Distance Learning (ODL context at the University of South Africa (UNISA. After an evaluation of the research undertaken by Spencer (1999 and Lephalala and Pienaar (2008, both conducted in this specific teaching context, the argument is put forward that the predominantly formalist orientation of the marking can be described as an attractor (Weideman, 2009, since it seems that the system is attracted into this state and has maintained it over a number of years. There is a need to shift towards a cognitive, reader-based orientation. The author uses the categories defined in Lephalala and Pienaar (2008 to describe feedback styles. The categories are L1 (minimal feedback, L2 (general and non-text-specific feedback and L3 (feedback with a focus on content and organisation. Four amendments are proposed to the existing marking code which will encourage markers to operate in the desired L3 feedback category. This paper argues that these additions to the marking code will address limitations inherent in the marking code. At present, marked scripts contain a jumble of recommendations relating to content/form and global/local issues and there is little indication of the relative importance of an error. The marking code is inherently negative in orientation and promotes a formalist L1 style of response. A qualitative investigation into the reaction to the proposed changes was obtained from 33 marked samples of response to student writing provided by external markers. Compared to the data given in Lephalala and Pienaar (2008, the changes tested in this study were unable to influence the dominant L1 response strategy, but caused a shift away from L2 formulaic responses and an increase in the desired L3 feedback. There is a need for intensive investigation into feedback in this ODL teaching context and into measures to promote L3 feedback.

  20. Aerodynamics and Optimal Design of Biplane Wind Turbine Blades

    Science.gov (United States)

    Chiu, Phillip

    In order to improve energy capture and reduce the cost of wind energy, in the past few decades wind turbines have grown significantly larger. As their blades get longer, the design of the inboard region (near the blade root) becomes a trade-off between competing structural and aerodynamic requirements. State-of-the-art blades require thick airfoils near the root to efficiently support large loads inboard, but those thick airfoils have inherently poor aerodynamic performance. New designs are required to circumvent this design compromise. One such design is the "biplane blade", in which the thick airfoils in the inboard region are replaced with thinner airfoils in a biplane configuration. This design was shown previously to have significantly increased structural performance over conventional blades. In addition, the biplane airfoils can provide increased lift and aerodynamic efficiency compared to thick monoplane inboard airfoils, indicating a potential for increased power extraction. This work investigates the fundamental aerodynamic aspects, aerodynamic design and performance, and optimal structural design of the biplane blade. First, the two-dimensional aerodynamics of biplanes with relatively thick airfoils are investigated, showing unique phenomena which arise as a result of airfoil thickness. Next, the aerodynamic design of the full biplane blade is considered. Two biplane blades are designed for optimal aerodynamic loading, and their aerodynamic performance quantified. Considering blades with practical chord distributions and including the drag of the mid-blade joint, it is shown that biplane blades have comparable power output to conventional monoplane designs. The results of this analysis also show that the biplane blades can be designed with significantly less chord than conventional designs, a characteristic which enables larger blade designs. The aerodynamic loads on the biplane blades are shown to be increased in gust conditions and decreased under

  1. Experimental and Numerical Study of the Aerodynamic Characteristics of an Archimedes Spiral Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Kyung Chun Kim

    2014-11-01

    Full Text Available A new type of horizontal axis wind turbine adopting the Archimedes spiral blade is introduced for urban-use. Based on the angular momentum conservation law, the design formula for the blade was derived using a variety of shape factors. The aerodynamic characteristics and performance of the designed Archimedes wind turbine were examined using computational fluid dynamics (CFD simulations. The CFD simulations showed that the new type of wind turbine produced a power coefficient (Cp of approximately 0.25, which is relatively high compared to other types of urban-usage wind turbines. To validate the CFD results, experimental studies were carried out using a scaled-down model. The instantaneous velocity fields were measured using the two-dimensional particle image velocimetry (PIV method in the near field of the blade. The PIV measurements revealed the presence of dominant vortical structures downstream the hub and near the blade tip. The interaction between the wake flow at the rotor downstream and the induced velocity due to the tip vortices were strongly affected by the wind speed and resulting rotational speed of the blade. The mean velocity profiles were compared with those predicted by the steady state and unsteady state CFD simulations. The unsteady CFD simulation agreed better with those of the PIV experiments than the steady state CFD simulations.

  2. Three-dimensional fluid flow phenomena in the blade end wall corner region

    Science.gov (United States)

    Hazarika, B. K.; Raj, R.; Boldman, D. R.

    1986-01-01

    Flow visualization, static and total pressure measurements, and mean velocity profile measurements with a single-sensor inclined hot wire probe, are used in a study of three-dimensional flow at a turbine blade end wall corner region for six critical axial stations along the blade chord. Three vortices are identified: (1) a horseshoe vortex near the leading edge; (2) a corner eddy between the horseshoe vortex and the corner; and (3) a vortex at the rear portion of the corner due to the corner eddy's secondary flow. Attention is given to the relative size and rate-of-spread of the vortices in the streamwise direction.

  3. Performance ‘S’ Type Savonius Wind Turbine with Variation of Fin Addition on Blade

    Science.gov (United States)

    Pamungkas, S. F.; Wijayanto, D. S.; Saputro, H.; Widiastuti, I.

    2018-01-01

    Wind power has been receiving attention as the new energy resource in addressing the ecological problems of burning fossil fuels. Savonius wind rotor is a vertical axis wind turbines (VAWT) which has relatively simple structure and low operating speed. These characteristics make it suitable for areas with low average wind speed as in Indonesia. To identify the performance of Savonius rotor in generating electrical energy, this research experimentally studied the effect of fin addition for the ‘S’ shape of Savonius VAWT. The fin is added to fill the space in the blade in directing the wind flow. This rotor has two turbine blades, a rotor diameter of 1.1 m and rotor height of 1.4 m, used pulley transmission system with 1:4.2 multiplication ratio, and used a generator type PMG 200 W. The research was conducted during dry season by measuring the wind speed in the afternoon. The average wind speed in the area is 2.3 m/s with the maximum of 4.5 m/s. It was found that additional fin significantly increase the ability of Savonius rotor VAWT to generate electrical energy shown by increasing of electrical power. The highest power generated is 13.40 Watt at a wind speed of 4.5 m/s by adding 1 (one) fin in the blade. It increased by 22.71% from the rotor blade with no additional fin. However, increasing number of fins in the blade was not linearly increase the electrical power generated. The wind rotor blade with 4 additional fins is indicated has the lowest performance, generating only 10.80 Watt electrical power, accounted lower than the one generated by no fin-rotor blade. By knowing the effect of the rotor shape, the rotor dimension, the addition of fin, transmission, and generator used, it is possible to determine alternative geometry design in increasing the electrical power generated by Savonius wind turbine.

  4. Vibration analysis of gas turbine blade using FEM

    International Nuclear Information System (INIS)

    Iqbal, M.J.; Chohan, G.Y.; Khusnood, S.; Khan, M.A.

    2003-01-01

    In a typical turbo-machine, there is a stator row of blades, which guide the gases onto a rotor row of blades, to extract the mechanical power from the machine. A typical rotor blade was sees upstream disturbance from the stator row and as it rotates, receive a corresponding number of increasing and decreasing lift and moment forces alternating periodically, depending on the number of stator blades/nozzles/guide vanes. Thus all the blades in a turbo-machine receiver their major periodic excitation at a frequency equal to nozzle passing frequency. Since these forces are periodic, one has to consider several number of these harmonics in determining whether resonance takes place, when one of these harmonics coincides with any of the natural frequencies of the blades. Turbine blades have a variety of natural modes of vibration, predominantly as blade alone but also in combination with flexing of the disc rim. These mode occur at characteristic frequencies, which are determined by the distribution of mass and stiffness (in bending or torsion), resulting from the variable thickness over the blade area. Since the advent of steam turbines and their application in various sectors of industry, it is a common experience that a blade failure is a major cause of breakdown in these machines. Blade failures due to fatigue are predominantly vibration related. The dynamic loads on the blading can arise from many sources, the predominant being the source of the operation principles on which the machine is designed. This work deals with vibration analysis of a gas turbine blade using a finite element package ANSYS. Determined the natural frequencies and mode shapes for a turbine blade and a rectangular blade. Results have been validated experimentally using a rectangular blade. ANSYS results have also been compared against published results. (author)

  5. Active twist of model rotor blades with D-spar design

    Directory of Open Access Journals (Sweden)

    A. Kovalovs

    2007-03-01

    Full Text Available The design methodology based on the planning of experiments and response surface technique has been developed for an optimum placement of Macro Fiber Composite (MFC actuators in the helicopter rotor blades. The baseline helicopter rotor blade consists of D-spar made of UD GFRP, skin made of +45o/–45o GFRP, foam core, MFC actuators placement on the skin and balance weight. 3D finite element model of the rotor blade has been built by ANSYS, where the rotor blade skin and spar “moustaches” are modeled by the linear layered structural shell elements SHELL99, and the spar and foam - by 3D 20-node structural solid elements SOLID186. The thermal analyses of 3D finite element model have been developed to investigate an active twist of the helicopter rotor blade. Strain analogy between piezoelectric strains and thermally induced strains is used to model piezoelectric effects. The optimisation results have been obtained for design solutions, connected with the application of active materials, and checked by the finite element calculations.

  6. Stagger angle dependence of inertial and elastic coupling in bladed disks

    Science.gov (United States)

    Crawley, E. F.; Mokadam, D. R.

    1984-01-01

    Conditions which necessitate the inclusion of disk and shaft flexibility in the analysis of blade response in rotating blade-disk-shaft systems are derived in terms of nondimensional parameters. A simple semianalytical Rayleigh-Ritz model is derived in which the disk possesses all six rigid body degrees of freedom, which are elastically constrained by the shaft. Inertial coupling by the rigid body motion of the disk on a flexible shaft and out-of-plane elastic coupling due to disk flexure are included. Frequency ratios and mass ratios, which depend on the stagger angle, are determined for three typical rotors: a first stage high-pressure core compressor, a high bypass ratio fan, and an advanced turboprop. The stagger angle controls the degree of coupling in the blade-disk system. In the blade-disk-shaft system, the stagger angle determines whether blade-disk motion couples principally to the out-of-plane or in-plane motion of the disk on the shaft. The Ritz analysis shows excellent agreement with experimental results.

  7. Parametric dependence of a morphing wind turbine blade on material elasticity

    International Nuclear Information System (INIS)

    Puterbaugh, Martin; Beyene, Asfaw

    2011-01-01

    A few recent works have suggested a morphing blade for wind turbine energy conversion. The concept is derived from fin and wing motions that better adapt to varying load conditions. Previous research has provided the fluid mechanic justification of this new concept. This paper establishes a parametric relationship between an asymmetric wind turbine blade and constituent material modulus to predict the geometric response of the morphing blade for a given material characteristic. The airfoil's trailing edge deflection is associated to a prescribed fluid exit angle via the Moment Area (MA) method. Subsequently, a mathematical model is derived to predict material deformation with respect to imparted aerodynamic forces. Results show that an airfoil, much like a tapered beam, can be modeled as a non-prismatic cantilevered beam using this well established method. -- Research highlights: →A mathematical model relating morphing airfoil thickness and elastic modulus was established. →For non-prismatic beam under a uniform distributive load, the slope and deflection of the airfoil's trailing edge were related to the fluid exit angle. →The main driver of blade deformation was the angular drag force. The Moment Area method was used, verified by Finite Element method. →Displacement to the exit angle is predicated upon the elastic modulus value given that other parameters are constant. →Optimum power output is obtained in part load conditions when the blade deforms to the applicable exit angle.

