WorldWideScience

Sample records for measure accurate distances

  1. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    Science.gov (United States)

    1999-06-01

    A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an

  2. Accurate measurements of E2 lifetimes using the coincidence recoil-distance method

    Science.gov (United States)

    Bhalla, R. K.; Poletti, A. R.

    1984-05-01

    Mean lives of four E2 transitions in the (2s, 1d) shell have been measured using the recoil-distance method (RDM), γ-rays de-exciting the level of interest were detected in coincidence with particles detected in an annular detector at a backward angle thereby reducing the background and producing a beam of recoiling nuclei of well-defined energy and recoil direction. Lifetimes measured were: 22Ne, 1.275 MeV level (2 + → 0 +), 5.16±0.13 ps; 26Mg, 3.588 MeV level (0 + → 2 +), 9.29±0.23 ps; 30Si, 3.788 MeV level (0 +→ 2 +), 12.00±0.70 ps; 38Ar, 3.377 MeV level (0 + → 2 +), 34.5±1.5 ps. The present measurements are compared to those of previous investigators. For the 22Ne level, averaged results from four different measurement techniques are compared and found to be in good agreement. The experimental results are compared to shell-model calculations.

  3. Accurate measurements of E2 lifetimes using the coincidence recoil-distance method

    International Nuclear Information System (INIS)

    Bhalla, R.K.; Poletti, A.R.

    1984-01-01

    Mean lives of four E2 transitions in the (2s, 1d) shell have been measured using the recoil-distance method (RDM). γ-rays de-exciting the level of interest were detected in coincidence with particles detected in an annular detector at a backward angle thereby reducing the background and producing a beam of recoiling nuclei of well-defined energy and recoil direction. Lifetimes measured were: 22 Ne, 1.275 MeV level (2 + -> 0 + ), 5.16 +- 0.13 ps; 26 Mg, 3.588 MeV level (0 + -> 2 + ), 9.29 +- 0.23 ps; 30 Si, 3.788 MeV level (0 + -> 2 + ), 12.00 +- 0.70 ps; 38 Ar, 3.377 MeV level (0 + -> 2 + ), 34.5 +- 1.5 ps. The present measurements are compared to those of previous investigators. For the 22 Ne level, averaged results from four different measurement techniques are compared and found to be in good agreement. The experimental results are compared to shell-model calculations. (orig.)

  4. Functional connectivity and structural covariance between regions of interest can be measured more accurately using multivariate distance correlation.

    Science.gov (United States)

    Geerligs, Linda; Cam-Can; Henson, Richard N

    2016-07-15

    Studies of brain-wide functional connectivity or structural covariance typically use measures like the Pearson correlation coefficient, applied to data that have been averaged across voxels within regions of interest (ROIs). However, averaging across voxels may result in biased connectivity estimates when there is inhomogeneity within those ROIs, e.g., sub-regions that exhibit different patterns of functional connectivity or structural covariance. Here, we propose a new measure based on "distance correlation"; a test of multivariate dependence of high dimensional vectors, which allows for both linear and non-linear dependencies. We used simulations to show how distance correlation out-performs Pearson correlation in the face of inhomogeneous ROIs. To evaluate this new measure on real data, we use resting-state fMRI scans and T1 structural scans from 2 sessions on each of 214 participants from the Cambridge Centre for Ageing & Neuroscience (Cam-CAN) project. Pearson correlation and distance correlation showed similar average connectivity patterns, for both functional connectivity and structural covariance. Nevertheless, distance correlation was shown to be 1) more reliable across sessions, 2) more similar across participants, and 3) more robust to different sets of ROIs. Moreover, we found that the similarity between functional connectivity and structural covariance estimates was higher for distance correlation compared to Pearson correlation. We also explored the relative effects of different preprocessing options and motion artefacts on functional connectivity. Because distance correlation is easy to implement and fast to compute, it is a promising alternative to Pearson correlations for investigating ROI-based brain-wide connectivity patterns, for functional as well as structural data. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Fast and accurate measurement of on-axis gain and on-axis polarization at a finite distance

    DEFF Research Database (Denmark)

    Pivnenko, S.; Breinbjerg, O.

    2013-01-01

    -field substitution technique in which the measurement distance is defined between the phase centres of the antennas. The location of the phase centre of the antenna under test (AUT) is found from a quick pattern measurement consisting of only four cuts including the main and diagonal planes. Additionally, in order...... to reduce the amount of measurement data and thus measurement time, the phase centre location is found on a sparse frequency grid and the values in the intermediate points are found by interpolation. The antenna polarization is determined from the amplitude/phase frequency sweeps with two orthogonal AUT...

  6. ORDERED WEIGHTED DISTANCE MEASURE

    Institute of Scientific and Technical Information of China (English)

    Zeshui XU; Jian CHEN

    2008-01-01

    The aim of this paper is to develop an ordered weighted distance (OWD) measure, which is thegeneralization of some widely used distance measures, including the normalized Hamming distance, the normalized Euclidean distance, the normalized geometric distance, the max distance, the median distance and the min distance, etc. Moreover, the ordered weighted averaging operator, the generalized ordered weighted aggregation operator, the ordered weighted geometric operator, the averaging operator, the geometric mean operator, the ordered weighted square root operator, the square root operator, the max operator, the median operator and the min operator axe also the special cases of the OWD measure. Some methods depending on the input arguments are given to determine the weights associated with the OWD measure. The prominent characteristic of the OWD measure is that it can relieve (or intensify) the influence of unduly large or unduly small deviations on the aggregation results by assigning them low (or high) weights. This desirable characteristic makes the OWD measure very suitable to be used in many actual fields, including group decision making, medical diagnosis, data mining, and pattern recognition, etc. Finally, based on the OWD measure, we develop a group decision making approach, and illustrate it with a numerical example.

  7. Phase-coded microwave signal generation based on a single electro-optical modulator and its application in accurate distance measurement.

    Science.gov (United States)

    Zhang, Fangzheng; Ge, Xiaozhong; Gao, Bindong; Pan, Shilong

    2015-08-24

    A novel scheme for photonic generation of a phase-coded microwave signal is proposed and its application in one-dimension distance measurement is demonstrated. The proposed signal generator has a simple and compact structure based on a single dual-polarization modulator. Besides, the generated phase-coded signal is stable and free from the DC and low-frequency backgrounds. An experiment is carried out. A 2 Gb/s phase-coded signal at 20 GHz is successfully generated, and the recovered phase information agrees well with the input 13-bit Barker code. To further investigate the performance of the proposed signal generator, its application in one-dimension distance measurement is demonstrated. The measurement accuracy is less than 1.7 centimeters within a measurement range of ~2 meters. The experimental results can verify the feasibility of the proposed phase-coded microwave signal generator and also provide strong evidence to support its practical applications.

  8. Electromagnetic distance measurement

    CERN Document Server

    1967-01-01

    This book brings together the work of forty-eight geodesists from twenty-five countries. They discuss various new electromagnetic distance measurement (EDM) instruments - among them the Tellurometer, Geodimeter, and air- and satellite-borne systems - and investigate the complex sources of error.

  9. A Novel Method for Short Distance Measurements

    International Nuclear Information System (INIS)

    Fernandez, M.G.; Ferrando, A.; Josa, M.I.; Molinero, A.; Oller, J.C.; Arce, P.; Calvo, E.; Figueroa, C.F.; Garcia, C.F.; Rodigrido, T.; Vila, I.; Virto, A.L.

    1998-01-01

    A new, accurate and un expensive device for measuring short distances, intended for monitoring in LHC experiments is presented. Data taken with a very simple prototype are shown and performance is extracted. (Author) 4 refs

  10. Accurate thickness measurement of graphene

    International Nuclear Information System (INIS)

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-01-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1–1.3 nm to 0.1–0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials. (paper)

  11. Distance Measurement Solves Astrophysical Mysteries

    Science.gov (United States)

    2003-08-01

    Location, location, and location. The old real-estate adage about what's really important proved applicable to astrophysics as astronomers used the sharp radio "vision" of the National Science Foundation's Very Long Baseline Array (VLBA) to pinpoint the distance to a pulsar. Their accurate distance measurement then resolved a dispute over the pulsar's birthplace, allowed the astronomers to determine the size of its neutron star and possibly solve a mystery about cosmic rays. "Getting an accurate distance to this pulsar gave us a real bonanza," said Walter Brisken, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Monogem Ring The Monogem Ring, in X-Ray Image by ROSAT satellite CREDIT: Max-Planck Institute, American Astronomical Society (Click on Image for Larger Version) The pulsar, called PSR B0656+14, is in the constellation Gemini, and appears to be near the center of a circular supernova remnant that straddles Gemini and its neighboring constellation, Monoceros, and is thus called the Monogem Ring. Since pulsars are superdense, spinning neutron stars left over when a massive star explodes as a supernova, it was logical to assume that the Monogem Ring, the shell of debris from a supernova explosion, was the remnant of the blast that created the pulsar. However, astronomers using indirect methods of determining the distance to the pulsar had concluded that it was nearly 2500 light-years from Earth. On the other hand, the supernova remnant was determined to be only about 1000 light-years from Earth. It seemed unlikely that the two were related, but instead appeared nearby in the sky purely by a chance juxtaposition. Brisken and his colleagues used the VLBA to make precise measurements of the sky position of PSR B0656+14 from 2000 to 2002. They were able to detect the slight offset in the object's apparent position when viewed from opposite sides of Earth's orbit around the Sun. This effect, called parallax, provides a direct measurement of

  12. A large catalog of accurate distances to molecular clouds from PS1 photometry

    Energy Technology Data Exchange (ETDEWEB)

    Schlafly, E. F.; Rix, H.-W.; Martin, N. F. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Green, G.; Finkbeiner, D. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bell, E. F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Kaiser, N.; Magnier, E. A.; Tonry, J. L. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Draper, P. W.; Metcalfe, N. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Price, P. A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2014-05-01

    Distance measurements to molecular clouds are important but are often made separately for each cloud of interest, employing very different data and techniques. We present a large, homogeneous catalog of distances to molecular clouds, most of which are of unprecedented accuracy. We determine distances using optical photometry of stars along lines of sight toward these clouds, obtained from PanSTARRS-1. We simultaneously infer the reddenings and distances to these stars, tracking the full probability distribution function using a technique presented in Green et al. We fit these star-by-star measurements using a simple dust screen model to find the distance to each cloud. We thus estimate the distances to almost all of the clouds in the Magnani et al. catalog, as well as many other well-studied clouds, including Orion, Perseus, Taurus, Cepheus, Polaris, California, and Monoceros R2, avoiding only the inner Galaxy. Typical statistical uncertainties in the distances are 5%, though the systematic uncertainty stemming from the quality of our stellar models is about 10%. The resulting catalog is the largest catalog of accurate, directly measured distances to molecular clouds. Our distance estimates are generally consistent with available distance estimates from the literature, though in some cases the literature estimates are off by a factor of more than two.

  13. Measuring distances between complex networks

    International Nuclear Information System (INIS)

    Andrade, Roberto F.S.; Miranda, Jose G.V.; Pinho, Suani T.R.; Lobao, Thierry Petit

    2008-01-01

    A previously introduced concept of higher order neighborhoods in complex networks, [R.F.S. Andrade, J.G.V. Miranda, T.P. Lobao, Phys. Rev. E 73 (2006) 046101] is used to define a distance between networks with the same number of nodes. With such measure, expressed in terms of the matrix elements of the neighborhood matrices of each network, it is possible to compare, in a quantitative way, how far apart in the space of neighborhood matrices two networks are. The distance between these matrices depends on both the network topologies and the adopted node numberings. While the numbering of one network is fixed, a Monte Carlo algorithm is used to find the best numbering of the other network, in the sense that it minimizes the distance between the matrices. The minimal value found for the distance reflects differences in the neighborhood structures of the two networks that arise only from distinct topologies. This procedure ends up by providing a projection of the first network on the pattern of the second one. Examples are worked out allowing for a quantitative comparison for distances among distinct networks, as well as among distinct realizations of random networks

  14. Accurately bearing measurement in non-cooperative passive location system

    International Nuclear Information System (INIS)

    Liu Zhiqiang; Ma Hongguang; Yang Lifeng

    2007-01-01

    The system of non-cooperative passive location based on array is proposed. In the system, target is detected by beamforming and Doppler matched filtering; and bearing is measured by a long-base-ling interferometer which is composed of long distance sub-arrays. For the interferometer with long-base-line, the bearing is measured accurately but ambiguously. To realize unambiguous accurately bearing measurement, beam width and multiple constraint adoptive beamforming technique is used to resolve azimuth ambiguous. Theory and simulation result shows this method is effective to realize accurately bearing measurement in no-cooperate passive location system. (authors)

  15. A Survey of Binary Similarity and Distance Measures

    Directory of Open Access Journals (Sweden)

    Seung-Seok Choi

    2010-02-01

    Full Text Available The binary feature vector is one of the most common representations of patterns and measuring similarity and distance measures play a critical role in many problems such as clustering, classification, etc. Ever since Jaccard proposed a similarity measure to classify ecological species in 1901, numerous binary similarity and distance measures have been proposed in various fields. Applying appropriate measures results in more accurate data analysis. Notwithstanding, few comprehensive surveys on binary measures have been conducted. Hence we collected 76 binary similarity and distance measures used over the last century and reveal their correlations through the hierarchical clustering technique.

  16. Highly accurate surface maps from profilometer measurements

    Science.gov (United States)

    Medicus, Kate M.; Nelson, Jessica D.; Mandina, Mike P.

    2013-04-01

    Many aspheres and free-form optical surfaces are measured using a single line trace profilometer which is limiting because accurate 3D corrections are not possible with the single trace. We show a method to produce an accurate fully 2.5D surface height map when measuring a surface with a profilometer using only 6 traces and without expensive hardware. The 6 traces are taken at varying angular positions of the lens, rotating the part between each trace. The output height map contains low form error only, the first 36 Zernikes. The accuracy of the height map is ±10% of the actual Zernike values and within ±3% of the actual peak to valley number. The calculated Zernike values are affected by errors in the angular positioning, by the centering of the lens, and to a small effect, choices made in the processing algorithm. We have found that the angular positioning of the part should be better than 1?, which is achievable with typical hardware. The centering of the lens is essential to achieving accurate measurements. The part must be centered to within 0.5% of the diameter to achieve accurate results. This value is achievable with care, with an indicator, but the part must be edged to a clean diameter.

  17. Distance and Cable Length Measurement System

    Science.gov (United States)

    Hernández, Sergio Elias; Acosta, Leopoldo; Toledo, Jonay

    2009-01-01

    A simple, economic and successful design for distance and cable length detection is presented. The measurement system is based on the continuous repetition of a pulse that endlessly travels along the distance to be detected. There is a pulse repeater at both ends of the distance or cable to be measured. The endless repetition of the pulse generates a frequency that varies almost inversely with the distance to be measured. The resolution and distance or cable length range could be adjusted by varying the repetition time delay introduced at both ends and the measurement time. With this design a distance can be measured with centimeter resolution using electronic system with microsecond resolution, simplifying classical time of flight designs which require electronics with picosecond resolution. This design was also applied to position measurement. PMID:22303169

  18. Accurate shear measurement with faint sources

    International Nuclear Information System (INIS)

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys

  19. Accurate color measurement methods for medical displays.

    Science.gov (United States)

    Saha, Anindita; Kelley, Edward F; Badano, Aldo

    2010-01-01

    The necessity for standard instrumentation and measurements of color that are repeatable and reproducible is the major motivation behind this work. Currently, different instrumentation and methods can yield very different results when measuring the same feature such as color uniformity or color difference. As color increasingly comes into play in medical imaging diagnostics, display color will have to be quantified in order to assess whether the display should be used for imaging purposes. The authors report on the characterization of three novel probes for measuring display color with minimal contamination from screen areas outside the measurement spot or from off-normal emissions. They compare three probe designs: A modified small-spot luminance probe and two conic probe designs based on black frusta. To compare the three color probe designs, spectral and luminance measurements were taken with specialized instrumentation to determine the luminance changes and color separation abilities of the probes. The probes were characterized with a scanning slit method, veiling glare, and a moving laser and LED arrangement. The scanning slit measurement was done using a black slit plate over a white line on an LCD monitor. The luminance was measured in 1 mm increments from the center of the slit to +/- 15 mm above and below the slit at different distances between the probe and the slit. The veiling glare setup consisted of measurements of the luminance of a black spot pattern with a white disk of radius of 100 mm as the black spot increases in 1 mm radius increments. The moving LED and laser method consisted of a red and green light orthogonal to the probe tip for the light to directly shine into the probe. The green light source was moved away from the red source in 1 cm increments to measure color stray-light contamination at different probe distances. The results of the color testing using the LED and laser methods suggest a better performance of one of the frusta probes

  20. Method of measuring distance between fuel element

    International Nuclear Information System (INIS)

    Urata, Megumu.

    1991-01-01

    The distance between fuel elements contained in a pool is measured in a contactless manner even for a narrow distance less than 1 mm. That is, the equipment for measuring the distance between spent fuel elements of a spent fuel assembly in a nuclear reactor comprises a optical fiber scope, a lens, an industrial TV camera and a monitor TV. The top end of the optical fiber scope is inserted between fuel elements to be measured. The state thereof is displayed on the TV screen to measure the distance between the fuel elements. The measured results are compared with a previously formed calibration curve to determine the value between the fuel elements. Then, the distance between the fuel elements can be determined in the pool of a power plant without dismantling the fuel assembly, to investigate the state of the bending and estimate the fuel working life. (I.S.)

  1. Electronic distance measurement: an introduction

    National Research Council Canada - National Science Library

    Rüeger, J. M

    1990-01-01

    .... It is excellently suited as a text for undergraduate and graduate students and as an invaluable reference for practicing surveyors, geodesists and other scientists using EDM as a measuring tool...

  2. Apparatus for accurately measuring high temperatures

    Science.gov (United States)

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  3. Accurate Distances to Important Spiral Galaxies: M63, M74, NGC 1291, NGC 4559, NGC 4625, and NGC 5398

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W. [University of Texas at Austin, McDonald Observatory, 2515 Speedway, Stop C1400 Austin, TX 78712 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Berg, Danielle [Center for Gravitation, Cosmology and Astrophysics, Department of Physics, University of Wisconsin Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211 (United States); Kennicutt, Robert, E-mail: kmcquinn@astro.as.utexas.edu [Institute for Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2017-08-01

    Accurate distances are fundamental for interpreting various measured properties of galaxies. Surprisingly, many of the best-studied spiral galaxies in the Local Volume have distance uncertainties that are much larger than can be achieved with modern observation techniques. Using Hubble Space Telescope optical imaging, we use the tip of the red giant branch method to measure the distances to six galaxies that are included in the Spitzer Infrared Nearby Galaxies Survey program and its offspring surveys. The sample includes M63, M74, NGC 1291, NGC 4559, NGC 4625, and NGC 5398. We compare our results with distances reported to these galaxies based on a variety of methods. Depending on the technique, there can be a wide range in published distances, particularly from the Tully–Fisher relation. In addition, differences between the planetary nebular luminosity function and surface brightness fluctuation techniques can vary between galaxies, suggesting inaccuracies that cannot be explained by systematics in the calibrations. Our distances improve upon previous results, as we use a well-calibrated, stable distance indicator, precision photometry in an optimally selected field of view, and a Bayesian maximum likelihood technique that reduces measurement uncertainties.

  4. Accurate measurements of neutron activation cross sections

    International Nuclear Information System (INIS)

    Semkova, V.

    1999-01-01

    The applications of some recent achievements of neutron activation method on high intensity neutron sources are considered from the view point of associated errors of cross sections data for neutron induced reaction. The important corrections in -y-spectrometry insuring precise determination of the induced radioactivity, methods for accurate determination of the energy and flux density of neutrons, produced by different sources, and investigations of deuterium beam composition are considered as factors determining the precision of the experimental data. The influence of the ion beam composition on the mean energy of neutrons has been investigated by measurement of the energy of neutrons induced by different magnetically analysed deuterium ion groups. Zr/Nb method for experimental determination of the neutron energy in the 13-15 MeV energy range allows to measure energy of neutrons from D-T reaction with uncertainty of 50 keV. Flux density spectra from D(d,n) E d = 9.53 MeV and Be(d,n) E d = 9.72 MeV are measured by PHRS and foil activation method. Future applications of the activation method on NG-12 are discussed. (author)

  5. A cognitively grounded measure of pronunciation distance.

    Directory of Open Access Journals (Sweden)

    Martijn Wieling

    Full Text Available In this study we develop pronunciation distances based on naive discriminative learning (NDL. Measures of pronunciation distance are used in several subfields of linguistics, including psycholinguistics, dialectology and typology. In contrast to the commonly used Levenshtein algorithm, NDL is grounded in cognitive theory of competitive reinforcement learning and is able to generate asymmetrical pronunciation distances. In a first study, we validated the NDL-based pronunciation distances by comparing them to a large set of native-likeness ratings given by native American English speakers when presented with accented English speech. In a second study, the NDL-based pronunciation distances were validated on the basis of perceptual dialect distances of Norwegian speakers. Results indicated that the NDL-based pronunciation distances matched perceptual distances reasonably well with correlations ranging between 0.7 and 0.8. While the correlations were comparable to those obtained using the Levenshtein distance, the NDL-based approach is more flexible as it is also able to incorporate acoustic information other than sound segments.

  6. Is linear distance measured by panoramic radiography reliable?

    International Nuclear Information System (INIS)

    Nishikawa, Keiichi; Wakoh, Mamoru; Sano, Tsukasa; Suehiro, Atsushi; Sekine, Hideshi; Kousuge, Yuuji

    2010-01-01

    The objective of this study was to re-examine the reliability of distance measurements on clinical panoramic radiographs by comparing them with computed tomography (CT) images, from which the most accurate distance measurement is possible. Twenty pairs of images from patients examined both with panoramic radiography and CT for dental implant treatment planning in the premolar and molar regions of the mandible were used. The vertical linear distance between the alveolar crest and the closest mandibular canal was measured by three experienced oral radiologists on both images. The distances measured on panoramic radiographs were corrected for the magnification factor at the focal plane. Double-oblique cross-sectional images were used for CT. Pearson's correlation coefficient was calculated between distances obtained from both images. The paired t test was performed for statistical comparison. Error levels with the panoramic radiograph versus the CT image were also calculated. Pearson's correlation coefficient showed a significant strong linear correlation (R=0.90; p<0.01). However, the corrected value of distance measured on panoramic radiographs tended to be too small, and a significant difference was observed (p<0.05). The error level was approximately 10% (9.6±7.3%). Distance measurement on clinical panoramic radiographs is less reliable than CT images and cannot be recommended. (author)

  7. A Distance Measure for Genome Phylogenetic Analysis

    Science.gov (United States)

    Cao, Minh Duc; Allison, Lloyd; Dix, Trevor

    Phylogenetic analyses of species based on single genes or parts of the genomes are often inconsistent because of factors such as variable rates of evolution and horizontal gene transfer. The availability of more and more sequenced genomes allows phylogeny construction from complete genomes that is less sensitive to such inconsistency. For such long sequences, construction methods like maximum parsimony and maximum likelihood are often not possible due to their intensive computational requirement. Another class of tree construction methods, namely distance-based methods, require a measure of distances between any two genomes. Some measures such as evolutionary edit distance of gene order and gene content are computational expensive or do not perform well when the gene content of the organisms are similar. This study presents an information theoretic measure of genetic distances between genomes based on the biological compression algorithm expert model. We demonstrate that our distance measure can be applied to reconstruct the consensus phylogenetic tree of a number of Plasmodium parasites from their genomes, the statistical bias of which would mislead conventional analysis methods. Our approach is also used to successfully construct a plausible evolutionary tree for the γ-Proteobacteria group whose genomes are known to contain many horizontally transferred genes.

  8. How to measure distance visual acuity

    Directory of Open Access Journals (Sweden)

    Janet Marsden

    2014-04-01

    Full Text Available Visual acuity (VA is a measure of the ability of the eye to distinguish shapes and the details of objects at a given distance. It is important to assess VA in a consistent way in order to detect any changes in vision. One eye is tested at a time.

  9. Distance Measures for Information System Reengineering

    NARCIS (Netherlands)

    Poels, G.; Viaene, S.; Dedene, G.; Wangler, B.; Bergman, L.

    2000-01-01

    We present an approach to assess the magnitude and impact of information system reengineering caused by business process change. This approach is based on two concepts: object-oriented business modeling and distance measurement. The former concept is used to visualize changes in the business layer

  10. An Introduction to Distance Measurement in Astronomy

    CERN Document Server

    de Grijs, Richard

    2011-01-01

    Distance determination is an essential technique in astronomy, and is briefly covered in most textbooks on astrophysics and cosmology. It is rarely covered as a coherent topic in its own right. When it is discussed the approach is frequently very dry, splitting the teaching into, for example, stars, galaxies and cosmologies, and as a consequence, books lack depth and are rarely comprehensive. Adopting a unique and engaging approach to the subject An Introduction to distance Measurement in Astronomy will take the reader on a journey from the solar neighbourhood to the edge of the Universe, dis

  11. Distance measurement using frequency scanning interferometry with mode-hoped laser

    Science.gov (United States)

    Medhat, M.; Sobee, M.; Hussein, H. M.; Terra, O.

    2016-06-01

    In this paper, frequency scanning interferometry is implemented to measure distances up to 5 m absolutely. The setup consists of a Michelson interferometer, an external cavity tunable diode laser, and an ultra-low expansion (ULE) Fabry-Pérot (FP) cavity to measure the frequency scanning range. The distance is measured by acquiring simultaneously the interference fringes from, the Michelson and the FP interferometers, while scanning the laser frequency. An online fringe processing technique is developed to calculate the distance from the fringe ratio while removing the parts result from the laser mode-hops without significantly affecting the measurement accuracy. This fringe processing method enables accurate distance measurements up to 5 m with measurements repeatability ±3.9×10-6 L. An accurate translation stage is used to find the FP cavity free-spectral-range and therefore allow accurate measurement. Finally, the setup is applied for the short distance calibration of a laser distance meter (LDM).

  12. Shape anisotropy: tensor distance to anisotropy measure

    Science.gov (United States)

    Weldeselassie, Yonas T.; El-Hilo, Saba; Atkins, M. S.

    2011-03-01

    Fractional anisotropy, defined as the distance of a diffusion tensor from its closest isotropic tensor, has been extensively studied as quantitative anisotropy measure for diffusion tensor magnetic resonance images (DT-MRI). It has been used to reveal the white matter profile of brain images, as guiding feature for seeding and stopping in fiber tractography and for the diagnosis and assessment of degenerative brain diseases. Despite its extensive use in DT-MRI community, however, not much attention has been given to the mathematical correctness of its derivation from diffusion tensors which is achieved using Euclidean dot product in 9D space. But, recent progress in DT-MRI has shown that the space of diffusion tensors does not form a Euclidean vector space and thus Euclidean dot product is not appropriate for tensors. In this paper, we propose a novel and robust rotationally invariant diffusion anisotropy measure derived using the recently proposed Log-Euclidean and J-divergence tensor distance measures. An interesting finding of our work is that given a diffusion tensor, its closest isotropic tensor is different for different tensor distance metrics used. We demonstrate qualitatively that our new anisotropy measure reveals superior white matter profile of DT-MR brain images and analytically show that it has a higher signal to noise ratio than fractional anisotropy.

  13. Highly Accurate Measurement of Projectile Trajectories

    National Research Council Canada - National Science Library

    Leathem, J

    1997-01-01

    .... The method has been extensively used for free flight testing of weapon models. This report describes the on board instrumentation, the range instrumentation and the experimental procedure used to carry out the trajectory measurements...

  14. Designing an accurate system for temperature measurements

    Directory of Open Access Journals (Sweden)

    Kochan Orest

    2017-01-01

    Full Text Available The method of compensation of changes in temperature field along the legs of inhomogeneous thermocouple, which measures a temperature of an object, is considered in this paper. This compensation is achieved by stabilization of the temperature field along the thermocouple. Such stabilization does not allow the error due to acquired thermoelectric inhomogeneity to manifest itself. There is also proposed the design of the furnace to stabilize temperature field along the legs of the thermocouple which measures the temperature of an object. This furnace is not integrated with the thermocouple mentioned above, therefore it is possible to replace this thermocouple with a new one when it get its legs considerably inhomogeneous.. There is designed the two loop measuring system with the ability of error correction which can use simultaneously a usual thermocouple as well as a thermocouple with controlled profile of temperature field. The latter can be used as a reference sensor for the former.

  15. Measures of lexical distance between languages

    Science.gov (United States)

    Petroni, Filippo; Serva, Maurizio

    2010-06-01

    The idea of measuring distance between languages seems to have its roots in the work of the French explorer Dumont D’Urville (1832) [13]. He collected comparative word lists for various languages during his voyages aboard the Astrolabe from 1826 to 1829 and, in his work concerning the geographical division of the Pacific, he proposed a method for measuring the degree of relation among languages. The method used by modern glottochronology, developed by Morris Swadesh in the 1950s, measures distances from the percentage of shared cognates, which are words with a common historical origin. Recently, we proposed a new automated method which uses the normalized Levenshtein distances among words with the same meaning and averages on the words contained in a list. Recently another group of scholars, Bakker et al. (2009) [8] and Holman et al. (2008) [9], proposed a refined version of our definition including a second normalization. In this paper we compare the information content of our definition with the refined version in order to decide which of the two can be applied with greater success to resolve relationships among languages.

  16. Air brake-dynamometer accurately measures torque

    Science.gov (United States)

    1965-01-01

    Air brake-dynamometer assembly combines the principles of the air turbine and the air pump to apply braking torque. The assembly absorbs and measures power outputs of rotating machinery over a wide range of shaft speeds. It can also be used as an air turbine.

  17. Metrics for measuring distances in configuration spaces

    International Nuclear Information System (INIS)

    Sadeghi, Ali; Ghasemi, S. Alireza; Schaefer, Bastian; Mohr, Stephan; Goedecker, Stefan; Lill, Markus A.

    2013-01-01

    In order to characterize molecular structures we introduce configurational fingerprint vectors which are counterparts of quantities used experimentally to identify structures. The Euclidean distance between the configurational fingerprint vectors satisfies the properties of a metric and can therefore safely be used to measure dissimilarities between configurations in the high dimensional configuration space. In particular we show that these metrics are a perfect and computationally cheap replacement for the root-mean-square distance (RMSD) when one has to decide whether two noise contaminated configurations are identical or not. We introduce a Monte Carlo approach to obtain the global minimum of the RMSD between configurations, which is obtained from a global minimization over all translations, rotations, and permutations of atomic indices

  18. Measuring sidewalk distances using Google Earth

    Directory of Open Access Journals (Sweden)

    Janssen Ian

    2012-03-01

    Full Text Available Abstract Background Physical activity is an important determinant of health. Walking is the most common physical activity performed by adults and the presence of sidewalks along roads is a determinant of walking. Geographic information systems (GIS can be used to measure sidewalks; however, GIS sidewalk data are difficult to access. The purpose of this study was to present a new GIS method for measuring the distance and coverage of sidewalks along roadways. Methods The new method contains three stages. Stage 1 involves calculating the distance of all road segments within the region of interest (e.g., neighborhood, extracting geospatial information on these road segments, and saving this information as a Google Earth file. This stage was performed in ArcGIS software. Stage 2 involves opening the extracted road segment geospatial data in Google Earth, visually examining road segments to see if they contain sidewalks, and deleting road segments without sidewalks. Stage 3 involves importing the modified road geospatial data into ArcGIS and calculating the length of road segments with sidewalks. The new method was tested in 315 sites across Canada. Each site consisted of a one km radius circular buffer surrounding a school. Results A detailed, step-by-step protocol is provided in the paper. The length of road segments with sidewalks in the testing sites ranged from 0.00 to 55.05 km (median 16.20 km. When expressed relative to the length of all road segments, the length of road segments with sidewalks ranged from 0% to 100% (median 53%. By comparison to urban testing sites, rural sites had shorter sidewalk lengths and a smaller proportion of the roads had sidewalk coverage. Conclusion This study provides a new GIS protocol that researchers can use to measure the distance and coverage of sidewalks along roadways.

  19. Improvement of Ultrasonic Distance Measuring System

    Directory of Open Access Journals (Sweden)

    Jiang Yu

    2018-01-01

    Full Text Available This paper mainly introduces a kind of ultrasonic distance measuring system with AT89C51 single chip as the core component. The paper expounds the principle of ultrasonic sensor and ultrasonic ranging, hardware circuit and software program, and the results of experiment and analysis.The hardware circuit based on SCM, the software design adopts the advanced microcontroller programming language.The amplitude of the received signal and the time of ultrasonic propagation are regulated by closed loop control. [1,2]The double closed loop control technology for amplitude and time improves the measuring accuracy of the instrument. The experimental results show that greatly improves the measurement accuracy of the system.

  20. Heterogeneity Measurement Based on Distance Measure for Polarimetric SAR Data

    Science.gov (United States)

    Xing, Xiaoli; Chen, Qihao; Liu, Xiuguo

    2018-04-01

    To effectively test the scene heterogeneity for polarimetric synthetic aperture radar (PolSAR) data, in this paper, the distance measure is introduced by utilizing the similarity between the sample and pixels. Moreover, given the influence of the distribution and modeling texture, the K distance measure is deduced according to the Wishart distance measure. Specifically, the average of the pixels in the local window replaces the class center coherency or covariance matrix. The Wishart and K distance measure are calculated between the average matrix and the pixels. Then, the ratio of the standard deviation to the mean is established for the Wishart and K distance measure, and the two features are defined and applied to reflect the complexity of the scene. The proposed heterogeneity measure is proceeded by integrating the two features using the Pauli basis. The experiments conducted on the single-look and multilook PolSAR data demonstrate the effectiveness of the proposed method for the detection of the scene heterogeneity.

  1. Measuring and testing dependence by correlation of distances

    OpenAIRE

    Székely, Gábor J.; Rizzo, Maria L.; Bakirov, Nail K.

    2007-01-01

    Distance correlation is a new measure of dependence between random vectors. Distance covariance and distance correlation are analogous to product-moment covariance and correlation, but unlike the classical definition of correlation, distance correlation is zero only if the random vectors are independent. The empirical distance dependence measures are based on certain Euclidean distances between sample elements rather than sample moments, yet have a compact representation analogous to the clas...

  2. Accurate Compton scattering measurements for N{sub 2} molecules

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kohjiro [Advanced Technology Research Center, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Itou, Masayoshi; Tsuji, Naruki; Sakurai, Yoshiharu [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hosoya, Tetsuo; Sakurai, Hiroshi, E-mail: sakuraih@gunma-u.ac.jp [Department of Production Science and Technology, Gunma University, 29-1 Hon-cho, Ota, Gunma 373-0057 (Japan)

    2011-06-14

    The accurate Compton profiles of N{sub 2} gas were measured using 121.7 keV synchrotron x-rays. The present accurate measurement proves the better agreement of the CI (configuration interaction) calculation than the Hartree-Fock calculation and suggests the importance of multi-excitation in the CI calculations for the accuracy of wavefunctions in ground states.

  3. Experience of precision measuring distances by invar wires at accelerators

    International Nuclear Information System (INIS)

    Porubaj, N.I.

    1977-01-01

    With a view to determining the deformations and displacements of the ring foundation of the ITEP accelerator, the method of very accurate distance measurements by means of invar wires and strips is described. Measurement errors are analyzed. This method has allowed to measure distances up to 40 m with a mean-square error of less than 40 μm. The calibration accuracy of 3 and 25-m measuring wires has been determined to be +- 27 μm. Time instability of the wires is +- 16 μm. It is shown that strips are more stable in time than wires. Elongation of 6, 19, 25 and 38 m invar wires has been measured as function of the tension time. The error due to tension of a 38-m wire may be tangible. Data on thermal coefficient variation in time has been obtained for invar wires and strips. The multiannual measurements of the ring foundation deformations show that variations of the mean radius are caused by increases of concrete temperature. Temperature increase by only 1 deg caused mean radius increase of 0.3 mm

  4. Evaluation of Distance Measures Between Gaussian Mixture Models of MFCCs

    DEFF Research Database (Denmark)

    Jensen, Jesper Højvang; Ellis, Dan P. W.; Christensen, Mads Græsbøll

    2007-01-01

    In music similarity and in the related task of genre classification, a distance measure between Gaussian mixture models is frequently needed. We present a comparison of the Kullback-Leibler distance, the earth movers distance and the normalized L2 distance for this application. Although...

  5. Performance considerations of ultrasonic distance measurement with well defined properties

    International Nuclear Information System (INIS)

    Elmer, Hannes; Schweinzer, Herbert

    2005-01-01

    Conventional ultrasonic distance measurement systems based on narrow bandwidth ultrasonic bursts and amplitude detection are often used because of their low costs and easy implementation. However, the achievable results strongly depend on the actual environments where the system is implemented: in case of well defined objects that are always located near the measurement direction of the system, in general good results are obtained. If arbitrary objects are expected that are moreover located in arbitrary positions in front of the sensor, strongly object dependent areas where objects are detected with decreasing accuracy towards their borders must be taken into account. In previous works we developed an ultrasonic measurement system that provides accurate distance measurement values within a well defined detection area that is independent of the reflection properties of the objects. This measurement system is based on the One Bit Correlation method that is described in the following. To minimise its implementation efforts, it is necessary to examine the influence of the system parameters as e.g. the correlation length to the results that are expected in case of different signal to noise ratios of the received signal. In the following, these examinations are shown and the obtained results are discussed that allow getting a well conditioned system that makes best use of given system resources

  6. Exploratory Movement Generates Higher-Order Information That Is Sufficient for Accurate Perception of Scaled Egocentric Distance

    Science.gov (United States)

    Mantel, Bruno; Stoffregen, Thomas A.; Campbell, Alain; Bardy, Benoît G.

    2015-01-01

    Body movement influences the structure of multiple forms of ambient energy, including optics and gravito-inertial force. Some researchers have argued that egocentric distance is derived from inferential integration of visual and non-visual stimulation. We suggest that accurate information about egocentric distance exists in perceptual stimulation as higher-order patterns that extend across optics and inertia. We formalize a pattern that specifies the egocentric distance of a stationary object across higher-order relations between optics and inertia. This higher-order parameter is created by self-generated movement of the perceiver in inertial space relative to the illuminated environment. For this reason, we placed minimal restrictions on the exploratory movements of our participants. We asked whether humans can detect and use the information available in this higher-order pattern. Participants judged whether a virtual object was within reach. We manipulated relations between body movement and the ambient structure of optics and inertia. Judgments were precise and accurate when the higher-order optical-inertial parameter was available. When only optic flow was available, judgments were poor. Our results reveal that participants perceived egocentric distance from the higher-order, optical-inertial consequences of their own exploratory activity. Analysis of participants’ movement trajectories revealed that self-selected movements were complex, and tended to optimize availability of the optical-inertial pattern that specifies egocentric distance. We argue that accurate information about egocentric distance exists in higher-order patterns of ambient energy, that self-generated movement can generate these higher-order patterns, and that these patterns can be detected and used to support perception of egocentric distance that is precise and accurate. PMID:25856410

  7. Assessment of auditory distance in a territorial songbird: accurate feat or rule of thumb?

    Science.gov (United States)

    Naguib; Klump; Hillmann; Grießmann; Teige

    2000-04-01

    Territorial passerines presumably benefit from their ability to use auditory cues to judge the distance to singing conspecifics, by increasing the efficiency of their territorial defence. Here, we report data on the approach of male territorial chaffinches, Fringilla coelebs, to a loudspeaker broadcasting conspecific song simulating a rival at various distances by different amounts of song degradation. Songs were degraded digitally in a computer-simulated forest emulating distances of 0, 20, 40, 80 and 120 m. The approach distance of chaffinches towards the loudspeaker increased with increasing amounts of degradation indicating a perceptual representation of differences in distance of a sound source. We discuss the interindividual variation of male responses with respect to constraints resulting from random variation of ranging cues provided by the environmental song degradation, the perception accuracy and the decision rules. Copyright 2000 The Association for the Study of Animal Behaviour.

  8. Accurate method of the magnetic field measurement of quadrupole magnets

    International Nuclear Information System (INIS)

    Kumada, M.; Sakai, I.; Someya, H.; Sasaki, H.

    1983-01-01

    We present an accurate method of the magnetic field measurement of the quadrupole magnet. The method of obtaining the information of the field gradient and the effective focussing length is given. A new scheme to obtain the information of the skew field components is also proposed. The relative accuracy of the measurement was 1 x 10 -4 or less. (author)

  9. Fast and accurate estimation of the covariance between pairwise maximum likelihood distances

    Directory of Open Access Journals (Sweden)

    Manuel Gil

    2014-09-01

    Full Text Available Pairwise evolutionary distances are a model-based summary statistic for a set of molecular sequences. They represent the leaf-to-leaf path lengths of the underlying phylogenetic tree. Estimates of pairwise distances with overlapping paths covary because of shared mutation events. It is desirable to take these covariance structure into account to increase precision in any process that compares or combines distances. This paper introduces a fast estimator for the covariance of two pairwise maximum likelihood distances, estimated under general Markov models. The estimator is based on a conjecture (going back to Nei & Jin, 1989 which links the covariance to path lengths. It is proven here under a simple symmetric substitution model. A simulation shows that the estimator outperforms previously published ones in terms of the mean squared error.

  10. Fast and accurate estimation of the covariance between pairwise maximum likelihood distances.

    Science.gov (United States)

    Gil, Manuel

    2014-01-01

    Pairwise evolutionary distances are a model-based summary statistic for a set of molecular sequences. They represent the leaf-to-leaf path lengths of the underlying phylogenetic tree. Estimates of pairwise distances with overlapping paths covary because of shared mutation events. It is desirable to take these covariance structure into account to increase precision in any process that compares or combines distances. This paper introduces a fast estimator for the covariance of two pairwise maximum likelihood distances, estimated under general Markov models. The estimator is based on a conjecture (going back to Nei & Jin, 1989) which links the covariance to path lengths. It is proven here under a simple symmetric substitution model. A simulation shows that the estimator outperforms previously published ones in terms of the mean squared error.

  11. Measuring Astronomical Distances with Linear Programming

    Science.gov (United States)

    Narain, Akshar

    2015-01-01

    A few years ago it was suggested that the distance to celestial bodies could be computed by tracking their position over about 24 hours and then solving a regression problem. One only needed to use inexpensive telescopes, cameras, and astrometry tools, and the experiment could be done from one's backyard. However, it is not obvious to an amateur…

  12. Long distance measurement with a femtosecond laser based frequency comb

    Science.gov (United States)

    Bhattacharya, N.; Cui, M.; Zeitouny, M. G.; Urbach, H. P.; van den Berg, S. A.

    2017-11-01

    Recent advances in the field of ultra-short pulse lasers have led to the development of reliable sources of carrier envelope phase stabilized femtosecond pulses. The pulse train generated by such a source has a frequency spectrum that consists of discrete, regularly spaced lines known as a frequency comb. In this case both the frequency repetition and the carrier-envelope-offset frequency are referenced to a frequency standard, like an atomic clock. As a result the accuracy of the frequency standard is transferred to the optical domain, with the frequency comb as transfer oscillator. These unique properties allow the frequency comb to be applied as a versatile tool, not only for time and frequency metrology, but also in fundamental physics, high-precision spectroscopy, and laser noise characterization. The pulse-to-pulse phase relationship of the light emitted by the frequency comb has opened up new directions for long range highly accurate distance measurement.

  13. Accurate and robust phylogeny estimation based on profile distances: a study of the Chlorophyceae (Chlorophyta

    Directory of Open Access Journals (Sweden)

    Rahmann Sven

    2004-06-01

    Full Text Available Abstract Background In phylogenetic analysis we face the problem that several subclade topologies are known or easily inferred and well supported by bootstrap analysis, but basal branching patterns cannot be unambiguously estimated by the usual methods (maximum parsimony (MP, neighbor-joining (NJ, or maximum likelihood (ML, nor are they well supported. We represent each subclade by a sequence profile and estimate evolutionary distances between profiles to obtain a matrix of distances between subclades. Results Our estimator of profile distances generalizes the maximum likelihood estimator of sequence distances. The basal branching pattern can be estimated by any distance-based method, such as neighbor-joining. Our method (profile neighbor-joining, PNJ then inherits the accuracy and robustness of profiles and the time efficiency of neighbor-joining. Conclusions Phylogenetic analysis of Chlorophyceae with traditional methods (MP, NJ, ML and MrBayes reveals seven well supported subclades, but the methods disagree on the basal branching pattern. The tree reconstructed by our method is better supported and can be confirmed by known morphological characters. Moreover the accuracy is significantly improved as shown by parametric bootstrap.

  14. Venous Thromboembolism Quality Measures Fail to Accurately Measure Quality.

    Science.gov (United States)

    Lau, Brandyn D; Streiff, Michael B; Pronovost, Peter J; Haut, Elliott R

    2018-03-20

    Venous thromboembolism (VTE) is 1 of the most common causes of preventable harm for patients in hospitals. Consequently, the Joint Commission, the Centers for Medicare and Medicaid Services, the Agency for Healthcare Research and Quality, the United Kingdom Care Quality Commission, the Australian Commission on Safety and Quality in Health Care, the Maryland Health Services Cost Review Commission, and the American College of Surgeons have prioritized measuring and reporting VTE outcomes with the goal of reducing the incidence of and preventable harm from VTE. We developed a rubric for defect-free VTE prevention, graded each organizational VTE quality measure, and found that none of the current VTE-related quality measures adequately characterizes VTE prevention efforts or outcomes in hospitalized patients. Effective VTE prevention is multifactorial: clinicians must assess patients' risk for VTE and prescribe therapy appropriate for each patient's risk profile, patients must accept the prescribed therapy, and nurses must administer the therapy as prescribed. First, an ideal, defect-free VTE prevention process measure requires: (1) documentation of a standardized VTE risk assessment; (2) prescription of optimal, risk-appropriate VTE prophylaxis; and (3) administration of all risk-appropriate VTE prophylaxis as prescribed. Second, an ideal VTE outcome measure should define potentially preventable VTE as VTE that developed in patients who experienced any VTE prevention process failures. © 2018 American Heart Association, Inc.

  15. A Simple and Accurate Method for Measuring Enzyme Activity.

    Science.gov (United States)

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  16. Device accurately measures and records low gas-flow rates

    Science.gov (United States)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  17. Single-Image Distance Measurement by a Smart Mobile Device.

    Science.gov (United States)

    Chen, Shangwen; Fang, Xianyong; Shen, Jianbing; Wang, Linbo; Shao, Ling

    2017-12-01

    Existing distance measurement methods either require multiple images and special photographing poses or only measure the height with a special view configuration. We propose a novel image-based method that can measure various types of distance from single image captured by a smart mobile device. The embedded accelerometer is used to determine the view orientation of the device. Consequently, pixels can be back-projected to the ground, thanks to the efficient calibration method using two known distances. Then the distance in pixel is transformed to a real distance in centimeter with a linear model parameterized by the magnification ratio. Various types of distance specified in the image can be computed accordingly. Experimental results demonstrate the effectiveness of the proposed method.

  18. Femtosecond frequency comb based distance measurement in air

    NARCIS (Netherlands)

    Balling, P.; Kren, P.; Masika, P.; van den Berg, S.A.

    2009-01-01

    Interferometric measurement of distance using a femtosecond frequency comb is demonstrated and compared with a counting interferometer displacement measurement. A numerical model of pulse propagation in air is developed and the results are compared with experimental data for short distances. The

  19. Femtosecond frequency comb based distance measurement in air.

    Science.gov (United States)

    Balling, Petr; Kren, Petr; Masika, Pavel; van den Berg, S A

    2009-05-25

    Interferometric measurement of distance using a femtosecond frequency comb is demonstrated and compared with a counting interferometer displacement measurement. A numerical model of pulse propagation in air is developed and the results are compared with experimental data for short distances. The relative agreement for distance measurement in known laboratory conditions is better than 10(-7). According to the model, similar precision seems feasible even for long-distance measurement in air if conditions are sufficiently known. It is demonstrated that the relative width of the interferogram envelope even decreases with the measured length, and a fringe contrast higher than 90% could be obtained for kilometer distances in air, if optimal spectral width for that length and wavelength is used. The possibility of comb radiation delivery to the interferometer by an optical fiber is shown by model and experiment, which is important from a practical point of view.

  20. Comparative evaluation of ultrasound scanner accuracy in distance measurement

    Science.gov (United States)

    Branca, F. P.; Sciuto, S. A.; Scorza, A.

    2012-10-01

    The aim of the present study is to develop and compare two different automatic methods for accuracy evaluation in ultrasound phantom measurements on B-mode images: both of them give as a result the relative error e between measured distances, performed by 14 brand new ultrasound medical scanners, and nominal distances, among nylon wires embedded in a reference test object. The first method is based on a least squares estimation, while the second one applies the mean value of the same distance evaluated at different locations in ultrasound image (same distance method). Results for both of them are proposed and explained.

  1. Calibration Base Lines for Electronic Distance Measuring Instruments (EDMI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A calibration base line (CBL) is a precisely measured, straight-line course of approximately 1,400 m used to calibrate Electronic Distance Measuring Instruments...

  2. Change of Measure between Light Travel Time and Euclidean Distances

    Directory of Open Access Journals (Sweden)

    Heymann Y.

    2013-04-01

    Full Text Available The problem of cosmological distances is approached using a method based on the propagation of light in an expanding Universe. From the chan ge of measure between Light Travel Time and Euclidean Distances, a formula is deri ved to compute distances as a function of redshift. This formula is identical to Matti g’s formula (with q 0 = 1 / 2 which is based on Friedmann’s equations of general relativi ty.

  3. Distance measures for image segmentation evaluation

    OpenAIRE

    Monteiro, Fernando C.; Campilho, Aurélio

    2012-01-01

    In this paper we present a study of evaluation measures that enable the quantification of the quality of an image segmentation result. Despite significant advances in image segmentation techniques, evaluation of these techniques thus far has been largely subjective. Typically, the effectiveness of a new algorithm is demonstrated only by the presentation of a few segmented images and is otherwise left to subjective evaluation by the reader. Such an evaluation criterion can be useful for differ...

  4. High-accuracy long distance measurements\

    Czech Academy of Sciences Publication Activity Database

    Lešundák, Adam; Voigt, D.; Číp, Ondřej; van der Berg, M.

    2017-01-01

    Roč. 25, č. 26 (2017), s. 32570-32580 ISSN 1094-4087 R&D Projects: GA ČR GB14-36681G; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : measurements * filtered frequency comb Subject RIV: BH - Optics , Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics ) Impact factor: 3.307, year: 2016

  5. Measuring the Accuracy of Simple Evolving Connectionist System with Varying Distance Formulas

    Science.gov (United States)

    Al-Khowarizmi; Sitompul, O. S.; Suherman; Nababan, E. B.

    2017-12-01

    Simple Evolving Connectionist System (SECoS) is a minimal implementation of Evolving Connectionist Systems (ECoS) in artificial neural networks. The three-layer network architecture of the SECoS could be built based on the given input. In this study, the activation value for the SECoS learning process, which is commonly calculated using normalized Hamming distance, is also calculated using normalized Manhattan distance and normalized Euclidean distance in order to compare the smallest error value and best learning rate obtained. The accuracy of measurement resulted by the three distance formulas are calculated using mean absolute percentage error. In the training phase with several parameters, such as sensitivity threshold, error threshold, first learning rate, and second learning rate, it was found that normalized Euclidean distance is more accurate than both normalized Hamming distance and normalized Manhattan distance. In the case of beta fibrinogen gene -455 G/A polymorphism patients used as training data, the highest mean absolute percentage error value is obtained with normalized Manhattan distance compared to normalized Euclidean distance and normalized Hamming distance. However, the differences are very small that it can be concluded that the three distance formulas used in SECoS do not have a significant effect on the accuracy of the training results.

  6. Can Measured Synergy Excitations Accurately Construct Unmeasured Muscle Excitations?

    Science.gov (United States)

    Bianco, Nicholas A; Patten, Carolynn; Fregly, Benjamin J

    2018-01-01

    Accurate prediction of muscle and joint contact forces during human movement could improve treatment planning for disorders such as osteoarthritis, stroke, Parkinson's disease, and cerebral palsy. Recent studies suggest that muscle synergies, a low-dimensional representation of a large set of muscle electromyographic (EMG) signals (henceforth called "muscle excitations"), may reduce the redundancy of muscle excitation solutions predicted by optimization methods. This study explores the feasibility of using muscle synergy information extracted from eight muscle EMG signals (henceforth called "included" muscle excitations) to accurately construct muscle excitations from up to 16 additional EMG signals (henceforth called "excluded" muscle excitations). Using treadmill walking data collected at multiple speeds from two subjects (one healthy, one poststroke), we performed muscle synergy analysis on all possible subsets of eight included muscle excitations and evaluated how well the calculated time-varying synergy excitations could construct the remaining excluded muscle excitations (henceforth called "synergy extrapolation"). We found that some, but not all, eight-muscle subsets yielded synergy excitations that achieved >90% extrapolation variance accounted for (VAF). Using the top 10% of subsets, we developed muscle selection heuristics to identify included muscle combinations whose synergy excitations achieved high extrapolation accuracy. For 3, 4, and 5 synergies, these heuristics yielded extrapolation VAF values approximately 5% lower than corresponding reconstruction VAF values for each associated eight-muscle subset. These results suggest that synergy excitations obtained from experimentally measured muscle excitations can accurately construct unmeasured muscle excitations, which could help limit muscle excitations predicted by muscle force optimizations.

  7. Miniaturized diffraction based interferometric distance measurement sensor

    Science.gov (United States)

    Kim, Byungki

    In this thesis, new metrology hardware is designed, fabricated, and tested to provide improvements over current MEMS metrology. The metrology system is a micromachined scanning interferometer (muSI) having a sub-nm resolution in a compact design. The proposed microinterferometer forms a phase sensitive diffraction grating with interferomeric sensitivity, while adding the capability of better lateral resolution by focusing the laser to a smaller spot size. A detailed diffraction model of the microinterferometer was developed to simulate the device performance and to suggest the location of photo detectors for integrated optoelectronics. A particular device is fabricated on a fused silica substrate using aluminum to form the deformable diffraction grating fingers and AZ P4620 photo resist (PR) for the microlens. The details of the fabrication processes are presented. The structure also enables optoelectronics to be integrated so that the interferometer with photo detectors can fit in an area that is 1 mm x 1 mm. The scanning results using a fixed grating muSI demonstrated that it could measure vibration profile as well as static vertical (less than a half wave length) and lateral dimension of MEMS. The muSI, which is integrated with photo diodes, demonstrated its operation by scanning a cMUT. The PID control has been tested and resulted in improvement in scanned images. The integrated muSI demonstrated that the deformable grating could be used to tune the measurement keep the interferometer in quadrature for highest sensitivity.

  8. Accurate mass measurements on neutron-deficient krypton isotopes

    CERN Document Server

    Rodríguez, D.; Äystö, J.; Beck, D.; Blaum, K.; Bollen, G.; Herfurth, F.; Jokinen, A.; Kellerbauer, A.; Kluge, H.-J.; Kolhinen, V.S.; Oinonen, M.; Sauvan, E.; Schwarz, S.

    2006-01-01

    The masses of $^{72–78,80,82,86}$Kr were measured directly with the ISOLTRAP Penning trap mass spectrometer at ISOLDE/CERN. For all these nuclides, the measurements yielded mass uncertainties below 10 keV. The ISOLTRAP mass values for $^{72–75}$Kr being more precise than the previous results obtained by means of other techniques, and thus completely determine the new values in the Atomic-Mass Evaluation. Besides the interest of these masses for nuclear astrophysics, nuclear structure studies, and Standard Model tests, these results constitute a valuable and accurate input to improve mass models. In this paper, we present the mass measurements and discuss the mass evaluation for these Kr isotopes.

  9. Atomic spectroscopy and highly accurate measurement: determination of fundamental constants

    International Nuclear Information System (INIS)

    Schwob, C.

    2006-12-01

    This document reviews the theoretical and experimental achievements of the author concerning highly accurate atomic spectroscopy applied for the determination of fundamental constants. A pure optical frequency measurement of the 2S-12D 2-photon transitions in atomic hydrogen and deuterium has been performed. The experimental setting-up is described as well as the data analysis. Optimized values for the Rydberg constant and Lamb shifts have been deduced (R = 109737.31568516 (84) cm -1 ). An experiment devoted to the determination of the fine structure constant with an aimed relative uncertainty of 10 -9 began in 1999. This experiment is based on the fact that Bloch oscillations in a frequency chirped optical lattice are a powerful tool to transfer coherently many photon momenta to the atoms. We have used this method to measure accurately the ratio h/m(Rb). The measured value of the fine structure constant is α -1 = 137.03599884 (91) with a relative uncertainty of 6.7*10 -9 . The future and perspectives of this experiment are presented. This document presented before an academic board will allow his author to manage research work and particularly to tutor thesis students. (A.C.)

  10. Measuring the distance between multiple sequence alignments.

    Science.gov (United States)

    Blackburne, Benjamin P; Whelan, Simon

    2012-02-15

    Multiple sequence alignment (MSA) is a core method in bioinformatics. The accuracy of such alignments may influence the success of downstream analyses such as phylogenetic inference, protein structure prediction, and functional prediction. The importance of MSA has lead to the proliferation of MSA methods, with different objective functions and heuristics to search for the optimal MSA. Different methods of inferring MSAs produce different results in all but the most trivial cases. By measuring the differences between inferred alignments, we may be able to develop an understanding of how these differences (i) relate to the objective functions and heuristics used in MSA methods, and (ii) affect downstream analyses. We introduce four metrics to compare MSAs, which include the position in a sequence where a gap occurs or the location on a phylogenetic tree where an insertion or deletion (indel) event occurs. We use both real and synthetic data to explore the information given by these metrics and demonstrate how the different metrics in combination can yield more information about MSA methods and the differences between them. MetAl is a free software implementation of these metrics in Haskell. Source and binaries for Windows, Linux and Mac OS X are available from http://kumiho.smith.man.ac.uk/whelan/software/metal/.

  11. High Precision Infrared Temperature Measurement System Based on Distance Compensation

    Directory of Open Access Journals (Sweden)

    Chen Jing

    2017-01-01

    Full Text Available To meet the need of real-time remote monitoring of human body surface temperature for optical rehabilitation therapy, a non-contact high-precision real-time temperature measurement method based on distance compensation was proposed, and the system design was carried out. The microcontroller controls the infrared temperature measurement module and the laser range module to collect temperature and distance data. The compensation formula of temperature with distance wass fitted according to the least square method. Testing had been performed on different individuals to verify the accuracy of the system. The results indicate that the designed non-contact infrared temperature measurement system has a residual error of less than 0.2°C and the response time isless than 0.1s in the range of 0 to 60cm. This provides a reference for developing long-distance temperature measurement equipment in optical rehabilitation therapy.

  12. Evaluating the impact of distance measures on deforestation simulations in the fluvial landscapes of amazonia.

    Science.gov (United States)

    Salonen, Maria; Maeda, Eduardo Eiji; Toivonen, Tuuli

    2014-10-01

    Land use and land cover change (LUCC) models frequently employ different accessibility measures as a proxy for human influence on land change processes. Here, we simulate deforestation in Peruvian Amazonia and evaluate different accessibility measures as LUCC model inputs. We demonstrate how the selection, and different combinations, of accessibility measures impact simulation results. Out of the individual measures, time distance to market center catches the essential aspects of accessibility in our study area. The most accurate simulation is achieved when time distance to market center is used in association with distance to transport network and additional landscape variables. Although traditional Euclidean measures result in clearly lower simulation accuracy when used separately, the combination of two complementary Euclidean measures enhances simulation accuracy significantly. Our results highlight the need for site and context sensitive selection of accessibility variables. More sophisticated accessibility measures can potentially improve LUCC models' spatial accuracy, which often remains low.

  13. A spectroscopic transfer standard for accurate atmospheric CO measurements

    Science.gov (United States)

    Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker

    2016-04-01

    Atmospheric carbon monoxide (CO) is a precursor of essential climate variables and has an indirect effect for enhancing global warming. Accurate and reliable measurements of atmospheric CO concentration are becoming indispensable. WMO-GAW reports states a compatibility goal of ±2 ppb for atmospheric CO concentration measurements. Therefore, the EMRP-HIGHGAS (European metrology research program - high-impact greenhouse gases) project aims at developing spectroscopic transfer standards for CO concentration measurements to meet this goal. A spectroscopic transfer standard would provide results that are directly traceable to the SI, can be very useful for calibration of devices operating in the field, and could complement classical gas standards in the field where calibration gas mixtures in bottles often are not accurate, available or stable enough [1][2]. Here, we present our new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor capable of performing absolute ("calibration free") CO concentration measurements, and being operated as a spectroscopic transfer standard. To achieve the compatibility goal stated by WMO for CO concentration measurements and ensure the traceability of the final concentration results, traceable spectral line data especially line intensities with appropriate uncertainties are needed. Therefore, we utilize our new high-resolution Fourier-transform infrared (FTIR) spectroscopy CO line data for the 2-0 band, with significantly reduced uncertainties, for the dTDLAS data evaluation. Further, we demonstrate the capability of our sensor for atmospheric CO measurements, discuss uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) principles and show that CO concentrations derived using the sensor, based on the TILSAM (traceable infrared laser spectroscopic amount fraction measurement) method, are in excellent agreement with gravimetric values. Acknowledgement Parts of this work have been

  14. An adaptive distance measure for use with nonparametric models

    International Nuclear Information System (INIS)

    Garvey, D. R.; Hines, J. W.

    2006-01-01

    Distance measures perform a critical task in nonparametric, locally weighted regression. Locally weighted regression (LWR) models are a form of 'lazy learning' which construct a local model 'on the fly' by comparing a query vector to historical, exemplar vectors according to a three step process. First, the distance of the query vector to each of the exemplar vectors is calculated. Next, these distances are passed to a kernel function, which converts the distances to similarities or weights. Finally, the model output or response is calculated by performing locally weighted polynomial regression. To date, traditional distance measures, such as the Euclidean, weighted Euclidean, and L1-norm have been used as the first step in the prediction process. Since these measures do not take into consideration sensor failures and drift, they are inherently ill-suited for application to 'real world' systems. This paper describes one such LWR model, namely auto associative kernel regression (AAKR), and describes a new, Adaptive Euclidean distance measure that can be used to dynamically compensate for faulty sensor inputs. In this new distance measure, the query observations that lie outside of the training range (i.e. outside the minimum and maximum input exemplars) are dropped from the distance calculation. This allows for the distance calculation to be robust to sensor drifts and failures, in addition to providing a method for managing inputs that exceed the training range. In this paper, AAKR models using the standard and Adaptive Euclidean distance are developed and compared for the pressure system of an operating nuclear power plant. It is shown that using the standard Euclidean distance for data with failed inputs, significant errors in the AAKR predictions can result. By using the Adaptive Euclidean distance it is shown that high fidelity predictions are possible, in spite of the input failure. In fact, it is shown that with the Adaptive Euclidean distance prediction

  15. Accurate fluid force measurement based on control surface integration

    Science.gov (United States)

    Lentink, David

    2018-01-01

    Nonintrusive 3D fluid force measurements are still challenging to conduct accurately for freely moving animals, vehicles, and deforming objects. Two techniques, 3D particle image velocimetry (PIV) and a new technique, the aerodynamic force platform (AFP), address this. Both rely on the control volume integral for momentum; whereas PIV requires numerical integration of flow fields, the AFP performs the integration mechanically based on rigid walls that form the control surface. The accuracy of both PIV and AFP measurements based on the control surface integration is thought to hinge on determining the unsteady body force associated with the acceleration of the volume of displaced fluid. Here, I introduce a set of non-dimensional error ratios to show which fluid and body parameters make the error negligible. The unsteady body force is insignificant in all conditions where the average density of the body is much greater than the density of the fluid, e.g., in gas. Whenever a strongly deforming body experiences significant buoyancy and acceleration, the error is significant. Remarkably, this error can be entirely corrected for with an exact factor provided that the body has a sufficiently homogenous density or acceleration distribution, which is common in liquids. The correction factor for omitting the unsteady body force, {{{ {ρ f}} {1 - {ρ f} ( {{ρ b}+{ρ f}} )}.{( {{{{ρ }}b}+{ρ f}} )}}} , depends only on the fluid, {ρ f}, and body, {{ρ }}b, density. Whereas these straightforward solutions work even at the liquid-gas interface in a significant number of cases, they do not work for generalized bodies undergoing buoyancy in combination with appreciable body density inhomogeneity, volume change (PIV), or volume rate-of-change (PIV and AFP). In these less common cases, the 3D body shape needs to be measured and resolved in time and space to estimate the unsteady body force. The analysis shows that accounting for the unsteady body force is straightforward to non

  16. Study of accurate volume measurement system for plutonium nitrate solution

    Energy Technology Data Exchange (ETDEWEB)

    Hosoma, T. [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1998-12-01

    It is important for effective safeguarding of nuclear materials to establish a technique for accurate volume measurement of plutonium nitrate solution in accountancy tank. The volume of the solution can be estimated by two differential pressures between three dip-tubes, in which the air is purged by an compressor. One of the differential pressure corresponds to the density of the solution, and another corresponds to the surface level of the solution in the tank. The measurement of the differential pressure contains many uncertain errors, such as precision of pressure transducer, fluctuation of back-pressure, generation of bubbles at the front of the dip-tubes, non-uniformity of temperature and density of the solution, pressure drop in the dip-tube, and so on. The various excess pressures at the volume measurement are discussed and corrected by a reasonable method. High precision-differential pressure measurement system is developed with a quartz oscillation type transducer which converts a differential pressure to a digital signal. The developed system is used for inspection by the government and IAEA. (M. Suetake)

  17. Accurate reconstruction of hyperspectral images from compressive sensing measurements

    Science.gov (United States)

    Greer, John B.; Flake, J. C.

