WorldWideScience

Sample records for measles virus hemagglutinin

  1. Radioimmunoassay of measles virus hemagglutinin protein G

    International Nuclear Information System (INIS)

    Lund, G.A.; Salmi, A.A.

    1982-01-01

    Guinea pig and rabbit antisera from animals immunized with purified measles virus hemagglutinin (G) protein were used to establish a solid-phase four-layer radioimmunoassay for quantitative measurement of the G protein. The sensitivity of the assay was 2 ng of purified G protein, and 200 μg of protein from uninfected Vero cells neither decreased the sensitivity nor reacted non-specifically in the assay. Radioimmunoassay standard dose-response curves were established and unknown values interpolated from these using the logit program of a desktop computer. Using this procedure, a measles virus growth curve in infected Vero cells was determined by measurement of G protein production. Under these same conditions, hemagglutination was not sensitive enough to detect early hemagglutinin production. Viral antigens in canine distemper virus, Newcastle disease virus, parainfluenza viruses 1-4, simian virus 5, and respiratory syncytial virus-infected cell lysates did not cross-react in the radioimmunoassay. A small degree of cross-reactivity was detected with mumps viral antigens, both with Vero cell-derived (wild-type strain) and egg-derived (Enders strain) purified virus preparations and with a cell lysate antigen prepared from wild-type mumps virus-infected Vero cells. (Auth.)

  2. Radioimmunoassay of measles virus hemagglutinin protein G

    Energy Technology Data Exchange (ETDEWEB)

    Lund, G A; Salmi, A A [Turku Univ. (Finland)

    1982-08-01

    Guinea pig and rabbit antisera from animals immunized with purified measles virus hemagglutinin (G) protein were used to establish a solid-phase four-layer radioimmunoassay for quantitative measurement of the G protein. The sensitivity of the assay was 2 ng of purified G protein, and 200 ..mu..g of protein from uninfected Vero cells neither decreased the sensitivity nor reacted non-specifically in the assay. Radioimmunoassay standard dose-response curves were established and unknown values interpolated from these using the logit program of a desktop computer. Using this procedure, a measles virus growth curve in infected Vero cells was determined by measurement of G protein production. Under these same conditions, hemagglutination was not sensitive enough to detect early hemagglutinin production. Viral antigens in canine distemper virus, Newcastle disease virus, parainfluenza viruses 1-4, simian virus 5, and respiratory syncytial virus-infected cell lysates did not cross-react in the radioimmunoassay. A small degree of cross-reactivity was detected with mumps viral antigens, both with Vero cell-derived (wild-type strain) and egg-derived (Enders strain) purified virus preparations and with a cell lysate antigen prepared from wild-type mumps virus-infected Vero cells.

  3. Crystallization and preliminary crystallographic analysis of the measles virus hemagglutinin in complex with the CD46 receptor

    International Nuclear Information System (INIS)

    Santiago, César; Gutiérrez-Rodríguez, Angel; Tucker, Paul A.; Stehle, Thilo; Casasnovas, José M.

    2009-01-01

    A complex of the measles virus hemagglutinin and the CD46 receptor representing the initial step of the cell infection has been crystallized. The measles virus (MV) hemagglutinin (MV-H) mediates the attachment of MV particles to cell-surface receptors for entry into host cells. MV uses two receptors for attachment to host cells: the complement-control protein CD46 and the signalling lymphocyte activation molecule (SLAM). The MV-H glycoprotein from an Edmonston MV variant and the MV-binding fragment of the CD46 receptor were overproduced in mammalian cells and used to crystallize an MV-H–CD46 complex. Well diffracting crystals containing two complexes in the asymmetric unit were obtained and the structure of the complex was solved by the molecular-replacement method

  4. Genetic Characterization of the Hemagglutinin Genes of Wild-Type Measles Virus Circulating in China, 1993–2009

    Science.gov (United States)

    Zhu, Zhen; Liu, Chunyu; Mao, Naiying; Ji, Yixin; Wang, Huiling; Jiang, Xiaohong; Li, Chongshan; Tang, Wei; Feng, Daxing; Wang, Changyin; Zheng, Lei; Lei, Yue; Ling, Hua; Zhao, Chunfang; Ma, Yan; He, Jilan; Wang, Yan; Li, Ping; Guan, Ronghui; Zhou, Shujie; Zhou, Jianhui; Wang, Shuang; Zhang, Hong; Zheng, Huanying; Liu, Leng; Ma, Hemuti; Guan, Jing; Lu, Peishan; Feng, Yan; Zhang, Yanjun; Zhou, Shunde; Xiong, Ying; Ba, Zhuoma; Chen, Hui; Yang, Xiuhui; Bo, Fang; Ma, Yujie; Liang, Yong; Lei, Yake; Gu, Suyi; Liu, Wei; Chen, Meng; Featherstone, David; Jee, Youngmee; Bellini, William J.; Rota, Paul A.; Xu, Wenbo

    2013-01-01

    Background China experienced several large measles outbreaks in the past two decades, and a series of enhanced control measures were implemented to achieve the goal of measles elimination. Molecular epidemiologic surveillance of wild-type measles viruses (MeV) provides valuable information about the viral transmission patterns. Since 1993, virologic surveillnace has confirmed that a single endemic genotype H1 viruses have been predominantly circulating in China. A component of molecular surveillance is to monitor the genetic characteristics of the hemagglutinin (H) gene of MeV, the major target for virus neutralizing antibodies. Principal Findings Analysis of the sequences of the complete H gene from 56 representative wild-type MeV strains circulating in China during 1993–2009 showed that the H gene sequences were clustered into 2 groups, cluster 1 and cluster 2. Cluster1 strains were the most frequently detected cluster and had a widespread distribution in China after 2000. The predicted amino acid sequences of the H protein were relatively conserved at most of the functionally significant amino acid positions. However, most of the genotype H1 cluster1 viruses had an amino acid substitution (Ser240Asn), which removed a predicted N-linked glycosylation site. In addition, the substitution of Pro397Leu in the hemagglutinin noose epitope (HNE) was identified in 23 of 56 strains. The evolutionary rate of the H gene of the genotype H1 viruses was estimated to be approximately 0.76×10−3 substitutions per site per year, and the ratio of dN to dS (dN/dS) was measles in China. PMID:24073194

  5. Biosynthesis of measles virus hemagglutinin in persistently infected cells

    International Nuclear Information System (INIS)

    Bellini, W.J.; Silver, G.D.; McFarlin, D.E.

    1983-01-01

    The synthesis of the hemagglutinin (HA) glycoprotein of measles virus was investigated in a persistently infected cell line using a monoclonal anti-HA. The synthesis of the HA protein was shown to be associated with the rough endoplasmic reticulum. The unglycosylated (HA 0 ) apoprotein is synthesized as a 65.000 dalton peptide and is inserted into the rough endoplasmic reticulum as a transmembrane protein with approximately 2 to 3000 daltons of the peptide exposed to the cytoplasmic membrane surface. Primary glycosylation of the HA protein was found to occur through the lipid-linked carrier, dolichol-phosphate, as determined by inhibition of glycosylation by tunicamycin. Glycosylation, however, was not a prerequisite for membrane insertion. Endo-β-N-acetyl-Glucosaminidase H digestion of the fully glycosylated HA protein indicated that both simple and complex oligosaccharides are present on the surface glycoprotein. (Author)

  6. The recombinant globular head domain of the measles virus hemagglutinin protein as a subunit vaccine against measles.

    Science.gov (United States)

    Lobanova, Liubov M; Eng, Nelson F; Satkunarajah, Malathy; Mutwiri, George K; Rini, James M; Zakhartchouk, Alexander N

    2012-04-26

    Despite the availability of live attenuated measles virus (MV) vaccines, a large number of measles-associated deaths occur among infants in developing countries. The development of a measles subunit vaccine may circumvent the limitations associated with the current live attenuated vaccines and eventually contribute to global measles eradication. Therefore, the goal of this study was to test the feasibility of producing the recombinant globular head domain of the MV hemagglutinin (H) protein by stably transfected human cells and to examine the ability of this recombinant protein to elicit MV-specific immune responses. The recombinant protein was purified from the culture supernatant of stably transfected HEK293T cells secreting a tagged version of the protein. Two subcutaneous immunizations with the purified recombinant protein alone resulted in the production of MV-specific serum IgG and neutralizing antibodies in mice. Formulation of the protein with adjuvants (polyphosphazene or alum) further enhanced the humoral immune response and in addition resulted in the induction of cell-mediated immunity as measured by the production of MV H-specific interferon gamma (IFN-γ) and interleukin 5 (IL-5) by in vitro re-stimulated splenocytes. Furthermore, the inclusion of polyphosphazene into the vaccine formulation induced a mixed Th1/Th2-type immune response. In addition, the purified recombinant protein retained its immunogenicity even after storage at 37°C for 2 weeks. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Antibody neutralization of retargeted measles viruses

    Science.gov (United States)

    Lech, Patrycja J.; Pappoe, Roland; Nakamura, Takafumi; Tobin, Gregory J.; Nara, Peter L.; Russell, Stephen J.

    2014-01-01

    The measles virus (MV) vaccine lineage is a promising oncolytic but prior exposure to the measles vaccine or wild-type MV strains limits treatment utility due to the presence of anti-measles antibodies. MV entry can be redirected by displaying a polypeptide ligand on the Hemagglutinin (H) C-terminus. We hypothesized that retargeted MV would escape neutralization by monoclonal antibodies (mAbs) recognizing the H receptor-binding surface and be less susceptible to neutralization by human antisera. Using chimeric H proteins, with and without mutations that ablate MV receptor binding, we show that retargeted MVs escape mAbs that target the H receptor-binding surface by virtue of mutations that ablate infection via SLAM and CD46. However, C-terminally displayed domains do not mediate virus entry in the presence of human antibodies that bind to the underlying H domain. In conclusion, utility of retargeted oncolytic measles viruses does not extend to evasion of human serum neutralization. PMID:24725950

  8. Expression of defective measles virus genes in brain tissues of patients with subacute sclerosing panencephalitis

    International Nuclear Information System (INIS)

    Baczko, K.; Liebert, U.G.; Billeter, M.; Cattaneo, R.; Budka, H.; Ter Meulen, V.

    1986-01-01

    The persistence of measles virus in selected areas of the brains of four patients with subacute sclerosing panencephalitis (SSPE) was characterized by immunohistological and biochemical techniques. The five measles virus structural proteins were never simultaneously detectable in any of the bran sections. Nucleocapsid proteins and phosphoproteins were found in every diseased brain area, whereas hemagglutinin protein was detected in two cases, fusion protein was detected in three cases, and matrix protein was detected in only one case. Also, it could be shown that the amounts of measles virus RNA in the brains differed from patient to patient and in the different regions investigated. In all patients, plus-strand RNAs specific for these five viral genes could be detected. However, the amounts of fusion and hemagglutinin mRNAs were low compared with the amounts in lytically infected cells. The presence of particular measles virus RNAs in SSPE-infected brains did not always correlate with mRNA activity. In in vitro translations, the matrix protein was produced in only one case, and the hemagglutinin protein was produced in none. These results indicate that measles virus persistence in SSPE is correlated with different defects of several genes which probably prevent assembly of viral particles in SSPE-infected brain tissue

  9. Cell-to-Cell Measles Virus Spread between Human Neurons Is Dependent on Hemagglutinin and Hyperfusogenic Fusion Protein.

    Science.gov (United States)

    Sato, Yuma; Watanabe, Shumpei; Fukuda, Yoshinari; Hashiguchi, Takao; Yanagi, Yusuke; Ohno, Shinji

    2018-03-15

    Measles virus (MV) usually causes acute infection but in rare cases persists in the brain, resulting in subacute sclerosing panencephalitis (SSPE). Since human neurons, an important target affected in the disease, do not express the known MV receptors (signaling lymphocyte activation molecule [SLAM] and nectin 4), how MV infects neurons and spreads between them is unknown. Recent studies have shown that many virus strains isolated from SSPE patients possess substitutions in the extracellular domain of the fusion (F) protein which confer enhanced fusion activity. Hyperfusogenic viruses with such mutations, unlike the wild-type MV, can induce cell-cell fusion even in SLAM- and nectin 4-negative cells and spread efficiently in human primary neurons and the brains of animal models. We show here that a hyperfusogenic mutant MV, IC323-F(T461I)-EGFP (IC323 with a fusion-enhancing T461I substitution in the F protein and expressing enhanced green fluorescent protein), but not the wild-type MV, spreads in differentiated NT2 cells, a widely used human neuron model. Confocal time-lapse imaging revealed the cell-to-cell spread of IC323-F(T461I)-EGFP between NT2 neurons without syncytium formation. The production of virus particles was strongly suppressed in NT2 neurons, also supporting cell-to-cell viral transmission. The spread of IC323-F(T461I)-EGFP was inhibited by a fusion inhibitor peptide as well as by some but not all of the anti-hemagglutinin antibodies which neutralize SLAM- or nectin-4-dependent MV infection, suggesting the presence of a distinct neuronal receptor. Our results indicate that MV spreads in a cell-to-cell manner between human neurons without causing syncytium formation and that the spread is dependent on the hyperfusogenic F protein, the hemagglutinin, and the putative neuronal receptor for MV. IMPORTANCE Measles virus (MV), in rare cases, persists in the human central nervous system (CNS) and causes subacute sclerosing panencephalitis (SSPE) several

  10. Epitope Dampening Monotypic Measles Virus Hemagglutinin Glycoprotein Results in Resistance to Cocktail of Monoclonal Antibodies

    Science.gov (United States)

    Lech, Patrycja J.; Tobin, Gregory J.; Bushnell, Ruth; Gutschenritter, Emily; Pham, Linh D.; Nace, Rebecca; Verhoeyen, Els; Cosset, François-Loïc; Muller, Claude P.; Russell, Stephen J.; Nara, Peter L.

    2013-01-01

    The measles virus (MV) is serologically monotypic. Life-long immunity is conferred by a single attack of measles or following vaccination with the MV vaccine. This is contrary to viruses such as influenza, which readily develop resistance to the immune system and recur. A better understanding of factors that restrain MV to one serotype may allow us to predict if MV will remain monotypic in the future and influence the design of novel MV vaccines and therapeutics. MV hemagglutinin (H) glycoprotein, binds to cellular receptors and subsequently triggers the fusion (F) glycoprotein to fuse the virus into the cell. H is also the major target for neutralizing antibodies. To explore if MV remains monotypic due to a lack of plasticity of the H glycoprotein, we used the technology of Immune Dampening to generate viruses with rationally designed N-linked glycosylation sites and mutations in different epitopes and screened for viruses that escaped monoclonal antibodies (mAbs). We then combined rationally designed mutations with naturally selected mutations to generate a virus resistant to a cocktail of neutralizing mAbs targeting four different epitopes simultaneously. Two epitopes were protected by engineered N-linked glycosylations and two epitopes acquired escape mutations via two consecutive rounds of artificial selection in the presence of mAbs. Three of these epitopes were targeted by mAbs known to interfere with receptor binding. Results demonstrate that, within the epitopes analyzed, H can tolerate mutations in different residues and additional N-linked glycosylations to escape mAbs. Understanding the degree of change that H can tolerate is important as we follow its evolution in a host whose immunity is vaccine induced by genotype A strains instead of multiple genetically distinct wild-type MVs. PMID:23300970

  11. Computational Analysis of the Interaction Energies between Amino Acid Residues of the Measles Virus Hemagglutinin and Its Receptors

    Directory of Open Access Journals (Sweden)

    Fengqi Xu

    2018-05-01

    Full Text Available Measles virus (MV causes an acute and highly devastating contagious disease in humans. Employing the crystal structures of three human receptors, signaling lymphocyte-activation molecule (SLAM, CD46, and Nectin-4, in complex with the measles virus hemagglutinin (MVH, we elucidated computationally the details of binding energies between the amino acid residues of MVH and those of the receptors with an ab initio fragment molecular orbital (FMO method. The calculated inter-fragment interaction energies (IFIEs revealed a number of significantly interacting amino acid residues of MVH that played essential roles in binding to the receptors. As predicted from previously reported experiments, some important amino-acid residues of MVH were shown to be common but others were specific to interactions with the three receptors. Particularly, some of the (non-polar hydrophobic residues of MVH were found to be attractively interacting with multiple receptors, thus indicating the importance of the hydrophobic pocket for intermolecular interactions (especially in the case of Nectin-4. In contrast, the electrostatic interactions tended to be used for specific molecular recognition. Furthermore, we carried out FMO calculations for in silico experiments of amino acid mutations, finding reasonable agreements with virological experiments concerning the substitution effect of residues. Thus, the present study demonstrates that the electron-correlated FMO method is a powerful tool to search exhaustively for amino acid residues that contribute to interactions with receptor molecules. It is also applicable for designing inhibitors of MVH and engineered MVs for cancer therapy.

  12. Protective immunity provided by HLA-A2 epitopes for fusion and hemagglutinin proteins of measles virus

    International Nuclear Information System (INIS)

    Oh, Sang Kon; Stegman, Brian; Pendleton, C. David; Ota, Martin O.; Pan, C.-H.; Griffin, Diane E.; Burke, Donald S.; Berzofsky, Jay A.

    2006-01-01

    Natural infection and vaccination with a live-attenuated measles virus (MV) induce CD8 + T-cell-mediated immune responses that may play a central role in controlling MV infection. In this study, we show that newly identified human HLA-A2 epitopes from MV hemagglutinin (H) and fusion (F) proteins induced protective immunity in HLA-A2 transgenic mice challenged with recombinant vaccinia viruses expressing F or H protein. HLA-A2 epitopes were predicted and synthesized. Five and four peptides from H and F, respectively, bound to HLA-A2 molecules in a T2-binding assay, and four from H and two from F could induce peptide-specific CD8 + T cell responses in HLA-A2 transgenic mice. Further experiments proved that three peptides from H (H9-567, H10-250, and H10-516) and one from F protein (F9-57) were endogenously processed and presented on HLA-A2 molecules. All peptides tested in this study are common to 5 different strains of MV including Edmonston. In both A2K b and HHD-2 mice, the identified peptide epitopes induced protective immunity against recombinant vaccinia viruses expressing H or F. Because F and H proteins induce neutralizing antibodies, they are major components of new vaccine strategies, and therefore data from this study will contribute to the development of new vaccines against MV infection

  13. Attenuated Salmonella enterica serovar Typhi and Shigella flexneri 2a strains mucosally deliver DNA vaccines encoding measles virus hemagglutinin, inducing specific immune responses and protection in cotton rats.

    Science.gov (United States)

    Pasetti, Marcela F; Barry, Eileen M; Losonsky, Genevieve; Singh, Mahender; Medina-Moreno, Sandra M; Polo, John M; Ulmer, Jeffrey; Robinson, Harriet; Sztein, Marcelo B; Levine, Myron M

    2003-05-01

    Measles remains a leading cause of child mortality in developing countries. Residual maternal measles antibodies and immunologic immaturity dampen immunogenicity of the current vaccine in young infants. Because cotton rat respiratory tract is susceptible to measles virus (MV) replication after intranasal (i.n.) challenge, this model can be used to assess the efficacy of MV vaccines. Pursuing a new measles vaccine strategy that might be effective in young infants, we used attenuated Salmonella enterica serovar Typhi CVD 908-htrA and Shigella flexneri 2a CVD 1208 vaccines to deliver mucosally to cotton rats eukaryotic expression plasmid pGA3-mH and Sindbis virus-based DNA replicon pMSIN-H encoding MV hemagglutinin (H). The initial i.n. dose-response with bacterial vectors alone identified a well-tolerated dosage (1 x 10(9) to 7 x 10(9) CFU) and a volume (20 micro l) that elicited strong antivector immune responses. Animals immunized i.n. on days 0, 28, and 76 with bacterial vectors carrying DNA plasmids encoding MV H or immunized parenterally with these naked DNA vaccine plasmids developed MV plaque reduction neutralizing antibodies and proliferative responses against MV antigens. In a subsequent experiment of identical design, cotton rats were challenged with wild-type MV 1 month after the third dose of vaccine or placebo. MV titers were significantly reduced in lung tissue of animals immunized with MV DNA vaccines delivered either via bacterial live vectors or parenterally. Since attenuated serovar Typhi and S. flexneri can deliver measles DNA vaccines mucosally in cotton rats, inducing measles immune responses (including neutralizing antibodies) and protection, boosting strategies can now be evaluated in animals primed with MV DNA vaccines.

  14. Immunogenicity of peptides of measles virus origin and influence of adjuvants.

    Science.gov (United States)

    Halassy, Beata; Mateljak, Sanja; Bouche, Fabienne B; Pütz, Mike M; Muller, Claude P; Frkanec, Ruza; Habjanec, Lidija; Tomasić, Jelka

    2006-01-12

    Epitope-based peptide antigens have been under development for protection against measles virus. The immunogenicity of five peptides composed of the same B cell epitope (BCE) (H236-250 of the measles virus hemagglutinin), and different T cell epitopes of measles virus fusion protein (F421-435, F256-270, F288-302) and nucleoprotein (NP335-345) was studied in mice (subcutaneous immunisation). The adjuvant effects of peptidoglycan monomer (PGM), Montanide ISA 720 and 206 were also investigated. Results showed basic differences in peptide immunogenicity that were consistent with already described structural differences. PGM elevated peptide-specific IgG when applied together with four of five tested peptides. A strong synergistic effect was observed after co-immunisation of mice with a mixture containing all five chimeric peptides in small and equal amounts. Results revealed for the first time that immunisation with several peptides having the common BCE generated significantly higher levels of both anti-peptide and anti-BCE IgG in comparison to those obtained after immunisation with a single peptide in much higher quantity. Further improvement of immune response was obtained after incorporation of such a peptide mixture into oil-based adjuvants.

  15. Genetic analysis of Asian measles virus strains--new endemic genotype in Nepal.

    Science.gov (United States)

    Truong, A T; Mulders, M N; Gautam, D C; Ammerlaan, W; de Swart, R L; King, C C; Osterhaus, A D; Muller, C P

    2001-07-01

    In many parts of Asia measles virus (MV) continues to be endemic. However, little is known about the genetic characteristics of viruses circulating on this continent. This study reports the molecular epidemiological analysis based on the entire nucleocapsid (N) and hemagglutinin (H) genes of the first isolates from Nepal and Taiwan, as well as of recent MV strains from India, Indonesia, and China. Four isolates collected in various regions in Nepal during 1999 belonged to a new genotype, tentatively called D8. Another Nepalese isolate and one from India belonged to genotype D4. The diversity of the Nepalese strains indicated that measles continues to be endemic in this country. The isolate from Taiwan grouped with D3 viruses and one Chinese strain isolated in The Netherlands was assigned to the previously described clade H, known to be endemic in Mainland China. Molecular characterization emerges as an important tool for monitoring virus endemicity and vaccination efforts.

  16. A chimeric measles virus with a lentiviral envelope replicates exclusively in CD4+/CCR5+ cells

    International Nuclear Information System (INIS)

    Mourez, Thomas; Mesel-Lemoine, Mariana; Combredet, Chantal; Najburg, Valerie; Cayet, Nadege; Tangy, Frederic

    2011-01-01

    We generated a replicating chimeric measles virus in which the hemagglutinin and fusion surface glycoproteins were replaced with the gp160 envelope glycoprotein of simian immunodeficiency virus (SIVmac239). Based on a previously cloned live-attenuated Schwarz vaccine strain of measles virus (MV), this chimera was rescued at high titers using reverse genetics in CD4+ target cells. Cytopathic effect consisted in the presence of large cell aggregates evolving to form syncytia, as observed during SIV infection. The morphology of the chimeric virus was identical to that of the parent MV particles. The presence of SIV gp160 as the only envelope protein on chimeric particles surface altered the cell tropism of the new virus from CD46+ to CD4+ cells. Used as an HIV candidate vaccine, this MV/SIVenv chimeric virus would mimic transient HIV-like infection, benefiting both from HIV-like tropism and the capacity of MV to replicate in dendritic cells, macrophages and lymphocytes.

  17. Measles Virus Hemagglutinin epitopes immunogenic in natural infection and vaccination are targeted by broad or genotype-specific neutralizing monoclonal antibodies.