  8. Edgewise vibration control of wind turbine blades using roller and liquid dampers

    International Nuclear Information System (INIS)

    Zhang, Z L; Nielsen, S R K

    2014-01-01

    This paper deals with the passive vibration control of edgewise vibrations by means of roller dampers and tuned liquid column dampers (TLCDs). For a rotating blade, the large centrifugal acceleration makes it possible to use roller dampers or TLCDs with rather small masses for effectively suppressing edgewise vibrations. The roller dampers are more volumetrically efficient due to the higher mass density of the steel comparing with the liquid. On the other hand, TLCDs have their advantage that it is easier to specify the optimum damping of the damper by changing the opening ratio of the orifice. In this paper, 2-DOF nonlinear models are suggested for tuning a roller damper or a TLCD attached to a rotating wind turbine blade, ignoring the coupling between the blade and the tower. The decoupled optimization is verified by incorporating the optimized damper into a more sophisticated 13- DOF wind turbine model with due consideration of the coupled blade-tower-drivetrain vibrations, quasi-static aeroelasticity as well as a collective pitch controller. Performances of the dampers are compared in terms of the control efficiency and the practical applications. The results indicate that roller dampers and TLCDs at optimal tuning can effectively suppress the dynamic response of wind turbine blades

  9. Experimental and Computational Investigation of Triple-rotating Blades in a Mower Deck

    Science.gov (United States)

    Chon, Woochong; Amano, Ryoichi S.

    Experimental and computational studies were performed on the 1.27m wide three-spindle lawn mower deck with side discharge arrangement. Laser Doppler Velocimetry was used to measure the air velocity at 12 different sections under the mower deck. The high-speed video camera test provided valuable visual evidence of airflow and grass discharge patterns. The strain gages were attached at several predetermined locations of the mower blades to measure the strain. In computational fluid dynamics work, computer based analytical studies were performed. During this phase of work, two different trials were attempted. First, two-dimensional blade shapes at several arbitrary radial sections were selected for flow computations around the blade model. Finally, a three-dimensional full deck model was developed and compared with the experimental results.

  10. Turbine blade wear and damage. An overview of advanced characterization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Schlobohm, Jochen; Li, Yinan; Kaestner, Markus; Poesch, Andreas; Reithmeier, Eduard [Hannover Univ. (Germany). Inst. fuer Mess- und Regelungstechnik; Bruchwald, Oliver; Frackowiak, Wojciech; Reimche, Wilfried; Maier, Hans Juergen [Hannover Univ. (Germany). Inst. fuer Werkstoffkunde

    2016-07-01

    This paper gives an overview of four measurement techniques that allow to extensively characterize the status of a worn turbine blade. In addition to the measurement of geometry and surface properties, the condition of the two protective coatings needs to be monitored. Fringe projection was used to detect and quantify geometric variances. The technique was improved using newly developed algorithms like inverse fringe projection. A Michelson interferometer was employed to further analyze areas with geometric defects and characterize the surface morphology of the blade. Pulsed high frequency induction thermography enabled the scanning of the blade for small cracks at or close to the surface. High frequency eddy current testing was used to determine the protective layers status and their thickness.

  11. A new sensitivity analysis for structural optimization of composite rotor blades

    Science.gov (United States)

    Venkatesan, C.; Friedmann, P. P.; Yuan, Kuo-An

    1993-01-01

    This paper presents a detailed mathematical derivation of the sensitivity derivatives for the structural dynamic, aeroelastic stability and response characteristics of a rotor blade in hover and forward flight. The formulation is denoted by the term semianalytical approach, because certain derivatives have to be evaluated by a finite difference scheme. Using the present formulation, sensitivity derivatives for the structural dynamic and aeroelastic stability characteristics, were evaluated for both isotropic and composite rotor blades. Based on the results, useful conclusions are obtained regarding the relative merits of the semi-analytical approach, for calculating sensitivity derivatives, when compared to a pure finite difference approach.

  12. Experimental study of dynamic stall on Darrieus wind turbine blades

    Science.gov (United States)

    Brochier, G.; Fraunie, P.; Beguier, C.; Paraschivoiu, I.

    1985-12-01

    An experimental study of periodic vortex phenomena was performed on a model of a two straight-bladed Darrieus wind turbine under controlled-rotation conditions in the IMST water tunnel. The main focus of interest was the tip-speed ratios at which dynamic stall appears. Observations of this phenomenon from dye emission and the formation of hydrogen bubbles were made in the form of photographs, film and video recordings. Velocity measurements were obtained using the Laser-Doppler Velocimeter and components of velocity fluctuations could be determined quantitatively.

  13. Development of a Scale Measuring Discursive Responsible Leadership

    OpenAIRE

    Voegtlin Christian

    2012-01-01

    The paper advances the conceptual understanding of responsible leadership and develops an empirical scale of discursive responsible leadership. The concept of responsible leadership presented here draws on deliberative practices and discursive conflict resolution combining the macro view of the business firm as a political actor with the micro view of leadership. Ideal responsible leadership conduct thereby goes beyond the dyadic leader–follower interaction to include all stakeholders. The pa...

  14. Digital radiographic technology; non-destructive testing of tubine blades

    NARCIS (Netherlands)

    Penumadu, P.S.

    2014-01-01

    Inspection of turbine blades has always been a big challenge. Any irregularities in the blade have a huge impact on the gas turbine, so these blades have to be manufactured and inspected in the most sophisticated way possible. The evolution of digital radiographic technology took a leap forward to

  15. Antenna Gain Impact on UWB Wind Turbine Blade Deflection Sensing

    DEFF Research Database (Denmark)

    Zhang, Shuai; Franek, Ondrej; Byskov, Claus

    2018-01-01

    Antenna gain impact on UWB wind turbine blade deflection sensing is studied in this paper. Simulations are applied with a 4.5-meter blade tip. The antennas with high gain (HG) and low gain (LG) in free space are simulated inside a blade. It is interesting to find that tip antennas with HG and LG...

  16. Modeling of uncertainties for wind turbine blade design

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Toft, Henrik Stensgaard

    2014-01-01

    Wind turbine blades are designed by a combination of tests and numerical calculations using finite element models of the blade. The blades are typically composite structures with laminates of glass-fiber and/or carbon-fibers glued together by a matrix material. This paper presents a framework...

  17. Gas turbine engine turbine blade damaging estimate in maintenance

    Directory of Open Access Journals (Sweden)

    Ель-Хожайрі Хусейн

    2004-01-01

    Full Text Available  The factors determining character and intensity of corrosive damages of gas turbine blades are analyzed in the article. The classification of detrimental impurities polluting gas turbine airflow duct and injuring blade erosion damages are given. Common features of the method of turbine blade corrosive damage estimation are shown in the article.

  18. Multidisciplinary design optimization of film-cooled gas turbine blades

    Directory of Open Access Journals (Sweden)

    Talya Shashishekara S.

    1999-01-01

    Full Text Available Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with an upper bound constraint on the average blade temperature. In the third formulation, the blade average and maximum temperatures are chosen as objective functions. Shape optimization is performed using geometric parameters associated with film cooling and blade external shape. A quasi-three-dimensional Navier–Stokes solver for turbomachinery flows is used to solve for the flow field external to the blade with appropriate modifications to incorporate the effect of film cooling. The heat transfer analysis for temperature distribution within the blade is performed by solving the heat diffusion equation using the finite element method. The multiobjective Kreisselmeier–Steinhauser function approach has been used in conjunction with an approximate analysis technique for optimization. The results obtained using both formulations are compared with reference geometry. All three formulations yield significant reductions in blade temperature with the multiobjective formulation yielding largest reduction in blade temperature.

  19. Channel flow analysis. [velocity distribution throughout blade flow field

    Science.gov (United States)

    Katsanis, T.

    1973-01-01

    The design of a proper blade profile requires calculation of the blade row flow field in order to determine the velocities on the blade surfaces. An analysis theory is presented for several methods used for this calculation and associated computer programs that were developed are discussed.

  20. Modeling and Design of a Full-Scale Rotor Blade with Embedded Piezocomposite Actuators

    Science.gov (United States)

    Kovalovs, A.; Barkanov, E.; Ruchevskis, S.; Wesolowski, M.

    2017-05-01

    An optimization methodology for the design of a full-scale rotor blade with an active twist in order to enhance its ability to reduce vibrations and noise is presented. It is based on a 3D finite-element model, the planning of experiments, and the response surface technique to obtain high piezoelectric actuation forces and displacements with a minimum actuator weight and energy applied. To investigate an active twist of the helicopter rotor blade, a structural static analysis using a 3D finite-element model was carried out. Optimum results were obtained at two possible applications of macrofiber composite actuators. The torsion angle found from the finite-element simulation of helicopter rotor blades was successfully validated by its experimental values, which confirmed the modeling accuracy.

  1. Report on the Audit of Performnce and Reliability of Cobra Helicopter Rotor Blades

    Science.gov (United States)

    1991-05-21

    We are providing this final report for your information and use. The audit was made from January to March 1991. The audit objective was to evaluate...internal controls. The audit was made in response to concerns raised by personnel at the Sharpe Army Depot about the K747 blade’s performance, maintenance, and reliability.

  2. A structural model for composite rotor blades and lifting surfaces

    Science.gov (United States)

    Rehfield, Lawrence W.; Atilgan, Ali R.

    1987-01-01

    Composite material systems are currently candidates for aerospace structures, primarily for the design flexibiity they offer i.e., it is possible to tailor the material and manufacturing approach to the application. Two notable examples are the wing of the Grumman/USAF/DARPA X-29 and rotor blades under development by the U.S.A. Aerostructures Directorate (AVSCOM), Langley Research Center. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to improve the single-cell beam model for composite rotor blades or lifting surfaces and to demonstrate its usefullness in applications.

  3. Prediction of rotor blade-vortex interaction using Volterra integrals

    Energy Technology Data Exchange (ETDEWEB)

    Wong, A.; Nitzsche, F. [Carleton Univ., Dept. of Mechanical and Aerospace Engineering, Ottawa, Ontario (Canada)]. E-mail: Fred_Nitzsche@carleton.ca; Khalid, M. [National Research Council Canada, Inst. for Aerospace Research, Ottawa, Ontario (Canada)

    2004-07-01

    The theory of Volterra integral equations for nonlinear system is applied to the prediction of the nonlinear aerodynamic response of an NACA 0012 airfoil experiencing blade-vortex interaction. The phenomenon is first modeled in two-dimensions using an Euler/Navier-Stoke code, and the resulting unsteady aerodynamic flow field sequences are appropriately combined to form a training dataset. The Volterra kernels are identified in the time-domain characteristics of the selected data, which is in turn used to predict the nonlinear aerodynamic response of the airfoil. The Volterra kernel based data is then compared against a standard airfoil response. The predicted lift time histories of the airfoil are shown to be in good agreement with the aerodynamic data. (author)

  4. Prediction of rotor blade-vortex interaction using Volterra integrals

    International Nuclear Information System (INIS)

    Wong, A.; Nitzsche, F.; Khalid, M.