    2013-05-01

    The emerging field of Compressive Sensing (CS) provides a new way to capture data by shifting the heaviest burden of data collection from the sensor to the computer on the user-end. This new means of sensing requires fewer measurements for a given amount of information than traditional sensors. We investigate the efficacy of CS for capturing HyperSpectral Imagery (HSI) remotely. We also introduce a new family of algorithms for constructing HSI from CS measurements with Split Bregman Iteration [Goldstein and Osher,2009]. These algorithms combine spatial Total Variation (TV) with smoothing in the spectral dimension. We examine models for three different CS sensors: the Coded Aperture Snapshot Spectral Imager-Single Disperser (CASSI-SD) [Wagadarikar et al.,2008] and Dual Disperser (CASSI-DD) [Gehm et al.,2007] cameras, and a hypothetical random sensing model closer to CS theory, but not necessarily implementable with existing technology. We simulate the capture of remotely sensed images by applying the sensor forward models to well-known HSI scenes - an AVIRIS image of Cuprite, Nevada and the HYMAP Urban image. To measure accuracy of the CS models, we compare the scenes constructed with our new algorithm to the original AVIRIS and HYMAP cubes. The results demonstrate the possibility of accurately sensing HSI remotely with significantly fewer measurements than standard hyperspectral cameras.

  18. Accurate measurement of RF exposure from emerging wireless communication systems

    International Nuclear Information System (INIS)

    Letertre, Thierry; Toffano, Zeno; Monebhurrun, Vikass

    2013-01-01

    Isotropic broadband probes or spectrum analyzers (SAs) may be used for the measurement of rapidly varying electromagnetic fields generated by emerging wireless communication systems. In this paper this problematic is investigated by comparing the responses measured by two different isotropic broadband probes typically used to perform electric field (E-field) evaluations. The broadband probes are submitted to signals with variable duty cycles (DC) and crest factors (CF) either with or without Orthogonal Frequency Division Multiplexing (OFDM) modulation but with the same root-mean-square (RMS) power. The two probes do not provide accurate enough results for deterministic signals such as Worldwide Interoperability for Microwave Access (WIMAX) or Long Term Evolution (LTE) as well as for non-deterministic signals such as Wireless Fidelity (WiFi). The legacy measurement protocols should be adapted to cope for the emerging wireless communication technologies based on the OFDM modulation scheme. This is not easily achieved except when the statistics of the RF emission are well known. In this case the measurement errors are shown to be systematic and a correction factor or calibration can be applied to obtain a good approximation of the total RMS power.

  19. Accurate frequency measurements on gyrotrons using a ''gyro-radiometer''

    International Nuclear Information System (INIS)

    Rebuffi, L.

    1986-08-01

    Using an heterodyne system, called ''Gyro-radiometer'', accurated frequency measurements have been carried out on VARIAN 60 GHz gyrotrons. Changing the principal tuning parameters of a gyrotron, we have detected frequency variations up to 100 MHz, ∼ 40 MHz frequency jumps and smaller jumps (∼ 10 MHz) when mismatches in the transmission line were present. FWHM bandwidth of 300 KHz, parasitic frequencies and frequency drift during 100 msec pulses have also been observed. An efficient method to find a stable-, high power-, long pulse-working point of a gyrotron loaded by a transmission line, has been derived. In general, for any power value it is possible to find stable working conditions tuning the principal parameters of the tube in correspondance of a maximum of the emitted frequency

  20. Index of Refraction Measurements Using a Laser Distance Meter

    Science.gov (United States)

    Ochoa, Romulo; Fiorillo, Richard; Ochoa, Cris

    2014-01-01

    We present a simple method to determine the refractive indices of transparent media using a laser distance meter. Indices of refraction have been obtained by measuring the speed of light in materials. Some speed of light techniques use time-of-flight measurements in which pulses are emitted by lasers and the time interval is measured for the pulse…

  1. Precise and accurate isotope ratio measurements by ICP-MS.

    Science.gov (United States)

    Becker, J S; Dietze, H J

    2000-09-01

    The precise and accurate determination of isotope ratios by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) is important for quite different application fields (e.g. for isotope ratio measurements of stable isotopes in nature, especially for the investigation of isotope variation in nature or age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, quality assurance of fuel material, for reprocessing plants, nuclear material accounting and radioactive waste control, for tracer experiments using stable isotopes or long-lived radionuclides in biological or medical studies). Thermal ionization mass spectrometry (TIMS), which used to be the dominant analytical technique for precise isotope ratio measurements, is being increasingly replaced for isotope ratio measurements by ICP-MS due to its excellent sensitivity, precision and good accuracy. Instrumental progress in ICP-MS was achieved by the introduction of the collision cell interface in order to dissociate many disturbing argon-based molecular ions, thermalize the ions and neutralize the disturbing argon ions of plasma gas (Ar+). The application of the collision cell in ICP-QMS results in a higher ion transmission, improved sensitivity and better precision of isotope ratio measurements compared to quadrupole ICP-MS without the collision cell [e.g., for 235U/238U approximately 1 (10 microg x L(-1) uranium) 0.07% relative standard deviation (RSD) vs. 0.2% RSD in short-term measurements (n = 5)]. A significant instrumental improvement for ICP-MS is the multicollector device (MC-ICP-MS) in order to obtain a better precision of isotope ratio measurements (with a precision of up to 0.002%, RSD). CE- and HPLC-ICP-MS are used for the separation of isobaric interferences of long-lived radionuclides and stable isotopes by determination of spallation nuclide abundances in an irradiated tantalum target.

  2. Study of probe-sample distance for biomedical spectra measurement

    Directory of Open Access Journals (Sweden)

    Li Lei

    2011-11-01

    Full Text Available Abstract Background Fiber-based optical spectroscopy has been widely used for biomedical applications. However, the effect of probe-sample distance on the collection efficiency has not been well investigated. Method In this paper, we presented a theoretical model to maximize the illumination and collection efficiency in designing fiber optic probes for biomedical spectra measurement. This model was in general applicable to probes with single or multiple fibers at an arbitrary incident angle. In order to demonstrate the theory, a fluorescence spectrometer was used to measure the fluorescence of human finger skin at various probe-sample distances. The fluorescence spectrum and the total fluorescence intensity were recorded. Results The theoretical results show that for single fiber probes, contact measurement always provides the best results. While for multi-fiber probes, there is an optimal probe distance. When a 400- μm excitation fiber is used to deliver the light to the skin and another six 400- μm fibers surrounding the excitation fiber are used to collect the fluorescence signal, the experimental results show that human finger skin has very strong fluorescence between 475 nm and 700 nm under 450 nm excitation. The fluorescence intensity is heavily dependent on the probe-sample distance and there is an optimal probe distance. Conclusions We investigated a number of probe-sample configurations and found that contact measurement could be the primary choice for single-fiber probes, but was very inefficient for multi-fiber probes. There was an optimal probe-sample distance for multi-fiber probes. By carefully choosing the probe-sample distance, the collection efficiency could be enhanced by 5-10 times. Our experiments demonstrated that the experimental results of the probe-sample distance dependence of collection efficiency in multi-fiber probes were in general agreement with our theory.

  3. New simple method for fast and accurate measurement of volumes

    International Nuclear Information System (INIS)

    Frattolillo, Antonio

    2006-01-01

    A new simple method is presented, which allows us to measure in just a few minutes but with reasonable accuracy (less than 1%) the volume confined inside a generic enclosure, regardless of the complexity of its shape. The technique proposed also allows us to measure the volume of any portion of a complex manifold, including, for instance, pipes and pipe fittings, valves, gauge heads, and so on, without disassembling the manifold at all. To this purpose an airtight variable volume is used, whose volume adjustment can be precisely measured; it has an overall capacity larger than that of the unknown volume. Such a variable volume is initially filled with a suitable test gas (for instance, air) at a known pressure, as carefully measured by means of a high precision capacitive gauge. By opening a valve, the test gas is allowed to expand into the previously evacuated unknown volume. A feedback control loop reacts to the resulting finite pressure drop, thus contracting the variable volume until the pressure exactly retrieves its initial value. The overall reduction of the variable volume achieved at the end of this process gives a direct measurement of the unknown volume, and definitively gets rid of the problem of dead spaces. The method proposed actually does not require the test gas to be rigorously held at a constant temperature, thus resulting in a huge simplification as compared to complex arrangements commonly used in metrology (gas expansion method), which can grant extremely accurate measurement but requires rather expensive equipments and results in time consuming methods, being therefore impractical in most applications. A simple theoretical analysis of the thermodynamic cycle and the results of experimental tests are described, which demonstrate that, in spite of its simplicity, the method provides a measurement accuracy within 0.5%. The system requires just a few minutes to complete a single measurement, and is ready immediately at the end of the process. The

  4. The Edit Distance as a Measure of Perceived Rhythmic Similarity

    Directory of Open Access Journals (Sweden)

    Olaf Post

    2012-07-01

    Full Text Available The ‘edit distance’ (or ‘Levenshtein distance’ measure of distance between two data sets is defined as the minimum number of editing operations – insertions, deletions, and substitutions – that are required to transform one data set to the other (Orpen and Huron, 1992. This measure of distance has been applied frequently and successfully in music information retrieval, but rarely in predicting human perception of distance. In this study, we investigate the effectiveness of the edit distance as a predictor of perceived rhythmic dissimilarity under simple rhythmic alterations. Approaching rhythms as a set of pulses that are either onsets or silences, we study two types of alterations. The first experiment is designed to test the model’s accuracy for rhythms that are relatively similar; whether rhythmic variations with the same edit distance to a source rhythm are also perceived as relatively similar by human subjects. In addition, we observe whether the salience of an edit operation is affected by its metric placement in the rhythm. Instead of using a rhythm that regularly subdivides a 4/4 meter, our source rhythm is a syncopated 16-pulse rhythm, the son. Results show a high correlation between the predictions by the edit distance model and human similarity judgments (r = 0.87; a higher correlation than for the well-known generative theory of tonal music (r = 0.64. In the second experiment, we seek to assess the accuracy of the edit distance model in predicting relatively dissimilar rhythms. The stimuli used are random permutations of the son’s inter-onset intervals: 3-3-4-2-4. The results again indicate that the edit distance correlates well with the perceived rhythmic dissimilarity judgments of the subjects (r = 0.76. To gain insight in the relationships between the individual rhythms, the results are also presented by means of graphic phylogenetic trees.

  5. Accurate absolute measurement of trapped Cs atoms in a MOT

    International Nuclear Information System (INIS)

    Talavera O, M.; Lopez R, M.; Carlos L, E. de; Jimenez S, S.

    2007-01-01

    A Cs-133 Magneto-Optical Trap (MOT) has been developed at the Time and Frequency Division of the Centro Nacional de Metrologia, CENAM, in Mexico. This MOT is part of a primary frequency standard based on ultra-cold Cs atoms, called CsF-1 clock, under development at CENAM. In this Cs MOT, we use the standard configuration (σ + - σ - ) 4-horizontal 2-vertical laser beams 1.9 cm in diameter, with 5 mW each. We use a 852 nm, 5 mW, DBR laser as a master laser which is stabilized by saturation spectroscopy. Emission linewidth of the master laser is l MHz. In order to amplify the light of the master laser, a 50 mW, 852 nm AlGaAs laser is used as slave laser. This slave laser is stabilized by light injection technique. A 12 MHz red shift of the light is performed by two double passes through two Acusto-Optic Modulators (AOMs). The optical part of the CENAMs MOT is very robust against mechanical vibration, acoustic noise and temperature changes in our laboratory, because none of our diode lasers use an extended cavity to reduce the linewidth. In this paper, we report results of our MOT characterization as a function of several operation parameters such as the intensity of laser beams, the laser beam diameter, the red shift of light, and the gradient of the magnetic field. We also report accurate absolute measurement of the number of Cs atoms trapped in our Cs MOT. We found up to 6 x 10 7 Cs atoms trapped in our MOT measured with an uncertainty no greater than 6.4%. (Author)

  6. Precision Timing of PSR J0437-4715: An Accurate Pulsar Distance, a High Pulsar Mass, and a Limit on the Variation of Newton's Gravitational Constant

    Science.gov (United States)

    Verbiest, J. P. W.; Bailes, M.; van Straten, W.; Hobbs, G. B.; Edwards, R. T.; Manchester, R. N.; Bhat, N. D. R.; Sarkissian, J. M.; Jacoby, B. A.; Kulkarni, S. R.

    2008-05-01

    Analysis of 10 years of high-precision timing data on the millisecond pulsar PSR J0437-4715 has resulted in a model-independent kinematic distance based on an apparent orbital period derivative, dot Pb , determined at the 1.5% level of precision (Dk = 157.0 +/- 2.4 pc), making it one of the most accurate stellar distance estimates published to date. The discrepancy between this measurement and a previously published parallax distance estimate is attributed to errors in the DE200 solar system ephemerides. The precise measurement of dot Pb allows a limit on the variation of Newton's gravitational constant, |Ġ/G| <= 23 × 10-12 yr-1. We also constrain any anomalous acceleration along the line of sight to the pulsar to |a⊙/c| <= 1.5 × 10-18 s-1 at 95% confidence, and derive a pulsar mass, mpsr = 1.76 +/- 0.20 M⊙, one of the highest estimates so far obtained.

  7. Spherical near-field antenna measurements — The most accurate antenna measurement technique

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2016-01-01

    The spherical near-field antenna measurement technique combines several advantages and generally constitutes the most accurate technique for experimental characterization of radiation from antennas. This paper/presentation discusses these advantages, briefly reviews the early history and present...

  8. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area.

    Science.gov (United States)

    Easlon, Hsien Ming; Bloom, Arnold J

    2014-07-01

    Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. • Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. • Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  9. Easy Leaf Area: Automated Digital Image Analysis for Rapid and Accurate Measurement of Leaf Area

    Directory of Open Access Journals (Sweden)

    Hsien Ming Easlon

    2014-07-01

    Full Text Available Premise of the study: Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. Methods and Results: Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. Conclusions: Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  10. Recoil distance lifetime measurements in 122,124Xe

    Science.gov (United States)

    Govil, I. M.; Kumar, A.; Iyer, H.; Li, H.; Garg, U.; Ghugre, S. S.; Johnson, T.; Kaczarowski, R.; Kharraja, B.; Naguleswaran, S.; Walpe, J. C.

    1998-02-01

    Lifetimes of the lower-excited states in 122,124Xe are measured using the recoil-distance Doppler-shift technique. The reactions 110Pd(16O,4n)122Xe and 110Pd(18O,4n)124Xe at a beam energy of 66 MeV were used for this experiment. The lifetimes of the 2+, 4+, 6+, and 8+ states of the ground state band were extracted using the computer code LIFETIME including the corrections due to the side feeding and the nuclear deorientation effects. The lifetime of the 2+ state in 122Xe agrees with the recoil distance method (RDM) measurements but for the 124Xe it does not agree with the RDM measurements but agrees with the Coulomb-excitation experiment. The measured B(E2) values for both the nuclei are compared with the standard algebraic and the multishell models.

  11. Measuring short distance dispersal of Alliaria petiolata and determining potential long distance dispersal mechanisms

    Directory of Open Access Journals (Sweden)

    Christopher A. Loebach

    2018-03-01

    Full Text Available Introduction Alliaria petiolata, an herbaceous plant, has invaded woodlands in North America. Its ecology has been thoroughly studied, but an overlooked aspect of its biology is seed dispersal distances and mechanisms. We measured seed dispersal distances in the field and tested if epizoochory is a potential mechanism for long-distance seed dispersal. Methods Dispersal distances were measured by placing seed traps in a sector design around three seed point sources, which consisted of 15 second-year plants transplanted within a 0.25 m radius circle. Traps were placed at intervals ranging from 0.25–3.25 m from the point source. Traps remained in the field until a majority of seeds were dispersed. Eight probability density functions were fitted to seed trap counts via maximum likelihood. Epizoochory was tested as a potential seed dispersal mechanism for A. petiolata through a combination of field and laboratory experiments. To test if small mammals transport A. petiolata seeds in their fur, experimental blocks were placed around dense A. petiolata patches. Each block contained a mammal inclusion treatment (MIT and control. The MIT consisted of a wood-frame (31 × 61× 31 cm covered in wire mesh, except for the two 31 × 31 cm ends, placed over a germination tray filled with potting soil. A pan filled with bait was placed in the center of the tray. The control frame (11 × 31 × 61 cm was placed over a germination tray and completely covered in wire mesh to exclude animal activity. Treatments were in the field for peak seed dispersal. In March, trays were moved to a greenhouse and A. petiolata seedlings were counted and then compared between treatments. To determine if A. petiolata seeds attach to raccoon (Procyon lotor and white-tailed deer (Odocoileus virginianus fur, wet and dry seeds were dropped onto wet and dry fur. Furs were rotated 180 degrees and the seeds that remained attached were counted. To measure seed retention, seeds

  12. Accurate position estimation methods based on electrical impedance tomography measurements

    Science.gov (United States)

    Vergara, Samuel; Sbarbaro, Daniel; Johansen, T. A.

    2017-08-01

    than 0.05% of the tomograph radius value. These results demonstrate that the proposed approaches can estimate an object’s position accurately based on EIT measurements if enough process information is available for training or modelling. Since they do not require complex calculations it is possible to use them in real-time applications without requiring high-performance computers.

  13. Measuring the Distance of Moving Objects from Big Trajectory Data

    Directory of Open Access Journals (Sweden)

    Khaing Phyo Wai

    2017-03-01

    Full Text Available Location-based services have become important in social networking, mobile applications, advertising, traffic monitoring, and many other domains. The growth of location sensing devices has led to the vast generation of dynamic spatial-temporal data in the form of moving object trajectories which can be characterized as big trajectory data. Big trajectory data enables the opportunities such as analyzing the groups of moving objects. To obtain such facilities, the issue of this work is to find a distance measurement method that respects the geographic distance and the semantic similarity for each trajectory. Measurement of similarity between moving objects is a difficult task because not only their position changes but also their semantic features vary. In this research, a method to measure trajectory similarity based on both geographical features and semantic features of motion is proposed. Finally, the proposed methods are practically evaluated by using real trajectory dataset.

  14. Ultrasound measurement of transcranial distance during head-down tilt

    Science.gov (United States)

    Torikoshi, S.; Wilson, M. H.; Ballard, R. E.; Watenpaugh, D. E.; Murthy, G.; Yost, W. T.; Cantrell, J. H.; Chang, D. S.; Hargens, A. R.

    1995-01-01

    Exposure to microgravity elevates blood pressure and flow in the head, which may increase intracranial volume (ICV) and intracranial pressure (ICP). Rhesus monkeys exposed to simulated microgravity in the form of 6 degree head-down tilt (HDT) experience elevated ICP. With humans, twenty-four hours of 6 degree HDT bed rest increases cerebral blood flow velocity relative to pre-HDT upright posture. Humans exposed to acute 6 degree HDT experiments increased ICP, measured with the tympanic membrane displacement (TMD) technique. Other studies suggest that increased ICP in humans and cats causes measurable cranial bone movement across the sagittal suture. Due to the slightly compliant nature of the cranium, elevation of the ICP will increase ICV and transcranial distance. Currently, several non-invasive approaches to monitor ICP are being investigated. Such techniques include TMD and modal analysis of the skull. TMD may not be reliable over a large range of ICP and neither method is capable of measuring the small changes in pressure. Ultrasound, however, may reliably measure small distance changes that accompany ICP fluctuations. The purpose of our study was to develop and evaluate an ultrasound technique to measure transcranial distance changes during HDT.

  15. Bullet Ultrasonic Obstruction Detection & Distance Measurement Using AVR Microcontroller

    Directory of Open Access Journals (Sweden)

    Satish Pandey

    2008-08-01

    Full Text Available This paper describes the practical implementation of a short range ultrasonic obstruction detection and distance measurement device. By employing an ultrasonic transducer pair for producing ultrasonic sounds and sensing the reflected sound waves, the obstructions are detected. The hardware interface uses an Atmel ATmega8 AVR microcontroller to facilitate the generation of 40 kHz signal burst which is used in the transmitter circuit, and also to process the received signal for measuring the time of flight of reflected waves and exact distance of the obstruction. The program for this device is developed in WinAVR, and the code generated is dumped into microcontroller using AVR Studio. Educational aspects of this project include the mastery of a programming language and corresponding tools, the design of a functional and intuitive embedded application, and the development of appropriate hardware to build the device.

  16. RFDR with Adiabatic Inversion Pulses: Application to Internuclear Distance Measurements

    International Nuclear Information System (INIS)

    Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2004-01-01

    In the context of the structural characterisation of biomolecular systems via MAS solid state NMR, the potential utility of homonuclear dipolar recoupling with adiabatic inversion pulses has been assessed via numerical simulations and experimental measurements. The results obtained suggest that it is possible to obtain reliable estimates of internuclear distances via an analysis of the initial cross-peak intensity buildup curves generated from two-dimensional adiabatic inversion pulse driven longitudinal magnetisation exchange experiments

  17. EPR-based distance measurements at ambient temperature

    Science.gov (United States)

    Krumkacheva, Olesya; Bagryanskaya, Elena

    2017-07-01

    Pulsed dipolar (PD) EPR spectroscopy is a powerful technique allowing for distance measurements between spin labels in the range of 2.5-10.0 nm. It was proposed more than 30 years ago, and nowadays is widely used in biophysics and materials science. Until recently, PD EPR experiments were limited to cryogenic temperatures (T biomolecules, the influence of a linker between the spin probe and biomolecule, and future opportunities.

  18. Measurement of distances between anatomical structures using a translating stage with mounted endoscope

    Science.gov (United States)

    Kahrs, Lueder A.; Blachon, Gregoire S.; Balachandran, Ramya; Fitzpatrick, J. Michael; Labadie, Robert F.

    2012-02-01

    During endoscopic procedures it is often desirable to determine the distance between anatomical features. One such clinical application is percutaneous cochlear implantation (PCI), which is a minimally invasive approach to the cochlea via a single, straight drill path and can be achieved accurately using bone-implanted markers and customized microstereotactic frame. During clinical studies to validate PCI, traditional open-field cochlear implant surgery was performed and prior to completion of the surgery, a customized microstereotactic frame designed to achieve the desired PCI trajectory was attached to the bone-implanted markers. To determine whether this trajectory would have safely achieved the target, a sham drill bit is passed through the frame to ensure that the drill bit would reach the cochlea without damaging vital structures. Because of limited access within the facial recess, the distances from the bit to anatomical features could not be measured with calipers. We hypothesized that an endoscope mounted on a sliding stage that translates only along the trajectory, would provide sufficient triangulation to accurately measure these distances. In this paper, the design, fabrication, and testing of such a system is described. The endoscope is mounted so that its optical axis is approximately aligned with the trajectory. Several images are acquired as the stage is moved, and threedimensional reconstruction of selected points allows determination of distances. This concept also has applicability in a large variety of rigid endoscopic interventions including bronchoscopy, laparoscopy, and sinus endoscopy.

  19. Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity.

    Science.gov (United States)

    Sindbert, Simon; Kalinin, Stanislav; Nguyen, Hien; Kienzler, Andrea; Clima, Lilia; Bannwarth, Willi; Appel, Bettina; Müller, Sabine; Seidel, Claus A M

    2011-03-02

    In Förster resonance energy transfer (FRET) experiments, the donor (D) and acceptor (A) fluorophores are usually attached to the macromolecule of interest via long flexible linkers of up to 15 Å in length. This causes significant uncertainties in quantitative distance measurements and prevents experiments with short distances between the attachment points of the dyes due to possible dye-dye interactions. We present two approaches to overcome the above problems as demonstrated by FRET measurements for a series of dsDNA and dsRNA internally labeled with Alexa488 and Cy5 as D and A dye, respectively. First, we characterize the influence of linker length and flexibility on FRET for different dye linker types (long, intermediate, short) by analyzing fluorescence lifetime and anisotropy decays. For long linkers, we describe a straightforward procedure that allows for very high accuracy of FRET-based structure determination through proper consideration of the position distribution of the dye and of linker dynamics. The position distribution can be quickly calculated with geometric accessible volume (AV) simulations, provided that the local structure of RNA or DNA in the proximity of the dye is known and that the dye diffuses freely in the sterically allowed space. The AV approach provides results similar to molecular dynamics simulations (MD) and is fully consistent with experimental FRET data. In a benchmark study for ds A-RNA, an rmsd value of 1.3 Å is achieved. Considering the case of undefined dye environments or very short DA distances, we introduce short linkers with a propargyl or alkenyl unit for internal labeling of nucleic acids to minimize position uncertainties. Studies by ensemble time correlated single photon counting and single-molecule detection show that the nature of the linker strongly affects the radius of the dye's accessible volume (6-16 Å). For short propargyl linkers, heterogeneous dye environments are observed on the millisecond time scale. A

  20. Measuring Algorithm for the Distance to a Preceding Vehicle on Curve Road Using On-Board Monocular Camera

    Science.gov (United States)

    Yu, Guizhen; Zhou, Bin; Wang, Yunpeng; Wun, Xinkai; Wang, Pengcheng

    2015-12-01

    Due to more severe challenges of traffic safety problems, the Advanced Driver Assistance Systems (ADAS) has received widespread attention. Measuring the distance to a preceding vehicle is important for ADAS. However, the existing algorithm focuses more on straight road sections than on curve measurements. In this paper, we present a novel measuring algorithm for the distance to a preceding vehicle on a curve road using on-board monocular camera. Firstly, the characteristics of driving on the curve road is analyzed and the recognition of the preceding vehicle road area is proposed. Then, the vehicle detection and distance measuring algorithms are investigated. We have verified these algorithms on real road driving. The experimental results show that this method proposed in the paper can detect the preceding vehicle on curve roads and accurately calculate the longitudinal distance and horizontal distance to the preceding vehicle.

  1. Precision lifetime measurements using the recoil distance method

    International Nuclear Information System (INIS)

    Kruecken, R.

    2000-01-01

    The recoil distance method (RDM) for the measurements of lifetimes of excited nuclear levels in the range from about 1 ps to 1,000 ps is reviewed. The New Yale Plunger Device for RDM experiments is introduced and the Differential Decay Curve Method for their analysis is reviewed. Results from recent RDM experiments on SD bands in the mass-190 region, shears bands in the neutron deficient lead isotopes, and ground state bands in the mass-130 region are presented. Perspectives for the use of RDM measurements in the study of neutron-rich nuclei are discussed

  2. Precision Lifetime Measurements Using the Recoil Distance Method

    Science.gov (United States)

    Krücken, R.

    2000-01-01

    The recoil distance method (RDM) for the measurements of lifetimes of excited nuclear levels in the range from about 1 ps to 1000 ps is reviewed. The New Yale Plunger Device for RDM experiments is introduced and the Differential Decay Curve Method for their analysis is reviewed. Results from recent RDM experiments on SD bands in the mass-190 region, shears bands in the neutron deficient lead isotopes, and ground state bands in the mass-130 region are presented. Perspectives for the use of RDM measurements in the study of neutron-rich nuclei are discussed. PMID:27551587

  3. A Game Map Complexity Measure Based on Hamming Distance

    Science.gov (United States)

    Li, Yan; Su, Pan; Li, Wenliang

    With the booming of PC game market, Game AI has attracted more and more researches. The interesting and difficulty of a game are relative with the map used in game scenarios. Besides, the path-finding efficiency in a game is also impacted by the complexity of the used map. In this paper, a novel complexity measure based on Hamming distance, called the Hamming complexity, is introduced. This measure is able to estimate the complexity of binary tileworld. We experimentally demonstrated that Hamming complexity is highly relative with the efficiency of A* algorithm, and therefore it is a useful reference to the designer when developing a game map.

  4. Student Performance in Measuring Distance with Wavelengths in Various Settings

    Science.gov (United States)

    White, Gary

    2015-04-01

    When physics students are asked to measure the distance between two fixed locations using a pre-defined wavelength as a ruler, there is a surprising failure rate, at least partially due to the fact that the ``ruler'' to be used is not fixed in length (see ``Is a Simple Measurement Task a Roadblock to Student Understanding of Wave Phenomena?,'' by and references therein). I will show some data from introductory classes (algebra- and calculus-based) that replicate this result, and also show some interesting features when comparing a setting involving slinkies with a setting involving surface waves on water.

  5. Accurate micro Hall effect measurements on scribe line pads

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Petersen, Dirch Hjorth; Wang, Fei

    2009-01-01

    Hall mobility and sheet carrier density are important parameters to monitor in advanced semiconductor production. If micro Hall effect measurements are done on small pads in scribe lines, these parameters may be measured without using valuable test wafers. We report how Hall mobility can...... be extracted from micro four-point measurements performed on a rectangular pad. The dimension of the investigated pad is 400 × 430 ¿m2, and the probe pitches range from 20 ¿m to 50 ¿m. The Monte Carlo method is used to find the optimal way to perform the Hall measurement and extract Hall mobility most...

  6. Comparing alternative approaches to measuring the geographical accessibility of urban health services: Distance types and aggregation-error issues

    Directory of Open Access Journals (Sweden)

    Riva Mylène

    2008-02-01

    Full Text Available Abstract Background Over the past two decades, geographical accessibility of urban resources for population living in residential areas has received an increased focus in urban health studies. Operationalising and computing geographical accessibility measures depend on a set of four parameters, namely definition of residential areas, a method of aggregation, a measure of accessibility, and a type of distance. Yet, the choice of these parameters may potentially generate different results leading to significant measurement errors. The aim of this paper is to compare discrepancies in results for geographical accessibility of selected health care services for residential areas (i.e. census tracts computed using different distance types and aggregation methods. Results First, the comparison of distance types demonstrates that Cartesian distances (Euclidean and Manhattan distances are strongly correlated with more accurate network distances (shortest network and shortest network time distances across the metropolitan area (Pearson correlation greater than 0.95. However, important local variations in correlation between Cartesian and network distances were observed notably in suburban areas where Cartesian distances were less precise. Second, the choice of the aggregation method is also important: in comparison to the most accurate aggregation method (population-weighted mean of the accessibility measure for census blocks within census tracts, accessibility measures computed from census tract centroids, though not inaccurate, yield important measurement errors for 5% to 10% of census tracts. Conclusion Although errors associated to the choice of distance types and aggregation method are only important for about 10% of census tracts located mainly in suburban areas, we should not avoid using the best estimation method possible for evaluating geographical accessibility. This is especially so if these measures are to be included as a dimension of the

  7. Lifetime measurements using the recoil distance method - achievements and perspectives

    International Nuclear Information System (INIS)

    Kruecken, R.

    2001-01-01

    The recoil distance method (RDM) for measuring pico-second nuclear level lifetimes and its use in nuclear structure studies is reviewed and perspectives for the future are presented. High precision measurements in the mass-130 region, studies of multi-phonon states in rare earth nuclei, the investigation of shape coexistence and the recently discovered phenomenon of 'magnetic rotation' are reviewed. Prospects for lifetime measurements in exotic regions of nuclei such as the measurement of lifetimes in neutron rich nuclei populated via spontaneous and heavy-ion induced fission are discussed. Other prospects include the use of the RDM technique in conjunction with recoil separators. The relevance of these techniques for experiments with radioactive ion beams will be discussed

  8. THE DISTANCE MEASUREMENT OF NGC 1313 WITH CEPHEIDS

    International Nuclear Information System (INIS)

    Qing, Gao; Wang, Wei; Liu, Ji-Feng; Yoachim, Peter

    2015-01-01

    We present the detection of Cepheids in the barred spiral galaxy NGC 1313, using the Wide Field and Planetary Camera 2 on the Hubble Space Telescope. Twenty B(F450W) and V(F555W) epochs of observations spanning over three weeks were obtained, on which the profile-fitting photometry of all stars in the monitored field was performed using the package HSTphot. A sample of 26 variable stars have been identified to be Cepheids, with periods between 3 and 14 days. Based on the derived period-luminosity relations in B- and V-bands, we obtain an extinction-corrected distance modulus of μ NGC 1313 = 28.32 ± 0.08 (random) ± 0.06 (systematic), employing the Large Magellanic Cloud as the distance zero point calibrator. The above moduli correspond to a distance of 4.61 ± 0.17 (random) ±0.13 (systematic) Mpc, consistent with previous measurements reported in the literature within uncertainties. In addition, the reddening to NGC 1313 is found to be small

  9. Rapid and accurate control rod calibration measurement and analysis

    International Nuclear Information System (INIS)

    Nelson, George W.; Doane, Harry J.

    1990-01-01

    In order to reduce the time needed to perform control rod calibrations and improve the accuracy of the results, a technique for a measurement, analysis, and tabulation of integral rod worths has been developed. A single series of critical rod positions are determined at constant low power to reduce the waiting time between positive period measurements and still assure true stable reactor period data. Reactivity values from positive period measurements and control rod drop measurements are used as input data for a non-linear fit to the expected control rod integral worth shape. With this method, two control rods can be calibrated in about two hours, and integral and differential calibration tables for operator use are printed almost immediately. Listings of the BASIC computer programs for the non-linear fitting and calibration table preparation are provided. (author)

  10. New Trends Of Measurement And Assessment In Distance Education

    Directory of Open Access Journals (Sweden)

    Zeki KAYA

    2014-01-01

    Full Text Available Distance education is a discipline that offers solutions to some important education problems. Distance education, contribute to the solution to the problems such as; inequality of opportunities, lifelong education, the implementation of a series of individual and social goals that can contribute to and benefit from educational technology and self-learning. In distance education, methods of measurement and assessment must be consistent with the objectives and contents of teaching. A major interest of formative assessment is determining the students’ learning level of each behavior in the interested unit. In summative assessment, performances of students on some units are measured broader than formative assessment. A computerized adaptive testing, CAT, is the test managed by computer in which each item is introduced and the decision to stop are dynamically imposed based on the students answers and his/her estimated knowledge level. In CAT applications, students do not take the same test. Despite item numbers and properties of items are different for the students; the precise of measures improves in positioning students on an ability or success continuum in CAT applications. In CAT applications, questions answered by a student depend on the student's ability or learning level. In item response theory, there are some models to estimate a student’s ability level, such as three-parameter logistic model. Cheating in exams or other academic assignments can be defined as use resources not allowed to use or having someone else to take exams or assignments. Some precautions must be taken about cheating such as a live proctoring, using web cams, and using a plagiarism detection program.

  11. Accurate assessment of exposure using tracer gas measurements

    DEFF Research Database (Denmark)

    Kierat, Wojciech; Bivolarova, Mariya; Zavrl, Eva

    2018-01-01

    analyzers with short and long response times, respectively. The tracer gas concentration was characterized by the mean, standard deviation and 95th percentile values. The results revealed that the measurement time needed to determine, with sufficient accuracy, these parameters decreased substantially...

  12. Accurate antenna reflector loss measurements for radiometer calibration budget

    DEFF Research Database (Denmark)

    Skou, Niels

    1996-01-01

    Antenna reflector losses may play an important role in the calibration budget for a microwave radiometer. If the losses are small they are difficult to measure by traditional means. However, they can be assessed directly by radiometric means using the sky brightness temperature as incident...

  13. Highly accurate photogrammetric measurements of the Planck reflectors

    Science.gov (United States)

    Amiri Parian, Jafar; Gruen, Armin; Cozzani, Alessandro

    2017-11-01

    The Planck mission of the European Space Agency (ESA) is designed to image the anisotropies of the Cosmic Background Radiation Field over the whole sky. To achieve this aim, sophisticated reflectors are used as part of the Planck telescope receiving system. The system consists of secondary and primary reflectors which are sections of two different ellipsoids of revolution with mean diameters of 1 and 1.6 meters. Deformations of the reflectors which influence the optical parameters and the gain of receiving signals are investigated in vacuum and at very low temperatures. For this investigation, among the various high accuracy measurement techniques, photogrammetry was selected. With respect to the photogrammetric measurements, special considerations had to be taken into account in design steps, measurement arrangement and data processing to achieve very high accuracies. The determinability of additional parameters of the camera under the given network configuration, datum definition, reliability and precision issues as well as workspace limits and propagating errors from different sources are considered. We have designed an optimal photogrammetric network by heuristic simulation for the flight model of the primary and the secondary reflectors with relative precisions better than 1:1000'000 and 1:400'000 to achieve the requested accuracies. A least squares best fit ellipsoid method was developed to determine the optical parameters of the reflectors. In this paper we will report about the procedures, the network design and the results of real measurements.

  14. Accurate measurement of directional emittance of solar energy materials

    NARCIS (Netherlands)

    Nijnatten, van P.A.; Hugo-Le Gof, A.; Granqvist, C.-G.; Lampert, C.M.

    1992-01-01

    Directional emittance plays an important role in the calculation of radiative heat exchange. It partly determines the thermal insulation of single and multiple glazing and the efficiency of solar collectors. An emissiometer has been designed and built, capable for measurements of the directional

  15. Accurate Q value measurements for fundamental physics studies at JYFLTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Eronen, T., E-mail: tommi.o.eronen@jyu.fi; Kolhinen, V. S. [University of Jyvaeskylae (Finland); Collaboration: JYFLTRAP collaboration

    2011-07-15

    We have measured several Q values at JYFLTRAP for superallowed {beta} decays that contribute to testing the Standard Model and candidate nuclei that one could use for the search of neutrinoless double-{beta} decay. These results play important roles in the research of fundamental physics that have scopes beyond Standard Model.

  16. Highly accurate adaptive TOF determination method for ultrasonic thickness measurement

    Science.gov (United States)

    Zhou, Lianjie; Liu, Haibo; Lian, Meng; Ying, Yangwei; Li, Te; Wang, Yongqing

    2018-04-01

    Determining the time of flight (TOF) is very critical for precise ultrasonic thickness measurement. However, the relatively low signal-to-noise ratio (SNR) of the received signals would induce significant TOF determination errors. In this paper, an adaptive time delay estimation method has been developed to improve the TOF determination’s accuracy. An improved variable step size adaptive algorithm with comprehensive step size control function is proposed. Meanwhile, a cubic spline fitting approach is also employed to alleviate the restriction of finite sampling interval. Simulation experiments under different SNR conditions were conducted for performance analysis. Simulation results manifested the performance advantage of proposed TOF determination method over existing TOF determination methods. When comparing with the conventional fixed step size, and Kwong and Aboulnasr algorithms, the steady state mean square deviation of the proposed algorithm was generally lower, which makes the proposed algorithm more suitable for TOF determination. Further, ultrasonic thickness measurement experiments were performed on aluminum alloy plates with various thicknesses. They indicated that the proposed TOF determination method was more robust even under low SNR conditions, and the ultrasonic thickness measurement accuracy could be significantly improved.

  17. Diamond micro-Raman thermometers for accurate gate temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Roland B.; Pomeroy, James W.; Kuball, Martin [Center for Device Thermography and Reliability, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)

    2014-05-26

    Determining the peak channel temperature in AlGaN/GaN high electron mobility transistors and other devices with high accuracy is an important and challenging issue. A surface-sensitive thermometric technique is demonstrated, utilizing Raman thermography and diamond microparticles to measure the gate temperature. This technique enhances peak channel temperature estimation, especially when it is applied in combination with standard micro-Raman thermography. Its application to other metal-covered areas of devices, such as field plates is demonstrated. Furthermore, this technique can be readily applied to other material/device systems.

  18. Diamond micro-Raman thermometers for accurate gate temperature measurements

    International Nuclear Information System (INIS)

    Simon, Roland B.; Pomeroy, James W.; Kuball, Martin

    2014-01-01

    Determining the peak channel temperature in AlGaN/GaN high electron mobility transistors and other devices with high accuracy is an important and challenging issue. A surface-sensitive thermometric technique is demonstrated, utilizing Raman thermography and diamond microparticles to measure the gate temperature. This technique enhances peak channel temperature estimation, especially when it is applied in combination with standard micro-Raman thermography. Its application to other metal-covered areas of devices, such as field plates is demonstrated. Furthermore, this technique can be readily applied to other material/device systems.

  19. Distance measurements from supernovae and dark energy constraints

    International Nuclear Information System (INIS)

    Wang Yun

    2009-01-01

    Constraints on dark energy from current observational data are sensitive to how distances are measured from Type Ia supernova (SN Ia) data. We find that flux averaging of SNe Ia can be used to test the presence of unknown systematic uncertainties, and yield more robust distance measurements from SNe Ia. We have applied this approach to the nearby+SDSS+ESSENCE+SNLS+HST set of 288 SNe Ia, and the 'Constitution' set of 397 SNe Ia. Combining the SN Ia data with cosmic microwave background anisotropy data from Wilkinson Microwave Anisotropy Probe 5 yr observations, the Sloan Digital Sky Survey baryon acoustic oscillation measurements, the data of 69 gamma-ray bursts (GRBs) , and the Hubble constant measurement from the Hubble Space Telescope project SHOES, we measure the dark energy density function X(z)≡ρ X (z)/ρ X (0) as a free function of redshift (assumed to be a constant at z>1 or z>1.5). Without the flux averaging of SNe Ia, the combined data using the Constitution set of SNe Ia seem to indicate a deviation from a cosmological constant at ∼95% confidence level at 0 98% confidence level for z≤0.75 using the combined data with 288 SNe Ia from nearby+SDSS+ESSENCE+SNLS+HST, independent of the assumptions about X(z≥1). We quantify dark energy constraints without assuming a flat Universe using the dark energy figure of merit for both X(z) and a dark energy equation-of-state linear in the cosmic scale factor.

  20. An approach for the accurate measurement of social morality levels.

    Science.gov (United States)

    Liu, Haiyan; Chen, Xia; Zhang, Bo

    2013-01-01

    In the social sciences, computer-based modeling has become an increasingly important tool receiving widespread attention. However, the derivation of the quantitative relationships linking individual moral behavior and social morality levels, so as to provide a useful basis for social policy-making, remains a challenge in the scholarly literature today. A quantitative measurement of morality from the perspective of complexity science constitutes an innovative attempt. Based on the NetLogo platform, this article examines the effect of various factors on social morality levels, using agents modeling moral behavior, immoral behavior, and a range of environmental social resources. Threshold values for the various parameters are obtained through sensitivity analysis; and practical solutions are proposed for reversing declines in social morality levels. The results show that: (1) Population size may accelerate or impede the speed with which immoral behavior comes to determine the overall level of social morality, but it has no effect on the level of social morality itself; (2) The impact of rewards and punishment on social morality levels follows the "5∶1 rewards-to-punishment rule," which is to say that 5 units of rewards have the same effect as 1 unit of punishment; (3) The abundance of public resources is inversely related to the level of social morality; (4) When the cost of population mobility reaches 10% of the total energy level, immoral behavior begins to be suppressed (i.e. the 1/10 moral cost rule). The research approach and methods presented in this paper successfully address the difficulties involved in measuring social morality levels, and promise extensive application potentials.

  1. Device for accurately measuring mass flow of gases

    Science.gov (United States)

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  2. The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements

    Science.gov (United States)

    Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu

    2015-10-01

    Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.

  3. A Test of the Validity of Projective and Quasi-Projective Measures of Interpersonal Distance.

    Science.gov (United States)

    Jones, Stanley E.; Aiello, John R.

    1979-01-01

    Discusses research supporting the conclusion that projective and quasi-projective measures of interpersonal distance do not measure the same phenomena as interactional measures. It is possible that they are more indicative of psychological rather than physical distance. (JMF)

  4. EPR-based distance measurements at ambient temperature.

    Science.gov (United States)

    Krumkacheva, Olesya; Bagryanskaya, Elena

    2017-07-01

    Pulsed dipolar (PD) EPR spectroscopy is a powerful technique allowing for distance measurements between spin labels in the range of 2.5-10.0nm. It was proposed more than 30years ago, and nowadays is widely used in biophysics and materials science. Until recently, PD EPR experiments were limited to cryogenic temperatures (TEPR as well as other approaches based on EPR (e.g., relaxation enhancement; RE). In this paper, we review the features of PD EPR and RE at ambient temperatures, in particular, requirements on electron spin phase memory time, ways of immobilization of biomolecules, the influence of a linker between the spin probe and biomolecule, and future opportunities. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Philtrum length and intercommissural distance measurements at mixed dentition period.

    Science.gov (United States)

    Mostafa, Mostafa; Hassib, Nehal; Sayed, Inas; Neamat, Amany; Ramzy, Magda; El-Badry, Tarek; ElGabry, Hisham; Salem, Haidy; Omar, Nada; Ismail, Amira; Ibrahim, Yousra; Shebaita, Amr; Allam, Ahmed; Mostafa, Magdy

    2018-05-01

    Anthropometric measurements of the lip and mouth are of great importance in clinical dysmorphology as well as reconstructive plastic surgery. In this study, the philtrum length (PhL) and intercommissural distance (ICmD) nomograms for Egyptian children in the mixed dentition period were established. A group of 1,338 Egyptian students in primary schools (735 boys and 603 girls) were included in the study. The students were at mixed dentition period and their ages ranged from 7 to 12 years. Anthropometric norms of PhL and ICmD were developed with significant sex difference in certain groups. A ratio between PhL and ICmD was developed. These data will help facilitate both objective and subjective evaluation of the lip and mouth for proper diagnosis of orofacial anomalies and variations as well as for ideal treatment plans. © 2018 Wiley Periodicals, Inc.

  6. Comparing two distance measures in the spatial mapping of food deserts: The case of Petržalka, Slovakia

    Directory of Open Access Journals (Sweden)

    Bilková Kristína

    2017-06-01

    Full Text Available Over the last twenty years or so, researchers’ attention to the issue of food deserts has increased in the geographical literature. Accessibility to large-scale retail units is one of the essential and frequently-used indicators leading to the identification and mapping of food deserts. Numerous accessibility measures of various types are available for this purpose. Euclidean distance and street network distance rank among the most frequently-used approaches, although they may lead to slightly different results. The aim of this paper is to compare various approaches to the accessibility to food stores and to assess the differences in the results gained by these methods. Accessibility was measured for residential block centroids, with applications of various accessibility measures in a GIS environment. The results suggest a strong correspondence between Euclidean distance and a little more accurate street network distance approach, applied in the case of the urban environment of Bratislava-Petržalka, Slovakia.

  7. Measuring system with stereoscopic x-ray television for accurate diagnosis

    International Nuclear Information System (INIS)

    Iwasaki, K.; Shimizu, S.

    1987-01-01

    X-ray stereoscopic television is diagnostically effective. The authors invented a measuring system using stereoscopic television whereby the coordinates of any two points and their separation can be measured in real time without physical contact. For this purpose, the distances between the two foci of the tube and between the tube and image intensifier were entered into a microcomputer beforehand, and any two points on the CRT stereoscopic image can be defined through the stereoscopic spectacles. The coordinates and distance are then displayed on the CRT monitor. By this means, measurements such as distance between vessels and size of organs are easily made

  8. Distance Measurement Methods for Improved Insider Threat Detection

    Directory of Open Access Journals (Sweden)

    Owen Lo

    2018-01-01

    Full Text Available Insider threats are a considerable problem within cyber security and it is often difficult to detect these threats using signature detection. Increasing machine learning can provide a solution, but these methods often fail to take into account changes of behaviour of users. This work builds on a published method of detecting insider threats and applies Hidden Markov method on a CERT data set (CERT r4.2 and analyses a number of distance vector methods (Damerau–Levenshtein Distance, Cosine Distance, and Jaccard Distance in order to detect changes of behaviour, which are shown to have success in determining different insider threats.

  9. Correlation measure to detect time series distances, whence economy globalization

    Science.gov (United States)

    Miśkiewicz, Janusz; Ausloos, Marcel

    2008-11-01

    An instantaneous time series distance is defined through the equal time correlation coefficient. The idea is applied to the Gross Domestic Product (GDP) yearly increments of 21 rich countries between 1950 and 2005 in order to test the process of economic globalisation. Some data discussion is first presented to decide what (EKS, GK, or derived) GDP series should be studied. Distances are then calculated from the correlation coefficient values between pairs of series. The role of time averaging of the distances over finite size windows is discussed. Three network structures are next constructed based on the hierarchy of distances. It is shown that the mean distance between the most developed countries on several networks actually decreases in time, -which we consider as a proof of globalization. An empirical law is found for the evolution after 1990, similar to that found in flux creep. The optimal observation time window size is found ≃15 years.

  10. Radioactive means for measuring distance intervals between anomalies in an earth formation

    International Nuclear Information System (INIS)

    Sandier, G.; Nels, J.P.

    1975-01-01

    In earth formation measurements an investigating tool having a first and a second detector at a relatively small spacing from each other and a third detector at a relatively great spacing from the first and second detectors is moved through a borehole having anomalies such as radioactive bullets or casing joints which are relatively uniformly spaced from each other by a distance which is of the order of said great spacing between the third detector and the first and the second detectors. The first and second detectors generate detection signal peaks for the same anomaly within a short time interval, and the third detector generates a detection signal peak for an adjacent anomaly at about the same time. By means of a defined apparatus, electrical signals representing the times of occurrence of the detection signal peaks from the first and second detectors for the same anomaly and the known small spacing between these detectors are used to obtain an electrical signal for the speed of the investigating tool at that time, and at least some of these electrical signals are combined with electrical signals representing the time of occurrence of the detection signal peak from the third detector for an adjacent anomaly and at least one of the known distances between the detectors to thereby obtain an accurate measure of the distance interval between the pair of adjacent anomalies. (U.S.)

  11. Interferometric 30 m bench for calibrations of 1D scales and optical distance measuring instruments

    International Nuclear Information System (INIS)

    Unkuri, J; Rantanen, A; Manninen, J; Esala, V-P; Lassila, A

    2012-01-01

    During construction of a new metrology building for MIKES, a 30 m interferometric bench was designed. The objective was to implement a straight, stable, adjustable and multifunctional 30 m measuring bench for calibrations. Special attention was paid to eliminating the effects of thermal expansion and inevitable concrete shrinkage. The linear guide, situated on top of a monolithic concrete beam, comprises two parallel round shafts with adjustable fixtures every 1 m. A carriage is moved along the rail and its position is followed by a reference interferometer. Depending on the measurement task, one or two retro-reflectors are fixed on the carriage. A microscope with a CCD camera and a monitor can be used to detect line mark positions on different line standards. When calibrating optical distance measuring instruments, various targets can be fixed to the carriage. For the most accurate measurements an online Abbe-error correction based on simultaneous carriage pitch measurement by a separate laser interferometer is applied. The bench is used for calibrations of machinist scales, tapes, circometers, electronic distance meters, total stations and laser trackers. The estimated expanded uncertainty for 30 m displacement for highest accuracy calibrations is 2.6 µm. (paper)

  12. Accurate measurement of the electron beam polarization in JLab Hall A using Compton polarimetry

    International Nuclear Information System (INIS)

    Escoffier, S.; Bertin, P.Y.; Brossard, M.; Burtin, E.; Cavata, C.; Colombel, N.; Jager, C.W. de; Delbart, A.; Lhuillier, D.; Marie, F.; Mitchell, J.; Neyret, D.; Pussieux, T.

    2005-01-01

    A major advance in accurate electron beam polarization measurement has been achieved at Jlab Hall A with a Compton polarimeter based on a Fabry-Perot cavity photon beam amplifier. At an electron energy of 4.6GeV and a beam current of 40μA, a total relative uncertainty of 1.5% is typically achieved within 40min of data taking. Under the same conditions monitoring of the polarization is accurate at a level of 1%. These unprecedented results make Compton polarimetry an essential tool for modern parity-violation experiments, which require very accurate electron beam polarization measurements

  13. NOTE ON TRAVEL TIME SHIFTS DUE TO AMPLITUDE MODULATION IN TIME-DISTANCE HELIOSEISMOLOGY MEASUREMENTS

    International Nuclear Information System (INIS)

    Nigam, R.; Kosovichev, A. G.

    2010-01-01

    Correct interpretation of acoustic travel times measured by time-distance helioseismology is essential to get an accurate understanding of the solar properties that are inferred from them. It has long been observed that sunspots suppress p-mode amplitude, but its implications on travel times have not been fully investigated so far. It has been found in test measurements using a 'masking' procedure, in which the solar Doppler signal in a localized quiet region of the Sun is artificially suppressed by a spatial function, and using numerical simulations that the amplitude modulations in combination with the phase-speed filtering may cause systematic shifts of acoustic travel times. To understand the properties of this procedure, we derive an analytical expression for the cross-covariance of a signal that has been modulated locally by a spatial function that has azimuthal symmetry and then filtered by a phase-speed filter typically used in time-distance helioseismology. Comparing this expression to the Gabor wavelet fitting formula without this effect, we find that there is a shift in the travel times that is introduced by the amplitude modulation. The analytical model presented in this paper can be useful also for interpretation of travel time measurements for the non-uniform distribution of oscillation amplitude due to observational effects.

  14. Distance of Sample Measurement Points to Prototype Catalog Curve

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Karamehmedovic, Mirza; Perram, John

    2006-01-01

    We discuss strategies for comparing discrete data points to a catalog (reference) curve by means of the Euclidean distance from each point to the curve in a pump's head H vs. flow Qdiagram. In particular we find that a method currently in use is inaccurate. We propose several alternatives...

  15. Pulse EPR distance measurements to study multimers and multimerisation

    Science.gov (United States)

    Ackermann, Katrin; Bode, Bela E.

    2018-06-01

    Pulse dipolar electron paramagnetic resonance (PD-EPR) has become a powerful tool for structural biology determining distances on the nanometre scale. Recent advances in hardware, methodology, and data analysis have widened the scope to complex biological systems. PD-EPR can be applied to systems containing lowly populated conformers or displaying large intrinsic flexibility, making them all but intractable for cryo-electron microscopy and crystallography. Membrane protein applications are of particular interest due to the intrinsic difficulties for obtaining high-resolution structures of all relevant conformations. Many drug targets involved in critical cell functions are multimeric channels or transporters. Here, common approaches for introducing spin labels for PD-EPR cause the presence of more than two electron spins per multimeric complex. This requires careful experimental design to overcome detrimental multi-spin effects and to secure sufficient distance resolution in presence of multiple distances. In addition to obtaining mere distances, PD-EPR can also provide information on multimerisation degrees allowing to study binding equilibria and to determine dissociation constants.

  16. Validation of a new radiographic measurement of acetabular version: the transverse axis distance (TAD)

    Energy Technology Data Exchange (ETDEWEB)

    Nitschke, Ashley [University of Colorado School of Medicine, University of Colorado Denver, Division of Musculoskeletal Radiology, Department of Radiology, Aurora, CO (United States); Lambert, Jeffery R. [University of Colorado, Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO (United States); Glueck, Deborah H. [University of Colorado, Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO (United States); University of Colorado School of Medicine, University of Colorado Denver, Department of Radiology, Aurora, CO (United States); Jesse, Mary Kristen; Strickland, Colin [University of Colorado School of Medicine, University of Colorado Denver, Division of Musculoskeletal Radiology, Department of Radiology and Orthopaedics, Aurora, CO (United States); Mei-Dan, Omer [University of Colorado School of Medicine, University of Colorado Denver, Division of Sports Medicine and Hip Preservation, Department of Orthopaedics, Aurora, CO (United States); Petersen, Brian [University of Colorado School of Medicine, University of Colorado Denver, Division of Musculoskeletal Radiology, Department of Radiology and Orthopaedics, Aurora, CO (United States); Inland Imaging, Division of Musculoskeletal Radiology, Spokane, WA (United States)

    2015-11-15

    This study has three aims: (1) validate a new radiographic measure of acetabular version, the transverse axis distance (TAD) by showing equivalent TAD accuracy in predicting CT equatorial acetabular version when compared to a previously validated, but more cumbersome, radiographic measure, the p/a ratio; (2) establish predictive equations of CT acetabular version from TAD; (3) calculate a sensitive and specific cut point for predicting excessive CT acetabular anteversion using TAD. A 14-month retrospective review was performed of patients who had undergone a dedicated MSK CT pelvis study and who also had a technically adequate AP pelvis radiograph. Two trained observers measured the radiographic p/a ratio, TAD, and CT acetabular equatorial version for 110 hips on a PACS workstation. Mixed model analysis was used to find prediction equations, and ROC analysis was used to evaluate the diagnostic accuracy of p/a ratio and TAD. CT equatorial acetabular version can accurately be predicted from either p/a ratio (p < 0.001) or TAD (p < 0.001). The diagnostic accuracies of p/a ratio and TAD are comparable (p =0.46). Patients whose TAD is higher than 17 mm may have excessive acetabular anteversion. For that cutpoint, the sensitivity of TAD is 0.73, with specificity of 0.82. TAD is an accurate radiographic predictor of CT acetabular anteversion and provides an easy-to-use and intuitive point-of-care assessment of acetabular version in patients with hip pain. (orig.)

  17. Validation of a new radiographic measurement of acetabular version: the transverse axis distance (TAD)

    International Nuclear Information System (INIS)

    Nitschke, Ashley; Lambert, Jeffery R.; Glueck, Deborah H.; Jesse, Mary Kristen; Strickland, Colin; Mei-Dan, Omer; Petersen, Brian

    2015-01-01

    This study has three aims: (1) validate a new radiographic measure of acetabular version, the transverse axis distance (TAD) by showing equivalent TAD accuracy in predicting CT equatorial acetabular version when compared to a previously validated, but more cumbersome, radiographic measure, the p/a ratio; (2) establish predictive equations of CT acetabular version from TAD; (3) calculate a sensitive and specific cut point for predicting excessive CT acetabular anteversion using TAD. A 14-month retrospective review was performed of patients who had undergone a dedicated MSK CT pelvis study and who also had a technically adequate AP pelvis radiograph. Two trained observers measured the radiographic p/a ratio, TAD, and CT acetabular equatorial version for 110 hips on a PACS workstation. Mixed model analysis was used to find prediction equations, and ROC analysis was used to evaluate the diagnostic accuracy of p/a ratio and TAD. CT equatorial acetabular version can accurately be predicted from either p/a ratio (p < 0.001) or TAD (p < 0.001). The diagnostic accuracies of p/a ratio and TAD are comparable (p =0.46). Patients whose TAD is higher than 17 mm may have excessive acetabular anteversion. For that cutpoint, the sensitivity of TAD is 0.73, with specificity of 0.82. TAD is an accurate radiographic predictor of CT acetabular anteversion and provides an easy-to-use and intuitive point-of-care assessment of acetabular version in patients with hip pain. (orig.)

  18. Validation of a new radiographic measurement of acetabular version: the transverse axis distance (TAD).

    Science.gov (United States)

    Nitschke, Ashley; Lambert, Jeffery R; Glueck, Deborah H; Jesse, Mary Kristen; Mei-Dan, Omer; Strickland, Colin; Petersen, Brian

    2015-11-01

    This study has three aims: (1) validate a new radiographic measure of acetabular version, the transverse axis distance (TAD) by showing equivalent TAD accuracy in predicting CT equatorial acetabular version when compared to a previously validated, but more cumbersome, radiographic measure, the p/a ratio; (2) establish predictive equations of CT acetabular version from TAD; (3) calculate a sensitive and specific cut point for predicting excessive CT acetabular anteversion using TAD. A 14-month retrospective review was performed of patients who had undergone a dedicated MSK CT pelvis study and who also had a technically adequate AP pelvis radiograph. Two trained observers measured the radiographic p/a ratio, TAD, and CT acetabular equatorial version for 110 hips on a PACS workstation. Mixed model analysis was used to find prediction equations, and ROC analysis was used to evaluate the diagnostic accuracy of p/a ratio and TAD. CT equatorial acetabular version can accurately be predicted from either p/a ratio (p TAD (p TAD are comparable (p =0.46). Patients whose TAD is higher than 17 mm may have excessive acetabular anteversion. For that cutpoint, the sensitivity of TAD is 0.73, with specificity of 0.82. TAD is an accurate radiographic predictor of CT acetabular anteversion and provides an easy-to-use and intuitive point-of-care assessment of acetabular version in patients with hip pain.

  19. Measuring the e-Learning Autonomy of Distance Education Students

    Directory of Open Access Journals (Sweden)

    Mehmet Firat

    2016-08-01

    Full Text Available Previous studies have provided evidence that learner autonomy is an important factor in academic achievement. However, few studies have investigated the autonomy of distance education students in e-learning environments. The purpose of this study is to evaluate the e-learning autonomy of distance education students who are responsible for their own learning. For this purpose, as the first step of the study, an e-learning autonomy scale was developed. Analyses of the validity and reliability of the scale were carried out with the participation of 1,152 distance education students from Anadolu University, Open Education System. The scale has an internal consistency coefficient of α = 0.952 and a single factorial model that explains 66.58% of the total variance. The scale was implemented with 3,293 students from 42 different programs. According to the findings, student autonomy in e-learning environments is directly proportional to level of ICT use but not affected by program or gender.

  20. Accurate measurement of indoor radon concentration using a low-effective volume radon monitor

    International Nuclear Information System (INIS)

    Tanaka, Aya; Minami, Nodoka; Mukai, Takahiro; Yasuoka, Yumi; Iimoto, Takeshi; Omori, Yasutaka; Nagahama, Hiroyuki; Muto, Jun

    2017-01-01

    AlphaGUARD is a low-effective volume detector and one of the most popular portable radon monitors which is currently available. This study investigated whether AlphaGUARD can accurately measure the variable indoor radon levels. The consistency of the radon-concentration data obtained by AlphaGUARD is evaluated against simultaneous measurements by two other monitors (each ∼10 times more sensitive than AlphaGUARD). When accurately measuring radon concentration with AlphaGUARD, we found that the net counts of the AlphaGUARD were required of at least 500 counts, <25% of the relative percent difference. AlphaGUARD can provide accurate measurements of radon concentration for the world average level (∼50 Bq m -3 ) and the reference level of workplace (1000 Bq m -3 ), using integrated data over at least 3 h and 10 min, respectively. (authors)

  1. Measuring Accurate Body Parameters of Dressed Humans with Large-Scale Motion Using a Kinect Sensor

    Directory of Open Access Journals (Sweden)

    Sidan Du

    2013-08-01

    Full Text Available Non-contact human body measurement plays an important role in surveillance, physical healthcare, on-line business and virtual fitting. Current methods for measuring the human body without physical contact usually cannot handle humans wearing clothes, which limits their applicability in public environments. In this paper, we propose an effective solution that can measure accurate parameters of the human body with large-scale motion from a Kinect sensor, assuming that the people are wearing clothes. Because motion can drive clothes attached to the human body loosely or tightly, we adopt a space-time analysis to mine the information across the posture variations. Using this information, we recover the human body, regardless of the effect of clothes, and measure the human body parameters accurately. Experimental results show that our system can perform more accurate parameter estimation on the human body than state-of-the-art methods.

  2. Accurate Mass Measurements for Planetary Microlensing Events Using High Angular Resolution Observations

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Beaulieu

    2018-04-01

    Full Text Available The microlensing technique is a unique method to hunt for cold planets over a range of mass and separation, orbiting all varieties of host stars in the disk of our galaxy. It provides precise mass-ratio and projected separations in units of the Einstein ring radius. In order to obtain the physical parameters (mass, distance, orbital separation of the system, it is necessary to combine the result of light curve modeling with lens mass-distance relations and/or perform a Bayesian analysis with a galactic model. A first mass-distance relation could be obtained from a constraint on the Einstein ring radius if the crossing time of the source over the caustic is measured. It could then be supplemented by secondary constraints such as parallax measurements, ideally by using coinciding ground and space-born observations. These are still subject to degeneracies, like the orbital motion of the lens. A third mass-distance relation can be obtained thanks to constraints on the lens luminosity using high angular resolution observations with 8 m class telescopes or the Hubble Space Telescope. The latter route, although quite inexpensive in telescope time is very effective. If we have to rely heavily on Bayesian analysis and limited constraints on mass-distance relations, the physical parameters are determined to 30–40% typically. In a handful of cases, ground-space parallax is a powerful route to get stronger constraint on masses. High angular resolution observations will be able to constrain the luminosity of the lenses in the majority of the cases, and in favorable circumstances it is possible to derive physical parameters to 10% or better. Moreover, these constraints will be obtained in most of the planets to be discovered by the Euclid and WFIRST satellites. We describe here the state-of-the-art approaches to measure lens masses and distances with an emphasis on high angular resolution observations. We will discuss the challenges, recent results and

  3. Infrared Thermometer: an accurate tool for temperature measurement during renal surgery

    Directory of Open Access Journals (Sweden)

    Giovanni Scala Marchini

    2013-07-01

    Full Text Available Purpose To evaluate infrared thermometer (IRT accuracy compared to standard digital thermometer in measuring kidney temperature during arterial clamping with and without renal cooling. Materials and Methods 20 pigs weighting 20Kg underwent selective right renal arterial clamping, 10 with (Group 1 - Cold Ischemia with ice slush and 10 without renal cooling (Group 2 - Warm Ischemia. Arterial clamping was performed without venous clamping. Renal temperature was serially measured following clamping of the main renal artery with the IRT and a digital contact thermometer (DT: immediate after clamping (T0, after 2 (T2, 5 (T5 and 10 minutes (T10. Temperature values were expressed in mean, standard deviation and range for each thermometer. We used the T student test to compare means and considered p < 0.05 to be statistically significant. Results In Group 1, mean DT surface temperature decrease was 12.6 ± 4.1°C (5-19°C while deep DT temperature decrease was 15.8 ± 1.5°C (15-18°C. For the IRT, mean temperature decrease was 9.1 ± 3.8°C (3-14°C. There was no statistically significant difference between thermometers. In Group 2, surface temperature decrease for DT was 2.7 ± 1.8°C (0-4°C and mean deep temperature decrease was 0.5 ± 1.0°C (0-3°C. For IRT, mean temperature decrease was 3.1 ± 1.9°C (0-6°C. No statistically significant difference between thermometers was found at any time point. conclusions IRT proved to be an accurate non-invasive precise device for renal temperature monitoring during kidney surgery. External ice slush cooling confirmed to be fast and effective at cooling the pig model. IRT = Infrared thermometer DT = Digital contact thermometer D:S = Distance-to-spot ratio

  4. Pairwise Comparison and Distance Measure of Hesitant Fuzzy Linguistic Term Sets

    Directory of Open Access Journals (Sweden)

    Han-Chen Huang

    2014-01-01

    Full Text Available A hesitant fuzzy linguistic term set (HFLTS, allowing experts using several possible linguistic terms to assess a qualitative linguistic variable, is very useful to express people’s hesitancy in practical decision-making problems. Up to now, a little research has been done on the comparison and distance measure of HFLTSs. In this paper, we present a comparison method for HFLTSs based on pairwise comparisons of each linguistic term in the two HFLTSs. Then, a distance measure method based on the pairwise comparison matrix of HFLTSs is proposed, and we prove that this distance is equal to the distance of the average values of HFLTSs, which makes the distance measure much more simple. Finally, the pairwise comparison and distance measure methods are utilized to develop two multicriteria decision-making approaches under hesitant fuzzy linguistic environments. The results analysis shows that our methods in this paper are more reasonable.