    Science.gov (United States)

    Muñoz-Alía, Miguel Angel; Casasnovas, José M; Celma, María Luisa; Carabaña, Juan; Liton, Paloma B; Fernandez-Muñoz, Rafael

    2017-05-15

    Measles virus (MV) remains a leading cause of vaccine-preventable deaths in children. Protection against MV is associated with neutralizing antibodies that preferentially recognize the viral hemagglutinin (MV-H), and to a lesser extent, the fusion protein (MV-F). Although MV is serologically monotypic, 24 genotypes have been identified. Here we report three neutralization epitopes conserved in the more prevalent circulating MV genotypes, two located in the MV-H receptor binding site (RBS) (antigenic site III) and a third in MV-H/MV-F interphase (antigenic site Ia) which are essential for MV multiplication. In contrast, two MV-H neutralization epitopes, showed a genotype-specific neutralization escape due to a single amino acid change, that we mapped in the "noose" antigenic site, or an enhanced neutralization epitope (antigenic site IIa). The monoclonal antibody (mAb) neutralization potency correlated with its binding affinity and was mainly driven by kinetic dissociation rate (k off ). We developed an immunoassay for mAb binding to MV-H in its native hetero-oligomeric structure with MV-F on the surface of a MV productive steady-state persistently infected (p.i.) human cell lines, and a competitive-binding assay with serum from individuals with past infection by different MV genotypes. Binding assays revealed that a broad neutralization epitope, in RBS antigenic site, a genotype specific neutralization epitopes, in noose and IIa sites, were immunogenic in natural infection and vaccination and may elicit long-lasting humoral immunity that might contribute to explain MV immunogenic stability. These results support the design of improved measles vaccines, broad-spectrum prophylactic or therapeutic antibodies and MV-used in oncolytic therapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Autophagy in Measles Virus Infection

    Directory of Open Access Journals (Sweden)

    Aurore Rozières

    2017-11-01

    Full Text Available Autophagy is a biological process that helps cells to recycle obsolete cellular components and which greatly contributes to maintaining cellular integrity in response to environmental stress factors. Autophagy is also among the first lines of cellular defense against invading microorganisms, including viruses. The autophagic destruction of invading pathogens, a process referred to as xenophagy, involves cytosolic autophagy receptors, such as p62/SQSTM1 (Sequestosome 1 or NDP52/CALCOCO2 (Nuclear Dot 52 KDa Protein/Calcium Binding And Coiled-Coil Domain 2, which bind to microbial components and target them towards growing autophagosomes for degradation. However, most, if not all, infectious viruses have evolved molecular tricks to escape from xenophagy. Many viruses even use autophagy, part of the autophagy pathway or some autophagy-associated proteins, to improve their infectious potential. In this regard, the measles virus, responsible for epidemic measles, has a unique interface with autophagy as the virus can induce multiple rounds of autophagy in the course of infection. These successive waves of autophagy result from distinct molecular pathways and seem associated with anti- and/or pro-measles virus consequences. In this review, we describe what the autophagy–measles virus interplay has taught us about both the biology of the virus and the mechanistic orchestration of autophagy.

  19. 21 CFR 866.3520 - Rubeola (measles) virus serological reagents.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rubeola (measles) virus serological reagents. 866... Rubeola (measles) virus serological reagents. (a) Identification. Rubeola (measles) virus serological... to rubeola virus in serum. The identification aids in the diagnosis of measles and provides...

  20. Measles virus: Background and oncolytic virotherapy

    OpenAIRE

    Sankhajit Bhattacharjee; Pramod Kumar Yadava

    2018-01-01

    Measles is a highly transmissible disease caused by measles virus and remains a major cause of child mortality in developing countries. Measles virus nucleoprotein (N) encapsidates the RNA genome of the virus for providing protection from host cell endonucleases and for specific recognition of viral RNA as template for transcription and replication. This protein is over-expressed at the time of viral replication. The C-terminal of N protein is intrinsically disordered, which enables this prot...

  1. A Recombinant Measles Vaccine with Enhanced Resistance to Passive Immunity.

    Science.gov (United States)

    Julik, Emily; Reyes-Del Valle, Jorge

    2017-09-21

    Current measles vaccines suffer from poor effectiveness in young infants due primarily to the inhibitory effect of residual maternal immunity on vaccine responses. The development of a measles vaccine that resists such passive immunity would strongly contribute to the stalled effort toward measles eradication. In this concise communication, we show that a measles virus (MV) with enhanced hemagglutinin (H) expression and incorporation, termed MVvac2-H2, retained its enhanced immunogenicity, previously established in older mice, when administered to very young, genetically modified, MV-susceptible mice in the presence of passive anti-measles immunity. This immunity level mimics the sub-neutralizing immunity prevalent in infants too young to be vaccinated. Additionally, toward a more physiological small animal model of maternal anti-measles immunity interference, we document vertical transfer of passive anti-MV immunity in genetically-modified, MV susceptible mice and show in this physiological model a better MVvac2-H2 immunogenic profile than that of the parental vaccine strain. In sum, these data support the notion that enhancing MV hemagglutinin incorporation can circumvent in vivo neutralization. This strategy merits additional exploration as an alternative pediatric measles vaccine.

  2. Canine distemper virus neutralization activity is low in human serum and it is sensitive to an amino acid substitution in the hemagglutinin protein

    International Nuclear Information System (INIS)

    Zhang, Xinsheng; Wallace, Olivia L.; Domi, Arban; Wright, Kevin J.; Driscoll, Jonathan; Anzala, Omu; Sanders, Eduard J.; Kamali, Anatoli; Karita, Etienne; Allen, Susan; Fast, Pat; Gilmour, Jill; Price, Matt A.; Parks, Christopher L.

    2015-01-01

    Serum was analyzed from 146 healthy adult volunteers in eastern Africa to evaluate measles virus (MV) and canine distemper virus (CDV) neutralizing antibody (nAb) prevalence and potency. MV plaque reduction neutralization test (PRNT) results indicated that all sera were positive for MV nAbs. Furthermore, the 50% neutralizing dose (ND50) for the majority of sera corresponded to antibody titers induced by MV vaccination. CDV nAbs titers were low and generally were detected in sera with high MV nAb titers. A mutant CDV was generated that was less sensitive to neutralization by human serum. The mutant virus genome had 10 nucleotide substitutions, which coded for single amino acid substitutions in the fusion (F) and hemagglutinin (H) glycoproteins and two substitutions in the large polymerase (L) protein. The H substitution occurred in a conserved region involved in receptor interactions among morbilliviruses, implying that this region is a target for cross-reactive neutralizing antibodies. - Highlights: • Screened 146 serum samples for measles virus (MV) and canine distemper virus (CDV) neutralizing antibody (nAb). • MV nAb is prevalent in the sera. • CDV neutralizing activity is generally low or absent and when detected it is present in sera with high MV nAb titers. • A neutralization-resistant CDV mutant was isolated using human serum selection. • A mutation was identified in the receptor-binding region of CDV hemagglutinin protein that confers the neutralization resistance

  3. Canine distemper virus neutralization activity is low in human serum and it is sensitive to an amino acid substitution in the hemagglutinin protein

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinsheng, E-mail: xzhang@iavi.org [AIDS Vaccine Design and Development Laboratory, International AIDS Vaccine Initiative (IAVI), Brooklyn, NY (United States); Molecular and Cellular Biology Program, State University of New York, Brooklyn, NY (United States); Wallace, Olivia L.; Domi, Arban; Wright, Kevin J.; Driscoll, Jonathan [AIDS Vaccine Design and Development Laboratory, International AIDS Vaccine Initiative (IAVI), Brooklyn, NY (United States); Anzala, Omu [Kenya AIDS Vaccine Initiative (KAVI)-Institute of Clinical Research, Nairobi (Kenya); Sanders, Eduard J. [Centre for Geographic Medicine Research, Kenya Medical Research Institute (KEMRI), Kilifi, Kenya & Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Headington (United Kingdom); Kamali, Anatoli [MRC/UVRI Uganda Virus Research Unit on AIDS, Masaka and Entebbe (Uganda); Karita, Etienne [Projet San Francisco, Kigali (Rwanda); Allen, Susan [Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA (United States); Fast, Pat [Department of Medical Affairs, International AIDS Vaccine Initiative, NY, NY (United States); Gilmour, Jill [Human Immunology Laboratory, International AIDS Vaccine Initiative, London (United Kingdom); Price, Matt A. [Department of Medical Affairs, International AIDS Vaccine Initiative, NY, NY (United States); Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA (United States); Parks, Christopher L. [AIDS Vaccine Design and Development Laboratory, International AIDS Vaccine Initiative (IAVI), Brooklyn, NY (United States); Molecular and Cellular Biology Program, State University of New York, Brooklyn, NY (United States)

    2015-08-15

    Serum was analyzed from 146 healthy adult volunteers in eastern Africa to evaluate measles virus (MV) and canine distemper virus (CDV) neutralizing antibody (nAb) prevalence and potency. MV plaque reduction neutralization test (PRNT) results indicated that all sera were positive for MV nAbs. Furthermore, the 50% neutralizing dose (ND50) for the majority of sera corresponded to antibody titers induced by MV vaccination. CDV nAbs titers were low and generally were detected in sera with high MV nAb titers. A mutant CDV was generated that was less sensitive to neutralization by human serum. The mutant virus genome had 10 nucleotide substitutions, which coded for single amino acid substitutions in the fusion (F) and hemagglutinin (H) glycoproteins and two substitutions in the large polymerase (L) protein. The H substitution occurred in a conserved region involved in receptor interactions among morbilliviruses, implying that this region is a target for cross-reactive neutralizing antibodies. - Highlights: • Screened 146 serum samples for measles virus (MV) and canine distemper virus (CDV) neutralizing antibody (nAb). • MV nAb is prevalent in the sera. • CDV neutralizing activity is generally low or absent and when detected it is present in sera with high MV nAb titers. • A neutralization-resistant CDV mutant was isolated using human serum selection. • A mutation was identified in the receptor-binding region of CDV hemagglutinin protein that confers the neutralization resistance.

  4. Prior DNA vaccination does not interfere with the live-attenuated measles vaccine.

    Science.gov (United States)

    Premenko-Lanier, Mary; Rota, Paul; Rhodes, Gary; Bellini, William; McChesney, Michael

    2004-01-26

    The currently used live-attenuated measles vaccine is very effective although maternal antibody prevents its administration prior to 6 months of age. We are investigating the ability of a DNA vaccine encoding the measles viral hemagglutinin, fusion and nucleoprotein to protect newborn infants from measles. Here, we show that a measles DNA vaccine protects juvenile macaques from pathogenic measles virus challenge and that macaques primed and boosted with this DNA vaccine have anemnestic antibody and cell-mediated responses after vaccination with a live-attenuated canine distemper-measles vaccine. Therefore, this DNA vaccine administered to newborn infants may not hinder the subsequent use of live-attenuated measles vaccine.

  5. Hemagglutinin-specific neutralization of subacute sclerosing panencephalitis viruses.

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Muñoz-Alía

    Full Text Available Subacute sclerosing panencephalitis (SSPE is a progressive, lethal complication of measles caused by particular mutants of measles virus (MeV that persist in the brain despite high levels of neutralizing antibodies. We addressed the hypothesis that antigenic drift is involved in the pathogenetic mechanism of SSPE by analyzing antigenic alterations in the MeV envelope hemagglutinin protein (MeV-H found in patients with SSPE in relation to major circulating MeV genotypes. To this aim, we obtained cDNA for the MeV-H gene from tissue taken at brain autopsy from 3 deceased persons with SSPE who had short (3-4 months, SMa79, average (3.5 years, SMa84, and long (18 years, SMa94 disease courses. Recombinant MeVs with a substituted MeV-H gene were generated by a reverse genetic system. Virus neutralization assays with a panel of anti-MeV-H murine monoclonal antibodies (mAbs or vaccine-immunized mouse anti-MeV-H polyclonal sera were performed to determine the antigenic relatedness. Functional and receptor-binding analysis of the SSPE MeV-H showed activity in a SLAM/nectin-4-dependent manner. Similar to our panel of wild-type viruses, our SSPE viruses showed an altered antigenic profile. Genotypes A, G3, and F (SSPE case SMa79 were the exception, with an intact antigenic structure. Genotypes D7 and F (SSPE SMa79 showed enhanced neutralization by mAbs targeting antigenic site IIa. Genotypes H1 and the recently reported D4.2 were the most antigenically altered genotypes. Epitope mapping of neutralizing mAbs BH015 and BH130 reveal a new antigenic site on MeV-H, which we designated Φ for its intermediate position between previously defined antigenic sites Ia and Ib. We conclude that SSPE-causing viruses show similar antigenic properties to currently circulating MeV genotypes. The absence of a direct correlation between antigenic changes and predisposition of a certain genotype to cause SSPE does not lend support to the proposed antigenic drift as a

  6. Contemporary avian influenza A virus subtype H1, H6, H7, H10, and H15 hemagglutinin genes encode a mammalian virulence factor similar to the 1918 pandemic virus H1 hemagglutinin.

    Science.gov (United States)

    Qi, Li; Pujanauski, Lindsey M; Davis, A Sally; Schwartzman, Louis M; Chertow, Daniel S; Baxter, David; Scherler, Kelsey; Hartshorn, Kevan L; Slemons, Richard D; Walters, Kathie-Anne; Kash, John C; Taubenberger, Jeffery K

    2014-11-18

    Zoonotic avian influenza virus infections may lead to epidemics or pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its H1 hemagglutinin was identified as a key mammalian virulence factor. A chimeric 1918 virus expressing a contemporary avian H1 hemagglutinin, however, displayed murine pathogenicity indistinguishable from that of the 1918 virus. Here, isogenic chimeric avian influenza viruses were constructed on an avian influenza virus backbone, differing only by hemagglutinin subtype expressed. Viruses expressing the avian H1, H6, H7, H10, and H15 subtypes were pathogenic in mice and cytopathic in normal human bronchial epithelial cells, in contrast to H2-, H3-, H5-, H9-, H11-, H13-, H14-, and H16-expressing viruses. Mouse pathogenicity was associated with pulmonary macrophage and neutrophil recruitment. These data suggest that avian influenza virus hemagglutinins H1, H6, H7, H10, and H15 contain inherent mammalian virulence factors and likely share a key virulence property of the 1918 virus. Consequently, zoonotic infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals. Influenza viruses from birds can cause outbreaks in humans and may contribute to the development of pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its main surface protein, an H1 subtype hemagglutinin, was identified as a key mammalian virulence factor. In a previous study, a 1918 virus expressing an avian H1 gene was as virulent in mice as the reconstructed 1918 virus. Here, a set of avian influenza viruses was constructed, differing only by hemagglutinin subtype. Viruses with the avian H1, H6, H7, H10, and H15 subtypes caused severe disease in mice and damaged human lung cells. Consequently, infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals, and therefore surveillance for human infections

  7. Reverse genetics of measles virus and resulting multivalent recombinant vaccines: applications of recombinant measles viruses.

    Science.gov (United States)

    Billeter, M A; Naim, H Y; Udem, S A

    2009-01-01

    An overview is given on the development of technologies to allow reverse genetics of RNA viruses, i.e., the rescue of viruses from cDNA, with emphasis on nonsegmented negative-strand RNA viruses (Mononegavirales), as exemplified for measles virus (MV). Primarily, these technologies allowed site-directed mutagenesis, enabling important insights into a variety of aspects of the biology of these viruses. Concomitantly, foreign coding sequences were inserted to (a) allow localization of virus replication in vivo through marker gene expression, (b) develop candidate multivalent vaccines against measles and other pathogens, and (c) create candidate oncolytic viruses. The vector use of these viruses was experimentally encouraged by the pronounced genetic stability of the recombinants unexpected for RNA viruses, and by the high load of insertable genetic material, in excess of 6 kb. The known assets, such as the small genome size of the vector in comparison to DNA viruses proposed as vectors, the extensive clinical experience of attenuated MV as vaccine with a proven record of high safety and efficacy, and the low production cost per vaccination dose are thus favorably complemented.

  8. Sequence analysis of measles virus strains collected during the pre- and early-vaccination era in Denmark reveals a considerable diversity of ancient strains

    DEFF Research Database (Denmark)

    Christensen, Laurids Siig; Schöller, S.; Schierup, M. H.

    2002-01-01

    A total of 199 serum samples from patients with measles collected in Denmark, Greenland and the Faroe Islands from 1964 to 1983 were analysed by PCR. Measles virus (MV) RNA could be detected in 38 (19%) of the samples and a total of 18 strains were subjected to partial sequence analysis of the he......A total of 199 serum samples from patients with measles collected in Denmark, Greenland and the Faroe Islands from 1964 to 1983 were analysed by PCR. Measles virus (MV) RNA could be detected in 38 (19%) of the samples and a total of 18 strains were subjected to partial sequence analysis...... of the hemagglutinin gene. The strains exhibited a considerable genomic diversity, which is at odds with the assumption that one genome type prevailed among globally circulating MV strains prior to the advent of live-attenuated vaccines. Our data indicate that the similarity of the various vaccine strains...... is attributed to their having originated from the same primary isolate. Consequently, it is implied that a small number of clinical manifestations of MV worldwide from which strains similar to the vaccine strain were identified were vaccine related rather than being caused by members of a persistently...

  9. Measles Outbreak with Unique Virus Genotyping, Ontario, Canada, 2015.

    Science.gov (United States)

    Thomas, Shari; Hiebert, Joanne; Gubbay, Jonathan B; Gournis, Effie; Sharron, Jennifer; Severini, Alberto; Jiaravuthisan, Manisa; Shane, Amanda; Jaeger, Valerie; Crowcroft, Natasha S; Fediurek, Jill; Sander, Beate; Mazzulli, Tony; Schulz, Helene; Deeks, Shelley L

    2017-07-01

    The province of Ontario continues to experience measles virus transmissions despite the elimination of measles in Canada. We describe an unusual outbreak of measles in Ontario, Canada, in early 2015 that involved cases with a unique strain of virus and no known association among primary case-patients. A total of 18 cases of measles were reported from 4 public health units during the outbreak period (January 25-March 23, 2015); none of these cases occurred in persons who had recently traveled. Despite enhancements to case-patient interview methods and epidemiologic analyses, a source patient was not identified. However, the molecular epidemiologic analysis, which included extended sequencing, strongly suggested that all cases derived from a single importation of measles virus genotype D4. The use of timely genotype sequencing, rigorous epidemiologic investigation, and a better understanding of the gaps in surveillance are needed to maintain Ontario's measles elimination status.

  10. Possible impact of global warming on the evolution of hemagglutinins from influenza a viruses.

    Science.gov (United States)

    Yan, Shaomin; Wu, Guang

    2011-02-01

    To determine if global warming has an impact on the evolution of hemagglutinins from influenza A viruses, because both global warming and influenza pandemics/epidemics threaten the world. 4 706 hemagglutinins from influenza A viruses sampled from 1956 to 2009 were converted to a time-series to show their evolutionary process and compared with the global, northern hemisphere and southern hemisphere temperatures, to determine if their trends run in similar or opposite directions. Point-to-point comparisons between temperature and quantified hemagglutinins were performed for all species and for the major prevailing species. The comparisons show that the trends for both hemagglutinin evolution and temperature change run in a similar direction. Global warming has a consistent and progressive impact on the hemagglutinin evolution of influenza A viruses.

  11. Radioimmunoassay of measles virus antibodies in SSPE

    International Nuclear Information System (INIS)

    Jankowski, M.A.; Gut, W.; Kantoch, M.

    1982-01-01

    A sensitive radioimmunoassay (RIA) was introduced for detecting measles virus IgG and IgM antibodies. The hyperimmune response to the measles virus could be demonstrated more accurately by RIA than by haemagglutination inhibition (HI). The ratio between RIA and HI antibody titres was decidedly higher in sera and cerebrospinal fluids of patients with subacute sclerosing panencephalitis than in those of other groups tested. (author)

  12. Resting lymphocyte transduction with measles virus glycoprotein pseudotyped lentiviral vectors relies on CD46 and SLAM

    International Nuclear Information System (INIS)

    Zhou Qi; Schneider, Irene C.; Gallet, Manuela; Kneissl, Sabrina; Buchholz, Christian J.

    2011-01-01

    The measles virus (MV) glycoproteins hemagglutinin (H) and fusion (F) were recently shown to mediate transduction of resting lymphocytes by lentiviral vectors. MV vaccine strains use CD46 or signaling lymphocyte activation molecule (SLAM) as receptor for cell entry. A panel of H protein mutants derived from vaccine strain or wild-type MVs that lost or gained CD46 or SLAM receptor usage were investigated for their ability to mediate gene transfer into unstimulated T lymphocytes. The results demonstrate that CD46 is sufficient for efficient vector particle association with unstimulated lymphocytes. For stable gene transfer into these cells, however, both MV receptors were found to be essential.

  13. Improving molecular tools for global surveillance of measles virus.

    Science.gov (United States)

    Bankamp, Bettina; Byrd-Leotis, Lauren A; Lopareva, Elena N; Woo, Gibson K S; Liu, Chunyu; Jee, Youngmee; Ahmed, Hinda; Lim, Wilina W; Ramamurty, Nalini; Mulders, Mick N; Featherstone, David; Bellini, William J; Rota, Paul A

    2013-09-01

    The genetic characterization of wild-type measles viruses plays an important role in the description of viral transmission pathways and the verification of measles elimination. The 450 nucleotides that encode the carboxyl-terminus of the nucleoprotein (N-450) are routinely sequenced for genotype analysis. The objectives of this study were to develop improved primers and controls for RT-PCR reactions used for genotyping of measles samples and to develop a method to provide a convenient, safe, and inexpensive means to distribute measles RNA for RT-PCR assays and practice panels. A newly designed, genetically defined synthetic RNA and RNA isolated from cells infected with currently circulating genotypes were used to compare the sensitivity of primer pairs in RT-PCR and nested PCR. FTA® cards loaded with lysates of measles infected cells were tested for their ability to preserve viral RNA and destroy virus infectivity. A new primer pair, MeV216/MeV214, was able to amplify N-450 from viruses representing 10 currently circulating genotypes and a genotype A vaccine strain and demonstrated 100-fold increased sensitivity compared to the previously used primer set. A nested PCR assay further increased the sensitivity of detection from patient samples. A synthetic positive control RNA was developed that produced PCR products that are distinguishable by size from PCR products amplified from clinical samples. FTA® cards completely inactivated measles virus and stabilized RNA for at least six months. These improved molecular tools will advance molecular characterization of circulating measles viruses globally and provide enhanced quality control measures. Published by Elsevier B.V.

  14. Contemporary Avian Influenza A Virus Subtype H1, H6, H7, H10, and H15 Hemagglutinin Genes Encode a Mammalian Virulence Factor Similar to the 1918 Pandemic Virus H1 Hemagglutinin

    OpenAIRE

    Qi, Li; Pujanauski, Lindsey M.; Davis, A. Sally; Schwartzman, Louis M.; Chertow, Daniel S.; Baxter, David; Scherler, Kelsey; Hartshorn, Kevan L.; Slemons, Richard D.; Walters, Kathie-Anne; Kash, John C.; Taubenberger, Jeffery K.

    2014-01-01

    ABSTRACT Zoonotic avian influenza virus infections may lead to epidemics or pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its H1 hemagglutinin was identified as a key mammalian virulence factor. A chimeric 1918 virus expressing a contemporary avian H1 hemagglutinin, however, displayed murine pathogenicity indistinguishable from that of the 1918 virus. Here, isogenic chimeric avian influenza viruses were constructed on an avian influenza virus backb...

  15. Spread of Measles Virus in Europe

    Centers for Disease Control (CDC) Podcasts

    2011-10-06

    Dr. Paul Rota, team lead for the Measles Laboratory, Division of Viral Diseases, at CDC, talks about a measles virus survey in Europe, 2008-2011.  Created: 10/6/2011 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID) and National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 10/6/2011.

  16. Distinct Contributions of Autophagy Receptors in Measles Virus Replication.

    Science.gov (United States)

    Petkova, Denitsa S; Verlhac, Pauline; Rozières, Aurore; Baguet, Joël; Claviere, Mathieu; Kretz-Remy, Carole; Mahieux, Renaud; Viret, Christophe; Faure, Mathias

    2017-05-22

    Autophagy is a potent cell autonomous defense mechanism that engages the lysosomal pathway to fight intracellular pathogens. Several autophagy receptors can recognize invading pathogens in order to target them towards autophagy for their degradation after the fusion of pathogen-containing autophagosomes with lysosomes. However, numerous intracellular pathogens can avoid or exploit autophagy, among which is measles virus (MeV). This virus induces a complete autophagy flux, which is required to improve viral replication. We therefore asked how measles virus interferes with autophagy receptors during the course of infection. We report that in addition to NDP52/CALCOCO₂ and OPTINEURIN/OPTN, another autophagy receptor, namely T6BP/TAXIBP1, also regulates the maturation of autophagosomes by promoting their fusion with lysosomes, independently of any infection. Surprisingly, only two of these receptors, NDP52 and T6BP, impacted measles virus replication, although independently, and possibly through physical interaction with MeV proteins. Thus, our results suggest that a restricted set of autophagosomes is selectively exploited by measles virus to replicate in the course of infection.