    2004-01-01

    The theory of Volterra integral equations for nonlinear system is applied to the prediction of the nonlinear aerodynamic response of an NACA 0012 airfoil experiencing blade-vortex interaction. The phenomenon is first modeled in two-dimensions using an Euler/Navier-Stoke code, and the resulting unsteady aerodynamic flow field sequences are appropriately combined to form a training dataset. The Volterra kernels are identified in the time-domain characteristics of the selected data, which is in turn used to predict the nonlinear aerodynamic response of the airfoil. The Volterra kernel based data is then compared against a standard airfoil response. The predicted lift time histories of the airfoil are shown to be in good agreement with the aerodynamic data. (author)

  5. Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Fleeter, S.; Lawless, P.B. [Purdue Univ., West Lafayette, IN (United States)

    1995-10-01

    The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. This requires experiments in appropriate research facilities in which complete flow field data, not only point measurements, are obtained and analyzed. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows.

  6. Structural experiment of wind turbine blades; Fushayo blade no zairyo rikigakuteki jikken kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Seki, K; Shimizu, Y; Kuroyanagi, H [Tokai University, Tokyo (Japan)

    1997-11-25

    Aluminum, GFRP and composite of aluminum coated with carbon as structural materials for wind turbine blades were bending-tested, to improve blade bending stiffness, understand stress conditions at each position, and clarify structural dynamic strength by the bending-failure test. It is possible to estimate stress conditions at each position from the test results of displacement and strain at each load. The test results with GFRP are well explained qualitatively by the boundary theory, known as a theory for composite materials. The test gives reasonable material strength data, useful for designing wind turbines of high functions and safety. The results of the blade bending-failure test are in good agreement with the calculated structural blade strength. It is also found that GFRP is a good material of high structural strength for wind turbines. 8 refs., 6 tabs.

  7. New morphing blade section designs and structural solutions for smart blades

    DEFF Research Database (Denmark)

    Karakalas, Anargyros A.; Machairas, Theodore; Solomou, Alexandros

    2015-01-01

    Within INNWIND.EU new concepts are investigated having the ultimate goal to reduce the cost per kilowatt-hour of the produced energy. With increasing size of wind turbines, new approaches to load control are required to reduce the stresses in blades. Experimental and numerical studies in the fields...... of helicopter and wind turbine blade research have shown the potential of shape morphing in reducing blade loads. Morphing technologies, along with other control concepts, are investigated under Task 2.3 of WP “Lightweight Rotor”, against aerodynamic compliance and requirements of the complete wind turbine...... the efforts performed within Task 2.2 “Lightweight structural design” of INNWIND.Eu work-package WP2 “Lightweight Rotor” regarding the structural solutions necessary to accommodate the requirements of smart blades developed within work-package WP2 Task 2.3 “Active and passive loads control and alleviation...

  8. Detecting concealed information in less than a second: response latency-based measures

    NARCIS (Netherlands)

    Verschuere, B.; de Houwer, J.; Verschuere, B.; Ben-Shakhar, G.; Meijer, E.

    2011-01-01

    Concealed information can be accurately assessed with physiological measures. To overcome the practical limitations of physiological measures, an assessment using response latencies has been proposed. At first sight, research findings on response latency based concealed information tests seem

  9. Doctor Blade-Coated Polymer Solar Cells

    KAUST Repository

    Cho, Nam Chul; Kim, Jong H.

    2016-01-01

    In this work, we report polymer solar cells based on blade-coated P3HT:PC71BM and PBDTTT-EFT:PC71BM bulk heterojunction photoactive layers. Enhanced power conversion efficiency of 2.75 (conventional structure) and 3.03% (inverted structure

  10. A Two-Bladed Concept Wind Turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong

    2012-01-01

    This article shows the potential for reducing extreme loads with an innovative design of wind turbine, a partial pitch two-bladed concept turbine. The most extreme conditions to test a turbine are considered to be stand-still combined with a grid failure in which the wind comes from all directions...

  11. Fatigue Life of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2010-01-01

    The present paper analyses the possibility of reducing the expected damage accumulation during tower passage by modifying the wind turbine tower design from a traditional mono-tower to a tripod. Due to a narrow stagnation zone the stress reversals and hence the damage accumulation in the blades...

  12. Hot Blade Cuttings for the Building Industries

    DEFF Research Database (Denmark)

    Brander, David; Bærentzen, Jakob Andreas; Evgrafov, Anton

    2016-01-01

    . The project aims to reduce the amount of manual labour as well as production time by applying robots to cut expanded polystyrene (EPS) moulds for the concrete to form doubly curved surfaces. The scheme is based upon the so-called Hot Wire or Hot Blade technology where the surfaces are essentially swept out...

  13. Remote inspection of steam turbine blades

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    During the past five years Reinhart and Associates, Inc. has been involved in remote examination of L-0 and L-1 steam turbine blade rows of in-place LP turbines using visual and eddy current techniques. These tests have concentrated on the trailing edge and blade-to-rotor attachment (Christmas tree) areas. These remote nondestructive examinations were performed through hand access ports of the inner shell. Since the remote scanning system was in a prototype configuration, the inspection was highly operator-dependent. Refinement of the scanning equipment would considerably improve the efficiency of the test; however, the feasibility of remote in-place inspection of turbine blades was established. To further improve this technology, and to provide for remote inspection of other areas of the blade and additional turbine designs, EPRI is funding a one-year project with Reinhart and Associates, Inc. This project will develop a new system that employs state-of-the-art multifrequency eddy current techniques, a miniature charged coupled device (CCD) television camera, and remote positioning equipment. Project results from the first six months are presented

  14. Structural dynamic analysis of turbine blade

    Science.gov (United States)

    Antony, A. Daniel; Gopalsamy, M.; Viswanadh, Chaparala B. V.; Krishnaraj, R.

    2017-10-01

    In any gas turbine design cycle, blade design is a crucial element which needs maximum attention to meet the aerodynamic performance, structural safety margins, manufacturing feasibility, material availability etc. In present day gas turbine engines, most of the failures occur during engine development test and in-service, in rotor and stator blades due to fatigue and resonance failures. To address this issue, an extensive structural dynamic analysis is carried out to predict the natural frequencies and mode shapes using FE methods. Using the dynamics characteristics, the Campbell diagram is constructed to study the possibility of resonance at various operating speeds. In this work, the feasibility of using composite material in place of titanium alloy from the structural dynamics point of view. This is being attempted in a Low-pressure compressor where the temperatures are relatively low and fixed with the casings. The analysis will be carried out using FE method for different composite material with different lamina orientations chosen through the survey. This study will focus on the sensitivity of blade mode shapes to different laminae orientations, which will be used to alter the natural frequency and tailor the mode shapes. Campbell diagrams of existing titanium alloy are compared with the composite materials with different laminae at all critical operating conditions. The existing manufacturing methods and the proven techniques for blade profiles will also be discussed in this report.

  15. Torsional Performance of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter; Berggreen, Christian

    2007-01-01

    The present work investigates how well different finite element modeling techniques can predict bending and torsion behavior of a wind turbine blade. Two shell models are investigated. One model has element offsets and the other has the elements at the mid-thickness surfaces of the model. The las...

  16. The Evolution of Rotor and Blade Design

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.

    2000-08-01

    The objective of this paper is to provide a historical perspective of the evolution of rotor and blade design during the last 20 years. This evolution is a balanced integration of economic, aerodynamic, structural dynamic, noise, and aesthetic considerations, which are known to be machine type and size dependent.

  17. Mathematical Model of Two Blades System

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk

    2014-01-01

    Roč. 2, č. 4 (2014), s. 361-369 ISSN 2321-3558 R&D Projects: GA ČR GA101/09/1166 Institutional support: RVO:61388998 Keywords : turbine blades * dry friction * vibration damping * torsion Subject RIV: BI - Acoustics

  18. Family of airfoil shapes for rotating blades. [for increased power efficiency and blade stability

    Science.gov (United States)

    Noonan, K. W. (Inventor)

    1983-01-01

    An airfoil which has particular application to the blade or blades of rotor aircraft such as helicopters and aircraft propellers is described. The airfoil thickness distribution and camber are shaped to maintain a near zero pitching moment coefficient over a wide range of lift coefficients and provide a zero pitching moment coefficient at section Mach numbers near 0.80 and to increase the drag divergence Mach number resulting in superior aircraft performance.

  19. Bladed wheels damage detection through Non-Harmonic Fourier Analysis improved algorithm

    Science.gov (United States)

    Neri, P.

    2017-05-01

    Recent papers introduced the Non-Harmonic Fourier Analysis for bladed wheels damage detection. This technique showed its potential in estimating the frequency of sinusoidal signals even when the acquisition time is short with respect to the vibration period, provided that some hypothesis are fulfilled. Anyway, previously proposed algorithms showed severe limitations in cracks detection at their early stage. The present paper proposes an improved algorithm which allows to detect a blade vibration frequency shift due to a crack whose size is really small compared to the blade width. Such a technique could be implemented for condition-based maintenance, allowing to use non-contact methods for vibration measurements. A stator-fixed laser sensor could monitor all the blades as they pass in front of the spot, giving precious information about the wheel health. This configuration determines an acquisition time for each blade which become shorter as the machine rotational speed increases. In this situation, traditional Discrete Fourier Transform analysis results in poor frequency resolution, being not suitable for small frequency shift detection. Non-Harmonic Fourier Analysis instead showed high reliability in vibration frequency estimation even with data samples collected in a short time range. A description of the improved algorithm is provided in the paper, along with a comparison with the previous one. Finally, a validation of the method is presented, based on finite element simulations results.

  20. An economic analysis of BWR control rod blade management strategies. Final report

    International Nuclear Information System (INIS)

    Welsh, J.