  5. Accurate offline dispersion measurement of Petawatt-class chirped pulse amplification compressor and stretcher systems

    International Nuclear Information System (INIS)

    Haefner, C.; Crane, J.; Halpin, J.; Heebner, J.; Kanz, V.; Phan, H.; Nissen, J.; Shverdin, M.; Hackel, R.; Dawson, J.; Messerly, M.; Siders, C.W.

    2010-01-01

    Complete text of publication follows. The Advanced Radiographic Capability (ARC) on the National Ignition Facility (NIF) is designed to produce energetic x-rays in the range of 10-100 keV for backlighting NIF targets. ARC will convert 4 of the 192 NIF beamlines into 8 split beams, delivering laser pulses with adjustable pulse durations from 1 ps to 50 ps at the kilo-Joule level. Adjustable time delays between the 8 beams enable X-ray 'motion-picture' capture with tens-of-picosecond resolution during the critical phases of an ICF shot. The precise alignment of stretcher-compressor pairs in energetic chirped pulse amplification (CPA) systems is tedious and requires several iterations using advanced temporal diagnostics until the shortest pulse durations and highest peak intensities are achieved. For large, energetic Petawatt laser systems with beam sizes up to 40 cm, diffraction gratings in the compressor reach meter-scale size and are difficult to precisely align. We developed a group delay diagnostic which enables accurate, offline measurements of highly dispersive components such as stretchers or compressors with sub-picosecond accuracy. This diagnostic tool enables us to simply measure each dispersive component offline, and balance the dispersion in each beamline. Furthermore it allows exactly matching the dispersion of ARC's eight, independent four-grating compressors, which is critical for producing eight identical pulses. ARC utilizes a unique, folded compressor design for maximum compactness; two 5.5 m long vacuum vessels house 8 compressors with 91 cm x 45 cm multilayer, dielectric gratings. The group delay diagnostic utilizes the phase-shift technique for measuring the dispersion characteristics of each individual element, e.g. grating stretcher, chirped fiber Bragg grating, grating compressor, material dispersion, or an entire laser system. The system uses an amplitude modulated, highly-stable, single-frequency laser, which is scanned over the spectral

  6. Comparison of efficiency of distance measurement methodologies in mango (Mangifera indica) progenies based on physicochemical descriptors.

    Science.gov (United States)

    Alves, E O S; Cerqueira-Silva, C B M; Souza, A M; Santos, C A F; Lima Neto, F P; Corrêa, R X

    2012-03-14

    We investigated seven distance measures in a set of observations of physicochemical variables of mango (Mangifera indica) submitted to multivariate analyses (distance, projection and grouping). To estimate the distance measurements, five mango progeny (total of 25 genotypes) were analyzed, using six fruit physicochemical descriptors (fruit weight, equatorial diameter, longitudinal diameter, total soluble solids in °Brix, total titratable acidity, and pH). The distance measurements were compared by the Spearman correlation test, projection in two-dimensional space and grouping efficiency. The Spearman correlation coefficients between the seven distance measurements were, except for the Mahalanobis' generalized distance (0.41 ≤ rs ≤ 0.63), high and significant (rs ≥ 0.91; P < 0.001). Regardless of the origin of the distance matrix, the unweighted pair group method with arithmetic mean grouping method proved to be the most adequate. The various distance measurements and grouping methods gave different values for distortion (-116.5 ≤ D ≤ 74.5), cophenetic correlation (0.26 ≤ rc ≤ 0.76) and stress (-1.9 ≤ S ≤ 58.9). Choice of distance measurement and analysis methods influence the.

  7. An International Parallax Campaign to Measure Distance to the Moon and Mars

    Science.gov (United States)

    Cenadelli, D.; Zeni, M.; Bernagozzi, A.; Calcidese, P.; Ferreira, L.; Hoang, C.; Rijsdijk, C.

    2009-01-01

    Trigonometric parallax is a powerful method to work out the distance of celestial bodies, and it was used in the past to measure the distance of the Moon, Venus, Mars and nearby stars. We set up an observation campaign for high school and undergraduate students with the purpose to measure both the Moon's and Mars' parallax. To have a large enough…

  8. Air temperature measurements based on the speed of sound to compensate long distance interferometric measurements

    Directory of Open Access Journals (Sweden)

    Astrua Milena

    2014-01-01

    Full Text Available A method to measure the real time temperature distribution along an interferometer path based on the propagation of acoustic waves is presented. It exploits the high sensitivity of the speed of sound in air to the air temperature. In particular, it takes advantage of a special set-up where the generation of the acoustic waves is synchronous with the amplitude modulation of a laser source. A photodetector converts the laser light to an electronic signal considered as reference, while the incoming acoustic waves are focused on a microphone and generate a second signal. In this condition, the phase difference between the two signals substantially depends on the temperature of the air volume interposed between the sources and the receivers. The comparison with the traditional temperature sensors highlighted the limit of the latter in case of fast temperature variations and the advantage of a measurement integrated along the optical path instead of a sampling measurement. The capability of the acoustic method to compensate the interferometric distance measurements due to air temperature variations has been demonstrated for distances up to 27 m.

  9. Importance of accurate measurements in nutrition research: dietary flavonoids as a case study

    Science.gov (United States)

    Accurate measurements of the secondary metabolites in natural products and plant foods are critical to establishing diet/health relationships. There are as many as 50,000 secondary metabolites which may influence human health. Their structural and chemical diversity present a challenge to analytic...

  10. An investigation of highly accurate and precise robotic hole measurements using non-contact devices

    Directory of Open Access Journals (Sweden)

    Usman Zahid

    2016-01-01

    Full Text Available Industrial robots arms are widely used in manufacturing industry because of their support for automation. However, in metrology, robots have had limited application due to their insufficient accuracy. Even using error compensation and calibration methods, robots are not effective for micrometre (μm level metrology. Non-contact measurement devices can potentially enable the use of robots for highly accurate metrology. However, the use of such devices on robots has not been investigated. The research work reported in this paper explores the use of different non-contact measurement devices on an industrial robot. The aim is to experimentally investigate the effects of robot movements on the accuracy and precision of measurements. The focus has been on assessing the ability to accurately measure various geometric and surface parameters of holes despite the inherent inaccuracies of industrial robot. This involves the measurement of diameter, roundness and surface roughness. The study also includes scanning of holes for measuring internal features such as start and end point of a taper. Two different non-contact measurement devices based on different technologies are investigated. Furthermore, effects of eccentricity, vibrations and thermal variations are also assessed. The research contributes towards the use of robots for highly accurate and precise robotic metrology.

  11. A comparison between using distance sensors for measuring the pantograph vertically movement

    Science.gov (United States)

    Rob, R.; Panoiu, C.; Rusu-Anghel, S.; Panoiu, M.

    2018-01-01

    In railway transportation the most important problem to solve consists in assuring the safety traffic of people and freight. In this scope some of the geometrical parameters regarding the contact line must be measured. One of this parameter is the pantograph vertically movement, so it must use distance sensors. Present paper studies the performance of two kinds of distance sensors, an ultrasonic distance sensor and an infrared sensor. The performances are studied from the point of view of error distance measurement and the possibility of using a real time acquisition system. The researches were made on a laboratory model for the pantograph realized at the scale 1:2.

  12. Low-cost small action cameras in stereo generates accurate underwater measurements of fish

    OpenAIRE

    Letessier, T. B.; Juhel, Jean-Baptiste; Vigliola, Laurent; Meeuwig, J. J.

    2015-01-01

    Small action cameras have received interest for use in underwater videography because of their low-cost, standardised housing, widespread availability and small size. Here, we assess the capacity of GoPro action cameras to provide accurate stereo-measurements of fish in comparison to the Sony handheld cameras that have traditionally been used for this purpose. Standardised stereo-GoPro and Sony systems were employed to capture measurements of known-length targets in a pool to explore the infl...

  13. A Scale Elasticity Measure for Directional Distance Function and its Dual: Theory and DEA Estimation

    OpenAIRE

    Valentin Zelenyuk

    2012-01-01

    In this paper we focus on scale elasticity measure based on directional distance function for multi-output-multi-input technologies, explore its fundamental properties and show its equivalence with the input oriented and output oriented scale elasticity measures. We also establish duality relationship between the scale elasticity measure based on the directional distance function with scale elasticity measure based on the profit function. Finally, we discuss the estimation issues of the scale...

  14. A Scale Elasticity Measure for Directional Distance Function and its Dual

    OpenAIRE

    Valentin Zelenyuk

    2011-01-01

    In this paper we introduce a scale elasticity measure based on directional distance function for multi-output-multi-input technologies and explore its fundamental properties. Specifically, we derive necessary and sufficient condition for equivalence of the scale elasticity measure based on the directional distance function with the input oriented and output oriented scale elasticity measures. We also establish duality relationship between the scale elasticity measure based on the directional ...

  15. Defining Allowable Physical Property Variations for High Accurate Measurements on Polymer Parts

    DEFF Research Database (Denmark)

    Mohammadi, Ali; Sonne, Mads Rostgaard; Madruga, Daniel González

    2015-01-01

    Measurement conditions and material properties have a significant impact on the dimensions of a part, especially for polymers parts. Temperature variation causes part deformations that increase the uncertainty of the measurement process. Current industrial tolerances of a few micrometres demand...... high accurate measurements in non-controlled ambient. Most of polymer parts are manufactured by injection moulding and their inspection is carried out after stabilization, around 200 hours. The overall goal of this work is to reach ±5μm in uncertainty measurements a polymer products which...

  16. Correlation of Spatially Filtered Dynamic Speckles in Distance Measurement Application

    International Nuclear Information System (INIS)

    Semenov, Dmitry V.; Nippolainen, Ervin; Kamshilin, Alexei A.; Miridonov, Serguei V.

    2008-01-01

    In this paper statistical properties of spatially filtered dynamic speckles are considered. This phenomenon was not sufficiently studied yet while spatial filtering is an important instrument for speckles velocity measurements. In case of spatial filtering speckle velocity information is derived from the modulation frequency of filtered light power which is measured by photodetector. Typical photodetector output is represented by a narrow-band random noise signal which includes non-informative intervals. Therefore more or less precious frequency measurement requires averaging. In its turn averaging implies uncorrelated samples. However, conducting research we found that correlation is typical property not only of dynamic speckle patterns but also of spatially filtered speckles. Using spatial filtering the correlation is observed as a response of measurements provided to the same part of the object surface or in case of simultaneously using several adjacent photodetectors. Found correlations can not be explained using just properties of unfiltered dynamic speckles. As we demonstrate the subject of this paper is important not only from pure theoretical point but also from the point of applied speckle metrology. E.g. using single spatial filter and an array of photodetector can greatly improve accuracy of speckle velocity measurements

  17. Accurate and reproducible measurements of RhoA activation in small samples of primary cells.

    Science.gov (United States)

    Nini, Lylia; Dagnino, Lina

    2010-03-01

    Rho GTPase activation is essential in a wide variety of cellular processes. Measurement of Rho GTPase activation is difficult with limited material, such as tissues or primary cells that exhibit stringent culture requirements for growth and survival. We defined parameters to accurately and reproducibly measure RhoA activation (i.e., RhoA-GTP) in cultured primary keratinocytes in response to serum and growth factor stimulation using enzyme-linked immunosorbent assay (ELISA)-based G-LISA assays. We also established conditions that minimize RhoA-GTP in unstimulated cells without affecting viability, allowing accurate measurements of RhoA activation on stimulation or induction of exogenous GTPase expression. Copyright 2009 Elsevier Inc. All rights reserved.

  18. [Automated measurement of distance vision based on the DIN strategy].

    Science.gov (United States)

    Effert, R; Steinmetz, H; Jansen, W; Rau, G; Reim, M

    1989-07-01

    A method for automated measurement of far vision is described which meets the test requirements laid down in the new DIN standards. The subject sits 5 m from a high-resolution monitor on which either Landolt rings or Snellen's types are generated by a computer. By moving a joystick the subject indicates to the computer whether he can see the critical detail (e.g., the direction of opening of the Landolt ring). Depending on the subject's input and the course of the test so far, the computer generates the next test symbol until the threshold criterion is reached. The sequence of presentation of the symbols and the threshold criterion are also in accordance with the DIN standard. Initial measurements of far vision using this automated system produced similar results to those obtained by conventional methods.

  19. A practical strategy for the accurate measurement of residual dipolar couplings in strongly aligned small molecules

    Science.gov (United States)

    Liu, Yizhou; Cohen, Ryan D.; Martin, Gary E.; Williamson, R. Thomas

    2018-06-01

    Accurate measurement of residual dipolar couplings (RDCs) requires an appropriate degree of alignment in order to optimize data quality. An overly weak alignment yields very small anisotropic data that are susceptible to measurement errors, whereas an overly strong alignment introduces extensive anisotropic effects that severely degrade spectral quality. The ideal alignment amplitude also depends on the specific pulse sequence used for the coupling measurement. In this work, we introduce a practical strategy for the accurate measurement of one-bond 13C-1H RDCs up to a range of ca. -300 to +300 Hz, corresponding to an alignment that is an order of magnitude stronger than typically employed for small molecule structural elucidation. This strong alignment was generated in the mesophase of the commercially available poly-γ-(benzyl-L-glutamate) polymer. The total coupling was measured by the simple and well-studied heteronuclear two-dimensional J-resolved experiment, which performs well in the presence of strong anisotropic effects. In order to unequivocally determine the sign of the total coupling and resolve ambiguities in assigning total couplings in the CH2 group, coupling measurements were conducted at an isotropic condition plus two anisotropic conditions of different alignment amplitudes. Most RDCs could be readily extracted from these measurements whereas more complicated spectral effects resulting from strong homonuclear coupling could be interpreted either theoretically or by simulation. Importantly, measurement of these very large RDCs actually offers significantly improved data quality and utility for the structure determination of small organic molecules.

  20. Accurate disintegration-rate measurement of 55Fe by liquid scintillation counting

    International Nuclear Information System (INIS)

    Steyn, J.; Oberholzer, P.; Botha, S.M.

    1979-01-01

    A method involving liquid scintillation counting is described for the accurate measurement of disintegration rate of 55 Fe. The method is based on the use of calculated efficiency functions together with either of the nuclides 54 Mn and 51 Cr as internal standards for measurement of counting efficiencies by coincidence counting. The method was used by the NAC during a recent international intercomparison of radioactivity measurements, and a summary of the results obtained by nine participating laboratories is presented. A spread in results of several percent is evident [af

  1. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    International Nuclear Information System (INIS)

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-01-01

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution

  2. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    Science.gov (United States)

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-11-01

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution.

  3. Accurate Estimation of Low Fundamental Frequencies from Real-Valued Measurements

    DEFF Research Database (Denmark)

    Christensen, Mads Græsbøll

    2013-01-01

    In this paper, the difficult problem of estimating low fundamental frequencies from real-valued measurements is addressed. The methods commonly employed do not take the phenomena encountered in this scenario into account and thus fail to deliver accurate estimates. The reason for this is that the......In this paper, the difficult problem of estimating low fundamental frequencies from real-valued measurements is addressed. The methods commonly employed do not take the phenomena encountered in this scenario into account and thus fail to deliver accurate estimates. The reason...... for this is that they employ asymptotic approximations that are violated when the harmonics are not well-separated in frequency, something that happens when the observed signal is real-valued and the fundamental frequency is low. To mitigate this, we analyze the problem and present some exact fundamental frequency estimators...

  4. Accurate measurement of gene copy number for human alpha-defensin DEFA1A3.

    Science.gov (United States)

    Khan, Fayeza F; Carpenter, Danielle; Mitchell, Laura; Mansouri, Omniah; Black, Holly A; Tyson, Jess; Armour, John A L

    2013-10-20

    Multi-allelic copy number variants include examples of extensive variation between individuals in the copy number of important genes, most notably genes involved in immune function. The definition of this variation, and analysis of its impact on function, has been hampered by the technical difficulty of large-scale but accurate typing of genomic copy number. The copy-variable alpha-defensin locus DEFA1A3 on human chromosome 8 commonly varies between 4 and 10 copies per diploid genome, and presents considerable challenges for accurate high-throughput typing. In this study, we developed two paralogue ratio tests and three allelic ratio measurements that, in combination, provide an accurate and scalable method for measurement of DEFA1A3 gene number. We combined information from different measurements in a maximum-likelihood framework which suggests that most samples can be assigned to an integer copy number with high confidence, and applied it to typing 589 unrelated European DNA samples. Typing the members of three-generation pedigrees provided further reassurance that correct integer copy numbers had been assigned. Our results have allowed us to discover that the SNP rs4300027 is strongly associated with DEFA1A3 gene copy number in European samples. We have developed an accurate and robust method for measurement of DEFA1A3 copy number. Interrogation of rs4300027 and associated SNPs in Genome-Wide Association Study SNP data provides no evidence that alpha-defensin copy number is a strong risk factor for phenotypes such as Crohn's disease, type I diabetes, HIV progression and multiple sclerosis.

  5. A Novel Multimode Waveguide Coupler for Accurate Power Measurement of Traveling Wave Tube Harmonic Frequencies

    Science.gov (United States)

    Wintucky, Edwin G.; Simons, Rainee N.

    2014-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from two dissimilar waveguides is capable of isolating the power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT). In addition to accurate power measurements at harmonic frequencies, a potential application of the MDC is in the design of a beacon source for atmospheric propagation studies at millimeter-wave frequencies.

  6. Atom interferometry experiments with lithium. Accurate measurement of the electric polarizability

    International Nuclear Information System (INIS)

    Miffre, A.

    2005-06-01

    Atom interferometers are very sensitive tools to make precise measurements of physical quantities. This study presents a measurement of the static electric polarizability of lithium by atom interferometry. Our result, α = (24.33 ± 0.16)*10 -30 m 3 , improves by a factor 3 the most accurate measurements of this quantity. This work describes the tuning and the operation of a Mach-Zehnder atom interferometer in detail. The two interfering arms are separated by the elastic diffraction of the atomic wave by a laser standing wave, almost resonant with the first resonance transition of lithium atom. A set of experimental techniques, often complicated to implement, is necessary to build the experimental set-up. After a detailed study of the atom source (a supersonic beam of lithium seeded in argon), we present our experimental atom signals which exhibit a very high fringe visibility, up to 84.5 % for first order diffraction. A wide variety of signals has been observed by diffraction of the bosonic isotope at higher diffraction orders and by diffraction of the fermionic less abundant isotope. The quality of these signals is then used to do very accurate phase measurements. A first experiment investigates how the atom interferometer signals are modified by a magnetic field gradient. An absolute measurement of lithium atom electric polarizability is then achieved by applying a static electric field on one of the two interfering arms, separated by only 90 micrometers. The construction of such a capacitor, its alignment in the experimental set-up and its operation are fully detailed.We obtain a very accurate phase measurement of the induced Lo Surdo - Stark phase shift (0.07 % precision). For this first measurement, the final uncertainty on the electric polarizability of lithium is only 0.66 %, and is dominated by the uncertainty on the atom beam mean velocity, so that a further reduction of the uncertainty can be expected. (author)

  7. Inductive Contactless Distance Measurement Intended for a Gastric Electrical Implant

    Directory of Open Access Journals (Sweden)

    J. Tomek

    2007-01-01

    Full Text Available For a gastric electrical stimulation project we are developing a system for on-demand switching according to the volume or elongation of the stomach wall. The system is to be implanted into the human abdomen, which limits the utilization of many possible solutions and types of sensors. Magnetic induction has been agreed as the most suitable principle, despite its direction dependency and the need of multi-axial and multiple probes for precision measurements. Possible configurations are discussed as well as the complexity of the necessary electronics and the implantation itself. For detecting food consumption, perfect precision is fortunately not necessary, but a certain compromise will still be necessary for the final system. A simple two-coil system – a transmitter and receiver and a system with a three-axial coil – have already been realized. The first system has already been successfully tested in-vivo on dogs by our US colleagues. However, if the implantation is badly performed, and the coils are completely out of axis, the system cannot sense relative changes in volume properly. The three-axial sensor presented here eliminates these problems. More complex arrangements emerging from magnetic tracking are discussed, because laboratory studies of stomach movements may require them. 

  8. MEASURING EJECTA VELOCITY IMPROVES TYPE Ia SUPERNOVA DISTANCES

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Kasen, Daniel

    2011-01-01

    We use a sample of 121 spectroscopically normal Type Ia supernovae (SNe Ia) to show that their intrinsic color is correlated with their ejecta velocity, as measured from the blueshift of the Si II λ6355 feature near maximum brightness, v SiII . The SN Ia sample was originally used by Wang et al. to show that the relationship between color excess and peak magnitude, which in the absence of intrinsic color differences describes a reddening law, was different for two subsamples split by v SiII (defined as 'Normal' and 'High Velocity'). We verify this result, but find that the two subsamples have the same reddening law when extremely reddened events (E(B - V)>0.35 mag) are excluded. We also show that (1) the High-Velocity subsample is offset by ∼0.06 mag to the red from the Normal subsample in the (B max - V max )-M V plane, (2) the B max - V max cumulative distribution functions of the two subsamples have nearly identical shapes, but the High-Velocity subsample is offset by ∼0.07 mag to the red in B max - V max , and (3) the bluest High-Velocity SNe Ia are ∼0.10 mag redder than the bluest Normal SNe Ia. Together, this evidence indicates a difference in intrinsic color for the subsamples. Accounting for this intrinsic color difference reduces the scatter in Hubble residuals from 0.190 mag to 0.130 mag for SNe Ia with A V ∼ V found in large SN Ia samples. We explain the correlation between ejecta velocity and color as increased line blanketing in the High-Velocity SNe Ia, causing them to become redder. We discuss some implications of this result, and stress the importance of spectroscopy for future SN Ia cosmology surveys, with particular focus on the design of WFIRST.

  9. The preliminary exploration of 64-slice volume computed tomography in the accurate measurement of pleural effusion.

    Science.gov (United States)

    Guo, Zhi-Jun; Lin, Qiang; Liu, Hai-Tao; Lu, Jun-Ying; Zeng, Yan-Hong; Meng, Fan-Jie; Cao, Bin; Zi, Xue-Rong; Han, Shu-Ming; Zhang, Yu-Huan

    2013-09-01

    Using computed tomography (CT) to rapidly and accurately quantify pleural effusion volume benefits medical and scientific research. However, the precise volume of pleural effusions still involves many challenges and currently does not have a recognized accurate measuring. To explore the feasibility of using 64-slice CT volume-rendering technology to accurately measure pleural fluid volume and to then analyze the correlation between the volume of the free pleural effusion and the different diameters of the pleural effusion. The 64-slice CT volume-rendering technique was used to measure and analyze three parts. First, the fluid volume of a self-made thoracic model was measured and compared with the actual injected volume. Second, the pleural effusion volume was measured before and after pleural fluid drainage in 25 patients, and the volume reduction was compared with the actual volume of the liquid extract. Finally, the free pleural effusion volume was measured in 26 patients to analyze the correlation between it and the diameter of the effusion, which was then used to calculate the regression equation. After using the 64-slice CT volume-rendering technique to measure the fluid volume of the self-made thoracic model, the results were compared with the actual injection volume. No significant differences were found, P = 0.836. For the 25 patients with drained pleural effusions, the comparison of the reduction volume with the actual volume of the liquid extract revealed no significant differences, P = 0.989. The following linear regression equation was used to compare the pleural effusion volume (V) (measured by the CT volume-rendering technique) with the pleural effusion greatest depth (d): V = 158.16 × d - 116.01 (r = 0.91, P = 0.000). The following linear regression was used to compare the volume with the product of the pleural effusion diameters (l × h × d): V = 0.56 × (l × h × d) + 39.44 (r = 0.92, P = 0.000). The 64-slice CT volume-rendering technique can

  10. The preliminary exploration of 64-slice volume computed tomography in the accurate measurement of pleural effusion

    International Nuclear Information System (INIS)

    Guo, Zhi-Jun; Lin, Qiang; Liu, Hai-Tao

    2013-01-01

    Background: Using computed tomography (CT) to rapidly and accurately quantify pleural effusion volume benefits medical and scientific research. However, the precise volume of pleural effusions still involves many challenges and currently does not have a recognized accurate measuring. Purpose: To explore the feasibility of using 64-slice CT volume-rendering technology to accurately measure pleural fluid volume and to then analyze the correlation between the volume of the free pleural effusion and the different diameters of the pleural effusion. Material and Methods: The 64-slice CT volume-rendering technique was used to measure and analyze three parts. First, the fluid volume of a self-made thoracic model was measured and compared with the actual injected volume. Second, the pleural effusion volume was measured before and after pleural fluid drainage in 25 patients, and the volume reduction was compared with the actual volume of the liquid extract. Finally, the free pleural effusion volume was measured in 26 patients to analyze the correlation between it and the diameter of the effusion, which was then used to calculate the regression equation. Results: After using the 64-slice CT volume-rendering technique to measure the fluid volume of the self-made thoracic model, the results were compared with the actual injection volume. No significant differences were found, P = 0.836. For the 25 patients with drained pleural effusions, the comparison of the reduction volume with the actual volume of the liquid extract revealed no significant differences, P = 0.989. The following linear regression equation was used to compare the pleural effusion volume (V) (measured by the CT volume-rendering technique) with the pleural effusion greatest depth (d): V = 158.16 X d - 116.01 (r = 0.91, P = 0.000). The following linear regression was used to compare the volume with the product of the pleural effusion diameters (l X h X d): V = 0.56 X (l X h X d) + 39.44 (r = 0.92, P = 0

  11. The preliminary exploration of 64-slice volume computed tomography in the accurate measurement of pleural effusion

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhi-Jun [Dept. of Radiology, North China Petroleum Bureau General Hospital, Renqiu, Hebei (China)], e-mail: Gzj3@163.com; Lin, Qiang [Dept. of Oncology, North China Petroleum Bureau General Hospital, Renqiu, Hebei (China); Liu, Hai-Tao [Dept. of General Surgery, North China Petroleum Bureau General Hospital, Renqiu, Hebei (China)] [and others])

    2013-09-15

    Background: Using computed tomography (CT) to rapidly and accurately quantify pleural effusion volume benefits medical and scientific research. However, the precise volume of pleural effusions still involves many challenges and currently does not have a recognized accurate measuring. Purpose: To explore the feasibility of using 64-slice CT volume-rendering technology to accurately measure pleural fluid volume and to then analyze the correlation between the volume of the free pleural effusion and the different diameters of the pleural effusion. Material and Methods: The 64-slice CT volume-rendering technique was used to measure and analyze three parts. First, the fluid volume of a self-made thoracic model was measured and compared with the actual injected volume. Second, the pleural effusion volume was measured before and after pleural fluid drainage in 25 patients, and the volume reduction was compared with the actual volume of the liquid extract. Finally, the free pleural effusion volume was measured in 26 patients to analyze the correlation between it and the diameter of the effusion, which was then used to calculate the regression equation. Results: After using the 64-slice CT volume-rendering technique to measure the fluid volume of the self-made thoracic model, the results were compared with the actual injection volume. No significant differences were found, P = 0.836. For the 25 patients with drained pleural effusions, the comparison of the reduction volume with the actual volume of the liquid extract revealed no significant differences, P = 0.989. The following linear regression equation was used to compare the pleural effusion volume (V) (measured by the CT volume-rendering technique) with the pleural effusion greatest depth (d): V = 158.16 X d - 116.01 (r = 0.91, P = 0.000). The following linear regression was used to compare the volume with the product of the pleural effusion diameters (l X h X d): V = 0.56 X (l X h X d) + 39.44 (r = 0.92, P = 0

  12. The determination of the pressure-viscosity coefficient of a lubricant through an accurate film thickness formula and accurate film thickness measurements : part 2 : high L values

    NARCIS (Netherlands)

    Leeuwen, van H.J.

    2011-01-01

    The pressure-viscosity coefficient of a traction fluid is determined by fitting calculation results on accurate film thickness measurements, obtained at different speeds, loads, and temperatures. Through experiments, covering a range of 5.6

  13. Distance Protection Impedance Measurement for Inhomogeneous Multiple-Circuit 400/150 kV Transmission Lines with Shared Towers

    DEFF Research Database (Denmark)

    Bak, Claus Leth; Sigurbjörnsson, Ragnar; Bukh, Bjarne

    2016-01-01

    are interconnected in a simple way but via transformers and infeed from remaining parts of the network. Distance relay measured fault loop impedance shows wide ranges of variations for both phase-phase loops as well as phase-earth loops. No simple relations exist. Simulation models can be used to study fault loop...... impedance for combined faults and thereby shed light on relay trips. This study uses actual fault records, analytical method and PSCAD simulation studies to analyse combined faults in an existing 400 and 150 kV transmission line owned by Danish TSO Energinet.dk. The results clearly show that an accurate...

  14. Automatic emissive probe apparatus for accurate plasma and vacuum space potential measurements

    Science.gov (United States)

    Jianquan, LI; Wenqi, LU; Jun, XU; Fei, GAO; Younian, WANG

    2018-02-01

    We have developed an automatic emissive probe apparatus based on the improved inflection point method of the emissive probe for accurate measurements of both plasma potential and vacuum space potential. The apparatus consists of a computer controlled data acquisition card, a working circuit composed by a biasing unit and a heating unit, as well as an emissive probe. With the set parameters of the probe scanning bias, the probe heating current and the fitting range, the apparatus can automatically execute the improved inflection point method and give the measured result. The validity of the automatic emissive probe apparatus is demonstrated in a test measurement of vacuum potential distribution between two parallel plates, showing an excellent accuracy of 0.1 V. Plasma potential was also measured, exhibiting high efficiency and convenient use of the apparatus for space potential measurements.

  15. Using gas blow methods to realize accurate volume measurement of radioactivity liquid

    International Nuclear Information System (INIS)

    Zhang Caiyun

    2010-01-01

    For liquid which has radioactivity, Realized the accurate volume measurement uncertainty less than 0.2% (k=2) by means of gas blow methods presented in the 'American National Standard-Nuclear Material Control-Volume Calibration Methods(ANSI N15.19-1989)' and the 'ISO Committee Drafts (ISO/TC/85/SC 5N 282 )' and Explored a set methods of Data Processing. In the article, the major problems is to solve data acquisition and function foundation and measurement uncertainty estimate. (authors)

  16. Investigations of the Local supercluster velocity field. II. A study using Tolman-Bondi solution and galaxies with accurate distances from the Cepheid PL-relation

    Science.gov (United States)

    Ekholm, T.; Lanoix, P.; Teerikorpi, P.; Paturel, G.; Fouqué, P.

    1999-11-01

    A sample of 32 galaxies with accurate distance moduli from the Cepheid PL-relation (Lanoix \\cite{Lanoix99}) has been used to study the dynamical behaviour of the Local (Virgo) supercluster. We used analytical Tolman-Bondi (TB) solutions for a spherically symmetric density excess embedded in the Einstein-deSitter universe (q_0=0.5). Using 12 galaxies within Theta =30degr from the centre we found a mass estimate of 1.62M_virial for the Virgo cluster. This agrees with the finding of Teerikorpi et al. (\\cite{Teerikorpi92}) that TB-estimate may be larger than virial mass estimate from Tully & Shaya (\\cite{Tully84}). Our conclusions do not critically depend on our primary choice of the global H_0=57 km s-1 Mpc{-1} established from SNe Ia (Lanoix \\cite{Lanoix99}). The remaining galaxies outside Virgo region do not disagree with this value. Finally, we also found a TB-solution with the H_0 and q_0 cited yielding exactly one virial mass for the Virgo cluster.

  17. Rapid yet accurate measurement of mass diffusion coefficients by phase shifting interferometer

    CERN Document Server

    Guo Zhi Xiong; Komiya, A

    1999-01-01

    The technique of using a phase-shifting interferometer is applied to the study of diffusion in transparent liquid mixtures. A quick method is proposed for determining the diffusion coefficient from the measurements of the location of fringes on a grey level picture. The measurement time is very short (within 100 s) and a very small transient diffusion field can be observed and recorded accurately with a rate of 30 frames per second. The measurement can be completed using less than 0.12 cc of solutions. The influence of gravity on the measurement of the diffusion coefficient is eliminated in the present method. Results on NaCl-water diffusion systems are presented and compared with the reference data. (author)

  18. Latest Developments on Obtaining Accurate Measurements with Pitot Tubes in ZPG Turbulent Boundary Layers

    Science.gov (United States)

    Nagib, Hassan; Vinuesa, Ricardo

    2013-11-01

    Ability of available Pitot tube corrections to provide accurate mean velocity profiles in ZPG boundary layers is re-examined following the recent work by Bailey et al. Measurements by Bailey et al., carried out with probes of diameters ranging from 0.2 to 1.89 mm, together with new data taken with larger diameters up to 12.82 mm, show deviations with respect to available high-quality datasets and hot-wire measurements in the same Reynolds number range. These deviations are significant in the buffer region around y+ = 30 - 40 , and lead to disagreement in the von Kármán coefficient κ extracted from profiles. New forms for shear, near-wall and turbulence corrections are proposed, highlighting the importance of the latest one. Improved agreement in mean velocity profiles is obtained with new forms, where shear and near-wall corrections contribute with around 85%, and remaining 15% of the total correction comes from turbulence correction. Finally, available algorithms to correct wall position in profile measurements of wall-bounded flows are tested, using as benchmark the corrected Pitot measurements with artificially simulated probe shifts and blockage effects. We develop a new scheme, κB - Musker, which is able to accurately locate wall position.

  19. Measuring physical inactivity: do current measures provide an accurate view of "sedentary" video game time?

    Science.gov (United States)

    Fullerton, Simon; Taylor, Anne W; Dal Grande, Eleonora; Berry, Narelle

    2014-01-01

    Measures of screen time are often used to assess sedentary behaviour. Participation in activity-based video games (exergames) can contribute to estimates of screen time, as current practices of measuring it do not consider the growing evidence that playing exergames can provide light to moderate levels of physical activity. This study aimed to determine what proportion of time spent playing video games was actually spent playing exergames. Data were collected via a cross-sectional telephone survey in South Australia. Participants aged 18 years and above (n = 2026) were asked about their video game habits, as well as demographic and socioeconomic factors. In cases where children were in the household, the video game habits of a randomly selected child were also questioned. Overall, 31.3% of adults and 79.9% of children spend at least some time playing video games. Of these, 24.1% of adults and 42.1% of children play exergames, with these types of games accounting for a third of all time that adults spend playing video games and nearly 20% of children's video game time. A substantial proportion of time that would usually be classified as "sedentary" may actually be spent participating in light to moderate physical activity.

  20. Multi-Segment Radius Measurement Using an Absolute Distance Meter Through a Null Assembly

    Science.gov (United States)

    Merle, Cormic; Wick, Eric; Hayden, Joseph

    2011-01-01

    instruments on nearly the same path. A fifth beamlet, acting as a differential reference, reflects off a ring mirror attached to the objective and null and returns to the ADM. The spacings between the ring mirror, objective, and null are known through manufacturing tolerances as well as through an in situ null wavefront alignment of the interferometer test beam with a reflective hologram located near the caustic of the null. Since total path length between the ring mirror and PM segments is highly deterministic, any ADM-measured departures from the predicted path length can be attributed to either spacing error or radius error in the PM. It is estimated that the path length measurement between the ring mirror and a PM segment is accurate to better than 100 m. The unique features of this invention include the differential distance measuring capability and its integration into an existing cryogenic and vacuum compatible interferometric optical test.

  1. Assessing pharmacy students' ability to accurately measure blood pressure using a blood pressure simulator arm.

    Science.gov (United States)

    Bottenberg, Michelle M; Bryant, Ginelle A; Haack, Sally L; North, Andrew M

    2013-06-12

    To compare student accuracy in measuring normal and high blood pressures using a simulator arm. In this prospective, single-blind, study involving third-year pharmacy students, simulator arms were programmed with prespecified normal and high blood pressures. Students measured preset normal and high diastolic and systolic blood pressure using a crossover design. One hundred sixteen students completed both blood pressure measurements. There was a significant difference between the accuracy of high systolic blood pressure (HSBP) measurement and normal systolic blood pressure (NSBP) measurement (mean HSBP difference 8.4 ± 10.9 mmHg vs NSBP 3.6 ± 6.4 mmHg; pdifference between the accuracy of high diastolic blood pressure (HDBP) measurement and normal diastolic blood pressure (NDBP) measurement (mean HDBP difference 6.8 ± 9.6 mmHg vs. mean NDBP difference 4.6 ± 4.5 mmHg; p=0.089). Pharmacy students may need additional instruction and experience with taking high blood pressure measurements to ensure they are able to accurately assess this important vital sign.

  2. Assessing Pharmacy Students’ Ability to Accurately Measure Blood Pressure Using a Blood Pressure Simulator Arm

    Science.gov (United States)

    Bryant, Ginelle A.; Haack, Sally L.; North, Andrew M.

    2013-01-01

    Objective. To compare student accuracy in measuring normal and high blood pressures using a simulator arm. Methods. In this prospective, single-blind, study involving third-year pharmacy students, simulator arms were programmed with prespecified normal and high blood pressures. Students measured preset normal and high diastolic and systolic blood pressure using a crossover design. Results. One hundred sixteen students completed both blood pressure measurements. There was a significant difference between the accuracy of high systolic blood pressure (HSBP) measurement and normal systolic blood pressure (NSBP) measurement (mean HSBP difference 8.4 ± 10.9 mmHg vs NSBP 3.6 ± 6.4 mmHg; pdifference between the accuracy of high diastolic blood pressure (HDBP) measurement and normal diastolic blood pressure (NDBP) measurement (mean HDBP difference 6.8 ± 9.6 mmHg vs. mean NDBP difference 4.6 ± 4.5 mmHg; p=0.089). Conclusions. Pharmacy students may need additional instruction and experience with taking high blood pressure measurements to ensure they are able to accurately assess this important vital sign. PMID:23788809

  3. Note: long range and accurate measurement of deep trench microstructures by a specialized scanning tunneling microscope.

    Science.gov (United States)

    Ju, Bing-Feng; Chen, Yuan-Liu; Zhang, Wei; Zhu, Wule; Jin, Chao; Fang, F Z

    2012-05-01

    A compact but practical scanning tunneling microscope (STM) with high aspect ratio and high depth capability has been specially developed. Long range scanning mechanism with tilt-adjustment stage is adopted for the purpose of adjusting the probe-sample relative angle to compensate the non-parallel effects. A periodical trench microstructure with a pitch of 10 μm has been successfully imaged with a long scanning range up to 2.0 mm. More innovatively, a deep trench with depth and step height of 23.0 μm has also been successfully measured, and slope angle of the sidewall can approximately achieve 67°. The probe can continuously climb the high step and exploring the trench bottom without tip crashing. The new STM could perform long range measurement for the deep trench and high step surfaces without image distortion. It enables accurate measurement and quality control of periodical trench microstructures.

  4. Geometric optimisation of an accurate cosine correcting optic fibre coupler for solar spectral measurement

    Science.gov (United States)

    Cahuantzi, Roberto; Buckley, Alastair

    2017-09-01

    Making accurate and reliable measurements of solar irradiance is important for understanding performance in the photovoltaic energy sector. In this paper, we present design details and performance of a number of fibre optic couplers for use in irradiance measurement systems employing remote light sensors applicable for either spectrally resolved or broadband measurement. The angular and spectral characteristics of different coupler designs are characterised and compared with existing state-of-the-art commercial technology. The new coupler designs are fabricated from polytetrafluorethylene (PTFE) rods and operate through forward scattering of incident sunlight on the front surfaces of the structure into an optic fibre located in a cavity to the rear of the structure. The PTFE couplers exhibit up to 4.8% variation in scattered transmission intensity between 425 nm and 700 nm and show minimal specular reflection, making the designs accurate and reliable over the visible region. Through careful geometric optimization near perfect cosine dependence on the angular response of the coupler can be achieved. The PTFE designs represent a significant improvement over the state of the art with less than 0.01% error compared with ideal cosine response for angles of incidence up to 50°.

  5. A Flexible Fringe Projection Vision System with Extended Mathematical Model for Accurate Three-Dimensional Measurement

    Directory of Open Access Journals (Sweden)

    Suzhi Xiao

    2016-04-01

    Full Text Available In order to acquire an accurate three-dimensional (3D measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the ’phase to 3D coordinates transformation’ are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement.

  6. A Flexible Fringe Projection Vision System with Extended Mathematical Model for Accurate Three-Dimensional Measurement.

    Science.gov (United States)

    Xiao, Suzhi; Tao, Wei; Zhao, Hui

    2016-04-28

    In order to acquire an accurate three-dimensional (3D) measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the 'phase to 3D coordinates transformation' are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement.

  7. Geometric optimisation of an accurate cosine correcting optic fibre coupler for solar spectral measurement.

    Science.gov (United States)

    Cahuantzi, Roberto; Buckley, Alastair

    2017-09-01

    Making accurate and reliable measurements of solar irradiance is important for understanding performance in the photovoltaic energy sector. In this paper, we present design details and performance of a number of fibre optic couplers for use in irradiance measurement systems employing remote light sensors applicable for either spectrally resolved or broadband measurement. The angular and spectral characteristics of different coupler designs are characterised and compared with existing state-of-the-art commercial technology. The new coupler designs are fabricated from polytetrafluorethylene (PTFE) rods and operate through forward scattering of incident sunlight on the front surfaces of the structure into an optic fibre located in a cavity to the rear of the structure. The PTFE couplers exhibit up to 4.8% variation in scattered transmission intensity between 425 nm and 700 nm and show minimal specular reflection, making the designs accurate and reliable over the visible region. Through careful geometric optimization near perfect cosine dependence on the angular response of the coupler can be achieved. The PTFE designs represent a significant improvement over the state of the art with less than 0.01% error compared with ideal cosine response for angles of incidence up to 50°.

  8. A Relative-Localization Algorithm Using Incomplete Pairwise Distance Measurements for Underwater Applications

    Directory of Open Access Journals (Sweden)

    Kae Y. Foo

    2010-01-01

    Full Text Available The task of localizing underwater assets involves the relative localization of each unit using only pairwise distance measurements, usually obtained from time-of-arrival or time-delay-of-arrival measurements. In the fluctuating underwater environment, a complete set of pair-wise distance measurements can often be difficult to acquire, thus hindering a straightforward closed-form solution in deriving the assets' relative coordinates. An iterative multidimensional scaling approach is presented based upon a weighted-majorization algorithm that tolerates missing or inaccurate distance measurements. Substantial modifications are proposed to optimize the algorithm, while the effects of refractive propagation paths are considered. A parametric study of the algorithm based upon simulation results is shown. An acoustic field-trial was then carried out, presenting field measurements to highlight the practical implementation of this algorithm.

  9. Accurate Measurements of Aircraft Engine Soot Emissions Using a CAPS PMssa Monitor

    Science.gov (United States)

    Onasch, Timothy; Thompson, Kevin; Renbaum-Wolff, Lindsay; Smallwood, Greg; Make-Lye, Richard; Freedman, Andrew

    2016-04-01

    We present results of aircraft engine soot emissions measurements during the VARIAnT2 campaign using CAPS PMssa monitors. VARIAnT2, an aircraft engine non-volatile particulate matter (nvPM) emissions field campaign, was focused on understanding the variability in nvPM mass measurements using different measurement techniques and accounting for possible nvPM sampling system losses. The CAPS PMssa monitor accurately measures both the optical extinction and scattering (and thus single scattering albedo and absorption) of an extracted sample using the same sample volume for both measurements with a time resolution of 1 second and sensitivity of better than 1 Mm-1. Absorption is obtained by subtracting the scattering signal from the total extinction. Given that the single scattering albedo of the particulates emitted from the aircraft engine measured at both 630 and 660 nm was on the order of 0.1, any inaccuracy in the scattering measurement has little impact on the accuracy of the ddetermined absorption coefficient. The absorption is converted into nvPM mass using a documented Mass Absorption Coefficient (MAC). Results of soot emission indices (mass soot emitted per mass of fuel consumed) for a turbojet engine as a function of engine power will be presented and compared to results obtained using an EC/OC monitor.

  10. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    Science.gov (United States)

    Lang, Roger; Zhou, Yiwen; Utku, Cuneyt; Le Vine, David

    2016-01-01

    This paper describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz, the center of the protected band (i.e., passive use only) used in the measurement of sea surface salinity from space. The objective of the measurements is to accurately determine the complex dielectric constant of seawater as a function of salinity and temperature. A resonant cylindrical microwave cavity in transmission mode has been employed to make the measurements. The measurements are made using standard seawater at salinities of 30, 33, 35, and 38 practical salinity units over a range of temperatures from 0 degree C to 35 degree C in 5 degree C intervals. Repeated measurements have been made at each temperature and salinity. Mean values and standard deviations are then computed. The total error budget indicates that the real and imaginary parts of the dielectric constant have a combined standard uncertainty of about 0.3 over the range of salinities and temperatures considered. The measurements are compared with the dielectric constants obtained from the model functions of Klein and Swift and those of Meissner and Wentz. The biggest differences occur at low and high temperatures.

  11. Anogenital distance and penile width measurements in The Infant Development and the Environment Study (TIDES): methods and predictors.

    Science.gov (United States)

    Sathyanarayana, Sheela; Grady, Richard; Redmon, J B; Ivicek, Kristy; Barrett, Emily; Janssen, Sarah; Nguyen, Ruby; Swan, Shanna H

    2015-04-01

    Anogenital distance (AGD) is an androgen responsive anatomic measurement that may have significant utility in clinical and epidemiological research studies. We describe development of standardized measurement methods and predictors of AGD outcomes. We examined infants born to 758 participants in The Infant Development and the Environment Study (TIDES cohort) in four clinical centers in 2011-2013. We developed and implemented a detailed training protocol that incorporated multiple quality control (QC) measures. In males, we measured anoscrotal distance (AGDAS), anopenile distance (AGDAP), and penile width (PW) and in females, anofourchette distance (AGDAF,) and anoclitoral distance (AGDAC). A single examiner obtained three repetitions of all measurements, and a second examiner obtained independent measurements for 14% of infants. We used the intra-rater ICC to assess within-examiner variability and the inter-rater ICC to assess between-examiner variability. We used multivariable linear regression to examine predictors of AGD outcomes including: gestational age at birth, birth weight, gestational age, several measures of body size, race, maternal age, and study center. In the full TIDES cohort, including 758 mothers and children, significant predictors of AGD and PW included: age at exam, gestational age at birth, weight-for-length Z-score, maternal age and study center. In 371 males, the mean (SD) AGDAS, AGDAP, and PW were 24.7 (4.5), 49.6 (5.9), and 10.8 (1.3) mm, respectively. In 387 females, the mean (SD) AGDAF and AGDAC were 16.0 (3.2) mm and 36.7 (3.8) mm, respectively. The intra-examiner ICC and inter-examiner ICC averaged over all subjects and examiners were between 0.89-0.92 and 0.69-0.84 respectively. Our study confirms that with appropriate training and quality control measures, AGD and PW measurements can be performed reliably and accurately in male and female infants. In order for reliable interpretation, these measurements should be adjusted for

  12. Home Circadian Phase Assessments with Measures of Compliance Yield Accurate Dim Light Melatonin Onsets.

    Science.gov (United States)

    Burgess, Helen J; Wyatt, James K; Park, Margaret; Fogg, Louis F

    2015-06-01

    There is a need for the accurate assessment of circadian phase outside of the clinic/laboratory, particularly with the gold standard dim light melatonin onset (DLMO). We tested a novel kit designed to assist in saliva sampling at home for later determination of the DLMO. The home kit includes objective measures of compliance to the requirements for dim light and half-hourly saliva sampling. Participants were randomized to one of two 10-day protocols. Each protocol consisted of two back-to-back home and laboratory phase assessments in counterbalanced order, separated by a 5-day break. Laboratory or participants' homes. Thirty-five healthy adults, age 21-62 y. N/A. Most participants received at least one 30-sec epoch of light > 50 lux during the home phase assessments (average light intensity 4.5 lux), but on average for light > 50 lux or sampling errors. There was no significant difference between the home and laboratory DLMOs (P > 0.05); on average the home DLMOs occurred 9.6 min before the laboratory DLMOs. The home DLMOs were highly correlated with the laboratory DLMOs (r = 0.91, P dim light melatonin onsets (DLMOs) demonstrates that including objective measures of light exposure and sample timing during home saliva sampling can lead to accurate home DLMOs. Circadian Phase Assessments at Home, http://clinicaltrials.gov/show/NCT01487252, NCT01487252. © 2015 Associated Professional Sleep Societies, LLC.

  13. Rapid and accurate biofuel moisture content gauging using magnetic resonance measurement technology

    Energy Technology Data Exchange (ETDEWEB)

    Jaervinen, T.

    2013-04-15

    Biomass is extensively utilised in energy production and as a raw material, such as for the production of liquid biofuels. All those processes will benefit if the moisture content of bio material is known in advance as accurately as possible under transient circumstances. Biofuel trade is increasingly based on the calorific value of fuels. In the first step, this also increases the need for rapid and accurate moisture content determination. During the last few years, large biofuel standardisation has been implemented, emphasising biofuel quality control at all stages of the utilisation chain. In principle, the moisture instrumental measurement can be utilised by many technologies and procedures. Typical techniques are infrared, radiofrequency, microwave, radiometric, electrical conductivity, capacitance, and impedance. Nuclear magnetic resonance (MR) and thermal neutron absorption are also applied. The MR measurement principle has been known and utilised already since the early 1950s. It has become the basic instrumental analysis tool in chemistry. It is also well-known as a very accurate method for analysing most compounds, especially substances containing hydrogen. The utilisation of MR metering is expanded extensively to medical diagnostics as a form of magnetic resonance imaging (MRI). Because of the precision of the MR principle, there have for a long time been efforts to apply it in new and different areas, and to make more user-friendly, smaller, and even portable devices. Such a device was designed by Vaisala a few years ago. VTT has utilised Vaisala's MR prototype for approximately one year for moisture content measurement of different biofuels. The first step in the use of an MR device for moisture determination was the definition of its measurement accuracy compared to the standard method (EN 14774). Those tests proved that the absolute precision seems to be comparable to the standard moisture content measurement method. It was also found out that

  14. Experimental Influences in the Accurate Measurement of Cartilage Thickness in MRI.

    Science.gov (United States)

    Wang, Nian; Badar, Farid; Xia, Yang

    2018-01-01

    Objective To study the experimental influences to the measurement of cartilage thickness by magnetic resonance imaging (MRI). Design The complete thicknesses of healthy and trypsin-degraded cartilage were measured at high-resolution MRI under different conditions, using two intensity-based imaging sequences (ultra-short echo [UTE] and multislice-multiecho [MSME]) and 3 quantitative relaxation imaging sequences (T 1 , T 2 , and T 1 ρ). Other variables included different orientations in the magnet, 2 soaking solutions (saline and phosphate buffered saline [PBS]), and external loading. Results With cartilage soaked in saline, UTE and T 1 methods yielded complete and consistent measurement of cartilage thickness, while the thickness measurement by T 2 , T 1 ρ, and MSME methods were orientation dependent. The effect of external loading on cartilage thickness is also sequence and orientation dependent. All variations in cartilage thickness in MRI could be eliminated with the use of a 100 mM PBS or imaged by UTE sequence. Conclusions The appearance of articular cartilage and the measurement accuracy of cartilage thickness in MRI can be influenced by a number of experimental factors in ex vivo MRI, from the use of various pulse sequences and soaking solutions to the health of the tissue. T 2 -based imaging sequence, both proton-intensity sequence and quantitative relaxation sequence, similarly produced the largest variations. With adequate resolution, the accurate measurement of whole cartilage tissue in clinical MRI could be utilized to detect differences between healthy and osteoarthritic cartilage after compression.

  15. Method to make accurate concentration and isotopic measurements for small gas samples

    Science.gov (United States)

    Palmer, M. R.; Wahl, E.; Cunningham, K. L.

    2013-12-01

    Carbon isotopic ratio measurements of CO2 and CH4 provide valuable insight into carbon cycle processes. However, many of these studies, like soil gas, soil flux, and water head space experiments, provide very small gas sample volumes, too small for direct measurement by current constant-flow Cavity Ring-Down (CRDS) isotopic analyzers. Previously, we addressed this issue by developing a sample introduction module which enabled the isotopic ratio measurement of 40ml samples or smaller. However, the system, called the Small Sample Isotope Module (SSIM), does dilute the sample during the delivery with inert carrier gas which causes a ~5% reduction in concentration. The isotopic ratio measurements are not affected by this small dilution, but researchers are naturally interested accurate concentration measurements. We present the accuracy and precision of a new method of using this delivery module which we call 'double injection.' Two portions of the 40ml of the sample (20ml each) are introduced to the analyzer, the first injection of which flushes out the diluting gas and the second injection is measured. The accuracy of this new method is demonstrated by comparing the concentration and isotopic ratio measurements for a gas sampled directly and that same gas measured through the SSIM. The data show that the CO2 concentration measurements were the same within instrument precision. The isotopic ratio precision (1σ) of repeated measurements was 0.16 permil for CO2 and 1.15 permil for CH4 at ambient concentrations. This new method provides a significant enhancement in the information provided by small samples.

  16. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology

    Science.gov (United States)

    Krimi, Soufiene; Klier, Jens; Jonuscheit, Joachim; von Freymann, Georg; Urbansky, Ralph; Beigang, René

    2016-07-01

    In this contribution, we present a highly accurate approach for thickness measurements of multi-layered automotive paints using terahertz time domain spectroscopy in reflection geometry. The proposed method combines the benefits of a model-based material parameters extraction method to calibrate the paint coatings, a generalized Rouard's method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity of the minimum thickness measurement limit. Within the framework of this work, a self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wet spray in the painting process.

  17. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology

    International Nuclear Information System (INIS)

    Krimi, Soufiene; Beigang, René; Klier, Jens; Jonuscheit, Joachim; Freymann, Georg von; Urbansky, Ralph

    2016-01-01

    In this contribution, we present a highly accurate approach for thickness measurements of multi-layered automotive paints using terahertz time domain spectroscopy in reflection geometry. The proposed method combines the benefits of a model-based material parameters extraction method to calibrate the paint coatings, a generalized Rouard's method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity of the minimum thickness measurement limit. Within the framework of this work, a self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wet spray in the painting process.

  18. Generalized weighted ratio method for accurate turbidity measurement over a wide range.

    Science.gov (United States)

    Liu, Hongbo; Yang, Ping; Song, Hong; Guo, Yilu; Zhan, Shuyue; Huang, Hui; Wang, Hangzhou; Tao, Bangyi; Mu, Quanquan; Xu, Jing; Li, Dejun; Chen, Ying

    2015-12-14

    Turbidity measurement is important for water quality assessment, food safety, medicine, ocean monitoring, etc. In this paper, a method that accurately estimates the turbidity over a wide range is proposed, where the turbidity of the sample is represented as a weighted ratio of the scattered light intensities at a series of angles. An improvement in the accuracy is achieved by expanding the structure of the ratio function, thus adding more flexibility to the turbidity-intensity fitting. Experiments have been carried out with an 850 nm laser and a power meter fixed on a turntable to measure the light intensity at different angles. The results show that the relative estimation error of the proposed method is 0.58% on average for a four-angle intensity combination for all test samples with a turbidity ranging from 160 NTU to 4000 NTU.

  19. Technical developments for accurate determination of amount of samples used for TOF measurements

    Directory of Open Access Journals (Sweden)

    Terada Kazushi

    2017-01-01

    Full Text Available Activity determination of 241,243Am samples has been performed with two separate methods of calorimetry and gamma-ray spectroscopy. Decay heat measurements of the samples were carried out by using a calorimeter, and activities of the samples were accurately determined with uncertainties less than 0.45%. The primary source of uncertainty in the calorimetric method is the accuracy of available half-life data. Gamma-ray detection efficiencies of a HPGe detector were determined with uncertainties of 1.5% by combining measured efficiencies and Monte Carlo simulation. Activities of the samples were determined with uncertainties less than 2.0% by gamma-ray spectroscopy and were concordant with those of the calorimetry.

  20. Reliability of linear distance measurement for dental implant length with standardized periapical radiographs

    International Nuclear Information System (INIS)

    Wakoh, Mamoru; Harada, Takuya; Otonari, Takamichi

    2006-01-01

    The purpose of this study was to investigate the accuracy of distance measurements of implant length based on periapical radiographs compared with that of other modalities. We carried out an experimental trial to compare precision in distance measurement. Dental implant fixtures were buried in the canine and first molar regions. These were then subjected to periapical (PE) radiography, panoramic (PA) radiography conventional (CV) and medical computed (CT) tomography. The length of the implant fixture on each film was measured by nine observers and degree of precision was statistically analyzed. The precision of both PE radiographs and CT tomograms was closest at the highest level. Standardized PE radiography, in particular, was superior to CT tomography in the first molar region. This suggests that standardized PE radiographs should be utilized as a reliable modality for longitudinal and linear distance measurement, depending on implant length at local implantation site. (author)

  1. How the Measurement of Store Choice Behaviour Moderates the Relationship between Distance and Store Choice Behaviour

    DEFF Research Database (Denmark)

    Hansen, Torben; Cumberland, Flemming; Solgaard, Hans Stubbe

    2013-01-01

    The influence of distance on consumer store choice behaviour has been considered in many studies. In that respect, frequency and budget share are frequently used methods of measurement to determine the consumer's store choice behavour. In this study, we propose that the significance of distance...... is influenced by the way in which store choice behaviour is conceptualized. A survey among 631 consuemrs was performed in order to examine the research proposition. Structural equation results suggest that the negative effect of distance on store choice behaviour is larger when store choice behaviour...... is measured as number of visits to a particular store than wehen store cjoice behaviour is measured as the percentage of budget spend at a particular store. Our results indicate that researchers should carefully consider the measurement of store choice behaviour when carrying out empirical research invlving...

  2. Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser

    Science.gov (United States)

    Jang, Yoon-Soo; Lee, Keunwoo; Han, Seongheum; Lee, Joohyung; Kim, Young-Jin; Kim, Seung-Woo

    2014-12-01

    We revisit the method of synthetic wavelength interferometry (SWI) for absolute measurement of long distances using the radio-frequency harmonics of the pulse repetition rate of a mode-locked femtosecond laser. Our intention here is to extend the nonambiguity range (NAR) of the SWI method using a coarse virtual wavelength synthesized by shifting the pulse repetition rate. The proposed concept of NAR extension is experimentally verified by measuring a ˜13-m distance with repeatability of 9.5 μm (root-mean-square). The measurement precision is estimated to be 31.2 μm in comparison with an incremental He-Ne laser interferometer. This extended SWI method is found to be well suited for long-distance measurements demanded in the fields of large-scale precision engineering, geodetic survey, and future space missions.

  3. A solution for measuring accurate reaction time to visual stimuli realized with a programmable microcontroller.

    Science.gov (United States)

    Ohyanagi, Toshio; Sengoku, Yasuhito

    2010-02-01

    This article presents a new solution for measuring accurate reaction time (SMART) to visual stimuli. The SMART is a USB device realized with a Cypress Programmable System-on-Chip (PSoC) mixed-signal array programmable microcontroller. A brief overview of the hardware and firmware of the PSoC is provided, together with the results of three experiments. In Experiment 1, we investigated the timing accuracy of the SMART in measuring reaction time (RT) under different conditions of operating systems (OSs; Windows XP or Vista) and monitor displays (a CRT or an LCD). The results indicated that the timing error in measuring RT by the SMART was less than 2 msec, on average, under all combinations of OS and display and that the SMART was tolerant to jitter and noise. In Experiment 2, we tested the SMART with 8 participants. The results indicated that there was no significant difference among RTs obtained with the SMART under the different conditions of OS and display. In Experiment 3, we used Microsoft (MS) PowerPoint to present visual stimuli on the display. We found no significant difference in RTs obtained using MS DirectX technology versus using the PowerPoint file with the SMART. We are certain that the SMART is a simple and practical solution for measuring RTs accurately. Although there are some restrictions in using the SMART with RT paradigms, the SMART is capable of providing both researchers and health professionals working in clinical settings with new ways of using RT paradigms in their work.

  4. Laser distance measurement using a newly developed composite-type optical fiberscope for fetoscopic laser surgery

    Science.gov (United States)

    Seki, Takeshi; Oka, Kiyoshi; Naganawa, Akihiro; Yamashita, Hiromasa; Kim, Keri; Chiba, Toshio

    2010-10-01

    Twin-twin transfusion syndrome (TTTS) is a condition of twins disproportionately sharing blood by the communicating vessels in the shared placenta and resulting in the significantly high fetal and perinatal mortality rate. Fetoscopic laser surgery is performed to block these communicating vessels. It is difficult, however, to perceive the distance from the tip of the fetoscope to the placental surface with only a two-dimensional fetoscopic view. When the distance is too short it causes excessive irradiation and even the risk of inadvertent damage to the placenta. On the other hand, not only target vessels but also adjacent tissues can be irradiated when it is too long. We have developed a composite-type optical fiberscope (COF) that was able to observe the target area and also to perform laser irradiation at the same time. In this paper, we studied a method to estimate the distance from the tip of the COF to the target area. We combined the COF with a laser blood-flow meter. Using laser light from the meter, we measured the total amount of light received ("REFLEX") and estimated the relation between the "REFLEX" value and the laser irradiation distance. Further in vivo experiments were subsequently carried out using porcine mesenteric blood vessels. The results showed that the distance and the "REFLEX" value were inversely proportional, irrespective of the experimental environment (e.g. in air, water and amniotic fluid-like solution) and the target object. In the in vivo experiments, we quantitatively measured the distance within an accuracy of ±1 mm (approximately 10%). In conclusion, our new system was able to measure the distance in vivo enabling a surgeon to safely and effectively perform laser irradiation at a suitable distance. The system can be used not only for fetoscopic surgery but also for general endoscopic surgery.

  5. Measurement repeatability of tibial tuberosity-trochlear groove offset distance in red fox (Vulpes vulpes) cadavers

    NARCIS (Netherlands)

    Miles, J.E.; Jensen, B.R.; Kirpensteijn, J.; Svalastoga, E.L.; Eriksen, T.

    2013-01-01

    Abstract OBJECTIVE: To describe CT image reconstruction criteria for measurement of the tibial tuberosity-trochlear groove (TT-TG) offset distance, evaluate intra- and inter-reconstruction repeatability, and identify key sources of error in the measurement technique, as determined in vulpine hind

  6. Automation by microcomputer of a geodetic distance measuring instrument: The distinvar

    International Nuclear Information System (INIS)

    Bain, G.; Bore, C.; Coosemans, W.; Dupont, J.; Fabre, J.P.; Gavaggio, R.; Peron, F.

    1985-01-01

    The distinvar is an instrument for the precision measurement of distances up to 50 m. This report describes the latest developments at CERN which have improved its resolution to 2 μm and increased its speed of use. Measurements are automated by incorporating a microcomputer programmed in BASIC. (orig.)

  7. Automation by microprocessor of an geodesic distance measuring instrument: The distinvar

    International Nuclear Information System (INIS)

    Bain, G.; Bore, C.; Coosemans, W.; Dupont, J.; Fabre, J.P.; Gavaggio, R.; Peron, F.

    1984-01-01

    The distinvar is an instrument for the precision measurement of distances up to 50 m. This report describes the latest developments at CERN which have improved its resolution to 2 micrometers and increased its speed of use. Measurements are automated by incorporating a microcomputer programmed in BASIC. (orig.)

  8. Smart density: A more accurate method of measuring rural residential density for health-related research.

    Science.gov (United States)

    Owens, Peter M; Titus-Ernstoff, Linda; Gibson, Lucinda; Beach, Michael L; Beauregard, Sandy; Dalton, Madeline A

    2010-02-12

    Studies involving the built environment have typically relied on US Census data to measure residential density. However, census geographic units are often unsuited to health-related research, especially in rural areas where development is clustered and discontinuous. We evaluated the accuracy of both standard census methods and alternative GIS-based methods to measure rural density. We compared residential density (units/acre) in 335 Vermont school neighborhoods using conventional census geographic units (tract, block group and block) with two GIS buffer measures: a 1-kilometer (km) circle around the school and a 1-km circle intersected with a 100-meter (m) road-network buffer. The accuracy of each method was validated against the actual residential density for each neighborhood based on the Vermont e911 database, which provides an exact geo-location for all residential structures in the state. Standard census measures underestimate residential density in rural areas. In addition, the degree of error is inconsistent so even the relative rank of neighborhood densities varies across census measures. Census measures explain only 61% to 66% of the variation in actual residential density. In contrast, GIS buffer measures explain approximately 90% of the variation. Combining a 1-km circle with a road-network buffer provides the closest approximation of actual residential density. Residential density based on census units can mask clusters of development in rural areas and distort associations between residential density and health-related behaviors and outcomes. GIS-defined buffers, including a 1-km circle and a road-network buffer, can be used in conjunction with census data to obtain a more accurate measure of residential density.