  17. Will Synergizing Vaccination with Therapeutics Boost Measles Virus Eradication?

    Science.gov (United States)

    Plemper, Richard K; Hammond, Anthea L

    2014-01-01

    Introduction Measles virus is a major human pathogen responsible for approximately 150,000 measles deaths annually. The disease is vaccine preventable and eradication of the virus is considered feasible in principle. However, a herd immunity exceeding 95% is required to prevent sporadic viral outbreaks in a population. Declining disease prevalence combined with public anxieties about vaccination safety has increased vaccine refusal especially in the European region, which has resulted in measles resurgence in some areas. Areas covered Here, we discuss whether synergizing effective measles therapeutics with vaccination could contribute to solving an endgame conundrum of measles elimination by accelerating the eradication effort. Based on an anticipated use for protection of high-risk contacts of confirmed measles cases through post-exposure prophylaxis, we identify key elements of the desirable drug profile, review current disease management strategies and the state of experimental inhibitor candidates, evaluate the risk associated with viral escape from inhibition, and consider the potential of measles therapeutics for the management of persistent viral infection of the CNS. Assuming a post-measles world with waning measles immunity, we contemplate the possible impact of therapeutics on controlling the threat imposed by closely related zoonotic pathogens of the same genus as measles virus. Expert opinion Efficacious therapeutics given for post-exposure prophylaxis of high-risk social contacts of confirmed index cases may aid measles eradication by closing herd immunity gaps due to vaccine refusal or failure in populations with overall good vaccination coverage. The envisioned primarily prophylactic application of measles therapeutics to a predominantly pediatric and/or adolescent patient population dictates the drug profile; the article must be safe and efficacious, orally available, shelf-stable at ambient temperature, and amenable to cost-effective manufacture

  18. Attenuated Salmonella enterica Serovar Typhi and Shigella flexneri 2a Strains Mucosally Deliver DNA Vaccines Encoding Measles Virus Hemagglutinin, Inducing Specific Immune Responses and Protection in Cotton Rats

    OpenAIRE

    Pasetti, Marcela F.; Barry, Eileen M.; Losonsky, Genevieve; Singh, Mahender; Medina-Moreno, Sandra M.; Polo, John M.; Ulmer, Jeffrey; Robinson, Harriet; Sztein, Marcelo B.; Levine, Myron M.

    2003-01-01

    Measles remains a leading cause of child mortality in developing countries. Residual maternal measles antibodies and immunologic immaturity dampen immunogenicity of the current vaccine in young infants. Because cotton rat respiratory tract is susceptible to measles virus (MV) replication after intranasal (i.n.) challenge, this model can be used to assess the efficacy of MV vaccines. Pursuing a new measles vaccine strategy that might be effective in young infants, we used attenuated Salmonella...

  19. The V domain of dog PVRL4 (nectin-4) mediates canine distemper virus entry and virus cell-to-cell spread.

    Science.gov (United States)

    Delpeut, Sebastien; Noyce, Ryan S; Richardson, Christopher D

    2014-04-01

    The entry of canine distemper virus (CDV) is a multistep process that involves the attachment of CDV hemagglutinin (H) to its cellular receptor, followed by fusion between virus and cell membranes. Our laboratory recently identified PVRL4 (nectin-4) to be the epithelial receptor for measles and canine distemper viruses. In this study, we demonstrate that the V domain of PVRL4 is critical for CDV entry and virus cell-to-cell spread. Furthermore, four key amino acid residues within the V domain of dog PVRL4 and two within the CDV hemagglutinin were shown to be essential for receptor-mediated virus entry. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Measles virus genotypes circulating in India, 2011-2015.

    Science.gov (United States)

    Vaidya, Sunil R; Chowdhury, Deepika T

    2017-05-01

    The Government of India is accepted to participate in the measles elimination and rubella control goal 2020, hence genetic characterization of measles viruses (MeV) becomes essential. At National Reference Laboratory (National Institute of Virology, Pune), the throat swabs/urine specimens (n = 380) or PCR products (n = 219) obtained from the suspected measles cases were referred for the molecular testing and subsequently, MeV nucleoprotein (N) gene sequencing/genotyping. In addition, 2,449 suspected measles cases, mainly from the Maharashtra state were referred for the laboratory diagnosis. A detailed study was performed on N gene sequences obtained during last two decades. Indian MeV sequences obtained during 2011-2015 were compared with 1996-2010 sequences and genetic divergence was studied. Circulation of measles genotypes B3 (n = 3), D4 (n = 49), and D8 (n = 351) strains were observed in 19 States and three Union Territories of India. In addition, 64 measles viruses were isolated from 253 throat swab or urine specimens obtained from the suspected measles cases. During 2011-2015, 67.9% (1,663/2,449) suspected measles cases were laboratory confirmed. Molecular studies showed circulation of measles genotype B3 in India along with prominently circulating genotypes D4 and D8 except D7 strains. The genetic diversion within Indian B3, D4, and D8 genotypes was 0.3%, 1.1%, and 2.1%, respectively. The genetic divergence of Indian B3, D4, and D8 measles strains with the WHO reference sequences was 2.5%, 2.6%, and 1.8%, respectively. It is crucial data for national immunization program. More measles/rubella genotyping studies are necessary to track transmission and to support measles elimination and rubella control. J. Med. Virol. 89:753-758, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. A comparative analysis of measles virus RNA by oligonucleotide fingerprinting

    International Nuclear Information System (INIS)

    Stephenson, J.R.; Meulen, V. ter

    1982-01-01

    Isolates from two cases of acute measles, one case of acute measles encephalitis and three patients with subacute sclerosing panencephalitis were compared. This comparison was based upon the electrophoretic analysis of T 1 oligonucleotides from single-stranded, full-length RNA isolated from cytoplasmic nucleocapsids. Although all viruses have oligonucleotides in common, each isolate generated a unique pattern of oligonucleotides. However, no group of oligonucleotides was observed which would allow differentiation between viruses isolated from acute infections and those isolated from CNS diseases; indicating that probably all measles viruses differ in their nucleotide sequence, regardless of origin. (Author)

  2. Complete genome sequences of six measles virus strains

    NARCIS (Netherlands)

    Phan, M.V.T. (My V.T.); C.M.E. Schapendonk (Claudia); B.B. Oude Munnink (Bas B.); M.P.G. Koopmans D.V.M. (Marion); R.L. de Swart (Rik); Cotten, M. (Matthew)

    2018-01-01

    textabstractGenetic characterization of wild-type measles virus (MV) strains is a critical component of measles surveillance and molecular epidemiology. We have obtained complete genome sequences of six MV strains belonging to different genotypes, using random-primed next generation sequencing.

  3. 78 FR 9355 - Influenza Viruses Containing the Hemagglutinin From the Goose/Guangdong/1/96 Lineage

    Science.gov (United States)

    2013-02-08

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES [Docket: CDC-2012-0010] 42 CFR Part 73 Influenza Viruses... influenza (HPAI) H5N1 viruses that contain a hemagglutinin (HA) from the Goose/Guangdong/1/96 lineage, and... concerning highly pathogenic avian influenza (HPAI) H5N1 viruses that contain a hemagglutinin (HA) from the...

  4. CD147/EMMPRIN acts as a functional entry receptor for measles virus on epithelial cells.

    Science.gov (United States)

    Watanabe, Akira; Yoneda, Misako; Ikeda, Fusako; Terao-Muto, Yuri; Sato, Hiroki; Kai, Chieko

    2010-05-01

    Measles is a highly contagious human disease caused by measles virus (MeV) and remains the leading cause of death in children, particularly in developing countries. Wild-type MeV preferentially infects lymphocytes by using signaling lymphocytic activation molecule (SLAM), whose expression is restricted to hematopoietic cells, as a receptor. MeV also infects other epithelial and neuronal cells that do not express SLAM and causes pneumonia and diarrhea and, sometimes, serious symptoms such as measles encephalitis and subacute sclerosing panencephalitis. The discrepancy between the tissue tropism of MeV and the distribution of SLAM-positive cells suggests that there are unknown receptors other than SLAM for MeV. Here we identified CD147/EMMPRIN (extracellular matrix metalloproteinase inducer), a transmembrane glycoprotein, which acts as a receptor for MeV on epithelial cells. Furthermore, we found the incorporation of cyclophilin B (CypB), a cellular ligand for CD147, in MeV virions, and showed that inhibition of CypB incorporation significantly attenuated SLAM-independent infection on epithelial cells, while it had no effect on SLAM-dependent infection. To date, MeV infection was considered to be triggered by binding of its hemagglutinin (H) protein and cellular receptors. Our present study, however, indicates that MeV infection also occurs via CD147 and virion-associated CypB, independently of MeV H. Since CD147 is expressed in a variety of cells, including epithelial and neuronal cells, this molecule possibly functions as an entry receptor for MeV in SLAM-negative cells. This is the first report among members of the Mononegavirales that CD147 is used as a virus entry receptor via incorporated CypB in the virions.

  5. Immunogenicity of UV-inactivated measles virus

    International Nuclear Information System (INIS)

    Zahorska, R.; Mazur, N.; Korbecki, M.

    1978-01-01

    By means of the antigen extinction limit test it was shown that a triple dose vaccination of guinea pigs with UV-inactivated measles virus gave better results, than a single dose vaccination which was proved by the very low immunogenicity index. For both vaccination schemes (single and triple) the immune response was only sligthly influenced by a change of dose from 10 5 to 10 6 HadU 50 /ml or by the addition of aluminum adjuvant. In the antigen extinction limit test the antibody levels were determined by two methods (HIT and NT) the results of which were statistically equivalent. The UV-inactivated measles virus was also found to induce hemolysis-inhibiting antibodies. (orig.) [de

  6. Identification of different lineages of measles virus strains circulating in Uttar Pradesh, North India

    Directory of Open Access Journals (Sweden)

    Shakya Akhalesh

    2012-10-01

    Full Text Available Abstract Background Genetic analysis of measles viruses associated with recent cases and outbreaks has proven to bridge information gaps in routine outbreak investigations and has made a substantial contribution to measles control efforts by helping to identify the transmission pathways of the virus. Materials and methods The present study describes the genetic characterization of wild type measles viruses from Uttar Pradesh, India isolated between January 2008 and January 2011. In the study, 526 suspected measles cases from 15 outbreaks were investigated. Blood samples were collected from suspected measles outbreaks and tested for the presence of measles specific IgM; throat swab and urine samples were collected for virus isolation and RT-PCR. Genotyping of circulating measles viruses in Uttar Pradesh was performed by sequencing a 450-bp region encompassing the nucleoprotein hypervariable region and phylogenetic analysis. Results and conclusion Based on serological results, all the outbreaks were confirmed as measles. Thirty eight strains were obtained. Genetic analysis of circulating measles strains (n = 38 in Uttar Pradesh from 235 cases of laboratory-confirmed cases from 526 suspected measles cases between 2008 and 2011 showed that all viruses responsible for outbreaks were within clade D and all were genotype D8. Analysis of this region showed that it is highly divergent (up to 3.4% divergence in the nucleotide sequence and 4.1% divergence in the amino acid sequence between most distant strains. Considerable genetic heterogeneity was observed in the MV genotype D8 viruses in North India and underscores the need for continued surveillance and in particular increases in vaccination levels to decrease morbidity and mortality attributable to measles.

  7. Neurokinin-1 enables measles virus trans-synaptic spread in neurons

    International Nuclear Information System (INIS)

    Makhortova, Nina R.; Askovich, Peter; Patterson, Catherine E.; Gechman, Lisa A.; Gerard, Norma P.; Rall, Glenn F.

    2007-01-01

    Measles virus (MV), a morbillivirus that remains a significant human pathogen, can infect the central nervous system, resulting in rare but often fatal diseases, such as subacute sclerosing panencephalitis. Previous work demonstrated that MV was transmitted trans-synaptically and that, while a cellular receptor for the hemagglutinin (H) protein was required for MV entry, it was dispensable for subsequent cell-to-cell spread. Here, we explored what role the other envelope protein, fusion (F), played in trans-synaptic transport. We made the following observations: (1) MV-F expression in infected neurons was similar to that seen in infected fibroblasts; (2) fusion inhibitory peptide (FIP), an inhibitor of MV fusion, prevented both infection and spread in primary neurons; (3) Substance P, a neurotransmitter with the same active site as FIP, also blocked neuronal MV spread; and (4) both genetic deletion and pharmacological inhibition of the Substance P receptor, neurokinin-1 (NK-1), reduced infection of susceptible mice. Together, these data implicate a role for NK-1 in MV CNS infection and spread, perhaps serving as an MV-F receptor or co-receptor on neurons

  8. Vaccine platform recombinant measles virus.

    Science.gov (United States)

    Mühlebach, Michael D

    2017-10-01

    The classic development of vaccines is lengthy, tedious, and may not necessarily be successful as demonstrated by the case of HIV. This is especially a problem for emerging pathogens that are newly introduced into the human population and carry the inherent risk of pandemic spread in a naïve population. For such situations, a considerable number of different platform technologies are under development. These are also under development for pathogens, where directly derived vaccines are regarded as too complicated or even dangerous due to the induction of inefficient or unwanted immune responses causing considerable side-effects as for dengue virus. Among platform technologies are plasmid-based DNA vaccines, RNA replicons, single-round infectious vector particles, or replicating vaccine-based vectors encoding (a) critical antigen(s) of the target pathogens. Among the latter, recombinant measles viruses derived from vaccine strains have been tested. Measles vaccines are among the most effective and safest life-attenuated vaccines known. Therefore, the development of Schwarz-, Moraten-, or AIK-C-strain derived recombinant vaccines against a wide range of mostly viral, but also bacterial pathogens was quite straightforward. These vaccines generally induce powerful humoral and cellular immune responses in appropriate animal models, i.e., transgenic mice or non-human primates. Also in the recent first clinical phase I trial, the results have been quite encouraging. The trial indicated the expected safety and efficacy also in human patients, interestingly independent from the level of prevalent anti-measles immunity before the trial. Thereby, recombinant measles vaccines expressing additional antigens are a promising platform for future vaccines.

  9. A population screening test for antibody to measles virus

    International Nuclear Information System (INIS)

    Friedman, M.G.

    1981-01-01

    In areas where sporadic cases of measles continue to occur in spite of vaccination programs, the availability of a simple screening test for determination of seropositivity to measles virus is desirable. A sensitive radioimmunoassay (RIA) screening test (ST) for the detection of IgG antibody to measles virus, based on a solid phase RIA, is described. The assays were performed on polyvinyl microtiter plates for which the RIAST requires only 5 μl of serum per subject. Antigen consisted of a sonicated extract of measles virus-infected Vero cells. Rabbit antihuman IgG specific for the Fc-segment of human IgG, labelled with 125 I, was used to detect human IgG bound to viral antigen. The basic RIA method was characterized by carrying out full titrations of sera of 53 healthy adults, 10 children, and 13 patients with measles-associated illness. These sera were also tested by the hemagglutination inhibition (HI) technique; most of the measles sera were also tested by complement fixation (CF). RIAST results (expressed as binding ratios) obtained for 52 healthy adults are compared with their RIA serum titers. Of the 200 sera of patients of various ages tested by the RIAST, 63 borderline sera were also tested by HI. The RIAST, which does not require serum treatment other than inactivation, proved to be more sensitive as an indicator of seropositivity than HI. Implications of the results and practical applications of the screening test are discussed. (author)

  10. Performance Evaluation of the VIDAS® Measles IgG Assay and Its Diagnostic Value for Measuring IgG Antibody Avidity in Measles Virus Infection

    Science.gov (United States)

    Dina, Julia; Creveuil, Christian; Gouarin, Stephanie; Viron, Florent; Hebert, Amelie; Freymuth, Francois; Vabret, Astrid

    2016-01-01

    The objective of this study is primarily to compare the performance of the VIDAS® Measles immunoglobulin (Ig)G assay to that of two other serological assays using an immunoassay technique, Enzygnost® Anti-measles Virus/IgG (Siemens) and Measles IgG CAPTURE EIA® (Microimmune). The sensitivity and the agreement of the VIDAS® Measles IgG assay compared to the Enzygnost® Anti-measles Virus/IgG assay and the Measles IgG CAPTURE EIA® assay are 100%, 97.2% and 99.0%, 98.4%, respectively. The very low number of negative sera for IgG antibodies does not allow calculation of specificity. As a secondary objective, we have evaluated the ability of the VIDAS® Measles IgG assay to measure anti-measles virus IgG antibody avidity with the help of the VIDAS® CMV IgG Avidity reagent, using 76 sera from subjects with measles and 238 other sera. Different groups of populations were analyzed. In the primary infection measles group, the mean IgG avidity index was 0.16 (range of 0.07 to 0.93) compared to 0.79 (range of 0.25 to 1) in the serum group positive for IgG antibodies and negative for IgM. These data allow to define a weak anti-measles virus IgG antibody avidity as an avidity index (AI) 0.6. The VIDAS® Measles IgG assay has a performance equivalent to that of other available products. Its use, individual and quick, is well adapted to testing for anti-measles immunity in exposed subjects. PMID:27556477

  11. High titer oncolytic measles virus production process by integration of dielectric spectroscopy as online monitoring system.

    Science.gov (United States)

    Grein, Tanja A; Loewe, Daniel; Dieken, Hauke; Salzig, Denise; Weidner, Tobias; Czermak, Peter

    2018-05-01

    Oncolytic viruses offer new hope to millions of patients with incurable cancer. One promising class of oncolytic viruses is Measles virus, but its broad administration to cancer patients is currently hampered by the inability to produce the large amounts of virus needed for treatment (10 10 -10 12 virus particles per dose). Measles virus is unstable, leading to very low virus titers during production. The time of infection and time of harvest are therefore critical parameters in a Measles virus production process, and their optimization requires an accurate online monitoring system. We integrated a probe based on dielectric spectroscopy (DS) into a stirred tank reactor to characterize the Measles virus production process in adherent growing Vero cells. We found that DS could be used to monitor cell adhesion on the microcarrier and that the optimal virus harvest time correlated with the global maximum permittivity signal. In 16 independent bioreactor runs, the maximum Measles virus titer was achieved approximately 40 hr after the permittivity maximum. Compared to an uncontrolled Measles virus production process, the integration of DS increased the maximum virus concentration by more than three orders of magnitude. This was sufficient to achieve an active Measles virus concentration of > 10 10 TCID 50 ml -1 . © 2017 Wiley Periodicals, Inc.

  12. Measles Epidemics Among Children in Vietnam: Genomic Characterization of Virus Responsible for Measles Outbreak in Ho Chi Minh City, 2014

    Directory of Open Access Journals (Sweden)

    Van H. Pham

    2014-12-01

    Conclusions: Measles viruses responsible for outbreaks in Southern Vietnam belonged to a genotype D8 variant group which had unique amino acid sequences in the N gene. Our report provides important genomic information about the virus for measles elimination in Southeast Asia.

  13. The V domain of dog PVRL4 (nectin-4) mediates canine distemper virus entry and virus cell-to-cell spread

    International Nuclear Information System (INIS)

    Delpeut, Sebastien; Noyce, Ryan S.; Richardson, Christopher D.

    2014-01-01

    The entry of canine distemper virus (CDV) is a multistep process that involves the attachment of CDV hemagglutinin (H) to its cellular receptor, followed by fusion between virus and cell membranes. Our laboratory recently identified PVRL4 (nectin-4) to be the epithelial receptor for measles and canine distemper viruses. In this study, we demonstrate that the V domain of PVRL4 is critical for CDV entry and virus cell-to-cell spread. Furthermore, four key amino acid residues within the V domain of dog PVRL4 and two within the CDV hemagglutinin were shown to be essential for receptor-mediated virus entry. - Highlights: • PVRL4 (nectin-4) is the epithelial cell receptor for measles and canine distemper viruses. • V domain of PVRL4 is critical for CDV entry, cell-to-cell spread, and syncytia formation. • Chimeric PVRL1 backbone substituted with the V domain of PVRL4 can function as a receptor. • Amino acids (F132/P133/A134/G135) within the V domain are essential for PVRL4 receptor activity. • Amino acids (P493/Y539) within CDV H protein are essential for PVRL4 receptor interaction

  14. The V domain of dog PVRL4 (nectin-4) mediates canine distemper virus entry and virus cell-to-cell spread

    Energy Technology Data Exchange (ETDEWEB)

    Delpeut, Sebastien; Noyce, Ryan S. [The Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5 (Canada); IWK Health Centre, Canadian Center for Vaccinology, Goldbloom Pavilion, Halifax, Nova Scotia, Canada B3H 1X5 (Canada); Richardson, Christopher D., E-mail: chris.richardson@dal.ca [The Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5 (Canada); IWK Health Centre, Canadian Center for Vaccinology, Goldbloom Pavilion, Halifax, Nova Scotia, Canada B3H 1X5 (Canada); The Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia (Canada)

    2014-04-15

    The entry of canine distemper virus (CDV) is a multistep process that involves the attachment of CDV hemagglutinin (H) to its cellular receptor, followed by fusion between virus and cell membranes. Our laboratory recently identified PVRL4 (nectin-4) to be the epithelial receptor for measles and canine distemper viruses. In this study, we demonstrate that the V domain of PVRL4 is critical for CDV entry and virus cell-to-cell spread. Furthermore, four key amino acid residues within the V domain of dog PVRL4 and two within the CDV hemagglutinin were shown to be essential for receptor-mediated virus entry. - Highlights: • PVRL4 (nectin-4) is the epithelial cell receptor for measles and canine distemper viruses. • V domain of PVRL4 is critical for CDV entry, cell-to-cell spread, and syncytia formation. • Chimeric PVRL1 backbone substituted with the V domain of PVRL4 can function as a receptor. • Amino acids (F132/P133/A134/G135) within the V domain are essential for PVRL4 receptor activity. • Amino acids (P493/Y539) within CDV H protein are essential for PVRL4 receptor interaction.

  15. MEASLES VIRUS IMMUNITY LEVEL STUDY IN PARTICULAR POPULATION GROUPS OF THE REPUBLIC OF GUINEA WITHIN THE FRAMEWORK OF GLOBAL MEASLES ELIMINATION PROGRAM. REPORT 2

    Directory of Open Access Journals (Sweden)

    A. Yu. Popova

    2017-01-01

    Full Text Available A goal for measles elimination globally by 2010–2020 was recognized as one of the priorities in the WHO program “Health for All in the 21st Century” (1998. However measles outbreaks occurred in 2010–2016 in countries with high level of measles vaccine coverage including USA and some European countries.Large measles outbreaks were also registered on the African continent and particular in the Republic of Guinea as a result of the decline of measles vaccine coverage due to the Ebola virus epidemic in the Republic of Guinea in 2014–2015. WHO recommends carrying out the routine measles vaccination as well as the supplemental immunization activities after the stop of the Ebola virus transmission. Effectiveness of the activities is definitely connected with the detection of the epidemically significant for the supplemental immunization age groups. The aim of the study was to evaluate the measles immunity level in different age groups of population in the Republic of Guinea. Materials and methods. Twenty five blood serum samples of healthy adult Guineans aged 28–66 and 121 blood serum samples of adolescences and adults admitted to hospital in the town of Kindia (Republic of Guinea for indoor treatment were tested by ELISA. The specific measles virus antibodies were detected using the following commercial ELISA test-systems produced by Euroimmun Medizinische Labordiagnostika AG Company (Germany: IgM-antibodies — by “Anti-Measles Virus ELISA (IgM”, IgG-antibodi es — by “Anti-Measles Virus ELISA (IgG”, IgG-avidity measles virus antibodies — by “Avidity: Anti-Measles Virus ELISA (IgG”. A part of sera was studied by “Vector-Best IgM-measles” and “Vector-Best IgG-measles” ELISA test-systems (Russia. Results and discussion. The comparative quantitative study of the measles immunity level (i.e. IgG-antibodies titers of the healthy adult Guineans in 2015 and 2016 revealed the lack of IgGantibodies in serum

  16. Unique Structural Features of Influenza Virus H15 Hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Tzarum, Netanel; McBride, Ryan; Nycholat, Corwin M.; Peng, Wenjie; Paulson, James C.; Wilson, Ian A. (Scripps)

    2017-04-12

    Influenza A H15 viruses are members of a subgroup (H7-H10-H15) of group 2 hemagglutinin (HA) subtypes that include H7N9 and H10N8 viruses that were isolated from humans during 2013. The isolation of avian H15 viruses is, however, quite rare and, until recently, geographically restricted to wild shorebirds and waterfowl in Australia. The HAs of H15 viruses contain an insertion in the 150-loop (loop beginning at position 150) of the receptor-binding site common to this subgroup and a unique insertion in the 260-loop compared to any other subtype. Here, we show that the H15 HA has a high preference for avian receptor analogs by glycan array analyses. The H15 HA crystal structure reveals that it is structurally closest to H7N9 HA, but the head domain of the H15 trimer is wider than all other HAs due to a tilt and opening of the HA1 subunits of the head domain. The extended 150-loop of the H15 HA retains the conserved conformation as in H7 and H10 HAs. Furthermore, the elongated 260-loop increases the exposed HA surface and can contribute to antigenic variation in H15 HAs. Since avian-origin H15 HA viruses have been shown to cause enhanced disease in mammalian models, further characterization and immune surveillance of H15 viruses are warranted.