    1995-12-01

    Nuclear power plants have available a number of alternative courses of action that can contribute to the reduction of personnel exposure to radiation. Possible actions at boiling water reactor (BWR) plants include accelerating the replacement of high-cobalt control rod blades (CRB) or the blades' high-cobalt pins and rollers with low or non-cobalt substitutes. To help utilities understand the exposure reduction and the economic costs and benefits associated with management alternatives, such as accelerated replacement of blades, pins and rollers, EPRI has initiated a project called Cost/Benefit Software for Analyses of Radiation Control Measures (RP1935-32). Through this project EPRI will incorporate engineering-economic techniques into a series of analytical tools that will provide useful insights about alternative exposure reduction options. Prototype software has been developed in an Excel worksheet to analyze issues associated with BWR control rod blade management options. The CRB replacement problem framework and analysis methodology incorporated into the software tool will help plant managers consider explicitly key engineering and economic issues that are relevant to exposure reduction decisions. This tool generates results that can help plant managers make decisions that are fiscally wise by showing all the cost and benefit implications associated with a management action under consideration. This report describes the general analytical approach for evaluating exposure reduction alternatives. The methodology used to analyze blade and pin and roller replacement alternatives, and the results of a case study application of the methodology and the software prototype at Commonwealth Edison

  1. Effect of Blade Roughness on Transition and Wind Turbine Performance.

    Energy Technology Data Exchange (ETDEWEB)

    Ehrmann, Robert S. [Texas A & M Univ., College Station, TX (United States); White, E. B. [Texas A & M Univ., College Station, TX (United States)

    2015-09-01

    The real-world effect of accumulated surface roughness on wind-turbine power production is not well understood. To isolate specific blade roughness features and test their effect, field measurements of turbine-blade roughness were made and simulated on a NACA 633-418 airfoil in a wind tunnel. Insect roughness, paint chips, and erosion were characterized then manufactured. In the tests, these roughness configurations were recreated as distributed roughness, a forward-facing step, and an eroded leading edge. Distributed roughness was tested in three heights and five densities. Chord Reynolds number was varied between 0:8 to 4:8 × 106. Measurements included lift, drag, pitching moment, and boundary-layer transition location. Results indicate minimal effect from paint-chip roughness. As distributed roughness height and density increase, the lift-curve slope, maximum lift, and lift-to-drag ratio decrease. As Reynolds number increases, natural transition is replaced by bypass transition. The critical roughness Reynolds number varies between 178 to 318, within the historical range. At a chord Reynolds number of 3:2 × 106, the maximum lift-to-drag ratio decreases 40% for 140 μm roughness, corresponding to a 2.3% loss in annual energy production. Simulated performance loss compares well to measured performance loss of an in-service wind turbine.

  2. Noise from Propellers with Symmetrical Sections at Zero Blade Angle

    Science.gov (United States)

    Deming, A F

    1937-01-01

    A theory has been deduced for the "rotation noise" from a propeller with blades of symmetrical section about the chord line and set at zero blade angle. Owing to the limitation of the theory, the equations give without appreciable error only the sound pressure for cases where the wave lengths are large compared with the blade lengths. With the aid of experimental data obtained from a two-blade arrangement, an empirical relation was introduced that permitted calculation of higher harmonics. The generality of the final relation given is indicated by the fundamental and second harmonic of a four-blade arrangement.

  3. New Design of Blade Untwisting Device of Cyclone Unit

    Directory of Open Access Journals (Sweden)

    D. I. Misiulia

    2010-01-01

    Full Text Available The paper presents a new design of a blade untwisting device where blades are considered as a main element of the device. A profile of the blades corresponds to a circular arch. An inlet angle of  the blades is determined by stream aerodynamics in an exhaust pipe, and an exit angle is determined by rectilinear gas motion. Optimum geometrical parameters of the untwisting device have been determined and its application allows to reduce a pressure drop in the ЦН-15 cyclones by 28–30 % while screw-blade untwisting device recovers only 19–20 % of energy.

  4. Weak Defect Identification for Centrifugal Compressor Blade Crack Based on Pressure Sensors and Genetic Algorithm.

    Science.gov (United States)

    Li, Hongkun; He, Changbo; Malekian, Reza; Li, Zhixiong

    2018-04-19

    The Centrifugal compressor is a piece of key equipment for petrochemical factories. As the core component of a compressor, the blades suffer periodic vibration and flow induced excitation mechanism, which will lead to the occurrence of crack defect. Moreover, the induced blade defect usually has a serious impact on the normal operation of compressors and the safety of operators. Therefore, an effective blade crack identification method is particularly important for the reliable operation of compressors. Conventional non-destructive testing and evaluation (NDT&E) methods can detect the blade defect effectively, however, the compressors should shut down during the testing process which is time-consuming and costly. In addition, it can be known these methods are not suitable for the long-term on-line condition monitoring and cannot identify the blade defect in time. Therefore, the effective on-line condition monitoring and weak defect identification method should be further studied and proposed. Considering the blade vibration information is difficult to measure directly, pressure sensors mounted on the casing are used to sample airflow pressure pulsation signal on-line near the rotating impeller for the purpose of monitoring the blade condition indirectly in this paper. A big problem is that the blade abnormal vibration amplitude induced by the crack is always small and this feature information will be much weaker in the pressure signal. Therefore, it is usually difficult to identify blade defect characteristic frequency embedded in pressure pulsation signal by general signal processing methods due to the weakness of the feature information and the interference of strong noise. In this paper, continuous wavelet transform (CWT) is used to pre-process the sampled signal first. Then, the method of bistable stochastic resonance (SR) based on Woods-Saxon and Gaussian (WSG) potential is applied to enhance the weak characteristic frequency contained in the pressure

  5. Projective Item Response Model for Test-Independent Measurement

    Science.gov (United States)

    Ip, Edward Hak-Sing; Chen, Shyh-Huei

    2012-01-01

    The problem of fitting unidimensional item-response models to potentially multidimensional data has been extensively studied. The focus of this article is on response data that contains a major dimension of interest but that may also contain minor nuisance dimensions. Because fitting a unidimensional model to multidimensional data results in…

  6. Evaluation of MOSTAS computer code for predicting dynamic loads in two bladed wind turbines

    Science.gov (United States)

    Kaza, K. R. V.; Janetzke, D. C.; Sullivan, T. L.

    1979-01-01

    Calculated dynamic blade loads were compared with measured loads over a range of yaw stiffnesses of the DOE/NASA Mod-O wind turbine to evaluate the performance of two versions of the MOSTAS computer code. The first version uses a time-averaged coefficient approximation in conjunction with a multi-blade coordinate transformation for two bladed rotors to solve the equations of motion by standard eigenanalysis. The second version accounts for periodic coefficients while solving the equations by a time history integration. A hypothetical three-degree of freedom dynamic model was investigated. The exact equations of motion of this model were solved using the Floquet-Lipunov method. The equations with time-averaged coefficients were solved by standard eigenanalysis.

  7. Experimental and numerical study of the British Experimental Rotor Programme blade

    Science.gov (United States)

    Brocklehurst, Alan; Duque, Earl P. N.

    1990-01-01

    Wind-tunnel tests on the British Experimental Rotor Programme (BERP) tip are described, and the results are compared with computational fluid dynamics (CFD) results. The test model was molded using the Lynx-BERP blade tooling to provide a semispan, cantilever wing comprising the outboard 30 percent of the rotor blade. The tests included both surface-pressure measurements and flow visualization to obtain detailed information of the flow over the BERP tip for a range of angles of attack. It was observed that, outboard of the notch, favorable pressure gradients exist which ensure attached flow, and that the tip vortex also remains stable to large angles of attack. On the rotor, these features yield a very gradual break in control loads when the retreating-blade limit is eventually reached. Computational and experimental results were generally found to be in good agreement.

  8. Fatigue fracture of cutter blade made of high-speed steel

    Directory of Open Access Journals (Sweden)

    Beata Letkowska

    2015-04-01

    Full Text Available The quality of the surface of cyclically loaded components is very important. Many observations confirm that the root cause of the micro cracks (causing the fatigue fracture are primarily a surface's defects appearing during production process. These surface defects can be also caused by engraving processes used to perform identification marks. This paper presents the failure analysis of broken blade of the cutter Ku 500VX. The blade was subject of standard metallographic examination, hardness measurements, fractography analysis and metallographic studies using stereoscopic, light and scanning electron microscopes. The damage of the blade was caused by changes of the structure (formation of the brittle micro dendritic structure that occurred during manual electric engraving process when the material was heated till its melting point. As a result the stresses occurred in surface what provided to micro cracking and to propagate the fatigue fracture. The origin of this fatigue fracture was in the place where the inscription was made.

  9. Determination of Turbine Blade Life from Engine Field Data

    Science.gov (United States)

    Zaretsky, Erwin V.; Litt, Jonathan S.; Hendricks, Robert C.; Soditus, Sherry M.

    2013-01-01

    It is probable that no two engine companies determine the life of their engines or their components in the same way or apply the same experience and safety factors to their designs. Knowing the failure mode that is most likely to occur minimizes the amount of uncertainty and simplifies failure and life analysis. Available data regarding failure mode for aircraft engine blades, while favoring low-cycle, thermal-mechanical fatigue (TMF) as the controlling mode of failure, are not definitive. Sixteen high-pressure turbine (HPT) T-1 blade sets were removed from commercial aircraft engines that had been commercially flown by a single airline and inspected for damage. Each set contained 82 blades. The damage was cataloged into three categories related to their mode of failure: (1) TMF, (2) Oxidation/erosion (O/E), and (3) Other. From these field data, the turbine blade life was determined as well as the lives related to individual blade failure modes using Johnson-Weibull analysis. A simplified formula for calculating turbine blade life and reliability was formulated. The L10 blade life was calculated to be 2427 cycles (11 077 hr). The resulting blade life attributed to O/E equaled that attributed to TMF. The category that contributed most to blade failure was Other. If there were no blade failures attributed to O/E and TMF, the overall blade L(sub 10) life would increase approximately 11 to 17 percent.

  10. Development of 52 inches last stage blade for steam turbines

    International Nuclear Information System (INIS)

    Suzuki, Atsuhide; Hisa, Shoichi; Nagao, Shinichiro; Ogata, Hisao

    1986-01-01

    The last stage blades of steam turbines are the important component controlling the power output and performance of plants. In order to realize a unit of large capacity and high efficiency, the proper exhaust area and the last stage blades having good performance are indispensable. Toshiba Corp. has completed the development of the 52 inch last stage blades for 1500 and 1800 rpm steam turbines. The 52 inch last stage blades are the longest in the world, which have the annular exhaust area nearly 1.5 times as much as that of 41 inch blades used for 1100 MW, 1500 rpm turbines in nuclear power stations. By adopting these 52 inch blades, the large capacity nuclear power plants up to 1800 MW can be economically constructed, the rate of heat consumption of 1350 MW plants is improved by 3 ∼ 4 % as compared with 41 inch blades, and in the plants up to 1100 MW, LP turbines can be reduced from three sets to two. The features of 52 inch blades, the flow pattern and blade form design, the structural strength analysis and the erosion withstanding property, and the verification by the rotation test of the actual blades, the performance test using a test turbine, the vibration analysis of the actually loaded blades and the analysis of wet steam behavior are reported. (Kako, I.)

  11. Development of 52 inch last stage blade for steam turbine

    International Nuclear Information System (INIS)

    Kadoya, Yoshiki; Harada, Masakatsu; Watanabe, Eiichiro

    1985-01-01

    Mitsubishi Heavy Industries, Ltd. has developed the last stage blades with 1320 mm length for a 1800 rpm LP turbine, and the verification by rotating vibration test using actual blades was finished, thus the blades were completed. In a nuclear power plant with an A-PWR of 3800 MW thermal output, the 1350 MW steam turbine has one HP turbine and three LP turbines coupled in tandem, and the optimum last stage blades for the LP turbines became the 1320 mm blades. The completion of these blades largely contributes to the improvement of thermal efficiency and the increase of generator output in large nuclear power plants, and has the possibility to decrease three LP turbines to two in 900 MW plants, which reduces the construction cost. The velocity energy of steam coming out of last stage blades is abandoned as exhaust loss in a condenser, which is the largest loss in a turbine. The increase of exhaust area using long blades reduces this loss. The economy of the 1320 mm blades, the features of the 1320 mm blades, the aerodynamic design and its verification, the prevention of the erosion of the 1320 mm blades due to wet steam, the strength design, the anti-vibration design and its verification, and the CAD/CAM system are reported. (Kako, I.)