  9. Smart density: a more accurate method of measuring rural residential density for health-related research

    Directory of Open Access Journals (Sweden)

    Gibson Lucinda

    2010-02-01

    Full Text Available Abstract Background Studies involving the built environment have typically relied on US Census data to measure residential density. However, census geographic units are often unsuited to health-related research, especially in rural areas where development is clustered and discontinuous. Objective We evaluated the accuracy of both standard census methods and alternative GIS-based methods to measure rural density. Methods We compared residential density (units/acre in 335 Vermont school neighborhoods using conventional census geographic units (tract, block group and block with two GIS buffer measures: a 1-kilometer (km circle around the school and a 1-km circle intersected with a 100-meter (m road-network buffer. The accuracy of each method was validated against the actual residential density for each neighborhood based on the Vermont e911 database, which provides an exact geo-location for all residential structures in the state. Results Standard census measures underestimate residential density in rural areas. In addition, the degree of error is inconsistent so even the relative rank of neighborhood densities varies across census measures. Census measures explain only 61% to 66% of the variation in actual residential density. In contrast, GIS buffer measures explain approximately 90% of the variation. Combining a 1-km circle with a road-network buffer provides the closest approximation of actual residential density. Conclusion Residential density based on census units can mask clusters of development in rural areas and distort associations between residential density and health-related behaviors and outcomes. GIS-defined buffers, including a 1-km circle and a road-network buffer, can be used in conjunction with census data to obtain a more accurate measure of residential density.

  10. Accurate label-free reaction kinetics determination using initial rate heat measurements

    Science.gov (United States)

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Jacobs, Denise; Hagen, Wilfred R.

    2015-01-01

    Accurate label-free methods or assays to obtain the initial reaction rates have significant importance in fundamental studies of enzymes and in application-oriented high throughput screening of enzyme activity. Here we introduce a label-free approach for obtaining initial rates of enzyme activity from heat measurements, which we name initial rate calorimetry (IrCal). This approach is based on our new finding that the data recorded by isothermal titration calorimetry for the early stages of a reaction, which have been widely ignored, are correlated to the initial rates. Application of the IrCal approach to various enzymes led to accurate enzyme kinetics parameters as compared to spectroscopic methods and enabled enzyme kinetic studies with natural substrate, e.g. proteases with protein substrates. Because heat is a label-free property of almost all reactions, the IrCal approach holds promise in fundamental studies of various enzymes and in use of calorimetry for high throughput screening of enzyme activity. PMID:26574737

  11. Accurate measurement of mitochondrial DNA deletion level and copy number differences in human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    John P Grady

    Full Text Available Accurate and reliable quantification of the abundance of mitochondrial DNA (mtDNA molecules, both wild-type and those harbouring pathogenic mutations, is important not only for understanding the progression of mtDNA disease but also for evaluating novel therapeutic approaches. A clear understanding of the sensitivity of mtDNA measurement assays under different experimental conditions is therefore critical, however it is routinely lacking for most published mtDNA quantification assays. Here, we comprehensively assess the variability of two quantitative Taqman real-time PCR assays, a widely-applied MT-ND1/MT-ND4 multiplex mtDNA deletion assay and a recently developed MT-ND1/B2M singleplex mtDNA copy number assay, across a range of DNA concentrations and mtDNA deletion/copy number levels. Uniquely, we provide a specific guide detailing necessary numbers of sample and real-time PCR plate replicates for accurately and consistently determining a given difference in mtDNA deletion levels and copy number in homogenate skeletal muscle DNA.

  12. Measuring the Dust Grains and Distance to X Persei Via Its X-ray Halo

    Science.gov (United States)

    Smith, Randall

    2006-09-01

    We propose to observe the X-ray halo of the high mass X-ray binary pulsar X Per to measure interstellar dust grains along the line of sight (LOS) and to determine the distance to X Per. The X-ray halo is formed by scattering from grains along the LOS, which for X Per appear to be concentrated in one molecular cloud. Unlike many other X-ray halo observations, this low-absorption high-latitude sightline is well-characterized from absorption spectroscopy done with HST, Copernicus, and FUSE. This halo observation will measure the distance to the cloud and the dust size distribution in it. We will also be able to determine the distance to X Per by measuring the time delayed pulses in the X-ray halo.

  13. Evaluation of gene-expression clustering via mutual information distance measure

    Directory of Open Access Journals (Sweden)

    Maimon Oded

    2007-03-01

    Full Text Available Abstract Background The definition of a distance measure plays a key role in the evaluation of different clustering solutions of gene expression profiles. In this empirical study we compare different clustering solutions when using the Mutual Information (MI measure versus the use of the well known Euclidean distance and Pearson correlation coefficient. Results Relying on several public gene expression datasets, we evaluate the homogeneity and separation scores of different clustering solutions. It was found that the use of the MI measure yields a more significant differentiation among erroneous clustering solutions. The proposed measure was also used to analyze the performance of several known clustering algorithms. A comparative study of these algorithms reveals that their "best solutions" are ranked almost oppositely when using different distance measures, despite the found correspondence between these measures when analysing the averaged scores of groups of solutions. Conclusion In view of the results, further attention should be paid to the selection of a proper distance measure for analyzing the clustering of gene expression data.

  14. Accurate Measurement of the Effects of All Amino-Acid Mutations on Influenza Hemagglutinin.

    Science.gov (United States)

    Doud, Michael B; Bloom, Jesse D

    2016-06-03

    Influenza genes evolve mostly via point mutations, and so knowing the effect of every amino-acid mutation provides information about evolutionary paths available to the virus. We and others have combined high-throughput mutagenesis with deep sequencing to estimate the effects of large numbers of mutations to influenza genes. However, these measurements have suffered from substantial experimental noise due to a variety of technical problems, the most prominent of which is bottlenecking during the generation of mutant viruses from plasmids. Here we describe advances that ameliorate these problems, enabling us to measure with greatly improved accuracy and reproducibility the effects of all amino-acid mutations to an H1 influenza hemagglutinin on viral replication in cell culture. The largest improvements come from using a helper virus to reduce bottlenecks when generating viruses from plasmids. Our measurements confirm at much higher resolution the results of previous studies suggesting that antigenic sites on the globular head of hemagglutinin are highly tolerant of mutations. We also show that other regions of hemagglutinin-including the stalk epitopes targeted by broadly neutralizing antibodies-have a much lower inherent capacity to tolerate point mutations. The ability to accurately measure the effects of all influenza mutations should enhance efforts to understand and predict viral evolution.

  15. Accurate Measurement of the Effects of All Amino-Acid Mutations on Influenza Hemagglutinin

    Directory of Open Access Journals (Sweden)

    Michael B. Doud

    2016-06-01

    Full Text Available Influenza genes evolve mostly via point mutations, and so knowing the effect of every amino-acid mutation provides information about evolutionary paths available to the virus. We and others have combined high-throughput mutagenesis with deep sequencing to estimate the effects of large numbers of mutations to influenza genes. However, these measurements have suffered from substantial experimental noise due to a variety of technical problems, the most prominent of which is bottlenecking during the generation of mutant viruses from plasmids. Here we describe advances that ameliorate these problems, enabling us to measure with greatly improved accuracy and reproducibility the effects of all amino-acid mutations to an H1 influenza hemagglutinin on viral replication in cell culture. The largest improvements come from using a helper virus to reduce bottlenecks when generating viruses from plasmids. Our measurements confirm at much higher resolution the results of previous studies suggesting that antigenic sites on the globular head of hemagglutinin are highly tolerant of mutations. We also show that other regions of hemagglutinin—including the stalk epitopes targeted by broadly neutralizing antibodies—have a much lower inherent capacity to tolerate point mutations. The ability to accurately measure the effects of all influenza mutations should enhance efforts to understand and predict viral evolution.

  16. A simple and accurate onset detection method for a measured bell-shaped speed profile

    Directory of Open Access Journals (Sweden)

    Lior Botzer

    2009-06-01

    Full Text Available Motor control neuroscientists measure limb trajectories and extract the onset of the movement for a variety of purposes. Such trajectories are often aligned relative to the onset of individual movement before the features of that movement are extracted and their properties are inspected. Onset detection is performed either manually or automatically, typically by selecting a velocity threshold. Here, we present a simple onset detection algorithm that is more accurate than the conventional velocity threshold technique. The proposed method is based on a simple regression and follows the minimum acceleration with constraints model, in which the initial phase of the bell-shaped movement is modeled by a cubic power of the time. We demonstrate the performance of the suggested method and compare it to the velocity threshold technique and to manual onset detection by a group of motor control experts. The database for this comparison consists of simulated minimum jerk trajectories and recorded reaching movements.

  17. The Czech national long distances measuring standard Koštice - State of play

    Directory of Open Access Journals (Sweden)

    Ladislav Červinka

    2009-11-01

    Full Text Available This article gives information about new Czech national long distances measuring standard, which has been preparedat the distance base near the Koštice village. Submitter of the project is the Czech Office for Standards, Metrology and Testing.Research and document preparation for creation of the measuring standard were ensured by the Research Institute of Geodesy,Topography and Cartography. Interlaboratory comparisons were made by staff of the Bundeswehr University in Munich. The paperreports about works, which will be carried out on national standard in the second half of this year. Purpose of this works is to improvecharacteristics of accuracy of national etalon.

  18. Absolute distance measurement with correction of air refractive index by using two-color dispersive interferometry.

    Science.gov (United States)

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Li, Jianshuang; Qu, Xinghua

    2016-10-17

    Two-color interferometry is powerful for the correction of the air refractive index especially in the turbulent air over long distance, since the empirical equations could introduce considerable measurement uncertainty if the environmental parameters cannot be measured with sufficient precision. In this paper, we demonstrate a method for absolute distance measurement with high-accuracy correction of air refractive index using two-color dispersive interferometry. The distances corresponding to the two wavelengths can be measured via the spectrograms captured by a CCD camera pair in real time. In the long-term experiment of the correction of air refractive index, the experimental results show a standard deviation of 3.3 × 10-8 for 12-h continuous measurement without the precise knowledge of the environmental conditions, while the variation of the air refractive index is about 2 × 10-6. In the case of absolute distance measurement, the comparison with the fringe counting interferometer shows an agreement within 2.5 μm in 12 m range.

  19. Measuring solar reflectance - Part I: Defining a metric that accurately predicts solar heat gain

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul [Heat Island Group, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2010-09-15

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective ''cool colored'' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric R{sub E891BN} can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {<=} 5:12 [23 ]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%. We define clear sky air mass one global horizontal (''AM1GH'') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer. (author)

  20. An algorithm for selecting the most accurate protocol for contact angle measurement by drop shape analysis.

    Science.gov (United States)

    Xu, Z N

    2014-12-01

    In this study, an error analysis is performed to study real water drop images and the corresponding numerically generated water drop profiles for three widely used static contact angle algorithms: the circle- and ellipse-fitting algorithms and the axisymmetric drop shape analysis-profile (ADSA-P) algorithm. The results demonstrate the accuracy of the numerically generated drop profiles based on the Laplace equation. A significant number of water drop profiles with different volumes, contact angles, and noise levels are generated, and the influences of the three factors on the accuracies of the three algorithms are systematically investigated. The results reveal that the above-mentioned three algorithms are complementary. In fact, the circle- and ellipse-fitting algorithms show low errors and are highly resistant to noise for water drops with small/medium volumes and contact angles, while for water drop with large volumes and contact angles just the ADSA-P algorithm can meet accuracy requirement. However, this algorithm introduces significant errors in the case of small volumes and contact angles because of its high sensitivity to noise. The critical water drop volumes of the circle- and ellipse-fitting algorithms corresponding to a certain contact angle error are obtained through a significant amount of computation. To improve the precision of the static contact angle measurement, a more accurate algorithm based on a combination of the three algorithms is proposed. Following a systematic investigation, the algorithm selection rule is described in detail, while maintaining the advantages of the three algorithms and overcoming their deficiencies. In general, static contact angles over the entire hydrophobicity range can be accurately evaluated using the proposed algorithm. The ease of erroneous judgment in static contact angle measurements is avoided. The proposed algorithm is validated by a static contact angle evaluation of real and numerically generated water drop

  1. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  2. Clustering by Partitioning around Medoids using Distance-Based Similarity Measures on Interval-Scaled Variables

    Directory of Open Access Journals (Sweden)

    D. L. Nkweteyim

    2018-03-01

    Full Text Available It is reported in this paper, the results of a study of the partitioning around medoids (PAM clustering algorithm applied to four datasets, both standardized and not, and of varying sizes and numbers of clusters. The angular distance proximity measure in addition to the two more traditional proximity measures, namely the Euclidean distance and Manhattan distance, was used to compute object-object similarity. The data used in the study comprise three widely available datasets, and one that was constructed from publicly available climate data. Results replicate some of the well known facts about the PAM algorithm, namely that the quality of the clusters generated tend to be much better for small datasets, that the silhouette value is a good, even if not perfect, guide for the optimal number of clusters to generate, and that human intervention is required to interpret generated clusters. Additionally, results also indicate that the angular distance measure, which traditionally has not been widely used in clustering, outperforms both the Euclidean and Manhattan distance metrics in certain situations.

  3. Root resistance to cavitation is accurately measured using a centrifuge technique.

    Science.gov (United States)

    Pratt, R B; MacKinnon, E D; Venturas, M D; Crous, C J; Jacobsen, A L

    2015-02-01

    Plants transport water under negative pressure and this makes their xylem vulnerable to cavitation. Among plant organs, root xylem is often highly vulnerable to cavitation due to water stress. The use of centrifuge methods to study organs, such as roots, that have long vessels are hypothesized to produce erroneous estimates of cavitation resistance due to the presence of open vessels through measured samples. The assumption that roots have long vessels may be premature since data for root vessel length are sparse; moreover, recent studies have not supported the existence of a long-vessel artifact for stems when a standard centrifuge technique was used. We examined resistance to cavitation estimated using a standard centrifuge technique and compared these values with native embolism measurements for roots of seven woody species grown in a common garden. For one species we also measured vulnerability using single-vessel air injection. We found excellent agreement between root native embolism and the levels of embolism measured using a centrifuge technique, and with air-seeding estimates from single-vessel injection. Estimates of cavitation resistance measured from centrifuge curves were biologically meaningful and were correlated with field minimum water potentials, vessel diameter (VD), maximum xylem-specific conductivity (Ksmax) and vessel length. Roots did not have unusually long vessels compared with stems; moreover, root vessel length was not correlated to VD or to the vessel length of stems. These results suggest that root cavitation resistance can be accurately and efficiently measured using a standard centrifuge method and that roots are highly vulnerable to cavitation. The role of root cavitation resistance in determining drought tolerance of woody species deserves further study, particularly in the context of climate change. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Accurate γ-ray spectrometry measurements of the half-life of 92Sr

    International Nuclear Information System (INIS)

    Leconte, P.; Hudelot, J.P.; Antony, M.

    2008-01-01

    Studies of the nuclear fuel cycle require an accurate knowledge of the energy release from the decay of radioactive nuclides produced in a reactor, including precise half-life data for the short-lived radionuclides. Moreover, short-lived fission products are crucial for fission rate distribution measurements performed in low-power facilities, such as EOLE and MINERVE of CEA Cadarache [Fougeras, P., 2005. EOLE, MINERVE and MASURCA facilities and their associated neutron experimental programs. In: 13th International Conference on Nuclear Engineering, Beijing, China, 16-20 May 2005], and their nuclear decay data need to be known to high precision. For these reasons, the half-life of 92 Sr has been measured to solve a recently observed inconsistency identified with the quoted value in the main nuclear applications libraries (including JEFF3.1): T 1/2 =2.71±0.01 h [Parsa, B., Ashari, A., Goolvard, L., Nobar, Y.M., 1971. Decay scheme of 2.71 h 92 Sr. Nucl. Phys. A 175, 629-640]. An overestimation of 4.5% has been identified in this work, based on two independent methods. Specific γ-ray spectrometry measurements on activated fissile foils have been carried out, using two HPGe detectors. Influencing factors such as net area measurements of photopeaks, pulse pile-up accuracy and dead time corrections in the presence of decaying activity are discussed. A new value has been obtained by combining eight series of measurements: T 1/2 =2.594±0.006 h. The uncertainty has been reduced by a factor of two with respect to previous evaluations. This measured value also shows good agreement with the most recent studies of T 1/2 =2.627±0.009 h [Nir-El, Y., 2003. Private Communications. Soreq Research Centre, Yavne, Israel

  5. Accurate Fluid Level Measurement in Dynamic Environment Using Ultrasonic Sensor and ν-SVM

    Directory of Open Access Journals (Sweden)

    Jenny TERZIC

    2009-10-01

    Full Text Available A fluid level measurement system based on a single Ultrasonic Sensor and Support Vector Machines (SVM based signal processing and classification system has been developed to determine the fluid level in automotive fuel tanks. The novel approach based on the ν-SVM classification method uses the Radial Basis Function (RBF to compensate for the measurement error induced by the sloshing effects in the tank caused by vehicle motion. A broad investigation on selected pre-processing filters, namely, Moving Mean, Moving Median, and Wavelet filter, has also been presented. Field drive trials were performed under normal driving conditions at various fuel volumes ranging from 5 L to 50 L to acquire sample data from the ultrasonic sensor for the training of SVM model. Further drive trials were conducted to obtain data to verify the SVM results. A comparison of the accuracy of the predicted fluid level obtained using SVM and the pre-processing filters is provided. It is demonstrated that the ν-SVM model using the RBF kernel function and the Moving Median filter has produced the most accurate outcome compared with the other signal filtration methods in terms of fluid level measurement.

  6. Accurate and cost-effective MTF measurement system for lens modules of digital cameras

    Science.gov (United States)

    Chang, Gao-Wei; Liao, Chia-Cheng; Yeh, Zong-Mu

    2007-01-01

    For many years, the widening use of digital imaging products, e.g., digital cameras, has given rise to much attention in the market of consumer electronics. However, it is important to measure and enhance the imaging performance of the digital ones, compared to that of conventional cameras (with photographic films). For example, the effect of diffraction arising from the miniaturization of the optical modules tends to decrease the image resolution. As a figure of merit, modulation transfer function (MTF) has been broadly employed to estimate the image quality. Therefore, the objective of this paper is to design and implement an accurate and cost-effective MTF measurement system for the digital camera. Once the MTF of the sensor array is provided, that of the optical module can be then obtained. In this approach, a spatial light modulator (SLM) is employed to modulate the spatial frequency of light emitted from the light-source. The modulated light going through the camera under test is consecutively detected by the sensors. The corresponding images formed from the camera are acquired by a computer and then, they are processed by an algorithm for computing the MTF. Finally, through the investigation on the measurement accuracy from various methods, such as from bar-target and spread-function methods, it appears that our approach gives quite satisfactory results.

  7. Indirect viscosimetric method is less accurate than ektacytometry for the measurement of red blood cell deformability.

    Science.gov (United States)

    Vent-Schmidt, Jens; Waltz, Xavier; Pichon, Aurélien; Hardy-Dessources, Marie-Dominique; Romana, Marc; Connes, Philippe

    2015-01-01

    The aim of this study was to test the accuracy of viscosimetric method to estimate the red blood cell (RBC) deformability properties. Thirty-three subjects were enrolled in this study: 6 healthy subjects (AA), 11 patients with sickle cell-hemoglobin C disease (SC) and 16 patients with sickle cell anemia (SS). Two methods were used to assess RBC deformability: 1) indirect viscosimetric method and 2) ektacytometry. The indirect viscosimetric method was based on the Dintenfass equation where blood viscosity, plasma viscosity and hematocrit are measured and used to calculate an index of RBC rigidity (Tk index). The RBC deformability/rigidity of the three groups was compared using the two methods. Tk index was not different between SS and SC patients and the two groups had higher values than AA group. When ektacytometry was used, RBC deformability was lower in SS and SC groups compared to the AA group and SS and SC patients were different. Although the two measures of RBC deformability were correlated, the association was not very high. Bland and Altman analysis demonstrated a 3.25 bias suggesting a slight difference between the two methods. In addition, the limit of agreement represented 28% (>15%) of the mean values of RBC deformability, showing no interchangeability between the two methods. In conclusion, measuring RBC deformability by indirect viscosimetry is less accurate than by ektacytometry, which is considered the gold standard.

  8. Accurate measurement of the optical activity of alanine crystals and the determination of their absolute chirality

    Science.gov (United States)

    Ishikawa, Kazuhiko; Terasawa, Yukana; Tanaka, Masahito; Asahi, Toru

    2017-05-01

    Wavelength dependence measurements of the chiroptical properties in alanine crystals have so far been unsuccessful using conventional spectroscopic techniques. We describe our attempts to measure the wavelength dependence of the optical activity in L- and D-alanine crystals along each crystallographic axis, and to determine the absolute chirality of alanine crystals by correlating the absolute structure to the optical activity using an x-ray diffractometer and a generalized high accuracy universal polarimeter. We have succeeded in accurately measuring the optical rotatory dispersion in the direction, which shows that the optical rotation of the D-alanine crystal is dextrorotatory and that of the L-alanine crystal is laevorotatory, thereby determining the absolute chirality. Furthermore, comparison with the optical activity in solution shows that the optical activity in alanine crystals is different not only in value, but also in the sign. These results have led us to conclude that the optical rotatory power in the crystalline state should not be simply the summation of molecular optical rotatory power values. We propose the necessity of a theory, which contains the contribution of molecular interactions within the crystal, in order to calculate the optical rotatory power of the crystalline state.

  9. A clinical distance measure for evaluating treatment plan quality difference with Pareto fronts in radiotherapy

    Directory of Open Access Journals (Sweden)

    Kristoffer Petersson

    2017-07-01

    Full Text Available We present a clinical distance measure for Pareto front evaluation studies in radiotherapy, which we show strongly correlates (r = 0.74 and 0.90 with clinical plan quality evaluation. For five prostate cases, sub-optimal treatment plans located at a clinical distance value of >0.32 (0.28–0.35 from fronts of Pareto optimal plans, were assessed to be of lower plan quality by our (12 observers (p < .05. In conclusion, the clinical distance measure can be used to determine if the difference between a front and a given plan (or between different fronts corresponds to a clinically significant plan quality difference.

  10. Geometric measures of quantum correlations: characterization, quantification, and comparison by distances and operations

    International Nuclear Information System (INIS)

    Roga, W; Illuminati, F; Spehner, D

    2016-01-01

    We investigate and compare three distinguished geometric measures of bipartite quantum correlations that have been recently introduced in the literature: the geometric discord, the measurement-induced geometric discord, and the discord of response, each one defined according to three contractive distances on the set of quantum states, namely the trace, Bures, and Hellinger distances. We establish a set of exact algebraic relations and inequalities between the different measures. In particular, we show that the geometric discord and the discord of response based on the Hellinger distance are easy to compute analytically for all quantum states whenever the reference subsystem is a qubit. These two measures thus provide the first instance of discords that are simultaneously fully computable, reliable (since they satisfy all the basic Axioms that must be obeyed by a proper measure of quantum correlations), and operationally viable (in terms of state distinguishability). We apply the general mathematical structure to determine the closest classical-quantum state of a given state and the maximally quantum-correlated states at fixed global state purity according to the different distances, as well as a necessary condition for a channel to be quantumness breaking. (paper)

  11. An uncertainty importance measure using a distance metric for the change in a cumulative distribution function

    International Nuclear Information System (INIS)

    Chun, Moon-Hyun; Han, Seok-Jung; Tak, Nam-IL

    2000-01-01

    A simple measure of uncertainty importance using the entire change of cumulative distribution functions (CDFs) has been developed for use in probability safety assessments (PSAs). The entire change of CDFs is quantified in terms of the metric distance between two CDFs. The metric distance measure developed in this study reflects the relative impact of distributional changes of inputs on the change of an output distribution, while most of the existing uncertainty importance measures reflect the magnitude of relative contribution of input uncertainties to the output uncertainty. The present measure has been evaluated analytically for various analytical distributions to examine its characteristics. To illustrate the applicability and strength of the present measure, two examples are provided. The first example is an application of the present measure to a typical problem of a system fault tree analysis and the second one is for a hypothetical non-linear model. Comparisons of the present result with those obtained by existing uncertainty importance measures show that the metric distance measure is a useful tool to express the measure of uncertainty importance in terms of the relative impact of distributional changes of inputs on the change of an output distribution

  12. In-situ position and vibration measurement of rough surfaces using laser Doppler distance sensors

    Science.gov (United States)

    Czarske, J.; Pfister, T.; Günther, P.; Büttner, L.

    2009-06-01

    In-situ measurement of distances and shapes as well as dynamic deformations and vibrations of fast moving and especially rotating objects, such as gear shafts and turbine blades, is an important task at process control. We recently developed a laser Doppler distance frequency sensor, employing two superposed fan-shaped interference fringe systems with contrary fringe spacing gradients. Via two Doppler frequency evaluations the non-incremental position (i.e. distance) and the tangential velocity of rotating bodies are determined simultaneously. The distance uncertainty is in contrast to e.g. triangulation in principle independent of the object velocity. This unique feature allows micrometer resolutions of fast moved rough surfaces. The novel sensor was applied at turbo machines in order to control the tip clearance. The measurements at a transonic centrifugal compressor were performed during operation at up to 50,000 rpm, i.e. 586 m/s velocity of the blade tips. Due to the operational conditions such as temperatures of up to 300 °C, a flexible and robust measurement system with a passive fiber-coupled sensor, using diffractive optics, has been realized. Since the tip clearance of individual blades could be temporally resolved an analysis of blade vibrations was possible. A Fourier transformation of the blade distances results in an average period of 3 revolutions corresponding to a frequency of 1/3 of the rotary frequency. Additionally, a laser Doppler distance sensor using two tilted fringe systems and phase evaluation will be presented. This phase sensor exhibits a minimum position resolution of σz = 140 nm. It allows precise in-situ shape measurements at grinding and turning processes.

  13. Source-to-detector distance and beam center do not affect radiographic measurements of acetabular morphology

    International Nuclear Information System (INIS)

    Goldman, Ashton H.; Hoover, Kevin B.

    2017-01-01

    Multiple radiographic acquisition techniques have been evaluated for their effect on measurements of acetabular morphology. This cadaveric study examined the effect of two acquisition parameters not previously evaluated: beam center position and source-to-detector distance. This study also evaluated the effect of reader differences on measurements. Following calibration of measurements between two readers using five clinical radiographs (training), radiographs were obtained from two cadavers using four different source-to-detector distances and three different radiographic centers for a total of 12 radiographic techniques (experimental). Two physician readers acquired four types of measurements from each cadaver radiograph: lateral center edge angle, peak-to-edge distance, Sharp's angle, and the Tonnis angle. All measurements were evaluated for intra-class correlation coefficient (ICC), kappa statistics for hip dysplasia, and factors that resulted in measurement differences using a mixed statistical model. After training of the two physician readers, there was strong agreement in their hip morphology measurements (ICC 0.84-0.93), agreement in the presence of hip dysplasia (κ = 0.58-1.0), and no measurement difference between physician readers (p = 0.12-1.0). Experimental cadaver measurements showed moderate-to-strong agreement of the readers (ICC 0.74-0.93) and complete agreement on dysplasia (κ = 1). After accounting for reader and radiographic technique, there was no difference in hip morphology measurements (p = 0.83-0.99). In this cadaveric study, measurements of hip morphology were not affected by varying source-to-detector distance or beam center. We conclude that these acquisition parameters are not likely to affect the diagnosis of hip dysplasia in a clinical setting. (orig.)

  14. Source-to-detector distance and beam center do not affect radiographic measurements of acetabular morphology

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Ashton H. [Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA (United States); Hoover, Kevin B. [Virginia Commonwealth University, Department of Radiology, 1250 E Marshall St. 3rd Floor, PO Box 980615, Richmond, VA (United States)

    2017-04-15

    Multiple radiographic acquisition techniques have been evaluated for their effect on measurements of acetabular morphology. This cadaveric study examined the effect of two acquisition parameters not previously evaluated: beam center position and source-to-detector distance. This study also evaluated the effect of reader differences on measurements. Following calibration of measurements between two readers using five clinical radiographs (training), radiographs were obtained from two cadavers using four different source-to-detector distances and three different radiographic centers for a total of 12 radiographic techniques (experimental). Two physician readers acquired four types of measurements from each cadaver radiograph: lateral center edge angle, peak-to-edge distance, Sharp's angle, and the Tonnis angle. All measurements were evaluated for intra-class correlation coefficient (ICC), kappa statistics for hip dysplasia, and factors that resulted in measurement differences using a mixed statistical model. After training of the two physician readers, there was strong agreement in their hip morphology measurements (ICC 0.84-0.93), agreement in the presence of hip dysplasia (κ = 0.58-1.0), and no measurement difference between physician readers (p = 0.12-1.0). Experimental cadaver measurements showed moderate-to-strong agreement of the readers (ICC 0.74-0.93) and complete agreement on dysplasia (κ = 1). After accounting for reader and radiographic technique, there was no difference in hip morphology measurements (p = 0.83-0.99). In this cadaveric study, measurements of hip morphology were not affected by varying source-to-detector distance or beam center. We conclude that these acquisition parameters are not likely to affect the diagnosis of hip dysplasia in a clinical setting. (orig.)

  15. Experimental study on performance verification tests for coordinate measuring systems with optical distance sensors

    Science.gov (United States)

    Carmignato, Simone

    2009-01-01

    Optical sensors are increasingly used for dimensional and geometrical metrology. However, the lack of international standards for testing optical coordinate measuring systems is currently limiting the traceability of measurements and the easy comparison of different optical systems. This paper presents an experimental investigation on artefacts and procedures for testing coordinate measuring systems equipped with optical distance sensors. The work is aimed at contributing to the standardization of testing methods. The VDI/VDE 2617-6.2:2005 guideline, which is probably the most complete document available at the state of the art for testing systems with optical distance sensors, is examined with specific experiments. Results from the experiments are discussed, with particular reference to the tests used for determining the following characteristics: error of indication for size measurement, probing error and structural resolution. Particular attention is given to the use of artefacts alternative to gauge blocks for determining the error of indication for size measurement.

  16. A Chroma-based Tempo-insensitive Distance Measure for Cover Song Identification

    DEFF Research Database (Denmark)

    Jensen, Jesper Højvang; Ellis, Dan P. W.; Christensen, Mads Græsbøll

    In the context of music, a cover version is a remake of a song, often with significant stylistic variation. In this paper we describe a distance measure between sampled audio files that is designed to be insensitive to instrumentation, time shift, temporal scaling and transpositions. The algorithm...

  17. An accurate low current measurement circuit for heavy iron beam current monitor

    International Nuclear Information System (INIS)

    Zhou Chaoyang; Su Hong; Mao Ruishi; Dong Chengfu; Qian Yi; Kong Jie

    2012-01-01

    Heavy-ion beams at 10 6 particles per second have been applied to the treatment of deep-seated inoperable tumors in the therapy terminal of the Heavy Ion Research Facility in Lanzhou (HIRFL) which is located at the Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS). An accurate low current measurement circuit following a Faraday cup was developed to monitor the beam current at pA range. The circuit consisted of a picoammeter with a bandwidth of 1 kHz and a gated integrator (GI). A low input bias current precision amplifier and new guarding and shielding techniques were used in the picoammeter circuit which allowed as to measure current less than 1 pA with a current gain of 0.22 V/pA and noise less than 10 fA. This paper will also describe a novel compensation approach which reduced the charge injection from switches in the GI to 10 −18 C, and a T-switch configuration which was used to eliminate leakage current in the reset switch.

  18. The standard centrifuge method accurately measures vulnerability curves of long-vesselled olive stems.

    Science.gov (United States)

    Hacke, Uwe G; Venturas, Martin D; MacKinnon, Evan D; Jacobsen, Anna L; Sperry, John S; Pratt, R Brandon

    2015-01-01

    The standard centrifuge method has been frequently used to measure vulnerability to xylem cavitation. This method has recently been questioned. It was hypothesized that open vessels lead to exponential vulnerability curves, which were thought to be indicative of measurement artifact. We tested this hypothesis in stems of olive (Olea europea) because its long vessels were recently claimed to produce a centrifuge artifact. We evaluated three predictions that followed from the open vessel artifact hypothesis: shorter stems, with more open vessels, would be more vulnerable than longer stems; standard centrifuge-based curves would be more vulnerable than dehydration-based curves; and open vessels would cause an exponential shape of centrifuge-based curves. Experimental evidence did not support these predictions. Centrifuge curves did not vary when the proportion of open vessels was altered. Centrifuge and dehydration curves were similar. At highly negative xylem pressure, centrifuge-based curves slightly overestimated vulnerability compared to the dehydration curve. This divergence was eliminated by centrifuging each stem only once. The standard centrifuge method produced accurate curves of samples containing open vessels, supporting the validity of this technique and confirming its utility in understanding plant hydraulics. Seven recommendations for avoiding artefacts and standardizing vulnerability curve methodology are provided. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  19. Accurate measurement of volume and shape of resting and activated blood platelets from light scattering.

    Science.gov (United States)

    Moskalensky, Alexander E; Yurkin, Maxim A; Konokhova, Anastasiya I; Strokotov, Dmitry I; Nekrasov, Vyacheslav M; Chernyshev, Andrei V; Tsvetovskaya, Galina A; Chikova, Elena D; Maltsev, Valeri P

    2013-01-01

    We introduce a novel approach for determination of volume and shape of individual blood platelets modeled as an oblate spheroid from angle-resolved light scattering with flow-cytometric technique. The light-scattering profiles (LSPs) of individual platelets were measured with the scanning flow cytometer and the platelet characteristics were determined from the solution of the inverse light-scattering problem using the precomputed database of theoretical LSPs. We revealed a phenomenon of parameter compensation, which is partly explained in the framework of anomalous diffraction approximation. To overcome this problem, additional a priori information on the platelet refractive index was used. It allowed us to determine the size of each platelet with subdiffraction precision and independent of the particular value of the platelet aspect ratio. The shape (spheroidal aspect ratio) distributions of platelets showed substantial differences between native and activated by 10 μM adenosine diphosphate samples. We expect that the new approach may find use in hematological analyzers for accurate measurement of platelet volume distribution and for determination of the platelet activation efficiency.

  20. Can Wearable Devices Accurately Measure Heart Rate Variability? A Systematic Review.

    Science.gov (United States)

    Georgiou, Konstantinos; Larentzakis, Andreas V; Khamis, Nehal N; Alsuhaibani, Ghadah I; Alaska, Yasser A; Giallafos, Elias J

    2018-03-01

    A growing number of wearable devices claim to provide accurate, cheap and easily applicable heart rate variability (HRV) indices. This is mainly accomplished by using wearable photoplethysmography (PPG) and/or electrocardiography (ECG), through simple and non-invasive techniques, as a substitute of the gold standard RR interval estimation through electrocardiogram. Although the agreement between pulse rate variability (PRV) and HRV has been evaluated in the literature, the reported results are still inconclusive especially when using wearable devices. The purpose of this systematic review is to investigate if wearable devices provide a reliable and precise measurement of classic HRV parameters in rest as well as during exercise. A search strategy was implemented to retrieve relevant articles from MEDLINE and SCOPUS databases, as well as, through internet search. The 308 articles retrieved were reviewed for further evaluation according to the predetermined inclusion/exclusion criteria. Eighteen studies were included. Sixteen of them integrated ECG - HRV technology and two of them PPG - PRV technology. All of them examined wearable devices accuracy in RV detection during rest, while only eight of them during exercise. The correlation between classic ECG derived HRV and the wearable RV ranged from very good to excellent during rest, yet it declined progressively as exercise level increased. Wearable devices may provide a promising alternative solution for measuring RV. However, more robust studies in non-stationary conditions are needed using appropriate methodology in terms of number of subjects involved, acquisition and analysis techniques implied.

  1. Accurate method for luminous transmittance and signal detection quotients measurements in sunglasses lenses

    Science.gov (United States)

    Loureiro, A. D.; Gomes, L. M.; Ventura, L.

    2018-02-01

    The international standard ISO 12312-1 proposes transmittance tests that quantify how dark sunglasses lenses are and whether or not they are suitable for driving. To perform these tests a spectrometer is required. In this study, we present and analyze theoretically an accurate alternative method for performing these measurements using simple components. Using three LEDs and a four-channel sensor we generated weighting functions similar to the standard ones for luminous and traffic lights transmittances. From 89 sunglasses lens spectroscopy data, we calculated luminous transmittance and signal detection quotients using our obtained weighting functions and the standard ones. Mean-difference Tukey plots were used to compare the results. All tested sunglasses lenses were classified in the right category and correctly as suitable or not for driving. The greatest absolute errors for luminous transmittance and red, yellow, green and blue signal detection quotients were 0.15%, 0.17, 0.06, 0.04 and 0.18, respectively. This method will be used in a device capable to perform transmittance tests (visible, traffic lights and ultraviolet (UV)) according to the standard. It is important to measure rightly luminous transmittance and relative visual attenuation quotients to report correctly whether or not sunglasses are suitable for driving. Moreover, standard UV requirements depend on luminous transmittance.

  2. An easy way to measure accurately the direct magnetoelectric voltage coefficient of thin film devices

    Energy Technology Data Exchange (ETDEWEB)

    Poullain, Gilles, E-mail: gilles.poullain@ensicaen.fr; More-Chevalier, Joris; Cibert, Christophe; Bouregba, Rachid

    2017-01-15

    Tb{sub x}Dy{sub 1−x}Fe{sub 2}/Pt/Pb(Zr{sub x}, Ti{sub 1−x})O{sub 3} thin films were grown on Pt/TiO{sub 2}/SiO{sub 2}/Si substrate by multi-target sputtering. The magnetoelectric voltage coefficient α{sup Η}{sub ΜΕ} was determined at room temperature using a lock-in amplifier. By adding, in series in the circuit, a capacitor of the same value as that of the device under test, we were able to demonstrate that the magnetoelectric device behaves as a voltage source. Furthermore, a simple way to subtract the stray voltage arising from the flow of eddy currents in the measurement set-up, is proposed. This allows the easy and accurate determination of the true magnetoelectric voltage coefficient. A large α{sup Η}{sub ΜΕ} of 8.3 V/cm. Oe was thus obtained for a Terfenol-D/Pt/PZT thin film device, without DC magnetic field nor mechanical resonance. - Highlights: • Magnetoelectric device behaves as a voltage source. • A simple way to subtract eddy currents during the measurement, is proposed.

  3. The Quick Measure of a Nurbs Surface Curvature for Accurate Triangular Meshing

    Directory of Open Access Journals (Sweden)

    Kniat Aleksander

    2014-04-01

    Full Text Available NURBS surfaces are the most widely used surfaces for three-dimensional models in CAD/ CAE programs. When a model for FEM calculation is prepared with a CAD program it is inevitable to mesh it finally. There are many algorithms for meshing planar regions. Some of them may be used for meshing surfaces but it is necessary to take the curvature of the surface under consideration to avoid poor quality mesh. The mesh must be denser in the curved regions of the surface. In this paper, instead of analysing a surface curvature, the method to assess how close is a mesh triangle to the surface to which its vertices belong, is presented. The distance between a mesh triangle and a parallel tangent plane through a point on a surface is the measure of the triangle quality. Finding the surface point whose projection is located inside the mesh triangle and which is the tangency point to the plane parallel to this triangle is an optimization problem. Mathematical description of the problem and the algorithm to find its solution are also presented in the paper.

  4. Physical Model for Rapid and Accurate Determination of Nanopore Size via Conductance Measurement.

    Science.gov (United States)

    Wen, Chenyu; Zhang, Zhen; Zhang, Shi-Li

    2017-10-27

    Nanopores have been explored for various biochemical and nanoparticle analyses, primarily via characterizing the ionic current through the pores. At present, however, size determination for solid-state nanopores is experimentally tedious and theoretically unaccountable. Here, we establish a physical model by introducing an effective transport length, L eff , that measures, for a symmetric nanopore, twice the distance from the center of the nanopore where the electric field is the highest to the point along the nanopore axis where the electric field falls to e -1 of this maximum. By [Formula: see text], a simple expression S 0 = f (G, σ, h, β) is derived to algebraically correlate minimum nanopore cross-section area S 0 to nanopore conductance G, electrolyte conductivity σ, and membrane thickness h with β to denote pore shape that is determined by the pore fabrication technique. The model agrees excellently with experimental results for nanopores in graphene, single-layer MoS 2 , and ultrathin SiN x films. The generality of the model is verified by applying it to micrometer-size pores.

  5. Weighted Evidence Combination Rule Based on Evidence Distance and Uncertainty Measure: An Application in Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2018-01-01

    Full Text Available Conflict management in Dempster-Shafer theory (D-S theory is a hot topic in information fusion. In this paper, a novel weighted evidence combination rule based on evidence distance and uncertainty measure is proposed. The proposed approach consists of two steps. First, the weight is determined based on the evidence distance. Then, the weight value obtained in first step is modified by taking advantage of uncertainty. Our proposed method can efficiently handle high conflicting evidences with better performance of convergence. A numerical example and an application based on sensor fusion in fault diagnosis are given to demonstrate the efficiency of our proposed method.

  6. Distance-Based Functional Diversity Measures and Their Decomposition: A Framework Based on Hill Numbers

    Science.gov (United States)

    Chiu, Chun-Huo; Chao, Anne

    2014-01-01

    Hill numbers (or the “effective number of species”) are increasingly used to characterize species diversity of an assemblage. This work extends Hill numbers to incorporate species pairwise functional distances calculated from species traits. We derive a parametric class of functional Hill numbers, which quantify “the effective number of equally abundant and (functionally) equally distinct species” in an assemblage. We also propose a class of mean functional diversity (per species), which quantifies the effective sum of functional distances between a fixed species to all other species. The product of the functional Hill number and the mean functional diversity thus quantifies the (total) functional diversity, i.e., the effective total distance between species of the assemblage. The three measures (functional Hill numbers, mean functional diversity and total functional diversity) quantify different aspects of species trait space, and all are based on species abundance and species pairwise functional distances. When all species are equally distinct, our functional Hill numbers reduce to ordinary Hill numbers. When species abundances are not considered or species are equally abundant, our total functional diversity reduces to the sum of all pairwise distances between species of an assemblage. The functional Hill numbers and the mean functional diversity both satisfy a replication principle, implying the total functional diversity satisfies a quadratic replication principle. When there are multiple assemblages defined by the investigator, each of the three measures of the pooled assemblage (gamma) can be multiplicatively decomposed into alpha and beta components, and the two components are independent. The resulting beta component measures pure functional differentiation among assemblages and can be further transformed to obtain several classes of normalized functional similarity (or differentiation) measures, including N-assemblage functional generalizations of

  7. Distance-based functional diversity measures and their decomposition: a framework based on Hill numbers.

    Directory of Open Access Journals (Sweden)

    Chun-Huo Chiu

    Full Text Available Hill numbers (or the "effective number of species" are increasingly used to characterize species diversity of an assemblage. This work extends Hill numbers to incorporate species pairwise functional distances calculated from species traits. We derive a parametric class of functional Hill numbers, which quantify "the effective number of equally abundant and (functionally equally distinct species" in an assemblage. We also propose a class of mean functional diversity (per species, which quantifies the effective sum of functional distances between a fixed species to all other species. The product of the functional Hill number and the mean functional diversity thus quantifies the (total functional diversity, i.e., the effective total distance between species of the assemblage. The three measures (functional Hill numbers, mean functional diversity and total functional diversity quantify different aspects of species trait space, and all are based on species abundance and species pairwise functional distances. When all species are equally distinct, our functional Hill numbers reduce to ordinary Hill numbers. When species abundances are not considered or species are equally abundant, our total functional diversity reduces to the sum of all pairwise distances between species of an assemblage. The functional Hill numbers and the mean functional diversity both satisfy a replication principle, implying the total functional diversity satisfies a quadratic replication principle. When there are multiple assemblages defined by the investigator, each of the three measures of the pooled assemblage (gamma can be multiplicatively decomposed into alpha and beta components, and the two components are independent. The resulting beta component measures pure functional differentiation among assemblages and can be further transformed to obtain several classes of normalized functional similarity (or differentiation measures, including N-assemblage functional

  8. Sitting and standing blood pressure measurements are not accurate for the diagnosis of orthostatic hypotension.

    LENUS (Irish Health Repository)

    Cooke, J

    2012-01-31

    INTRODUCTION: Orthostatic hypotension (OH) is associated with troublesome symptoms and increased mortality. It is treatable and deserving of accurate diagnosis. This can be time consuming. The current reference standard for its diagnosis is head-up tilt (HUT) testing with continuous beat-to-beat plethysmography. Our objective was to assess the accuracy of sit-stand testing with semi-automatic sphygmomanometry for the diagnosis of OH. DESIGN: Retrospective test of diagnostic accuracy. METHODS: This was a retrospective study performed using a database maintained by a busy syncope unit. HUT testing was performed using an automated tilt table with Finometer monitoring. A 3 min 70 degrees HUT was performed following 5 min supine. Sitting blood pressure (BP) was measured following 3 min rest. Standing BP was measured within 30 s of assuming the upright posture. The results of sit-stand testing were compared with HUT testing as a reference standard. Both tests happened within 5 min of each other and patients underwent no intervention between tests. RESULTS: From a total of 1452 consecutive HUTs, we identified 730 with pre-test measures of sitting and standing BP. The mean age of this group was 70.57 years (SD = 15.1), 62% were female. The sensitivity of sit-stand testing was calculated as 15.5%, specificity as 89.9%, positive predictive value as 61.7%, negative predictive value as 50.2% and the likelihood ratio as 1.6. The area under the Receiver Operator Curve was 0.564. CONCLUSION: We have demonstrated that sit-stand testing for OH has very low diagnostic accuracy. We recommend that the more time-consuming reference standard method of diagnosis be used if the condition is suspected.

  9. A Cost-Effective Transparency-Based Digital Imaging for Efficient and Accurate Wound Area Measurement

    Science.gov (United States)

    Li, Pei-Nan; Li, Hong; Wu, Mo-Li; Wang, Shou-Yu; Kong, Qing-You; Zhang, Zhen; Sun, Yuan; Liu, Jia; Lv, De-Cheng

    2012-01-01

    Wound measurement is an objective and direct way to trace the course of wound healing and to evaluate therapeutic efficacy. Nevertheless, the accuracy and efficiency of the current measurement methods need to be improved. Taking the advantages of reliability of transparency tracing and the accuracy of computer-aided digital imaging, a transparency-based digital imaging approach is established, by which data from 340 wound tracing were collected from 6 experimental groups (8 rats/group) at 8 experimental time points (Day 1, 3, 5, 7, 10, 12, 14 and 16) and orderly archived onto a transparency model sheet. This sheet was scanned and its image was saved in JPG form. Since a set of standard area units from 1 mm2 to 1 cm2 was integrated into the sheet, the tracing areas in JPG image were measured directly, using the “Magnetic lasso tool” in Adobe Photoshop program. The pixel values/PVs of individual outlined regions were obtained and recorded in an average speed of 27 second/region. All PV data were saved in an excel form and their corresponding areas were calculated simultaneously by the formula of Y (PV of the outlined region)/X (PV of standard area unit) × Z (area of standard unit). It took a researcher less than 3 hours to finish area calculation of 340 regions. In contrast, over 3 hours were expended by three skillful researchers to accomplish the above work with traditional transparency-based method. Moreover, unlike the results obtained traditionally, little variation was found among the data calculated by different persons and the standard area units in different sizes and shapes. Given its accurate, reproductive and efficient properties, this transparency-based digital imaging approach would be of significant values in basic wound healing research and clinical practice. PMID:22666449

  10. Accurate measurement of absolute experimental inelastic mean free paths and EELS differential cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Craven, Alan J.; Bobynko, Joanna; Sala, Bianca; MacLaren, Ian, E-mail: ian.maclaren@glasgow.ac.uk

    2016-11-15

    Methods are described for measuring accurate absolute experimental inelastic mean free paths and differential cross-sections using DualEELS. The methods remove the effects of surface layers and give the results for the bulk materials. The materials used are VC{sub 0.83}, TiC{sub 0.98}, VN{sub 0.97} and TiN{sub 0.88} but the method should be applicable to a wide range of materials. The data was taken at 200 keV using a probe half angle of 29 mrad and a collection angle of 36 mrad. The background can be subtracted from under the ionisation edges, which can then be separated from each other. This is achieved by scaling Hartree-Slater calculated cross-sections to the edges in the atomic regions well above the threshold. The average scaling factors required are 1.00 for the non-metal K-edges and 1.01 for the metal L-edges (with uncertainties of a few percent). If preliminary measurements of the chromatic effects in the post-specimen lenses are correct, both drop to 0.99. The inelastic mean free path for TiC{sub 0.98} was measured as 103.6±0.5 nm compared to the prediction of 126.9 nm based on the widely used Iakoubovskii parameterisation. - Highlights: • We show how to extract absolute cross sections for EELS edges using DualEELS. • The method removes the effects of any surface layers on standards. • We use a needle specimen to determining the mean free path for inelastic scattering. • Constrained background fitting is essential to correct background subtraction. • Absolute cross sections are determined for TiC, TiN, VC and VN.

  11. Accurate 3D kinematic measurement of temporomandibular joint using X-ray fluoroscopic images

    Science.gov (United States)

    Yamazaki, Takaharu; Matsumoto, Akiko; Sugamoto, Kazuomi; Matsumoto, Ken; Kakimoto, Naoya; Yura, Yoshiaki

    2014-04-01

    Accurate measurement and analysis of 3D kinematics of temporomandibular joint (TMJ) is very important for assisting clinical diagnosis and treatment of prosthodontics and orthodontics, and oral surgery. This study presents a new 3D kinematic measurement technique of the TMJ using X-ray fluoroscopic images, which can easily obtain the TMJ kinematic data in natural motion. In vivo kinematics of the TMJ (maxilla and mandibular bone) is determined using a feature-based 2D/3D registration, which uses beads silhouette on fluoroscopic images and 3D surface bone models with beads. The 3D surface models of maxilla and mandibular bone with beads were created from CT scans data of the subject using the mouthpiece with the seven strategically placed beads. In order to validate the accuracy of pose estimation for the maxilla and mandibular bone, computer simulation test was performed using five patterns of synthetic tantalum beads silhouette images. In the clinical applications, dynamic movement during jaw opening and closing was conducted, and the relative pose of the mandibular bone with respect to the maxilla bone was determined. The results of computer simulation test showed that the root mean square errors were sufficiently smaller than 1.0 mm and 1.0 degree. In the results of clinical application, during jaw opening from 0.0 to 36.8 degree of rotation, mandibular condyle exhibited 19.8 mm of anterior sliding relative to maxillary articular fossa, and these measurement values were clinically similar to the previous reports. Consequently, present technique was thought to be suitable for the 3D TMJ kinematic analysis.

  12. Revisitation of FRET methods to measure intraprotein distances in Human Serum Albumin

    Energy Technology Data Exchange (ETDEWEB)

    Santini, S.; Bizzarri, A.R.; Cannistraro, S., E-mail: cannistr@unitus.it

    2016-11-15

    We revisited the FRET methods to measure the intraprotein distance between Trp-214 (used as donor) of Human Serum Albumin and its Cys-34, labelled with 1.5-Iaedans (used as acceptor). Variation of Trp fluorescence emission in terms of both intensity and lifetime, as well the enhancement of the acceptor fluorescence emission upon Trp excitation, have been monitored. A careful statistical analysis of the fluorescence results from ten independently prepared samples, combined with suitable spectral corrections, provided reproducible distances estimations by each one of the three methods. Even if monitoring of the donor lifetime variation in the presence of the acceptor reproduces at the best the crystallographic data, by allowing even sub-nanometre distance variations to be appreciated, we suggest that a comparative analysis of all the three methods, applied with statistical significance, should be preferred to achieve a better reliability of the FRET technique.

  13. An accurate measurement of the baryonic Tully-Fisher relation with heavily gas-dominated ALFALFA galaxies

    Science.gov (United States)

    Papastergis, E.; Adams, E. A. K.; van der Hulst, J. M.

    2016-09-01

    We use a sample of 97 galaxies selected from the Arecibo legacy fast ALFA (ALFALFA) 21 cm survey to make an accurate measurement of the baryonic Tully-Fisher relation (BTFR). These galaxies are specifically selected to be heavily gas-dominated (Mgas/M∗ ≳ 2.7) and to be oriented edge-on. The former property ensures that the error on the galactic baryonic mass is small, despite the large systematic uncertainty involved in galactic stellar mass estimates. The latter property means that rotational velocities can be derived directly from the width of the 21 cm emission line, without any need for inclination corrections. We measure a slope for the linewidth-based BTFR of α = 3.75 ± 0.11, a value that is somewhat steeper than (but in broad agreement with) previous literature results. The relation is remarkably tight, with almost all galaxies being located within a perpendicular distance of ± 0.1 dex from the best fit line. The low observational error budget for our sample enables us to establish that, despite its tightness, the measured linewidth-based BTFR has some small (I.e., non-zero) intrinsic scatter. We furthermore find a systematic difference in the BTFR of galaxies with "double-horned" 21 cm line profiles - suggestive of flat outer galactic rotation curves - and those with "peaked" profiles - suggestive of rising rotation curves. When we restrict our sample of galaxies to objects in the former category, we measure a slightly steeper slope of α = 4.13 ± 0.15. Overall, the high-accuracy measurement of the BTFR presented in this article is intended as a reliable observational benchmark against which to test theoretical expectations. Here we consider a representative set of semi-analytic models and hydrodynamic simulations in the lambda cold dark matter (ΛCDM) context, as well as modified Newtonian dynamics (MOND). In the near future, interferometric follow-up observations of several sample members will enable us to further refine the BTFR measurement, and

  14. Measurement of a Cosmographic Distance Ratio with Galaxy and Cosmic Microwave Background Lensing.

    Science.gov (United States)

    Miyatake, Hironao; Madhavacheril, Mathew S; Sehgal, Neelima; Slosar, Anže; Spergel, David N; Sherwin, Blake; van Engelen, Alexander

    2017-04-21

    We measure the gravitational lensing shear signal around dark matter halos hosting constant mass galaxies using light sources at z∼1 (background galaxies) and at the surface of last scattering at z∼1100 (the cosmic microwave background). The galaxy shear measurement uses data from the CFHTLenS survey, and the microwave background shear measurement uses data from the Planck satellite. The ratio of shears from these cross-correlations provides a purely geometric distance measurement across the longest possible cosmological lever arm. This is because the matter distribution around the halos, including uncertainties in galaxy bias and systematic errors such as miscentering, cancels in the ratio for halos in thin redshift slices. We measure this distance ratio in three different redshift slices of the constant mass (CMASS) sample and combine them to obtain a 17% measurement of the distance ratio, r=0.390_{-0.062}^{+0.070}, at an effective redshift of z=0.53. This is consistent with the predicted ratio from the Planck best-fit cold dark matter model with a cosmological constant cosmology of r=0.419.

  15. Development of a New Fundamental Measuring Technique for the Accurate Measurement of Gas Flowrates by Means of Laser Doppler Anemometry

    Science.gov (United States)

    Dopheide, D.; Taux, G.; Krey, E.-A.

    1990-01-01

    In the Physikalisch-Technische Bundesanstalt (PTB), a research test facility for the accurate measurement of gas (volume and mass) flowrates has been set up in the last few years on the basis of a laser Doppler anemometer (LDA) with a view to directly measuring gas flowrates with a relative uncertainty of only 0,1%. To achieve this, it was necessary to develop laser Doppler anemometry into a precision measuring technique and to carry out detailed investigations on stationary low-turbulence nozzle flow. The process-computer controlled test facility covers the flowrate range from 100 to 4000 m3/h (~0,03 - 1,0 m3/s), any flowrate being measured directly, immediately and without staggered arrangement of several flow meters. After the development was completed, several turbine-type gas meters were calibrated and international comparisons carried out. The article surveys the most significant aspects of the work and provides an outlook on future developments with regard to the miniaturization of optical flow and flowrate sensors for industrial applications.

  16. Modernized accurate methods for processing of in-core measurement signals in WWER reactors

    International Nuclear Information System (INIS)

    Polak, T.

    1996-01-01

    Utilization of the new accurate WIMS-KAERI library (WIMKAL-88) to generate the following characteristics for Rhodium SPND: Sensitivity depletion law by high (approx= 75%) burnup of emitter; influence of burnup-history on depletion law course; influence of neutron spectrum change on Rh-SPND sensitivity caused by change of fuel enrichment, fuel burnup, moderator temperature, concentration of boracid, central pin power rate and concentration of Xe 135 ; generating and experimental testing of Rh-SPND signal to linear pin power rate and signal to neutron flux conversion factors. Rh-SPND instrumentation optimization (reduction) related to safety and operational aspects as needed for 3D power surveillance in WWER-1000 reactors. Analysis of SPND reduction from 64x7 to 46x7 by method of Shannon information entropy optimization. Influence of reduction on accuracy of 3D power distribution reconstruction. Physical methods of 3D power distribution unfolding in new modernized on-line I and C system in NPP J. Bohunice with in-core measurements according to 210 thermocouples and 36x7 Rh-SPNDs. Program system TOPRE under QNX operating system network in FORTRAN 77, neutronic background calculations by macrocode MOBY-DICK. (author). 10 refs, 6 figs, 7 tabs

  17. Assessing smoking status in disadvantaged populations: is computer administered self report an accurate and acceptable measure?

    Directory of Open Access Journals (Sweden)

    Bryant Jamie

    2011-11-01

    Full Text Available Abstract Background Self report of smoking status is potentially unreliable in certain situations and in high-risk populations. This study aimed to determine the accuracy and acceptability of computer administered self-report of smoking status among a low socioeconomic (SES population. Methods Clients attending a community service organisation for welfare support were invited to complete a cross-sectional touch screen computer health survey. Following survey completion, participants were invited to provide a breath sample to measure exposure to tobacco smoke in expired air. Sensitivity, specificity, positive predictive value and negative predictive value were calculated. Results Three hundred and eighty three participants completed the health survey, and 330 (86% provided a breath sample. Of participants included in the validation analysis, 59% reported being a daily or occasional smoker. Sensitivity was 94.4% and specificity 92.8%. The positive and negative predictive values were 94.9% and 92.0% respectively. The majority of participants reported that the touch screen survey was both enjoyable (79% and easy (88% to complete. Conclusions Computer administered self report is both acceptable and accurate as a method of assessing smoking status among low SES smokers in a community setting. Routine collection of health information using touch-screen computer has the potential to identify smokers and increase provision of support and referral in the community setting.

  18. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter.

    Science.gov (United States)

    Chowdhury, Amor; Sarjaš, Andrej

    2016-09-15

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.

  19. The use of multiple imputation for the accurate measurements of individual feed intake by electronic feeders.

    Science.gov (United States)

    Jiao, S; Tiezzi, F; Huang, Y; Gray, K A; Maltecca, C

    2016-02-01

    Obtaining accurate individual feed intake records is the key first step in achieving genetic progress toward more efficient nutrient utilization in pigs. Feed intake records collected by electronic feeding systems contain errors (erroneous and abnormal values exceeding certain cutoff criteria), which are due to feeder malfunction or animal-feeder interaction. In this study, we examined the use of a novel data-editing strategy involving multiple imputation to minimize the impact of errors and missing values on the quality of feed intake data collected by an electronic feeding system. Accuracy of feed intake data adjustment obtained from the conventional linear mixed model (LMM) approach was compared with 2 alternative implementations of multiple imputation by chained equation, denoted as MI (multiple imputation) and MICE (multiple imputation by chained equation). The 3 methods were compared under 3 scenarios, where 5, 10, and 20% feed intake error rates were simulated. Each of the scenarios was replicated 5 times. Accuracy of the alternative error adjustment was measured as the correlation between the true daily feed intake (DFI; daily feed intake in the testing period) or true ADFI (the mean DFI across testing period) and the adjusted DFI or adjusted ADFI. In the editing process, error cutoff criteria are used to define if a feed intake visit contains errors. To investigate the possibility that the error cutoff criteria may affect any of the 3 methods, the simulation was repeated with 2 alternative error cutoff values. Multiple imputation methods outperformed the LMM approach in all scenarios with mean accuracies of 96.7, 93.5, and 90.2% obtained with MI and 96.8, 94.4, and 90.1% obtained with MICE compared with 91.0, 82.6, and 68.7% using LMM for DFI. Similar results were obtained for ADFI. Furthermore, multiple imputation methods consistently performed better than LMM regardless of the cutoff criteria applied to define errors. In conclusion, multiple imputation

  20. Accurate measurement of transgene copy number in crop plants using droplet digital PCR.

    Science.gov (United States)

    Collier, Ray; Dasgupta, Kasturi; Xing, Yan-Ping; Hernandez, Bryan Tarape; Shao, Min; Rohozinski, Dominica; Kovak, Emma; Lin, Jeanie; de Oliveira, Maria Luiza P; Stover, Ed; McCue, Kent F; Harmon, Frank G; Blechl, Ann; Thomson, James G; Thilmony, Roger

    2017-06-01

    Genetic transformation is a powerful means for the improvement of crop plants, but requires labor- and resource-intensive methods. An efficient method for identifying single-copy transgene insertion events from a population of independent transgenic lines is desirable. Currently, transgene copy number is estimated by either Southern blot hybridization analyses or quantitative polymerase chain reaction (qPCR) experiments. Southern hybridization is a convincing and reliable method, but it also is expensive, time-consuming and often requires a large amount of genomic DNA and radioactively labeled probes. Alternatively, qPCR requires less DNA and is potentially simpler to perform, but its results can lack the accuracy and precision needed to confidently distinguish between one- and two-copy events in transgenic plants with large genomes. To address this need, we developed a droplet digital PCR-based method for transgene copy number measurement in an array of crops: rice, citrus, potato, maize, tomato and wheat. The method utilizes specific primers to amplify target transgenes, and endogenous reference genes in a single duplexed reaction containing thousands of droplets. Endpoint amplicon production in the droplets is detected and quantified using sequence-specific fluorescently labeled probes. The results demonstrate that this approach can generate confident copy number measurements in independent transgenic lines in these crop species. This method and the compendium of probes and primers will be a useful resource for the plant research community, enabling the simple and accurate determination of transgene copy number in these six important crop species. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  1. Recoil distance measurements of litetimes of levels in 2120F and 16N

    International Nuclear Information System (INIS)

    Kozub, R.L.; Mateja, J.F.; Lin, J.; Lister, C.J.; Olness, J.; Warburton, E.K.; Bynum, M.R.; Matthews, T.L.

    1981-01-01

    The previously-reported measurements of meanlives of 20 21 F levels using the recoil-distance method (RDM) and 18 O + 7 Li reactions have been repeated using improved experimental techniques. In addition, the lifetimes of two 16 N levels were measured, using the same experimental setup and 11 B + 7 Li reactions. Data were taken using the BNL precision plunger, in which were mounted a stretched Ta stopper foil (approx. 20 /sub cm 2 //sup mg/ thick) and a 300 μg/cm 2 - thick Li target condensed onto a stretched, 1.4 mg/cm 2 - thick Ta backing. Changes in target-to-stopper distance (d) could be controlled to an accuracy of about +- 1 μm, and were monitored by measuring target-to-stopper capacitance

  2. Accurate measurement of Atomic Force Microscope cantilever deflection excluding tip-surface contact with application to force calibration

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, Ashley D.; Blanch, Adam J.; Quinton, Jamie S.; Gibson, Christopher T., E-mail: christopher.gibson@flinders.edu.au

    2013-08-15

    Considerable attention has been given to the calibration of AFM cantilever spring constants in the last 20 years. Techniques that do not require tip-sample contact are considered advantageous since the imaging tip is not at risk of being damaged. Far less attention has been directed toward measuring the cantilever deflection or sensitivity, despite the fact that the primary means of determining this factor relies on the AFM tip being pressed against a hard surface, such as silicon or sapphire; which has the potential to significantly damage the tip. A recent method developed by Tourek et al. in 2010 involves deflecting the AFM cantilever a known distance from the imaging tip by pressing the cantilever against a sharpened tungsten wire. In this work a similar yet more precise method is described, whereby the deflection of the cantilever is achieved using an AFM probe with a spring constant much larger than the test cantilever, essentially a rigid cantilever. The exact position of loading on the test cantilever was determined by reverse AFM imaging small spatial markers that are milled into the test cantilever using a focussed ion beam. For V shaped cantilevers it is possible to reverse image the arm intersection in order to determine the exact loading point without necessarily requiring FIB milled spatial markers, albeit at the potential cost of additional uncertainty. The technique is applied to tip-less, beam shaped and V shaped cantilevers and compared to the hard surface contact technique with very good agreement (on average less than 5% difference). While the agreement with the hard surface contact technique was very good the error on the technique is dependent upon the assumptions inherent in the method, such as cantilever shape, loading point distance and ratio of test to rigid cantilever spring constants. The average error ranged between 2 to 5% for the majority of test cantilevers studied. The sensitivity derived with this technique can then be used to

  3. Recoil distance method lifetime measurements at TRIUMF-ISAC using the TIGRESS Integrated Plunger

    Science.gov (United States)

    Chester, A.; Ball, G. C.; Bernier, N.; Cross, D. S.; Domingo, T.; Drake, T. E.; Evitts, L. J.; Garcia, F. H.; Garnsworthy, A. B.; Hackman, G.; Hallam, S.; Henderson, J.; Henderson, R.; Krücken, R.; MacConnachie, E.; Moukaddam, M.; Padilla-Rodal, E.; Paetkau, O.; Pore, J. L.; Rizwan, U.; Ruotsalainen, P.; Shoults, J.; Smallcombe, J.; Smith, J. K.; Starosta, K.; Svensson, C. E.; Van Wieren, K.; Williams, J.; Williams, M.