    IMPORTANCEIn the last 2 decades, an apparent increase has been reported for cases of human infection by emerging avian influenza A virus subtypes, including H7N9 and H10N8 viruses isolated during 2013. H15 is the other member of the subgroup of influenza A virus group 2 hemagglutinins (HAs) that also include H7 and H10. H15 viruses have been restricted to Australia, but recent isolation of H15 viruses in western Siberia suggests that they could be spread more globally via the avian flyways that converge and emanate from this region. Here we report on characterization of the three-dimensional structure and receptor specificity of the H15 hemagglutinin, revealing distinct features and specificities that can

  17. CD147/EMMPRIN Acts as a Functional Entry Receptor for Measles Virus on Epithelial Cells▿

    Science.gov (United States)

    Watanabe, Akira; Yoneda, Misako; Ikeda, Fusako; Terao-Muto, Yuri; Sato, Hiroki; Kai, Chieko

    2010-01-01

    Measles is a highly contagious human disease caused by measles virus (MeV) and remains the leading cause of death in children, particularly in developing countries. Wild-type MeV preferentially infects lymphocytes by using signaling lymphocytic activation molecule (SLAM), whose expression is restricted to hematopoietic cells, as a receptor. MeV also infects other epithelial and neuronal cells that do not express SLAM and causes pneumonia and diarrhea and, sometimes, serious symptoms such as measles encephalitis and subacute sclerosing panencephalitis. The discrepancy between the tissue tropism of MeV and the distribution of SLAM-positive cells suggests that there are unknown receptors other than SLAM for MeV. Here we identified CD147/EMMPRIN (extracellular matrix metalloproteinase inducer), a transmembrane glycoprotein, which acts as a receptor for MeV on epithelial cells. Furthermore, we found the incorporation of cyclophilin B (CypB), a cellular ligand for CD147, in MeV virions, and showed that inhibition of CypB incorporation significantly attenuated SLAM-independent infection on epithelial cells, while it had no effect on SLAM-dependent infection. To date, MeV infection was considered to be triggered by binding of its hemagglutinin (H) protein and cellular receptors. Our present study, however, indicates that MeV infection also occurs via CD147 and virion-associated CypB, independently of MeV H. Since CD147 is expressed in a variety of cells, including epithelial and neuronal cells, this molecule possibly functions as an entry receptor for MeV in SLAM-negative cells. This is the first report among members of the Mononegavirales that CD147 is used as a virus entry receptor via incorporated CypB in the virions. PMID:20147391

  18. Population immunity to measles virus and the effect of HIV-1 infection after a mass measles vaccination campaign in Lusaka, Zambia: a cross-sectional survey.

    Science.gov (United States)

    Lowther, Sara A; Curriero, Frank C; Kalish, Brian T; Shields, Timothy M; Monze, Mwaka; Moss, William J

    2009-03-21

    Measles control efforts are hindered by challenges in sustaining high vaccination coverage, waning immunity in HIV-1-infected children, and clustering of susceptible individuals. Our aim was to assess population immunity to measles virus after a mass vaccination campaign in a region with high HIV prevalence. 3 years after a measles supplemental immunisation activity (SIA), we undertook a cross-sectional survey in Lusaka, Zambia. Households were randomly selected from a satellite image. Children aged 9 months to 5 years from selected households were eligible for enrolment. A questionnaire was administered to the children's caregivers to obtain information about measles vaccination history and history of measles. Oral fluid samples were obtained from children and tested for antibodies to measles virus and HIV-1 by EIA. 1015 children from 668 residences provided adequate specimens. 853 (84%) children had a history of measles vaccination according to either caregiver report or immunisation card. 679 children (67%) had antibodies to measles virus, and 64 (6%) children had antibodies to HIV-1. Children with antibodies to HIV-1 were as likely to have no history of measles vaccination as those without antibodies to HIV-1 (odds ratio [OR] 1.17, 95% CI 0.57-2.41). Children without measles antibodies were more likely to have never received measles vaccine than those with antibodies (adjusted OR 2.50, 1.69-3.71). In vaccinated children, 33 (61%) of 54 children with antibodies to HIV-1 also had antibodies to measles virus, compared with 568 (71%) of 796 children without antibodies to HIV-1 (p=0.1). 3 years after an SIA, population immunity to measles was insufficient to interrupt measles virus transmission. The use of oral fluid and satellite images for sampling are potential methods to assess population immunity and the timing of SIAs.

  19. Canine distemper virus neutralization activity is low in human serum and it is sensitive to an amino acid substitution in the hemagglutinin protein.

    Science.gov (United States)

    Zhang, Xinsheng; Wallace, Olivia L; Domi, Arban; Wright, Kevin J; Driscoll, Jonathan; Anzala, Omu; Sanders, Eduard J; Kamali, Anatoli; Karita, Etienne; Allen, Susan; Fast, Pat; Gilmour, Jill; Price, Matt A; Parks, Christopher L

    2015-08-01

    Serum was analyzed from 146 healthy adult volunteers in eastern Africa to evaluate measles virus (MV) and canine distemper virus (CDV) neutralizing antibody (nAb) prevalence and potency. MV plaque reduction neutralization test (PRNT) results indicated that all sera were positive for MV nAbs. Furthermore, the 50% neutralizing dose (ND50) for the majority of sera corresponded to antibody titers induced by MV vaccination. CDV nAbs titers were low and generally were detected in sera with high MV nAb titers. A mutant CDV was generated that was less sensitive to neutralization by human serum. The mutant virus genome had 10 nucleotide substitutions, which coded for single amino acid substitutions in the fusion (F) and hemagglutinin (H) glycoproteins and two substitutions in the large polymerase (L) protein. The H substitution occurred in a conserved region involved in receptor interactions among morbilliviruses, implying that this region is a target for cross-reactive neutralizing antibodies. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Host DNA synthesis-suppressing factor in culture fluid of tissue cultures infected with measles virus

    International Nuclear Information System (INIS)

    Minagawa, T.; Nakaya, C.; Iida, H.

    1974-01-01

    Host DNA synthesis is suppressed by the culture fluid of cell cultures infected with measles virus. This activity in the culture fluid is initiated somewhat later than the growth of infectious virus. Ninety percent of host DNA synthesis in HeLa cells is inhibited by culture fluid of 3-day-old cell cultures of Vero or HeLa cells infected with measles virus. This suppressing activity is not a property of the virion, but is due to nonvirion-associated componentnent which shows none of the activities of measles virus such as hemagglutination, hemolysis, or cell fusion nor does it have the antigenicity of measles virus as tested by complement-fixation or hemagglutination-inhibiting antibody blocking tests. Neutralization of the activity of this component is not attained with the pooled sera of convalescent measles patients. This component has molecular weights of about 45,000, 20,000, and 3,000 and appears to be a heat-stable protein. The production of host DNA suppressing factor (DSF) is blocked by cycloheximide. Neither uv-inactivated nor antiserum-neutralized measles virus produce DSF. Furthermore, such activity of nonvirion-associated component is not detected in the culture fluid of cultures infected with other RNA viruses such as poliovirus, vesicular stomatitis virus, or Sindbis virus. (auth)

  1. Molecular epidemiology of measles virus in Italy during 2008

    Directory of Open Access Journals (Sweden)

    Fabio Magurano

    2013-03-01

    Full Text Available INTRODUCTION. In view of the goal of measles elimination, it is of great importance to assess the circulation of wild-type measles virus (MV. Genetic analysis is indispensable to understand the epidemiology of measles. A large measles outbreak occurred in Italy in 2008, with over 4000 cases reported to the enhanced measles surveillance system introduced in 2007, 37% of which were laboratory confirmed. METHODS. Urine and saliva samples were collected during 2008. A phylogenetic analysis of measles sequences was performed in order to understand the epidemiological situation of wild-type (MV circulation in that period. RESULT AND DISCUSSION. Data showed predominant circulation of the genotype D4. Genotypes A, D8, D9 and H1 were also detected in a small number of samples, probably representing imported cases.

  2. The Measles Virus Receptor SLAMF1 Can Mediate Particle Endocytosis.

    Science.gov (United States)

    Gonçalves-Carneiro, Daniel; McKeating, Jane A; Bailey, Dalan

    2017-04-01

    The signaling lymphocyte activation molecule F1 (SLAMF1) is both a microbial sensor and entry receptor for measles virus (MeV). Herein, we describe a new role for SLAMF1 to mediate MeV endocytosis that is in contrast with the alternative, and generally accepted, model that MeV genome enters cells only after fusion at the cell surface. We demonstrated that MeV engagement of SLAMF1 induces dramatic but transient morphological changes, most prominently in the formation of membrane blebs, which were shown to colocalize with incoming viral particles, and rearrangement of the actin cytoskeleton in infected cells. MeV infection was dependent on these dynamic cytoskeletal changes as well as fluid uptake through a macropinocytosis-like pathway as chemical inhibition of these processes inhibited entry. Moreover, we identified a role for the RhoA-ROCK-myosin II signaling axis in this MeV internalization process, highlighting a novel role for this recently characterized pathway in virus entry. Our study shows that MeV can hijack a microbial sensor normally involved in bacterial phagocytosis to drive endocytosis using a complex pathway that shares features with canonical viral macropinocytosis, phagocytosis, and mechanotransduction. This uptake pathway is specific to SLAMF1-positive cells and occurs within 60 min of viral attachment. Measles virus remains a significant cause of mortality in human populations, and this research sheds new light on the very first steps of infection of this important pathogen. IMPORTANCE Measles is a significant disease in humans and is estimated to have killed over 200 million people since records began. According to current World Health Organization statistics, it still kills over 100,000 people a year, mostly children in the developing world. The causative agent, measles virus, is a small enveloped RNA virus that infects a broad range of cells during infection. In particular, immune cells are infected via interactions between glycoproteins found

  3. Seroepidemiology and phylogenetic characterisation of measles virus in Ireland, 2004-2013.

    Science.gov (United States)

    O' Riordan, Bernadette; Carr, Michael J; Connell, Jeff; Dunford, Linda; Hall, William W; Hassan, Jaythoon

    2014-08-01

    Ireland is classified as an area of high measles incidence. A World Health Organisation-European Region strategic plan exists for measles elimination by 2015. To retrospectively investigate measles outbreaks using all patient samples (sera and oral fluid) received for measles laboratory diagnosis and characterise the genetic diversity of circulating measles genotypes in Ireland. 704 cases of acute measles infection as determined by the presence of measles specific IgM in sera and oral fluids were confirmed at the National Virus Reference Laboratory. Measles positive samples (n=116) were examined by genotyping, sequence analysis and phylogenetic characterisation. Three measles outbreaks occurred over the study period: 2004, 2009/2010 and 2011. Measles IgM positivity ranged from 22-29% in outbreak years to 5-10% in the intervening years. Age profile analysis revealed that whereas individuals >10 years accounted for only 8% of cases in the 2004 outbreak, this increased to 33% and 29% in the 2009/2010 and 2011 outbreaks, respectively. The transmission and also importation events. Clade D viruses were exclusively found circulating in Ireland, with autochthonous transmission of diverse genotype D4 strains associated with large outbreaks across Europe. More recently, genotype D8 was identified and these were associated with importation events. This study provides a comprehensive genetic analysis of circulating measles genotypes in Ireland and discriminated between indigenous and imported viral strains. Notably, an increase in laboratory-confirmed measles cases in the greater than 10 years of age group was seen over the study period. This information is valuable to inform vaccination strategies with a focus on those populations who remain susceptible to measles infection. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Chimeric Hemagglutinin Constructs Induce Broad Protection against Influenza B Virus Challenge in the Mouse Model.

    Science.gov (United States)

    Ermler, Megan E; Kirkpatrick, Ericka; Sun, Weina; Hai, Rong; Amanat, Fatima; Chromikova, Veronika; Palese, Peter; Krammer, Florian

    2017-06-15

    Seasonal influenza virus epidemics represent a significant public health burden. Approximately 25% of all influenza virus infections are caused by type B viruses, and these infections can be severe, especially in children. Current influenza virus vaccines are an effective prophylaxis against infection but are impacted by rapid antigenic drift, which can lead to mismatches between vaccine strains and circulating strains. Here, we describe a broadly protective vaccine candidate based on chimeric hemagglutinins, consisting of globular head domains from exotic influenza A viruses and stalk domains from influenza B viruses. Sequential vaccination with these constructs in mice leads to the induction of broadly reactive antibodies that bind to the conserved stalk domain of influenza B virus hemagglutinin. Vaccinated mice are protected from lethal challenge with diverse influenza B viruses. Results from serum transfer experiments and antibody-dependent cell-mediated cytotoxicity (ADCC) assays indicate that this protection is antibody mediated and based on Fc effector functions. The present data suggest that chimeric hemagglutinin-based vaccination is a viable strategy to broadly protect against influenza B virus infection. IMPORTANCE While current influenza virus vaccines are effective, they are affected by mismatches between vaccine strains and circulating strains. Furthermore, the antiviral drug oseltamivir is less effective for treating influenza B virus infections than for treating influenza A virus infections. A vaccine that induces broad and long-lasting protection against influenza B viruses is therefore urgently needed. Copyright © 2017 American Society for Microbiology.

  5. Enrichment of measles virus-like RNA in the nucleocapsid fraction isolated from subacute sclerosing panencephalitis brains

    International Nuclear Information System (INIS)

    Bedows, E.; Payne, F.E.; Kohne, D.E.; Tourtellotte, W.W.

    1982-01-01

    A procedure has been developed which facilitates the detection of measles virus RNA sequences in human brains. The procedure involves isolating subviral components (nucleocapsids) from brain tissues prior to RNA purification, followed by hybridization of these RNAs to cDNA synthesized from measles virus 50 S RNA template. Using these techniques we were able to obtain an RNA fraction which was manyfold enriched in measles virus-specific RNA, relative to unfractionated subacute sclerosing panencephalitis (SSPE) brain RNAs. 70-100% of the measles virus-specific RNA present in these SSPE brain samples were recovered in this enriched fraction. (Auth.)

  6. Enrichment of measles virus-like RNA in the nucleocapsid fraction isolated from subacute sclerosing panencephalitis brains

    Energy Technology Data Exchange (ETDEWEB)

    Bedows, E; Payne, F E [Michigan Univ., Ann Arbor (USA). School of Public Health; Kohne, D E [Center for Neurologic Study, San Diego, CA, USA; Tourtellotte, W W [Neurology Service, V.A. Wadsworth Hospital Center, Los Angeles, CA, USA

    1982-02-01

    A procedure has been developed which facilitates the detection of measles virus RNA sequences in human brains. The procedure involves isolating subviral components (nucleocapsids) from brain tissues prior to RNA purification, followed by hybridization of these RNAs to cDNA synthesized from measles virus 50 S RNA template. Using these techniques we were able to obtain an RNA fraction which was manyfold enriched in measles virus-specific RNA, relative to unfractionated subacute sclerosing panencephalitis (SSPE) brain RNAs. 70-100% of the measles virus-specific RNA present in these SSPE brain samples were recovered in this enriched fraction.

  7. Measles to the Rescue: A Review of Oncolytic Measles Virus

    Directory of Open Access Journals (Sweden)

    Sarah Aref

    2016-10-01

    Full Text Available Oncolytic virotherapeutic agents are likely to become serious contenders in cancer treatment. The vaccine strain of measles virus is an agent with an impressive range of oncolytic activity in pre-clinical trials with increasing evidence of safety and efficacy in early clinical trials. This paramyxovirus vaccine has a proven safety record and is amenable to careful genetic modification in the laboratory. Overexpression of the measles virus (MV receptor CD46 in many tumour cells may direct the virus to preferentially enter transformed cells and there is increasing awareness of the importance of nectin-4 and signaling lymphocytic activation molecule (SLAM in oncolysis. Successful attempts to retarget MV by inserting genes for tumour-specific ligands to antigens such as carcinoembryonic antigen (CEA, CD20, CD38, and by engineering the virus to express synthetic microRNA targeting sequences, and “blinding” the virus to the natural viral receptors are exciting measures to increase viral specificity and enhance the oncolytic effect. Sodium iodine symporter (NIS can also be expressed by MV, which enables in vivo tracking of MV infection. Radiovirotherapy using MV-NIS, chemo-virotherapy to convert prodrugs to their toxic metabolites, and immune-virotherapy including incorporating antibodies against immune checkpoint inhibitors can also increase the oncolytic potential. Anti-viral host immune responses are a recognized barrier to the success of MV, and approaches such as transporting MV to the tumour sites by carrier cells, are showing promise. MV Clinical trials are producing encouraging preliminary results in ovarian cancer, myeloma and cutaneous non-Hodgkin lymphoma, and the outcome of currently open trials in glioblastoma multiforme, mesothelioma and squamous cell carcinoma are eagerly anticipated.

  8. External Quality Assessment for the Detection of Measles Virus by Reverse Transcription-PCR Using Armored RNA.

    Directory of Open Access Journals (Sweden)

    Dong Zhang

    Full Text Available In recent years, nucleic acid tests for detection of measles virus RNA have been widely applied in laboratories belonging to the measles surveillance system of China. An external quality assessment program was established by the National Center for Clinical Laboratories to evaluate the performance of nucleic acid tests for measles virus. The external quality assessment panel, which consisted of 10 specimens, was prepared using armored RNAs, complex of noninfectious MS2 bacteriophage coat proteins encapsulated RNA of measles virus, as measles virus surrogate controls. Conserved sequences amplified from a circulating measles virus strain or from a vaccine strain were encapsulated into these armored RNAs. Forty-one participating laboratories from 15 provinces, municipalities, or autonomous regions that currently conduct molecular detection of measles virus enrolled in the external quality assessment program, including 40 measles surveillance system laboratories and one diagnostic reagent manufacturer. Forty laboratories used commercial reverse transcription-quantitative PCR kits, with only one laboratory applying a conventional PCR method developed in-house. The results indicated that most of the participants (38/41, 92.7% were able to accurately detect the panel with 100% sensitivity and 100% specificity. Although a wide range of commercially available kits for nucleic acid extraction and reverse transcription polymerase chain reaction were used by the participants, only two false-negative results and one false-positive result were generated; these were generated by three separate laboratories. Both false-negative results were obtained with tests performed on specimens with the lowest concentration (1.2 × 104 genomic equivalents/mL. In addition, all 18 participants from Beijing achieved 100% sensitivity and 100% specificity. Overall, we conclude that the majority of the laboratories evaluated have reliable diagnostic capacities for the detection

  9. Sensitization with vaccinia virus encoding H5N1 hemagglutinin restores immune potential against H5N1 influenza virus.

    Science.gov (United States)

    Yasui, Fumihiko; Itoh, Yasushi; Ikejiri, Ai; Kitabatake, Masahiro; Sakaguchi, Nobuo; Munekata, Keisuke; Shichinohe, Shintaro; Hayashi, Yukiko; Ishigaki, Hirohito; Nakayama, Misako; Sakoda, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa; Kohara, Michinori

    2016-11-28

    H5N1 highly pathogenic avian influenza (H5N1 HPAI) virus causes elevated mortality compared with seasonal influenza viruses like H1N1 pandemic influenza (H1N1 pdm) virus. We identified a mechanism associated with the severe symptoms seen with H5N1 HPAI virus infection. H5N1 HPAI virus infection induced a decrease of dendritic cell number in the splenic extrafollicular T-cell zone and impaired formation of the outer layers of B-cell follicles, resulting in insufficient levels of antibody production after infection. However, in animals vaccinated with a live recombinant vaccinia virus expressing the H5 hemagglutinin, infection with H5N1 HPAI virus induced parafollicular dendritic cell accumulation and efficient antibody production. These results indicate that a recombinant vaccinia encoding H5 hemagglutinin gene does not impair dendritic cell recruitment and can be a useful vaccine candidate.

  10. Structure and receptor binding preferences of recombinant hemagglutinins from avian and human H6 and H10 influenza A virus subtypes.

    Science.gov (United States)

    Yang, Hua; Carney, Paul J; Chang, Jessie C; Villanueva, Julie M; Stevens, James

    2015-04-01

    During 2013, three new avian influenza A virus subtypes, A(H7N9), A(H6N1), and A(H10N8), resulted in human infections. While the A(H7N9) virus resulted in a significant epidemic in China across 19 provinces and municipalities, both A(H6N1) and A(H10N8) viruses resulted in only a few human infections. This study focuses on the major surface glycoprotein hemagglutinins from both of these novel human viruses. The detailed structural and glycan microarray analyses presented here highlight the idea that both A(H6N1) and A(H10N8) virus hemagglutinins retain a strong avian receptor binding preference and thus currently pose a low risk for sustained human infections. Human infections with zoonotic influenza virus subtypes continue to be a great public health concern. We report detailed structural analysis and glycan microarray data for recombinant hemagglutinins from A(H6N1) and A(H10N8) viruses, isolated from human infections in 2013, and compare them with hemagglutinins of avian origin. This is the first structural report of an H6 hemagglutinin, and our results should further the understanding of these viruses and provide useful information to aid in the continuous surveillance of these zoonotic influenza viruses. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Identification of measles virus genotype B3 associated with outbreaks in Islamabad, Pakistan, 2013-2015.

    Science.gov (United States)

    Zaidi, Syed Sohail Zahoor; Hameed, Abdul; Suleman Rana, Muhammad; Alam, Muhammad Masroor; Umair, Massab; Aamir, Uzma Bashir; Hussain, Maqbool; Sharif, Salmaan; Shaukat, Shahzad; Angez, Mehar; Khurshid, Adnan

    2017-11-09

    Measles virus infection remains a significant cause of childhood mortality and morbidity despite continued global efforts and the availability of a safe and effective vaccine. Molecular analysis of indigenous measles viruses could provide critical information on outbreak linkages and transmission pathways that can aid the implementation of appropriate control programs in Pakistan. Blood samples and throat swabs were collected from subjects suspected with measles in Islamabad, Pakistan from 2013 to 2015. Serum samples were tested for the presence of measles immunoglobulin M (IgM) antibodies using enzyme-linked immunosorbent assay (ELISA) while throat swabs were used for the isolation (Vero/SLAM cell line) and subsequent characterization and phylogenetic analysis of measles strains. Of 373 blood samples, 66% tested positive for measles IgM. Male subjects were more often infected (58%) than female (42%) with the highest frequency of positive cases (63%) in the 0-5-years age group. Among the positive cases, only 13% had received one or two doses of the measles vaccine, while 87% were unvaccinated. Of 80 throat swabs, 29 (36%) showed a measles virus-specific cytopathic effect (CPE) and were characterized as genotype B3 through partial sequencing of the nucleoprotein (N) gene. Phylogenetic analysis revealed the Pakistani B3 strains to be closely related to strains from neighboring countries (Iran and Afghanistan) as well as with B3 viruses from the USA, Germany, and the UK. The study results showed that despite the availability of an effective vaccine, the burden of measles infections is very high in Pakistan due to poor routine immunization coverage even in major cities, including the capital city of Islamabad. It is imperative that national health authorities take urgent strategic steps to improve routine immunization and implement adequate molecular identification methods to tackle future measles outbreaks. Copyright © 2017 The Authors. Published by Elsevier Ltd

  12. Measles vaccination of nonhuman primates provides partial protection against infection with canine distemper virus.

    Science.gov (United States)

    de Vries, Rory D; Ludlow, Martin; Verburgh, R Joyce; van Amerongen, Geert; Yüksel, Selma; Nguyen, D Tien; McQuaid, Stephen; Osterhaus, Albert D M E; Duprex, W Paul; de Swart, Rik L

    2014-04-01

    Measles virus (MV) is being considered for global eradication, which would likely reduce compliance with MV vaccination. As a result, children will grow up without MV-specific immunity, creating a potential niche for closely related animal morbilliviruses such as canine distemper virus (CDV). Natural CDV infection causing clinical signs has never been reported in humans, but recent outbreaks in captive macaques have shown that CDV can cause disease in primates. We studied the virulence and tropism of recombinant CDV expressing enhanced green fluorescent protein in naive and measles-vaccinated cynomolgus macaques. In naive animals CDV caused viremia and fever and predominantly infected CD150(+) lymphocytes and dendritic cells. Virus was reisolated from the upper and lower respiratory tracts, but infection of epithelial or neuronal cells was not detectable at the time points examined, and the infections were self-limiting. This demonstrates that CDV readily infects nonhuman primates but suggests that additional mutations are necessary to achieve full virulence in nonnatural hosts. Partial protection against CDV was observed in measles-vaccinated macaques, as demonstrated by accelerated control of virus replication and limited shedding from the upper respiratory tract. While neither CDV infection nor MV vaccination induced detectable cross-reactive neutralizing antibodies, MV-specific neutralizing antibody levels of MV-vaccinated macaques were boosted by CDV challenge infection, suggesting that cross-reactive VN epitopes exist. Rapid increases in white blood cell counts in MV-vaccinated macaques following CDV challenge suggested that cross-reactive cellular immune responses were also present. This study demonstrates that zoonotic morbillivirus infections can be controlled by measles vaccination. Throughout history viral zoonoses have had a substantial impact on human health. Given the drive toward global eradication of measles, it is essential to understand the

  13. Treatment of medulloblastoma with oncolytic measles viruses expressing the angiogenesis inhibitors endostatin and angiostatin

    International Nuclear Information System (INIS)

    Hutzen, Brian; Bid, Hemant Kumar; Houghton, Peter J; Pierson, Christopher R; Powell, Kimerly; Bratasz, Anna; Raffel, Corey; Studebaker, Adam W

    2014-01-01

    Medulloblastoma is the most common type of pediatric brain tumor. Although numerous factors influence patient survival rates, more than 30% of all cases will ultimately be refractory to conventional therapies. Current standards of care are also associated with significant morbidities, giving impetus for the development of new treatments. We have previously shown that oncolytic measles virotherapy is effective against medulloblastoma, leading to significant prolongation of survival and even cures in mouse xenograft models of localized and metastatic disease. Because medulloblastomas are known to be highly vascularized tumors, we reasoned that the addition of angiogenesis inhibitors could further enhance the efficacy of oncolytic measles virotherapy. Toward this end, we have engineered an oncolytic measles virus that express a fusion protein of endostatin and angiostatin, two endogenous and potent inhibitors of angiogenesis. Oncolytic measles viruses encoding human and mouse variants of a secretable endostatin/angiostatin fusion protein were designed and rescued according to established protocols. These viruses, known as MV-hE:A and MV-mE:A respectively, were then evaluated for their anti-angiogenic potential and efficacy against medulloblastoma cell lines and orthotopic mouse models of localized disease. Medulloblastoma cells infected by MV-E:A readily secrete endostatin and angiostatin prior to lysis. The inclusion of the endostatin/angiostatin gene did not negatively impact the measles virus’ cytotoxicity against medulloblastoma cells or alter its growth kinetics. Conditioned media obtained from these infected cells was capable of inhibiting multiple angiogenic factors in vitro, significantly reducing endothelial cell tube formation, viability and migration compared to conditioned media derived from cells infected by a control measles virus. Mice that were given a single intratumoral injection of MV-E:A likewise showed reduced numbers of tumor-associated blood

  14. Single endemic genotype of measles virus continuously circulating in China for at least 16 years.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available The incidence of measles in China from 1991 to 2008 was reviewed, and the nucleotide sequences from 1507 measles viruses (MeV isolated during 1993 to 2008 were phylogenetically analyzed. The results showed that measles epidemics peaked approximately every 3 to 5 years with the range of measles cases detected between 56,850 and 140,048 per year. The Chinese MeV strains represented three genotypes; 1501 H1, 1 H2 and 5 A. Genotype H1 was the predominant genotype throughout China continuously circulating for at least 16 years. Genotype H1 sequences could be divided into two distinct clusters, H1a and H1b. A 4.2% average nucleotide divergence was found between the H1a and H1b clusters, and the nucleotide sequence and predicted amino acid homologies of H1a viruses were 92.3%-100% and 84.7%-100%, H1b were 97.1%-100% and 95.3%-100%, respectively. Viruses from both clusters were distributed throughout China with no apparent geographic restriction and multiple co-circulating lineages were present in many provinces. Cluster H1a and H1b viruses were co-circulating during 1993 to 2005, while no H1b viruses were detected after 2005 and the transmission of that cluster has presumably been interrupted. Analysis of the nucleotide and predicted amino acid changes in the N proteins of H1a and H1b viruses showed no evidence of selective pressure. This study investigated the genotype and cluster distribution of MeV in China over a 16-year period to establish a genetic baseline before MeV elimination in Western Pacific Region (WPR. Continuous and extensive MeV surveillance and the ability to quickly identify imported cases of measles will become more critical as measles elimination goals are achieved in China in the near future. This is the first report that a single endemic genotype of measles virus has been found to be continuously circulating in one country for at least 16 years.