  12. Full Scale Test SSP 34m blade, Combined load. Data report

    DEFF Research Database (Denmark)

    Nielsen, Per Hørlyk; Nielsen, Magda; Jensen, Find Mølholt

    This report is part of the research project entitled “Eksperimentel vingeforskning: Strukturelle mekanismer i nutidens og fremtidens store vinger under kombineret last” where a 34m wind turbine blade from SSP-Technology A/S was tested in combined flap and edgewise load. The applied load is 55...... of e.g. transverse shear distortion. The global and local deformation of the blade as well as the blades’ respond to repeated tests has been studied and the result from these investigations are presented, including the measurements performed....

  13. Fundamental investigation on the impact strength of hollow fan blades

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, T; Miyachi, T; Sofue, Y

    1985-01-01

    Models of hollow fan blades were made and tested to prove that their strength is sufficient for use in real engines. The hollow blades were fabricated by diffusion bonding of two titanium alloy (6Al-4V-Ti) plates, one of which had three spanwise stiffners and the other being flat plate. The model as a nontwisted tapered blade. Impact tests were carried out on the hollow fan blade models in which the ingestion of a 1.5 pounds bird was simulated. Solid blades with the same external form were also tested by similar methods for comparison. The results of these tests show that properly designed hollow blades have sufficient stiffness and strength for use as fan blades in the turbo-fan engine.

  14. CFD simulation of crossflow mixing in a rod bundle with mixing blades

    International Nuclear Information System (INIS)

    In, W. K.

    1999-01-01

    A CFD model was developed in this study to simulate the crossflow mixing in a 4x4 square array rod bundle caused by ripped-open blades. The central subchannel and adjacent subchannels of one grid span were modeled using flow symmetry. The lateral velocity pattern within the central subchannel, lateral velocity and the turbulence intensity in the rod gap region were predicted by the CFD method, and the predictions were compared with the measurements. The CFD simulation shows a vortex flow around the fuel rod caused by a pair of blades, which is consistent with the experimental results. The CFD predictions of the lateral velocity on the mixing sections show a near symmetric profile, but the measurements present an asymmetric velocity profile leading to an inversion of lateral velocity. The predicted mixing rate between the central subchannel and the adjacent subchannels reasonably agrees with the measured one. The CFD prediction shows a parabolic distribution of the RMS velocity but the measured one shows a rather flat distribution near the blade that develops to a parabolic distribution far downstream (L=29De). The predicted average RMS velocity on a mixing section is also slightly lower than the measured one. This study confirmed that the CFD simulation can present the effect of the ripped-open blades on the crossflow mixing in a rod bundle well

  15. Effects of Mie tip-vane on pressure distribution of rotor blade and power augmentation of horizontal axis wind turbine; Yokutan shoyoku Mie ben ni yoru suiheijiku fusha yokumenjo no atsuryoku bunpu no kaizen to seino kojo tono kankei

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Y.; Maeda, T.; Kamada, Y. [Mie Univ., Mie (Japan); Seto, H. [Mitsubishi Motors Corp., Tokyo (Japan)

    2000-04-01

    By recent developments of exclusive rotor blade, the efficiency of wind turbine is improved substantially. By measuring pressure on rotor blades of horizontal axis wind turbines rotating in wind tunnels, this report clarified relation between improvement of pressure distribution on main rotor blades by Mie vane and upgrade of wind turbine performance. The results under mentioned have been got by measuring pressure distribution on rotor blades, visualization by tuft, and measuring resistance of Mie vane. (1) The difference of pressure between suction surface and pressure surface on the end of rotor blade increase, and output power of wind turbine improves. (2) Vortex of blade end is inhibited by Mie vane. (3) The reason of reduction on wind turbine performance with Mie vane in aria of high rotating speed ratio is the increase of Mie vane flow resistance.(NEDO)

  16. Passive damping of composite blades using embedded piezoelectric modules or shape memory alloy wires: a comparative study

    International Nuclear Information System (INIS)

    Bachmann, F; Delpero, T; Ermanni, P; De Oliveira, R; Sigg, A; Michaud, V; Schnyder, V; Jaehne, R; Bergamini, A

    2012-01-01

    Emission reduction from civil aviation has been intensively addressed in the scientific community in recent years. The combined use of novel aircraft engine architectures such as open rotor engines and lightweight materials offer the potential for fuel savings, which could contribute significantly in reaching gas emissions targets, but suffer from vibration and noise issues. We investigated the potential improvement of mechanical damping of open rotor composite fan blades by comparing two integrated passive damping systems: shape memory alloy wires and piezoelectric shunt circuits. Passive damping concepts were first validated on carbon fibre reinforced epoxy composite plates and then implemented in a 1:5 model of an open rotor blade manufactured by resin transfer moulding (RTM). A two-step process was proposed for the structural integration of the damping devices into a full composite fan blade. Forced vibration measurements of the plates and blade prototypes quantified the efficiency of both approaches, and their related weight penalty. (paper)

  17. Passive damping of composite blades using embedded piezoelectric modules or shape memory alloy wires: a comparative study

    Science.gov (United States)

    Bachmann, F.; de Oliveira, R.; Sigg, A.; Schnyder, V.; Delpero, T.; Jaehne, R.; Bergamini, A.; Michaud, V.; Ermanni, P.

    2012-07-01

    Emission reduction from civil aviation has been intensively addressed in the scientific community in recent years. The combined use of novel aircraft engine architectures such as open rotor engines and lightweight materials offer the potential for fuel savings, which could contribute significantly in reaching gas emissions targets, but suffer from vibration and noise issues. We investigated the potential improvement of mechanical damping of open rotor composite fan blades by comparing two integrated passive damping systems: shape memory alloy wires and piezoelectric shunt circuits. Passive damping concepts were first validated on carbon fibre reinforced epoxy composite plates and then implemented in a 1:5 model of an open rotor blade manufactured by resin transfer moulding (RTM). A two-step process was proposed for the structural integration of the damping devices into a full composite fan blade. Forced vibration measurements of the plates and blade prototypes quantified the efficiency of both approaches, and their related weight penalty.

  18. Design and initial testing of a one-bladed 30-meter-diameter rotor on the NASA/DOE mod-O wind turbine

    Science.gov (United States)

    Corrigan, R. D.; Ensworth, C. B. F.

    1986-01-01

    The concept of a one-bladed horizontal-axis wind turbine has been of interest to wind turbine designers for many years. Many designs and economic analyses of one-bladed wind turbines have been undertaken by both United States and European wind energy groups. The analyses indicate significant economic advantages but at the same time, significant dynamic response concerns. In an effort to develop a broad data base on wind turbine design and operations, the NASA Wind Energy Project Office has tested a one-bladed rotor at the NASA/DOE Mod-O Wind Turbine Facility. This is the only known test on an intermediate-sized one-bladed rotor in the United States. The 15.2-meter-radius rotor consists of a tip-controlled blade and a counterweight assembly. A rigorous test series was conducted in the Fall of 1985 to collect data on rotor performance, drive train/generator dynamics, structural dynamics, and structural loads. This report includes background information on one-bladed rotor concepts, and Mod-O one-bladed rotor test configuration, supporting design analysis, the Mod-O one-blade rotor test plan, and preliminary test results.

  19. Rapid Response Teams: Is it Time to Reframe the Questions of Rapid Response Team Measurement?

    Science.gov (United States)

    Salvatierra, Gail G; Bindler, Ruth C; Daratha, Kenn B

    2016-11-01

    The purpose of this article is to present an overview of rapid response team (RRT) history in the United States, provide a review of prior RRT effectiveness research, and propose the reframing of four new questions of RRT measurement that are designed to better understand RRTs in the context of contemporary nursing practice as well as patient outcomes. RRTs were adopted in the United States because of their intuitive appeal, and despite a lack of evidence for their effectiveness. Subsequent studies used mortality and cardiac arrest rates to measure whether or not RRTs "work." Few studies have thoroughly examined the effect of RRTs on nurses and on nursing practice. An extensive literature review provided the background. Suppositions and four critical, unanswered questions arising from the literature are suggested. The results of RRT effectiveness, which have focused on patient-oriented outcomes, have been ambiguous, contradictory, and difficult to interpret. Additionally, they have not taken into account the multiple ways in which these teams have impacted nurses and nursing practice as well as patient outcomes. What happens in terms of RRT process and utilization is likely to have a major impact on nurses and nursing care on general medical and surgical wards. What that impact will be depends on what we can learn from measuring with an expanded yardstick, in order to answer the question, "Do RRTs work?" Evidence for the benefits of RRTs depends on proper framing of questions relating to their effectiveness, including the multiple ways RRTs contribute to nursing efficacy. © 2016 Sigma Theta Tau International.

  20. Autonomic response to exercise as measured by cardio- vascular ...

    African Journals Online (AJOL)

    estimate the involvement of the autonomic nervous system (ANS) influence and balance in ... activity in response to exercise, training and overtraining. This ..... However, a lower HR and higher values for time domain HRV indicators were ...

  1. Validation of theoretical models through measured pavement response

    DEFF Research Database (Denmark)

    Ullidtz, Per

    1999-01-01

    mechanics was quite different from the measured stress, the peak theoretical value being only half of the measured value.On an instrumented pavement structure in the Danish Road Testing Machine, deflections were measured at the surface of the pavement under FWD loading. Different analytical models were...... then used to derive the elastic parameters of the pavement layeres, that would produce deflections matching the measured deflections. Stresses and strains were then calculated at the position of the gauges and compared to the measured values. It was found that all analytical models would predict the tensile...

  2. Influence of loading distribution on the performance of high pressure turbine blades

    Science.gov (United States)

    Corriveau, Daniel

    Midspan measurements were made in a transonic wind tunnel for three High Pressure (HP) turbine blade cascades at both design and off-design incidences. Comparisons with two-dimensional numerical simulations of the cascade flow were also made. The baseline profile is the midspan section of a HP turbine blade of fairly recent design. It is considered mid-loaded. To gain a better understanding of blade loading limits and the influence of loading distributions, the profile of the baseline airfoil was modified to create two new airfoils having aft-loaded and front-loaded pressure distributions. Tests were performed for exit Mach numbers between 0.6 and 1.2. In addition, measurements were made for an extended range of Reynolds numbers for constant Mach numbers of 0.6, 0.85, 0.95 and 1.05. At the design exit Mach number of 1.05 and at design incidence, the aft-loaded airfoil showed a reduction of almost 20% in the total pressure losses compared with the baseline airfoil. Based on the analysis of wake traverse data and base pressure measurements combined with numerical results, it was found that the poorer loss performance of the baseline mid-loaded profile compared to the aft-loaded blade could be attributed to the former's higher rear suction side curvature, which resulted in higher flow velocity in that region, which, in turn, contributed to reducing the base pressure. The lower base pressure at the trailing edge resulted in a stronger trailing edge shock system for the mid-loaded blade. This shock system increased the losses for the mid-loaded baseline profile when compared to the aft-loaded profile. On the negative side, it was also found that as Mach numbers were increased beyond the design value the performance of the aft-loaded blade deteriorated rapidly. Under such conditions, the front-loaded airfoil showed generally inferior performance compared with the baseline airfoil. At off-design incidence, the aft-loaded blade maintained a superior loss performance over a

  3. Blades Couple Dry Friction Connection

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk; Radolfová, Alena

    2015-01-01

    Roč. 9, č. 1 (2015), s. 31-40 ISSN 1802-680X Institutional support: RVO:61388998 Keywords : stick-slip dry friction * 3D friction characteristic * tangential contact stiffness * hysterezis loop * response curves Subject RIV: BI - Acoustics

  4. Airfoil and blade optimization for a direct-drive, permanent magnet wind generator

    Energy Technology Data Exchange (ETDEWEB)

    Dini, P. [Carleton College, Northfield, MN (United States); Bayly, E. [World Power Technologies, Inc., Duluth, MN (United States)

    1996-12-31

    A new blade is designed for a small, variable-speed wind turbine by relying on available theoretical design and analysis methods. The performance predictions are compared to field test measurements and are found to be optimistic. This feedback sheds light on the interpretation of the theoretical results and is used to refine the design method. 9 refs., 10 figs.