    2018-02-01

    The TIGRESS Integrated Plunger device (TIP) has been developed for recoil distance method (RDM) lifetime measurements using the TIGRESS array of HPGe γ-ray detectors at TRIUMF's ISAC-II facility. A commissioning experiment was conducted utilizing a 250 MeV 84Kr beam at ≈ 2 × 108 particles per second. The 84Kr beam was Coulomb excited to the 21+ state on a movable 27Al target. A thin Cu foil fixed downstream from the target was used as a degrader. Excited nuclei emerged from the target and decayed by γ-ray emission at a distance determined by their velocity and the lifetime of the 21+ state. The ratio of decays which occur between the target and degrader to those occurring after traversing the degrader changes as a function of the target-degrader separation distance. Gamma-ray spectra at 13 target-degrader separation distances were measured and compared to simulated lineshapes to extract the lifetime. The result of τ = 5 . 541 ± 0 . 013(stat.) ± 0 . 063(sys.) ps is shorter than the literature value of 5 . 84 ± 0 . 18 ps with a reduction in uncertainty by a factor of approximately two. The TIP plunger device, experimental technique, analysis tools, and result are discussed.

  4. 2H{ 19F} REDOR for distance measurements in biological solids using a double resonance spectrometer

    Science.gov (United States)

    Grage, Stephan L.; Watts, Jude A.; Watts, Anthony

    2004-01-01

    A new approach for distance measurements in biological solids employing 2H{ 19F} rotational echo double resonance was developed and validated on 2H, 19F- D-alanine and an imidazopyridine based inhibitor of the gastric H +/K +-ATPase. The 2H- 19F double resonance experiments presented here were performed without 1H decoupling using a double resonance NMR spectrometer. In this way, it was possible to benefit from the relatively longer distance range of fluorine without the need of specialized fluorine equipment. A distance of 2.5 ± 0.3 Å was measured in the alanine derivative, indicating a gauche conformation of the two labels. In the case of the imidazopyridine compound a lower distance limit of 5.2 Å was determined and is in agreement with an extended conformation of the inhibitor. Several REDOR variants were compared, and their advantages and limitations discussed. Composite fluorine dephasing pulses were found to enhance the frequency bandwidth significantly, and to reduce the dependence of the performance of the experiment on the exact choice of the transmitter frequency.

  5. Superheterodyne configuration for two-wavelength interferometry applied to absolute distance measurement

    International Nuclear Information System (INIS)

    Le Floch, Sebastien; Salvade, Yves; Droz, Nathalie; Mitouassiwou, Rostand; Favre, Patrick

    2010-01-01

    We present a new superheterodyne technique for long-distance measurements by two-wavelength interferometry (TWI). While conventional systems use two acousto-optic modulators to generate two different heterodyne frequencies, here the two frequencies result from synchronized sweeps of optical and radio frequencies. A distributed feedback laser source is injected in an intensity modulator that is driven at the half-wave voltage mode. A radio-frequency signal is applied to this intensity modulator to generate two optical sidebands around the optical carrier. This applied radio frequency consists of a digital ramp between 13 and 15 GHz, with 1 ms duration and with an accuracy of better than 1 ppm. Simultaneously, the laser source is frequency modulated by a current modulation that is synchronized on the radio-frequency ramp as well as on a triangle waveform. These two frequency-swept optical signals at the output of the modulator illuminate a Michelson interferometer and create two distinct distance-dependent heterodyne frequencies on the photodetector. The superheterodyne signal is then detected and bandpass filtered to retrieve the absolute distance measurement. Experiments between 1 and 15 m confirm the validity of this new concept, leading to a distance accuracy of ± 50 μm for a 1 ms acquisition time.

  6. Project Ancient Acoustics Part 1 of 4 : a method for accurate impulse response measurements in large open air theatres

    NARCIS (Netherlands)

    Hak, C.C.J.M.; Hoekstra, N.; Nicolai, B.; Wenmaekers, R.H.C.

    2016-01-01

    Selecting an appropriate method for measuring ‘normal’ indoor concert hall acoustics is always a trade-off between time, stimulus type, number of measurements and measurement quality. For ISO 3382 room acoustic parameters to be derived accurately from impulse responses, this tradeoff aims at a

  7. Accurate calibration of waveform data measured by the Plasma Wave Experiment on board the ARASE satellite

    Science.gov (United States)

    Kitahara, M.; Katoh, Y.; Hikishima, M.; Kasahara, Y.; Matsuda, S.; Kojima, H.; Ozaki, M.; Yagitani, S.

    2017-12-01

    The Plasma Wave Experiment (PWE) is installed on board the ARASE satellite to measure the electric field in the frequency range from DC to 10 MHz, and the magnetic field in the frequency range from a few Hz to 100 kHz using two dipole wire-probe antennas (WPT) and three magnetic search coils (MSC), respectively. In particular, the Waveform Capture (WFC), one of the receivers of the PWE, can detect electromagnetic field waveform in the frequency range from a few Hz to 20 kHz. The Software-type Wave Particle Interaction Analyzer (S-WPIA) is installed on the ARASE satellite to measure the energy exchange between plasma waves and particles. Since S-WPIA uses the waveform data measured by WFC to calculate the relative phase angle between the wave magnetic field and velocity of energetic electrons, the high-accuracy is required to calibration of both amplitude and phase of the waveform data. Generally, the calibration procedure of the signal passed through a receiver consists of three steps; the transformation into spectra, the calibration by the transfer function of a receiver, and the inverse transformation of the calibrated spectra into the time domain. Practically, in order to reduce the side robe effect, a raw data is filtered by a window function in the time domain before applying Fourier transform. However, for the case that a first order differential coefficient of the phase transfer function of the system is not negligible, the phase of the window function convoluted into the calibrated spectra is shifted differently at each frequency, resulting in a discontinuity in the time domain of the calibrated waveform data. To eliminate the effect of the phase shift of a window function, we suggest several methods to calibrate a waveform data accurately and carry out simulations assuming simple sinusoidal waves as an input signal and using transfer functions of WPT, MSC, and WFC obtained in pre-flight tests. In consequence, we conclude that the following two methods can

  8. Geometric model of pseudo-distance measurement in satellite location systems

    Science.gov (United States)

    Panchuk, K. L.; Lyashkov, A. A.; Lyubchinov, E. V.

    2018-04-01

    The existing mathematical model of pseudo-distance measurement in satellite location systems does not provide a precise solution of the problem, but rather an approximate one. The existence of such inaccuracy, as well as bias in measurement of distance from satellite to receiver, results in inaccuracy level of several meters. Thereupon, relevance of refinement of the current mathematical model becomes obvious. The solution of the system of quadratic equations used in the current mathematical model is based on linearization. The objective of the paper is refinement of current mathematical model and derivation of analytical solution of the system of equations on its basis. In order to attain the objective, geometric analysis is performed; geometric interpretation of the equations is given. As a result, an equivalent system of equations, which allows analytical solution, is derived. An example of analytical solution implementation is presented. Application of analytical solution algorithm to the problem of pseudo-distance measurement in satellite location systems allows to improve the accuracy such measurements.

  9. Distance measurement and wave dispersion in a Liouville-string approach to quantum gravity

    CERN Document Server

    Amelino-Camelia, G; Mavromatos, Nikolaos E; Nanopoulos, Dimitri V

    1997-01-01

    Within a Liouville approach to non-critical string theory, we discuss space-time foam effects on the propagation of low-energy particles. We find an induced frequency-dependent dispersion in the propagation of a wave packet, and observe that this would affect the outcome of measurements involving low-energy particles as probes. In particular, the maximum possible order of magnitude of the space-time foam effects would give rise to an error in the measurement of distance comparable to that independently obtained in some recent heuristic quantum-gravity analyses. We also briefly compare these error estimates with the precision of astrophysical measurements.

  10. Comparison of Travel-Time and Amplitude Measurements for Deep-Focusing Time-Distance Helioseismology

    Science.gov (United States)

    Pourabdian, Majid; Fournier, Damien; Gizon, Laurent

    2018-04-01

    The purpose of deep-focusing time-distance helioseismology is to construct seismic measurements that have a high sensitivity to the physical conditions at a desired target point in the solar interior. With this technique, pairs of points on the solar surface are chosen such that acoustic ray paths intersect at this target (focus) point. Considering acoustic waves in a homogeneous medium, we compare travel-time and amplitude measurements extracted from the deep-focusing cross-covariance functions. Using a single-scattering approximation, we find that the spatial sensitivity of deep-focusing travel times to sound-speed perturbations is zero at the target location and maximum in a surrounding shell. This is unlike the deep-focusing amplitude measurements, which have maximum sensitivity at the target point. We compare the signal-to-noise ratio for travel-time and amplitude measurements for different types of sound-speed perturbations, under the assumption that noise is solely due to the random excitation of the waves. We find that, for highly localized perturbations in sound speed, the signal-to-noise ratio is higher for amplitude measurements than for travel-time measurements. We conclude that amplitude measurements are a useful complement to travel-time measurements in time-distance helioseismology.

  11. Extended VIKOR Method for Intuitionistic Fuzzy Multiattribute Decision-Making Based on a New Distance Measure

    Directory of Open Access Journals (Sweden)

    Xiao Luo

    2017-01-01

    Full Text Available An intuitionistic fuzzy VIKOR (IF-VIKOR method is proposed based on a new distance measure considering the waver of intuitionistic fuzzy information. The method aggregates all individual decision-makers’ assessment information based on intuitionistic fuzzy weighted averaging operator (IFWA, determines the weights of decision-makers and attributes objectively using intuitionistic fuzzy entropy, calculates the group utility and individual regret by the new distance measure, and then reaches a compromise solution. It can be effectively applied to multiattribute decision-making (MADM problems where the weights of decision-makers and attributes are completely unknown and the attribute values are intuitionistic fuzzy numbers (IFNs. The validity and stability of this method are verified by example analysis and sensitivity analysis, and its superiority is illustrated by the comparison with the existing method.

  12. Motor fatigue measurement by distance-induced slow down of walking speed in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Rémy Phan-Ba

    Full Text Available BACKGROUND AND RATIONALE: Motor fatigue and ambulation impairment are prominent clinical features of people with multiple sclerosis (pMS. We hypothesized that a multimodal and comparative assessment of walking speed on short and long distance would allow a better delineation and quantification of gait fatigability in pMS. Our objectives were to compare 4 walking paradigms: the timed 25-foot walk (T25FW, a corrected version of the T25FW with dynamic start (T25FW(+, the timed 100-meter walk (T100MW and the timed 500-meter walk (T500MW. METHODS: Thirty controls and 81 pMS performed the 4 walking tests in a single study visit. RESULTS: The 4 walking tests were performed with a slower WS in pMS compared to controls even in subgroups with minimal disability. The finishing speed of the last 100-meter of the T500MW was the slowest measurable WS whereas the T25FW(+ provided the fastest measurable WS. The ratio between such slowest and fastest WS (Deceleration Index, DI was significantly lower only in pMS with EDSS 4.0-6.0, a pyramidal or cerebellar functional system score reaching 3 or a maximum reported walking distance ≤ 4000 m. CONCLUSION: The motor fatigue which triggers gait deceleration over a sustained effort in pMS can be measured by the WS ratio between performances on a very short distance and the finishing pace on a longer more demanding task. The absolute walking speed is abnormal early in MS whatever the distance of effort when patients are unaware of ambulation impairment. In contrast, the DI-measured ambulation fatigability appears to take place later in the disease course.

  13. Fundamental tests and measures of the structure of matter at short distances

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1981-07-01

    Recent progress in gauge field theories has led to a new perspective on the structure of matter and basic interactions at short distances. It is clear that at very high energies quantum electrodynamics, together with the weak and strong interactions, are part of a unified theory with new fundamental constants, new symmetries, and new conservation laws. A non-technical introduction to these topics is given, with emphasis on fundamental tests and measurements. 21 references

  14. Food Photography Is Not an Accurate Measure of Energy Intake in Obese, Pregnant Women.

    Science.gov (United States)

    Most, Jasper; Vallo, Porsha M; Altazan, Abby D; Gilmore, Linda Anne; Sutton, Elizabeth F; Cain, Loren E; Burton, Jeffrey H; Martin, Corby K; Redman, Leanne M

    2018-04-01

    To improve weight management in pregnant women, there is a need to deliver specific, data-based recommendations on energy intake. This cross-sectional study evaluated the accuracy of an electronic reporting method to measure daily energy intake in pregnant women compared with total daily energy expenditure (TDEE). Twenty-three obese [mean ± SEM body mass index (kg/m2): 36.9 ± 1.3] pregnant women (aged 28.3 ±1.1 y) used a smartphone application to capture images of their food selection and plate waste in free-living conditions for ≥6 d in early (13-16 wk) and late (35-37 wk) pregnancy. Energy intake was evaluated by the smartphone application SmartIntake and compared with simultaneous assessment of TDEE obtained by doubly labeled water. Accuracy was defined as reported energy intake compared with TDEE (percentage of TDEE). Ecological momentary assessment prompts were used to enhance data reporting. Two-one-sided t tests for the 2 methods were used to assess equivalency, which was considered significant when accuracy was >80%. Energy intake reported by the SmartIntake application was 63.4% ± 2.3% of TDEE measured by doubly labeled water (P = 1.00). Energy intake reported as snacks accounted for 17% ± 2% of reported energy intake. Participants who used their own phones compared with participants who used borrowed phones captured more images (P = 0.04) and had higher accuracy (73% ± 3% compared with 60% ± 3% of TDEE; P = 0.01). Reported energy intake as snacks was significantly associated with the accuracy of SmartIntake (P = 0.03). To improve data quality, excluding erroneous days of likely underreporting (<60% TDEE) improved the accuracy of SmartIntake, yet this was not equivalent to TDEE (-22% ± 1% of TDEE; P = 1.00). Energy intake in obese, pregnant women obtained with the use of an electronic reporting method (SmartIntake) does not accurately estimate energy intake compared with doubly labeled water. However, accuracy improves by

  15. Is Oral Temperature an Accurate Measurement of Deep Body Temperature? A Systematic Review

    Science.gov (United States)

    Mazerolle, Stephanie M.; Ganio, Matthew S.; Casa, Douglas J.; Vingren, Jakob; Klau, Jennifer

    2011-01-01

    Context: Oral temperature might not be a valid method to assess core body temperature. However, many clinicians, including athletic trainers, use it rather than criterion standard methods, such as rectal thermometry. Objective: To critically evaluate original research addressing the validity of using oral temperature as a measurement of core body temperature during periods of rest and changing core temperature. Data Sources: In July 2010, we searched the electronic databases PubMed, Scopus, Cumulative Index to Nursing and Allied Health Literature (CINAHL), SPORTDiscus, Academic Search Premier, and the Cochrane Library for the following concepts: core body temperature, oral, and thermometers. Controlled vocabulary was used, when available, as well as key words and variations of those key words. The search was limited to articles focusing on temperature readings and studies involving human participants. Data Synthesis: Original research was reviewed using the Physiotherapy Evidence Database (PEDro). Sixteen studies met the inclusion criteria and subsequently were evaluated by 2 independent reviewers. All 16 were included in the review because they met the minimal PEDro score of 4 points (of 10 possible points), with all but 2 scoring 5 points. A critical review of these studies indicated a disparity between oral and criterion standard temperature methods (eg, rectal and esophageal) specifically as the temperature increased. The difference was −0.50°C ± 0.31°C at rest and −0.58°C ± 0.75°C during a nonsteady state. Conclusions: Evidence suggests that, regardless of whether the assessment is recorded at rest or during periods of changing core temperature, oral temperature is an unsuitable diagnostic tool for determining body temperature because many measures demonstrated differences greater than the predetermined validity threshold of 0.27°C (0.5°F). In addition, the differences were greatest at the highest rectal temperatures. Oral temperature cannot

  16. Anatomy-Based navigation for ventriculostomy: Nasion-coronal suture distance measurement

    Directory of Open Access Journals (Sweden)

    Mevci Özdemir

    2014-09-01

    Full Text Available Objective: In this study we aimed to determine a landmark that can be measured through the skin with nasal mid-point (bregma to coronal suture, and additionally an average value was calculated. We report, to our knowledge, the distance between the nasion-coronal sutures is reported for the first time in Turkish population. Methods: The study included 30 craniums and 30 frontal bones. Each skull from midline nasal suture to coronal suture curved up at the distance was measured with tape measure. Results: Mean values were determined. Nasal suture between coronal suture distance average 12,2 cm (min10,3 cm, up to 13,5 cm were detected. Conclusion: Nasal suture is an easily palpable area through the skin. A small incision is carried down through skin to bone at the spot 12 cm back from the nasion 3 cm lateral to the midline for ventricular drainage operation. This data provide practical information for neurosurgeon and is available everywhere. J Clin Exp Invest 2014; 5 (3: 368-370

  17. Real-Time and Meter-Scale Absolute Distance Measurement by Frequency-Comb-Referenced Multi-Wavelength Interferometry

    Directory of Open Access Journals (Sweden)

    Guochao Wang

    2018-02-01

    Full Text Available We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He–Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10−8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions.

  18. Real-Time and Meter-Scale Absolute Distance Measurement by Frequency-Comb-Referenced Multi-Wavelength Interferometry.

    Science.gov (United States)

    Wang, Guochao; Tan, Lilong; Yan, Shuhua

    2018-02-07

    We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He-Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10 -8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions.

  19. Accurate wavelength prediction of photonic crystal resonant reflection and applications in refractive index measurement

    DEFF Research Database (Denmark)

    Hermannsson, Pétur Gordon; Vannahme, Christoph; Smith, Cameron L. C.

    2014-01-01

    and superstrate materials. The importance of accounting for material dispersion in order to obtain accurate simulation results is highlighted, and a method for doing so using an iterative approach is demonstrated. Furthermore, an application for the model is demonstrated, in which the material dispersion......In the past decade, photonic crystal resonant reflectors have been increasingly used as the basis for label-free biochemical assays in lab-on-a-chip applications. In both designing and interpreting experimental results, an accurate model describing the optical behavior of such structures...... is essential. Here, an analytical method for precisely predicting the absolute positions of resonantly reflected wavelengths is presented. The model is experimentally verified to be highly accurate using nanoreplicated, polymer-based photonic crystal grating reflectors with varying grating periods...

  20. Activity assays and immunoassays for plasma Renin and prorenin: information provided and precautions necessary for accurate measurement

    DEFF Research Database (Denmark)

    Campbell, Duncan J; Nussberger, Juerg; Stowasser, Michael

    2009-01-01

    into focus the differences in information provided by activity assays and immunoassays for renin and prorenin measurement and has drawn attention to the need for precautions to ensure their accurate measurement. CONTENT: Renin activity assays and immunoassays provide related but different information...... provided by these assays and of the precautions necessary to ensure their accuracy....

  1. Spot urine sodium measurements do not accurately estimate dietary sodium intake in chronic kidney disease12

    Science.gov (United States)

    Dougher, Carly E; Rifkin, Dena E; Anderson, Cheryl AM; Smits, Gerard; Persky, Martha S; Block, Geoffrey A; Ix, Joachim H

    2016-01-01

    Background: Sodium intake influences blood pressure and proteinuria, yet the impact on long-term outcomes is uncertain in chronic kidney disease (CKD). Accurate assessment is essential for clinical and public policy recommendations, but few large-scale studies use 24-h urine collections. Recent studies that used spot urine sodium and associated estimating equations suggest that they may provide a suitable alternative, but their accuracy in patients with CKD is unknown. Objective: We compared the accuracy of 4 equations [the Nerbass, INTERSALT (International Cooperative Study on Salt, Other Factors, and Blood Pressure), Tanaka, and Kawasaki equations] that use spot urine sodium to estimate 24-h sodium excretion in patients with moderate to advanced CKD. Design: We evaluated the accuracy of spot urine sodium to predict mean 24-h urine sodium excretion over 9 mo in 129 participants with stage 3–4 CKD. Spot morning urine sodium was used in 4 estimating equations. Bias, precision, and accuracy were assessed and compared across each equation. Results: The mean age of the participants was 67 y, 52% were female, and the mean estimated glomerular filtration rate was 31 ± 9 mL · min–1 · 1.73 m–2. The mean ± SD number of 24-h urine collections was 3.5 ± 0.8/participant, and the mean 24-h sodium excretion was 168.2 ± 67.5 mmol/d. Although the Tanaka equation demonstrated the least bias (mean: −8.2 mmol/d), all 4 equations had poor precision and accuracy. The INTERSALT equation demonstrated the highest accuracy but derived an estimate only within 30% of mean measured sodium excretion in only 57% of observations. Bland-Altman plots revealed systematic bias with the Nerbass, INTERSALT, and Tanaka equations, underestimating sodium excretion when intake was high. Conclusion: These findings do not support the use of spot urine specimens to estimate dietary sodium intake in patients with CKD and research studies enriched with patients with CKD. The parent data for this

  2. Characterization of the spatial structure of local functional connectivity using multi-distance average correlation measures.

    Science.gov (United States)

    Macia, Didac; Pujol, Jesus; Blanco-Hinojo, Laura; Martínez-Vilavella, Gerard; Martín-Santos, Rocío; Deus, Joan

    2018-04-24

    There is ample evidence from basic research in neuroscience of the importance of local cortico-cortical networks. Millimetric resolution is achievable with current functional MRI (fMRI) scanners and sequences, and consequently a number of "local" activity similarity measures have been defined to describe patterns of segregation and integration at this spatial scale. We have introduced the use of Iso-Distant local Average Correlation (IDAC), easily defined as the average fMRI temporal correlation of a given voxel with other voxels placed at increasingly separated iso-distant intervals, to characterize the curve of local fMRI signal similarities. IDAC curves can be statistically compared using parametric multivariate statistics. Furthermore, by using RGB color-coding to display jointly IDAC values belonging to three different distance lags, IDAC curves can also be displayed as multi-distance IDAC maps. We applied IDAC analysis to a sample of 41 subjects scanned under two different conditions, a resting state and an auditory-visual continuous stimulation. Multi-distance IDAC mapping was able to discriminate between gross anatomo-functional cortical areas and, moreover, was sensitive to modulation between the two brain conditions in areas known to activate and de-activate during audio-visual tasks. Unlike previous fMRI local similarity measures already in use, our approach draws special attention to the continuous smooth pattern of local functional connectivity.

  3. In-situ measurements of material thermal parameters for accurate LED lamp thermal modelling

    NARCIS (Netherlands)

    Vellvehi, M.; Perpina, X.; Jorda, X.; Werkhoven, R.J.; Kunen, J.M.G.; Jakovenko, J.; Bancken, P.; Bolt, P.J.

    2013-01-01

    This work deals with the extraction of key thermal parameters for accurate thermal modelling of LED lamps: air exchange coefficient around the lamp, emissivity and thermal conductivity of all lamp parts. As a case study, an 8W retrofit lamp is presented. To assess simulation results, temperature is

  4. Long-distance measurement-device-independent quantum key distribution with coherent-state superpositions.

    Science.gov (United States)

    Yin, H-L; Cao, W-F; Fu, Y; Tang, Y-L; Liu, Y; Chen, T-Y; Chen, Z-B

    2014-09-15

    Measurement-device-independent quantum key distribution (MDI-QKD) with decoy-state method is believed to be securely applied to defeat various hacking attacks in practical quantum key distribution systems. Recently, the coherent-state superpositions (CSS) have emerged as an alternative to single-photon qubits for quantum information processing and metrology. Here, in this Letter, CSS are exploited as the source in MDI-QKD. We present an analytical method that gives two tight formulas to estimate the lower bound of yield and the upper bound of bit error rate. We exploit the standard statistical analysis and Chernoff bound to perform the parameter estimation. Chernoff bound can provide good bounds in the long-distance MDI-QKD. Our results show that with CSS, both the security transmission distance and secure key rate are significantly improved compared with those of the weak coherent states in the finite-data case.

  5. Accuracy of Positioning Autonomous Biomimetic Underwater Vehicle Using Additional Measurement of Distances

    Directory of Open Access Journals (Sweden)

    Naus Krzysztof

    2016-12-01

    Full Text Available The article describes a study of problem of estimating the position coordinates of Autonomous Biomimetic Underwater Vehicle (ABUV using two methods: dead reckoning (DR and extended Kalman filter (EKF. In the first part of the paper, navigation system of ABUV is described and scientific problem with underwater positioning is formulated. The main part describes a way of estimating the position coordinates using DR and EKF and a numerical experiment involving motion of ABUV along the predetermined test distance. The final part of the paper contains a comparative statistical analysis of the results, carried out for assessing the accuracy of estimation of the position coordinates using DR and EKF methods. It presents the generalized conclusions from the research and the problems relating to the proper placement of the components of the system measuring distances.

  6. Cross-population validation of statistical distance as a measure of physiological dysregulation during aging.

    Science.gov (United States)

    Cohen, Alan A; Milot, Emmanuel; Li, Qing; Legault, Véronique; Fried, Linda P; Ferrucci, Luigi

    2014-09-01

    Measuring physiological dysregulation during aging could be a key tool both to understand underlying aging mechanisms and to predict clinical outcomes in patients. However, most existing indices are either circular or hard to interpret biologically. Recently, we showed that statistical distance of 14 common blood biomarkers (a measure of how strange an individual's biomarker profile is) was associated with age and mortality in the WHAS II data set, validating its use as a measure of physiological dysregulation. Here, we extend the analyses to other data sets (WHAS I and InCHIANTI) to assess the stability of the measure across populations. We found that the statistical criteria used to determine the original 14 biomarkers produced diverging results across populations; in other words, had we started with a different data set, we would have chosen a different set of markers. Nonetheless, the same 14 markers (or the subset of 12 available for InCHIANTI) produced highly similar predictions of age and mortality. We include analyses of all combinatorial subsets of the markers and show that results do not depend much on biomarker choice or data set, but that more markers produce a stronger signal. We conclude that statistical distance as a measure of physiological dysregulation is stable across populations in Europe and North America. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. CORSEN, a new software dedicated to microscope-based 3D distance measurements: mRNA-mitochondria distance, from single-cell to population analyses.

    Science.gov (United States)

    Jourdren, Laurent; Delaveau, Thierry; Marquenet, Emelie; Jacq, Claude; Garcia, Mathilde

    2010-07-01

    Recent improvements in microscopy technology allow detection of single molecules of RNA, but tools for large-scale automatic analyses of particle distributions are lacking. An increasing number of imaging studies emphasize the importance of mRNA localization in the definition of cell territory or the biogenesis of cell compartments. CORSEN is a new tool dedicated to three-dimensional (3D) distance measurements from imaging experiments especially developed to access the minimal distance between RNA molecules and cellular compartment markers. CORSEN includes a 3D segmentation algorithm allowing the extraction and the characterization of the cellular objects to be processed--surface determination, aggregate decomposition--for minimal distance calculations. CORSEN's main contribution lies in exploratory statistical analysis, cell population characterization, and high-throughput assays that are made possible by the implementation of a batch process analysis. We highlighted CORSEN's utility for the study of relative positions of mRNA molecules and mitochondria: CORSEN clearly discriminates mRNA localized to the vicinity of mitochondria from those that are translated on free cytoplasmic polysomes. Moreover, it quantifies the cell-to-cell variations of mRNA localization and emphasizes the necessity for statistical approaches. This method can be extended to assess the evolution of the distance between specific mRNAs and other cellular structures in different cellular contexts. CORSEN was designed for the biologist community with the concern to provide an easy-to-use and highly flexible tool that can be applied for diverse distance quantification issues.

  8. Poster - 35: Monitoring patient positioning during deep inspiration breath hold with a distance measuring laser

    International Nuclear Information System (INIS)

    Weston, Mark; Juhasz, Janos

    2016-01-01

    Purpose: The accuracy of treatment delivery for left breast/chest wall patients using deep inspiration breath hold (DIBH) is being monitored using a distance measuring laser (DML) Methods: A commercially available DML (DLS-C15, Dimetix) was mounted behind a Varian TrilogyTM linac. Relative to the machine isocenter, the laser from the beam was offset by 8 cm to the left and by 1 cm in the superior direction. This position was selected because this point is situated on the sternum for the majority of the left breast/chest-wall patients treated at our institution. The Varian Real-Time Positioning Management™ (RPM) guided DIBH treatments at our institution is delivered by placing the system’s tracking block on the patient’s abdomen. The treatment beam is enabled only when the block is in between a predefined abdomen motion range as determined during the CT simulation process. A LabVIEW program was developed to record both beam status (i.e. on/off) and distance measurements. In this study the DML was only used to monitor the position of a single point on the chest and no clinical decisions/adjustments were made based on these measurements. Results and Conclusions: Thus far, 34 fractions have been recorded for 4 patients. As such, the performance of our DIBH treatment technique cannot be fairly evaluated at this point. However, deviations between expected and measured distances have been observed and if these are found to be reproducible, then modifications in our treatment procedures and policies will have to take place.

  9. Poster - 35: Monitoring patient positioning during deep inspiration breath hold with a distance measuring laser

    Energy Technology Data Exchange (ETDEWEB)

    Weston, Mark; Juhasz, Janos [Juravinski Cancer Centre (Canada)

    2016-08-15

    Purpose: The accuracy of treatment delivery for left breast/chest wall patients using deep inspiration breath hold (DIBH) is being monitored using a distance measuring laser (DML) Methods: A commercially available DML (DLS-C15, Dimetix) was mounted behind a Varian TrilogyTM linac. Relative to the machine isocenter, the laser from the beam was offset by 8 cm to the left and by 1 cm in the superior direction. This position was selected because this point is situated on the sternum for the majority of the left breast/chest-wall patients treated at our institution. The Varian Real-Time Positioning Management™ (RPM) guided DIBH treatments at our institution is delivered by placing the system’s tracking block on the patient’s abdomen. The treatment beam is enabled only when the block is in between a predefined abdomen motion range as determined during the CT simulation process. A LabVIEW program was developed to record both beam status (i.e. on/off) and distance measurements. In this study the DML was only used to monitor the position of a single point on the chest and no clinical decisions/adjustments were made based on these measurements. Results and Conclusions: Thus far, 34 fractions have been recorded for 4 patients. As such, the performance of our DIBH treatment technique cannot be fairly evaluated at this point. However, deviations between expected and measured distances have been observed and if these are found to be reproducible, then modifications in our treatment procedures and policies will have to take place.

  10. Lifetime measurements using the recoil distance method—achievements and perspectives

    Science.gov (United States)

    Krücken, R.

    2001-07-01

    The recoil distance method (RDM) for measuring pico-second nuclear level lifetimes and its use in nuclear structure studies is reviewed and perspectives for the future are presented. High precision measurements in the mass-130 region, studies of multi-phonon states in rare earth nuclei, the investigation of shape coexistence and the recently discovered phenomenon of "magnetic rotation" are reviewed. Prospects for lifetime measurements in exotic regions of nuclei such as the measurement of lifetimes in neutron rich nuclei populated via spontaneous and heavy-ion induced fission are discussed. Other prospects include the use of the RDM technique in conjunction with recoil separators. The relevance of these techniques for experiments with radioactive ion beams will be discussed.

  11. Application of digital image correlation for long-distance bridge deflection measurement

    Science.gov (United States)

    Tian, Long; Pan, Bing; Cai, Youfa; Liang, Hui; Zhao, Yan

    2013-06-01

    Due to its advantages of non-contact, full-field and high-resolution measurement, digital image correlation (DIC) method has gained wide acceptance and found numerous applications in the field of experimental mechanics. In this paper, the application of DIC for real-time long-distance bridge deflection detection in outdoor environments is studied. Bridge deflection measurement using DIC in outdoor environments is more challenging than regular DIC measurements performed under laboratory conditions. First, much more image noise due to variations in ambient light will be presented in the images recorded in outdoor environments. Second, how to select the target area becomes a key factor because long-distance imaging results in a large field of view of the test object. Finally, the image acquisition speed of the camera must be high enough (larger than 100 fps) to capture the real-time dynamic motion of a bridge. In this work, the above challenging issues are addressed and several improvements were made to DIC method. The applicability was demonstrated by real experiments. Experimental results indicate that the DIC method has great potentials in motion measurement in various large building structures.

  12. Absolute distance measurement with micrometer accuracy using a Michelson interferometer and the iterative synthetic wavelength principle.

    Science.gov (United States)

    Alzahrani, Khaled; Burton, David; Lilley, Francis; Gdeisat, Munther; Bezombes, Frederic; Qudeisat, Mohammad

    2012-02-27

    We present a novel system that can measure absolute distances of up to 300 mm with an uncertainty of the order of one micrometer, within a timeframe of 40 seconds. The proposed system uses a Michelson interferometer, a tunable laser, a wavelength meter and a computer for analysis. The principle of synthetic wave creation is used in a novel way in that the system employs an initial low precision estimate of the distance, obtained using a triangulation, or time-of-flight, laser system, or similar, and then iterates through a sequence of progressively smaller synthetic wavelengths until it reaches micrometer uncertainties in the determination of the distance. A further novel feature of the system is its use of Fourier transform phase analysis techniques to achieve sub-wavelength accuracy. This method has the major advantages of being relatively simple to realize, offering demonstrated high relative precisions better than 5 × 10(-5). Finally, the fact that this device does not require a continuous line-of-sight to the target as is the case with other configurations offers significant advantages.

  13. Measuring distance through dense weighted networks: The case of hospital-associated pathogens.

    Directory of Open Access Journals (Sweden)

    Tjibbe Donker

    2017-08-01

    Full Text Available Hospital networks, formed by patients visiting multiple hospitals, affect the spread of hospital-associated infections, resulting in differences in risks for hospitals depending on their network position. These networks are increasingly used to inform strategies to prevent and control the spread of hospital-associated pathogens. However, many studies only consider patients that are received directly from the initial hospital, without considering the effect of indirect trajectories through the network. We determine the optimal way to measure the distance between hospitals within the network, by reconstructing the English hospital network based on shared patients in 2014-2015, and simulating the spread of a hospital-associated pathogen between hospitals, taking into consideration that each intermediate hospital conveys a delay in the further spread of the pathogen. While the risk of transferring a hospital-associated pathogen between directly neighbouring hospitals is a direct reflection of the number of shared patients, the distance between two hospitals far-away in the network is determined largely by the number of intermediate hospitals in the network. Because the network is dense, most long distance transmission chains in fact involve only few intermediate steps, spreading along the many weak links. The dense connectivity of hospital networks, together with a strong regional structure, causes hospital-associated pathogens to spread from the initial outbreak in a two-step process: first, the directly surrounding hospitals are affected through the strong connections, second all other hospitals receive introductions through the multitude of weaker links. Although the strong connections matter for local spread, weak links in the network can offer ideal routes for hospital-associated pathogens to travel further faster. This hold important implications for infection prevention and control efforts: if a local outbreak is not controlled in time

  14. An evaluation method of cross-type H-coil angle for accurate two-dimensional vector magnetic measurement

    International Nuclear Information System (INIS)

    Maeda, Yoshitaka; Todaka, Takashi; Shimoji, Hiroyasu; Enokizono, Masato; Sievert, Johanes

    2006-01-01

    Recently, two-dimensional vector magnetic measurement has become popular and many researchers concerned with this field have attracted to develop more accurate measuring systems and standard measurement systems. Because the two-dimensional vector magnetic property is the relationship between the magnetic flux density vector B and the magnetic field strength vector H , the most important parameter is those components. For the accurate measurement of the field strength vector, we have developed an evaluation apparatus, which consists of a standard solenoid coil and a high-precision turntable. Angle errors of a double H-coil (a cross-type H-coil), which is wound one after the other around a former, can be evaluated with this apparatus. The magnetic field strength is compensated with the measured angle error

  15. Moving gantry method for electron beam dose profile measurement at extended source-to-surface distances.

    Science.gov (United States)

    Fekete, Gábor; Fodor, Emese; Pesznyák, Csilla

    2015-03-08

    A novel method has been put forward for very large electron beam profile measurement. With this method, absorbed dose profiles can be measured at any depth in a solid phantom for total skin electron therapy. Electron beam dose profiles were collected with two different methods. Profile measurements were performed at 0.2 and 1.2 cm depths with a parallel plate and a thimble chamber, respectively. 108cm × 108 cm and 45 cm × 45 cm projected size electron beams were scanned by vertically moving phantom and detector at 300 cm source-to-surface distance with 90° and 270° gantry angles. The profiles collected this way were used as reference. Afterwards, the phantom was fixed on the central axis and the gantry was rotated with certain angular steps. After applying correction for the different source-to-detector distances and incidence of angle, the profiles measured in the two different setups were compared. Correction formalism has been developed. The agreement between the cross profiles taken at the depth of maximum dose with the 'classical' scanning and with the new moving gantry method was better than 0.5 % in the measuring range from zero to 71.9 cm. Inverse square and attenuation corrections had to be applied. The profiles measured with the parallel plate chamber agree better than 1%, except for the penumbra region, where the maximum difference is 1.5%. With the moving gantry method, very large electron field profiles can be measured at any depth in a solid phantom with high accuracy and reproducibility and with much less time per step. No special instrumentation is needed. The method can be used for commissioning of very large electron beams for computer-assisted treatment planning, for designing beam modifiers to improve dose uniformity, and for verification of computed dose profiles.

  16. Prenatal Triclosan Exposure and Anthropometric Measures Including Anogenital Distance in Danish Infants

    DEFF Research Database (Denmark)

    Lassen, Tina Harmer; Frederiksen, Hanne; Kyhl, Henriette Boye

    2016-01-01

    , Swan SH, Main KM, Andersson AM, Lind DV, Husby S, Wohlfahrt-Veje C, Skakkebæk NE, Jensen TK. 2016. Prenatal triclosan exposure and anthropometric measures including anogenital distance in Danish infants. Environ Health Perspect 124:1261-1268; http://dx.doi.org/10.1289/ehp.1409637.......BACKGROUND: Triclosan (TCS) is widely used as an antibacterial agent in consumer products such as hand soap and toothpaste, and human exposure is widespread. TCS is suspected of having endocrine-disrupting properties, but few human studies have examined the developmental effects of prenatal TCS...

  17. Finding differentially expressed genes in high dimensional data: Rank based test statistic via a distance measure.

    Science.gov (United States)

    Mathur, Sunil; Sadana, Ajit

    2015-12-01

    We present a rank-based test statistic for the identification of differentially expressed genes using a distance measure. The proposed test statistic is highly robust against extreme values and does not assume the distribution of parent population. Simulation studies show that the proposed test is more powerful than some of the commonly used methods, such as paired t-test, Wilcoxon signed rank test, and significance analysis of microarray (SAM) under certain non-normal distributions. The asymptotic distribution of the test statistic, and the p-value function are discussed. The application of proposed method is shown using a real-life data set. © The Author(s) 2011.

  18. Technique for long and absolute distance measurement based on laser pulse repetition frequency sweeping

    Science.gov (United States)

    Castro Alves, D.; Abreu, Manuel; Cabral, A.; Jost, Michael; Rebordão, J. M.

    2017-11-01

    In this work we present a technique to perform long and absolute distance measurements based on mode-locked diode lasers. Using a Michelson interferometer, it is possible to produce an optical cross-correlation between laser pulses of the reference arm with the pulses from the measurement arm, adjusting externally their degree of overlap either changing the pulse repetition frequency (PRF) or the position of the reference arm mirror for two (or more) fixed frequencies. The correlation of the travelling pulses for precision distance measurements relies on ultra-short pulse durations, as the uncertainty associated to the method is dependent on the laser pulse width as well as on a highly stable PRF. Mode-locked Diode lasers are a very appealing technology for its inherent characteristics, associated to compactness, size and efficiency, constituting a positive trade-off with regard to other mode-locked laser sources. Nevertheless, main current drawback is the non-availability of frequency-stable laser diodes. The laser used is a monolithic mode-locked semiconductor quantum-dot (QD) laser. The laser PRF is locked to an external stabilized RF reference. In this work we will present some of the preliminary results and discuss the importance of the requirements related to laser PRF stability in the final metrology system accuracy.

  19. Improved GPS-based Satellite Relative Navigation Using Femtosecond Laser Relative Distance Measurements

    Directory of Open Access Journals (Sweden)

    Hyungjik Oh

    2016-03-01

    Full Text Available This study developed an approach for improving Carrier-phase Differential Global Positioning System (CDGPS based realtime satellite relative navigation by applying laser baseline measurement data. The robustness against the space operational environment was considered, and a Synthetic Wavelength Interferometer (SWI algorithm based on a femtosecond laser measurement model was developed. The phase differences between two laser wavelengths were combined to measure precise distance. Generated laser data were used to improve estimation accuracy for the float ambiguity of CDGPS data. Relative navigation simulations in real-time were performed using the extended Kalman filter algorithm. The GPS and laser-combined relative navigation accuracy was compared with GPS-only relative navigation solutions to determine the impact of laser data on relative navigation. In numerical simulations, the success rate of integer ambiguity resolution increased when laser data was added to GPS data. The relative navigational errors also improved five-fold and two-fold, relative to the GPS-only error, for 250 m and 5 km initial relative distances, respectively. The methodology developed in this study is suitable for application to future satellite formation-flying missions.

  20. Accurate measurement of the orientation relationship of lath martensite and bainite by electron backscatter diffraction analysis

    International Nuclear Information System (INIS)

    Miyamoto, G.; Takayama, N.; Furuhara, T.

    2009-01-01

    A new method to determine the orientation relationship between martensite and bainite with the parent austenite is developed based on electron backscatter diffraction analysis. This method can determine the orientation relationship accurately without the presence of retained austenite, and is applicable to lath martensite and bainite in low-alloyed carbon steels. The angles between close-packed directions are about 3 o for lath martensite regardless of the carbon content, while the angles between close-packed planes become smaller with increasing carbon content.

  1. Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement

    International Nuclear Information System (INIS)

    Gupta, C.K.; Rohilla, Aman; Abhilash, S.R.; Kabiraj, D.; Singh, R.P.; Mehta, D.; Chamoli, S.K.

    2014-01-01

    A thin isotopic 94 Zr target of thickness 520μg/cm 2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm 2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94 Zr from peeling off, a very thin layer of gold has been evaporated on a 94 Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94 Zr target material was utilized for the fabrication of 94 Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC

  2. Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement

    Science.gov (United States)

    Gupta, C. K.; Rohilla, Aman; Abhilash, S. R.; Kabiraj, D.; Singh, R. P.; Mehta, D.; Chamoli, S. K.

    2014-11-01

    A thin isotopic 94Zr target of thickness 520 μg /cm2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94Zr from peeling off, a very thin layer of gold has been evaporated on a 94Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94Zr target material was utilized for the fabrication of 94Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.

  3. Relative distance between tracers as a measure of diffusivity within moving aggregates

    Science.gov (United States)

    Pönisch, Wolfram; Zaburdaev, Vasily

    2018-02-01

    Tracking of particles, be it a passive tracer or an actively moving bacterium in the growing bacterial colony, is a powerful technique to probe the physical properties of the environment of the particles. One of the most common measures of particle motion driven by fluctuations and random forces is its diffusivity, which is routinely obtained by measuring the mean squared displacement of the particles. However, often the tracer particles may be moving in a domain or an aggregate which itself experiences some regular or random motion and thus masks the diffusivity of tracers. Here we provide a method for assessing the diffusivity of tracer particles within mobile aggregates by measuring the so-called mean squared relative distance (MSRD) between two tracers. We provide analytical expressions for both the ensemble and time averaged MSRD allowing for direct identification of diffusivities from experimental data.

  4. Fabrication of {sup 94}Zr thin target for recoil distance doppler shift method of lifetime measurement

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, C.K.; Rohilla, Aman [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Abhilash, S.R.; Kabiraj, D.; Singh, R.P. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Mehta, D. [Department of Physics, Panjab University, Chandigarh 160014 (India); Chamoli, S.K., E-mail: skchamoli@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-11-11

    A thin isotopic {sup 94}Zr target of thickness 520μg/cm{sup 2} has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm{sup 2} thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of {sup 94}Zr from peeling off, a very thin layer of gold has been evaporated on a {sup 94}Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched {sup 94}Zr target material was utilized for the fabrication of {sup 94}Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.

  5. A system for accurate on-line measurement of total gas consumption or production rates in microbioreactors

    NARCIS (Netherlands)

    van Leeuwen, Michiel; Heijnen, Joseph J.; Gardeniers, Johannes G.E.; Oudshoorn, Arthur; Noorman, Henk; Visser, Jan; van der Wielen, Luuk A.M.; van Gulik, Walter M.

    2009-01-01

    A system has been developed, based on pressure controlled gas pumping, for accurate measurement of total gas consumption or production rates in the nmol/min range, applicable for on-line monitoring of bioconversions in microbioreactors. The system was validated by carrying out a bioconversion with

  6. Accurate particle speed prediction by improved particle speed measurement and 3-dimensional particle size and shape characterization technique

    DEFF Research Database (Denmark)

    Cernuschi, Federico; Rothleitner, Christian; Clausen, Sønnik

    2017-01-01

    Accurate particle mass and velocity measurement is needed for interpreting test results in erosion tests of materials and coatings. The impact and damage of a surface is influenced by the kinetic energy of a particle, i.e. particle mass and velocity. Particle mass is usually determined with optic...

  7. An accurate measurement of the baryonic Tully-Fisher relation with heavily gas-dominated ALFALFA galaxies

    NARCIS (Netherlands)

    Papastergis, E.; Adams, E. A. K.; van der Hulst, J. M.

    2016-01-01

    We use a sample of 97 galaxies selected from the Arecibo legacy fast ALFA (ALFALFA) 21 cm survey to make an accurate measurement of the baryonic Tully-Fisher relation (BTFR). These galaxies are specifically selected to be heavily gas-dominated (Mgas/M∗ ≳ 2.7) and to be oriented edge-on. The former

  8. EVALUATION OF OPPORTUNITIES OF SOLAR ENERGETICS ON THE BASIS OF ACCURATE GROUND-BASED MEASUREMENTS OF SOLAR RADIATION

    Directory of Open Access Journals (Sweden)

    Aculinin A.

    2008-04-01

    Full Text Available Expected quantity of a solar energy received by solar panel is estimated on the basis of accurate measurements of solar radiation in Kishinev. Optimal orientation of solar panels and apparent volume of the electric power generated by solar panels are determined.

  9. Accuracy Improvement of Discharge Measurement with Modification of Distance Made Good Heading

    Directory of Open Access Journals (Sweden)

    Jongkook Lee

    2016-01-01

    Full Text Available Remote control boats equipped with an Acoustic Doppler Current Profiler (ADCP are widely accepted and have been welcomed by many hydrologists for water discharge, velocity profile, and bathymetry measurements. The advantages of this technique include high productivity, fast measurements, operator safety, and high accuracy. However, there are concerns about controlling and operating a remote boat to achieve measurement goals, especially during extreme events such as floods. When performing river discharge measurements, the main error source stems from the boat path. Due to the rapid flow in a flood condition, the boat path is not regular and this can cause errors in discharge measurements. Therefore, improvement of discharge measurements requires modification of boat path. As a result, the measurement errors in flood flow conditions are 12.3–21.8% before the modification of boat path, but 1.2–3.7% after the DMG modification of boat path. And it is considered that the modified discharges are very close to the observed discharge in the flood flow conditions. In this study, through the distance made good (DMG modification of the boat path, a comprehensive discharge measurement with high accuracy can be achieved.

  10. Time domain simulation of Gd3+-Gd3+ distance measurements by EPR

    Science.gov (United States)

    Manukovsky, Nurit; Feintuch, Akiva; Kuprov, Ilya; Goldfarb, Daniella

    2017-07-01

    Gd3+-based spin labels are useful as an alternative to nitroxides for intramolecular distance measurements at high fields in biological systems. However, double electron-electron resonance (DEER) measurements using model Gd3+ complexes featured a low modulation depth and an unexpected broadening of the distance distribution for short Gd3+-Gd3+ distances, when analysed using the software designed for S = 1/2 pairs. It appears that these effects result from the different spectroscopic characteristics of Gd3+—the high spin, the zero field splitting (ZFS), and the flip-flop terms in the dipolar Hamiltonian that are often ignored for spin-1/2 systems. An understanding of the factors affecting the modulation frequency and amplitude is essential for the correct analysis of Gd3+-Gd3+ DEER data and for the educated choice of experimental settings, such as Gd3+ spin label type and the pulse parameters. This work uses time-domain simulations of Gd3+-Gd3+ DEER by explicit density matrix propagation to elucidate the factors shaping Gd3+ DEER traces. The simulations show that mixing between the |+½, -½> and |-½, +½> states of the two spins, caused by the flip-flop term in the dipolar Hamiltonian, leads to dampening of the dipolar modulation. This effect may be mitigated by a large ZFS or by pulse frequency settings allowing for a decreased contribution of the central transition and the one adjacent to it. The simulations reproduce both the experimental line shapes of the Fourier-transforms of the DEER time domain traces and the trends in the behaviour of the modulation depth, thus enabling a more systematic design and analysis of Gd3+ DEER experiments.

  11. Non-intrusive accurate and traceable flow measurements in nuclear power plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, A.; Kanda, V.; Sharp, B.; Lopez, A. [Advanced Measurement and Analysis Group Inc., ON (Canada); Gurevich, Y. [Daystar Technologies Inc., ON (Canada)

    2014-07-01

    Ultrasonic cross correlation flow meters, are a non-intrusive flow measurement technology based on measurement of the transport velocity of turbulent structures, and have many advantages over other ultrasonic flow measurement methods. The cross correlation flow meter CROSSFLOW, produced and operated by the Canadian company Advanced Measurement and Analysis Group Inc., is used in nuclear power plants around the world, for various application. This paper describes the operating principals of the ultrasonic cross correlation flow meter, its advantages over other ultrasonic flow measurement methods, its application around the world. (author)

  12. Application of discriminant analysis and generalized distance measures to uranium exploration

    International Nuclear Information System (INIS)

    Beauchamp, J.J.; Begovich, C.L.; Kane, V.E.; Wolf, D.A.

    1980-01-01

    The National Uranium Resource Evaluation (NURE) Program has as its goal the estimation of the nation's uranium resources. It is possile to use discriminant analysis methods on hydrogeochemical data collected in the NURE Program to aid in fomulating geochemical models that can be used to identify the anomalous areas used in resource estimation. Discriminant' analysis methods have been applied to data from the Plainview, Texas Quadrangle which has approximately 850 groundwater samples with more than 40 quantitative measurements per sample. Discriminant analysis topics involving estimation of misclassification probabilities, variable selection, and robust discrimination are applied. A method using generalized distance measures is given which enables the assignment of samples to a background population or a mineralized population whose parameters were estimated from separate studies. Each topic is related to its relevance in identifying areas of possible interest to uranium exploration. However, the methodology presented here is applicable to the identification of regions associated with other types of resources. 8 figures, 3 tables

  13. Application of discriminant analysis and generalized distance measures to uranium exploration

    International Nuclear Information System (INIS)

    Beauchamp, J.J.; Begovich, C.L.; Kane, V.E.; Wolf, D.A.

    1979-10-01

    The National Uranium Resource Evaluation (NURE) Project has as its goal estimation of the nation's uranium resources. It is possible to use discriminant analysis methods on hydrogeochemical data collected in the NURE Program to aid in formulating geochemical models which can be used to identify the anomalous regions necessary for resource estimation. Discriminant analysis methods have been applied to data from the Plainview, Texas Quadrangle which has approximately 850 groundwater samples with more than 40 quantitative measurements per sample. Discriminant analysis topics involving estimation of misclassification probabilities, variable selection, and robust discrimination are applied. A method using generalized distance measures is given which enables assigning samples to a background population or a mineralized population whose parameters were estimated from separate studies. Each topic is related to its relevance in identifying areas of possible interest to uranium exploration

  14. Long distance elementary measurement of the radiation dose ratio produced by neutron activation

    International Nuclear Information System (INIS)

    Zhou Changgeng; Lou Benchao; Wu Chunlei; Hu Yonghong; Li Yan

    2009-04-01

    The working principle and the structure and performances of a long distance controllable individual radiation dose ratio instrument are described. The radiation dose ratio produced by neutron activation is elementarily measured by using this instrument in the neutron generator hall with high neutron yield. When neutron yield arrives to 2 x 10 11 s -1 , the radiation dose ratio produced by neutron activation is 99.9 μSv/h in 1 h after the generator being stopped. The radiation dose ratio is reduced to 24.4 μSv/h in 39 h after the generator being stopped. When neutron yield is 3.2 x 10 10 s -1 , the radiation dose ratio produced by neutron activation is 21.9 μSv/h in 36 min, after the generator being stopped. The measurement results may provide reference for physical experimenters and neutron generator operators. (authors)

  15. THE DISTANCE TO M51

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W. [University of Texas at Austin, McDonald Observatory, 2515 Speedway, Stop C1400 Austin, TX 78712 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Berg, Danielle [Center for Gravitation, Cosmology and Astrophysics, Department of Physics, University of Wisconsin Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211 (United States); Kennicutt, Robert, E-mail: kmcquinn@astro.as.utexas.edu [Institute for Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2016-07-20

    Great investments of observing time have been dedicated to the study of nearby spiral galaxies with diverse goals ranging from understanding the star formation process to characterizing their dark matter distributions. Accurate distances are fundamental to interpreting observations of these galaxies, yet many of the best studied nearby galaxies have distances based on methods with relatively large uncertainties. We have started a program to derive accurate distances to these galaxies. Here we measure the distance to M51—the Whirlpool galaxy—from newly obtained Hubble Space Telescope optical imaging using the tip of the red giant branch method. We measure the distance modulus to be 8.58 ± 0.10 Mpc (statistical), corresponding to a distance modulus of 29.67 ± 0.02 mag. Our distance is an improvement over previous results as we use a well-calibrated, stable distance indicator, precision photometry in a optimally selected field of view, and a Bayesian Maximum Likelihood technique that reduces measurement uncertainties.

  16. The Distance to M51

    Science.gov (United States)

    McQuinn, Kristen. B. W.; Skillman, Evan D.; Dolphin, Andrew E.; Berg, Danielle; Kennicutt, Robert

    2016-07-01

    Great investments of observing time have been dedicated to the study of nearby spiral galaxies with diverse goals ranging from understanding the star formation process to characterizing their dark matter distributions. Accurate distances are fundamental to interpreting observations of these galaxies, yet many of the best studied nearby galaxies have distances based on methods with relatively large uncertainties. We have started a program to derive accurate distances to these galaxies. Here we measure the distance to M51—the Whirlpool galaxy—from newly obtained Hubble Space Telescope optical imaging using the tip of the red giant branch method. We measure the distance modulus to be 8.58 ± 0.10 Mpc (statistical), corresponding to a distance modulus of 29.67 ± 0.02 mag. Our distance is an improvement over previous results as we use a well-calibrated, stable distance indicator, precision photometry in a optimally selected field of view, and a Bayesian Maximum Likelihood technique that reduces measurement uncertainties. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  17. Lightdrum—Portable Light Stage for Accurate BTF Measurement on Site

    Directory of Open Access Journals (Sweden)

    Vlastimil Havran

    2017-02-01

    Full Text Available We propose a miniaturised light stage for measuring the bidirectional reflectance distribution function (BRDF and the bidirectional texture function (BTF of surfaces on site in real world application scenarios. The main principle of our lightweight BTF acquisition gantry is a compact hemispherical skeleton with cameras along the meridian and with light emitting diode (LED modules shining light onto a sample surface. The proposed device is portable and achieves a high speed of measurement while maintaining high degree of accuracy. While the positions of the LEDs are fixed on the hemisphere, the cameras allow us to cover the range of the zenith angle from 0 ∘ to 75 ∘ and by rotating the cameras along the axis of the hemisphere we can cover all possible camera directions. This allows us to take measurements with almost the same quality as existing stationary BTF gantries. Two degrees of freedom can be set arbitrarily for measurements and the other two degrees of freedom are fixed, which provides a tradeoff between accuracy of measurements and practical applicability. Assuming that a measured sample is locally flat and spatially accessible, we can set the correct perpendicular direction against the measured sample by means of an auto-collimator prior to measuring. Further, we have designed and used a marker sticker method to allow for the easy rectification and alignment of acquired images during data processing. We show the results of our approach by images rendered for 36 measured material samples.

  18. Establishing traceability of photometric absorbance values for accurate measurements of the haemoglobin concentration in blood

    Science.gov (United States)

    Witt, K.; Wolf, H. U.; Heuck, C.; Kammel, M.; Kummrow, A.; Neukammer, J.

    2013-10-01

    Haemoglobin concentration in blood is one of the most frequently measured analytes in laboratory medicine. Reference and routine methods for the determination of the haemoglobin concentration in blood are based on the conversion of haeme, haemoglobin and haemiglobin species into uniform end products. The total haemoglobin concentration in blood is measured using the absorbance of the reaction products. Traceable absorbance measurement values on the highest metrological level are a prerequisite for the calibration and evaluation of procedures with respect to their suitability for routine measurements and their potential as reference measurement procedures. For this purpose, we describe a procedure to establish traceability of spectral absorbance measurements for the haemiglobincyanide (HiCN) method and for the alkaline haematin detergent (AHD) method. The latter is characterized by a higher stability of the reaction product. In addition, the toxic hazard of cyanide, which binds to the iron ion of the haem group and thus inhibits the oxygen transport, is avoided. Traceability is established at different wavelengths by applying total least-squares analysis to derive the conventional quantity values for the absorbance from the measured values. Extrapolation and interpolation are applied to get access to the spectral regions required to characterize the Q-absorption bands of the HiCN and AHD methods, respectively. For absorbance values between 0.3 and 1.8, the contributions of absorbance measurements to the total expanded uncertainties (95% level of confidence) of absorbance measurements range from 1% to 0.4%.

  19. Coherent dual-frequency lidar system design for distance and speed measurements

    Science.gov (United States)

    Zheng, Xingyuan; Zhao, Changming; Zhang, Haiyang; Zheng, Zheng; Yang, Hongzhi

    2018-01-01

    Lidars have a wide range of applications in military detection and civilian remote sensing. Coherent Dual-Frequency Lidar (CDFL) is a new concept of laser radar that is using electrical coherence instead of optical coherence. It uses laser with two coherent frequency components as transmitting wave. The method is based on the use of an optically-carried radio frequency (RF) signal, which is the frequency difference between the two components, which is specially designed for distance and speed measurements. It not only ensures the system has the characteristics of high spatial resolution, high ranging and velocity precision of laser radar, but also can use mature signal processing technology of microwave radar, and it is a research direction that attracts more concern in recent years. A CDFL detection system is constructed and field experiment is carried out. In the system, a narrow linewidth fiber laser with a wavelength of 1064nm is adopted. The dual-frequency laser with frequency difference of 200MHz and 200.6MHz is obtained by acousto-optic frequency shift and recombination. The maximum output power of dual frequency laser is 200mW. The receiver consists of all-fiber balanced InGaAs photo-detector and homemade analog signal processing board. The experimental results show that the distance resolution and velocity resolution of the system are 0.1m and 0.1m/s separately when the working distance is greater than 200m, and the spatial resolution is 0.5mrad.

  20. Accurate determination of gain and radiation patterns by radar cross-section measurements

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1979-01-01

    Using a two-port network and geometrical interpretation of equations involved in antenna scattering, it can be derived that antenna characteristics may be determined in properly designed scattering measurements. As an alternative to this approach it is shown that measurement procedures for gain a...

  1. An Inexpensive, Stable, and Accurate Relative Humidity Measurement Method for Challenging Environments.

    Science.gov (United States)

    Zhang, Wei; Ma, Hong; Yang, Simon X

    2016-03-18

    In this research, an improved psychrometer is developed to solve practical issues arising in the relative humidity measurement of challenging drying environments for meat manufacturing in agricultural and agri-food industries. The design in this research focused on the structure of the improved psychrometer, signal conversion, and calculation methods. The experimental results showed the effect of varying psychrometer structure on relative humidity measurement accuracy. An industrial application to dry-cured meat products demonstrated the effective performance of the improved psychrometer being used as a relative humidity measurement sensor in meat-drying rooms. In a drying environment for meat manufacturing, the achieved measurement accuracy for relative humidity using the improved psychrometer was ±0.6%. The system test results showed that the improved psychrometer can provide reliable and long-term stable relative humidity measurements with high accuracy in the drying system of meat products.

  2. Method of accurate thickness measurement of boron carbide coating on copper foil

    Science.gov (United States)

    Lacy, Jeffrey L.; Regmi, Murari

    2017-11-07

    A method is disclosed of measuring the thickness of a thin coating on a substrate comprising dissolving the coating and substrate in a reagent and using the post-dissolution concentration of the coating in the reagent to calculate an effective thickness of the coating. The preferred method includes measuring non-conducting films on flexible and rough substrates, but other kinds of thin films can be measure by matching a reliable film-substrate dissolution technique. One preferred method includes determining the thickness of Boron Carbide films deposited on copper foil. The preferred method uses a standard technique known as inductively coupled plasma optical emission spectroscopy (ICPOES) to measure boron concentration in a liquid sample prepared by dissolving boron carbide films and the Copper substrates, preferably using a chemical etch known as ceric ammonium nitrate (CAN). Measured boron concentration values can then be calculated.

  3. Predicting Falls in People with Multiple Sclerosis: Fall History Is as Accurate as More Complex Measures

    Directory of Open Access Journals (Sweden)

    Michelle H. Cameron

    2013-01-01

    Full Text Available Background. Many people with MS fall, but the best method for identifying those at increased fall risk is not known. Objective. To compare how accurately fall history, questionnaires, and physical tests predict future falls and injurious falls in people with MS. Methods. 52 people with MS were asked if they had fallen in the past 2 months and the past year. Subjects were also assessed with the Activities-specific Balance Confidence, Falls Efficacy Scale-International, and Multiple Sclerosis Walking Scale-12 questionnaires, the Expanded Disability Status Scale, Timed 25-Foot Walk, and computerized dynamic posturography and recorded their falls daily for the following 6 months with calendars. The ability of baseline assessments to predict future falls was compared using receiver operator curves and logistic regression. Results. All tests individually provided similar fall prediction (area under the curve (AUC 0.60–0.75. A fall in the past year was the best predictor of falls (AUC 0.75, sensitivity 0.89, specificity 0.56 or injurious falls (AUC 0.69, sensitivity 0.96, specificity 0.41 in the following 6 months. Conclusion. Simply asking people with MS if they have fallen in the past year predicts future falls and injurious falls as well as more complex, expensive, or time-consuming approaches.

  4. Research on in-situ measurement technique of three-dimensional distance

    International Nuclear Information System (INIS)

    Shiraishi, Masatake; Aoshima, Shinichi; Aose, Shinichi; Takeuchi, Masayuki

    2004-04-01

    Equipments used in the nuclear facility must be done the adequate maintenance and should be exchanged to new ones by the remote control. For this aim, we need information about the objects such as a distance, a profile, and an inclination with the required accuracy. The aim of this research is, thus, to establish and equipment exchanging method by controlling the position of equipments and parts. In order to catch the whole position condition of objects, a rough measurement system was developed, and information was obtained from the front side of parts. Then, a precise measurement system that performs local measurement was constructed to obtain the information around the shade portion of the objects, which is not obtainable by the rough measurement system. Therefore, the new system performs two measurements: a rough measurement and a precise measurement. Consequently, it was found to be effective for acquiring a lot of information that are not obtained only by the rough measurement system form the front side only. Before exchanging equipments, we need to know their conditions whether they are still applicable or not. The another point of this research is, therefore, to develop an on-line deterioration diagnosis method of equipments. Specifically, a new approach in which the laser light is projected onto the equipment surface is proposed to check the contrast of the reflection pattern. Because the contrast is corresponding to the condition of the measured surface and therefore we can conjecture the surface states of the object surface by obtaining the contrast. We examined those states empirically by changing the laser angle of incidence and the receiving angle of camera. As a result, the validity of the on-line diagnosis was confirmed through various experiments. Finally, the possibility of applying VR method was discussed as a control of robot manipulator, although this research is on going. (author)

  5. Accurate and simple measurement method of complex decay schemes radionuclide activity

    International Nuclear Information System (INIS)

    Legrand, J.; Clement, C.; Bac, C.

    1975-01-01

    A simple method for the measurement of the activity is described. It consists of using a well-type sodium iodide crystal whose efficiency mith monoenergetic photon rays has been computed or measured. For each radionuclide with a complex decay scheme a total efficiency is computed; it is shown that the efficiency is very high, near 100%. The associated incertainty is low, in spite of the important uncertainties on the different parameters used in the computation. The method has been applied to the measurement of the 152 Eu primary reference [fr

  6. The Effect of Changing Focal Trough in a Panoramic Device on the Accuracy of Distance Measurements

    Directory of Open Access Journals (Sweden)

    Mehrdad Abdinian

    2018-01-01

    Full Text Available >Introduction: Magnification and distortion are the most important limitations of panoramic radiography. The aim of this study was to determine the effects of changing focal trough option of Planmeca SCARA 3 on the accuracy of linear distance measurements.Materials and Methods: In this in-vitro study, 28 pieces of gutta-percha were attached to the assumptive place of each lost root of an adult dry skull with average size and normal shape. The actual measurements were obtained by a digital caliper. The panoramic images of the skull were taken in six different sizes and shapes of focal trough. This procedure was repeated ten times with new gutta-percha. Paired t-test was used to compare the values of different actual and radiographic images of gutta-percha dimensions.Results: The mean difference [standard deviation (SD] between actual measurement and panoramic radiography in the different groups was from 0.37 (1.1 to 0.58 (2.87 mm. The mean (SD difference of linear measurements between real and radiographic images was 0.52 (0.43 mm in average size, V-shaped group, which was statistically and clinically significant (P = 0.00.Conclusion: Changing the focal trough option of Planmeca SCARA 3 has minimal effects on the accuracy of linear measurements in panoramic radiographs.

  7. EDUCATEE'S THESAURUS AS AN OBJECT OF MEASURING LEARNED MATERIAL OF THE DISTANCE LEARNING COURSE

    Directory of Open Access Journals (Sweden)

    Alexander Aleksandrovich RYBANOV

    2013-10-01

    Full Text Available Monitoring and control over the process of studying the distance learning course are based on solving the problem of making out an adequate integral mark to the educatee for mastering entire study course, by testing results. It is suggested to use the degree of correspondence between educatee's thesaurus and the study course thesaurus as an integral mark for the degree of mastering the distance learning course. Study course thesaurus is a set of the course objects with relations between them specified. The article considers metrics of the study course thesaurus complexity, made on the basis of the graph theory and the information theory. It is suggested to use the amount of information contained in the study course thesaurus graph as the metrics of the study course thesaurus complexity. Educatee's thesaurus is considered as an object of measuring educational material learned at the semantic level and is assessed on the basis of amount of information contained in its graph, taking into account the factors of learning the thesaurus objects.