  15. The glycoprotein of measles virus

    International Nuclear Information System (INIS)

    Anttonen, O.; Jokinen, M.; Salmi, A.; Vainionpaeae, R.; Gahmberg, C.G.

    1980-01-01

    Measles virus was propagated in VERO cells and purified from the culture supernatants by two successive tartrate-density-gradient centrifugations. Surface carbohydrates were labelled both in vitro and in vivo with 3 H after treatment with galactose oxidase/NaB 3 H 4 or with [ 3 H]glucosamine. The major labelled glycoprotein in measles virions had a mol.wt. of 79000. After labelling with periodate/NaB 3 H 4 , which would result in specific labelling of sialic acid residues, the 79000-mol.wt. glycoprotein was very weakly labelled. This suggested that there is no or a very low amount of sialic acid in the virions. Further analysis of the glycoprotein showed that galactose is the terminal carbohydrate unit in the oligosaccharide, and the molecular weight of the glycopeptide obtained after Pronase digestion is about 3000. The oligosaccharide is attached to the polypeptide through an alkali-stable bond, indicating a N-glycosidic asparagine linkage. (author)

  16. 77 FR 63783 - Influenza Viruses Containing the Hemagglutinin from the Goose/Guangdong/1/96 Lineage

    Science.gov (United States)

    2012-10-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES 42 CFR Part 73 [Docket: CDC-2012-0010] Influenza Viruses... questions concerning highly pathogenic avian influenza (HPAI) H5N1 viruses that contain a hemagglutinin (HA... avian influenza (HPAI) H5N1 viruses with a mortality rate that exceeds 50 percent in hospitalized...

  17. Rapid Diagnostic Assay for Intact Influenza Virus Using a High Affinity Hemagglutinin Binding Protein.

    Science.gov (United States)

    Anderson, Caitlin E; Holstein, Carly A; Strauch, Eva-Maria; Bennett, Steven; Chevalier, Aaron; Nelson, Jorgen; Fu, Elain; Baker, David; Yager, Paul

    2017-06-20

    Influenza is a ubiquitous and recurring infection that results in approximately 500 000 deaths globally each year. Commercially available rapid diagnostic tests are based upon detection of the influenza nucleoprotein, which are limited in that they are unable to differentiate by species and require an additional viral lysis step. Sample preprocessing can be minimized or eliminated by targeting the intact influenza virus, thereby reducing assay complexity and leveraging the large number of hemagglutinin proteins on the surface of each virus. Here, we report the development of a paper-based influenza assay that targets the hemagglutinin protein; the assay employs a combination of antibodies and novel computationally designed, recombinant affinity proteins as the capture and detection agents. This system leverages the customizability of recombinant protein design to target the conserved receptor-binding pocket of the hemagglutinin protein and to match the trimeric nature of hemagglutinin for improved avidity. Using this assay, we demonstrate the first instance of intact influenza virus detection using a combination of antibody and affinity proteins within a porous network. The recombinant head region binder based assays yield superior analytical sensitivity as compared to the antibody based assay, with lower limits of detection of 3.54 × 10 7 and 1.34 × 10 7 CEID 50 /mL for the mixed and all binder stacks, respectively. Not only does this work describe the development of a novel influenza assay, it also demonstrates the power of recombinant affinity proteins for use in rapid diagnostic assays.

  18. Measles Virus Neutralizing Antibodies in Intravenous Immunoglobulins: Is an Increase by Revaccination of Plasma Donors Possible?

    Science.gov (United States)

    Modrof, Jens; Tille, Björn; Farcet, Maria R; McVey, John; Schreiner, Jessica A; Borders, Charles M; Gudino, Maria; Fitzgerald, Peter; Simon, Toby L; Kreil, Thomas R

    2017-11-15

    We report a screen of plasma donors confirming that widespread use of childhood measles vaccination since 1963 resulted in a decrease in average measles virus antibody titers among plasma donors, which is reflected in intravenous immunoglobulins (IVIGs). The measles virus antibody titer, however, is a potency requirement for IVIGs, as defined in a Food and Drug Administration regulation. To mitigate the decline in measles virus antibody titers in IVIGs and to ensure consistent product release, revaccination of plasma donors was investigated as a means to boost titers. However, revaccination-induced titer increases were only about 2-fold and short-lived. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  19. ANALISIS GEN HAEMAGGLUTININ PADA VIRUS CAMPAK LIAR

    Directory of Open Access Journals (Sweden)

    Subangkit Subangkit

    2015-05-01

    Full Text Available AbstrakPenyakit Campak disebabkan oleh virus campak yang termasuk genus Morbilivirus dan Family Paramyxoviridae. Penyakit campak masih menjadi masalah kesehatan karena masih ditemukan Kejadian Luar Biasa (KLB di Indonesia. Salah satu penyebab terjadinya KLB tersebut diduga sebagaiakibat perbedaan antigenesitas antara strain vaksin yang digunakan dengan strain virus campak liar yang beredar di Indonesia. Penelitian ini bertujuan mendapatkan gambaran tentang karakteristik genetik gen Haemagglutinin virus campak liar yang ada di Indonesia. Spesimen yang digunakan sebanyak 27 isolat virus penyebab KLB dari 17 propinsi selama periode tahun 2003-2010. Isolat virus dilakukan pemeriksaan secara RT-PCR dan sekuensing dengan metode Sanger. Hasil sekuensing dianalisis dengan menggunakan perangkat lunak Bioedit 7.0 dan MEGA 4.0. Hasil penelitian didapatkan perbedaan 10 asam amino antara virus campak strain vaksin CAM-70 dan virus campak liar pada posisi D416N; K424T; V451M; N455T; V466I; I473T; F476L; Y481S atau Y481N; H495N; G505D. Kesimpulan penelitian ini adalah terdapat perbedaan karakteristik genetik antara virus campak liar di Indonesia berbeda dengan strain virus vaksin CAM-70.Kata kunci : Campak, Analisis Molekuler, Hemagglutinin, CD46AbstractMeasles is caused by virus belonging to the genus Morbilivirus and Family Paramyxoviridae. Measles is still a public health problem because outbreak of measles still found in Indonesia. Outbreak is suspected as a result of differences in antigenicity between vaccine strains used with wild-type measles virus strains circulating in Indonesia. This study aims to get genetic characteristics of wild-type measles virus haemagglutinin gene in Indonesia. The specimens were used 27 viral isolates from 17 provinces period 2003-2010. Viral isolates examined by RT-PCR and sequencing with Sanger method. Sequencing analysis were conducted using Bioedit 7.0 and MEGA 4.0 software. The results showed 10 amino acid differences

  20. Rapid Titration of Measles and Other Viruses: Optimization with Determination of Replication Cycle Length

    Science.gov (United States)

    Grigorov, Boyan; Rabilloud, Jessica; Lawrence, Philip; Gerlier, Denis

    2011-01-01

    Background Measles virus (MV) is a member of the Paramyxoviridae family and an important human pathogen causing strong immunosuppression in affected individuals and a considerable number of deaths worldwide. Currently, measles is a re-emerging disease in developed countries. MV is usually quantified in infectious units as determined by limiting dilution and counting of plaque forming unit either directly (PFU method) or indirectly from random distribution in microwells (TCID50 method). Both methods are time-consuming (up to several days), cumbersome and, in the case of the PFU assay, possibly operator dependent. Methods/Findings A rapid, optimized, accurate, and reliable technique for titration of measles virus was developed based on the detection of virus infected cells by flow cytometry, single round of infection and titer calculation according to the Poisson's law. The kinetics follow up of the number of infected cells after infection with serial dilutions of a virus allowed estimation of the duration of the replication cycle, and consequently, the optimal infection time. The assay was set up to quantify measles virus, vesicular stomatitis virus (VSV), and human immunodeficiency virus type 1 (HIV-1) using antibody labeling of viral glycoprotein, virus encoded fluorescent reporter protein and an inducible fluorescent-reporter cell line, respectively. Conclusion Overall, performing the assay takes only 24–30 hours for MV strains, 12 hours for VSV, and 52 hours for HIV-1. The step-by-step procedure we have set up can be, in principle, applicable to accurately quantify any virus including lentiviral vectors, provided that a virus encoded gene product can be detected by flow cytometry. PMID:21915289

  1. In Vivo Efficacy of Measles Virus Fusion Protein-Derived Peptides Is Modulated by the Properties of Self-Assembly and Membrane Residence

    Science.gov (United States)

    Figueira, T. N.; Palermo, L. M.; Veiga, A. S.; Huey, D.; Alabi, C. A.; Santos, N. C.; Welsch, J. C.; Mathieu, C.; Niewiesk, S.; Moscona, A.

    2016-01-01

    ABSTRACT Measles virus (MV) infection is undergoing resurgence and remains one of the leading causes of death among young children worldwide despite the availability of an effective measles vaccine. MV infects its target cells by coordinated action of the MV hemagglutinin (H) and fusion (F) envelope glycoproteins; upon receptor engagement by H, the prefusion F undergoes a structural transition, extending and inserting into the target cell membrane and then refolding into a postfusion structure that fuses the viral and cell membranes. By interfering with this structural transition of F, peptides derived from the heptad repeat (HR) regions of F can inhibit MV infection at the entry stage. In previous work, we have generated potent MV fusion inhibitors by dimerizing the F-derived peptides and conjugating them to cholesterol. We have shown that prophylactic intranasal administration of our lead fusion inhibitor efficiently protects from MV infection in vivo. We show here that peptides tagged with lipophilic moieties self-assemble into nanoparticles until they reach the target cells, where they are integrated into cell membranes. The self-assembly feature enhances biodistribution and the half-life of the peptides, while integration into the target cell membrane increases fusion inhibitor potency. These factors together modulate in vivo efficacy. The results suggest a new framework for developing effective fusion inhibitory peptides. IMPORTANCE Measles virus (MV) infection causes an acute illness that may be associated with infection of the central nervous system (CNS) and severe neurological disease. No specific treatment is available. We have shown that fusion-inhibitory peptides delivered intranasally provide effective prophylaxis against MV infection. We show here that specific biophysical properties regulate the in vivo efficacy of MV F-derived peptides. PMID:27733647

  2. JST Thesaurus Headwords and Synonyms: measles virus [MeCab user dictionary for science technology term[Archive

    Lifescience Database Archive (English)

    Full Text Available MeCab user dictionary for science technology term measles virus 名詞 一般 * * * * 麻疹ウイル...ス マシンウイルス マシンウイルス Thesaurus2015 200906067469554060 C LS07 UNKNOWN_2 measles virus

  3. The molecular basis of the antigenic cross-reactivity between measles and cowpea mosaic viruses

    International Nuclear Information System (INIS)

    Olszewska, Wieslawa; Steward, Michael W.

    2003-01-01

    Two nonrelated viruses, cowpea mosaic virus (wtCPMV) and measles virus (MV), were found to induce cross-reactive antibodies. The nature of this cross-reactivity was studied and results are presented here demonstrating that antiserum raised against wtCPMV reacted with peptide from the fusion (F) protein of MV. Furthermore, the F protein of MV was shown to share an identical conformational B cell epitope with the small subunit of CPMV coat protein. Passive transfer of anti-wtCPMV antibodies into BALB/c mice conferred partial protection against measles virus induced encephalitis. The results are discussed in the context of cross-protection

  4. Measles Virus Fusion Protein: Structure, Function and Inhibition

    Directory of Open Access Journals (Sweden)

    Philippe Plattet

    2016-04-01

    Full Text Available Measles virus (MeV, a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options.

  5. Preparation and characterization of high-specific activity radiolabeled 50 S measles virus RNA

    International Nuclear Information System (INIS)

    Spruance, S.L.; Ashton, B.N.; Smith, C.B.

    1980-01-01

    A method is described to radiolabeled measles virus RNA for hybridization studies. Tritiated nucleosides were added to the media of measles virus infected Vero cells and negative-strand (genome) RNA with a specific activity of 6X10 5 c.p.m./μg was purified from viral nucleocapsids. 50 S RNA was the sole RNA present in nucleocapsids and self-annealed to 50% due to the presence of 25% 50 S plus-strands (anti-genomes). (Auth.)

  6. Single Endemic Genotype of Measles Virus Continuously Circulating in China for at Least 16 Years

    Science.gov (United States)

    Wang, Huiling; Zhu, Zhen; Ji, Yixin; Liu, Chunyu; Zhang, Xiaojie; Sun, Liwei; Zhou, Jianhui; Lu, Peishan; Hu, Ying; Feng, Daxing; Zhang, Zhenying; Wang, Changyin; Fang, Xueqiang; Zheng, Huanying; Liu, Leng; Sun, Xiaodong; Tang, Wei; Wang, Yan; Liu, Yan; Gao, Hui; Tian, Hong; Ma, Jiangtao; Gu, Suyi; Wang, Shuang; Feng, Yan; Bo, Fang; Liu, Jianfeng; Si, Yuan; Zhou, Shujie; Ma, Yuyan; Wu, Shengwei; Zhou, Shunde; Li, Fangcai; Ding, Zhengrong; Yang, Zhaohui; Rota, Paul A.; Featherstone, David; Jee, Youngmee; Bellini, William J.; Xu, Wenbo

    2012-01-01

    The incidence of measles in China from 1991 to 2008 was reviewed, and the nucleotide sequences from 1507 measles viruses (MeV) isolated during 1993 to 2008 were phylogenetically analyzed. The results showed that measles epidemics peaked approximately every 3 to 5 years with the range of measles cases detected between 56,850 and 140,048 per year. The Chinese MeV strains represented three genotypes; 1501 H1, 1 H2 and 5 A. Genotype H1 was the predominant genotype throughout China continuously circulating for at least 16 years. Genotype H1 sequences could be divided into two distinct clusters, H1a and H1b. A 4.2% average nucleotide divergence was found between the H1a and H1b clusters, and the nucleotide sequence and predicted amino acid homologies of H1a viruses were 92.3%–100% and 84.7%–100%, H1b were 97.1%–100% and 95.3%–100%, respectively. Viruses from both clusters were distributed throughout China with no apparent geographic restriction and multiple co-circulating lineages were present in many provinces. Cluster H1a and H1b viruses were co-circulating during 1993 to 2005, while no H1b viruses were detected after 2005 and the transmission of that cluster has presumably been interrupted. Analysis of the nucleotide and predicted amino acid changes in the N proteins of H1a and H1b viruses showed no evidence of selective pressure. This study investigated the genotype and cluster distribution of MeV in China over a 16-year period to establish a genetic baseline before MeV elimination in Western Pacific Region (WPR). Continuous and extensive MeV surveillance and the ability to quickly identify imported cases of measles will become more critical as measles elimination goals are achieved in China in the near future. This is the first report that a single endemic genotype of measles virus has been found to be continuously circulating in one country for at least 16 years. PMID:22532829

  7. Measles

    Science.gov (United States)

    Measles is an infectious disease caused by a virus. It spreads easily from person to person. It ... down Tiny white spots inside the mouth Sometimes measles can lead to serious problems. There is no ...

  8. The Ondersteport Canine distemper virus strain and measles ...

    African Journals Online (AJOL)

    Three groups of dogs aged three months each were used in an experiment to assess efficacy of imported Canine distemper vaccine (Ondersteport strain) and measles vaccine in protecting Nigerian dogs against local isolates of Canine distemper virus. Each group consisted of four randomly selected puppies. One group ...

  9. Occurrence of measles in a country with elimination status: Amplifying measles infection in hospitalized children due to imported virus.

    Science.gov (United States)

    Eom, HyeEun; Park, YoungJoon; Kim, JooWhee; Yang, Jeong-Sun; Kang, HaeJi; Kim, Kisoon; Chun, Byung Chul; Park, Ok; Hong, Jeong Ik

    2018-01-01

    The Republic of Korea declared measles elimination in 2006. However, a measles outbreak occurred in 2013. This study aimed to identify the epidemiological characteristics of the sources of infection and the pattern of measles transmission in 2013 in South Korea. We utilized surveillance data, epidemiological data, immunization registry data, and genetic information. We describe the epidemiological characteristics of all measles case patients (sex, age distribution, vaccination status, sources of infection) as well as details of the outbreak (the pattern of transmission, duration, mean age of patients, and generation time). In 2013, a total of 107 measles cases were notified. Most patients were infants (43.0%) and unvaccinated individuals (60.7%). We identified 4 imported and 103 import-related cases. A total of 105 cases were related to four outbreaks that occurred in Gyeongnam, northern Gyeonggi, southern Gyeonggi, and Seoul. The predominant circulating genotype was B3 type, which was identified in the Gyeongnam, northern Gyeonggi, and southern Gyeonggi outbreaks. The B3 type had not been in circulation in South Korea in the previous 3 years; virologic evidence suggests that these outbreaks were import-related. Most measles cases in South Korea have been associated with imported measles virus. Although Korea has maintained a high level of herd immunity, clustering of susceptible people can cause such measles outbreaks.

  10. Implementation of a National Measles Elimination Program in Iran: Phylogenetic Analysis of Measles Virus Strains Isolated during 2010–2012 Outbreaks

    Science.gov (United States)

    Salimi, Vahid; Abbasi, Simin; Zahraei, Seyed Mohsen; Fatemi-Nasab, Ghazal; Adjaminezhad-Fard, Fatemeh; Shadab, Azadeh; Ghavami, Nastaran; Zareh-Khoshchehre, Raziyeh; Soltanshahi, Rambod; Bont, Louis; Mokhtari-Azad, Talat

    2014-01-01

    Measles virus (MV) causes small and large outbreaks in Iran. Molecular assays allow identifying and the sources of measles imported from neighboring countries. We carried out a phylogenetic analysis of measles virus circulating in Iran over the period 2010–2012. Specimens from suspected cases of measles were collected from different regions of Iran. Virus isolation was performed on urine and throat swabs. Partial nucleoprotein gene segments of MV were amplified by RT-PCR. PCR products of 173 samples were sequenced and analyzed. The median age of confirmed cases was 2 years. Among all confirmed cases, 32% had unknown vaccination status, 20% had been vaccinated, and 48% had not been vaccinated. Genotypes B3 and D8 (for the first time), H1 and D4 were detected mainly in unvaccinated toddlers and young children. Genotype B3 became predominant in 2012 and was closely related to African strains. H1 strains were also found in small and large outbreaks during 2012 but were not identical to Iranian H1-2009 strains. A majority of the Iranian D4 strains during 2010–2012 outbreaks were linked to the D4 strain identified in the Pakistan in 2007. We identified a single case in 2010 belonging to D8 genotype with 99.7% identity to Indian isolates. Although the vaccination program is currently good enough to prevent nationwide epidemics and successfully decreased measles incidence in Iran, the fraction of protected individuals in the population was not high enough to prevent continuous introduction of cases from abroad. Due to increasing number of susceptible individuals in some areas, sustained transmission of the newly introduced viral genotype remains possible. PMID:24736720

  11. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls.

    NARCIS (Netherlands)

    R.A.M. Fouchier (Ron); V.J. Munster (Vincent); A. Wallensten (Anders); T.M. Bestebroer (Theo); S. Herfst (Sander); D.J. Smith (Derek James); G.F. Rimmelzwaan (Guus); B. Olsen (Björn); A.D.M.E. Osterhaus (Albert)

    2005-01-01

    textabstractIn wild aquatic birds and poultry around the world, influenza A viruses carrying 15 antigenic subtypes of hemagglutinin (HA) and 9 antigenic subtypes of neuraminidase (NA) have been described. Here we describe a previously unidentified antigenic subtype of HA (H16), detected in viruses

  12. A measles outbreak in Sindh, Pakistan caused by a genotype B3 virus.

    Science.gov (United States)

    Zaidi, Syed Sohail Zahoor; Hameed, Abdul; Ali, Naeem; Umair, Massab; Alam, Muhammad Masroor; Rana, Muhammad Suleman; Sharif, Salmaan; Aamir, Uzma Bashir; Shaukat, Shahzad; Angez, Mehar; Khurshid, Adnan; Akhtar, Ribqa; Mehmood, Nayab; Badar, Nazish

    2017-12-01

    Measles continues to be a major public health issue causing substantial outbreaks worldwide, mostly affecting young children. Molecular analysis of measles viruses provides important information on outbreak linkages and transmission pathways that can be helpful towards implementation of appropriate control programs. In Pakistan, the control of measles is still tenuous, and progress towards elimination has been irregular and challenging. In the 2013 measles outbreak we received 4,682 sera collected from suspected patients in 23 districts across Sindh. A total of 3,283 samples were confirmed measles positive using IgM ELISA with the highest infection rate in children aged 1-12 months. Males were more affected than females and a visible peak was observed from January to April. Among the 3,283 cases, 59.1% were unvaccinated, 29.6% had received 1 dose and 10.3% had received 2 doses of measles vaccine while 0.85% had an unknown vaccination status. For genotype detection and phylogenetic analysis, 60 throat swab samples were collected from suspected patients below 15 years of age in eight districts of Sindh province. Forty four (73%; 44/60) throat swab samples were successfully genotyped using RT-PCR. Phylogenetic analyses based on partial sequences of the nucleocapsid protein gene revealed that all Pakistani measles virus strains belonged to genotype B3 and were closely related to those isolated from neighboring countries such as Iran, Afghanistan (99.1-100%) and India with 98.6 - 99.6% nucleotide homology. This is the first report on the phylogenetic analysis of measles B3 genotype strains from Pakistan and highlights the need for strengthening the surveillance systems and improving immunization coverage across the country.

  13. Not all that rashes is measles:

    International Nuclear Information System (INIS)

    Ibrahim, S. A.; Mustafa, O. A.