  5. The angles of the fact rotor tipvanes on the rods and on the blades

    NARCIS (Netherlands)

    Bruining, A.

    1988-01-01

    This report contains the data of the angles of the tipvanes of the FACT rotor. These tipvanes were used on the FACT rotor blades and rods. Two sets uf tipvanes were measured: a set having a Liebeck air-foil section and a set with a NACA airfoil section. The tipvanes with the Liebeck airfoil section

  6. Dynamic stress of impeller blade of shaft extension tubular pump device based on bidirectional fluid-structure interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Kan; Liu, Huiwen; Yang, Chunxia [Hohai University, Nanjing (China); Zheng, Yuan [National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Nanjing (China); Fu, Shifeng; Zhang, Xin [Power China Huadong Engineering Corporation, Hangzhou (China)

    2017-04-15

    Current research on the stability of tubular pumps is mainly concerned with the transient hydrodynamic characteristics. However, the structural response under the influence of fluid-structure interaction hasn't been taken fully into consideration. The instability of the structure can cause vibration and cracks, which may threaten the safety of the unit. We used bidirectional fluid-structure interaction to comprehensively analyze the dynamic stress characteristics of the impeller blades of the shaft extension tubular pump device. Furthermore, dynamic stress of impeller blade of shaft extension tubular pump device was solved under different lift conditions of 0° blade angle. Based on Reynolds-average N-S equation and SST k-ω turbulence model, numerical simulation was carried out for three-dimensional unsteady incompressible turbulent flow field of the pump device whole flow passage. Meanwhile, the finite element method was used to calculate dynamic characteristics of the blade structure. The blade dynamic stress distribution was obtained on the basis of fourth strength theory. The research results indicate that the maximum blade dynamic stress appears at the joint between root of inlet side of the blade suction surface and the axis. Considering the influence of gravity, the fluctuation of the blade dynamic stress increases initially and decreases afterwards within a rotation period. In the meantime, the dynamic stress in the middle part of inlet edge presents larger relative fluctuation amplitude. Finally, a prediction method for dynamic stress distribution of tubular pump considering fluid-structure interaction and gravity effect was proposed. This method can be used in the design stage of tubular pump to predict dynamic stress distribution of the structure under different operating conditions, improve the reliability of pump impeller and analyze the impeller fatigue life.

  7. Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    J.L. Rovey

    2012-09-21

    A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strain measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit

  8. Vibration and Damping Analysis of Composite Fiber Reinforced Wind Blade with Viscoelastic Damping Control

    Directory of Open Access Journals (Sweden)

    Tai-Hong Cheng

    2015-01-01

    Full Text Available Composite materials are increasingly used in wind blade because of their superior mechanical properties such as high strength-to-weight and stiffness-to-weight ratio. This paper presents vibration and damping analysis of fiberreinforced composite wind turbine blade with viscoelastic damping treatment. The finite element method based on full layerwise displacement theory was employed to analyze the damping, natural frequency, and modal loss factor of composite shell structure. The lamination angle was considered in mathematical modeling. The curved geometry, transverse shear, and normal strains were exactly considered in present layerwise shell model, which can depict the zig-zag in-plane and out-of-plane displacements. The frequency response functions of curved composite shell structure and wind blade were calculated. The results show that the damping ratio of viscoelastic layer is found to be very sensitive to determination of magnitude of composite structures. The frequency response functions with variety of thickness of damping layer were investigated. Moreover, the natural frequency, modal loss factor, and mode shapes of composite fiber reinforced wind blade with viscoelastic damping control were calculated.

  9. Turbine blade and vane heat flux sensor development, phase 2

    Science.gov (United States)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1985-01-01

    The development of heat flux sensors for gas turbine blades and vanes and the demonstration of heat transfer measurement methods are reported. The performance of the heat flux sensors was evaluated in a cylinder in cross flow experiment and compared with two other heat flux measurement methods, the slug calorimeter and a dynamic method based on fluctuating gas and surface temperature. Two cylinders, each instrumented with an embedded thermocouple sensor, a Gardon gauge, and a slug calorimeter, were fabricated. Each sensor type was calibrated using a quartz lamp bank facility. The instrumented cylinders were then tested in an atmospheric pressure combustor rig at conditions up to gas stream temperatures of 1700K and velocities to Mach 0.74. The test data are compared to other measurements and analytical prediction.

  10. In situ response time measurements of RTD temperature sensors

    International Nuclear Information System (INIS)

    Goncalves, I.M.P.

    1985-01-01

    The loop-current-step-response test provides a mean for determining the time constant of resistence thermometers. The test consist in heating the sensor a few degrees above ambient temperature by causing a step pertubation in the electric current that flows through the sensor leads. The developed mathematical transformation permits to use data collected during the internal heating transient to predict the sensor response to perturbations in fluid temperature. Experimental data obtained show that the time constant determined by method is within 15 percent of true value. The loop-current-step-response test is a remote in situ test, which can be performed with the sensor installed in the process. Consequently it takes account the local heat transfer conditions, and appropriated for nuclear power plants, where sensors are installed in points of difficult access. (author) [pt

  11. Souvenir knife: a retained transcranial knife blade.

    Science.gov (United States)

    Davis, Neil L; Kahana, Tzipi; Hiss, Jehuda

    2004-09-01

    Upon necroscopic examination of a homeless male found comatose in the street and pronounced dead at a medical center 12 hours later, a sharp tip of a knife lodged in the right parietal region of his skull was incidentally discovered. The blade transected the diploe and penetrated the cerebral cortex. Subsequent police investigation revealed that this was the remnant of a stabbing attempt on his life several months prior to his death. The cause of death was determined to be unrelated to the metallic blade fragment, thus making it a truly incidental and rare finding of a "souvenir knife." Nevertheless, since the injury sustained in the stabbing was potentially life threatening, the investigation into that assault was reopened.A case report is presented, along with a brief review of the literature on "souvenir objects."

  12. Structural Reliability of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov

    turbine blades. The main purpose is to draw a clear picture of how reliability-based design of wind turbines can be done in practice. The objectives of the thesis are to create methodologies for efficient reliability assessment of composite materials and composite wind turbine blades, and to map...... the uncertainties in the processes, materials and external conditions that have an effect on the health of a composite structure. The study considers all stages in a reliability analysis, from defining models of structural components to obtaining the reliability index and calibration of partial safety factors...... by developing new models and standards or carrying out tests The following aspects are covered in detail: ⋅ The probabilistic aspects of ultimate strength of composite laminates are addressed. Laminated plates are considered as a general structural reliability system where each layer in a laminate is a separate...

  13. Innovation in Vertical Axis Hydrokinetic Turbine – Straight Blade Cascaded (VAHT-SBC) design and testing for low current speed power generation

    Science.gov (United States)

    Hantoro, R.; Utama, I. K. A. P.; Arief, I. S.; Ismail, A.; Manggala, S. W.

    2018-05-01

    This study examines an innovative turbine with the addition of the number and arrangement of straight blade cascaded (SBC). SBC is a combination of passive variable-pitch and fixed pitch of each turbine arm. This study was conducted in an open channel flow that has a current velocity (V-m/s) of 1.1, 1.2, and 1.3. RPM and torque ware measured for coefficient of performance (Cp) and tip speed ratio (TSR) calculation. Without changing the turbine dimension, the employment of cascaded blade (three blades in each arm) contributes to improve energy extraction significantly. A significant increase in Cp value is seen when 9 blades (3 cascaded blades per arm) are used with a Cp 0.42 value at TSR 2.19. This value has reached 93% of the maximum theoritical Cp value.

  14. Autonomic response to exercise as measured by cardiovascular ...

    African Journals Online (AJOL)

    Articles on the effect of training on the ANS as measured by cardiovascular variability indicators show increased variability, decreased variability, and no change in variability. Conclusion. Findings in this review emphasise that standardisation and refinement of these measuring tools are essential to produce results that can ...

  15. Magnitude and phase response measurement of headphones at the eardrum

    DEFF Research Database (Denmark)

    Christensen, Anders T.; Hess, Wolfgang; Silzle, Andreas

    2013-01-01

    Transfer functions of headphones are measured to verify that they meet certain requirements or to determine what equalization may make them meet an ideal target curve. The present study compares six headphones by physical measurements at the eardrums of six individuals and on a dummy head...

  16. Influence of delayed excitation on vibrations of turbine blades couple

    Directory of Open Access Journals (Sweden)

    Půst L.

    2013-06-01

    Full Text Available In the presented paper, the computational model of the turbine blade couple is investigated with the main attention to the influence two harmonic excitation forces, having the same frequency and amplitude but with moderate delay in time. Time delay between the exciting harmonic forces depends on the revolutions of bladed disk, on the number of blades on a rotating disk and on the number of stator blades. The reduction of resonance vibrations realized by means of dry friction between the shroud blade-heads increases roughly proportional to the difference of stator and rotor blade-numbers and also to the magnitude of dry friction force. From the analysis of blade couple with direct contact it was proved that the increase of friction forces causes decrease of resonance peaks, but the influence of elastic micro-deformations in the contact surfaces (modeled e.g. by the modified Coulomb dry friction law is rather small. Analysis of a blade couple with a friction element shows that the lower number of stator blades has negligible influence on the amplitudes of both blades, but decreases amplitudes of the friction element oscillations. Similarly the increase of friction forces causes a decrease of resonance peaks, but an increase of friction element amplitudes.

  17. A Take Stock of Turbine Blades Failure Phenomenon

    Science.gov (United States)

    Roy, Abhijit

    2018-02-01

    Turbine Blade design and engineering is one of the most complicated and important aspects of turbine technology. Experiments with blades can be simple or very complicated, depending upon parameters of analysis. Turbine blades are subjected to vigorous environments, such as high temperatures, high stresses, and a potentially high vibration environment. All these factors can lead to blade failures, which can destroy the turbine, and engine, so careful design is the prime consideration to resist those conditions. A high cycle of fatigue of compressor and turbine blades due to high dynamic stress caused by blade vibration and resonance within the operating range of machinery is common failure mode for turbine machine. Continuous study and investigation on failure of turbine blades are going on since last five decades. Some review papers published during these days aiming to present a review on recent studies and investigations done on failures of turbine blades. All the detailed literature related with the turbine blades has not been described but emphasized to provide all the methodologies of failures adopted by various researches to investigate turbine blade. This paper illustrate on various factors of failure.