  8. Accurate on-chip measurement of the Seebeck coefficient of high mobility small molecule organic semiconductors

    Science.gov (United States)

    Warwick, C. N.; Venkateshvaran, D.; Sirringhaus, H.

    2015-09-01

    We present measurements of the Seebeck coefficient in two high mobility organic small molecules, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) and 2,9-didecyl-dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (C10-DNTT). The measurements are performed in a field effect transistor structure with high field effect mobilities of approximately 3 cm2/V s. This allows us to observe both the charge concentration and temperature dependence of the Seebeck coefficient. We find a strong logarithmic dependence upon charge concentration and a temperature dependence within the measurement uncertainty. Despite performing the measurements on highly polycrystalline evaporated films, we see an agreement in the Seebeck coefficient with modelled values from Shi et al. [Chem. Mater. 26, 2669 (2014)] at high charge concentrations. We attribute deviations from the model at lower charge concentrations to charge trapping.

  9. Accurate on-chip measurement of the Seebeck coefficient of high mobility small molecule organic semiconductors

    Directory of Open Access Journals (Sweden)

    C. N. Warwick

    2015-09-01

    Full Text Available We present measurements of the Seebeck coefficient in two high mobility organic small molecules, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT and 2,9-didecyl-dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (C10-DNTT. The measurements are performed in a field effect transistor structure with high field effect mobilities of approximately 3 cm2/V s. This allows us to observe both the charge concentration and temperature dependence of the Seebeck coefficient. We find a strong logarithmic dependence upon charge concentration and a temperature dependence within the measurement uncertainty. Despite performing the measurements on highly polycrystalline evaporated films, we see an agreement in the Seebeck coefficient with modelled values from Shi et al. [Chem. Mater. 26, 2669 (2014] at high charge concentrations. We attribute deviations from the model at lower charge concentrations to charge trapping.

  10. Accurate evaluation of viscoelasticity of radial artery wall during flow-mediated dilation in ultrasound measurement

    Science.gov (United States)

    Sakai, Yasumasa; Taki, Hirofumi; Kanai, Hiroshi

    2016-07-01

    In our previous study, the viscoelasticity of the radial artery wall was estimated to diagnose endothelial dysfunction using a high-frequency (22 MHz) ultrasound device. In the present study, we employed a commercial ultrasound device (7.5 MHz) and estimated the viscoelasticity using arterial pressure and diameter, both of which were measured at the same position. In a phantom experiment, the proposed method successfully estimated the elasticity and viscosity of the phantom with errors of 1.8 and 30.3%, respectively. In an in vivo measurement, the transient change in the viscoelasticity was measured for three healthy subjects during flow-mediated dilation (FMD). The proposed method revealed the softening of the arterial wall originating from the FMD reaction within 100 s after avascularization. These results indicate the high performance of the proposed method in evaluating vascular endothelial function just after avascularization, where the function is difficult to be estimated by a conventional FMD measurement.

  11. Prerequisites for Accurate Monitoring of River Discharge Based on Fixed-Location Velocity Measurements

    Science.gov (United States)

    Kästner, K.; Hoitink, A. J. F.; Torfs, P. J. J. F.; Vermeulen, B.; Ningsih, N. S.; Pramulya, M.

    2018-02-01

    River discharge has to be monitored reliably for effective water management. As river discharge cannot be measured directly, it is usually inferred from the water level. This practice is unreliable at places where the relation between water level and flow velocity is ambiguous. In such a case, the continuous measurement of the flow velocity can improve the discharge prediction. The emergence of horizontal acoustic Doppler current profilers (HADCPs) has made it possible to continuously measure the flow velocity. However, the profiling range of HADCPs is limited, so that a single instrument can only partially cover a wide cross section. The total discharge still has to be determined with a model. While the limitations of rating curves are well understood, there is not yet a comprehensive theory to assess the accuracy of discharge predicted from velocity measurements. Such a theory is necessary to discriminate which factors influence the measurements, and to improve instrument deployment as well as discharge prediction. This paper presents a generic method to assess the uncertainty of discharge predicted from range-limited velocity profiles. The theory shows that a major source of error is the variation of the ratio between the local and cross-section-averaged velocity. This variation is large near the banks, where HADCPs are usually deployed and can limit the advantage gained from the velocity measurement. We apply our theory at two gauging stations situated in the Kapuas River, Indonesia. We find that at one of the two stations the index velocity does not outperform a simple rating curve.

  12. The Next Generation Virgo Cluster Survey (NGVS). XVIII. Measurement and Calibration of Surface Brightness Fluctuation Distances for Bright Galaxies in Virgo (and Beyond)

    Science.gov (United States)

    Cantiello, Michele; Blakeslee, John P.; Ferrarese, Laura; Côté, Patrick; Roediger, Joel C.; Raimondo, Gabriella; Peng, Eric W.; Gwyn, Stephen; Durrell, Patrick R.; Cuillandre, Jean-Charles

    2018-04-01

    We describe a program to measure surface brightness fluctuation (SBF) distances to galaxies observed in the Next Generation Virgo Cluster Survey (NGVS), a photometric imaging survey covering 104 deg2 of the Virgo cluster in the u*, g, i, and z bandpasses with the Canada–France–Hawaii Telescope. We describe the selection of the sample galaxies, the procedures for measuring the apparent i-band SBF magnitude {\\overline{m}}i, and the calibration of the absolute Mibar as a function of observed stellar population properties. The multiband NGVS data set provides multiple options for calibrating the SBF distances, and we explore various calibrations involving individual color indices as well as combinations of two different colors. Within the color range of the present sample, the two-color calibrations do not significantly improve the scatter with respect to wide-baseline, single-color calibrations involving u*. We adopt the ({u}* -z) calibration as a reference for the present galaxy sample, with an observed scatter of 0.11 mag. For a few cases that lack good u* photometry, we use an alternative relation based on a combination of (g-i) and (g-z) colors, with only a slightly larger observed scatter of 0.12 mag. The agreement of our measurements with the best existing distance estimates provides confidence that our measurements are accurate. We present a preliminary catalog of distances for 89 galaxies brighter than B T ≈ 13.0 mag within the survey footprint, including members of the background M and W Clouds at roughly twice the distance of the main body of the Virgo cluster. The extension of the present work to fainter and bluer galaxies is in progress.

  13. Absolute Hounsfield unit measurement on noncontrast computed tomography cannot accurately predict struvite stone composition.

    Science.gov (United States)

    Marchini, Giovanni Scala; Gebreselassie, Surafel; Liu, Xiaobo; Pynadath, Cindy; Snyder, Grace; Monga, Manoj

    2013-02-01

    The purpose of our study was to determine, in vivo, whether single-energy noncontrast computed tomography (NCCT) can accurately predict the presence/percentage of struvite stone composition. We retrospectively searched for all patients with struvite components on stone composition analysis between January 2008 and March 2012. Inclusion criteria were NCCT prior to stone analysis and stone size ≥4 mm. A single urologist, blinded to stone composition, reviewed all NCCT to acquire stone location, dimensions, and Hounsfield unit (HU). HU density (HUD) was calculated by dividing mean HU by the stone's largest transverse diameter. Stone analysis was performed via Fourier transform infrared spectrometry. Independent sample Student's t-test and analysis of variance (ANOVA) were used to compare HU/HUD among groups. Spearman's correlation test was used to determine the correlation between HU and stone size and also HU/HUD to % of each component within the stone. Significance was considered if pR=0.017; p=0.912) and negative with HUD (R=-0.20; p=0.898). Overall, 3 (6.8%) had stones (n=5) with other miscellaneous stones (n=39), no difference was found for HU (p=0.09) but HUD was significantly lower for pure stones (27.9±23.6 v 72.5±55.9, respectively; p=0.006). Again, significant overlaps were seen. Pure struvite stones have significantly lower HUD than mixed struvite stones, but overlap exists. A low HUD may increase the suspicion for a pure struvite calculus.

  14. ACCUWIND - Accurate wind speed measurements in wind energy - Summary report[Cup and sonic anemometers

    Energy Technology Data Exchange (ETDEWEB)

    Friis Pedersen, T.; Dahlberg, J.Aa.; Cuerva, A.; Mouzakis, F.; Busche, P.; Eecen, P.; Sanz-Andres, A.; Franchini, S.; Markkilde Petersen, S.

    2006-07-15

    The cup anemometer is at present the standard instrument used for mean wind speed measurement in wind energy. It is being applied in high numbers around the world for wind energy assessments. It is also applied exclusively for accredited power performance measurements for certification and verification purposes, and for purposes of optimisation in research and development. The revised IEC standard on power performance measurements has now included requirements for classification of cup anemometers. The basis for setting up such requirements of cup anemometers is two EU projects SITEPARIDEN and CLASSCUP from which the proposed classification method for cup anemometers was developed for the IEC standard. While cup anemometers at present are the standard anemometer being used for average wind speed measurements, sonic anemometers have been developed significantly over the last years, and prices have come down. The application of sonic anemometers may increase in wind energy if they prove to have comparable or better operational characteristics compared to cup anemometers, and if similar requirements to sonic anemometers are established as for cup anemometers. Sonic anemometers have historically been used by meteorologists for turbulence measurements, but have also found a role on wind turbine nacelles for wind speed and yaw control purposes. The report on cup and sonic anemometry deals with establishment of robustness in assessment and classification by focus on methods and procedures for analysis of characteristics of cup and sonic anemometers. The methods and procedures provide a platform, hopefully for use in meeting the requirements of the IEC standard on power performance measurements, as well as for development of improved instruments. (au)

  15. Are tidal volume measurements in neonatal pressure-controlled ventilation accurate?

    Science.gov (United States)

    Chow, Lily C; Vanderhal, Andre; Raber, Jorge; Sola, Augusto

    2002-09-01

    Bedside pulmonary mechanics monitors (PMM) have become useful in ventilatory management in neonates. These monitors are used more frequently due to recent improvements in data-processing capabilities. PMM devices are often part of the ventilator or are separate units. The accuracy and reliability of these systems have not been carefully evaluated. We compared a single ventilatory parameter, tidal volume (V(t)), as measured by several systems. We looked at two freestanding PMMs: the Ventrak Respiratory Monitoring System (Novametrix, Wallingford, CT) and the Bicore CP-100 Neonatal Pulmonary Monitor (Allied Health Care Products, Riverside, CA), and three ventilators with built-in PMM: the VIP Bird Ventilator (Bird Products Corp., Palm Springs, CA), Siemens Servo 300A (Siemens-Elema AB, Solna, Sweden), and Drager Babylog 8000 (Drager, Inc., Chantilly, VA). A calibrated syringe (Hans Rudolph, Inc., Kansas City, MO) was used to deliver tidal volumes of 4, 10, and 20 mL to each ventilator system coupled with a freestanding PMM. After achieving steady state, six consecutive V(t) readings were taken simultaneously from the freestanding PMM and each ventilator. In a second portion of the bench study, we used pressure-control ventilation and measured exhaled tidal volume (V(te)) while ventilating a Bear Test Lung with the same three ventilators. We adjusted peak inspiratory pressure (PIP) under controlled conditions to achieve the three different targeted tidal volumes on the paired freestanding PMM. Again, six V(te) measurements were recorded for each tidal volume. Means and standard deviations were calculated.The percentage difference in measurement of V(t) delivered by calibrated syringe varied greatly, with the greatest discrepancy seen in the smallest tidal volumes, by up to 28%. In pressure control mode, V(te) as measured by the Siemens was significantly overestimated by 20-95%, with the biggest discrepancy at the smallest V(te), particularly when paired with the Bicore

  16. Constraints on cosmic opacity and beyond the standard model physics from cosmological distance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Avgoustidis, Anastasios [Centre for Theoretical Cosmology, DAMTP, CMS, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Burrage, Clare [Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Redondo, Javier [Max Planck Institut für Physik, Föhringer Ring 6, D-80805, Munich (Germany); Verde, Licia; Jimenez, Raul, E-mail: a.avgoustidis@damtp.cam.ac.uk, E-mail: clare.burrage@desy.de, E-mail: redondo@mppmu.mpg.de, E-mail: liciaverde@icc.ub.edu, E-mail: raul.jimenez@icc.ub.edu [ICREA and Institute for Sciences of the Cosmos (ICC), University of Barcelona, IEEC, Barcelona 08028 (Spain)

    2010-10-01

    We update constraints on cosmic opacity by combining recent SN Type Ia data with the latest measurements of the Hubble expansion at redshifts between 0 and 2. The new constraint on the parameter ε parametrising deviations from the luminosity-angular diameter distance relation (d{sub L} = d{sub A}(1+z){sup 2+ε}), is ε = −0.04{sub −0.07}{sup +0.08} (2-σ). For the redshift range between 0.2 and 0.35 this corresponds to an opacity Δτ < 0.012 (95% C.L.), a factor of 2 stronger than the previous constraint. Various models of beyond the standard model physics that predict violation of photon number conservation contribute to the opacity and can be equally constrained. In this paper we put new limits on axion-like particles, including chameleons, and mini-charged particles.

  17. Constraints on cosmic opacity and beyond the standard model physics from cosmological distance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Avgoustidis, Anastasios [DAMTP, CMS, Cambridge (United Kingdom). Centre for Theoretical Cosmology; Burrage, Clare [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Redondo, Javier [Max-Planck-Institut fuer Physik, Munich (Germany); Verde, Licia; Jimenez, Raul [Barcelona Univ., IEEC (ES). ICREA and Inst. for Sciences of the Cosmos (ICC)

    2010-04-15

    We update constraints on cosmic opacity by combining recent SN Type Ia data compilation with the latest measurements of the Hubble expansion at redshifts between 0 and 2. The new constraint on the parameter {epsilon} parametrising deviations from the luminosity-angular diameter distance relation (d{sub L}=d{sub A}(1+z){sup 2+{epsilon}}), is {epsilon}=-0.04{sub -0.07}{sup +0.08} (2-{sigma}). For the redshift range between 0.2 and 0.35 this corresponds to an opacity {delta}{tau}<0.012 (95% C.L.), a factor of 2 stronger than the previous constraint. Various models of beyond the standard model physics that predict violation of photon number conservation contribute to the opacity and can be equally constrained. In this paper we put new limits on axion-like particles, including chameleons, and minicharged particles. (orig.)

  18. Slicing, sampling, and distance-dependent effects affect network measures in simulated cortical circuit structures

    Directory of Open Access Journals (Sweden)

    Daniel Carl Miner

    2014-11-01

    Full Text Available The neuroanatomical connectivity of cortical circuits is believed to follow certain rules, the exact origins of which are still poorly understood. In particular, numerous nonrandom features, such as common neighbor clustering, overrepresentation of reciprocal connectivity, and overrepresentation of certain triadic graph motifs have been experimentally observed in cortical slice data. Some of these data, particularly regarding bidirectional connectivity are seemingly contradictory, and the reasons for this are unclear. Here we present a simple static geometric network model with distance-dependent connectivity on a realistic scale that naturally gives rise to certain elements of these observed behaviors, and may provide plausible explanations for some of the conflicting findings. Specifically, investigation of the model shows that experimentally measured nonrandom effects, especially bidirectional connectivity, may depend sensitively on experimental parameters such as slice thickness and sampling area, suggesting potential explanations for the seemingly conflicting experimental results.

  19. Slicing, sampling, and distance-dependent effects affect network measures in simulated cortical circuit structures.

    Science.gov (United States)

    Miner, Daniel C; Triesch, Jochen

    2014-01-01

    The neuroanatomical connectivity of cortical circuits is believed to follow certain rules, the exact origins of which are still poorly understood. In particular, numerous nonrandom features, such as common neighbor clustering, overrepresentation of reciprocal connectivity, and overrepresentation of certain triadic graph motifs have been experimentally observed in cortical slice data. Some of these data, particularly regarding bidirectional connectivity are seemingly contradictory, and the reasons for this are unclear. Here we present a simple static geometric network model with distance-dependent connectivity on a realistic scale that naturally gives rise to certain elements of these observed behaviors, and may provide plausible explanations for some of the conflicting findings. Specifically, investigation of the model shows that experimentally measured nonrandom effects, especially bidirectional connectivity, may depend sensitively on experimental parameters such as slice thickness and sampling area, suggesting potential explanations for the seemingly conflicting experimental results.

  20. Constraints on cosmic opacity and beyond the standard model physics from cosmological distance measurements

    International Nuclear Information System (INIS)

    Avgoustidis, Anastasios; Redondo, Javier; Verde, Licia; Jimenez, Raul

    2010-04-01

    We update constraints on cosmic opacity by combining recent SN Type Ia data compilation with the latest measurements of the Hubble expansion at redshifts between 0 and 2. The new constraint on the parameter ε parametrising deviations from the luminosity-angular diameter distance relation (d L =d A (1+z) 2+ε ), is ε=-0.04 -0.07 +0.08 (2-σ). For the redshift range between 0.2 and 0.35 this corresponds to an opacity Δτ<0.012 (95% C.L.), a factor of 2 stronger than the previous constraint. Various models of beyond the standard model physics that predict violation of photon number conservation contribute to the opacity and can be equally constrained. In this paper we put new limits on axion-like particles, including chameleons, and minicharged particles. (orig.)

  1. Ratbot automatic navigation by electrical reward stimulation based on distance measurement in unknown environments.

    Science.gov (United States)

    Gao, Liqiang; Sun, Chao; Zhang, Chen; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2013-01-01

    Traditional automatic navigation methods for bio-robots are constrained to configured environments and thus can't be applied to tasks in unknown environments. With no consideration of bio-robot's own innate living ability and treating bio-robots in the same way as mechanical robots, those methods neglect the intelligence behavior of animals. This paper proposes a novel ratbot automatic navigation method in unknown environments using only reward stimulation and distance measurement. By utilizing rat's habit of thigmotaxis and its reward-seeking behavior, this method is able to incorporate rat's intrinsic intelligence of obstacle avoidance and path searching into navigation. Experiment results show that this method works robustly and can successfully navigate the ratbot to a target in the unknown environment. This work might put a solid base for application of ratbots and also has significant implication of automatic navigation for other bio-robots as well.

  2. Spectral interferometry including the effect of transparent thin films to measure distances and displacements

    International Nuclear Information System (INIS)

    Hlubina, P.

    2004-01-01

    A spectral-domain interferometric technique is applied for measuring mirror distances and displacements in a dispersive Michelson interferometer when the effect of transparent thin films coated onto the interferometer beam splitter and compensator is known. We employ a low-resolution spectrometer in two experiments with different amounts of dispersion in a Michelson interferometer that includes fused-silica optical sample. Knowing the thickness of the optical sample and the nonlinear phase function of the thin films, the positions of the interferometer mirror are determined precisely by a least-squares fitting of the theoretical spectral interferograms to the recorded ones. We compare the results of the processing that include and do not include the effect of transparent thin films (Author)

  3. Novel Distance Measure in Fuzzy TOPSIS for Supply Chain Strategy Based Supplier Selection

    Directory of Open Access Journals (Sweden)

    B. Pardha Saradhi

    2016-01-01

    Full Text Available In today’s highly competitive environment, organizations need to evaluate and select suppliers based on their manufacturing strategy. Identification of supply chain strategy of the organization, determination of decision criteria, and methods of supplier selection are appearing to be the most important components in research area in the field of supply chain management. In this paper, evaluation of suppliers is done based on the balanced scorecard framework using new distance measure in fuzzy TOPSIS by considering the supply chain strategy of the manufacturing organization. To take care of vagueness in decision making, trapezoidal fuzzy number is assumed for pairwise comparisons to determine relative weights of perspectives and criteria of supplier selection. Also, linguistic variables specified in terms of trapezoidal fuzzy number are considered for the payoff values of criteria of the suppliers. These fuzzy numbers satisfied the Jensen based inequality. A detailed application of the proposed methodology is illustrated.

  4. A definition of distance and method of making space-time measurements

    International Nuclear Information System (INIS)

    Brisson, D.W.

    1980-01-01

    The paper explores an extended definition of the absolute value of a complex number and thus a new definition of distance. This new definition, called the nabsolute value of a complex number, is (Z) where Z = (a or ia) + (b or ib), so that (Z) is equivalent to [α 2 + β 2 ]sup(1/2), and α = a or ia, β = b or ib. This is shown on a superimposed X,Y plot and iX,iY plot so that four dimensions are represented in a plane. The application of this scheme to space-time measurement is then identified with the Minkowski Plane which has identical properties with the complex plane, with this new interpretation of the absolute value of a complex number. (Auth.)

  5. Implications of progesterone metabolism in MA-10 cells for accurate measurement of the rate of steroidogenesis

    NARCIS (Netherlands)

    F.F.G. Rommerts (Focko); S.R. King (Steven); P.N. Span (Paul)

    2001-01-01

    textabstractIn virtually all studies with MA-10 cells, progesterone RIAs have been used to measure steroid synthesis. To test whether progesterone is a stable end product, we investigated the metabolism of added tritiated progesterone and pregnenolone in MA-10 cells over a period

  6. Implications of progesterone metabolism in MA-10 cells for accurate measurement of the rate of steroidogenesis.

    NARCIS (Netherlands)

    Rommerts, F.F.; King, S.R.; Span, P.N.

    2001-01-01

    In virtually all studies with MA-10 cells, progesterone RIAs have been used to measure steroid synthesis. To test whether progesterone is a stable end product, we investigated the metabolism of added tritiated progesterone and pregnenolone in MA-10 cells over a period of 3 h. Steroids were then

  7. Validation of the Automated Method VIENA: An Accurate, Precise, and Robust Measure of Ventricular Enlargement

    NARCIS (Netherlands)

    Vrenken, H.; Vos, E.K.; van der Flier, W.M.; Sluimer, I.C.; Cover, K.S.; Knol, D.L.; Barkhof, F.

    2014-01-01

    Background: In many retrospective studies and large clinical trials, high-resolution, good-contrast 3DT1 images are unavailable, hampering detailed analysis of brain atrophy. Ventricular enlargement then provides a sensitive indirect measure of ongoing central brain atrophy. Validated automated

  8. A technique for accurate measurements of temperature variations in solution calorimetry and osmometry of actinide complexes

    International Nuclear Information System (INIS)

    Ponkshe, M.R.; Samuel, J.K.

    1982-01-01

    The temperature variations of the order of 10 3- to 10 -4 C are measured by means of matched pair of thermistors and constant current techniques. The factors deciding the sensitivity and accuracy are fully discussed. Also the factors which put restrictions on the practical detection limits are also described. (author)

  9. Accurate calculation of the geometric measure of entanglement for multipartite quantum states

    Science.gov (United States)

    Teng, Peiyuan

    2017-07-01

    This article proposes an efficient way of calculating the geometric measure of entanglement using tensor decomposition methods. The connection between these two concepts is explored using the tensor representation of the wavefunction. Numerical examples are benchmarked and compared. Furthermore, we search for highly entangled qubit states to show the applicability of this method.

  10. Development and calibration of an accurate 6-degree-of-freedom measurement system with total station

    International Nuclear Information System (INIS)

    Gao, Yang; Lin, Jiarui; Yang, Linghui; Zhu, Jigui

    2016-01-01

    To meet the demand of high-accuracy, long-range and portable use in large-scale metrology for pose measurement, this paper develops a 6-degree-of-freedom (6-DOF) measurement system based on total station by utilizing its advantages of long range and relative high accuracy. The cooperative target sensor, which is mainly composed of a pinhole prism, an industrial lens, a camera and a biaxial inclinometer, is designed to be portable in use. Subsequently, a precise mathematical model is proposed from the input variables observed by total station, imaging system and inclinometer to the output six pose variables. The model must be calibrated in two levels: the intrinsic parameters of imaging system, and the rotation matrix between coordinate systems of the camera and the inclinometer. Then corresponding approaches are presented. For the first level, we introduce a precise two-axis rotary table as a calibration reference. And for the second level, we propose a calibration method by varying the pose of a rigid body with the target sensor and a reference prism on it. Finally, through simulations and various experiments, the feasibilities of the measurement model and calibration methods are validated, and the measurement accuracy of the system is evaluated. (paper)

  11. Integrating sphere-based setup as an accurate system for optical properties measurements

    CSIR Research Space (South Africa)

    Abdalmonem, S

    2010-09-01

    Full Text Available Determination of the optical properties of solid and liquid samples has great importance. Since the integrating sphere-based setup is used to measure the amount of reflected and transmitted light by the examined samples, optical properties could...

  12. An automated A-value measurement tool for accurate cochlear duct length estimation.

    Science.gov (United States)

    Iyaniwura, John E; Elfarnawany, Mai; Ladak, Hanif M; Agrawal, Sumit K

    2018-01-22

    There has been renewed interest in the cochlear duct length (CDL) for preoperative cochlear implant electrode selection and postoperative generation of patient-specific frequency maps. The CDL can be estimated by measuring the A-value, which is defined as the length between the round window and the furthest point on the basal turn. Unfortunately, there is significant intra- and inter-observer variability when these measurements are made clinically. The objective of this study was to develop an automated A-value measurement algorithm to improve accuracy and eliminate observer variability. Clinical and micro-CT images of 20 cadaveric cochleae specimens were acquired. The micro-CT of one sample was chosen as the atlas, and A-value fiducials were placed onto that image. Image registration (rigid affine and non-rigid B-spline) was applied between the atlas and the 19 remaining clinical CT images. The registration transform was applied to the A-value fiducials, and the A-value was then automatically calculated for each specimen. High resolution micro-CT images of the same 19 specimens were used to measure the gold standard A-values for comparison against the manual and automated methods. The registration algorithm had excellent qualitative overlap between the atlas and target images. The automated method eliminated the observer variability and the systematic underestimation by experts. Manual measurement of the A-value on clinical CT had a mean error of 9.5 ± 4.3% compared to micro-CT, and this improved to an error of 2.7 ± 2.1% using the automated algorithm. Both the automated and manual methods correlated significantly with the gold standard micro-CT A-values (r = 0.70, p value measurement tool using atlas-based registration methods was successfully developed and validated. The automated method eliminated the observer variability and improved accuracy as compared to manual measurements by experts. This open-source tool has the potential to benefit

  13. The effect of external dynamic loads on the lifetime of rolling element bearings: accurate measurement of the bearing behaviour

    International Nuclear Information System (INIS)

    Jacobs, W; Boonen, R; Sas, P; Moens, D

    2012-01-01

    Accurate prediction of the lifetime of rolling element bearings is a crucial step towards a reliable design of many rotating machines. Recent research emphasizes an important influence of external dynamic loads on the lifetime of bearings. However, most lifetime calculations of bearings are based on the classical ISO 281 standard, neglecting this influence. For bearings subjected to highly varying loads, this leads to inaccurate estimations of the lifetime, and therefore excessive safety factors during the design and unexpected failures during operation. This paper presents a novel test rig, developed to analyse the behaviour of rolling element bearings subjected to highly varying loads. Since bearings are very precise machine components, their motion can only be measured in an accurately controlled environment. Otherwise, noise from other components and external influences such as temperature variations will dominate the measurements. The test rig is optimised to perform accurate measurements of the bearing behaviour. Also, the test bearing is fitted in a modular structure, which guarantees precise mounting and allows testing different types and sizes of bearings. Finally, a fully controlled multi-axial static and dynamic load is imposed on the bearing, while its behaviour is monitored with capacitive proximity probes.

  14. Data on final calcium concentration in native gel reagents determined accurately through inductively coupled plasma measurements

    Directory of Open Access Journals (Sweden)

    Jeffrey Viviano

    2016-03-01

    Full Text Available In this article we present data on the concentration of calcium as determined by Inductively Coupled Plasma (ICP measurements. Calcium was estimated in the reagents used for native gel electrophoresis of Neuronal Calcium Sensor (NCS proteins. NCS proteins exhibit calcium-dependent mobility shift in native gels. The sensitivity of this shift to calcium necessitated a precise determination of calcium concentrations in all reagents used. We determined the calcium concentrations in different components used along with the samples in the native gel experiments. These were: 20 mM Tris pH 7.5, loading dye and running buffer, with distilled water as reference. Calcium determinations were through ICP measurements. It was found that the running buffer contained calcium (244 nM over the blank. Keywords: Neuronal calcium sensor proteins, Electrophoresis, Mobility shift, Calcium, Magnesium

  15. Techniques for Accurate Parallax Measurements for 6.7 GHz Methanol Masers

    Energy Technology Data Exchange (ETDEWEB)

    Reid, M. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Brunthaler, A.; Menten, K. M.; Sanna, A. [Max-Planck-Institut für Radioastronomy, Auf dem Hügel 69, D-53121-Bonn (Germany); Xu, Y.; Sakai, N. [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Li, J. J.; Wu, Y.; Hu, B. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Zheng, X. W. [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Zhang, B. [Shanghai Astrophysical Observatory, 80 Nandan Road, Shanghai 200030 (China); Immer, K. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748, Garching bei München (Germany); Rygl, K. [Italian ALMA Regional Centre, INAF—Istituto di Radioastronomia, Via P. Gobetti 101, I-40129 Bologna (Italy); Moscadelli, L. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125, Firenze (Italy); Bartkiewicz, A. [Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Choi, Y. K. [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon, 34055 (Korea, Republic of)

    2017-08-01

    The BeSSeL Survey is mapping the spiral structure of the Milky Way by measuring trigonometric parallaxes of hundreds of maser sources associated with high-mass star formation. While parallax techniques for water masers at high frequency (22 GHz) have been well documented, recent observations of methanol masers at lower frequency (6.7 GHz) have revealed astrometric issues associated with signal propagation through the ionosphere that could significantly limit parallax accuracy. These problems displayed as a “parallax gradient” on the sky when measured against different background quasars. We present an analysis method in which we generate position data relative to an “artificial quasar” at the target maser position at each epoch. Fitting parallax to these data can significantly mitigate the problems and improve parallax accuracy.

  16. Review of RDC Soft Computing Techniques for Accurate Measurement of Resolver Rotor Angle

    Directory of Open Access Journals (Sweden)

    Chandra Mohan Reddy Sivappagari

    2013-03-01

    Full Text Available A resolver is a position sensor or transducer that measures the instantaneous angular position of the rotating shaft to which it is attached. Resolver produces two amplitude modulated signals; SIN and COS as output signals. These two signals need to be demodulated and converted to digital signals before they can be used for control. There are several techniques available in the literature to measure the rotor shaft angle. This paper focuses on the design of both hardware and software based resolver to digital converter (RDC techniques available in the literature. This literature review helps the researchers to know about all these methods and plan future work on RDCs to improve the angle tracking performance.

  17. Accurate measurements of solar spectral irradiance between 4000-10000 cm-1

    Science.gov (United States)

    Elsey, J.; Coleman, M. D.; Gardiner, T.; Shine, K. P.

    2017-12-01

    The near-infrared solar spectral irradiance (SSI) is an important input into simulations of weather and climate; the distribution of energy throughout this region of the spectrum influences atmospheric heating rates and the global hydrological cycle through absorption and scattering by water vapour. Current measurements by a mixture of ground-based and space-based instruments show differences of around 10% in the 4000-7000 cm-1 region, with no resolution to this controversy in sight. This work presents observations of SSI taken using a ground-based Fourier Transform spectrometer between 4000-10000 cm-1 at a field site in Camborne, UK, with particular focus on a rigorously defined uncertainty budget. While there is good agreement between this work and the commonly-used ATLAS3 spectrum between 7000-10000 cm-1, the SSI is systematically lower by 10% than ATLAS3 between 4000-7000 cm-1, with no overlap within the k = 2 measurement uncertainties.

  18. Accurate measurement of the first excited nuclear state in 235U

    Science.gov (United States)

    Ponce, F.; Swanberg, E.; Burke, J.; Henderson, R.; Friedrich, S.

    2018-05-01

    We have used superconducting high-resolution radiation detectors to measure the energy level of metastable Um235 as 76.737 ± 0.018 eV. The Um235 isomer is created from the α decay of 239Pu and embedded directly into the detector. When the Um235 subsequently decays, the energy is fully contained within the detector and is independent of the decay mode or the chemical state of the uranium. The detector is calibrated using an energy comb from a pulsed UV laser. A comparable measurement of the metastable Thm229 nucleus would enable a laser search for the exact transition energy in 229Th-Thm229 as a step towards developing the first ever nuclear (baryonic) clock.

  19. Accurate branching ratio measurements in 23Na(p,γ)24Mg

    International Nuclear Information System (INIS)

    Boydell, S.G.; Sargood, D.G.

    1975-01-01

    The reaction 23 Na(p,γ) 24 Mg has been investigated in the proton energy range 0.3-1.75 MeV. Gamma ray spectra were measured for 22 resonances with Ge(Li) detectors which were carefully calibrated for relative peak efficiencies. Allowance was made for the effect of anisotropies in all the emitted γ-rays. The spectra have been analysed to give branching ratios for bound and unbound levels. (author)

  20. Accurate and Integrated Localization System for Indoor Environments Based on IEEE 802.11 Round-Trip Time Measurements

    Directory of Open Access Journals (Sweden)

    Alfonso Bahillo

    2010-01-01

    Full Text Available The presence of (Non line of Sight NLOS propagation paths has been considered the main drawback for localization schemes to estimate the position of a (Mobile User MU in an indoor environment. This paper presents a comprehensive wireless localization system based on (Round-Trip Time RTT measurements in an unmodified IEEE 802.11 wireless network. It overcomes the NLOS impairment by implementing the (Prior NLOS Measurements Correction PNMC technique. At first, the RTT measurements are performed with a novel electronic circuit avoiding the need for time synchronization between wireless nodes. At second, the distance between the MU and each reference device is estimated by using a simple linear regression function that best relates the RTT to the distance in (Line of Sight LOS. Assuming that LOS in an indoor environment is a simplification of reality hence, the PNMC technique is applied to correct the NLOS effect. At third, assuming known the position of the reference devices, a multilateration technique is implemented to obtain the MU position. Finally, the localization system coupled with measurements demonstrates that the system outperforms the conventional time-based indoor localization schemes without using any tracking technique such as Kalman filters or Bayesian methods.

  1. Comprehensive and Highly Accurate Measurements of Crane Runways, Profiles and Fastenings.

    Science.gov (United States)

    Dennig, Dirk; Bureick, Johannes; Link, Johannes; Diener, Dmitri; Hesse, Christian; Neumann, Ingo

    2017-05-13

    The process of surveying crane runways has been continually refined due to the competitive situation, modern surveying instruments, additional sensors, accessories and evaluation procedures. Guidelines, such as the International Organization for Standardization (ISO) 12488-1, define target values that must be determined by survey. For a crane runway these are for example the span, the position and height of the rails. The process has to be objective and reproducible. However, common processes of surveying crane runways do not meet these requirements sufficiently. The evaluation of the protocols, ideally by an expert, requires many years of experience. Additionally, the recording of crucial parameters, e.g., the wear of the rail, or the condition of the rail fastening and rail joints, is not regulated and for that reason are often not considered during the measurement. To solve this deficit the Advanced Rail Track Inspection System (ARTIS) was developed. ARTIS is used to measure the 3D position of crane rails, the cross-section of the crane rails, joints and, for the first time, the (crane-rail) fastenings. The system consists of a monitoring vehicle and an external tracking sensor. It makes kinematic observations with the tracking sensor from outside the rail run, e.g., the floor of an overhead crane runway, possible. In this paper we present stages of the development process of ARTIS, new target values, calibration of sensors and results of a test measurement.

  2. Front-end electronics for accurate energy measurement of double beta decays

    International Nuclear Information System (INIS)

    Gil, A.; Díaz, J.; Gómez-Cadenas, J.J.; Herrero, V.; Rodriguez, J.; Serra, L.; Toledo, J.; Esteve, R.; Monzó, J.M.; Monrabal, F.; Yahlali, N.

    2012-01-01

    NEXT, a double beta decay experiment that will operate in Canfranc Underground Laboratory (Spain), aims at measuring the neutrinoless double-β decay of the 136Xe isotope using a TPC filled with enriched Xenon gas at high pressure operated in electroluminescence mode. One technological challenge of the experiment is to achieve resolution better than 1% in the energy measurement using a plane of UV sensitive photomultipliers readout with appropriate custom-made front-end electronics. The front-end is designed to be sensitive to the single photo-electron to detect the weak primary scintillation light produced in the chamber, and also to be able to cope with the electroluminescence signal (several hundred times higher and with a duration of microseconds). For efficient primary scintillation detection and precise energy measurement of the electroluminescent signals the front-end electronics features low noise and adequate amplification. The signal shaping provided allows the digitization of the signals at a frequency as low as 40 MHz.

  3. Measurement of the phase difference between short- and long-distance amplitudes in the [Formula: see text] decay.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baszczyk, M; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Berezhnoy, A; Bernet, R; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, H; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Koliiev, S; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kosmyntseva, A; Kozachuk, A; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, T; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palombo, F; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevens, H; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zucchelli, S

    2017-01-01

    A measurement of the phase difference between the short- and long-distance contributions to the [Formula: see text] decay is performed by analysing the dimuon mass distribution. The analysis is based on pp collision data corresponding to an integrated luminosity of 3[Formula: see text] collected by the LHCb experiment in 2011 and 2012. The long-distance contribution to the [Formula: see text] decay is modelled as a sum of relativistic Breit-Wigner amplitudes representing different vector meson resonances decaying to muon pairs, each with their own magnitude and phase. The measured phases of the [Formula: see text] and [Formula: see text] resonances are such that the interference with the short-distance component in dimuon mass regions far from their pole masses is small. In addition, constraints are placed on the Wilson coefficients, [Formula: see text] and [Formula: see text], and the branching fraction of the short-distance component is measured.

  4. An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Kenneth W., E-mail: kenneth.allen@gtri.gatech.edu; Scott, Mark M.; Reid, David R.; Bean, Jeffrey A.; Ellis, Jeremy D.; Morris, Andrew P.; Marsh, Jeramy M. [Advanced Concepts Laboratory, Georgia Tech Research Institute, Atlanta, Georgia 30318 (United States)

    2016-05-15

    In this work, we present a new X-band waveguide (WR90) measurement method that permits the broadband characterization of the complex permittivity for low dielectric loss tangent material specimens with improved accuracy. An electrically long polypropylene specimen that partially fills the cross-section is inserted into the waveguide and the transmitted scattering parameter (S{sub 21}) is measured. The extraction method relies on computational electromagnetic simulations, coupled with a genetic algorithm, to match the experimental S{sub 21} measurement. The sensitivity of the technique to sample length was explored by simulating specimen lengths from 2.54 to 15.24 cm, in 2.54 cm increments. Analysis of our simulated data predicts the technique will have the sensitivity to measure loss tangent values on the order of 10{sup −3} for materials such as polymers with relatively low real permittivity values. The ability to accurately characterize low-loss dielectric material specimens of polypropylene is demonstrated experimentally. The method was validated by excellent agreement with a free-space focused-beam system measurement of a polypropylene sheet. This technique provides the material measurement community with the ability to accurately extract material properties of low-loss material specimen over the entire X-band range. This technique could easily be extended to other frequency bands.

  5. Interuncal distance measurements in normal controls and patients with dementia. MR imaging study

    International Nuclear Information System (INIS)

    Ishii, Kazunari; Kitagaki, Hajime; Sakamoto, Setsu; Yamaji, Shigeru; Kono, Michio.

    1995-01-01

    To evaluate the utility of measuring interuncal distance (IUD) as a reflection of the limbic system, we compared the IUD of 60 dementia patients with that of 10 normal controls. We also measured the width of the intracranial compartment (W1 and W2) to correct for differences in individual brain size, and calculated the ratio of IUD/W1 and IUD/W2. IUD could not separate patients with dementia from normal controls, but there were significant differences in IUD/W1 and IUD/W2 between patients with dementia and normal controls. IUD, IUD/W1 and IUD/W2 did not correlate with Mini-Mental Examination score or ADAS score in patients with dementia. We conclude that IUD measurement is not helpful in distinguishing patients with mild stage dementia from normal aged people or as a scale for dementia. However, we suggest that IUD/W1 and IUD/W2 can discriminate between cases of mild dementia and normal aged people. (author)

  6. Rapid and accurate processing method for amide proton exchange rate measurement in proteins

    International Nuclear Information System (INIS)

    Koskela, Harri; Heikkinen, Outi; Kilpelaeinen, Ilkka; Heikkinen, Sami

    2007-01-01

    Exchange between protein backbone amide hydrogen and water gives relevant information about solvent accessibility and protein secondary structure stability. NMR spectroscopy provides a convenient tool to study these dynamic processes with saturation transfer experiments. Processing of this type of NMR spectra has traditionally required peak integration followed by exponential fitting, which can be tedious with large data sets. We propose here a computer-aided method that applies inverse Laplace transform in the exchange rate measurement. With this approach, the determination of exchange rates can be automated, and reliable results can be acquired rapidly without a need for manual processing

  7. Accurate mass measurements of short-lived isotopes with the MISTRAL rf spectrometer

    CERN Document Server

    Toader, C F; Borcea, C; Doubre, H; Duma, M; Jacotin, M; Henry, S; Képinski, J F; Lebée, G; Le Scornet, G; Lunney, M D; Monsanglant, C; De Saint-Simon, M; Thibault, C

    1999-01-01

    The MISTRAL experiment has measured its first masses at ISOLDE. Installed in May 1997, this radiofrequency transmission spectrometer is to concentrate on nuclides with particularly short half-lives. MISTRAL received its first stable beam in October and first radioactive beam in November 1997. These first tests, with a plasma ion source, resulted in excellent isobaric separation and reasonable transmission. Further testing and development enabled first data taking in July 1998 on neutron-rich Na isotopes having half-lives as short as 31 ms.

  8. Accurate Measurement of ‘Q’ Factor of An Inductive Coil Using a Modified Maxwell Wein Bridge Network

    Directory of Open Access Journals (Sweden)

    Subrata CHATTOPADHYAY

    2009-06-01

    Full Text Available The Q factor of a coil can be measured by measuring accurately the inductance and effective resistance of the coil for a specific signal. The inductance of an inductive coil is generally measured by usual inductive circuit like Maxwell-Wein Bridge, Hay Bridge etc. which suffer from error due to stray capacitance between bridge nodal point and ground and stray inductance of the inductive coil. The conventional Wagner Earth Technique is not suitable for continuous measurement. In the present paper, a modified operational amplifier based Maxwell-Wein Bridge measurement technique has been proposed in which stray capacitance and stray inductance are minimized. The experiment is done for different value of known inductance & Q factor for a specific signal. The linear characteristic with a good repeatability, linearity and variable sensitivity has been described.

  9. Accurate Profile Measurement of the low Intensity Secondary Beams in the CERN Experimental Areas

    CERN Document Server

    AUTHOR|(CDS)2084531; Tranquille, Gerard

    2018-02-23

    The CERN accelerators deliver a wide spectrum of secondary beams to the Experimental Areas. These beams are composed of hadrons, leptons, and heavy ions that can vary greatly in momentum (1 GeV/c to 400 GeV/c) and intensity (10^2 to 10^8 particles per second). The profile, position, and intensity of these beams are measured utilising particle detectors. However, the current systems show several problems that limit the quality of this kind of monitoring. The aim of this doctoral thesis is to investigate the best detector technology that could replace the existing monitors and build a first prototype of it. A review of the existing detection techniques has led to the choice of Scintillating Fibres (SciFi) read-out with Silicon Photomultipliers (SiPM). This detection technology has the potential to perform better in terms of material budget, range of intensities measured, and active area size. In addition, it has particle counting capabilities, which could extend its application to momentum spectrometry or Time...

  10. Accurate measurement of imaging photoplethysmographic signals based camera using weighted average

    Science.gov (United States)

    Pang, Zongguang; Kong, Lingqin; Zhao, Yuejin; Sun, Huijuan; Dong, Liquan; Hui, Mei; Liu, Ming; Liu, Xiaohua; Liu, Lingling; Li, Xiaohui; Li, Rongji

    2018-01-01

    Imaging Photoplethysmography (IPPG) is an emerging technique for the extraction of vital signs of human being using video recordings. IPPG technology with its advantages like non-contact measurement, low cost and easy operation has become one research hot spot in the field of biomedicine. However, the noise disturbance caused by non-microarterial area cannot be removed because of the uneven distribution of micro-arterial, different signal strength of each region, which results in a low signal noise ratio of IPPG signals and low accuracy of heart rate. In this paper, we propose a method of improving the signal noise ratio of camera-based IPPG signals of each sub-region of the face using a weighted average. Firstly, we obtain the region of interest (ROI) of a subject's face based camera. Secondly, each region of interest is tracked and feature-based matched in each frame of the video. Each tracked region of face is divided into 60x60 pixel block. Thirdly, the weights of PPG signal of each sub-region are calculated, based on the signal-to-noise ratio of each sub-region. Finally, we combine the IPPG signal from all the tracked ROI using weighted average. Compared with the existing approaches, the result shows that the proposed method takes modest but significant effects on improvement of signal noise ratio of camera-based PPG estimated and accuracy of heart rate measurement.

  11. Individual-Based Allometric Equations Accurately Measure Carbon Storage and Sequestration in Shrublands

    Directory of Open Access Journals (Sweden)

    Norman W.H. Mason

    2014-02-01

    Full Text Available Many studies have quantified uncertainty in forest carbon (C storage estimation, but there is little work examining the degree of uncertainty in shrubland C storage estimates. We used field data to simulate uncertainty in carbon storage estimates from three error sources: (1 allometric biomass equations; (2 measurement errors of shrubs harvested for the allometry; and (3 measurement errors of shrubs in survey plots. We also assessed uncertainty for all possible combinations of these error sources. Allometric uncertainty had the greatest independent effect on C storage estimates for individual plots. The largest error arose when all three error sources were included in simulations (where the 95% confidence interval spanned a range equivalent to 40% of mean C storage. Mean C sequestration (1.73 Mg C ha–1 year–1 exceeded the margin of error produced by the simulated sources of uncertainty. This demonstrates that, even when the major sources of uncertainty were accounted for, we were able to detect relatively modest gains in shrubland C storage.

  12. Quantitatively accurate activity measurements with a dedicated cardiac SPECT camera: Physical phantom experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pourmoghaddas, Amir, E-mail: apour@ottawaheart.ca; Wells, R. Glenn [Physics Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada and Cardiology, The University of Ottawa Heart Institute, Ottawa, Ontario K1Y4W7 (Canada)

    2016-01-15

    Purpose: Recently, there has been increased interest in dedicated cardiac single photon emission computed tomography (SPECT) scanners with pinhole collimation and improved detector technology due to their improved count sensitivity and resolution over traditional parallel-hole cameras. With traditional cameras, energy-based approaches are often used in the clinic for scatter compensation because they are fast and easily implemented. Some of the cardiac cameras use cadmium-zinc-telluride (CZT) detectors which can complicate the use of energy-based scatter correction (SC) due to the low-energy tail—an increased number of unscattered photons detected with reduced energy. Modified energy-based scatter correction methods can be implemented, but their level of accuracy is unclear. In this study, the authors validated by physical phantom experiments the quantitative accuracy and reproducibility of easily implemented correction techniques applied to {sup 99m}Tc myocardial imaging with a CZT-detector-based gamma camera with multiple heads, each with a single-pinhole collimator. Methods: Activity in the cardiac compartment of an Anthropomorphic Torso phantom (Data Spectrum Corporation) was measured through 15 {sup 99m}Tc-SPECT acquisitions. The ratio of activity concentrations in organ compartments resembled a clinical {sup 99m}Tc-sestamibi scan and was kept consistent across all experiments (1.2:1 heart to liver and 1.5:1 heart to lung). Two background activity levels were considered: no activity (cold) and an activity concentration 1/10th of the heart (hot). A plastic “lesion” was placed inside of the septal wall of the myocardial insert to simulate the presence of a region without tracer uptake and contrast in this lesion was calculated for all images. The true net activity in each compartment was measured with a dose calibrator (CRC-25R, Capintec, Inc.). A 10 min SPECT image was acquired using a dedicated cardiac camera with CZT detectors (Discovery NM530c, GE

  13. Integration of a silicon-based microprobe into a gear measuring instrument for accurate measurement of micro gears

    International Nuclear Information System (INIS)

    Ferreira, N; Krah, T; Jeong, D C; Kniel, K; Härtig, F; Metz, D; Dietzel, A; Büttgenbach, S

    2014-01-01

    The integration of silicon micro probing systems into conventional gear measuring instruments (GMIs) allows fully automated measurements of external involute micro spur gears of normal modules smaller than 1 mm. This system, based on a silicon microprobe, has been developed and manufactured at the Institute for Microtechnology of the Technische Universität Braunschweig. The microprobe consists of a silicon sensor element and a stylus which is oriented perpendicularly to the sensor. The sensor is fabricated by means of silicon bulk micromachining. Its small dimensions of 6.5 mm × 6.5 mm allow compact mounting in a cartridge to facilitate the integration into a GMI. In this way, tactile measurements of 3D microstructures can be realized. To enable three-dimensional measurements with marginal forces, four Wheatstone bridges are built with diffused piezoresistors on the membrane of the sensor. On the reverse of the membrane, the stylus is glued perpendicularly to the sensor on a boss to transmit the probing forces to the sensor element during measurements. Sphere diameters smaller than 300 µm and shaft lengths of 5 mm as well as measurement forces from 10 µN enable the measurements of 3D microstructures. Such micro probing systems can be integrated into universal coordinate measuring machines and also into GMIs to extend their field of application. Practical measurements were carried out at the Physikalisch-Technische Bundesanstalt by qualifying the microprobes on a calibrated reference sphere to determine their sensitivity and their physical dimensions in volume. Following that, profile and helix measurements were carried out on a gear measurement standard with a module of 1 mm. The comparison of the measurements shows good agreement between the measurement values and the calibrated values. This result is a promising basis for the realization of smaller probe diameters for the tactile measurement of micro gears with smaller modules. (paper)

  14. Representing distance, consuming distance

    DEFF Research Database (Denmark)

    Larsen, Gunvor Riber

    Title: Representing Distance, Consuming Distance Abstract: Distance is a condition for corporeal and virtual mobilities, for desired and actual travel, but yet it has received relatively little attention as a theoretical entity in its own right. Understandings of and assumptions about distance...... are being consumed in the contemporary society, in the same way as places, media, cultures and status are being consumed (Urry 1995, Featherstone 2007). An exploration of distance and its representations through contemporary consumption theory could expose what role distance plays in forming...

  15. Accurate Simulation of 802.11 Indoor Links: A "Bursty" Channel Model Based on Real Measurements

    Directory of Open Access Journals (Sweden)

    Agüero Ramón

    2010-01-01

    Full Text Available We propose a novel channel model to be used for simulating indoor wireless propagation environments. An extensive measurement campaign was carried out to assess the performance of different transport protocols over 802.11 links. This enabled us to better adjust our approach, which is based on an autoregressive filter. One of the main advantages of this proposal lies in its ability to reflect the "bursty" behavior which characterizes indoor wireless scenarios, having a great impact on the behavior of upper layer protocols. We compare this channel model, integrated within the Network Simulator (ns-2 platform, with other traditional approaches, showing that it is able to better reflect the real behavior which was empirically assessed.

  16. Increased profitability in cellulose production through more accurate measurement of the moisture content

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    A general report on the project 'Dry Wood' is presented. In this project Noratom-Norcontrol A/S cooperate with the wood-pulp and paper factory Petersen and Soen in the application of Noratom's radiometric moisture gauge and their continuous weighing machine (densimeter) in the continuous measurement of the moisture content of wood chips in cellulose production. Conventional methods give an accuracy of π+ 2% and the objective of this method is an accuracy of π+ 1%. This would have a considerable economic significance. A test unit has been operating in the production line for a year and has attained the objective for short periods. Improved long term stability is the present problem. The system has process outputs which will facilitate future on-line computer process control. (JIW)

  17. Accurate fault location algorithm on power transmission lines with use of two-end unsynchronized measurements

    Directory of Open Access Journals (Sweden)

    Mohamed Dine

    2012-01-01

    Full Text Available This paper presents a new approach to fault location on power transmission lines. This approach uses two-end unsynchronised measurements of the line and benefits from the advantages of digital technology and numerical relaying, which are available today and can easily be applied for off-line analysis. The approach is to modify the apparent impedance method using a very simple first-order formula. The new method is independent of fault resistance, source impedances and pre-fault currents. In addition, the data volume communicated between relays is sufficiently small enough to be transmitted easily using a digital protection channel. The proposed approach is tested via digital simulation using MATLand the applied test results corroborate the superior performance of the proposed approach.

  18. Material interactions with the Low Earth Orbital (LEO) environment: Accurate reaction rate measurements

    Science.gov (United States)

    Visentine, James T.; Leger, Lubert J.

    1987-01-01

    To resolve uncertainties in estimated LEO atomic oxygen fluence and provide reaction product composition data for comparison to data obtained in ground-based simulation laboratories, a flight experiment has been proposed for the space shuttle which utilizes an ion-neutral mass spectrometer to obtain in-situ ambient density measurements and identify reaction products from modeled polymers exposed to the atomic oxygen environment. An overview of this experiment is presented and the methodology of calibrating the flight mass spectrometer in a neutral beam facility prior to its use on the space shuttle is established. The experiment, designated EOIM-3 (Evaluation of Oxygen Interactions with Materials, third series), will provide a reliable materials interaction data base for future spacecraft design and will furnish insight into the basic chemical mechanisms leading to atomic oxygen interactions with surfaces.

  19. Measurements of accurate x-ray scattering data of protein solutions using small stationary sample cells

    Science.gov (United States)

    Hong, Xinguo; Hao, Quan

    2009-01-01

    In this paper, we report a method of precise in situ x-ray scattering measurements on protein solutions using small stationary sample cells. Although reduction in the radiation damage induced by intense synchrotron radiation sources is indispensable for the correct interpretation of scattering data, there is still a lack of effective methods to overcome radiation-induced aggregation and extract scattering profiles free from chemical or structural damage. It is found that radiation-induced aggregation mainly begins on the surface of the sample cell and grows along the beam path; the diameter of the damaged region is comparable to the x-ray beam size. Radiation-induced aggregation can be effectively avoided by using a two-dimensional scan (2D mode), with an interval as small as 1.5 times the beam size, at low temperature (e.g., 4 °C). A radiation sensitive protein, bovine hemoglobin, was used to test the method. A standard deviation of less than 5% in the small angle region was observed from a series of nine spectra recorded in 2D mode, in contrast to the intensity variation seen using the conventional stationary technique, which can exceed 100%. Wide-angle x-ray scattering data were collected at a standard macromolecular diffraction station using the same data collection protocol and showed a good signal/noise ratio (better than the reported data on the same protein using a flow cell). The results indicate that this method is an effective approach for obtaining precise measurements of protein solution scattering.

  20. Measurements of accurate x-ray scattering data of protein solutions using small stationary sample cells

    International Nuclear Information System (INIS)

    Hong Xinguo; Hao Quan

    2009-01-01

    In this paper, we report a method of precise in situ x-ray scattering measurements on protein solutions using small stationary sample cells. Although reduction in the radiation damage induced by intense synchrotron radiation sources is indispensable for the correct interpretation of scattering data, there is still a lack of effective methods to overcome radiation-induced aggregation and extract scattering profiles free from chemical or structural damage. It is found that radiation-induced aggregation mainly begins on the surface of the sample cell and grows along the beam path; the diameter of the damaged region is comparable to the x-ray beam size. Radiation-induced aggregation can be effectively avoided by using a two-dimensional scan (2D mode), with an interval as small as 1.5 times the beam size, at low temperature (e.g., 4 deg. C). A radiation sensitive protein, bovine hemoglobin, was used to test the method. A standard deviation of less than 5% in the small angle region was observed from a series of nine spectra recorded in 2D mode, in contrast to the intensity variation seen using the conventional stationary technique, which can exceed 100%. Wide-angle x-ray scattering data were collected at a standard macromolecular diffraction station using the same data collection protocol and showed a good signal/noise ratio (better than the reported data on the same protein using a flow cell). The results indicate that this method is an effective approach for obtaining precise measurements of protein solution scattering.

  1. Accurate measurement at LEP and SppS and instrumentation for LHC

    International Nuclear Information System (INIS)

    Djama, F.

    2011-01-01

    There are as many chapters in this thesis as periods in my research activities. The first chapter is an introduction to this work, the second chapter deals with the subject of my doctoral thesis presented in 1991 and that was about the determination of the parameters of the hadronic resonance of the Z"0 boson at LEP. The third chapter is dedicated to my first post-doctoral researches at CERN in the team of the UA4/2 experiment. The aim of UA4/2 was to measure the real part of the proton-antiproton elastic scattering for an energy of 541 GeV measured in the center of mass frame. The technique of dispersion relations have been used to predict the total proton-proton or proton-antiproton cross-section at higher energies. The fourth chapter deals with my second post-doctoral job performed at the CRN of Strasbourg: I took part into the development of 3 charged track detectors: the Si microstrip detector, the microstrip gaseous chamber and the diamond microstrip counter. The fifth chapter is dedicated to my contribution to the design of the electromagnetic calorimeter of the ATLAS experiment. In 2005 I joined the team that fabricated the pixel detector for ATLAS and I took part into its implementation and the study of its first data. The improvement of the simulation model will allow us to optimize detector operation and to apprehend its aging due to radiation effects. Ideas for a better simulation are presented in the sixth chapter

  2. Accurate measurement of surface areas of anatomical structures by computer-assisted triangulation of computed tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Allardice, J.T.; Jacomb-Hood, J.; Abulafi, A.M.; Williams, N.S. (Royal London Hospital (United Kingdom)); Cookson, J.; Dykes, E.; Holman, J. (London Hospital Medical College (United Kingdom))

    1993-05-01

    There is a need for accurate surface area measurement of internal anatomical structures in order to define light dosimetry in adjunctive intraoperative photodynamic therapy (AIOPDT). The authors investigated whether computer-assisted triangulation of serial sections generated by computed tomography (CT) scanning can give an accurate assessment of the surface area of the walls of the true pelvis after anterior resection and before colorectal anastomosis. They show that the technique of paper density tessellation is an acceptable method of measuring the surface areas of phantom objects, with a maximum error of 0.5%, and is used as the gold standard. Computer-assisted triangulation of CT images of standard geometric objects and accurately-constructed pelvic phantoms gives a surface area assessment with a maximum error of 2.5% compared with the gold standard. The CT images of 20 patients' pelves have been analysed by computer-assisted triangulation and this shows the surface area of the walls varies from 143 cm[sup 2] to 392 cm[sup 2]. (Author).

  3. A hybrid solution using computational prediction and measured data to accurately determine process corrections with reduced overlay sampling

    Science.gov (United States)

    Noyes, Ben F.; Mokaberi, Babak; Mandoy, Ram; Pate, Alex; Huijgen, Ralph; McBurney, Mike; Chen, Owen

    2017-03-01

    Reducing overlay error via an accurate APC feedback system is one of the main challenges in high volume production of the current and future nodes in the semiconductor industry. The overlay feedback system directly affects the number of dies meeting overlay specification and the number of layers requiring dedicated exposure tools through the fabrication flow. Increasing the former number and reducing the latter number is beneficial for the overall efficiency and yield of the fabrication process. An overlay feedback system requires accurate determination of the overlay error, or fingerprint, on exposed wafers in order to determine corrections to be automatically and dynamically applied to the exposure of future wafers. Since current and future nodes require correction per exposure (CPE), the resolution of the overlay fingerprint must be high enough to accommodate CPE in the overlay feedback system, or overlay control module (OCM). Determining a high resolution fingerprint from measured data requires extremely dense overlay sampling that takes a significant amount of measurement time. For static corrections this is acceptable, but in an automated dynamic correction system this method creates extreme bottlenecks for the throughput of said system as new lots have to wait until the previous lot is measured. One solution is using a less dense overlay sampling scheme and employing computationally up-sampled data to a dense fingerprint. That method uses a global fingerprint model over the entire wafer; measured localized overlay errors are therefore not always represented in its up-sampled output. This paper will discuss a hybrid system shown in Fig. 1 that combines a computationally up-sampled fingerprint with the measured data to more accurately capture the actual fingerprint, including local overlay errors. Such a hybrid system is shown to result in reduced modelled residuals while determining the fingerprint, and better on-product overlay performance.

  4. Accurate weak lensing of standard candles. II. Measuring σ8 with supernovae

    Science.gov (United States)

    Quartin, Miguel; Marra, Valerio; Amendola, Luca

    2014-01-01

    Soon the number of type Ia supernova (SN) measurements should exceed 100 000. Understanding the effect of weak lensing by matter structures on the supernova brightness will then be more important than ever. Although SN lensing is usually seen as a source of systematic noise, we will show that it can be in fact turned into signal. More precisely, the non-Gaussianity introduced by lensing in the SN Hubble diagram dispersion depends rather sensitively on the amplitude σ8 of the matter power spectrum. By exploiting this relation, we are able to predict constraints on σ8 of 7% (3%) for a catalog of 100 000 (500 000) SNe of average magnitude error 0.12, without having to assume that such intrinsic dispersion and its redshift evolution are known a priori. The intrinsic dispersion has been assumed to be Gaussian; possible intrinsic non-Gaussianities in the data set (due to the SN themselves and/or to other transients) could be potentially dealt with by means of additional nuisance parameters describing higher moments of the intrinsic dispersion distribution function. This method is independent of and complementary to the standard methods based on cosmic microwave background, cosmic shear, or cluster abundance observables.

  5. The skin-to-calyx distance measured by renal ct scan and ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Chen Jen; Mazzucchi, Eduardo; Payão, Fabio; Gomes, Andrea Cavalanti; Baroni, Ronaldo Hueb; Torricelli, Fabio Cesar; Vicentini, Fabio Carvalho; Srougi, Miguel [Hospital das Clínicas, University of Sao Paulo Medical School, Sao Paulo, SP (Brazil)

    2014-03-15

    Purpose: We developed a stereotactic device to guide the puncture for percutaneous nephrolithotripsy, which uses the distance from the target calyx to its perpendicular point on skin (SCD) to calculate the needle´s entry angle. This study seeks to validate the use of measurements obtained by ultrasound (US) and computerized tomography (CT) for needle´s entry angle calculation and to study factors that may interfere in this procedure. Materials and Methods: Height, weight, abdominal circumference, CT of the urinary tract in dorsal decubitus (DD) and ventral decubitus (VD), and US of the kidneys in VD were obtained from thirty-five renal calculi patients. SCD obtained were compared and correlated with body-mass index (BMI). Results: BMI was 28.66 ± 4.6 Kg/m2. SCD on CT in DD was 8.40 ± 2.06cm, in VD was 8.32 ± 1.95cm, in US was 6.74 ± 1.68cm. SCD measured by US and CT were statistically different (p < 0.001), whereas between CT in DD and VD were not. SCD of the lower calyx presented moderate correlation with BMI. Conclusion: SCD obtained by CT in ventral and dorsal decubitus may be used for calculation of the needle´s entry angle. SCD obtained by US cannot be used. A rule for the correlation between BMI and the SCD could not be determined. (author)

  6. On the importance of the distance measures used to train and test knowledge-based potentials for proteins

    DEFF Research Database (Denmark)

    Carlsen, Martin; Koehl, Patrice; Røgen, Peter

    2014-01-01

    (PPD), while the other had the set of all distances filtered to reflect consistency in an ensemble of decoys (PPE). We tested four types of metric to characterize the distance between the decoy and the native structure, two based on extrinsic geometry (RMSD and GTD-TS*), and two based on intrinsic...... geometry (Q* and MT). The corresponding eight potentials were tested on a large collection of decoy sets. We found that it is usually better to train a potential using an intrinsic distance measure. We also found that PPE outperforms PPD, emphasizing the benefits of capturing consistent information...

  7. Accurate mass measurements of very short-lived nuclei. Prerequisites for high-accuracy investigations of superallowed β-decays

    International Nuclear Information System (INIS)

    Herfurth, F.; Kellerbauer, A.; Sauvan, E.; Ames, F.; Engels, O.; Audi, G.; Lunney, D.; Beck, D.; Blaum, K.; Kluge, H.J.; Scheidenberger, C.; Sikler, G.; Weber, C.; Bollen, G.; Schwarz, S.; Moore, R.B.; Oinonen, M.

    2002-01-01

    Mass measurements of 34 Ar, 73-78 Kr, and 74,76 Rb were performed with the Penning-trap mass spectrometer ISOLTRAP. Very accurate Q EC -values are needed for the investigations of the Ft-value of 0 + → 0 + nuclear β-decays used to test the standard model predictions for weak interactions. The necessary accuracy on the Q EC -value requires the mass of mother and daughter nuclei to be measured with δm/m ≤ 3 . 10 -8 . For most of the measured nuclides presented here this has been reached. The 34 Ar mass has been measured with a relative accuracy of 1.1 .10 -8 . The Q EC -value of the 34 Ar 0 + → 0 + decay can now be determined with an uncertainty of about 0.01%. Furthermore, 74 Rb is the shortest-lived nuclide ever investigated in a Penning trap. (orig.)