    1998-01-01

    Measles is a major cause of infant mortality in third world countries, leading to approximately one million deaths each year. The WHO aims to globally eradicate measles virus at the beginning of the next century, which will need a major effort in particular in countries like Sudan. To achieve goal epidemiological studies I am needed to estimate the magnitude of the problem for which accurate diagnostic test are needed. We therefore conducted a study in El hag Yousif area (population 500 000) in Khartoum North where measles is prevalent despite vaccination effort by EPI. We studied the accuracy of the WHO criteria for clinical diagnosis in comparison with laboratory diagnosis during a one-year period. A total of 145 under five suspected measles cases were identified by active, case finding and examined. 111 cases fully complied with the WHO criteria for diagnosis of clinical measles. Out of 103 clinical measles cases, tested using prototype rapid measles test IgM Elisa and Pcr, 77(75%) were measles positive. A battery of virus test was run on 21 sera out of the 26(25%) measles negatives: Herpes virus-6, Epstein-Bar and Dengue viruses were detected in five, one and one case, respectively. It was concluded that one out of every four cases diagnosed by the clinical as measles rash is probably caused by other viruses. (Author)

  14. Wild type measles virus attenuation independent of type I IFN

    Directory of Open Access Journals (Sweden)

    Horvat Branka

    2008-02-01

    Full Text Available Abstract Background Measles virus attenuation has been historically performed by adaptation to cell culture. The current dogma is that attenuated virus strains induce more type I IFN and are more resistant to IFN-induced protection than wild type (wt. Results The adaptation of a measles virus isolate (G954-PBL by 13 passages in Vero cells induced a strong attenuation of this strain in vivo. The adapted virus (G954-V13 differs from its parental strain by only 5 amino acids (4 in P/V/C and 1 in the M gene. While a vaccine strain, Edmonston Zagreb, could replicate equally well in various primate cells, both G954 strains exhibited restriction to the specific cell type used initially for their propagation. Surprisingly, we observed that both G954 strains induced type I IFN, the wt strain inducing even more than the attenuated ones, particularly in human plasmacytoid Dendritic Cells. Type I IFN-induced protection from the infection of both G954 strains depended on the cell type analyzed, being less efficient in the cells used to grow the viral strain. Conclusion Thus, mutations in M and P/V/C proteins can critically affect MV pathogenicity, cellular tropism and lead to virus attenuation without interfering with the α/β IFN system.

  15. The role of carbohydrate in determining the immunochemical properties of the hemagglutinin of influenza A virus

    International Nuclear Information System (INIS)

    Gitelman, A.K.; Berezin, V.A.; Kharitonenkov, I.G.

    1981-01-01

    Most of the carbohydrate was removed from influenza with MRC II (H3N2) and its purified hemagglutinin (HA) on treatment with glycosidases, including α-mannosidase, #betta#-N-acetylglucosaminidase, #betta#-galactosidase and α-fucosidase. The release of 50 per cent of the carbohydrate from intact virus particles significantly affected hemagglutinating activity. The ability of untreated and glycosidase-treated virus to inhibit the binding of antibodies directed against the hemagglutinin was almost indistinguishable by competitive radioimmunoassay (RIA). Up to 60 per cent of the carbohydrate from the purified HA of influenza virus could be removed. The antigenicity of glycosidase treated HA molecules decreased 8-fold compared to intact HAs as measured by competitive RIA. In addition, glycosidase digestion of 125 I-labeled HA resulted in a decrease in its reactivity in direct RIA. We conclude that the carbohydrate portion of the HA of influenza virus is not of major importance in defining the antigenicity of HA. (Author)

  16. Purification and production of monospecific antibody to the hemagglutinin from Subtype H5N1 influenza virus

    Directory of Open Access Journals (Sweden)

    Simson Tarigan

    2010-12-01

    Full Text Available The purpose of this study was to purify the hemagglutinin from H5N1 virus and to generate monospecific antibody appropriate for production of sensitive and specific immunoassay for H5N1 avian influenza. For this purpose, a local isolate H5N1 virus (A/Ck/West Java/Hamd/2006 was propagated in chicken embryos. The viral pellet was dissolved in a Triton-X-100 solution, undissolved viral particles were pelleted by ultracentrifuge, and the supernatant containing viral surface glycoproteins (Hemagglutinin and neuraminidase was collected. The neuraminidase in the supernatant was absorbed by passing the supernatant through an Oxamic-acid-superose column. After dialyzing extensively, the filtrate was further fractionated with an anion exchange chromatography (Q-sepharose column. Proteins adsorbed by the column were eluted stepwisely with 0.10, 0.25, 0.25 and 0.75 M NaCl in 20 mM Tris, ph 8. Hemagglutinin (H5 was found to be eluted from the column with the 0.5 M NaCl elution buffer. The purified H5 was free from other viral proteins based on immunoassays using commercial antibodies to H5N1 nucleoprotein and neuraminidase. When used as ELISA’s coating antigen, the purified H5 proved to be sensitive and specific for hemagglutinin H5. Cross reactions with other type-A-influenza virus, H6, H7 dan H9, were negligibly low. For the production of monospecific antiserum, the purified H5 was separated with SDS-PAGE, the band containing the H5 monomer was cut out , homogenised and injected into rabbits. The antiserum was capable of detecting the presence of inactivated H5N1 virus in a very dilute suspension, with a detection limit of 0.04 heagglutination (HA unit. The purified hemagglutinin and the serum raised against it should be useful for developing specific, sensitive and affordable immunoassay for H5N1 avian influenza.

  17. Antagonism of the Phosphatase PP1 by the Measles Virus V Protein Is Required for Innate Immune Escape of MDA5

    NARCIS (Netherlands)

    Davis, Meredith E.; Wang, May K.; Rennick, Linda J.; Full, Florian; Gableske, Sebastian; Mesman, Annelies W.; Gringhuis, Sonja I.; Geijtenbeek, Teunis B. H.; Duprex, W. Paul; Gack, Michaela U.

    2014-01-01

    The cytosolic sensor MDA5 is crucial for antiviral innate immune defense against various RNA viruses including measles virus; as such, many viruses have evolved strategies to antagonize the antiviral activity of MDA5. Here, we show that measles virus escapes MDA5 detection by targeting the

  18. Identification of Key Residues in Virulent Canine Distemper Virus Hemagglutinin That Control CD150/SLAM-Binding Activity▿

    Science.gov (United States)

    Zipperle, Ljerka; Langedijk, Johannes P. M.; Örvell, Claes; Vandevelde, Marc; Zurbriggen, Andreas; Plattet, Philippe

    2010-01-01

    Morbillivirus cell entry is controlled by hemagglutinin (H), an envelope-anchored viral glycoprotein determining interaction with multiple host cell surface receptors. Subsequent to virus-receptor attachment, H is thought to transduce a signal triggering the viral fusion glycoprotein, which in turn drives virus-cell fusion activity. Cell entry through the universal morbillivirus receptor CD150/SLAM was reported to depend on two nearby microdomains located within the hemagglutinin. Here, we provide evidence that three key residues in the virulent canine distemper virus A75/17 H protein (Y525, D526, and R529), clustering at the rim of a large recessed groove created by β-propeller blades 4 and 5, control SLAM-binding activity without drastically modulating protein surface expression or SLAM-independent F triggering. PMID:20631152

  19. Potent Inhibitors against Newcastle Disease Virus Hemagglutinin-Neuraminidase.

    Science.gov (United States)

    Rota, Paola; La Rocca, Paolo; Piccoli, Marco; Montefiori, Marco; Cirillo, Federica; Olsen, Lars; Orioli, Marica; Allevi, Pietro; Anastasia, Luigi

    2018-02-06

    Neuraminidase activity is essential for the infection and propagation of paramyxoviruses, including human parainfluenza viruses (hPIVs) and the Newcastle disease virus (NDV). Thus, many inhibitors have been developed based on the 2-deoxy-2,3-didehydro-d-N-acetylneuraminic acid inhibitor (DANA) backbone. Along this line, herein we report a series of neuraminidase inhibitors, having C4 (p-toluenesulfonamido and azido substituents) and C5 (N-perfluorinated chains) modifications to the DANA backbone, resulting in compounds with 5- to 15-fold greater potency than the currently most active compound, the N-trifluoroacetyl derivative of DANA (FANA), toward the NDV hemagglutinin-neuraminidase (NDV-HN). Remarkably, these inhibitors were found to be essentially inactive against the human sialidase NEU3, which is present on the outer layer of the cell membrane and is highly affected by the current NDV inhibitor FANA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Naturally processed measles virus peptide eluted from class II HLA-DRB1*03 recognized by T lymphocytes from human blood

    International Nuclear Information System (INIS)

    Ovsyannikova, Inna G.; Johnson, Kenneth L.; Naylor, Stephen; Muddiman, David C.; Poland, Gregory A.

    2003-01-01

    This is the first report of the direct identification of a HLA-DRB1*03 measles-derived peptide from measles virus infected EBV-transformed B cells. We purified HLA-DR3-peptide complexes from EBV-B cells infected with measles virus (Edmonston strain) and sequenced the HLA-DR3-peptides by mass spectrometry. A class II peptide, derived from a measles phosphoprotein, ASDVETAEGGEIHELLRLQ (P1, residues 179-197), exhibited the capacity to stimulate peripheral blood mononuclear cells to proliferate. Our data provides direct evidence that the antigenic peptide of measles virus was processed by antigen-presenting cells, presented in the context of HLA class II molecules, and was recognized by peripheral blood T cells from healthy individuals previously immunized with measles vaccine. The approach described herein provides a useful methodology for the future identification of HLA-presented pathogen-derived epitopes using mass spectrometry. The study of cell-mediated immune responses to the measles-derived peptide in immune persons should provide significant insight into the design and development of new vaccines

  1. Spread of Measles Virus D4-Hamburg, Europe, 2008–2011

    Science.gov (United States)

    Mihneva, Zefira; Gold, Hermann; Baumgarte, Sigrid; Baillot, Armin; Helble, Rudolph; Roggendorf, Hedwig; Bosevska, Golubinka; Nedeljkovic, Jasminka; Makowka, Agata; Hutse, Veronik; Holzmann, Heidemarie; Aberle, Stefan W.; Cordey, Samuel; Necula, Gheorghe; Mentis, Andreas; Korukluoğlu, Gulay; Carr, Michael; Brown, Kevin E.; Hübschen, Judith M.; Muller, Claude P.; Mulders, Mick N.; Santibanez, Sabine

    2011-01-01

    A new strain of measles virus, D4-Hamburg, was imported from London to Hamburg in December 2008 and subsequently spread to Bulgaria, where an outbreak of >24,300 cases was observed. We analyzed spread of the virus to demonstrate the importance of addressing hard-to-reach communities within the World Health Organization European Region regarding access to medical care and vaccination campaigns. The D4-Hamburg strain appeared during 2009–2011 in Poland, Ireland, Northern Ireland, Austria, Greece, Romania, Turkey, Macedonia, Serbia, Switzerland, and Belgium and was repeatedly reimported to Germany. The strain was present in Europe for >27 months and led to >25,000 cases in 12 countries. Spread of the virus was prevalently but not exclusively associated with travel by persons in the Roma ethnic group; because this travel extends beyond the borders of any European country, measures to prevent the spread of measles should be implemented by the region as a whole. PMID:21801615

  2. Vaccination against measles: a neverending story.

    NARCIS (Netherlands)

    K.J. Stittelaar (Koert); R.L. de Swart (Rik); A.D.M.E. Osterhaus (Albert)

    2002-01-01

    textabstractMeasles, a highly contagious viral disease, is a major childhood killer in developing countries, accounting for almost 1 million deaths every year globally. Measles virus normally does not cause a persistent infection, no animal reservoir for measles virus exists, no vector is involved

  3. Viral Oncolysis — Can Insights from Measles Be Transferred to Canine Distemper Virus?

    Directory of Open Access Journals (Sweden)

    Stefanie Lapp

    2014-06-01

    Full Text Available Neoplastic diseases represent one of the most common causes of death among humans and animals. Currently available and applied therapeutic options often remain insufficient and unsatisfactory, therefore new and innovative strategies and approaches are highly needed. Periodically, oncolytic viruses have been in the center of interest since the first anecdotal description of their potential usefulness as an anti-tumor treatment concept. Though first reports referred to an incidental measles virus infection causing tumor regression in a patient suffering from lymphoma several decades ago, no final treatment concept has been developed since then. However, numerous viruses, such as herpes-, adeno- and paramyxoviruses, have been investigated, characterized, and modified with the aim to generate a new anti-cancer treatment option. Among the different viruses, measles virus still represents a highly interesting candidate for such an approach. Numerous different tumors of humans including malignant lymphoma, lung and colorectal adenocarcinoma, mesothelioma, and ovarian cancer, have been studied in vitro and in vivo as potential targets. Moreover, several concepts using different virus preparations are now in clinical trials in humans and may proceed to a new treatment option. Surprisingly, only few studies have investigated viral oncolysis in veterinary medicine. The close relationship between measles virus (MV and canine distemper virus (CDV, both are morbilliviruses, and the fact that numerous tumors in dogs exhibit similarities to their human counterpart, indicates that both the virus and species dog represent a highly interesting translational model for future research in viral oncolysis. Several recent studies support such an assumption. It is therefore the aim of the present communication to outline the mechanisms of morbillivirus-mediated oncolysis and to stimulate further research in this potentially expanding field of viral oncolysis in a highly

  4. Viral Oncolysis — Can Insights from Measles Be Transferred to Canine Distemper Virus?

    Science.gov (United States)

    Lapp, Stefanie; Pfankuche, Vanessa M.; Baumgärtner, Wolfgang; Puff, Christina

    2014-01-01

    Neoplastic diseases represent one of the most common causes of death among humans and animals. Currently available and applied therapeutic options often remain insufficient and unsatisfactory, therefore new and innovative strategies and approaches are highly needed. Periodically, oncolytic viruses have been in the center of interest since the first anecdotal description of their potential usefulness as an anti-tumor treatment concept. Though first reports referred to an incidental measles virus infection causing tumor regression in a patient suffering from lymphoma several decades ago, no final treatment concept has been developed since then. However, numerous viruses, such as herpes-, adeno- and paramyxoviruses, have been investigated, characterized, and modified with the aim to generate a new anti-cancer treatment option. Among the different viruses, measles virus still represents a highly interesting candidate for such an approach. Numerous different tumors of humans including malignant lymphoma, lung and colorectal adenocarcinoma, mesothelioma, and ovarian cancer, have been studied in vitro and in vivo as potential targets. Moreover, several concepts using different virus preparations are now in clinical trials in humans and may proceed to a new treatment option. Surprisingly, only few studies have investigated viral oncolysis in veterinary medicine. The close relationship between measles virus (MV) and canine distemper virus (CDV), both are morbilliviruses, and the fact that numerous tumors in dogs exhibit similarities to their human counterpart, indicates that both the virus and species dog represent a highly interesting translational model for future research in viral oncolysis. Several recent studies support such an assumption. It is therefore the aim of the present communication to outline the mechanisms of morbillivirus-mediated oncolysis and to stimulate further research in this potentially expanding field of viral oncolysis in a highly suitable

  5. Epidemiology of two large measles virus outbreaks in Catalonia

    Science.gov (United States)

    Torner, Núria; Anton, Andres; Barrabeig, Irene; Lafuente, Sara; Parron, Ignasi; Arias, César; Camps, Neus; Costa, Josep; Martínez, Ana; Torra, Roser; Godoy, Pere; Minguell, Sofia; Ferrús, Glòria; Cabezas, Carmen; Domínguez, Ángela; Elimination Program Surveillance Network of Spain, the Measles

    2013-01-01

    Measles cases in the European Region have been increasing in the last decade; this illustrates the challenge of what we are now encountering in the form of pediatric preventable diseases. In Catalonia, autochthonous measles was declared eliminated in the year 2000 as the result of high measles-mumps-rubella vaccine (MMR) coverage for first and second dose (15 mo and 4 y) since the mid-1990s. From then on, sporadic imported cases and small outbreaks appeared, until in 2006–2007 a large measles outbreak affecting mostly unvaccinated toddlers hit the Barcelona Health Region. Consequently, in January 2008, first dose administration of MMR was lowered from 15 to 12 mo of age. A new honeymoon period went by until the end of 2010, when several importations of cases triggered new sustained transmission of different wild measles virus genotypes, but this time striking young adults. The aim of this study is to show the effect of a change in MMR vaccination schedule policy, and the difference in age incidence and hospitalization rates of affected individuals between both outbreaks. Epidemiologic data were obtained by case interviews and review of medical records. Samples for virological confirmation and genotyping of cases were collected as established in the Measles Elimination plan guidelines. Incidence rate (IR), rate ratio (RR) and their 95% CI and hospitalization rate (HR) by age group were determined. Statistic z was used for comparing proportions. Total number of confirmed cases was 305 in the 2010 outbreak and 381 in the 2006–2007 outbreak; mean age 20 y (SD 14.8 y; 3 mo to 51 y) vs. 15 mo (SD 13.1 y; 1 mo to 50 y). Highest proportion of cases was set in ≥ 25 y (47%) vs. 24.2% in 2006 (p < 0.001). Differences in IR for ≤ 15 mo (49/100,000 vs. 278.2/100,000; RR: 3,9; 95%CI 2,9–5.4) and in overall HR 29.8% vs. 15.7% were all statistically significant (p < 0.001). The change of the month of age for the administration of the first MMR dose proved successful to

  6. Vaccination against acute respiratory virus infections and measles in man.

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); P. de Vries (Petra)

    1992-01-01

    textabstractSeveral viruses may cause more or less severe acute respiratory infections in man, some of which are followed by systemic infection. Only for influenza and measles are licensed vaccines available at present. The protection induced by influenza vaccines, which are based on inactivated

  7. Roll of hemagglutinin gene in the biology of avian inflenza virus

    Directory of Open Access Journals (Sweden)

    Masoud Soltanialvar

    2016-06-01

    Full Text Available The hemagglutinin (HA, the major envelope glycoprotein of influenza, plays an important role during the early stage of infection, and changes in the HA gene prior to the emergence of pathogenic avian influenza viruses. The HA protein controls viral entry through membrane fusion of the viral envelope with the host cell membrane and allows the genetic information released to initiate new virus synthesis. Sharp antigenic variation of HA remains the critical challenge to the development of effective vaccines. Therefore, we highlight the role of HA in need of review: structure of HA, the fusion process and the HA receptor binding specificity in interspecies transmission and the impact of multiple mutations at antigenic sites and host antibodies to the parental virus, and the host susceptibility to productive infection by the drift strains.

  8. Structural and mechanistic studies of measles virus illuminate paramyxovirus entry.

    Directory of Open Access Journals (Sweden)

    Richard K Plemper

    2011-06-01

    Full Text Available Measles virus (MeV, a member of the paramyxovirus family of enveloped RNA viruses and one of the most infectious viral pathogens identified, accounts for major pediatric morbidity and mortality worldwide although coordinated efforts to achieve global measles control are in place. Target cell entry is mediated by two viral envelope glycoproteins, the attachment (H and fusion (F proteins, which form a complex that achieves merger of the envelope with target cell membranes. Despite continually expanding knowledge of the entry strategies employed by enveloped viruses, our molecular insight into the organization of functional paramyxovirus fusion complexes and the mechanisms by which the receptor binding by the attachment protein triggers the required conformational rearrangements of the fusion protein remain incomplete. Recently reported crystal structures of the MeV attachment protein in complex with its cellular receptors CD46 or SLAM and newly developed functional assays have now illuminated some of the fundamental principles that govern cell entry by this archetype member of the paramyxovirus family. Here, we review these advances in our molecular understanding of MeV entry in the context of diverse entry strategies employed by other members of the paramyxovirus family.

  9. Engineered measles virus Edmonston strain used as a novel oncolytic viral system against human hepatoblastoma

    International Nuclear Information System (INIS)

    Zhang, Shu-Cheng; Wang, Wei-Lin; Cai, Wei-Song; Jiang, Kai-Lei; Yuan, Zheng-Wei

    2012-01-01

    Hepatoblastoma (HB) is the most common primary, malignant pediatric liver tumor in children. The treatment results for affected children have markedly improved in recent decades. However, the prognosis for high-risk patients who have extrahepatic extensions, invasion of the large hepatic veins, distant metastases and very high alpha-fetoprotein (AFP) serum levels remains poor. There is an urgent need for the development of novel therapeutic approaches. An attenuated strain of measles virus, derived from the Edmonston vaccine lineage, was genetically engineered to produce carcinoembryonic antigen (CEA). We investigated the antitumor potential of this novel viral agent against human HB both in vitro and in vivo. Infection of the Hep2G and HUH6 HB cell lines, at multiplicities of infection (MOIs) ranging from 0.01 to 1, resulted in a significant cytopathic effect consisting of extensive syncytia formation and massive cell death at 72–96 h after infection. Both of the HB lines overexpressed the measles virus receptor CD46 and supported robust viral replication, which correlated with CEA production. The efficacy of this approach in vivo was examined in murine Hep2G xenograft models. Flow cytometry assays indicated an apoptotic mechanism of cell death. Intratumoral administration of MV-CEA resulted in statistically significant delay of tumor growth and prolongation of survival. The engineered measles virus Edmonston strain MV-CEA has potent therapeutic efficacy against HB cell lines and xenografts. Trackable measles virus derivatives merit further exploration in HB treatment

  10. Measles virus polypeptides in purified virions and in infected cells

    International Nuclear Information System (INIS)

    Vainionpaeae, R.; Ziola, B.; Salmi, A.

    1978-01-01

    A wild-type measles virus was radiolabeled during growth in VERO cells and purified by two successive potassium tartrate gradient centrifugations. The virion polypeptide composition was determined by SDS-polyacrylamide gel electrophoresis employing two different buffer systems. Six virus-specific polypeptides were consistently detected. The largest (L) had a molecular weight (MW) of greater than 150,000. The second largest polypeptide, G (MW 79,000), was the only glycoprotein found. The proteins designated polypeptide 2 (MW 66 to 70,000) and nucleocapsid protein or NP (MW 61,000) were phosphorylated. The remaining virus-coded proteins were polypeptide 5 (MW 40,000) and the matrix or M protein (MW 37,000). Measles virions also contained a polypeptide (MW 42,000) thought to be actin due to co-migration with this component of uninfected cells. Analysis of in vitro 3 H-acetic anhydride radiolabeled virions confirmed the presence of these seven polypeptides. Acetic anhydride also labeled a protein designated polypeptide 4 (MW 53,000) which was not consistently radiolabeled in vivo, as well as several other minor proteins believed to be cellular in origin. Synthesis of the six virus-specific structural polypeptides was detected in lysates of infected cells by SDS-polyacrylamide slab gel electrophoresis. Virus specificity of polypeptide 4 could not be confirmed due to the similar MW of several cellular polypeptides. Two non-virion, but virus-specified polypeptides, of MW 38,000 and 18,000 were also detected. Synthesis of the virus structural proteins was in the same proportions as the polypeptides found in virions except for under production of polypeptide G and over production of polypeptide 2. (author)

  11. Advances in the design and development of oncolytic measles viruses

    Directory of Open Access Journals (Sweden)

    Hutzen B

    2015-08-01

    Full Text Available Brian Hutzen,1 Corey Raffel,2 Adam W Studebaker1 1Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA; 2Department of Neurological Surgery and Pediatrics, University of California, San Francisco, San Francisco, CA, USA Abstract: A successful oncolytic virus is one that selectively propagates and destroys cancerous tissue without causing excessive damage to the normal surrounding tissue. Oncolytic measles virus (MV is one such virus that exhibits this characteristic and thus has rapidly emerged as a potentially useful anticancer modality. Derivatives of the Edmonston MV vaccine strain possess a remarkable safety record in humans. Promising results in preclinical animal models and evidence of biological activity in early phase trials contribute to the enthusiasm. Genetic modifications have enabled MV to evolve from a vaccine agent to a potential anticancer therapy. Specifically, alterations of the MV genome have led to improved tumor selectivity and delivery, therapeutic potency, and immune system modulation. In this article, we will review the advancements that have been made in the design and development of MV that have led to its use as a cancer therapy. In addition, we will discuss the evidence supporting its use, as well as the challenges associated with MV as a potential cancer therapeutic. Keywords: virotherapy, measles virus, oncolytic therapy

  12. Measles vaccination of nonhuman primates provides partial protection against infection with canine distemper virus

    NARCIS (Netherlands)

    R.D. de Vries (Rory); M. Ludlow (Martin); R.J. Verbugh (Joyce); G. van Amerongen (Geert); S. Yüksel (Selma); D.T. Nguyen (Tien); S. McQuaid (Stephen); A.D.M.E. Osterhaus (Albert); W.P. Duprex (Paul); R.L. de Swart (Rik)

    2014-01-01

    textabstractMeasles virus (MV) is being considered for global eradication, which would likely reduce compliance with MV vaccination. As a result, children will grow up without MV-specific immunity, creating a potential niche for closely related animal morbilliviruses such as canine distemper virus

  13. Upon Infection the Cellular WD Repeat-containing Protein 5 (WDR5) Localizes to Cytoplasmic Inclusion Bodies and Enhances Measles Virus Replication.