  18. Vibration of circular bladed disk with imperfections

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk

    2011-01-01

    Roč. 21, č. 10 (2011), s. 2893-2904 ISSN 0218-1274 R&D Projects: GA ČR GA101/09/1166 Institutional research plan: CEZ:AV0Z20760514 Keywords : circular bladed disk * vibration * imperfection * nonlinear damping Subject RIV: BI - Acoustics Impact factor: 0.755, year: 2011 http://www.worldscinet.com/ijbc/21/2110/S0218127411030210.html

  19. Materials for Wind Turbine Blades: An Overview

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Branner, Kim; Petersen, Helga Nørgaard

    2017-01-01

    A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural...... composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for wind turbine composites, as well their testing and modelling approaches are reviewed....

  20. Materials for Wind Turbine Blades: An Overview.

    Science.gov (United States)

    Mishnaevsky, Leon; Branner, Kim; Petersen, Helga Nørgaard; Beauson, Justine; McGugan, Malcolm; Sørensen, Bent F

    2017-11-09

    A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for wind turbine composites, as well their testing and modelling approaches are reviewed.

  1. Impulse response measurements with an off-line cross correlator

    International Nuclear Information System (INIS)

    Corran, E.R.; Cummins, J.D.

    1963-11-01

    The impulse responses of simulated systems have been computed by off-line cross-correlation of the system input and output signals. The input test signal consisted of a discrete interval binary code whose autocorrelation was a triangular pulse at zero lag. The main object of the experiments was to study the inaccuracies introduced in ideal, noise free systems by determining the impulse response digitally from sampled versions of the system input and output signals. A second object was to determine the error introduced by adding controlled amounts of uncorrelated noise at the system outputs. The experimental results showed that for signal to noise ratios greater than 10:1 in the mean square sense, the impulse responses may be determined with reasonable accuracy using only one cycle of the binary code. The method lends itself to on-line computation of system impulse responses. The latter could be used to monitor the stability of the system or to determine control parameters in an adaptive control system. (author)

  2. Impulse response measurements with an off-line cross correlator

    Energy Technology Data Exchange (ETDEWEB)

    Corran, E R; Cummins, J D [Dynamics Group, Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1963-11-15

    The impulse responses of simulated systems have been computed by off-line cross-correlation of the system input and output signals. The input test signal consisted of a discrete interval binary code whose autocorrelation was a triangular pulse at zero lag. The main object of the experiments was to study the inaccuracies introduced in ideal, noise free systems by determining the impulse response digitally from sampled versions of the system input and output signals. A second object was to determine the error introduced by adding controlled amounts of uncorrelated noise at the system outputs. The experimental results showed that for signal to noise ratios greater than 10:1 in the mean square sense, the impulse responses may be determined with reasonable accuracy using only one cycle of the binary code. The method lends itself to on-line computation of system impulse responses. The latter could be used to monitor the stability of the system or to determine control parameters in an adaptive control system. (author)

  3. Measuring the financial impact of demand response for electricity retailers

    International Nuclear Information System (INIS)

    Feuerriegel, Stefan; Neumann, Dirk

    2014-01-01

    Due to the integration of intermittent resources of power generation such as wind and solar, the amount of supplied electricity will exhibit unprecedented fluctuations. Electricity retailers can partially meet the challenge of matching demand and volatile supply by shifting power demand according to the fluctuating supply side. The necessary technology infrastructure such as Advanced Metering Infrastructures for this so-called Demand Response (DR) has advanced. However, little is known about the economic dimension and further effort is strongly needed to realistically quantify the financial impact. To succeed in this goal, we derive an optimization problem that minimizes procurement costs of an electricity retailer in order to control Demand Response usage. The evaluation with historic data shows that cost volatility can be reduced by 7.74%; peak costs drop by 14.35%; and expenditures of retailers can be significantly decreased by 3.52%. - Highlights: • Ex post simulation to quantify financial impacts of demand response. • Effects of Demand Response are simulated based on real-world data. • Procurement costs of an average electricity retailer decrease by 3.4%. • Retailers can cut hourly peak expenditures by 12.1%. • Cost volatility is reduced by 12.2%

  4. Teaching Students Personal and Social Responsibility with Measurable Learning Outcomes

    Science.gov (United States)

    Ardaiolo, Frank P.; Neilson, Steve; Daugherty, Timothy K.

    2011-01-01

    In 2005 the Association of American Colleges and Universities (AAC&U) launched a national initiative that championed the importance of a twenty-first century liberal education. What was unique about this initiative was the underlying assumption that educating for personal and social responsibility was "core" for an educated citizenry and should be…

  5. Fitting of transfer functions to frequency response measurements

    International Nuclear Information System (INIS)

    Moret, J.M.

    1994-12-01

    An algorithm for approximating a given complex frequency response with a rational function of two polynomials with real coefficients is presented, together with its extension to distributed parameter systems, the corresponding error analysis and its application to a real case. (author) 5 figs., 4 refs

  6. Noise aspects at aerodynamic blade optimisation projects

    Energy Technology Data Exchange (ETDEWEB)

    Schepers, J.G. [Netherlands Energy Research Foundation, Petten (Netherlands)

    1997-12-31

    This paper shows an example of an aerodynamic blade optimisation, using the program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. The aerodynamic optimised geometry from PVOPT is the `real` optimum (up to the latest decimal). The most important conclusion from this study is, that it is worthwhile to investigate the behaviour of the objective function (in the present case the energy yield) around the optimum: If the optimum is flat, there is a possibility to apply modifications to the optimum configuration with only a limited loss in energy yield. It is obvious that the modified configurations emits a different (and possibly lower) noise level. In the BLADOPT program (the successor of PVOPT) it will be possible to quantify the noise level and hence to assess the reduced noise emission more thoroughly. At present the most promising approaches for noise reduction are believed to be a reduction of the rotor speed (if at all possible), and a reduction of the tip angle by means of low lift profiles, or decreased twist at the outboard stations. These modifications were possible without a significant loss in energy yield. (LN)

  7. Prospects for the domestic production of large-sized cast blades and vanes for industrial gas turbines

    Science.gov (United States)

    Kazanskiy, D. A.; Grin, E. A.; Klimov, A. N.; Berestevich, A. I.

    2017-10-01

    Russian experience in the production of large-sized cast blades and vanes for industrial gas turbines is analyzed for the past decades. It is noted that the production of small- and medium-sized blades and vanes made of Russian alloys using technologies for aviation, marine, and gas-pumping turbines cannot be scaled for industrial gas turbines. It is shown that, in order to provide manufacturability under large-scale casting from domestic nickel alloys, it is necessary to solve complex problems in changing their chemical composition, to develop new casting technologies and to optimize the heat treatment modes. An experience of PAO NPO Saturn in manufacturing the blades and vanes made of ChS88U-VI and IN738-LC foundry nickel alloys for the turbines of the GTE-110 gas turbine unit is considered in detail. Potentialities for achieving adopted target parameters for the mechanical properties of working blades cast from ChS88UM-VI modified alloy are established. For the blades made of IN738-LC alloy manufactured using the existing foundry technology, a complete compliance with the requirements of normative and technical documentation has been established. Currently, in Russia, the basis of the fleet of gas turbine plants is composed by foreign turbines, and, for the implementation of the import substitution program, one can use the positive experience of PAO NPO Saturn in casting blades from IN738-LC alloy based on a reverse engineering technique. A preliminary complex of studies of the original manufacturer's blades should be carried out, involving, first of all, the determination of geometric size using modern measurement methods as well as the studies on the chemical compositions of the used materials (base metal and protective coatings). Further, verifying the constructed calculation models based on the obtained data, one could choose available domestic materials that would meet the operating conditions of the blades according to their heat resistance and corrosion

  8. APD Response Time Measurements for Future TOF-E Systems

    Science.gov (United States)

    Starkey, M. J.; Ogasawara, K.; Dayeh, M. A.; Desai, M. I.

    2017-12-01

    In space physics, the ability to detect ions is crucial to understanding plasma distributions in the solar wind. This usually typically requires the determination of the particle's mass, charge, and total energy. Current ion detection schemes are implemented in three sequential parts; an electrostatic analyzer for energy per charge (E/Q) measurements, a time-of-flight (TOF) for mass per charge (M/Q) measurements, and a solid-state detector (SSD) for total energy (E) measurements. Recent work has suggested the use of avalanche photodiode detectors (APD) for a simultaneous TOF and total energy (TOF-E) measurement system, which would replace traditional SSDs, simplify design, and reduce costs. Although TOF based ion spectrometry typically requires timing resolution of systems.

  9. Theoretical Study of the Vibration Suppression on a Mistuned Bladed Disk Using a Bi-periodic Piezoelectric Network

    Science.gov (United States)

    Li, Lin; Deng, Pengcheng; Liu, Jiuzhou; Li, Chao

    2018-03-01

    The paper deals with the vibration suppression of a bladed disk with a piezoelectric network. The piezoelectric network has a different period (so called bi-period) from that of the bladed disk and there is no inductor in it. The system is simulated by an electromechanical lumped parameter model with two DOFs per sector. The research focuses on suppressing the amplitude magnification or reducing the vibration localization of the mistuned bladed disk. The dynamic equations of the system are derived. Both mechanical mistuning and electrical mistuning have been taken into account. The Modified Modal Assurance Criterion (MMAC) is used to evaluate the vibration suppression ability of the bi-periodic piezoelectric network. The Monte Carlo simulation is used to calculate the MMAC of the system with the random mistuning. As a reference, the forced responses of the bladed disk with and without the piezoelectric network are given. The results show that the piezoelectric network would effectively suppress amplitude magnification induced by mistuning. The vibration amplitude is even smaller than that of the tuned system. The robustness analysis shows that the bi-periodic piezoelectric network can provide a reliable assurance for avoiding the forced response amplification of the mistuned bladed disk. The amplified response induced by the mechanical mistuning with standard deviation 0.2 can be effectively suppressed through the bi-periodic piezoelectric network.

  10. Effect of small cold forming on the creep behaviour of gas turbine blades made of Nimonic 90

    International Nuclear Information System (INIS)

    Keienburg, K.H.; Krueger, H.; Pickert, U.; Bautz, G.