  8. Recoil Distance Method lifetime measurements via gamma-ray and charged-particle spectroscopy at NSCL

    Science.gov (United States)

    Voss, Philip Jonathan

    The Recoil Distance Method (RDM) is a well-established technique for measuring lifetimes of electromagnetic transitions. Transition matrix elements derived from the lifetimes provide valuable insight into nuclear structure. Recent RDM investigations at NSCL present a powerful new model-independent tool for the spectroscopy of nuclei with extreme proton-to-neutron ratios that exhibit surprising behavior. Neutron-rich 18C is one such example, where a small B(E2; 2+1 → 0+gs) represented a dramatic shift from the expected inverse relationship between the B(E2) and 2+1 excitation energy. To shed light on the nature of this quadrupole excitation, the RDM lifetime technique was applied with the Koln/NSCL plunger. States in 18C were populated by the one-proton knockout reaction of a 19N secondary beam. De-excitation gamma rays were detected with the Segmented Germanium Array in coincidence with reaction residues at the focal plane of the S800 Magnetic Spectrometer. The deduced B(E2) and excitation energy were both well described by ab initio no-core shell model calculations. In addition, a novel extension of RDM lifetime measurements via charged-particle spectroscopy of exotic proton emitters has been investigated. Substituting the reaction residue degrader of the Koln/NSCL plunger with a thin silicon detector permits the study of short-lived nuclei beyond the proton dripline. A proof of concept measurement of the mean lifetime of the two-proton emitter 19Mg was conducted. The results indicated a sub-picosecond lifetime, one order of magnitude smaller than the published results, and validate this new technique for lifetime measurements of charged-particle emitters.

  9. PRISM, a Patient-Reported Outcome Instrument, Accurately Measures Symptom Change in Refractory Gastroesophageal Reflux Disease.

    Science.gov (United States)

    Fuller, Garth; Bolus, Roger; Whitman, Cynthia; Talley, Jennifer; Erder, M Haim; Joseph, Alain; Silberg, Debra G; Spiegel, Brennan

    2017-03-01

    important new outcome measure for patients with GERD with a partial response to PPI therapy.

  10. THE DISTANCE TO M104

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W. [University of Texas at Austin, McDonald Observatory, 2515 Speedway, Stop C1400 Austin, TX 78712 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, SE, University of Minnesota, Minneapolis, MN 55455 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Berg, Danielle [Center for Gravitation, Cosmology and Astrophysics, Department of Physics, University of Wisconsin Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211 (United States); Kennicutt, Robert, E-mail: kmcquinn@astro.as.utexas.edu [Institute for Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2016-11-01

    M104 (NGC 4594; the Sombrero galaxy) is a nearby, well-studied elliptical galaxy included in scores of surveys focused on understanding the details of galaxy evolution. Despite the importance of observations of M104, a consensus distance has not yet been established. Here, we use newly obtained Hubble Space Telescope optical imaging to measure the distance to M104 based on the tip of the red giant branch (TRGB) method. Our measurement yields the distance to M104 to be 9.55 ± 0.13 ± 0.31 Mpc equivalent to a distance modulus of 29.90 ± 0.03 ± 0.07 mag. Our distance is an improvement over previous results as we use a well-calibrated, stable distance indicator, precision photometry in a optimally selected field of view, and a Bayesian maximum likelihood technique that reduces measurement uncertainties. The most discrepant previous results are due to Tully–Fisher method distances, which are likely inappropriate for M104 given its peculiar morphology and structure. Our results are part of a larger program to measure accurate distances to a sample of well-known spiral galaxies (including M51, M74, and M63) using the TRGB method.

  11. Functional claudication distance: a reliable and valid measurement to assess functional limitation in patients with intermittent claudication

    Directory of Open Access Journals (Sweden)

    Prins Martin H

    2009-03-01

    Full Text Available Abstract Background Disease severity and functional impairment in patients with intermittent claudication is usually quantified by the measurement of pain-free walking distance (intermittent claudication distance, ICD and maximal walking distance (absolute claudication distance, ACD. However, the distance at which a patient would prefer to stop because of claudication pain seems a definition that is more correspondent with the actual daily life walking distance. We conducted a study in which the distance a patient prefers to stop was defined as the functional claudication distance (FCD, and estimated the reliability and validity of this measurement. Methods In this clinical validity study we included patients with intermittent claudication, following a supervised exercise therapy program. The first study part consisted of two standardised treadmill tests. During each test ICD, FCD and ACD were determined. Primary endpoint was the reliability as represented by the calculated intra-class correlation coefficients. In the second study part patients performed a standardised treadmill test and filled out the Rand-36 questionnaire. Spearman's rho was calculated to assess validity. Results The intra-class correlation coefficients of ICD, FCD and ACD were 0.940, 0.959, and 0.975 respectively. FCD correlated significantly with five out of nine domains, namely physical function (rho = 0.571, physical role (rho = 0.532, vitality (rho = 0.416, pain (rho = 0.416 and health change (rho = 0.414. Conclusion FCD is a reliable and valid measurement for determining functional capacity in trained patients with intermittent claudication. Furthermore it seems that FCD better reflects the actual functional impairment. In future studies, FCD could be used alongside ICD and ACD.

  12. Is digital photography an accurate and precise method for measuring range of motion of the hip and knee?

    Science.gov (United States)

    Russo, Russell R; Burn, Matthew B; Ismaily, Sabir K; Gerrie, Brayden J; Han, Shuyang; Alexander, Jerry; Lenherr, Christopher; Noble, Philip C; Harris, Joshua D; McCulloch, Patrick C

    2017-09-07

    Accurate measurements of knee and hip motion are required for management of musculoskeletal pathology. The purpose of this investigation was to compare three techniques for measuring motion at the hip and knee. The authors hypothesized that digital photography would be equivalent in accuracy and show higher precision compared to the other two techniques. Using infrared motion capture analysis as the reference standard, hip flexion/abduction/internal rotation/external rotation and knee flexion/extension were measured using visual estimation, goniometry, and photography on 10 fresh frozen cadavers. These measurements were performed by three physical therapists and three orthopaedic surgeons. Accuracy was defined by the difference from the reference standard, while precision was defined by the proportion of measurements within either 5° or 10°. Analysis of variance (ANOVA), t-tests, and chi-squared tests were used. Although two statistically significant differences were found in measurement accuracy between the three techniques, neither of these differences met clinical significance (difference of 1.4° for hip abduction and 1.7° for the knee extension). Precision of measurements was significantly higher for digital photography than: (i) visual estimation for hip abduction and knee extension, and (ii) goniometry for knee extension only. There was no clinically significant difference in measurement accuracy between the three techniques for hip and knee motion. Digital photography only showed higher precision for two joint motions (hip abduction and knee extension). Overall digital photography shows equivalent accuracy and near-equivalent precision to visual estimation and goniometry.

  13. Partial volume correction and image segmentation for accurate measurement of standardized uptake value of grey matter in the brain.

    Science.gov (United States)

    Bural, Gonca; Torigian, Drew; Basu, Sandip; Houseni, Mohamed; Zhuge, Ying; Rubello, Domenico; Udupa, Jayaram; Alavi, Abass

    2015-12-01

    Our aim was to explore a novel quantitative method [based upon an MRI-based image segmentation that allows actual calculation of grey matter, white matter and cerebrospinal fluid (CSF) volumes] for overcoming the difficulties associated with conventional techniques for measuring actual metabolic activity of the grey matter. We included four patients with normal brain MRI and fluorine-18 fluorodeoxyglucose (F-FDG)-PET scans (two women and two men; mean age 46±14 years) in this analysis. The time interval between the two scans was 0-180 days. We calculated the volumes of grey matter, white matter and CSF by using a novel segmentation technique applied to the MRI images. We measured the mean standardized uptake value (SUV) representing the whole metabolic activity of the brain from the F-FDG-PET images. We also calculated the white matter SUV from the upper transaxial slices (centrum semiovale) of the F-FDG-PET images. The whole brain volume was calculated by summing up the volumes of the white matter, grey matter and CSF. The global cerebral metabolic activity was calculated by multiplying the mean SUV with total brain volume. The whole brain white matter metabolic activity was calculated by multiplying the mean SUV for the white matter by the white matter volume. The global cerebral metabolic activity only reflects those of the grey matter and the white matter, whereas that of the CSF is zero. We subtracted the global white matter metabolic activity from that of the whole brain, resulting in the global grey matter metabolism alone. We then divided the grey matter global metabolic activity by grey matter volume to accurately calculate the SUV for the grey matter alone. The brain volumes ranged between 1546 and 1924 ml. The mean SUV for total brain was 4.8-7. Total metabolic burden of the brain ranged from 5565 to 9617. The mean SUV for white matter was 2.8-4.1. On the basis of these measurements we generated the grey matter SUV, which ranged from 8.1 to 11.3. The

  14. Constraints on the CMB temperature-redshift dependence from SZ and distance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Avgoustidis, A. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Luzzi, G. [Laboratoire de l' Accélérateur Linéaire, Université de Paris-Sud, CNRS/IN2P3, Bâtiment 200, BP 34, 91898 Orsay Cedex (France); Martins, C.J.A.P.; Monteiro, A.M.R.V.L., E-mail: A.Avgoustidis@damtp.cam.ac.uk, E-mail: gluzzi@lal.in2p3.fr, E-mail: Carlos.Martins@astro.up.pt, E-mail: up090322024@alunos.fc.up.pt [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2012-02-01

    The relation between redshift and the CMB temperature, T{sub CMB}(z) = T{sub 0}(1+z) is a key prediction of standard cosmology, but is violated in many non-standard models. Constraining possible deviations to this law is an effective way to test the ΛCDM paradigm and search for hints of new physics. We present state-of-the-art constraints, using both direct and indirect measurements. In particular, we point out that in models where photons can be created or destroyed, not only does the temperature-redshift relation change, but so does the distance duality relation, and these departures from the standard behaviour are related, providing us with an opportunity to improve constraints. We show that current datasets limit possible deviations of the form T{sub CMB}(z) = T{sub 0}(1+z){sup 1−β} to be β = 0.004±0.016 up to a redshift z ∼ 3. We also discuss how, with the next generation of space and ground-based experiments, these constraints can be improved by more than one order of magnitude.

  15. Constraints on the CMB temperature-redshift dependence from SZ and distance measurements

    International Nuclear Information System (INIS)

    Avgoustidis, A.; Luzzi, G.; Martins, C.J.A.P.; Monteiro, A.M.R.V.L.

    2012-01-01

    The relation between redshift and the CMB temperature, T CMB (z) = T 0 (1+z) is a key prediction of standard cosmology, but is violated in many non-standard models. Constraining possible deviations to this law is an effective way to test the ΛCDM paradigm and search for hints of new physics. We present state-of-the-art constraints, using both direct and indirect measurements. In particular, we point out that in models where photons can be created or destroyed, not only does the temperature-redshift relation change, but so does the distance duality relation, and these departures from the standard behaviour are related, providing us with an opportunity to improve constraints. We show that current datasets limit possible deviations of the form T CMB (z) = T 0 (1+z) 1−β to be β = 0.004±0.016 up to a redshift z ∼ 3. We also discuss how, with the next generation of space and ground-based experiments, these constraints can be improved by more than one order of magnitude

  16. Direct assessment as a measure of institutional effectiveness in a dental hygiene distance education program.

    Science.gov (United States)

    Olmsted, Jodi L

    2014-10-01

    This ten-year, longitudinal examination of a dental hygiene distance education (DE) program considered student performance on standard benchmark assessments as direct measures of institutional effectiveness. The aim of the study was to determine if students face-to-face in a classroom with an instructor performed differently from their counterparts in a DE program, taking courses through the alternative delivery system of synchronous interactive television (ITV). This study used students' grade point averages and National Board Dental Hygiene Examination scores to assess the impact of ITV on student learning, filling a crucial gap in current evidence. The study's research population consisted of 189 students who graduated from one dental hygiene program between 1997 and 2006. One hundred percent of the institution's data files for these students were used: 117 students were face-to-face with the instructor, and seventy-two received instruction through the ITV system. The results showed that, from a year-by-year perspective, no statistically significant performance differences were apparent between the two student groups when t-tests were used for data analysis. The DE system examined was considered effective for delivering education if similar performance outcomes were the evaluation criteria used for assessment.

  17. Can a clinical placement influence stigma? An analysis of measures of social distance.

    Science.gov (United States)

    Moxham, Lorna; Taylor, Ellie; Patterson, Christopher; Perlman, Dana; Brighton, Renee; Sumskis, Susan; Keough, Emily; Heffernan, Tim

    2016-09-01

    The way people who experience mental illness are perceived by health care professionals, which often includes stigmatising attitudes, can have a significant impact on treatment outcomes and on their quality of life. To determine whether stigma towards people with mental illness varied for undergraduate nursing students who attended a non-traditional clinical placement called Recovery Camp compared to students who attended a 'typical' mental health clinical placement. Quasi-experimental. Seventy-nine third-year nursing students were surveyed; n=40 attended Recovery Camp (intervention), n=39 (comparison group) attended a 'typical' mental health clinical placement. All students completed the Social Distance Scale (SDS) pre- and post-placement and at three-month follow-up. Data analysis consisted of a one-way repeated measures analysis of variance (ANOVA) exploring parameter estimates between group scores across three time points. Two secondary repeated measures ANOVAs were performed to demonstrate the differences in SDS scores for each group across time. Pairwise comparisons demonstrated the differences between time intervals. A statistically significant difference in ratings of stigma between the intervention group and the comparison group existed. Parameter estimates revealed that stigma ratings for the intervention group were significantly reduced post-placement and remained consistently low at three-month follow-up. There was no significant difference in ratings of stigma for the comparison group over time. Students who attended Recovery Camp reported significant decreases in stigma towards people with a mental illness over time, compared to the typical placement group. Findings suggest that a therapeutic recreation based clinical placement was more successful in reducing stigma regarding mental illness in undergraduate nursing students compared to those who attended typical mental health clinical placements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Attributed graph distance measure for automatic detection of attention deficit hyperactive disordered subjects.

    Science.gov (United States)

    Dey, Soumyabrata; Rao, A Ravishankar; Shah, Mubarak

    2014-01-01

    Attention Deficit Hyperactive Disorder (ADHD) is getting a lot of attention recently for two reasons. First, it is one of the most commonly found childhood disorders and second, the root cause of the problem is still unknown. Functional Magnetic Resonance Imaging (fMRI) data has become a popular tool for the analysis of ADHD, which is the focus of our current research. In this paper we propose a novel framework for the automatic classification of the ADHD subjects using their resting state fMRI (rs-fMRI) data of the brain. We construct brain functional connectivity networks for all the subjects. The nodes of the network are constructed with clusters of highly active voxels and edges between any pair of nodes represent the correlations between their average fMRI time series. The activity level of the voxels are measured based on the average power of their corresponding fMRI time-series. For each node of the networks, a local descriptor comprising of a set of attributes of the node is computed. Next, the Multi-Dimensional Scaling (MDS) technique is used to project all the subjects from the unknown graph-space to a low dimensional space based on their inter-graph distance measures. Finally, the Support Vector Machine (SVM) classifier is used on the low dimensional projected space for automatic classification of the ADHD subjects. Exhaustive experimental validation of the proposed method is performed using the data set released for the ADHD-200 competition. Our method shows promise as we achieve impressive classification accuracies on the training (70.49%) and test data sets (73.55%). Our results reveal that the detection rates are higher when classification is performed separately on the male and female groups of subjects.

  19. Attributed graph distance measure for automatic detection of Attention Deficit Hyperactive Disordered subjects

    Directory of Open Access Journals (Sweden)

    Soumyabrata eDey

    2014-06-01

    Full Text Available Attention Deficit Hyperactive Disorder (ADHD is getting a lot of attention recently for two reasons. First, it is one of the most commonly found childhood disorders and second, the root cause of the problem is still unknown. Functional Magnetic Resonance Imaging (fMRI data has become a popular tool for the analysis of ADHD, which is the focus of our current research. In this paper we propose a novel framework for the automatic classification of the ADHD subjects using their resting state fMRI (rs-fMRI data of the brain. We construct brain functional connectivity networks for all the subjects. The nodes of the network are constructed with clusters of highly active voxels and edges between any pair of nodes represent the correlations between their average fMRI time series. The activity level of the voxels are measured based on the average power of their corresponding fMRI time-series. For each node of the networks, a local descriptor comprising of a set of attributes of the node is computed. Next, the Multi-Dimensional Scaling (MDS technique is used to project all the subjects from the unknown graph-space to a low dimensional space based on their inter-graph distance measures. Finally, the Support Vector Machine (SVM classifier is used on the low dimensional projected space for automatic classification of the ADHD subjects. Exhaustive experimental validation of the proposed method is performed using the data set released for the ADHD-200 competition. Our method shows promise as we achieve impressive classification accuracies on the training (70.49% and test data sets (73.55%. Our results reveal that the detection rates are higher when classification is performed separately on the male and female groups of subjects.

  20. Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique

    Science.gov (United States)

    Chen, H.; Karion, A.; Rella, C. W.; Winderlich, J.; Gerbig, C.; Filges, A.; Newberger, T.; Sweeney, C.; Tans, P. P.

    2013-04-01

    Accurate measurements of carbon monoxide (CO) in humid air have been made using the cavity ring-down spectroscopy (CRDS) technique. The measurements of CO mole fractions are determined from the strength of its spectral absorption in the near-infrared region (~1.57 μm) after removing interferences from adjacent carbon dioxide (CO2) and water vapor (H2O) absorption lines. Water correction functions that account for the dilution and pressure-broadening effects as well as absorption line interferences from adjacent CO2 and H2O lines have been derived for CO2 mole fractions between 360-390 ppm and for reported H2O mole fractions between 0-4%. The line interference corrections are independent of CO mole fractions. The dependence of the line interference correction on CO2 abundance is estimated to be approximately -0.3 ppb/100 ppm CO2 for dry mole fractions of CO. Comparisons of water correction functions from different analyzers of the same type show significant differences, making it necessary to perform instrument-specific water tests for each individual analyzer. The CRDS analyzer was flown on an aircraft in Alaska from April to November in 2011, and the accuracy of the CO measurements by the CRDS analyzer has been validated against discrete NOAA/ESRL flask sample measurements made on board the same aircraft, with a mean difference between integrated in situ and flask measurements of -0.6 ppb and a standard deviation of 2.8 ppb. Preliminary testing of CRDS instrumentation that employs improved spectroscopic model functions for CO2, H2O, and CO to fit the raw spectral data (available since the beginning of 2012) indicates a smaller water vapor dependence than the models discussed here, but more work is necessary to fully validate the performance. The CRDS technique provides an accurate and low-maintenance method of monitoring the atmospheric dry mole fractions of CO in humid air streams.

  1. An accurate Rb density measurement method for a plasma wakefield accelerator experiment using a novel Rb reservoir

    CERN Document Server

    Öz, E.; Muggli, P.

    2016-01-01

    A method to accurately measure the density of Rb vapor is described. We plan on using this method for the Advanced Wakefield (AWAKE)~\\cite{bib:awake} project at CERN , which will be the world's first proton driven plasma wakefield experiment. The method is similar to the hook~\\cite{bib:Hook} method and has been described in great detail in the work by W. Tendell Hill et. al.~\\cite{bib:densitymeter}. In this method a cosine fit is applied to the interferogram to obtain a relative accuracy on the order of $1\\%$ for the vapor density-length product. A single-mode, fiber-based, Mach-Zenhder interferometer will be built and used near the ends of the 10 meter-long AWAKE plasma source to be able to make accurate relative density measurement between these two locations. This can then be used to infer the vapor density gradient along the AWAKE plasma source and also change it to the value desired for the plasma wakefield experiment. Here we describe the plan in detail and show preliminary results obtained using a prot...

  2. Cultural Distance Revisited: Towards a More Rigorous Conceptualization and Measurement of Cultural Differences

    OpenAIRE

    Oded Shenkar

    2001-01-01

    Cultural distance is a widely used construct in international business, where it has been applied to foreign investment expansion, entry mode choice, and the performance of foreign invested affiliates, among others. The present paper presents a critical review of the cultural distance construct, outlining its hidden assumptions and challenging its theoretical and methodological properties. A comprehensive framework for the treatment of the construct is developed and concrete steps aimed at en...

  3. Fully automated laboratory and field-portable goniometer used for performing accurate and precise multiangular reflectance measurements

    Science.gov (United States)

    Harms, Justin D.; Bachmann, Charles M.; Ambeau, Brittany L.; Faulring, Jason W.; Ruiz Torres, Andres J.; Badura, Gregory; Myers, Emily

    2017-10-01

    Field-portable goniometers are created for a wide variety of applications. Many of these applications require specific types of instruments and measurement schemes and must operate in challenging environments. Therefore, designs are based on the requirements that are specific to the application. We present a field-portable goniometer that was designed for measuring the hemispherical-conical reflectance factor (HCRF) of various soils and low-growing vegetation in austere coastal and desert environments and biconical reflectance factors in laboratory settings. Unlike some goniometers, this system features a requirement for "target-plane tracking" to ensure that measurements can be collected on sloped surfaces, without compromising angular accuracy. The system also features a second upward-looking spectrometer to measure the spatially dependent incoming illumination, an integrated software package to provide full automation, an automated leveling system to ensure a standard frame of reference, a design that minimizes the obscuration due to self-shading to measure the opposition effect, and the ability to record a digital elevation model of the target region. This fully automated and highly mobile system obtains accurate and precise measurements of HCRF in a wide variety of terrain and in less time than most other systems while not sacrificing consistency or repeatability in laboratory environments.

  4. Self-report and long-term field measures of MP3 player use: how accurate is self-report?

    Science.gov (United States)

    Portnuff, C D F; Fligor, B J; Arehart, K H

    2013-02-01

    This study was designed to evaluate the usage patterns of portable listening device (PLD) listeners, and the relationships between self-report measures and long-term dosimetry measures of listening habits. This study used a descriptive correlational design. Participants (N = 52) were 18-29 year old men and women who completed surveys. A randomly assigned subset (N = 24) of participants had their listening monitored by dosimetry for one week. Median weekly noise doses reported and measured through dosimetry were low (9-93%), but 14.3% of participants reported exceeding a 100% noise dose weekly. When measured by dosimetry, 16.7% of participants exceeded a 100% noise dose weekly. The self-report question that best predicted the dosimetry-measured dose asked participants to report listening duration and usual listening level on a visual-analog scale. This study reports a novel dosimetry system that can provide accurate measures of PLD use over time. When not feasible, though, the self-report question described could provide a useful research or clinical tool to estimate exposure from PLD use. Among the participants in this study, a small but substantial percentage of PLD users incurred exposure from PLD use alone that increases their risk of music-induced hearing loss.

  5. Measuring Physical Inactivity: Do Current Measures Provide an Accurate View of “Sedentary” Video Game Time?

    Directory of Open Access Journals (Sweden)

    Simon Fullerton

    2014-01-01

    Full Text Available Background. Measures of screen time are often used to assess sedentary behaviour. Participation in activity-based video games (exergames can contribute to estimates of screen time, as current practices of measuring it do not consider the growing evidence that playing exergames can provide light to moderate levels of physical activity. This study aimed to determine what proportion of time spent playing video games was actually spent playing exergames. Methods. Data were collected via a cross-sectional telephone survey in South Australia. Participants aged 18 years and above (n=2026 were asked about their video game habits, as well as demographic and socioeconomic factors. In cases where children were in the household, the video game habits of a randomly selected child were also questioned. Results. Overall, 31.3% of adults and 79.9% of children spend at least some time playing video games. Of these, 24.1% of adults and 42.1% of children play exergames, with these types of games accounting for a third of all time that adults spend playing video games and nearly 20% of children’s video game time. Conclusions. A substantial proportion of time that would usually be classified as “sedentary” may actually be spent participating in light to moderate physical activity.

  6. Accurate Measurement of Pasting Temperature by the Rapid Visco-Analyser: a Case Study Using Rice Flour

    Directory of Open Access Journals (Sweden)

    Jin-song BAO

    2008-03-01

    Full Text Available Pasting properties are among the most important characteristics of starch, determining its applications in food processing and other industries. Pasting temperature derived from the Rapid Visco-analyser (RVA (Newport Scientific, in most cases, is overestimated by the Thermocline for Windows software program. Here, two methods facilitating accurate measurement of pasting temperature by RVA were described. One is to change parameter setting to ‘screen’ the true point where the pasting viscosity begins to increase, the other is to manually record the time (T1 when the pasting viscosity begins to increase and calculate the pasting temperature with the formula of (45/3.8×(T1–1+50 for rice flour. The latter method gave a manually determined pasting temperature which was significantly correlated with the gelatinization temperature measured by differential scanning calorimetry.

  7. Displacement, distance, and shape measurements of fast-rotating rough objects by two mutually tilted interference fringe systems.

    Science.gov (United States)

    Günther, Philipp; Kuschmierz, Robert; Pfister, Thorsten; Czarske, Jürgen W

    2013-05-01

    The precise distance measurement of fast-moving rough surfaces is important in several applications such as lathe monitoring. A nonincremental interferometer based on two mutually tilted interference fringe systems has been realized for this task. The distance is coded in the phase difference between the generated interference signals corresponding to the fringe systems. Large tilting angles between the interference fringe systems are necessary for a high sensitivity. However, due to the speckle effect at rough surfaces, different envelopes and phase jumps of the interference signals occur. At large tilting angles, these signals become dissimilar, resulting in a small correlation coefficient and a high measurement uncertainty. Based on a matching of illumination and receiving optics, the correlation coefficient and the phase difference estimation have been improved significantly. For axial displacement measurements of recurring rough surfaces, laterally moving with velocities of 5 m/s, an uncertainty of 110 nm has been attained. For nonrecurring surfaces, a distance measurement uncertainty of 830 nm has been achieved. Incorporating the additionally measured lateral velocity and the rotational speed, the two-dimensional shape of rotating objects results. Since the measurement uncertainty of the displacement, distance, and shape is nearly independent of the lateral surface velocity, this technique is predestined for fast-rotating objects, such as crankshafts, camshafts, vacuum pump shafts, or turning parts of lathes.

  8. Accurate human limb angle measurement: sensor fusion through Kalman, least mean squares and recursive least-squares adaptive filtering

    Science.gov (United States)

    Olivares, A.; Górriz, J. M.; Ramírez, J.; Olivares, G.

    2011-02-01

    Inertial sensors are widely used in human body motion monitoring systems since they permit us to determine the position of the subject's limbs. Limb angle measurement is carried out through the integration of the angular velocity measured by a rate sensor and the decomposition of the components of static gravity acceleration measured by an accelerometer. Different factors derived from the sensors' nature, such as the angle random walk and dynamic bias, lead to erroneous measurements. Dynamic bias effects can be reduced through the use of adaptive filtering based on sensor fusion concepts. Most existing published works use a Kalman filtering sensor fusion approach. Our aim is to perform a comparative study among different adaptive filters. Several least mean squares (LMS), recursive least squares (RLS) and Kalman filtering variations are tested for the purpose of finding the best method leading to a more accurate and robust limb angle measurement. A new angle wander compensation sensor fusion approach based on LMS and RLS filters has been developed.

  9. Accurate human limb angle measurement: sensor fusion through Kalman, least mean squares and recursive least-squares adaptive filtering

    International Nuclear Information System (INIS)

    Olivares, A; Olivares, G; Górriz, J M; Ramírez, J

    2011-01-01

    Inertial sensors are widely used in human body motion monitoring systems since they permit us to determine the position of the subject's limbs. Limb angle measurement is carried out through the integration of the angular velocity measured by a rate sensor and the decomposition of the components of static gravity acceleration measured by an accelerometer. Different factors derived from the sensors' nature, such as the angle random walk and dynamic bias, lead to erroneous measurements. Dynamic bias effects can be reduced through the use of adaptive filtering based on sensor fusion concepts. Most existing published works use a Kalman filtering sensor fusion approach. Our aim is to perform a comparative study among different adaptive filters. Several least mean squares (LMS), recursive least squares (RLS) and Kalman filtering variations are tested for the purpose of finding the best method leading to a more accurate and robust limb angle measurement. A new angle wander compensation sensor fusion approach based on LMS and RLS filters has been developed

  10. Can endocranial volume be estimated accurately from external skull measurements in great-tailed grackles (Quiscalus mexicanus?

    Directory of Open Access Journals (Sweden)

    Corina J. Logan

    2015-06-01

    Full Text Available There is an increasing need to validate and collect data approximating brain size on individuals in the field to understand what evolutionary factors drive brain size variation within and across species. We investigated whether we could accurately estimate endocranial volume (a proxy for brain size, as measured by computerized tomography (CT scans, using external skull measurements and/or by filling skulls with beads and pouring them out into a graduated cylinder for male and female great-tailed grackles. We found that while females had higher correlations than males, estimations of endocranial volume from external skull measurements or beads did not tightly correlate with CT volumes. We found no accuracy in the ability of external skull measures to predict CT volumes because the prediction intervals for most data points overlapped extensively. We conclude that we are unable to detect individual differences in endocranial volume using external skull measurements. These results emphasize the importance of validating and explicitly quantifying the predictive accuracy of brain size proxies for each species and each sex.

  11. Variations in reciprocal distances between the ethmoidal sinus, sphenoidal sinus and posterior orbit. Measurement on CTscans

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Kimiko; Yoshikawa, Hiroshi; Suzuki, Miyako; Yokoi, Hidenori; Hosokawa, Akira; Hagiwara, Akiko; Ichikawa, Ginichirou [Juntendo Univ., Tokyo (Japan). School of Medicine

    2003-05-01

    showed 1) 51.3 mm{+-}5.0 mm 2) 76.6 mm{+-}7.9 mm 3) 23.7 mm{+-}2.2 mm 4) 2.1 mm{+-}0.9 mm 5) 15.7 mm{+-}2.0 mm 6) 8.0 mm{+-}1.2 mm in males, and 1) 48.3 mm{+-}4.7 mm 2) 70.3 mm{+-}7.2 mm 3) 22.1 mm{+-}1.9 mm 4) 1.6 mm{+-}0.7 mm 5) 14.2 mm{+-}1.8 mm 6) 7.9 mm{+-}1.3 mm in females. Age and sex-related differences were seen in each area measured, and distances were shortest in the subjects' teens and twenties. The data collected was found to be useful in parasinus operations to prevent complications. (author)

  12. Variations in reciprocal distances between the ethmoidal sinus, sphenoidal sinus and posterior orbit. Measurement on CTscans

    International Nuclear Information System (INIS)

    Hayakawa, Kimiko; Yoshikawa, Hiroshi; Suzuki, Miyako; Yokoi, Hidenori; Hosokawa, Akira; Hagiwara, Akiko; Ichikawa, Ginichirou

    2003-01-01

    showed 1) 51.3 mm±5.0 mm 2) 76.6 mm±7.9 mm 3) 23.7 mm±2.2 mm 4) 2.1 mm±0.9 mm 5) 15.7 mm±2.0 mm 6) 8.0 mm±1.2 mm in males, and 1) 48.3 mm±4.7 mm 2) 70.3 mm±7.2 mm 3) 22.1 mm±1.9 mm 4) 1.6 mm±0.7 mm 5) 14.2 mm±1.8 mm 6) 7.9 mm±1.3 mm in females. Age and sex-related differences were seen in each area measured, and distances were shortest in the subjects' teens and twenties. The data collected was found to be useful in parasinus operations to prevent complications. (author)

  13. Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature.

    Science.gov (United States)

    Han, Young-Geun; Tran, T V A; Kim, Sang-Hyuck; Lee, Sang Bae

    2005-06-01

    We propose a simple and flexible multiwavelength Raman-fiber-laser-based long-distance remote-sensing scheme for simultaneous measurement of strain and temperature by use of fiber Bragg gratings. By combining two uniform fiber Bragg gratings with a tunable chirped fiber grating, we readily achieve simultaneous two-channel sensing probes with a high extinction ratio of more than approximately 50 dB over a 50-km distance. When strain and temperature are applied, lasing wavelength separation and shift occur, respectively, since the two uniform fiber Bragg gratings have identical material composition and different cladding diameters. This allows simultaneous measurement of strain and temperature for long-distance sensing applications of more than 50 km.

  14. The Hetu'u Global Network: Measuring the Distance to the Sun with the Transit of Venus

    Science.gov (United States)

    Rodriguez, David; Faherty, J.

    2013-01-01

    In the spirit of historic astronomical endeavors, we invited school groups across the globe to collaborate in a solar distance measurement using the 2012 transit of Venus. In total, our group (stationed at Easter Island, Chile) recruited 19 school groups spread over 6 continents and 10 countries to participate in our Hetu’u Global Network. Applying the methods of French astronomer Joseph-Nicolas Delisle, we used individual second and third Venus-Sun contact times to calculate the distance to the Sun. Ten of the sites in our network had amiable weather; 8 of which measured second contact and 5 of which measured third contact leading to consistent solar distance measurements of 152+/-30 million km and 163+/-30 million km respectively. The distance to the Sun at the time of the transit was 152.25 million km; therefore, our measurements are also consistent within 1-sigma of the known value. The goal of our international school group network was to inspire the next generation of scientists using the excitement and accessibility of such a rare astronomical event. In the process, we connected hundreds of participating students representing a diverse, multi-cultural group with differing political, economic, and racial backgrounds.

  15. A pneumatic bellows-driven setup for controlled-distance electrochemical impedance measurements of Zircaloy-2 in simulated BWR conditions

    International Nuclear Information System (INIS)

    Arilahti, E.; Bojinov, M.; Hansson-Lyyra, L.

    2004-01-01

    This paper describes a novel pneumatic bellows-driven arrangement designed for controlled distance electrochemistry (CDE) measurements. The feasibility of the new arrangement has been verified by performing contact electric impedance measurements to study corrosion of Zircaloy-2 in a re-circulation loop simulating the BWR conditions. Until now, the measurements have been carried out using a step-motor driven controlled-distance electrochemistry (CDE) arrangement. The electrical and electrochemical properties of the pre transition oxide on Zircaloy-2 determined from these measurements were in good agreement with those estimated from measurements with a step-motor driven CDE. Furthermore, the results indicate that the bellows-driven CDE device is less sensitive to the contact pressure variation than the step-motor driven arrangement. This property combined with the bellows driven displacement mechanism provides a clear advantage for future in-core corrosion studies of fuel cladding materials. (Author)

  16. The importance of accurate measurement of aortic stiffness in patients with chronic kidney disease and end-stage renal disease.

    Science.gov (United States)

    Adenwalla, Sherna F; Graham-Brown, Matthew P M; Leone, Francesca M T; Burton, James O; McCann, Gerry P

    2017-08-01

    Cardiovascular (CV) disease is the leading cause of death in chronic kidney disease (CKD) and end-stage renal disease (ESRD). A key driver in this pathology is increased aortic stiffness, which is a strong, independent predictor of CV mortality in this population. Aortic stiffening is a potentially modifiable biomarker of CV dysfunction and in risk stratification for patients with CKD and ESRD. Previous work has suggested that therapeutic modification of aortic stiffness may ameliorate CV mortality. Nevertheless, future clinical implementation relies on the ability to accurately and reliably quantify stiffness in renal disease. Pulse wave velocity (PWV) is an indirect measure of stiffness and is the accepted standard for non-invasive assessment of aortic stiffness. It has typically been measured using techniques such as applanation tonometry, which is easy to use but hindered by issues such as the inability to visualize the aorta. Advances in cardiac magnetic resonance imaging now allow direct measurement of stiffness, using aortic distensibility, in addition to PWV. These techniques allow measurement of aortic stiffness locally and are obtainable as part of a comprehensive, multiparametric CV assessment. The evidence cannot yet provide a definitive answer regarding which technique or parameter can be considered superior. This review discusses the advantages and limitations of non-invasive methods that have been used to assess aortic stiffness, the key studies that have assessed aortic stiffness in patients with renal disease and why these tools should be standardized for use in clinical trial work.

  17. Measuring Oral Proficiency in Distance, Face-to-Face, and Blended Classrooms

    Directory of Open Access Journals (Sweden)

    Robert Blake

    2008-10-01

    Full Text Available Although the foreign-language profession routinely stresses the importance of technology for the curriculum, many teachers still harbor deep-seated doubts as to whether or not a hybrid course, much less a completely distance-learning class, could provide L2 learners with a way to reach linguistic proficiency, especially with respect to oral language skills. In this study, we examine the case of Spanish Without Walls (SWW, a first-year language course offered at the University of California - Davis in both hybrid and distance-learning formats. The SWW curriculum includes materials delivered via CD-ROM/DVD programs, online content-based web pages, and synchronous bimodal chat that includes sound and text. The contribution of each of these components is evaluated in the context of a successful technologically assisted course. To address the issue of oral proficiency, we compare the results from both classroom and distance-learning students who took the 20-minute Versant for Spanish test, delivered by phone and automatically graded. The data generated by this instrument shows that classroom, hybrid, and distance L2 learners reach comparable levels of oral proficiency during their first year of study. Reference is also made to two other ongoing efforts to provide distance-learning courses in Arabic and Punjabi, two languages where special difficulties in their writing systems have an impact on the design of the distant-learning format. The rationale for offering language courses in either a hybrid or distance-learning format is examined in light of increasing societal pressures to help L2 learners reach advanced proficiency, especially in less commonly taught languages (LCTLs.

  18. Improvement of the exponential experiment system for the automatical and accurate measurement of the exponential decay constant

    International Nuclear Information System (INIS)

    Shin, Hee Sung; Jang, Ji Woon; Lee, Yoon Hee; Hwang, Yong Hwa; Kim, Ho Dong

    2004-01-01

    The previous exponential experiment system has been improved for the automatical and accurate axial movement of the neutron source and detector with attaching the automatical control system which consists of a Programmable Logical Controller(PLC) and a stepping motor set. The automatic control program which controls MCA and PLC consistently has been also developed on the basis of GENIE 2000 library. The exponential experiments have been carried out for Kori 1 unit spent fuel assemblies, C14, J14 and G23, and Kori 2 unit spent fuel assembly, J44, using the improved systematical measurement system. As the results, the average exponential decay constants for 4 assemblies are determined to be 0.1302, 0.1267, 0.1247, and 0.1210, respectively, with the application of poisson regression

  19. DL-sQUAL: A Multiple-Item Scale for Measuring Service Quality of Online Distance Learning Programs

    Science.gov (United States)

    Shaik, Naj; Lowe, Sue; Pinegar, Kem

    2006-01-01

    Education is a service with multiplicity of student interactions over time and across multiple touch points. Quality teaching needs to be supplemented by consistent quality supporting services for programs to succeed under the competitive distance learning landscape. ServQual and e-SQ scales have been proposed for measuring quality of traditional…

  20. Accurate measurements of infinite dilution activity coefficients using gas chromatography with static-wall-coated open-tubular columns.

    Science.gov (United States)

    Xu, Qianqian; Su, Baogen; Luo, Xinyi; Xing, Huabin; Bao, Zongbi; Yang, Qiwei; Yang, Yiwen; Ren, Qilong

    2012-11-06

    Wall-coated open-tubular (WCOT) columns provide higher column efficiency and lower solute interfacial adsorption effect than packed columns. However, previous efforts used to measure the infinite dilution activity coefficient (γ(∞)) via a chromatographic technique have used packed columns, because the low carrier gas flow rate (U) and the small stationary phase amount (n(2)) in WCOT columns raise large errors. By rationally revising the γ(∞)-calculation equation for static-wall-coated open-tubular column, we observed that U and n(2) are not necessarily needed and the resulting error could be reduced, and WCOT column gas chromatography subsequently became a superior method for the accurate γ(∞) determination. In this study, we validate our revised γ(∞)-calculation equation by measuring γ(∞) in an ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate system, in which 55 organic compounds covering a wide range of functional groups were used as probe solutes and their γ(∞) values in the ionic liquid were determined at 40.0, 50.0, and 60.0 °C. Experimental error analysis shows that our revised equation remarkably reduces the error compared to the common γ(∞)-calculation equation. Our data is consistent with previously reported values obtained via other techniques, which further proves the credibility of our revised equation. The accurately determined γ(∞) values can be directly used to calculate the partial molar excess enthalpy, selectivity, and capacity, which will benefit for the rapid screening of solvents (especially ionic liquids) in separation approaches.

  1. Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS technique

    Directory of Open Access Journals (Sweden)

    H. Chen

    2013-04-01

    Full Text Available Accurate measurements of carbon monoxide (CO in humid air have been made using the cavity ring-down spectroscopy (CRDS technique. The measurements of CO mole fractions are determined from the strength of its spectral absorption in the near-infrared region (~1.57 μm after removing interferences from adjacent carbon dioxide (CO2 and water vapor (H2O absorption lines. Water correction functions that account for the dilution and pressure-broadening effects as well as absorption line interferences from adjacent CO2 and H2O lines have been derived for CO2 mole fractions between 360–390 ppm and for reported H2O mole fractions between 0–4%. The line interference corrections are independent of CO mole fractions. The dependence of the line interference correction on CO2 abundance is estimated to be approximately −0.3 ppb/100 ppm CO2 for dry mole fractions of CO. Comparisons of water correction functions from different analyzers of the same type show significant differences, making it necessary to perform instrument-specific water tests for each individual analyzer. The CRDS analyzer was flown on an aircraft in Alaska from April to November in 2011, and the accuracy of the CO measurements by the CRDS analyzer has been validated against discrete NOAA/ESRL flask sample measurements made on board the same aircraft, with a mean difference between integrated in situ and flask measurements of −0.6 ppb and a standard deviation of 2.8 ppb. Preliminary testing of CRDS instrumentation that employs improved spectroscopic model functions for CO2, H2O, and CO to fit the raw spectral data (available since the beginning of 2012 indicates a smaller water vapor dependence than the models discussed here, but more work is necessary to fully validate the performance. The CRDS technique provides an accurate and low-maintenance method of monitoring the atmospheric dry mole fractions of CO in humid air streams.

  2. Is digital photography an accurate and precise method for measuring range of motion of the shoulder and elbow?

    Science.gov (United States)

    Russo, Russell R; Burn, Matthew B; Ismaily, Sabir K; Gerrie, Brayden J; Han, Shuyang; Alexander, Jerry; Lenherr, Christopher; Noble, Philip C; Harris, Joshua D; McCulloch, Patrick C

    2018-03-01

    Accurate measurements of shoulder and elbow motion are required for the management of musculoskeletal pathology. The purpose of this investigation was to compare three techniques for measuring motion. The authors hypothesized that digital photography would be equivalent in accuracy and show higher precision compared to the other two techniques. Using infrared motion capture analysis as the reference standard, shoulder flexion/abduction/internal rotation/external rotation and elbow flexion/extension were measured using visual estimation, goniometry, and digital photography on 10 fresh frozen cadavers. These measurements were performed by three physical therapists and three orthopaedic surgeons. Accuracy was defined by the difference from the reference standard (motion capture analysis), while precision was defined by the proportion of measurements within the authors' definition of clinical significance (10° for all motions except for elbow extension where 5° was used). Analysis of variance (ANOVA), t-tests, and chi-squared tests were used. Although statistically significant differences were found in measurement accuracy between the three techniques, none of these differences met the authors' definition of clinical significance. Precision of the measurements was significantly higher for both digital photography (shoulder abduction [93% vs. 74%, p < 0.001], shoulder internal rotation [97% vs. 83%, p = 0.001], and elbow flexion [93% vs. 65%, p < 0.001]) and goniometry (shoulder abduction [92% vs. 74%, p < 0.001] and shoulder internal rotation [94% vs. 83%, p = 0.008]) than visual estimation. Digital photography was more precise than goniometry for measurements of elbow flexion only [93% vs. 76%, p < 0.001]. There was no clinically significant difference in measurement accuracy between the three techniques for shoulder and elbow motion. Digital photography showed higher measurement precision compared to visual estimation for shoulder abduction, shoulder

  3. The TiltMeter app is a novel and accurate measurement tool for the weight bearing lunge test.

    Science.gov (United States)

    Williams, Cylie M; Caserta, Antoni J; Haines, Terry P

    2013-09-01

    The weight bearing lunge test is increasing being used by health care clinicians who treat lower limb and foot pathology. This measure is commonly established accurately and reliably with the use of expensive equipment. This study aims to compare the digital inclinometer with a free app, TiltMeter on an Apple iPhone. This was an intra-rater and inter-rater reliability study. Two raters (novice and experienced) conducted the measurements in both a bent knee and straight leg position to determine the intra-rater and inter-rater reliability. Concurrent validity was also established. Allied health practitioners were recruited as participants from the workplace. A preconditioning stretch was conducted and the ankle range of motion was established with the weight bearing lunge test position with firstly the leg straight and secondly with the knee bent. The measurement device and each participant were randomised during measurement. The intra-rater reliability and inter-rater reliability for the devices and in both positions were all over ICC 0.8 except for one intra-rater measure (Digital inclinometer, novice, ICC 0.65). The inter-rater reliability between the digital inclinometer and the tilmeter was near perfect, ICC 0.96 (CI: 0.898-0.983); Concurrent validity ICC between the two devices was 0.83 (CI: -0.740 to 0.445). The use of the Tiltmeter app on the iPhone is a reliable and inexpensive tool to measure the available ankle range of motion. Health practitioners should use caution in applying these findings to other smart phone equipment if surface areas are not comparable. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  4. Improve forest inventory with access data-measure transport distance and cost to market.

    Science.gov (United States)

    Dennis P. Bradley

    1972-01-01

    Describes a method for relating forest inventory volumes to transport distances and costs. The process, originally developed in Sweden, includes a computer program that can be used to summarize volumes by transport costs per cord to specified delivery point. The method has many potential applications in all aspects of resource analysis.

  5. Accurate reconstruction of the jV-characteristic of organic solar cells from measurements of the external quantum efficiency

    Science.gov (United States)

    Meyer, Toni; Körner, Christian; Vandewal, Koen; Leo, Karl

    2018-04-01

    In two terminal tandem solar cells, the current density - voltage (jV) characteristic of the individual subcells is typically not directly measurable, but often required for a rigorous device characterization. In this work, we reconstruct the jV-characteristic of organic solar cells from measurements of the external quantum efficiency under applied bias voltages and illumination. We show that it is necessary to perform a bias irradiance variation at each voltage and subsequently conduct a mathematical correction of the differential to the absolute external quantum efficiency to obtain an accurate jV-characteristic. Furthermore, we show that measuring the external quantum efficiency as a function of voltage for a single bias irradiance of 0.36 AM1.5g equivalent sun provides a good approximation of the photocurrent density over voltage curve. The method is tested on a selection of efficient, common single-junctions. The obtained conclusions can easily be transferred to multi-junction devices with serially connected subcells.

  6. Comparing alternative approaches to measuring the geographical accessibility of urban health services: Distance types and aggregation-error issues

    OpenAIRE

    Riva Mylène; Abdelmajid Mohamed; Apparicio Philippe; Shearmur Richard

    2008-01-01

    Abstract Background Over the past two decades, geographical accessibility of urban resources for population living in residential areas has received an increased focus in urban health studies. Operationalising and computing geographical accessibility measures depend on a set of four parameters, namely definition of residential areas, a method of aggregation, a measure of accessibility, and a type of distance. Yet, the choice of these parameters may potentially generate different results leadi...

  7. Alfalfa discovery of the nearby gas-rich dwarf galaxy Leo P. IV. Distance measurement from LBT optical imaging

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Berg, Danielle [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Salzer, John J.; Rhode, Katherine L. [Department of Astronomy, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Adams, Elizabeth A. K.; Giovanelli, Riccardo; Haynes, Martha P. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Dolphin, Andrew, E-mail: kmcquinn@astro.umn.edu, E-mail: skillman@astro.umn.edu, E-mail: berg@astro.umn.edu, E-mail: jcannon@macalester.edu, E-mail: rhode@astro.indiana.edu, E-mail: slaz@astro.indiana.edu, E-mail: betsey@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States)

    2013-12-01

    Leo P is a low-luminosity dwarf galaxy discovered through the blind H I Arecibo Legacy Fast ALFA survey. The H I and follow-up optical observations have shown that Leo P is a gas-rich dwarf galaxy with both active star formation and an underlying older population, as well as an extremely low oxygen abundance. Here, we measure the distance to Leo P by applying the tip of the red giant branch (TRGB) distance method to photometry of the resolved stellar population from new Large Binocular Telescope V and I band imaging. We measure a distance modulus of 26.19{sub −0.50}{sup +0.17} mag corresponding to a distance of 1.72{sub −0.40}{sup +0.14} Mpc. Although our photometry reaches 3 mag below the TRGB, the sparseness of the red giant branch yields higher uncertainties on the lower limit of the distance. Leo P is outside the Local Group with a distance and velocity consistent with the local Hubble flow. While located in a very low-density environment, Leo P lies within ∼0.5 Mpc of a loose association of dwarf galaxies which include NGC 3109, Antlia, Sextans A, and Sextans B, and 1.1 Mpc away from its next nearest neighbor, Leo A. Leo P is one of the lowest metallicity star-forming galaxies known in the nearby universe, comparable in metallicity to I Zw 18 and DDO 68, but with stellar characteristics similar to dwarf spheriodals (dSphs) in the Local Volume such as Carina, Sextans, and Leo II. Given its physical properties and isolation, Leo P may provide an evolutionary link between gas-rich dwarf irregular galaxies and dSphs that have fallen into a Local Group environment and been stripped of their gas.

  8. Agreement between intraoperative measurements and optical coherence tomography of the limbus-insertion distance of the extraocular muscles.

    Science.gov (United States)

    de-Pablo-Gómez-de-Liaño, L; Fernández-Vigo, J I; Ventura-Abreu, N; Morales-Fernández, L; García-Feijóo, J; Gómez-de-Liaño, R

    2016-12-01

    To assess the agreement between intraoperative measurements of the limbus-insertion distance of the extraocular muscles with those measured by spectral domain optical coherence tomography. An analysis was made of a total of 67 muscles of 21 patients with strabismus. The limbus-insertion distance of the horizontal rectus muscles were measured using pre-operative SD-OCT and intra-operatively in 2 ways: 1) direct, after a conjunctival dissection in patients who underwent surgery, or 2) transconjunctival in patients who were treated with botulinum toxin, or in those who were not going to be operated. The intraclass correlation coefficient and Bland-Altman plots were calculated to determine the concordance between the 2 methods. The mean age was 45.9 ±20.9 years (range 16 to 85), with 52% being women. The percentage of identification by direct intraoperative measurement was 95.6% (22/23), by transconjunctival intraoperative measurement 90.9% (40/44), and by OCT 85% (57/67), with 22 muscles finally being analysed for the agreement study between direct intraoperative measurement and OCT measurements, and 35 muscles for the agreement between transconjuctival intraoperative measurement and OCT. The intraclass correlation coefficient showed good agreement with OCT and direct intraoperative measurements (0.931; 95% confidence interval (95% CI): 0.839-0.972; P<.001), and with transconjunctival intraoperative measurements (0.889; 95% CI: 0.790-0.942; P<.001). The SD-OCT is an effective technique to measure the distance from the insertion of the horizontal rectus muscles to the limbus, with a high agreement with intraoperative measurements being demonstrated. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. A Modified ELISA Accurately Measures Secretion of High Molecular Weight Hyaluronan (HA) by Graves' Disease Orbital Cells

    Science.gov (United States)

    Krieger, Christine C.

    2014-01-01

    Excess production of hyaluronan (hyaluronic acid [HA]) in the retro-orbital space is a major component of Graves' ophthalmopathy, and regulation of HA production by orbital cells is a major research area. In most previous studies, HA was measured by ELISAs that used HA-binding proteins for detection and rooster comb HA as standards. We show that the binding efficiency of HA-binding protein in the ELISA is a function of HA polymer size. Using gel electrophoresis, we show that HA secreted from orbital cells is primarily comprised of polymers more than 500 000. We modified a commercially available ELISA by using 1 million molecular weight HA as standard to accurately measure HA of this size. We demonstrated that IL-1β-stimulated HA secretion is at least 2-fold greater than previously reported, and activation of the TSH receptor by an activating antibody M22 from a patient with Graves' disease led to more than 3-fold increase in HA production in both fibroblasts/preadipocytes and adipocytes. These effects were not consistently detected with the commercial ELISA using rooster comb HA as standard and suggest that fibroblasts/preadipocytes may play a more prominent role in HA remodeling in Graves' ophthalmopathy than previously appreciated. PMID:24302624

  10. Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection

    International Nuclear Information System (INIS)

    Yang, Ruitao; Pollinger, Florian; Meiners-Hagen, Karl; Krystek, Michael; Bosse, Harald; Tan, Jiubin

    2015-01-01

    We present a dual-comb-based heterodyne multi-wavelength absolute interferometer capable of long distance measurements. The phase information of the various comb modes is extracted in parallel by a multi-channel digital lock-in phase detection scheme. Several synthetic wavelengths of the same order are constructed and the corresponding phases are averaged to deduce the absolute lengths with significantly reduced uncertainty. Comparison experiments with an incremental HeNe reference interferometer show a combined relative measurement uncertainty of 5.3 × 10 −7 at a measurement distance of 20 m. Combining the advantage of synthetic wavelength interferometry and dual-comb interferometry, our compact and simple approach provides sufficient precision for many industrial applications. (paper)

  11. Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection

    Science.gov (United States)

    Yang, Ruitao; Pollinger, Florian; Meiners-Hagen, Karl; Krystek, Michael; Tan, Jiubin; Bosse, Harald

    2015-08-01

    We present a dual-comb-based heterodyne multi-wavelength absolute interferometer capable of long distance measurements. The phase information of the various comb modes is extracted in parallel by a multi-channel digital lock-in phase detection scheme. Several synthetic wavelengths of the same order are constructed and the corresponding phases are averaged to deduce the absolute lengths with significantly reduced uncertainty. Comparison experiments with an incremental HeNe reference interferometer show a combined relative measurement uncertainty of 5.3 × 10-7 at a measurement distance of 20 m. Combining the advantage of synthetic wavelength interferometry and dual-comb interferometry, our compact and simple approach provides sufficient precision for many industrial applications.

  12. Heterodyne laser Doppler distance sensor with phase coding measuring stationary as well as laterally and axially moving objects

    International Nuclear Information System (INIS)

    Pfister, T; Günther, P; Nöthen, M; Czarske, J

    2010-01-01

    Both in production engineering and process control, multidirectional displacements, deformations and vibrations of moving or rotating components have to be measured dynamically, contactlessly and with high precision. Optical sensors would be predestined for this task, but their measurement rate is often fundamentally limited. Furthermore, almost all conventional sensors measure only one measurand, i.e. either out-of-plane or in-plane distance or velocity. To solve this problem, we present a novel phase coded heterodyne laser Doppler distance sensor (PH-LDDS), which is able to determine out-of-plane (axial) position and in-plane (lateral) velocity of rough solid-state objects simultaneously and independently with a single sensor. Due to the applied heterodyne technique, stationary or purely axially moving objects can also be measured. In addition, it is shown theoretically as well as experimentally that this sensor offers concurrently high temporal resolution and high position resolution since its position uncertainty is in principle independent of the lateral object velocity in contrast to conventional distance sensors. This is a unique feature of the PH-LDDS enabling precise and dynamic position and shape measurements also of fast moving objects. With an optimized sensor setup, an average position resolution of 240 nm was obtained

  13. Distance measurement using frequency-modulated continuous-wave ladar with calibration by a femtosecond frequency comb

    Science.gov (United States)

    Liu, Yang; Yang, Linghui; Lin, Jiarui; Zhu, Jigui

    2018-01-01

    Precise distance measurement is of interest for large-scale manufacturing, future space satellite missions, and other industrial applications. The ranging system with femtosecond optical frequency comb (FOFC) could offer high accuracy, stability and direct traceability to SI definition of the meter. Here, we propose a scheme for length measurement based on the frequency-modulated continuous-wave (FMCW) ladar with a FOFC. In this scheme, the reference interferometer in the FMCW ladar is calibrated by the intensity detection using the FOFC in the time domain within an optical wavelength resolution. With analysis of the theoretical model, this system has the potential to a high-speed, high-accuracy absolute distance measurement. Then, based on the experimental results, the evaluation of the performance of the calibration of the reference arm is discussed. In addition, the performance of this system is evaluated by a single position measurement with different tuning velocities of wavelength. The experimental results show that the reproducibility of the distance measurement is 10-5 level.

  14. A study of the normal interpedicular distance of the spine in Korean teenagers (Estimation of normal range by roentgenographic measurement)

    International Nuclear Information System (INIS)

    Lee, Myung Uk

    1979-01-01

    The radiological measurement of the interpedicular disease using a routine antero-posterior view of the spine gives important clinical criteria in evaluation of the intraspinal tumor and stenosis of the spinal canal, and aids for diagnosis of the lesions. In 1934 Elsberg and Dyke reported values of interpedicular distance as determined on roentgenograms for spine of white adult, and in 1968 Song prepared normal values of interpedicular distance for Korean adult. The present investigation was undertaken to provide normal interpedicular distance of Korean teenagers. The author observed the antero-posterior films of the spine of 200 normal teenagers which were composed of 100 male and 100 female. The normal values of the interpedicular distance of Korean teenagers were obtained, as well as 90% tolerance range for clinical use. In this statistical analysis, there were noted significant differences between male and female, and each age groups. It was observed that average male measurement were consistently larger than female by about 1 mm and the growth of the spinal canal appeared to be continued.

  15. Encyclopedia of distances

    CERN Document Server

    Deza, Michel Marie

    2014-01-01

    This updated and revised third edition of the leading reference volume on distance metrics includes new items from very active research areas in the use of distances and metrics such as geometry, graph theory, probability theory and analysis. Among the new topics included are, for example, polyhedral metric space, nearness matrix problems, distances between belief assignments, distance-related animal settings, diamond-cutting distances, natural units of length, Heidegger’s de-severance distance, and brain distances. The publication of this volume coincides with intensifying research efforts into metric spaces and especially distance design for applications. Accurate metrics have become a crucial goal in computational biology, image analysis, speech recognition and information retrieval. Leaving aside the practical questions that arise during the selection of a ‘good’ distance function, this work focuses on providing the research community with an invaluable comprehensive listing of the main available di...

  16. On the importance of the distance measures used to train and test knowledge-based potentials for proteins.

    Directory of Open Access Journals (Sweden)

    Martin Carlsen

    Full Text Available Knowledge-based potentials are energy functions derived from the analysis of databases of protein structures and sequences. They can be divided into two classes. Potentials from the first class are based on a direct conversion of the distributions of some geometric properties observed in native protein structures into energy values, while potentials from the second class are trained to mimic quantitatively the geometric differences between incorrectly folded models and native structures. In this paper, we focus on the relationship between energy and geometry when training the second class of knowledge-based potentials. We assume that the difference in energy between a decoy structure and the corresponding native structure is linearly related to the distance between the two structures. We trained two distance-based knowledge-based potentials accordingly, one based on all inter-residue distances (PPD, while the other had the set of all distances filtered to reflect consistency in an ensemble of decoys (PPE. We tested four types of metric to characterize the distance between the decoy and the native structure, two based on extrinsic geometry (RMSD and GTD-TS*, and two based on intrinsic geometry (Q* and MT. The corresponding eight potentials were tested on a large collection of decoy sets. We found that it is usually better to train a potential using an intrinsic distance measure. We also found that PPE outperforms PPD, emphasizing the benefits of capturing consistent information in an ensemble. The relevance of these results for the design of knowledge-based potentials is discussed.

  17. Measuring distance “as the horse runs”: Cross-scale comparison of terrain-based metrics

    Science.gov (United States)

    Buttenfield, Barbara P.; Ghandehari, M; Leyk, S; Stanislawski, Larry V.; Brantley, M E; Qiang, Yi

    2016-01-01

    Distance metrics play significant roles in spatial modeling tasks, such as flood inundation (Tucker and Hancock 2010), stream extraction (Stanislawski et al. 2015), power line routing (Kiessling et al. 2003) and analysis of surface pollutants such as nitrogen (Harms et al. 2009). Avalanche risk is based on slope, aspect, and curvature, all directly computed from distance metrics (Gutiérrez 2012). Distance metrics anchor variogram analysis, kernel estimation, and spatial interpolation (Cressie 1993). Several approaches are employed to measure distance. Planar metrics measure straight line distance between two points (“as the crow flies”) and are simple and intuitive, but suffer from uncertainties. Planar metrics assume that Digital Elevation Model (DEM) pixels are rigid and flat, as tiny facets of ceramic tile approximating a continuous terrain surface. In truth, terrain can bend, twist and undulate within each pixel.Work with Light Detection and Ranging (lidar) data or High Resolution Topography to achieve precise measurements present challenges, as filtering can eliminate or distort significant features (Passalacqua et al. 2015). The current availability of lidar data is far from comprehensive in developed nations, and non-existent in many rural and undeveloped regions. Notwithstanding computational advances, distance estimation on DEMs has never been systematically assessed, due to assumptions that improvements are so small that surface adjustment is unwarranted. For individual pixels inaccuracies may be small, but additive effects can propagate dramatically, especially in regional models (e.g., disaster evacuation) or global models (e.g., sea level rise) where pixels span dozens to hundreds of kilometers (Usery et al 2003). Such models are increasingly common, lending compelling reasons to understand shortcomings in the use of planar distance metrics. Researchers have studied curvature-based terrain modeling. Jenny et al. (2011) use curvature to generate

  18. Quality Assurance of Distance Education: Multiple Assessment Measures Used in a Business, Career, and Technical Education Department

    Directory of Open Access Journals (Sweden)

    Dr. Elizabeth HODGE

    2004-04-01

    Full Text Available Quality Assurance of Distance Education: Multiple Assessment Measures Used in a Business, Career, and Technical Education Department Assistant Professor Dr. Shelia TUCKER East Carolina University, Greenville, NC, USA Assistant Professor Dr. Elizabeth HODGE East Carolina University, Greenville, NC, USA ABSTRACT Educational institutions are being encouraged by accrediting agencies to move beyond the traditional measures of success such as satisfaction surveys from students, employers, and alumni. They stress the use of a variety of measurement tools to audit students’ work. Thus, this study will seek to identify multiple assessment strategies that can be used to evaluate the effectiveness of distance education courses within an entire degree program. Comparisons of three courses being taught simultaneously on line and in the classroom were made. There were no significant differences noted in student outcomes assessments. Additionally, the same assessment measures used for SACS for the traditional classroom were equated with the distance education classes for those in the field of Family and Consumer Sciences, Business Education, the BE/ME program, the MAEd program in Technical teaching, and Information Technologies. No significant differences were noted in student outcomes assessments.

  19. Distance Between the Malleoli and the GroundA New Clinical Method to Measure Leg-Length Discrepancy.

    Science.gov (United States)

    Aguilar, Estela Gomez; Domínguez, Águeda Gómez; Peña-Algaba, Carolina; Castillo-López, José M

    2017-03-01

    The aim of this work is to introduce a useful method for the clinical diagnosis of leg-length inequality: distance between the malleoli and the ground (DMG). A transversal observational study was performed on 17 patients with leg-length discrepancy. Leg-length inequality was determined with different clinical methods: with a tape measure in a supine position from the anterior superior iliac spine (ASIS) to the internal and external malleoli, as the difference between the iliac crests when standing (pelvimeter), and as asymmetry between ASISs (PALpation Meter [PALM]; A&D Medical Products Healthcare, San Jose, California). The Foot Posture Index (FPI) and the navicular drop test were also used. The DMG with Perthes rule (perpendicular to the foot when standing), the distance between the internal malleolus and the ground (DIMG), and the distance between the external malleolus and the ground were designed by the authors. The DIMG is directly related to the traditional ASIS-external malleolus measurement (P = .003), the FPI (P = .010), and the navicular drop test (P DMG) is useful for diagnosing leg-length discrepancy and is related to the ASIS-external malleolus measurement. The DIMG is significantly inversely proportional to the degree of pronation according to the FPI. Conversely, determination of leg-length discrepancy with a tape measure from the ASIS to the malleoli cannot be performed interchangeably at the level of the internal or external malleolus.

  20. Development of a method for the accurate measurement of protein turnover in neoplastic cells grown in culture

    International Nuclear Information System (INIS)

    Silverman, J.A.

    1984-01-01

    In this study, it was shown that standard techniques for cell recovery and sample preparation for liquid scintillation counting led to underestimation of the radioactivity present in cell proteins by 20-40%. These techniques involved labeling with 3 He leucine or 14 C leucine, scraping the cells from the dish in a buffer, TCA precipitation of the cell proteins, solubilization in NaOH and counting in a liquid scintillation counter. Hydrolysis of the proteins with HCl or Pronase significantly increased the recovery of the labeled proteins. Also, solubilization in situ with NaOH or hydrolysis in situ with Pronase recovered 5-10% additional labeled proteins. The techniques developed here allow the accurate measurement of radioactivity in cell proteins. In addition, these techniques were used to study protein turnover in rat hepatoma cells grown in culture. These cells regulated their growth rate through changes in the protein synthesis rate as opposed to changes in the protein degradation rate. These data support the hypothesis that neoplastic cells, unlike normal cells, do not regulate proteolysis in growth control; normal cells under similar conditions have been shown to activate lysosomal proteolysis as they reach confluence. The physiologic implications of this observation are discussed

  1. Radiometric Normalization of Temporal Images Combining Automatic Detection of Pseudo-Invariant Features from the Distance and Similarity Spectral Measures, Density Scatterplot Analysis, and Robust Regression

    Directory of Open Access Journals (Sweden)

    Ana Paula Ferreira de Carvalho

    2013-05-01

    Full Text Available Radiometric precision is difficult to maintain in orbital images due to several factors (atmospheric conditions, Earth-sun distance, detector calibration, illumination, and viewing angles. These unwanted effects must be removed for radiometric consistency among temporal images, leaving only land-leaving radiances, for optimum change detection. A variety of relative radiometric correction techniques were developed for the correction or rectification of images, of the same area, through use of reference targets whose reflectance do not change significantly with time, i.e., pseudo-invariant features (PIFs. This paper proposes a new technique for radiometric normalization, which uses three sequential methods for an accurate PIFs selection: spectral measures of temporal data (spectral distance and similarity, density scatter plot analysis (ridge method, and robust regression. The spectral measures used are the spectral angle (Spectral Angle Mapper, SAM, spectral correlation (Spectral Correlation Mapper, SCM, and Euclidean distance. The spectral measures between the spectra at times t1 and t2 and are calculated for each pixel. After classification using threshold values, it is possible to define points with the same spectral behavior, including PIFs. The distance and similarity measures are complementary and can be calculated together. The ridge method uses a density plot generated from images acquired on different dates for the selection of PIFs. In a density plot, the invariant pixels, together, form a high-density ridge, while variant pixels (clouds and land cover changes are spread, having low density, facilitating its exclusion. Finally, the selected PIFs are subjected to a robust regression (M-estimate between pairs of temporal bands for the detection and elimination of outliers, and to obtain the optimal linear equation for a given set of target points. The robust regression is insensitive to outliers, i.e., observation that appears to deviate

  2. Direct Measurement of Initial 230TH/ 232TH Ratios in Central Texas Speleothems for More Accurate Age Determination

    Science.gov (United States)

    Wortham, B. E.; Banner, J. L.; James, E.; Loewy, S. L.