    Science.gov (United States)

    Ma, Dzwokai; George, Cyril X; Nomburg, Jason; Pfaller, Christian K; Cattaneo, Roberto; Samuel, Charles E

    2017-12-13

    Replication of negative-strand RNA viruses occurs in association with discrete cytoplasmic foci called inclusion bodies. Whereas inclusion bodies represent a prominent subcellular structure induced by viral infection, our knowledge of the cellular protein components involved in inclusion body formation and function is limited. Using measles virus-infected HeLa cells, we found that the WD repeat-containing protein 5 (WDR5), a subunit of histone H3 lysine 4 methyltransferases, was selectively recruited to virus-induced inclusion bodies. Furthermore, WDR5 was found in complexes containing viral proteins associated with RNA replication. WDR5 was not detected with mitochondria, stress granules, or other known secretory or endocytic compartments of infected cells. WDR5 deficiency decreased both viral protein production and infectious virus yields. Interferon production was modestly increased in WDR5 deficient cells. Thus, our study identifies WDR5 as a novel viral inclusion body-associated cellular protein and suggests a role for WDR5 in promoting viral replication. IMPORTANCE Measles virus is a human pathogen that remains a global concern with more than 100,000 measles-related deaths annually despite the availability of an effective vaccine. As measles continues to cause significant morbidity and mortality, understanding the virus-host interactions at the molecular level that affect virus replication efficiency is important for development and optimization of treatment procedures. Measles virus is an RNA virus that encodes six genes and replicates in the cytoplasm of infected cells in discrete cytoplasmic replication bodies, though little is known of the biochemical nature of these structures. Here we show that the cellular protein WDR5 is enriched in the cytoplasmic viral replication factories and enhances virus growth. WDR5-containing protein complex includes viral proteins responsible for viral RNA replication. Thus, we have identified WDR5 as a host factor that

  14. Measles & rubella outbreaks in Maharashtra State, India

    Science.gov (United States)

    Vaidya, Sunil R.; Kamble, Madhukar B.; Chowdhury, Deepika T.; Kumbhar, Neelakshi S.

    2016-01-01

    Background & objectives: Under the outbreak-based measles surveillance in Maharashtra State the National Institute of Virology at Pune receives 3-5 serum samples from each outbreak and samples from the local hospitals in Pune for laboratory diagnosis. This report describes one year data on the measles and rubella serology, virus isolation and genotyping. Methods: Maharashtra State Health Agencies investigated 98 suspected outbreaks between January-December 2013 in the 20 districts. Altogether, 491 serum samples were received from 20 districts and 126 suspected cases from local hospitals. Samples were tested for the measles and rubella IgM antibodies by commercial enzyme immunoassay (EIA). To understand the diagnostic utility, a subset of serum samples (n=53) was tested by measles focus reduction neutralization test (FRNT). Further, 37 throat swabs and 32 urine specimens were tested by measles reverse transcription (RT)-PCR and positive products were sequenced. Virus isolation was performed in Vero hSLAM cells. Results: Of the 98 suspected measles outbreaks, 61 were confirmed as measles, 12 as rubella and 21 confirmed as the mixed outbreaks. Four outbreaks remained unconfirmed. Of the 126 cases from the local hospitals, 91 were confirmed for measles and three for rubella. Overall, 93.6 per cent (383/409) confirmed measles cases were in the age group of 0-15 yr. Measles virus was detected in 18 of 38 specimens obtained from the suspected cases. Sequencing of PCR products revealed circulation of D4 (n=9) and D8 (n=9) strains. Four measles viruses (three D4 & one D8) were isolated. Interpretation & conclusions: Altogether, 94 measles and rubella outbreaks were confirmed in 2013 in the State of Maharasthra indicating the necessity to increase measles vaccine coverage in the State. PMID:27121521

  15. Examining the hemagglutinin subtype diversity among wild duck-origin influenza A viruses using ethanol-fixed cloacal swabs and a novel RT-PCR method.

    Science.gov (United States)

    Wang, Ruixue; Soll, Lindsey; Dugan, Vivien; Runstadler, Jonathan; Happ, George; Slemons, Richard D; Taubenberger, Jeffery K

    2008-05-25

    This study presents an interconnected approach for circumventing two inherent limitations associated with studies defining the natural history of influenza A viruses in wild birds. The first limiting factor is the ability to maintain a cold chain from specimen collection to the laboratory when study sites are in more remote locations. The second limiting factor is the ability to identify all influenza A virus HA subtypes present in an original sample. We report a novel method for molecular subtyping of avian influenza A virus hemagglutinin genes using degenerate primers designed to amplify all known hemagglutinin subtypes. It was shown previously that templates larger than 200 bp were not consistently amplifiable from ethanol-fixed cloacal swabs. For this study, new primer sets were designed within these constraints. This method was used to perform subtyping RT-PCR on 191 influenza RNA-positive ethanol-fixed cloacal swabs obtained from 880 wild ducks in central Alaska in 2005. Seven different co-circulating hemagglutinin subtypes were identified in this study set, including H1, H3, H4, H5, H6, H8, and H12. In addition, 16% of original cloacal samples showed evidence of mixed infection, with samples yielding from two-to-five different hemagglutinin subtypes. This study further demonstrates the complex ecobiology of avian influenza A viruses in wild birds.

  16. Protection of chickens against H5N1 highly pathogenic avian influenza virus infection by live vaccination with infectious laryngotracheitis virus recombinants expressing H5 hemagglutinin and N1 neuraminidase.

    Science.gov (United States)

    Pavlova, Sophia P; Veits, Jutta; Keil, Günther M; Mettenleiter, Thomas C; Fuchs, Walter

    2009-01-29

    Attenuated vaccine strains of the alphaherpesvirus causing infectious laryngotracheitis of chickens (ILTV, gallid herpesvirus 1) can be used for mass application. Previously, we showed that live virus vaccination with recombinant ILTV expressing hemagglutinin of highly pathogenic avian influenza viruses (HPAIV) protected chickens against ILT and fowl plague caused by HPAIV carrying the corresponding hemagglutinin subtypes [Lüschow D, Werner O, Mettenleiter TC, Fuchs W. Protection of chickens from lethal avian influenza A virus infection by live-virus vaccination with infectious laryngotracheitis virus recombinants expressing the hemagglutinin (H5) gene. Vaccine 2001;19(30):4249-59; Veits J, Lüschow D, Kindermann K, Werner O, Teifke JP, Mettenleiter TC, et al. Deletion of the non-essential UL0 gene of infectious laryngotracheitis (ILT) virus leads to attenuation in chickens, and UL0 mutants expressing influenza virus haemagglutinin (H7) protect against ILT and fowl plague. J Gen Virol 2003;84(12):3343-52]. However, protection against H5N1 HPAIV was not satisfactory. Therefore, a newly designed dUTPase-negative ILTV vector was used for rapid insertion of the H5-hemagglutinin, or N1-neuraminidase genes of a recent H5N1 HPAIV isolate. Compared to our previous constructs, protein expression was considerably enhanced by insertion of synthetic introns downstream of the human cytomegalovirus immediate-early promoter within the 5'-nontranslated region of the transgenes. Deletion of the viral dUTPase gene did not affect in vitro replication of the ILTV recombinants, but led to sufficient attenuation in vivo. After a single ocular immunization, all chickens developed H5- or N1-specific serum antibodies. Nevertheless, animals immunized with N1-ILTV died after subsequent H5N1 HPAIV challenge, although survival times were prolonged compared to non-vaccinated controls. In contrast, all chickens vaccinated with either H5-ILTV alone, or H5- and N1-ILTV simultaneously, survived

  17. Morbillivirus Experimental Animal Models: Measles Virus Pathogenesis Insights from Canine Distemper Virus.

    Science.gov (United States)

    da Fontoura Budaszewski, Renata; von Messling, Veronika

    2016-10-11

    Morbilliviruses share considerable structural and functional similarities. Even though disease severity varies among the respective host species, the underlying pathogenesis and the clinical signs are comparable. Thus, insights gained with one morbillivirus often apply to the other members of the genus. Since the Canine distemper virus (CDV) causes severe and often lethal disease in dogs and ferrets, it is an attractive model to characterize morbillivirus pathogenesis mechanisms and to evaluate the efficacy of new prophylactic and therapeutic approaches. This review compares the cellular tropism, pathogenesis, mechanisms of persistence and immunosuppression of the Measles virus (MeV) and CDV. It then summarizes the contributions made by studies on the CDV in dogs and ferrets to our understanding of MeV pathogenesis and to vaccine and drugs development.

  18. Conserved epitope on influenza-virus hemagglutinin head defined by a vaccine-induced antibody

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Donald D.; Bajic, Goran; Ferdman, Jack; Suphaphiphat, Pirada; Settembre, Ethan C.; Moody, M. Anthony; Schmidt, Aaron G.; Harrison, Stephen C. (Duke-MED); (CH-Boston); (Seqirus)

    2017-12-18

    Antigenic variation requires frequent revision of annual influenza vaccines. Next-generation vaccine design strategies aim to elicit a broader immunity by directing the human immune response toward conserved sites on the principal viral surface protein, the hemagglutinin (HA). We describe a group of antibodies that recognize a hitherto unappreciated, conserved site on the HA of H1 subtype influenza viruses. Mutations in that site, which required a change in the H1 component of the 2017 vaccine, had not previously “taken over” among circulating H1 viruses. Our results encourage vaccine design strategies that resurface a protein to focus the immune response on a specific region.

  19. The Use of Recombinant Hemagglutinine Protein of Rinderpest Virus in Enzyme Immunoassay

    OpenAIRE

    BULUT, Hakan; BOLAT, Yusuf

    2003-01-01

    In this study, Rinderpest virus (RPV) recombinant hemagglutinine protein (rH) fused with protein A region of Staphylococcus aureus was expressed in Escherichia coli and purified by IgG affinity chromatography. rH protein was also used to establish enzyme immunoassay. Therefore, to prevent IgG binding to the protein A the wells coated with the rH proteins were blocked by human serum. Afterwards, RPV antigens were added to the wells to evaluate this assay. To this end, serum from mice immunized...

  20. Live attenuated measles virus vaccine therapy for locally established malignant glioblastoma tumor cells

    Directory of Open Access Journals (Sweden)

    Al-Shammari AM

    2014-05-01

    Full Text Available Ahmed M Al-Shammari,1 Farah E Ismaeel,2 Shahlaa M Salih,2 Nahi Y Yaseen11Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Researches, Mustansiriya University, 2Departments of Biotechnology, College of Science, Al-Nahrain University, Baghdad, IraqAbstract: Glioblastoma multiforme is the most aggressive malignant primary brain tumor in humans, with poor prognosis. A new glioblastoma cell line (ANGM5 was established from a cerebral glioblastoma multiforme in a 72-year-old Iraqi man who underwent surgery for an intracranial tumor. This study was carried out to evaluate the antitumor effect of live attenuated measles virus (MV Schwarz vaccine strain on glioblastoma multiforme tumor cell lines in vitro. Live attenuated MV Schwarz strain was propagated on Vero, human rhabdomyosarcoma, and human glioblastoma-multiform (ANGM5 cell lines. The infected confluent monolayer appeared to be covered with syncytia with granulation and vacuolation, as well as cell rounding, shrinkage, and large empty space with cell debris as a result of cell lysis and death. Cell lines infected with virus have the ability for hemadsorption to human red blood cells after 72 hours of infection, whereas no hemadsorption of uninfected cells is seen. Detection of MV hemagglutinin protein by monoclonal antibodies in infected cells of all cell lines by immunocytochemistry assay gave positive results (brown color in the cytoplasm of infected cells. Cell viability was measured after 72 hours of infection by 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Results showed a significant cytotoxic effect for MV (P≤0.05 on growth of ANGM5 and rhabdomyosarcoma cell lines after 72 hours of infection. Induction of apoptosis by MV was assessed by measuring mitochondrial membrane potentials in tumor cells after 48, 72, and 120 hours of infection. Apoptotic cells were counted, and the mean percentage of dead cells was significantly higher after 48, 72

  1. The pathogenesis of measles

    NARCIS (Netherlands)

    de Vries, Rory D.; Mesman, Annelies W.; Geijtenbeek, Teunis B. H.; Duprex, W. Paul; de Swart, Rik L.

    2012-01-01

    Measles is an important cause of childhood morbidity and mortality in developing countries. Measles virus (MV) is transmitted via the respiratory route and causes systemic disease. Over the last decade, identification of new cellular receptors and studies in animal models have challenged the

  2. A novel, polymer-coated oncolytic measles virus overcomes immune suppression and induces robust antitumor activity

    Directory of Open Access Journals (Sweden)

    Kaname Nosaki

    2016-01-01

    Full Text Available Although various therapies are available to treat cancers, including surgery, chemotherapy, and radiotherapy, cancer has been the leading cause of death in Japan for the last 30 years, and new therapeutic modalities are urgently needed. As a new modality, there has recently been great interest in oncolytic virotherapy, with measles virus being a candidate virus expected to show strong antitumor effects. The efficacy of virotherapy, however, was strongly limited by the host immune response in previous clinical trials. To enhance and prolong the antitumor activity of virotherapy, we combined the use of two newly developed tools: the genetically engineered measles virus (MV-NPL and the multilayer virus-coating method of layer-by-layer deposition of ionic polymers. We compared the oncolytic effects of this polymer-coated MV-NPL with the naked MV-NPL, both in vitro and in vivo. In the presence of anti-MV neutralizing antibodies, the polymer-coated virus showed more enhanced oncolytic activity than did the naked MV-NPL in vitro. We also examined antitumor activities in virus-treated mice. Complement-dependent cytotoxicity and antitumor activities were higher in mice treated with polymer-coated MV-NPL than in mice treated with the naked virus. This novel, polymer-coated MV-NPL is promising for clinical cancer therapy in the future.

  3. Proof-of-principle that a decoy virus protects oncolytic measles virus against neutralizing antibodies

    OpenAIRE

    Xu C; Goß AV; Dorneburg C; Debatin KM; Wei J; Beltinger C

    2018-01-01

    Chun Xu,1,2,* Annika Verena Goß,1,* Carmen Dorneburg,1 Klaus-Michael Debatin,1 Jiwu Wei,2 Christian Beltinger1 1Department of Pediatrics and Adolescent Medicine, Section of Experimental Pediatric Oncology, University Medical Center Ulm, Ulm, Germany; 2Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, China *These authors contributed equally to this work Background: Attenuated oncolytic measles virus (OMV) is a promising antitumor agent in early-phase cl...

  4. A point-of-care test for measles diagnosis: detection of measles-specific IgM antibodies and viral nucleic acid.

    Science.gov (United States)

    Warrener, Lenesha; Slibinskas, Rimantas; Chua, Kaw Bing; Nigatu, Wondatir; Brown, Kevin E; Sasnauskas, Kestutis; Samuel, Dhanraj; Brown, David

    2011-09-01

    To evaluate the performance of a newly developed point-of-care test (POCT) for the detection of measles-specific IgM antibodies in serum and oral fluid specimens and to assess if measles virus nucleic acid could be recovered from used POCT strips. The POCT was used to test 170 serum specimens collected through measles surveillance or vaccination programmes in Ethiopia, Malaysia and the Russian Federation: 69 were positive for measles immunoglobulin M (IgM) antibodies, 74 were positive for rubella IgM antibodies and 7 were positive for both. Also tested were 282 oral fluid specimens from the measles, mumps and rubella (MMR) surveillance programme of the United Kingdom of Great Britain and Northern Ireland. The Microimmune measles IgM capture enzyme immunoassay was the gold standard for comparison. A panel of 24 oral fluids was used to investigate if measles virus haemagglutinin (H) and nucleocapsid (N) genes could be amplified by polymerase chain reaction directly from used POCT strips. With serum POCT showed a sensitivity and specificity of 90.8% (69/76) and 93.6% (88/94), respectively; with oral fluids, sensitivity and specificity were 90.0% (63/70) and 96.2% (200/208), respectively. Both H and N genes were reliably detected in POCT strips and the N genes could be sequenced for genotyping. Measles virus genes could be recovered from POCT strips after storage for 5 weeks at 20-25 °C. The POCT has the sensitivity and specificity required of a field-based test for measles diagnosis. However, its role in global measles control programmes requires further evaluation.

  5. Live attenuated measles vaccine expressing HIV-1 Gag virus like particles covered with gp160ΔV1V2 is strongly immunogenic

    International Nuclear Information System (INIS)

    Guerbois, Mathilde; Moris, Arnaud; Combredet, Chantal; Najburg, Valerie; Ruffie, Claude; Fevrier, Michele; Cayet, Nadege; Brandler, Samantha; Schwartz, Olivier; Tangy, Frederic

    2009-01-01

    Although a live attenuated HIV vaccine is not currently considered for safety reasons, a strategy inducing both T cells and neutralizing antibodies to native assembled HIV-1 particles expressed by a replicating virus might mimic the advantageous characteristics of live attenuated vaccine. To this aim, we generated a live attenuated recombinant measles vaccine expressing HIV-1 Gag virus-like particles (VLPs) covered with gp160ΔV1V2 Env protein. The measles-HIV virus replicated efficiently in cell culture and induced the intense budding of HIV particles covered with Env. In mice sensitive to MV infection, this recombinant vaccine stimulated high levels of cellular and humoral immunity to both MV and HIV with neutralizing activity. The measles-HIV virus infected human professional antigen-presenting cells, such as dendritic cells and B cells, and induced efficient presentation of HIV-1 epitopes and subsequent activation of human HIV-1 Gag-specific T cell clones. This candidate vaccine will be next tested in non-human primates. As a pediatric vaccine, it might protect children and adolescents simultaneously from measles and HIV.

  6. Molecular characterization of wild-type measles viruses in Tamil Nadu, India, during 2005-2006: relationship of genotype D8 strains from Tamil Nadu to global strains.

    Science.gov (United States)

    Duraisamy, Raja; Rota, Paul A; Palani, Gunasekaran; Elango, Varalakshmi; Sambasivam, Mohana; Lowe, Luis; Lopareva, Elena; Ramamurty, Nalini

    2012-02-01

    Molecular characterization of measles viruses is a valuable tool for measuring the effectiveness of measles control and elimination programmes. WHO recommends that virological surveillance be conducted during all phases of measles control to document circulation of indigenous strains and trace future importation. This report describes the genetic characterization of wild type measles viruses from Tamil Nadu, India isolated between January 2005 and January 2006. In the study, 304 suspected measles cases (292 from 56 outbreaks and 12 sporadic cases) were investigated. Blood samples were collected from suspected measles outbreaks and 11 suspected sporadic cases and tested for the presence of measles and rubella specific IgM. Based on serological results, 53 outbreaks were confirmed as measles, 2 as a combination of measles and rubella, and 1 negative for both. Eight sporadic cases were confirmed as measles and one as rubella. Throat swab and urine samples were collected for virus isolation and 28 isolates were obtained. Sequencing and analysis showed that 3 isolates belonged to genotype D4 and 25 to genotype D8. Comparison of the genotype D8 sequences from Tamil Nadu with previously reported genotype D8 sequences from India and abroad showed six distinct clusters with Tamil Nadu strains forming two clusters. This study has established baseline molecular data and is the first report that describes genetic diversity of circulating measles strains in Tamil Nadu, a state in India. D8 has multiple lineages and this has been linked with importation of measles into the USA and UK. Copyright © 2011 Wiley Periodicals, Inc.

  7. Gnarled-trunk evolutionary model of influenza A virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Kimihito Ito

    Full Text Available Human influenza A viruses undergo antigenic changes with gradual accumulation of amino acid substitutions on the hemagglutinin (HA molecule. A strong antigenic mismatch between vaccine and epidemic strains often requires the replacement of influenza vaccines worldwide. To establish a practical model enabling us to predict the future direction of the influenza virus evolution, relative distances of amino acid sequences among past epidemic strains were analyzed by multidimensional scaling (MDS. We found that human influenza viruses have evolved along a gnarled evolutionary pathway with an approximately constant curvature in the MDS-constructed 3D space. The gnarled pathway indicated that evolution on the trunk favored multiple substitutions at the same amino acid positions on HA. The constant curvature was reasonably explained by assuming that the rate of amino acid substitutions varied from one position to another according to a gamma distribution. Furthermore, we utilized the estimated parameters of the gamma distribution to predict the amino acid substitutions on HA in subsequent years. Retrospective prediction tests for 12 years from 1997 to 2009 showed that 70% of actual amino acid substitutions were correctly predicted, and that 45% of predicted amino acid substitutions have been actually observed. Although it remains unsolved how to predict the exact timing of antigenic changes, the present results suggest that our model may have the potential to recognize emerging epidemic strains.

  8. Measles virus envelope pseudotyped lentiviral vectors transduce quiescent human HSCs at an efficiency without precedent.

    Science.gov (United States)

    Lévy, Camille; Amirache, Fouzia; Girard-Gagnepain, Anais; Frecha, Cecilia; Roman-Rodríguez, Francisco J; Bernadin, Ornellie; Costa, Caroline; Nègre, Didier; Gutierrez-Guerrero, Alejandra; Vranckx, Lenard S; Clerc, Isabelle; Taylor, Naomi; Thielecke, Lars; Cornils, Kerstin; Bueren, Juan A; Rio, Paula; Gijsbers, Rik; Cosset, François-Loïc; Verhoeyen, Els

    2017-10-24

    Hematopoietic stem cell (HSC)-based gene therapy trials are now moving toward the use of lentiviral vectors (LVs) with success. However, one challenge in the field remains: efficient transduction of HSCs without compromising their stem cell potential. Here we showed that measles virus glycoprotein-displaying LVs (hemagglutinin and fusion protein LVs [H/F-LVs]) were capable of transducing 100% of early-acting cytokine-stimulated human CD34 + (hCD34 + ) progenitor cells upon a single application. Strikingly, these H/F-LVs also allowed transduction of up to 70% of nonstimulated quiescent hCD34 + cells, whereas conventional vesicular stomatitis virus G (VSV-G)-LVs reached 5% at the most with H/F-LV entry occurring exclusively through the CD46 complement receptor. Importantly, reconstitution of NOD/SCIDγc -/- (NSG) mice with H/F-LV transduced prestimulated or resting hCD34 + cells confirmed these high transduction levels in all myeloid and lymphoid lineages. Remarkably, for resting CD34 + cells, secondary recipients exhibited increasing transduction levels of up to 100%, emphasizing that H/F-LVs efficiently gene-marked HSCs in the resting state. Because H/F-LVs promoted ex vivo gene modification of minimally manipulated CD34 + progenitors that maintained stemness, we assessed their applicability in Fanconi anemia, a bone marrow (BM) failure with chromosomal fragility. Notably, only H/F-LVs efficiently gene-corrected minimally stimulated hCD34 + cells in unfractionated BM from these patients. These H/F-LVs improved HSC gene delivery in the absence of cytokine stimulation while maintaining their stem cell potential. Thus, H/F-LVs will facilitate future clinical applications requiring HSC gene modification, including BM failure syndromes, for which treatment has been very challenging up to now.

  9. In vitro measles virus infection of human lymphocyte subsets demonstrates high susceptibility and permissiveness of both naive and memory B cells

    NARCIS (Netherlands)

    B.M. Laksono (Brigitta); C. Grosserichter-Wagener (Christina); R.D. de Vries (Rory); Langeveld, S.A.G. (Simone A.G.); M.D. Brem (Maarten); J.J.M. van Dongen (Jacques); Katsikis, P.D. (Peter D.); M.P.G. Koopmans D.V.M. (Marion); M.C. van Zelm (Menno); R.L. de Swart (Rik)

    2018-01-01

    textabstractMeasles is characterized by a transient immune suppression, leading to an increased risk of opportunistic infections. Measles virus (MV) infection of immune cells is mediated by the cellular receptor CD150, expressed by subsets of lymphocytes, dendritic cells, macrophages, and

  10. Nectin-4 Interactions Govern Measles Virus Virulence in a New Model of Pathogenesis, the Squirrel Monkey (Saimiri sciureus).