    1987-01-01

    In order to obtain information on the material behaviour of Nimonic 90 with and without cold forming at the main temperature of use of 560deg C for large gas turbine blades, creep and relaxation samples were taken from the large volume foot of a gas turbine blade, part of which were tensioned by 3% cold in a tensile test machine. The selected cold forming was obtained as the upper limit from DMS measurements on a gas turbine blade when aligning. The negative effect of cold forming on the creep behaviour known from the literature for other γ hardened nickel base alloys was confirmed. The grain (matrix) is strengthened and the grain boundary is simultaneously weakened by cold forming. The material is also sensitized, so that fine separation occurs in the grain at the sliding bands and at the grain boundaries. Both circumstances contribute to the worsening of the creep behaviour, significantly for stresses below the technical elastic limit in the cold formed state. It follows, relative to large gas turbine blades, that: 1) Aligning operations must be restricted to the absolute minimum necessary and should be avoided completely if possible. 2) Aligned blades should be subjected to renewed solution annealing and separation hardening. 3.) Blades deformed in operation should also be subjected to renewed complete heat treatment. (orig.) [de

  11. Conjugate heat transfer investigation on the cooling performance of air cooled turbine blade with thermal barrier coating

    Science.gov (United States)

    Ji, Yongbin; Ma, Chao; Ge, Bing; Zang, Shusheng

    2016-08-01

    A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera. Besides, conjugate heat transfer numerical simulation is performed to obtain cooling efficiency distribution on both blade substrate surface and coating surface for comparison. The effect of thermal barrier coating on the overall cooling performance for blades is compared under varied mass flow rate of coolant, and spatial difference is also discussed. Results indicate that the cooling efficiency in the leading edge and trailing edge areas of the blade is the lowest. The cooling performance is not only influenced by the internal cooling structures layout inside the blade but also by the flow condition of the mainstream in the external cascade path. Thermal barrier effects of the coating vary at different regions of the blade surface, where higher internal cooling performance exists, more effective the thermal barrier will be, which means the thermal protection effect of coatings is remarkable in these regions. At the designed mass flow ratio condition, the cooling efficiency on the pressure side varies by 0.13 for the coating surface and substrate surface, while this value is 0.09 on the suction side.

  12. Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine. Part 1; Experimental Results

    Science.gov (United States)

    Bunker, Ronald S.; Bailey, Jeremy C.; Ameri, Ali A.

    1999-01-01

    A combined computational and experimental study has been performed to investigate the detailed distribution of convective heat transfer coefficients on the first stage blade tip surface for a geometry typical of large power generation turbines(>100MW). This paper is concerned with the design and execution of the experimental portion of the study. A stationary blade cascade experiment has been run consisting of three airfoils, the center airfoil having a variable tip gap clearance. The airfoil models the aerodynamic tip section of a high pressure turbine blade with inlet Mach number of 0.30, exit Mach number of 0.75, pressure ratio of 1.45, exit Reynolds number based on axial chord of 2.57 x 10(exp 6), and total turning of about 110 degrees. A hue detection based liquid crystal method is used to obtain the detailed heat transfer coefficient distribution on the blade tip surface for flat, smooth tip surfaces with both sharp and rounded edges. The cascade inlet turbulence intensity level took on values of either 5% or 9%. The cascade also models the casing recess in the shroud surface ahead of the blade. Experimental results are shown for the pressure distribution measurements on the airfoil near the tip gap, on the blade tip surface, and on the opposite shroud surface. Tip surface heat transfer coefficient distributions are shown for sharp-edge and rounded-edge tip geometries at each of the inlet turbulence intensity levels.

  13. Ergonomic Evaluation of Vibrations of a Rototiller with New Blade

    Directory of Open Access Journals (Sweden)

    H Gholami

    2017-10-01

    Full Text Available Introduction One of the most important problems arising with operation of the conventional rototillers is severe vibration of the machine handle which is transmitted to the user’s hands, arms and shoulders. Long period exposure of the hand-transmitted vibration may cause various diseases such as white finger syndrome. Therefore in this study, vibrations of a new type of rototiller with ridged blades were investigated at the position of handle/hand interface in different working conditions. Finally, the maximum allowable exposure time to the rototiller users in continuous tillage operation was obtained according to ISO 5349-1. Materials and Methods Experiments were carried out in one of the farms with silty clay soil texture, located in Sari city, Mazandaran province, Iran. Vibration measurements were performed according to ISO 5349-1 and ISO 5349-2 standards in two different modes, including in situ mode and tillage mode. Vibrational parameters were obtained in three blade rotational speeds, i.e., low speed (140-170 rpm, medium speed (170-200, and high speed (200-230. Blade rotational speed varied by changing engine speed using the throttle control lever. In each experiment, different vibrational values were individually recorded in three directions (x, y, and z. Experimental design and data analysis were performed in a Randomized Complete Block Design with three replications using the SPSS16 software. Results and Discussion Based on the obtained results in this study, the RMS of acceleration increased by increasing in rotational speed for all of the conducted experiments. The reason is that number of cutting per unit of time and consequently the frequency of changing in the dynamic forces exerting on the blades dramatically increases with increasing the rotational speed of the blades. Noteworthy is that in most cases the variation of acceleration in the tillage mode showed similar trend with vibrational values in the idling mode. This

  14. A new reference tip-timing test bench and simulator for blade synchronous and asynchronous vibrations

    Science.gov (United States)

    Hajnayeb, Ali; Nikpour, Masood; Moradi, Shapour; Rossi, Gianluca

    2018-02-01

    The blade tip-timing (BTT) measurement technique is at present the most promising technique for monitoring the blades of axial turbines and aircraft engines in operating conditions. It is generally used as an alternative to strain gauges in turbine testing. By conducting a comparison with the standard methods such as those based on strain gauges, one determines that the technique is not intrusive and does not require a complicated installation process. Despite its superiority to other methods, the experimental performance analysis of a new BTT method needs a test stand that includes a reference measurement system (e.g. strain gauges equipped with telemetry or other complex optical measurement systems, like rotating laser Doppler vibrometers). In this article, a new reliable, low-cost BTT test setup is proposed for simulating and analyzing blade vibrations based on kinematic inversion. In the proposed test bench, instead of the blades vibrating, it is the BTT sensor that vibrates. The vibration of the sensor is generated by a shaker and can therefore be easily controlled in terms of frequency, amplitude and waveform shape. The amplitude of vibration excitation is measured by a simple accelerometer. After introducing the components of the simulator, the proposed test bench is used in practice to simulate both synchronous and asynchronous vibration scenarios. Then two BTT methods are used to evaluate the quality of the acquired data. The results demonstrate that the proposed setup is able to generate simulated pulse sequences which are almost the same as those generated by the conventional BTT systems installed around a bladed disk. Moreover, the test setup enables its users to evaluate BTT methods by using a limited number of sensors. This significantly reduces the total costs of the experiments.

  15. Structural fatigue test results for large wind turbine blade sections

    Science.gov (United States)

    Faddoul, J. R.; Sullivan, T. L.

    1982-01-01

    In order to provide quantitative information on the operating life capabilities of wind turbine rotor blade concepts for root-end load transfer, a series of cantilever beam fatigue tests was conducted. Fatigue tests were conducted on a laminated wood blade with bonded steel studs, a low cost steel spar (utility pole) with a welded flange, a utility pole with additional root-end thickness provided by a swaged collar, fiberglass spars with both bonded and nonbonded fittings, and, finally, an aluminum blade with a bolted steel fitting (Lockheed Mod-0 blade). Photographs, data, and conclusions for each of these tests are presented. In addition, the aluminum blade test results are compared to field failure information; these results provide evidence that the cantilever beam type of fatigue test is a satisfactory method for obtaining qualitative data on blade life expectancy and for identifying structurally underdesigned areas (hot spots).

  16. Sweep-twist adaptive rotor blade : final project report.

    Energy Technology Data Exchange (ETDEWEB)

    Ashwill, Thomas D.

    2010-02-01

    Knight & Carver was contracted by Sandia National Laboratories to develop a Sweep Twist Adaptive Rotor (STAR) blade that reduced operating loads, thereby allowing a larger, more productive rotor. The blade design used outer blade sweep to create twist coupling without angled fiber. Knight & Carver successfully designed, fabricated, tested and evaluated STAR prototype blades. Through laboratory and field tests, Knight & Carver showed the STAR blade met the engineering design criteria and economic goals for the program. A STAR prototype was successfully tested in Tehachapi during 2008 and a large data set was collected to support engineering and commercial development of the technology. This report documents the methodology used to develop the STAR blade design and reviews the approach used for laboratory and field testing. The effort demonstrated that STAR technology can provide significantly greater energy capture without higher operating loads on the turbine.

  17. On the performance analysis of Savonius rotor with twisted blades

    Energy Technology Data Exchange (ETDEWEB)

    Saha, U.K.; Rajkumar, M. Jaya [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781 039 (India)

    2006-09-15

    The present investigation is aimed at exploring the feasibility of twisted bladed Savonius rotor for power generation. The twisted blade in a three-bladed rotor system has been tested in a low speed wind tunnel, and its performance has been compared with conventional semicircular blades (with twist angle of 0{sup o}). Performance analysis has been made on the basis of starting characteristics, static torque and rotational speed. Experimental evidence shows the potential of the twisted bladed rotor in terms of smooth running, higher efficiency and self-starting capability as compared to that of the conventional bladed rotor. Further experiments have been conducted in the same setup to optimize the twist angle. (author)

  18. State and Federal Regulatory measurement responsibilities around medical facilities

    International Nuclear Information System (INIS)

    Lanzl, L.H.

    1976-01-01

    Radiation exposure to man is due chiefly to diagnostic x-ray procedures, in which radiation is intentionally directed toward a patient. Radiation therapy presents a lesser problem because a smaller percentage of the population is subjected to such treatment. Recently, some innovative steps were taken in the State of Illinois to reduce patient exposure in four diagnostic procedures without reducing the benefits derived therefrom. However, if these procedures are to be carried out properly, it is necessary to increase the precision and accuracy of radiation exposure measurements to the order of +-2 percent. The usual accuracy and precision of radiation protection measurements are of the order of +- 20 percent. Thus, should the Illinois radiation protection rules become widely adopted, the national dosimetry network will need to upgrade exposure measurement techniques

  19. Earthquake Ground Motion Measures for Seismic Response Evaluation of Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, In-Kil; Ahn, Seong-Moon; Choun, Young-Sun; Seo, Jeong-Moon

    2007-03-15

    This study used the assessment results of failure criteria - base shear, story drift, top acceleration and top displacement - for a PSC containment building subjected to 30 sets of near-fault ground motions to evaluate the earthquake ground motion intensity measures. Seven intensity measures, peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(Sa), velocity(Sv), spectrum intensity for acceleration(SIa), velocity(SIv) and displacement(SId), were used to represent alternative ground motion. The regression analyses of the failure criteria for a PSC containment building were carried out to evaluate a proper intensity measure by using two regression models and seven ground motion parameters. The regression analysis results demonstrate the correlation coefficients of the failure criteria in terms of the candidate IM. From the results, spectral acceleration(Sa) is estimated as the best parameter for a evaluation of the structural safety for a seismic PSA.

  20. Sensitivity of bronchial responsiveness measurements in young infants

    DEFF Research Database (Denmark)

    Loland, Lotte; Buchvald, Frederik F; Halkjaer, Liselotte Brydensholt

    2006-01-01

    of 402 infants (median age, 6 weeks). Forced flow-volume measurements were obtained by the raised volume rapid thoracoabdominal compression technique and were compared with indexes of tidal breathing, measurements of transcutaneous oxygen (Ptco(2)), and auscultation during methacholine challenge testing....... RESULTS: Ptco(2) was the most sensitive parameter to detect increasing airway obstruction during methacholine challenge, followed by forced expiratory volume at 0.5 s (FEV(0.5)). Both were superior to other indexes of forced spirometry as well as tidal breathing indexes and auscultation. Coefficients...