    2013-12-01

    Speleothems, calcite deposits in caves, preserve a record of climate in their growth rate, isotope ratios and trace element concentrations. These variables must be tied to precise ages to produce pre-instrumental records of climate. The 238U-234U- 230Th disequilibrium method of dating can yield precise ages if the amount of 230Th from the decay of radiogenic 238U can be constrained. 230Th in a speleothem calcite growth layer has two potential sources - 1) decay of radioactive 238U since the time of growth of the calcite layer; and 2) initial detrital 230Th, incorporated along with detrital 232Th, into the calcite layer at the time it grew. Although the calcite lattice does not typically incorporate Th, samples can contain impurities with relatively high Th contents. Initial 230Th/232Th is commonly estimated by assuming a source with bulk-Earth U/Th values in a state of secular equilibrium in the 238U-decay chain. The uncertainty in this 230Th/232Th estimate is also assumed, typically at +/-100%. Both assumptions contribute to uncertainty in ages determined for young speleothems. If the amount of initial detrital 230Th can be better quantified for samples or sites, then U-series ages will have smaller uncertainties and more precisely define the time series of climate proxies. This study determined the initial 230Th/232Th of modern calcite to provide more precise dates for central Texas speleothems. Calcite was grown on glass-plate substrates placed under active drips in central Texas caves. The 230Th/232Th of this modern calcite was determined using thermal ionization mass spectrometry. Results show that: 1) initial 230Th/232Th ratios can be accurately determined in these young samples and 2) measuring 230Th/232Th reduces the uncertainties in previously-determined ages on stalagmites from under the same drips. For example, measured initial 230Th/232Th in calcite collected on substrates from different locations in the cave at Westcave Preserve are 15.3 × 0.67 ppm

  3. Challenges associated with drunk driving measurement: combining police and self-reported data to estimate an accurate prevalence in Brazil.

    Science.gov (United States)

    Sousa, Tanara; Lunnen, Jeffrey C; Gonçalves, Veralice; Schmitz, Aurinez; Pasa, Graciela; Bastos, Tamires; Sripad, Pooja; Chandran, Aruna; Pechansky, Flavio

    2013-12-01

    Drunk driving is an important risk factor for road traffic crashes, injuries and deaths. After June 2008, all drivers in Brazil were subject to a "Zero Tolerance Law" with a set breath alcohol concentration of 0.1 mg/L of air. However, a loophole in this law enabled drivers to refuse breath or blood alcohol testing as it may self-incriminate. The reported prevalence of drunk driving is therefore likely a gross underestimate in many cities. To compare the prevalence of drunk driving gathered from police reports to the prevalence gathered from self-reported questionnaires administered at police sobriety roadblocks in two Brazilian capital cities, and to estimate a more accurate prevalence of drunk driving utilizing three correction techniques based upon information from those questionnaires. In August 2011 and January-February 2012, researchers from the Centre for Drug and Alcohol Research at the Universidade Federal do Rio Grande do Sul administered a roadside interview on drunk driving practices to 805 voluntary participants in the Brazilian capital cities of Palmas and Teresina. Three techniques which include measures such as the number of persons reporting alcohol consumption in the last six hours but who had refused breath testing were used to estimate the prevalence of drunk driving. The prevalence of persons testing positive for alcohol on their breath was 8.8% and 5.0% in Palmas and Teresina respectively. Utilizing a correction technique we calculated that a more accurate prevalence in these sites may be as high as 28.2% and 28.7%. In both cities, about 60% of drivers who self-reported having drank within six hours of being stopped by the police either refused to perform breathalyser testing; fled the sobriety roadblock; or were not offered the test, compared to about 30% of drivers that said they had not been drinking. Despite the reduction of the legal limit for drunk driving stipulated by the "Zero Tolerance Law," loopholes in the legislation permit many

  4. Aspects Regarding the Establishment of the Scale Coefficient in the Case of Distances Measurements in an Geodetic Network

    Directory of Open Access Journals (Sweden)

    Mircea Ortelecan

    2016-11-01

    Full Text Available The paper analyzes the possibility to establish the coefficient of scale towards the total station scale triangulation network in the conduct of geodetic and topographic observations in the points with known coordinates (old points or points whose coordinates we want to determine (new points. The purpose of the study is undertaken to simplify computing operations to reduce distances measured from the topographic surface to the Stereo 70 projection plan.

  5. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2005-11-01

    This report summarizes technical progress April-September 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report. The sensing system will be installed and tested at TECO's Polk Power Station. Following a site visit in June 2005, our efforts have been focused on preparing for that field test, including he design of the sensor mechanical packaging, sensor electronics, the data transfer module, and the necessary software codes to accommodate this application.. We are currently ready to start sensor fabrication.

  6. Measurement of distance parameter using semiclassical model in various heavy ion interactions

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, Tabassum [Department of Physics, Gomal University D.I. Khan (Pakistan); Khan, E U [Department of Physics, CIIT, Islamabad (Pakistan); Baluch, J J [Department of Environmental Sciences, CIIT, Abbottabad (Pakistan); Qureshi, I E [Pakistan Atomic Energy Commission, P.O. Box 1114, Islamabad (Pakistan); Sajid, M; Shahzad, M I; Khan, H A [Physics Research Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)

    2008-08-15

    The technique of solid state nuclear track detection was employed to collect data of elastic scattering as well as inelastic reaction channel. The elastic data of the reactions {sup 238}U+{sup 209}Bi, {sup 238}U+{sup 197}Au, {sup 208}Pb+{sup 197}Au and {sup 197}Au+{sup 197}Au were used to calculate the experimental elastic scattering cross-sections for various angular bins. The ratio of these cross-sections to Rutherford/Mott cross-sections were plotted with respect to distance d({theta}). Distance parameter d{sub 0} in all four reactions was obtained from the discontinuity of the slope following the method suggested in the semiclassical model. Partial reaction cross-sections were also obtained from the inelastic binary as well as multiprong events in the heavy ion interactions of {sup 208}Pb+{sup 197}Au and {sup 197}Au+{sup 197}Au both at 11.67 MeV/u beam energy. The higher values of partial cross-sections of two prong inelastic events as compared with {sigma}{sub 3} and {sigma}{sub 4} have been attributed to the emission of intermediate mass fragments in both the reactions.

  7. A distance measurement between specific sites on the cytoplasmic surface of bovine rhodopsin in rod outer segment disk membranes.

    Science.gov (United States)

    Albert, A D; Watts, A; Spooner, P; Groebner, G; Young, J; Yeagle, P L

    1997-08-14

    Structural information on mammalian integral membrane proteins is scarce. As part of work on an alternative approach to the structure of bovine rhodopsin, a method was devised to obtain an intramolecular distance between two specific sites on rhodopsin while in the rod outer segment disk membrane. In this report, the distance between the rhodopsin kinase phosphorylation site(s) on the carboxyl terminal and the top of the third transmembrane helix was measured on native rhodopsin. Rhodopsin was labeled with a nuclear spin label (31P) by limited phosphorylation with rhodopsin kinase. Major phosphorylation occurs at serines 343 and 338 on the carboxyl terminal. The phosphorylated rhodopsin was then specifically labeled on cysteine 140 with an electron spin label. Magic angle spinning 31P-nuclear magnetic resonance revealed the resonance arising from the phosphorylated protein. The enhancement of the transverse relaxation of this resonance by the paramagnetic spin label was observed. The strength of this perturbation was used to determine the through-space distance between the phosphorylation site(s) and the spin label position. A distance of 18 +/- 3 A was obtained.

  8. Accurate measurement of peripheral blood mononuclear cell concentration using image cytometry to eliminate RBC-induced counting error.

    Science.gov (United States)

    Chan, Leo Li-Ying; Laverty, Daniel J; Smith, Tim; Nejad, Parham; Hei, Hillary; Gandhi, Roopali; Kuksin, Dmitry; Qiu, Jean

    2013-02-28

    Peripheral blood mononuclear cells (PBMCs) have been widely researched in the fields of immunology, infectious disease, oncology, transplantation, hematological malignancy, and vaccine development. Specifically, in immunology research, PBMCs have been utilized to monitor concentration, viability, proliferation, and cytokine production from immune cells, which are critical for both clinical trials and biomedical research. The viability and concentration of isolated PBMCs are traditionally measured by manual counting with trypan blue (TB) using a hemacytometer. One of the common issues of PBMC isolation is red blood cell (RBC) contamination. The RBC contamination can be dependent on the donor sample and/or technical skill level of the operator. RBC contamination in a PBMC sample can introduce error to the measured concentration, which can pass down to future experimental assays performed on these cells. To resolve this issue, RBC lysing protocol can be used to eliminate potential error caused by RBC contamination. In the recent years, a rapid fluorescence-based image cytometry system has been utilized for bright-field and fluorescence imaging analysis of cellular characteristics (Nexcelom Bioscience LLC, Lawrence, MA). The Cellometer image cytometry system has demonstrated the capability of automated concentration and viability detection in disposable counting chambers of unpurified mouse splenocytes and PBMCs stained with acridine orange (AO) and propidium iodide (PI) under fluorescence detection. In this work, we demonstrate the ability of Cellometer image cytometry system to accurately measure PBMC concentration, despite RBC contamination, by comparison of five different total PBMC counting methods: (1) manual counting of trypan blue-stained PBMCs in hemacytometer, (2) manual counting of PBMCs in bright-field images, (3) manual counting of acetic acid lysing of RBCs with TB-stained PBMCs, (4) automated counting of acetic acid lysing of RBCs with PI-stained PBMCs

  9. Cepheids Geometrical Distances Using Space Interferometry

    Science.gov (United States)

    Marengo, M.; Karovska, M.; Sasselov, D. D.; Sanchez, M.

    2004-05-01

    A space based interferometer with a sub-milliarcsecond resolution in the UV-optical will provide a new avenue for the calibration of primary distance indicators with unprecedented accuracy, by allowing very accurate and stable measurements of Cepheids pulsation amplitudes at wavelengths not accessible from the ground. Sasselov & Karovska (1994) have shown that interferometers allow very accurate measurements of Cepheids distances by using a ``geometric'' variant of the Baade-Wesselink method. This method has been succesfully applied to derive distances and radii of nearby Cepheids using ground-based near-IR and optical interferometers, within a 15% accuracy level. Our study shows that the main source of error in these measurements is due to the perturbing effects of the Earth atmosphere, which is the limiting factor in the interferometer stability. A space interferometer will not suffer from this intrinsic limitations, and can potentially lead to improve astronomical distance measurements by an order of magnitude in precision. We discuss here the technical requirements that a space based facility will need to carry out this project, allowing distance measurements within a few percent accuracy level. We will finally discuss how a sub-milliarcsecond resolution will allow the direct distance determination for hundreds of galactic sources, and provide a substantial improvement in the zero-point of the Cepheid distance scale.

  10. Repeated stimulation, inter-stimulus interval and inter-electrode distance alters muscle contractile properties as measured by Tensiomyography

    Science.gov (United States)

    Johnson, Mark I.; Francis, Peter

    2018-01-01

    Context The influence of methodological parameters on the measurement of muscle contractile properties using Tensiomyography (TMG) has not been published. Objective To investigate the; (1) reliability of stimulus amplitude needed to elicit maximum muscle displacement (Dm), (2) effect of changing inter-stimulus interval on Dm (using a fixed stimulus amplitude) and contraction time (Tc), (3) the effect of changing inter-electrode distance on Dm and Tc. Design Within subject, repeated measures. Participants 10 participants for each objective. Main outcome measures Dm and Tc of the rectus femoris, measured using TMG. Results The coefficient of variance (CV) and the intra-class correlation (ICC) of stimulus amplitude needed to elicit maximum Dm was 5.7% and 0.92 respectively. Dm was higher when using an inter-electrode distance of 7cm compared to 5cm [P = 0.03] and when using an inter-stimulus interval of 10s compared to 30s [P = 0.017]. Further analysis of inter-stimulus interval data, found that during 10 repeated stimuli Tc became faster after the 5th measure when compared to the second measure [P<0.05]. The 30s inter-stimulus interval produced the most stable Tc over 10 measures compared to 10s and 5s respectively. Conclusion Our data suggest that the stimulus amplitude producing maximum Dm of the rectus femoris is reliable. Inter-electrode distance and inter-stimulus interval can significantly influence Dm and/ or Tc. Our results support the use of a 30s inter-stimulus interval over 10s or 5s. Future studies should determine the influence of methodological parameters on muscle contractile properties in a range of muscles. PMID:29451885

  11. SUSTAINABILITY INDICES AS MEASURES OF SERVICE DELIVERY IN OPEN AND DISTANCE LEARNING INSTITUTIONS IN NIGERIA

    Directory of Open Access Journals (Sweden)

    Salawu, I. O, Adeoye, Felix A & Olugbenga David OJO

    2010-01-01

    Full Text Available Open and Distance Education if well organized, is an adequate alternative to conventional education. For acceptability of this assertion, the public, governments, employers of labour and other stakeholders need to be convinced that ODL institutions are not providing half-baked education. Also, for the public and other shareholders enthusiasm and interest that are usually hard earned to be sustained, there is need for total commitment to the implementation of some established indices of sustainability. The thrust of this paper is in the appraisal of the extent to which two ODL institutions in Nigeria adhere to the principles of sustainability. A set of questionnaire was developed and used to collect data which were analyzed using simple non-parametric statistics. Suggestions which were aimed at improving the service delivery, in the institutions used for the study in particular, and other sister institutions especially in the developed countries were highlighted.

  12. Measuring the CO2 shadow price for wastewater treatment: A directional distance function approach

    International Nuclear Information System (INIS)

    Molinos-Senante, María; Hanley, Nick; Sala-Garrido, Ramón

    2015-01-01

    Highlights: • The shadow price of CO 2 informs about the marginal abatement cost of this pollutant. • It is estimated the shadow price of CO 2 for wastewater treatment plants. • The shadow prices depend on the setting of the directional vectors of the distance function. • Sewage sludge treatment technology affects the CO 2 shadow price. - Abstract: The estimation of the value of carbon emissions has become a major research and policy topic since the establishment of the Kyoto Protocol. The shadow price of CO 2 provides information about the marginal abatement cost of this pollutant. It is an essential element in guiding environmental policy issues, since the CO 2 shadow price can be used when fixing carbon tax rates, in environmental cost-benefit analysis and in ascertaining an initial market price for a trading system. The water industry could play an important role in the reduction of greenhouse gas (GHG) emissions. This paper estimates the shadow price of CO 2 for a sample of wastewater treatment plants (WWTPs), using a parametric quadratic directional distance function. Following this, in a sensitivity analysis, the paper evaluates the impact of different settings of directional vectors on the shadow prices. Applying the Mann–Whitney and Kruskal–Wallis non-parametric tests, factors affecting CO 2 prices are investigated. The variation of CO 2 shadow prices across the WWTPs evaluated argues in favour of a market-based approach to CO 2 mitigation as opposed to command-and-control regulation. The paper argues that the estimation of the shadow price of CO 2 for non-power enterprises can provide incentives for reducing GHG emissions

  13. Repeated stimulation, inter-stimulus interval and inter-electrode distance alters muscle contractile properties as measured by Tensiomyography.

    Directory of Open Access Journals (Sweden)

    Hannah V Wilson

    Full Text Available The influence of methodological parameters on the measurement of muscle contractile properties using Tensiomyography (TMG has not been published.To investigate the; (1 reliability of stimulus amplitude needed to elicit maximum muscle displacement (Dm, (2 effect of changing inter-stimulus interval on Dm (using a fixed stimulus amplitude and contraction time (Tc, (3 the effect of changing inter-electrode distance on Dm and Tc.Within subject, repeated measures.10 participants for each objective.Dm and Tc of the rectus femoris, measured using TMG.The coefficient of variance (CV and the intra-class correlation (ICC of stimulus amplitude needed to elicit maximum Dm was 5.7% and 0.92 respectively. Dm was higher when using an inter-electrode distance of 7cm compared to 5cm [P = 0.03] and when using an inter-stimulus interval of 10s compared to 30s [P = 0.017]. Further analysis of inter-stimulus interval data, found that during 10 repeated stimuli Tc became faster after the 5th measure when compared to the second measure [P<0.05]. The 30s inter-stimulus interval produced the most stable Tc over 10 measures compared to 10s and 5s respectively.Our data suggest that the stimulus amplitude producing maximum Dm of the rectus femoris is reliable. Inter-electrode distance and inter-stimulus interval can significantly influence Dm and/ or Tc. Our results support the use of a 30s inter-stimulus interval over 10s or 5s. Future studies should determine the influence of methodological parameters on muscle contractile properties in a range of muscles.

  14. A Feasibility Study for Measuring Accurate Chest Compression Depth and Rate on Soft Surfaces Using Two Accelerometers and Spectral Analysis

    Directory of Open Access Journals (Sweden)

    Sofía Ruiz de Gauna

    2016-01-01

    Full Text Available Background. Cardiopulmonary resuscitation (CPR feedback devices are being increasingly used. However, current accelerometer-based devices overestimate chest displacement when CPR is performed on soft surfaces, which may lead to insufficient compression depth. Aim. To assess the performance of a new algorithm for measuring compression depth and rate based on two accelerometers in a simulated resuscitation scenario. Materials and Methods. Compressions were provided to a manikin on two mattresses, foam and sprung, with and without a backboard. One accelerometer was placed on the chest and the second at the manikin’s back. Chest displacement and mattress displacement were calculated from the spectral analysis of the corresponding acceleration every 2 seconds and subtracted to compute the actual sternal-spinal displacement. Compression rate was obtained from the chest acceleration. Results. Median unsigned error in depth was 2.1 mm (4.4%. Error was 2.4 mm in the foam and 1.7 mm in the sprung mattress (p<0.001. Error was 3.1/2.0 mm and 1.8/1.6 mm with/without backboard for foam and sprung, respectively (p<0.001. Median error in rate was 0.9 cpm (1.0%, with no significant differences between test conditions. Conclusion. The system provided accurate feedback on chest compression depth and rate on soft surfaces. Our solution compensated mattress displacement, avoiding overestimation of compression depth when CPR is performed on soft surfaces.

  15. Accurate measuring of cross-sections for e+e- → hadrons: Testing the Standard Model and applications to QCD

    International Nuclear Information System (INIS)

    Malaescu, B.

    2010-01-01

    The scope of this thesis is to obtain and use accurate data on e + e - annihilation into hadrons at energies of 1 GeV of magnitude order. These data represent a very valuable input for Standard Model tests involving vacuum polarization, such as the comparison of the muon magnetic moment to theory, and for QCD tests and applications. The different parts of this thesis describe four aspects of my work in this context. First, the measurements of cross sections as a function of energy necessitate the unfolding of data spectra from detector effects. I have proposed a new iterative unfolding method for experimental data, with improved capabilities compared to existing tools. Secondly, the experimental core of this thesis is a study of the process e + e - → K + K - from threshold to 5 GeV using the initial state radiation (ISR) method (through the measurement of e + e - → K + K - γ) with the BABAR detector. All relevant efficiencies are measured with experimental data and the absolute normalization comes from the simultaneously measured μμγ process. I have performed the full analysis which achieves a systematic uncertainty of 0.7% on the dominant φ resonance. Results on e + e - → π + π - from threshold to 3 GeV are also presented. Thirdly, a comparison based on 2 different ways to get a prediction of the muon magnetic moment: the Standard Model and the hadronic tau decay, shows an interesting hint for new physics effects (3.2 σ effect). Fourthly, QCD sum rules are powerful tools for obtaining precise information on QCD parameters, such as the strong coupling α S . I have worked on experimental data concerning the spectral functions from τ decays measured by ALEPH. I have discussed to some detail the perturbative QCD prediction obtained with two different methods: fixed-order perturbation theory (FOPT) and contour-improved perturbative theory (CIPT). The corresponding theoretical uncertainties have been studied at the τ and Z mass scales. The CIPT method

  16. Conception and development of an optical methodology applied to long-distance measurement of suspension bridges dynamic displacement

    International Nuclear Information System (INIS)

    Martins, L Lages; Ribeiro, A Silva; Rebordão, J M

    2013-01-01

    This paper describes the conception and development of an optical system applied to suspension bridge structural monitoring, aiming real-time and long-distance measurement of dynamical three-dimensional displacement, namely, in the central section of the main span. The main innovative issues related to this optical approach are described and a comparison with other optical and non-optical measurement systems is performed. Moreover, a computational simulator tool developed for the optical system design and validation of the implemented image processing and calculation algorithms is also presented

  17. Validation, verification and evaluation of a Train to Train Distance Measurement System by means of Colored Petri Nets

    International Nuclear Information System (INIS)

    Song, Haifeng; Liu, Jieyu; Schnieder, Eckehard

    2017-01-01

    Validation, verification and evaluation are necessary processes to assure the safety and functionality of a system before its application in practice. This paper presents a Train to Train Distance Measurement System (TTDMS), which can provide distance information independently from existing onboard equipment. Afterwards, we proposed a new process using Colored Petri Nets to verify the TTDMS system functional safety, as well as to evaluate the system performance. Three main contributions are carried out in the paper: Firstly, this paper proposes a formalized TTDMS model, and the model correctness is validated using state space analysis and simulation-based verification. Secondly, corresponding checking queries are proposed for the purpose of functional safety verification. Further, the TTDMS performance is evaluated by applying parameters in the formal model. Thirdly, the reliability of a functional prototype TTDMS is estimated. It is found that the procedure can cooperate with the system development, and both formal and simulation-based verifications are performed. Using our process to evaluate and verify a system is easier to read and more reliable compared to executable code and mathematical methods. - Highlights: • A new Train to Train Distance Measurement System. • New approach verifying system functional safety and evaluating system performance by means of CPN. • System formalization using the system property concept. • Verification of system functional safety using state space analysis. • Evaluation of system performance applying simulation-based analysis.

  18. Measuring the sustainability of a natural system by using multi-criteria distance function methods: Some critical issues.

    Science.gov (United States)

    Diaz-Balteiro, L; Belavenutti, P; Ezquerro, M; González-Pachón, J; Ribeiro Nobre, S; Romero, C

    2018-05-15

    There is an important body of literature using multi-criteria distance function methods for the aggregation of a battery of sustainability indicators in order to obtain a composite index. This index is considered to be a proxy of the sustainability goodness of a natural system. Although this approach has been profusely used in the literature, it is not exempt from difficulties and potential pitfalls. Thus, in this paper, a significant number of critical issues have been identified showing different procedures capable of avoiding, or at least of mitigating, the inherent potential pitfalls associated with each one. The recommendations made in the paper could increase the theoretical soundness of the multi-criteria distance function methods when this type of approach is applied in the sustainability field, thus increasing the accuracy and realism of the sustainability measurements obtained. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Measurement Errors Arising When Using Distances in Microeconometric Modelling and the Individuals’ Position Is Geo-Masked for Confidentiality

    Directory of Open Access Journals (Sweden)

    Giuseppe Arbia

    2015-10-01

    Full Text Available In many microeconometric models we use distances. For instance, in modelling the individual behavior in labor economics or in health studies, the distance from a relevant point of interest (such as a hospital or a workplace is often used as a predictor in a regression framework. However, in order to preserve confidentiality, spatial micro-data are often geo-masked, thus reducing their quality and dramatically distorting the inferential conclusions. In particular in this case, a measurement error is introduced in the independent variable which negatively affects the properties of the estimators. This paper studies these negative effects, discusses their consequences, and suggests possible interpretations and directions to data producers, end users, and practitioners.

  20. Encyclopedia of distances

    CERN Document Server

    Deza, Michel Marie

    2016-01-01

    This 4th edition of the leading reference volume on distance metrics is characterized by updated and rewritten sections on some items suggested by experts and readers, as well a general streamlining of content and the addition of essential new topics. Though the structure remains unchanged, the new edition also explores recent advances in the use of distances and metrics for e.g. generalized distances, probability theory, graph theory, coding theory, data analysis. New topics in the purely mathematical sections include e.g. the Vitanyi multiset-metric, algebraic point-conic distance, triangular ratio metric, Rossi-Hamming metric, Taneja distance, spectral semimetric between graphs, channel metrization, and Maryland bridge distance. The multidisciplinary sections have also been supplemented with new topics, including: dynamic time wrapping distance, memory distance, allometry, atmospheric depth, elliptic orbit distance, VLBI distance measurements, the astronomical system of units, and walkability distance. Lea...

  1. Measuring the distance from saddle points and driving to locate them over quantum control landscapes

    International Nuclear Information System (INIS)

    Sun, Qiuyang; Riviello, Gregory; Rabitz, Herschel; Wu, Re-Bing

    2015-01-01

    Optimal control of quantum phenomena involves the introduction of a cost functional J to characterize the degree of achieving a physical objective by a chosen shaped electromagnetic field. The cost functional dependence upon the control forms a control landscape. Two theoretically important canonical cases are the landscapes associated with seeking to achieve either a physical observable or a unitary transformation. Upon satisfaction of particular assumptions, both landscapes are analytically known to be trap-free, yet possess saddle points at precise suboptimal J values. The presence of saddles on the landscapes can influence the effort needed to find an optimal field. As a foundation to future algorithm development and analyzes, we define metrics that identify the ‘distance’ from a given saddle based on the sufficient and necessary conditions for the existence of the saddles. Algorithms are introduced utilizing the metrics to find a control such that the dynamics arrive at a targeted saddle. The saddle distance metric and saddle-seeking methodology is tested numerically in several model systems. (paper)

  2. Optimization methods of pulse-to-pulse alignment using femtosecond pulse laser based on temporal coherence function for practical distance measurement

    Science.gov (United States)

    Liu, Yang; Yang, Linghui; Guo, Yin; Lin, Jiarui; Cui, Pengfei; Zhu, Jigui

    2018-02-01

    An interferometer technique based on temporal coherence function of femtosecond pulses is demonstrated for practical distance measurement. Here, the pulse-to-pulse alignment is analyzed for large delay distance measurement. Firstly, a temporal coherence function model between two femtosecond pulses is developed in the time domain for the dispersive unbalanced Michelson interferometer. Then, according to this model, the fringes analysis and the envelope extraction process are discussed. Meanwhile, optimization methods of pulse-to-pulse alignment for practical long distance measurement are presented. The order of the curve fitting and the selection of points for envelope extraction are analyzed. Furthermore, an averaging method based on the symmetry of the coherence function is demonstrated. Finally, the performance of the proposed methods is evaluated in the absolute distance measurement of 20 μ m with path length difference of 9 m. The improvement of standard deviation in experimental results shows that these approaches have the potential for practical distance measurement.

  3. An optical distance sensor : tilt robust differential confocal measurement with mm range and nm uncertainty

    NARCIS (Netherlands)

    Cacace, L.A.

    2009-01-01

    Compared with conventional high-end optical systems, application of freeform optics offers many advantages. Their widespread use, however, is held back by the lack of a suitable measurement method.The NANOMEFOS project aims at realizing a universal freeform measurement machine to fill that void.The

  4. Measuring dispersal as distance-dependent recruitment rates: testing the performance of DDRR on simulated data.

    NARCIS (Netherlands)

    Van Noordwijk, A.J.

    2011-01-01

    Dispersal is an important process in ecology, but its measurement is difficult. In particular, natal dispersal— the net movement between site of birth and site of first reproduction—is important, since it determines population structure. Using simulated data, I study the claim that measuring

  5. A simple method of measuring tibial tubercle to trochlear groove distance on MRI: description of a novel and reliable technique.

    Science.gov (United States)

    Camp, Christopher L; Heidenreich, Mark J; Dahm, Diane L; Bond, Jeffrey R; Collins, Mark S; Krych, Aaron J

    2016-03-01

    Tibial tubercle-trochlear groove (TT-TG) distance is a variable that helps guide surgical decision-making in patients with patellar instability. The purpose of this study was to compare the accuracy and reliability of an MRI TT-TG measuring technique using a simple external alignment method to a previously validated gold standard technique that requires advanced software read by radiologists. TT-TG was calculated by MRI on 59 knees with a clinical diagnosis of patellar instability in a blinded and randomized fashion by two musculoskeletal radiologists using advanced software and by two orthopaedists using the study technique which utilizes measurements taken on a simple electronic imaging platform. Interrater reliability between the two radiologists and the two orthopaedists and intermethods reliability between the two techniques were calculated using interclass correlation coefficients (ICC) and concordance correlation coefficients (CCC). ICC and CCC values greater than 0.75 were considered to represent excellent agreement. The mean TT-TG distance was 14.7 mm (Standard Deviation (SD) 4.87 mm) and 15.4 mm (SD 5.41) as measured by the radiologists and orthopaedists, respectively. Excellent interobserver agreement was noted between the radiologists (ICC 0.941; CCC 0.941), the orthopaedists (ICC 0.978; CCC 0.976), and the two techniques (ICC 0.941; CCC 0.933). The simple TT-TG distance measurement technique analysed in this study resulted in excellent agreement and reliability as compared to the gold standard technique. This method can predictably be performed by orthopaedic surgeons without advanced radiologic software. II.

  6. The Distance Standard Deviation

    OpenAIRE

    Edelmann, Dominic; Richards, Donald; Vogel, Daniel

    2017-01-01

    The distance standard deviation, which arises in distance correlation analysis of multivariate data, is studied as a measure of spread. New representations for the distance standard deviation are obtained in terms of Gini's mean difference and in terms of the moments of spacings of order statistics. Inequalities for the distance variance are derived, proving that the distance standard deviation is bounded above by the classical standard deviation and by Gini's mean difference. Further, it is ...

  7. S3 HMBC: Spin-State-Selective HMBC for accurate measurement of homonuclear coupling constants. Application to strychnine yielding thirteen hitherto unreported JHH

    DEFF Research Database (Denmark)

    Kjaerulff, Louise; Benie, Andrew J.; Hoeck, Casper

    2016-01-01

    A novel method, Spin-State-Selective (S3) HMBC, for accurate measurement of homonuclear coupling constants is introduced. As characteristic for S3 techniques, S3 HMBC yields independent subspectra corresponding to particular passive spin states and thus allows determination of coupling constants ...... are demonstrated by an application to strychnine where thirteen JHH coupling constants not previously reported could be measured....

  8. S3 HMBC hetero: Spin-State-Selective HMBC for accurate measurement of long-range heteronuclear coupling constants

    DEFF Research Database (Denmark)

    Hoeck, Casper; Gotfredsen, Charlotte Held; Sørensen, Ole W.

    2017-01-01

    A novel method, Spin-State-Selective (S3) HMBC hetero, for accurate measurement of heteronuclear coupling constants is introduced. The method extends the S3 HMBC technique for measurement of homonuclear coupling constants by appending a pulse sequence element that interchanges the polarization...

  9. Role of effective distance in the fission mechanism study by the double-energy measurement for uranium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Hiroshi; Saito, Tadashi; Takahashi, Naruto [Osaka Univ., Suita (Japan)] [and others

    1997-09-01

    Fission product kinetic energies were measured by the double-energy method for thermal-neutron fission of {sup 235,233}U and proton-induced fission of {sup 238}U at the 15.8-MeV excitation. From the obtained energy-mass correlation data, the kinetic-energy distribution was constructed from each mass bin to evaluate the first moment of the kinetic energy for a given fragment mass. The resulting kinetic energy was then converted to the effective distance between the charge centers at the moment of scission. The effective distances deduced for the proton-induced fission was concluded to be classified into two constant values, one for asymmetric and the other for symmetric mode, irrespective of the mass though an additional component was further extracted in the asymmetric mass region. This indicates that the fission takes place via two well-defined saddles, followed by the random neck rupture. On the contrary, the effective distances obtained for thermal-neutron induced fission turned out to lie along the contour line at the same level as the equilibrium deformation in the two-dimensional potential map. This strongly suggests that it is essentially a barrier-penetrating type of fission rather than the over-barrier fission. (author). 73 refs.

  10. Role of effective distance in the fission mechanism study by the double-energy measurement for uranium isotopes

    International Nuclear Information System (INIS)

    Baba, Hiroshi; Saito, Tadashi; Takahashi, Naruto

    1997-01-01

    Fission product kinetic energies were measured by the double-energy method for thermal-neutron fission of 235,233 U and proton-induced fission of 238 U at the 15.8-MeV excitation. From the obtained energy-mass correlation data, the kinetic-energy distribution was constructed from each mass bin to evaluate the first moment of the kinetic energy for a given fragment mass. The resulting kinetic energy was then converted to the effective distance between the charge centers at the moment of scission. The effective distances deduced for the proton-induced fission was concluded to be classified into two constant values, one for asymmetric and the other for symmetric mode, irrespective of the mass though an additional component was further extracted in the asymmetric mass region. This indicates that the fission takes place via two well-defined saddles, followed by the random neck rupture. On the contrary, the effective distances obtained for thermal-neutron induced fission turned out to lie along the contour line at the same level as the equilibrium deformation in the two-dimensional potential map. This strongly suggests that it is essentially a barrier-penetrating type of fission rather than the over-barrier fission. (author). 73 refs

  11. Enhancing Diffusion MRI Measures By Integrating Grey and White Matter Morphometry With Hyperbolic Wasserstein Distance

    Science.gov (United States)

    Zhang, Wen; Shi, Jie; Yu, Jun; Zhan, Liang; Thompson, Paul M.; Wang, Yalin

    2017-01-01

    In order to improve the preclinical diagnose of Alzheimer's disease (AD), there is a great deal of interest in analyzing the AD related brain structural changes with magnetic resonance image (MRI) analyses. As the major features, variation of the structural connectivity and the cortical surface morphometry provide different views of structural changes to determine whether AD is present on presymptomatic patients. However, the large scale tensor-valued information and relatively low imaging resolution in diffusion MRI (dMRI) have created huge challenges for analysis. In this paper, we propose a novel framework that improves dMRI analysis power by fusing cortical surface morphometry features from structural MRI (sMRI). We first compute the hyperbolic harmonic maps between cortical surfaces with the landmark constraints thus to precisely evaluate surface tensor-based morphometry. Meanwhile, the graph-based analysis of structural connectivity derived from dMRI is conducted. Next, we fuse these two features via the optimal mass transportation (OMT) and eventually the Wasserstein distance (WD) based single image index is computed as a potential clinical multimodality imaging score. We apply our framework to brain images of 20 AD patients and 20 matched healthy controls, randomly chosen from the Alzheimer's Disease Neuroimaging Initiative (AD-NI2) dataset. Our preliminary experimental results of group classification outperformed those of some other single dMRI-based features, such as regional hippocampal volume, mean scores of fractional anisotropy (FA) and mean axial (MD). The novel image fusion pipeline and simple imaging score of structural changes may benefit the preclinical AD and AD prevention research. PMID:28936280

  12. Cross calibration of the Siemens mMR: easily acquired accurate PET phantom measurements, long term stability and reproducibility

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Sune H [Rigshospitalet, University of Copenhagen, Copenhagen (Denmark); Jakoby, Bjorn [University of Surrey, Guildford (United Kingdom); Hansen, Adam Espe; Svalling, Susanne; Klausen, Thomas L [Rigshospitalet, University of Copenhagen, Copenhagen (Denmark)

    2015-05-18

    We present a quick and easy method to perform quantitatively accurate PET scans of typical water-filled PET plastic shell phantoms on the Siemens mMR PET/MR scanner. We perform regular cross calibrations (Xcals) of our PET scanners, including the Siemens mMR PET/MR, with a Siemens mCT water phantom. We evaluate the mMR cross calibration stability over a 3-year period. Recently, the mMR software (VB20P) offered the option of using predefined μ-maps. We evaluated this option by using either the predefined μ-map of the long mMR water phantom or a system-integrated user defined CT-based μ-map of the mCT water phantom used for Xcal. On 54 cross calibrations that were acquired over 3 years, the mMR on average underestimated the concentration by 16% due to the use of MR-based μ-maps. The mMR produced the narrowest range and lowest standard deviation of the Xcal ratios, implying it and is the most stable of the 6 scanners included in this study over a 3 year period. With correctly segmented μ-maps, the mMR produced Xcal ratios of 1.00-1.02, well within the acceptance range [0.95-1.05]. Measuring the concentration in a centrally placed cylindrical VOI allows for some robustness against misregistration of the μ-maps but it should be no more than a few millimeters in the x-y plane, while the tolerance is larger on the z-axis (when, as always with PET, keeping clear of the axial edges of the FOV). The mMR is the most stable scanner in this study and the mean underestimation is no longer an issue with the easily accessible μ-map, which in all 7 tests resulted in correct Xcal ratios. We will share the user defined μ-map of the mCT phantom and the protocol with interested mMR users.

  13. Cross calibration of the Siemens mMR: easily acquired accurate PET phantom measurements, long term stability and reproducibility

    International Nuclear Information System (INIS)

    Keller, Sune H; Jakoby, Bjorn; Hansen, Adam Espe; Svalling, Susanne; Klausen, Thomas L

    2015-01-01

    We present a quick and easy method to perform quantitatively accurate PET scans of typical water-filled PET plastic shell phantoms on the Siemens mMR PET/MR scanner. We perform regular cross calibrations (Xcals) of our PET scanners, including the Siemens mMR PET/MR, with a Siemens mCT water phantom. We evaluate the mMR cross calibration stability over a 3-year period. Recently, the mMR software (VB20P) offered the option of using predefined μ-maps. We evaluated this option by using either the predefined μ-map of the long mMR water phantom or a system-integrated user defined CT-based μ-map of the mCT water phantom used for Xcal. On 54 cross calibrations that were acquired over 3 years, the mMR on average underestimated the concentration by 16% due to the use of MR-based μ-maps. The mMR produced the narrowest range and lowest standard deviation of the Xcal ratios, implying it and is the most stable of the 6 scanners included in this study over a 3 year period. With correctly segmented μ-maps, the mMR produced Xcal ratios of 1.00-1.02, well within the acceptance range [0.95-1.05]. Measuring the concentration in a centrally placed cylindrical VOI allows for some robustness against misregistration of the μ-maps but it should be no more than a few millimeters in the x-y plane, while the tolerance is larger on the z-axis (when, as always with PET, keeping clear of the axial edges of the FOV). The mMR is the most stable scanner in this study and the mean underestimation is no longer an issue with the easily accessible μ-map, which in all 7 tests resulted in correct Xcal ratios. We will share the user defined μ-map of the mCT phantom and the protocol with interested mMR users.

  14. Static and Dynamic Accuracy of an Innovative Miniaturized Wearable Platform for Short Range Distance Measurements for Human Movement Applications

    Directory of Open Access Journals (Sweden)

    Stefano Bertuletti

    2017-06-01

    Full Text Available Magneto-inertial measurement units (MIMU are a suitable solution to assess human motor performance both indoors and outdoors. However, relevant quantities such as step width and base of support, which play an important role in gait stability, cannot be directly measured using MIMU alone. To overcome this limitation, we developed a wearable platform specifically designed for human movement analysis applications, which integrates a MIMU and an Infrared Time-of-Flight proximity sensor (IR-ToF, allowing for the estimate of inter-object distance. We proposed a thorough testing protocol for evaluating the IR-ToF sensor performances under experimental conditions resembling those encountered during gait. In particular, we tested the sensor performance for different (i target colors; (ii sensor-target distances (up to 200 mm and (iii sensor-target angles of incidence (AoI (up to 60 ∘ . Both static and dynamic conditions were analyzed. A pendulum, simulating the oscillation of a human leg, was used to generate highly repeatable oscillations with a maximum angular velocity of 6 rad/s. Results showed that the IR-ToF proximity sensor was not sensitive to variations of both distance and target color (except for black. Conversely, a relationship between error magnitude and AoI values was found. For AoI equal to 0 ∘ , the IR-ToF sensor performed equally well both in static and dynamic acquisitions with a distance mean absolute error <1.5 mm. Errors increased up to 3.6 mm (static and 11.9 mm (dynamic for AoI equal to ± 30 ∘ , and up to 7.8 mm (static and 25.6 mm (dynamic for AoI equal to ± 60 ∘ . In addition, the wearable platform was used during a preliminary experiment for the estimation of the inter-foot distance on a single healthy subject while walking. In conclusion, the combination of magneto-inertial unit and IR-ToF technology represents a valuable alternative solution in terms of accuracy, sampling frequency, dimension and power consumption

  15. Distance Learning

    National Research Council Canada - National Science Library

    Braddock, Joseph

    1997-01-01

    A study reviewing the existing Army Distance Learning Plan (ADLP) and current Distance Learning practices, with a focus on the Army's training and educational challenges and the benefits of applying Distance Learning techniques...

  16. All-silicon Michelson instrument on chip: Distance and surface profile measurement and prospects for visible light spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Malak, M.; Marty, F.; Bourouina, T. [Universite Paris-Est, Laboratoire ESYCOM, ESIEE Paris, Cite Descartes, 2 Boulevard Blaise Pascal, 93162 Noisy-le-Grand Cedex (France); Nouira, H.; Vailleau, G. [Laboratoire National de Metrologie et d' Essais, 1 rue Gaston Boissier, 75724 Paris Cedex 15 (France)

    2013-04-08

    A miniature Michelson interferometer is analyzed theoretically and experimentally. The fabricated micro-interferometer is incorporated at the tip of a monolithic silicon probe to achieve contactless distance measurements and surface profilometry. For infrared operation, two approaches are studied, based on the use of monochromatic light and wavelength sweep, respectively. A theoretical model is devised to depict the system characteristics taking into account Gaussian beam divergence and light spot size. Furthermore, preliminary results using visible light demonstrate operation of the probe as a visible light spectrometer, despite silicon absorbance, thanks to the micrometer thickness involved in the beam splitter.

  17. All-silicon Michelson instrument on chip: Distance and surface profile measurement and prospects for visible light spectrometry

    International Nuclear Information System (INIS)

    Malak, M.; Marty, F.; Bourouina, T.; Nouira, H.; Vailleau, G.

    2013-01-01

    A miniature Michelson interferometer is analyzed theoretically and experimentally. The fabricated micro-interferometer is incorporated at the tip of a monolithic silicon probe to achieve contactless distance measurements and surface profilometry. For infrared operation, two approaches are studied, based on the use of monochromatic light and wavelength sweep, respectively. A theoretical model is devised to depict the system characteristics taking into account Gaussian beam divergence and light spot size. Furthermore, preliminary results using visible light demonstrate operation of the probe as a visible light spectrometer, despite silicon absorbance, thanks to the micrometer thickness involved in the beam splitter.

  18. High accuracy subwavelength distance measurements: A variable-angle standing-wave total-internal-reflection optical microscope

    International Nuclear Information System (INIS)

    Haynie, A.; Min, T.-J.; Luan, L.; Mu, W.; Ketterson, J. B.

    2009-01-01

    We describe an extension of the total-internal-reflection microscopy technique that permits direct in-plane distance measurements with high accuracy (<10 nm) over a wide range of separations. This high position accuracy arises from the creation of a standing evanescent wave and the ability to sweep the nodal positions (intensity minima of the standing wave) in a controlled manner via both the incident angle and the relative phase of the incoming laser beams. Some control over the vertical resolution is available through the ability to scan the incoming angle and with it the evanescent penetration depth.

  19. Bonner Prize Address: Measurements of the electromagnetic properties of nucleons and nuclei at short distance scales

    Science.gov (United States)

    Raymond, Arnold

    2000-04-01

    The talk will present the story of a series of experiments, beginning in 1973 and continuing today, that have measured the internal structure of nuclei and the nucleons using high energy beams of electrons and photons at the Stanford Linear Accelerator Center. These experiments have probed nuclear and nucleon structure in the energy and momentum transfer region where the meson-nucleon description merges with the quark-gluon picture. The experiments have worked at the border between nuclear and particle physics, and were conducted by large collaborative teams. Some were carried out in the context of a special program, called NPAS (Nuclear Physics at SLAC). The early results from these measurements helped stimulate the ideas and helped train and motivate the physicists who went on to build the Jefferson Laboratory. A brief summary of some highlights from the early measurements and updates on recent results will be given.

  20. Measurements of tritium (HTO, TFWT, OBT) in environmental samples at varying distances from a nuclear generating station

    International Nuclear Information System (INIS)

    Kotzer, T.G.; Workman, W.J.G.

    1999-12-01

    Concentrations of tritium have been measured in environmental samples (vegetation, water, soil, air) from sites distal and proximal to a CANDU nuclear generating station in Southern Ontario (OPG-Pickering). Levels of tissue-free water tritium (TFWT) and organically bound tritium (OBT) in vegetation are as high as 24,000 TU immediately adjacent to the nuclear generating station and rapidly decrease to levels of tritium which are comparable to natural ambient concentrations for tritium in the environment (approximately ≤ 60 TU). Tritium concentrations (OBT, TFTW) have also been measured in samples of vegetation and tree rings growing substantial distances away from nuclear generating stations and are within a factor of 1 to 2 of the ambient levels of tritium measured in precipitation in several parts of Canada (approximately ≤30 TU). (author)

  1. Measurements of tritium (HTO, TFWT, OBT) in environmental samples at varying distances from a nuclear generating station

    Energy Technology Data Exchange (ETDEWEB)

    Kotzer, T.G.; Workman, W.J.G

    1999-12-01

    Concentrations of tritium have been measured in environmental samples (vegetation, water, soil, air) from sites distal and proximal to a CANDU nuclear generating station in Southern Ontario (OPG-Pickering). Levels of tissue-free water tritium (TFWT) and organically bound tritium (OBT) in vegetation are as high as 24,000 TU immediately adjacent to the nuclear generating station and rapidly decrease to levels of tritium which are comparable to natural ambient concentrations for tritium in the environment (approximately {<=} 60 TU). Tritium concentrations (OBT, TFTW) have also been measured in samples of vegetation and tree rings growing substantial distances away from nuclear generating stations and are within a factor of 1 to 2 of the ambient levels of tritium measured in precipitation in several parts of Canada (approximately {<=}30 TU). (author)

  2. The influence of probe fiber distance on laser Doppler perfusion monitoring measurements

    NARCIS (Netherlands)

    Morales, F; Graaff, R; Smit, AJ; Gush, R; Rakhorst, G

    2003-01-01

    Laser Doppler perfusion monitoring (LDPM) is a noninvasive technique for monitoring skin microcirculation. The aim of this article was to investigate the influence of fiber separation on clinical LDPM measurements. A dual-channel LDPM system was used in combination with a probe that consists of two

  3. Ultra-Precise Measurement of Distance by Fabry-Perot Resonator

    Czech Academy of Sciences Publication Activity Database

    Číp, Ondřej; Petrů, František; Lazar, Josef; Buchta, Zdeněk

    T118, - (2005), s. 45-47 ISSN 0031-8949 R&D Projects: GA ČR(CZ) GP102/02/P122 Keywords : length measurements * laser interferometer * optical resonator Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.661, year: 2004

  4. Towards measurement of the Casimir force between parallel plates separated at sub-mircon distance

    NARCIS (Netherlands)

    Syed Nawazuddin, M.B.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Berenschot, Johan W.; de Boer, Meint J.; Elwenspoek, Michael Curt

    2011-01-01

    Ever since its prediction, experimental investigation of the Casimir force has been of great scientific interest. Many research groups have successfully attempted quantifying the force with different device geometries; however measurement of the Casimir force between parallel plates with sub-micron

  5. Electron spin relaxation enhancement measurements of interspin distances in human, porcine, and Rhodobacter electron transfer flavoprotein ubiquinone oxidoreductase (ETF QO)

    Science.gov (United States)

    Fielding, Alistair J.; Usselman, Robert J.; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E.; Eaton, Gareth R.; Eaton, Sandra S.

    2008-02-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S] 2+,1+ cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S] + cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S] + between 8 and 18 K and for semiquinone between 25 and 65 K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S] + were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S] + and obtain point-dipole interspin distances of 18.6 ± 1 Å for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.

  6. Accurate measurement of junctional conductance between electrically coupled cells with dual whole-cell voltage-clamp under conditions of high series resistance.

    Science.gov (United States)

    Hartveit, Espen; Veruki, Margaret Lin

    2010-03-15

    Accurate measurement of the junctional conductance (G(j)) between electrically coupled cells can provide important information about the functional properties of coupling. With the development of tight-seal, whole-cell recording, it became possible to use dual, single-electrode voltage-clamp recording from pairs of small cells to measure G(j). Experiments that require reduced perturbation of the intracellular environment can be performed with high-resistance pipettes or the perforated-patch technique, but an accompanying increase in series resistance (R(s)) compromises voltage-clamp control and reduces the accuracy of G(j) measurements. Here, we present a detailed analysis of methodologies available for accurate determination of steady-state G(j) and related parameters under conditions of high R(s), using continuous or discontinuous single-electrode voltage-clamp (CSEVC or DSEVC) amplifiers to quantify the parameters of different equivalent electrical circuit model cells. Both types of amplifiers can provide accurate measurements of G(j), with errors less than 5% for a wide range of R(s) and G(j) values. However, CSEVC amplifiers need to be combined with R(s)-compensation or mathematical correction for the effects of nonzero R(s) and finite membrane resistance (R(m)). R(s)-compensation is difficult for higher values of R(s) and leads to instability that can damage the recorded cells. Mathematical correction for R(s) and R(m) yields highly accurate results, but depends on accurate estimates of R(s) throughout an experiment. DSEVC amplifiers display very accurate measurements over a larger range of R(s) values than CSEVC amplifiers and have the advantage that knowledge of R(s) is unnecessary, suggesting that they are preferable for long-duration experiments and/or recordings with high R(s). Copyright (c) 2009 Elsevier B.V. All rights reserved.

  7. Striking Distance Determined From High-Speed Videos and Measured Currents in Negative Cloud-to-Ground Lightning

    Science.gov (United States)

    Visacro, Silverio; Guimaraes, Miguel; Murta Vale, Maria Helena

    2017-12-01

    First and subsequent return strokes' striking distances (SDs) were determined for negative cloud-to-ground flashes from high-speed videos exhibiting the development of positive and negative leaders and the pre-return stroke phase of currents measured along a short tower. In order to improve the results, a new criterion was used for the initiation and propagation of the sustained upward connecting leader, consisting of a 4 A continuous current threshold. An advanced approach developed from the combined use of this criterion and a reverse propagation procedure, which considers the calculated propagation speeds of the leaders, was applied and revealed that SDs determined solely from the first video frame showing the upward leader can be significantly underestimated. An original approach was proposed for a rough estimate of first strokes' SD using solely records of current. This approach combines the 4 A criterion and a representative composite three-dimensional propagation speed of 0.34 × 106 m/s for the leaders in the last 300 m propagated distance. SDs determined under this approach showed to be consistent with those of the advanced procedure. This approach was applied to determine the SD of 17 first return strokes of negative flashes measured at MCS, covering a wide peak-current range, from 18 to 153 kA. The estimated SDs exhibit very high dispersion and reveal great differences in relation to the SDs estimated for subsequent return strokes and strokes in triggered lightning.

  8. The distance between Mars and Venus: measuring global sex differences in personality.

    Science.gov (United States)

    Del Giudice, Marco; Booth, Tom; Irwing, Paul

    2012-01-01

    Sex differences in personality are believed to be comparatively small. However, research in this area has suffered from significant methodological limitations. We advance a set of guidelines for overcoming those limitations: (a) measure personality with a higher resolution than that afforded by the Big Five; (b) estimate sex differences on latent factors; and (c) assess global sex differences with multivariate effect sizes. We then apply these guidelines to a large, representative adult sample, and obtain what is presently the best estimate of global sex differences in personality. Personality measures were obtained from a large US sample (N = 10,261) with the 16PF Questionnaire. Multigroup latent variable modeling was used to estimate sex differences on individual personality dimensions, which were then aggregated to yield a multivariate effect size (Mahalanobis D). We found a global effect size D = 2.71, corresponding to an overlap of only 10% between the male and female distributions. Even excluding the factor showing the largest univariate ES, the global effect size was D = 1.71 (24% overlap). These are extremely large differences by psychological standards. The idea that there are only minor differences between the personality profiles of males and females should be rejected as based on inadequate methodology.

  9. Validity and reliability of GPS and LPS for measuring distances covered and sprint mechanical properties in team sports.

    Science.gov (United States)

    Hoppe, Matthias W; Baumgart, Christian; Polglaze, Ted; Freiwald, Jürgen

    2018-01-01

    This study aimed to investigate the validity and reliability of global (GPS) and local (LPS) positioning systems for measuring distances covered and sprint mechanical properties in team sports. Here, we evaluated two recently released 18 Hz GPS and 20 Hz LPS technologies together with one established 10 Hz GPS technology. Six male athletes (age: 27±2 years; VO2max: 48.8±4.7 ml/min/kg) performed outdoors on 10 trials of a team sport-specific circuit that was equipped with double-light timing gates. The circuit included various walking, jogging, and sprinting sections that were performed either in straight-lines or with changes of direction. During the circuit, athletes wore two devices of each positioning system. From the reported and filtered velocity data, the distances covered and sprint mechanical properties (i.e., the theoretical maximal horizontal velocity, force, and power output) were computed. The sprint mechanical properties were modeled via an inverse dynamic approach applied to the center of mass. The validity was determined by comparing the measured and criterion data via the typical error of estimate (TEE), whereas the reliability was examined by comparing the two devices of each technology (i.e., the between-device reliability) via the coefficient of variation (CV). Outliers due to measurement errors were statistically identified and excluded from validity and reliability analyses. The 18 Hz GPS showed better validity and reliability for determining the distances covered (TEE: 1.6-8.0%; CV: 1.1-5.1%) and sprint mechanical properties (TEE: 4.5-14.3%; CV: 3.1-7.5%) than the 10 Hz GPS (TEE: 3.0-12.9%; CV: 2.5-13.0% and TEE: 4.1-23.1%; CV: 3.3-20.0%). However, the 20 Hz LPS demonstrated superior validity and reliability overall (TEE: 1.0-6.0%; CV: 0.7-5.0% and TEE: 2.1-9.2%; CV: 1.6-7.3%). For the 10 Hz GPS, 18 Hz GPS, and 20 Hz LPS, the relative loss of data sets due to measurement errors was 10.0%, 20.0%, and 15.8%, respectively. This study shows that

  10. Comparative Study of Nei�s D with other Genetic Distance Measures between Barak Valley Muslims and other Nations for ABO Locus

    Directory of Open Access Journals (Sweden)

    Supriyo CHAKRABORTY

    2012-02-01

    Full Text Available Quantification of the genetic distance between populations is essential in many genetic research programs. Several formulae were proposed for the estimation of genetic distance between populations using gene frequency data. But the selection of a suitable measure for estimating genetic distance between real-world human populations is a very difficult task despite the widely used measure Neis D. The present study was undertaken to estimate the genetic distance between Barak Valley Muslims (BVM and other twenty-four nations using seven different measures with ABO blood group gene frequency data for comparative analysis and to estimate the correlation coefficients between distance measures and to work out the linear regression equations. Seven genetic distance measures namely Neis D, Neis Nm, La, Neis Da, Dc, Re and Neis Ne were estimated between BVM and other 24 nations enroute the journey of mankind from Africa that commenced about 200,000 years ago (www.bradshawfoundation.com. Correlation coefficients between Neis D with other measures were estimated to find out which other genetic distance measures were closely related to Neis D. Neis D showed highly significant (p=0.01 positive correlation with Cavalli-Sforza and Edwards chord distance Dc (0.90, Reynolds Re (0.90, Neis Da (0.74 and Neis Ne (0.63 but negative correlation with Neis Nm and La. Linear regression equations of Neis D with other distance measures were estimated as Da = -0.80 + 1.34D, Dc = 1.91 + 4.44D, Re = -0.51 + 0.24D and Ne = -7.60 + 1.30D.

  11. Lifetime measurement in {sup 168}Yb using the recoil distance Doppler shift (RDDS) method

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Michael; Moeller, Oliver; Pietralla, Norbert [TU Darmstadt (Germany); Dewald, Alfred; Pissulla, Thomas [Universitaet Koeln (Germany); Petkov, Pavel [Universitaet Koeln (Germany); INRNE, Bulgarian Academy of Sciences, Sofia (Bulgaria)

    2009-07-01

    In the analysis of coincidence RDDS experiments one uses the Differential Decay Curve (DDC) Method to determine lifetimes of excited states. Experiments with small recoil velocities, thus small Doppler shifts, enforce the use of narrow coincidence gates to determine peak intensities. This results in a loss of statistics. As an alternative to the application of gates, we present the fit of 2-dimensional functions to the {gamma}{gamma} coincidence data. This approach has been studied on data taken in a RDDS measurement for the ground state band of {sup 168}Yb. The {sup 18}O({sup 154}Sm,4n){sup 168}Yb{sup *} fusion evaporation reaction was induced by an 80 MeV ion beam of the tandem accelerator facility in Cologne. The target was mounted in the Cologne coincidence plunger device. Lifetimes from the 4{sub 1}{sup +} to the 10{sub 1}{sup +} states have been extracted. The method is discussed and the results are compared to the CBS rotor model in the context of centrifugal stretching.

  12. A facile electrode preparation method for accurate electrochemical measurements of double-side-coated electrode from commercial Li-ion batteries

    Science.gov (United States)

    Zhou, Ge; Wang, Qiyu; Wang, Shuo; Ling, Shigang; Zheng, Jieyun; Yu, Xiqian; Li, Hong

    2018-04-01

    The post mortem electrochemical analysis, including charge-discharge and electrochemical impedance spectroscopy (EIS) measurements, are critical steps for revealing the failure mechanisms of commercial lithium-ion batteries (LIBs). These post measurements usually require the reassembling of coin-cell with electrode which is often double-side-coated in commercial LIBs. It is difficult to use such double-side-coated electrode to perform accurate electrochemical measurements because the back side of the electrode is coated with active materials, rather than single-side-coated electrode that is often used in coin-cell measurements. In this study, we report a facile tape-covering sample preparation method, which can effectively suppress the influence of back side of the double-side-coated electrodes on capacity and EIS measurements in coin-cells. By tape-covering the unwanted side, the areal capacity of the desired investigated side of the electrode has been accurately measured with an experimental error of about 0.5% at various current densities, and accurate EIS measurements and analysis have been conducted as well.

  13. Accurate measurements of vadose zone fluxes using automated equilibrium tension plate lysimeters: A synopsis of results from the Spydia research facility, New Zealand.

    Science.gov (United States)

    Wöhling, Thomas; Barkle, Greg; Stenger, Roland; Moorhead, Brian; Wall, Aaron; Clague, Juliet

    2014-05-01

    Automated equilibrium tension plate lysimeters (AETLs) are arguably the most accurate method to measure unsaturated water and contaminant fluxes below the root zone at the scale of up to 1 m². The AETL technique utilizes a porous sintered stainless-steel plate to provide a comparatively large sampling area with a continuously controlled vacuum that is in "equilibrium" with the surrounding vadose zone matric pressure to ensure measured fluxes represent those under undisturbed conditions. This novel lysimeter technique was used at an intensive research site for investigations of contaminant pathways from the land surface to the groundwater on a sheep and beef farm under pastoral land use in the Tutaeuaua subcatchment, New Zealand. The Spydia research facility was constructed in 2005 and was fully operational between 2006 and 2011. Extending from a central access caisson, 15 separately controlled AETLs with 0.2 m² surface area were installed at five depths between 0.4 m and 5.1 m into the undisturbed volcanic vadose zone materials. The unique setup of the facility ensured minimum interference of the experimental equipment and external factors with the measurements. Over the period of more than five years, a comprehensive data set was collected at each of the 15 AETL locations which comprises of time series of soil water flux, pressure head, volumetric water contents, and soil temperature. The soil water was regularly analysed for EC, pH, dissolved carbon, various nitrogen compounds (including nitrate, ammonia, and organic N), phosphorus, bromide, chloride, sulphate, silica, and a range of other major ions, as well as for various metals. Climate data was measured directly at the site (rainfall) and a climate station at 500m distance. The shallow groundwater was sampled at three different depths directly from the Spydia caisson and at various observation wells surrounding the facility. Two tracer experiments were conducted at the site in 2009 and 2010. In the 2009

  14. Accounting for Interference, Scattering, and Electrode Absorption to Make Accurate Internal Quantum Efficiency Measurements in Organic and Other Thin Solar Cells

    KAUST Repository

    Burkhard, George F.; Hoke, Eric T.; McGehee, Michael D.

    2010-01-01

    Accurately measuring internal quantum efficiency requires knowledge of absorption in the active layer of a solar cell. The experimentally accessible total absorption includes significant contributions from the electrodes and other nonactive layers. We suggest a straightforward method for calculating the active layer contribution that minimizes error by subtracting optically-modeled electrode absorption from experimentally measured total absorption. (Figure Presented) © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Accounting for Interference, Scattering, and Electrode Absorption to Make Accurate Internal Quantum Efficiency Measurements in Organic and Other Thin Solar Cells

    KAUST Repository

    Burkhard, George F.

    2010-05-31

    Accurately measuring internal quantum efficiency requires knowledge of absorption in the active layer of a solar cell. The experimentally accessible total absorption includes significant contributions from the electrodes and other nonactive layers. We suggest a straightforward method for calculating the active layer contribution that minimizes error by subtracting optically-modeled electrode absorption from experimentally measured total absorption. (Figure Presented) © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Cultural distance, political risk, or governance quality? Towards a more accurate conceptualization and measurement of external uncertainty in foreign entry mode research

    NARCIS (Netherlands)

    Slangen, A.H.L.; van Tulder, R.J.M.

    2009-01-01

    It is well accepted that multinational enterprises (MNEs) prefer equity joint ventures (JVs) over wholly owned subsidiaries (WOSs) in foreign countries where the formal and informal external environment is highly uncertain. Many entry mode studies have modeled the external uncertainty faced by MNEs

  17. Accurately measuring sea level change from space: an ESA Climate Change Initiative for MSL closure budget studies

    DEFF Research Database (Denmark)

    Legeais, Jean-Francois; Cazenave, Anny; Larnicol, Gille

    Sea level is a very sensitive index of climate change and variability. Sea level integrates the ocean warming, mountain glaciers and ice sheet melting. Understanding the sea level variability and changes implies an accurate monitoring of the sea level variable at climate scales, in addition...... to understanding the ocean variability and the exchanges between ocean, land, cryosphere, and atmosphere. That is why Sea Level is one of the Essential Climate Variables (ECV) selected in the frame of the ESA Climate Change Initiative (CCI) program. It aims at providing long-term monitoring of the sea level ECV...... validation, performed by several groups of the ocean and climate modeling community. At last, the main improvements derived from the algorithms development dedicated to the 2016 full reprocessing of the dataset are described. Efforts have also focused on the improvement of the sea level estimation...

  18. Brownian distance covariance

    OpenAIRE

    Székely, Gábor J.; Rizzo, Maria L.

    2010-01-01

    Distance correlation is a new class of multivariate dependence coefficients applicable to random vectors of arbitrary and not necessarily equal dimension. Distance covariance and distance correlation are analogous to product-moment covariance and correlation, but generalize and extend these classical bivariate measures of dependence. Distance correlation characterizes independence: it is zero if and only if the random vectors are independent. The notion of covariance with...

  19. Study of the effect of distance and misalignment between magnetically coupled coils for wireless power transfer in intraocular pressure measurement.

    Science.gov (United States)

    Rendon-Nava, Adrian E; Díaz-Méndez, J Alejandro; Nino-de-Rivera, Luis; Calleja-Arriaga, Wilfrido; Gil-Carrasco, Felix; Díaz-Alonso, Daniela

    2014-01-01

    An analysis of the effect of distance and alignment between two magnetically coupled coils for wireless power transfer in intraocular pressure measurement is presented. For measurement purposes, a system was fabricated consisting of an external device, which is a Maxwell-Wien bridge circuit variation, in charge of transferring energy to a biomedical implant and reading data from it. The biomedical implant is an RLC tank circuit, encapsulated by a polyimide coating. Power transfer was done by magnetic induction coupling method, by placing one of the inductors of the Maxwell-Wien bridge circuit and the inductor of the implant in close proximity. The Maxwell-Wien bridge circuit was biased with a 10 MHz sinusoidal signal. The analysis presented in this paper proves that wireless transmission of power for intraocular pressure measurement is feasible with the measurement system proposed. In order to have a proper inductive coupling link, special care must be taken when placing the two coils in proximity to avoid misalignment between them.

  20. Study of the Effect of Distance and Misalignment between Magnetically Coupled Coils for Wireless Power Transfer in Intraocular Pressure Measurement

    Directory of Open Access Journals (Sweden)

    Adrian E. Rendon-Nava

    2014-01-01

    Full Text Available An analysis of the effect of distance and alignment between two magnetically coupled coils for wireless power transfer in intraocular pressure measurement is presented. For measurement purposes, a system was fabricated consisting of an external device, which is a Maxwell-Wien bridge circuit variation, in charge of transferring energy to a biomedical implant and reading data from it. The biomedical implant is an RLC tank circuit, encapsulated by a polyimide coating. Power transfer was done by magnetic induction coupling method, by placing one of the inductors of the Maxwell-Wien bridge circuit and the inductor of the implant in close proximity. The Maxwell-Wien bridge circuit was biased with a 10 MHz sinusoidal signal. The analysis presented in this paper proves that wireless transmission of power for intraocular pressure measurement is feasible with the measurement system proposed. In order to have a proper inductive coupling link, special care must be taken when placing the two coils in proximity to avoid misalignment between them.