    Science.gov (United States)

    Delpeut, Sébastien; Sawatsky, Bevan; Wong, Xiao-Xiang; Frenzke, Marie; Cattaneo, Roberto; von Messling, Veronika

    2017-06-01

    In addition to humans, only certain nonhuman primates are naturally susceptible to measles virus (MeV) infection. Disease severity is species dependent, ranging from mild to moderate for macaques to severe and even lethal for certain New World monkey species. To investigate if squirrel monkeys ( Saimiri sciureus ), which are reported to develop a course of disease similar to humans, may be better suited than macaques for the identification of virulence determinants or the evaluation of therapeutics, we infected them with a green fluorescent protein-expressing MeV. Compared to cynomolgus macaques ( Macaca fascicularis ) infected with the same virus, the squirrel monkeys developed more-severe immunosuppression, higher viral load, and a broader range of clinical signs typical for measles. In contrast, infection with an MeV unable to interact with the epithelial receptor nectin-4, while causing immunosuppression, resulted in only a mild and transient rash and a short-lived elevation of the body temperature. Similar titers of the wild-type and nectin-4-blind MeV were detected in peripheral blood mononuclear cells and lymph node homogenates, but only the wild-type virus was found in tracheal lavage fluids and urine. Thus, our study demonstrates the importance of MeV interactions with nectin-4 for clinical disease in the new and better-performing S. sciureus model of measles pathogenesis. IMPORTANCE The characterization of mechanisms underlying measles virus clinical disease has been hampered by the lack of an animal model that reproduces the course of disease seen in human patients. Here, we report that infection of squirrel monkeys ( Saimiri sciureus ) fulfills these requirements. Comparative infection with wild-type and epithelial cell receptor-blind viruses demonstrated the importance of epithelial cell infection for clinical disease, highlighting the spread to epithelia as an attractive target for therapeutic strategies. Copyright © 2017 American Society for

  11. Global eradication of measles: Are we poised?

    Directory of Open Access Journals (Sweden)

    Raghavendra D Kulkarni

    2017-01-01

    Full Text Available Measles, a highly infectious viral disease is the next target for eradication following poliovirus. Decades of experience with highly effective vaccination has invigorated us to take on this virus. The task is not only Titanic but is laced with intricate issues. Recently, an outbreak of fever with rash occurred on a tertiary care teaching hospital campus and was confirmed serologically as measles outbreak by IgMELISA. Therefore, we searched the literature related to outbreaks, transmission of the measles virus, age groups involved, vaccination strategies, vaccination failure and epidemiological features of the disease and reviewed the possible reasons for such outbreaks and problems in the global eradication of the virus.

  12. A transgenic mouse model for measles virus infection of the brain

    Science.gov (United States)

    Rall, Glenn F.; Manchester, Marianne; Daniels, Lia R.; Callahan, Eric M.; Belman, Alec R.; Oldstone, Michael B. A.

    1997-01-01

    In addition to the rash, fever, and upper respiratory tract congestion that are the hallmarks of acute measles virus (MV) infection, invasion of the central nervous system (CNS) can occur, establishing a persistent infection primarily in neurons. The recent identification of the human membrane glycoprotein, CD46, as the MV receptor allowed for the establishment of transgenic mice in which the CD46 gene was transcriptionally regulated by a neuron-specific promoter. Expression of the measles receptor rendered primary CD46-positive neurons permissive to infection with MV–Edmonston. Notably, viral transmission within these cultures occurred in the absence of extracellular virus, presumably via neuronal processes. No infection was seen in nontransgenic mice inoculated intracerebrally with MV–Edmonston. In contrast, scattered neurons were infected following inoculation of transgenic adults, and an impressive widespread neuronal infection was established in transgenic neonates. The neonatal infection resulted in severe CNS disease by 3–4 weeks after infection. Illness was characterized initially by awkward gait and a lack of mobility, and in later stages seizures leading to death. These results show that expression of the MV receptor on specific murine cells (neurons) in vivo is absolutely essential to confer both susceptibility to infection and neurologic disease by this human virus. The disparity in clinical findings between neonatal and adult transgenic mice indicates that differences exist between the developing and mature CNS with respect to MV infection and pathogenesis. PMID:9114047

  13. Measles virus-specified polypeptides in infected cells

    International Nuclear Information System (INIS)

    Vainionpaepae, R.

    1979-01-01

    The synthesis of wild-type measles virus-specified polypeptides in Vero cells in pulse-chase experiments, in cells with synchronized protein synthesis by high salt concentration, and in the presence of proteolytic enzyme inhibitors was analyzed by polyacrylamide slab-gel electrophoresis. Six major (L, G, 2, NP, 5 and M) structural polypeptides were identified in infected cells. The results of pulse-chase experiments suggested that most of the structural polypeptides were synthesized at their final length. Polypeptide M was found to be sensitive to trypsin. In TLCK-treated cells its molecular weight was about 1000-2000 daltons higher than in untreated cells. A minor virus-specific polypeptide with a molecular weight of about 23,000 was found as a very faint and diffuse band. In addition, three nonstructural polypeptides with molecular weights of 65,000, 38,000 and 18,000 were also detected. The experiments with proteolytic enzyme inhibitors and with synchronized protein synthesis suggested that the polypeptide with a molecular weight of 65,000 might be a precursor of the structural polypeptide 5. (author)

  14. The molecular determinants of antibody recognition and antigenic drift in the H3 hemagglutinin of swine influenza A virus

    Science.gov (United States)

    Influenza A virus (IAV) of the H3 subtype is an important pathogen that affects both humans and swine. The main intervention strategy for preventing infection is vaccination to induce neutralizing antibodies against the surface glycoprotein hemagglutinin (HA). However, due to antigenic drift, vaccin...

  15. Improving molecular tools for global surveillance of measles virus⋆

    Science.gov (United States)

    Bankamp, Bettina; Byrd-Leotis, Lauren A.; Lopareva, Elena N.; Woo, Gibson K.S.; Liu, Chunyu; Jee, Youngmee; Ahmed, Hinda; Lim, Wilina W.; Ramamurty, Nalini; Mulders, Mick N.; Featherstone, David; Bellini, William J.; Rota, Paul A.

    2017-01-01

    Background The genetic characterization of wild-type measles viruses plays an important role in the description of viral transmission pathways and the verification of measles elimination. The 450 nucleotides that encode the carboxyl-terminus of the nucleoprotein (N-450) are routinely sequenced for genotype analysis. Objectives The objectives of this study were to develop improved primers and controls for RT-PCR reactions used for genotyping of measles samples and to develop a method to provide a convenient, safe, and inexpensive means to distribute measles RNA for RT-PCR assays and practice panels. Study design A newly designed, genetically defined synthetic RNA and RNA isolated from cells infected with currently circulating genotypes were used to compare the sensitivity of primer pairs in RT-PCR and nested PCR. FTA® cards loaded with lysates of measles infected cells were tested for their ability to preserve viral RNA and destroy virus infectivity. Results A new primer pair, MeV216/MeV214, was able to amplify N-450 from viruses representing 10 currently circulating genotypes and a genotype A vaccine strain and demonstrated 100-fold increased sensitivity compared to the previously used primer set. A nested PCR assay further increased the sensitivity of detection from patient samples. A synthetic positive control RNA was developed that produced PCR products that are distinguishable by size from PCR products amplified from clinical samples. FTA® cards completely inactivated measles virus and stabilized RNA for at least six months. Conclusions These improved molecular tools will advance molecular characterization of circulating measles viruses globally and provide enhanced quality control measures. PMID:23806666

  16. Measles re-emergence in Northern Italy: Pathways of measles virus genotype D8, 2013-2014.

    Science.gov (United States)

    Amendola, Antonella; Bianchi, Silvia; Lai, Alessia; Canuti, Marta; Piralla, Antonio; Baggieri, Melissa; Ranghiero, Alberto; Piatti, Alessandra; Tanzi, Elisabetta; Zehender, Gianguglielmo; Magurano, Fabio; Baldanti, Fausto

    2017-03-01

    Molecular surveillance and advanced phylogenetic methods are important tools to track the pathways of Measles virus (MV) genotypes, provide evidence for the interruption of endemic transmission and verify the elimination of the disease. The aims of this study were to describe the genetic profile of MV genotype D8 (D8-MV) strains circulating in Northern Italy (Lombardy Region) during the 2013-2014 period and to analyze the transmission chains and estimate the introduction time points using a phylogenetic approach. Forty-four strains of D8-MV identified from 12 outbreaks and 28 cases reported as sporadic were analyzed. Molecular analysis was performed by sequencing the highly variable 450nt region of the N gene of MV genome (N-450), as recommended by the WHO. Phylogenetic analyses and tree time-scaled reconstruction were performed with BEAST software. We could trace back the transmission pathways that resulted in three chains of transmission, two introductions with limited spread (two familiar outbreaks), and two single introductions (true sporadic cases). The D8-Taunton transmission chain, which was involved in 7 outbreaks and 13 sporadic cases, was endemic during the studied period. Furthermore, two novel local variants emerged independently in March 2014 and caused two transmission chains linked to at least 3 outbreaks. Overall, viral diversity was high and strains belonging to 5 different variants were identified. The results of this study clearly demonstrate that multiple lineages of D8-MV co-circulated in Northern Italy. Measles can be considered a re-emerging disease in Italy and additional efforts are necessary to achieve measles elimination goal. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Measles virus C protein suppresses gamma-activated factor formation and virus-induced cell growth arrest

    International Nuclear Information System (INIS)

    Yokota, Shin-ichi; Okabayashi, Tamaki; Fujii, Nobuhiro

    2011-01-01

    Measles virus (MeV) produces two accessory proteins, V and C, from the P gene. These accessory proteins have been reported to contribute to efficient virus proliferation through the modulation of host cell events. Our previous paper described that Vero cell-adapted strains of MeV led host cells to growth arrest through the upregulation of interferon regulatory factor 1 (IRF-1), and wild strains did not. In the present study, we found that C protein expression levels varied among MeV strains in infected SiHa cells. C protein levels were inversely correlated with IRF-1 expression levels and with cell growth arrest. Forced expression of C protein released cells from growth arrest. C-deficient recombinant virus efficiently upregulated IRF-1 and caused growth arrest more efficiently than the wild-type virus. C protein preferentially bound to phosphorylated STAT1 and suppressed STAT1 dimer formation. We conclude that MeV C protein suppresses IFN-γ signaling pathway via inhibition of phosphorylated STAT1 dimerization.

  18. Cap-dependent translational control of oncolytic measles virus infection in malignant mesothelioma.

    Science.gov (United States)

    Jacobson, Blake A; Sadiq, Ahad A; Tang, Shaogeng; Jay-Dixon, Joe; Patel, Manish R; Drees, Jeremy; Sorenson, Brent S; Russell, Stephen J; Kratzke, Robert A

    2017-09-08

    Malignant mesothelioma has a poor prognosis for which there remains an urgent need for successful treatment approaches. Infection with the Edmonston vaccine strain (MV-Edm) derivative of measles virus results in lysis of cancer cells and has been tested in clinical trials for numerous tumor types including mesothelioma. Many factors play a role in MV-Edm tumor cell selectivity and cytopathic activity while also sparing non-cancerous cells. The MV-Edm receptor CD46 (cluster of differentiation 46) was demonstrated to be significantly higher in mesothelioma cells than in control cells. In contrast, mesothelioma cells are not reliant upon the alternative MV-Edm receptor nectin-4 for entry. MV-Edm treatment of mesothelioma reduced cell viability and also invoked apoptotic cell death. Forced expression of eIF4E or translation stimulation following IGF-I (insulin-like growth factor 1) exposure strengthened the potency of measles virus oncolytic activity. It was also shown that repression of cap-dependent translation by treatment with agents [4EASO, 4EGI-1] that suppress host cell translation or by forcing cells to produce an activated repressor protein diminishes the strength of oncolytic viral efficacy.

  19. The Roles of Hemagglutinin Phe-95 in Receptor Binding and Pathogenicity of Influenza B Virus

    Science.gov (United States)

    Ni, Fengyun; Mbawuike, Innocent Nnadi; Kondrashkina, Elena; Wang, Qinghua

    2014-01-01

    Diverged ~4,000 years ago, influenza B virus has several important differences from influenza A virus, including lower receptor-binding affinity and highly restricted host range. Based on our prior structural studies, we hypothesized that a single-residue difference in the receptor-binding site of hemagglutinin (HA), Phe-95 in influenza B virus versus Tyr-98 in influenza A/H1~H15, is possibly a key determinant for the low receptor-binding affinity. Here we demonstrate that the mutation Phe95→Tyr in influenza B virus HA restores all three hydrogen bonds made by Tyr-98 in influenza A/H3 HA and has the potential to enhance receptor binding. However, the full realization of this potential is influenced by the local environment into which the mutation is introduced. The binding and replication of the recombinant viruses correlate well with the receptor-binding capabilities of HA. These results are discussed in relation to the roles of Phe-95 in receptor binding and pathogenicity of influenza B virus. PMID:24503069

  20. Measles virus antibody responses in children randomly assigned to receive standard-titer edmonston-zagreb measles vaccine at 4.5 and 9 months of age, 9 months of age, or 9 and 18 months of age

    DEFF Research Database (Denmark)

    Martins, Cesario; Garly, May-Lill; Bale, Carlitos

    2014-01-01

    The World Health Organization recommends administration of measles vaccine (MV) at age 9 months in low-income countries. We tested the measles virus antibody response at 4.5, 9, 18, and 24 months of age for children randomly assigned to receive standard-titer Edmonston-Zagreb MV at 4.5 and 9 months...

  1. Single Dose of Consensus Hemagglutinin-Based Virus-Like Particles Vaccine Protects Chickens against Divergent H5 Subtype Influenza Viruses

    Directory of Open Access Journals (Sweden)

    Peipei Wu

    2017-11-01

    Full Text Available The H5 subtype highly pathogenic avian influenza (HPAI virus is one of the greatest threats to global poultry industry. To develop broadly protective H5 subunit vaccine, a recombinant consensus HA sequence (rHA was constructed and expressed in virus-like particles (rHA VLPs in the baculovirus-insect cell system. The efficacy of the rHA VLPs vaccine with or without immunopotentiator (CVCVA5 was assessed in chickens. Compared to the commercial Re6 or Re6-CVCVA5 vaccines, single dose immunization of chickens with rHA VLPs or rHA-CVCVA5 vaccines induced higher levels of serum hemagglutinin inhibition titers and neutralization titers, mucosal antibodies, IFN-γ and IL-4 cytokines in sera, and cytotoxic T lymphocyte responses. The rHA VLPs vaccine was superior to the commercial Re6 vaccine in conferring cross-protection against different clades of H5 subtype viruses. This study reports that H5 subtype consensus HA VLP single dose vaccination provides broad protection against HPAI virus in chickens.

  2. Protection against Multiple Subtypes of Influenza Viruses by Virus-Like Particle Vaccines Based on a Hemagglutinin Conserved Epitope

    Directory of Open Access Journals (Sweden)

    Shaoheng Chen

    2015-01-01

    Full Text Available We selected the conserved sequence in the stalk region of influenza virus hemagglutinin (HA trimmer, the long alpha helix (LAH, as the vaccine candidate sequence, and inserted it into the major immunodominant region (MIR of hepatitis B virus core protein (HBc, and, by using the E. coli expression system, we prepared a recombinant protein vaccine LAH-HBc in the form of virus-like particles (VLP. Intranasal immunization of mice with this LAH-HBc VLP plus cholera toxin B subunit with 0.2% of cholera toxin (CTB* adjuvant could effectively elicit humoral and cellular immune responses and protect mice against a lethal challenge of homologous influenza viruses (A/Puerto Rico/8/1934 (PR8 (H1N1. In addition, passage of the immune sera containing specific antibodies to naïve mice rendered them resistant against a lethal homologous challenge. Immunization with LAH-HBc VLP vaccine plus CTB* adjuvant could also fully protect mice against a lethal challenge of the 2009 pandemic H1N1 influenza virus or the avian H9N2 virus and could partially protect mice against a lethal challenge of the avian H5N1 influenza virus. This study demonstrated that the LAH-HBc VLP vaccine based on a conserved sequence of the HA trimmer stalk region is a promising candidate vaccine for developing a universal influenza vaccine against multiple influenza viruses infections.

  3. Stochastic acidification, activation of hemagglutinin and escape of influenza viruses from an endosome

    Science.gov (United States)

    Lagache, Thibault; Sieben, Christian; Meyer, Tim; Herrmann, Andreas; Holcman, David

    2017-06-01

    Influenza viruses enter the cell inside an endosome. During the endosomal journey, acidification triggers a conformational change of the virus spike protein hemagglutinin (HA) that results in escape of the viral genome from the endosome into the cytoplasm. It is still unclear how the interplay between acidification and HA conformation changes affects the kinetics of the viral endosomal escape. We develop here a stochastic model to estimate the change of conformation of HAs inside the endosome nanodomain. Using a Markov process, we model the arrival of protons to HA binding sites and compute the kinetics of their accumulation. We compute the Mean First Passage Time (MFPT) of the number of HA bound sites to a threshold, which is used to estimate the HA activation rate for a given pH concentration. The present analysis reveals that HA proton binding sites possess a high chemical barrier, ensuring a stability of the spike protein at sub-acidic pH. We predict that activating more than 3 adjacent HAs is necessary to trigger endosomal fusion and this configuration prevents premature release of viruses from early endosomes

  4. Modified measles versus rubella versus atypical measles: One and same thing

    Directory of Open Access Journals (Sweden)

    Surender Nikhil Gupta

    2015-01-01

    Full Text Available Introduction: In outbreak settings, more than one virus may be infecting the given population. In twin or triple outbreak of measles, German measles (rubella, and varicella in highly immunized hilly areas, maximal number of the case patients in all the hilly villages belonged to the older age group. It suggested an obvious shift to the higher age group, warranting second dose opportunity in such case scenario. The clinical presentations of viral diseases are too similar to differentiate. The aim is to clearly categorize the case patients of modified measles, rubella, and atypical measles in outbreak settings. Results: Four outbreaks are listed. In the first one, sixty case patients were identified from 1026 people in 5 villages. Of these, 41 were diagnosed by clinically, 8 were laboratory confirmed as measles and 11 were epidemiologically linked German measles case patients. Seventy percent of the cases were vaccinated for measles. In second case, we identified 29/35 measles and 6/35 were confirmed as epidemiologically linked unvaccinated chickenpox case patients. In third one, we identified 116 cases in eight villages (112/116 clinically and 04/116 laboratory confirmed. Majority of cases were immunized against measles, but only minor cases for rubella. In fourth case, we identified 505 case patients from mixed outbreaks of varicella, measles and rubella (30/505 clinically, 467/505 epidemiologically linked and 8/505 laboratory confirmed case patients from a study population of 3280. In all the four outbreaks, prima facie, the clinical presentations of both rubella and modified measles were difficult to differentiate. Discussion: On the basis of outbreak investigation and analytical inference, it has been observed that the symtomatology of modified measles and laboratory confirmed rubella case patients/epidemiologically linked cases are so similar placed that many a time, it becomes much difficult to line list the cases in one section of modified

  5. Measles, immune suppression and vaccination: direct and indirect nonspecific vaccine benefits.

    Science.gov (United States)

    Mina, Michael J

    2017-06-01

    The measles virus is among the most transmissible viruses known to infect humans. Prior to measles vaccination programs, measles infected over 95% of all children and was responsible for over 4 million deaths each year. Measles vaccination programs have been among the greatest public health achievements reducing, eliminating endemic measles in the whole of the Americas and across much of the globe. Where measles vaccines are introduced, unexpectedly large reductions in all-cause childhood mortality have been observed. These gains appear to derive in part from direct heterologous benefits of measles vaccines that enhance innate and adaptive immune responses. Additionally, by preventing measles infections, vaccination prevents measles-associated short- and long-term immunomodulating effects. Before vaccination, these invisible hallmarks of measles infections increased vulnerability to non-measles infections in nearly all children for weeks, months, or years following acute infections. By depleting measles incidence, vaccination has had important indirect benefits to reduce non-measles mortality. Delineating the relative importance of these two modes of survival benefits following measles vaccine introduction is of critical public health importance. While both support continued unwavering global commitments to measles vaccination programs until measles eradication is complete, direct heterologous benefits of measles vaccination further support continued commitment to measles vaccination programs indefinitely. We discuss what is known about direct and indirect nonspecific measles vaccine benefits, and their implications for continued measles vaccination programs. © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  6. Measles Cases during Ebola Outbreak, West Africa, 2013-2106.

    Science.gov (United States)

    Colavita, Francesca; Biava, Mirella; Castilletti, Concetta; Quartu, Serena; Vairo, Francesco; Caglioti, Claudia; Agrati, Chiara; Lalle, Eleonora; Bordi, Licia; Lanini, Simone; Guanti, Michela Delli; Miccio, Rossella; Ippolito, Giuseppe; Capobianchi, Maria R; Di Caro, Antonino

    2017-06-01

    The recent Ebola outbreak in West Africa caused breakdowns in public health systems, which might have caused outbreaks of vaccine-preventable diseases. We tested 80 patients admitted to an Ebola treatment center in Freetown, Sierra Leone, for measles. These patients were negative for Ebola virus. Measles virus IgM was detected in 13 (16%) of the patients.

  7. A chimeric measles virus with canine distemper envelope protects ferrets from lethal distemper challenge.

    Science.gov (United States)

    Rouxel, Ronan Nicolas; Svitek, Nicholas; von Messling, Veronika

    2009-08-06

    CDV infects a broad range of carnivores, and over the past decades it has caused outbreaks in a variety of wild carnivore populations. Since the currently available live-attenuated vaccine is not sufficiently safe in these highly susceptible species, we produced a chimeric virus combining the replication complex of the measles Moraten vaccine strain with the envelope of a recent CDV wild type isolate. The resulting virus did not cause disease or immunosuppression in ferrets and conferred protection from challenge with a lethal wild type strain, demonstrating its potential value for wildlife conservation efforts.

  8. Immunization with influenza virus hemagglutinin globular region containing the receptor-binding pocket.

    Science.gov (United States)

    Jeon, Sung Ho; Arnon, Ruth

    2002-01-01

    The globular region of hemagglutinin (residues 91-261) membrane glycoprotein of influenza virus that encompasses the binding zone to the oligosaccharide receptor of target cells has been cloned by reverse transcriptase-polymerase chain reaction (RT-PCR). This protein segment (denoted HA91-261 peptide) induced significant immune response in mice. The serum antibodies and lung homogenates from the immunized mice cross-reacted with native virus particles. The cellular immunity was manifested by proliferative splenocyte responses and cytokine release indicating T helper type 1 activity. The plasmid DNA containing this segment (denoted pHA91-261) provoked, in addition, a significant cytotoxic T lymphocyte (CTL) response, whereas the HA91-261 protein fragment led to no such response. Both the DNA and the protein fragment of HA91-261 induced significant protection against viral challenge, although the immune response they induce might be along different pathways. Interestingly, the combined DNA priming-protein boosting immunization regimen did not induce protection against viral challenges even though it led to significant humoral immune responses similar to that induced by the peptide vaccine.

  9. An induced pocket for the binding of potent fusion inhibitor CL-385319 with H5N1 influenza virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Runming Li

    Full Text Available The influenza glycoprotein hemagglutinin (HA plays crucial roles in the early stage of virus infection, including receptor binding and membrane fusion. Therefore, HA is a potential target for developing anti-influenza drugs. Recently, we characterized a novel inhibitor of highly pathogenic H5N1 influenza virus, CL-385319, which specifically inhibits HA-mediated viral entry. Studies presented here identified the critical binding residues for CL-385319, which clustered in the stem region of the HA trimer by site-directed mutagenesis. Extensive computational simulations, including molecular docking, molecular dynamics simulations, molecular mechanics generalized Born surface area (MM_GBSA calculations, charge density and Laplacian calculations, have been carried out to uncover the detailed molecular mechanism that underlies the binding of CL-385319 to H5N1 influenza virus HA. It was found that the recognition and binding of CL-385319 to HA proceeds by a process of "induced fit" whereby the binding pocket is formed during their interaction. Occupation of this pocket by CL-385319 stabilizes the neutral pH structure of hemagglutinin, thus inhibiting the conformational rearrangements required for membrane fusion. This "induced fit" pocket may be a target for structure-based design of more potent influenza fusion inhibitors.

  10. Detection of measles IgM antibodies in children at Kaduna ...

    African Journals Online (AJOL)

    Measles virus IgM antibodies virus was assayed for in 270 sera from children aged 5 months to 8 years attending Yusuf Dantsoho Memorial Hospital, Kaduna, Northern Nigeria, using ELISA. Out of the 270 sera, 192(71.1%) tested positive to measles IgM and 78(28.9%) negative. The sample distribution was 137 from males, ...

  11. Phylogenetic and epidemiological analysis of measles outbreaks in Denmark, 2013 to 2014

    DEFF Research Database (Denmark)

    Rasmussen, Lasse Dam; Fonager, Jannik; Knudsen, Lisbet Krause

    2015-01-01

    Despite the introduction of safe, effective vaccines decades ago and joint global public health efforts to eliminate measles, this vaccine-preventable disease continues to pose threats to children's health worldwide. During 2013 and 2014, measles virus was introduced into Denmark through several...... an outbreak. The majority of the cases were unvaccinated (n = 27) or recipients of one dose of measles-mumps-rubella (MMR) vaccine (n = 7). In addition, two fully vaccinated adult cases were reported in 2014. We demonstrate the transmission of measles virus in a population in which the two-dose MMR...... vaccination coverage rate was 80% and how even vaccinated individuals may be at risk of contracting measles once transmission has been established....

  12. Broadly-Reactive Neutralizing and Non-neutralizing Antibodies Directed against the H7 Influenza Virus Hemagglutinin Reveal Divergent Mechanisms of Protection.

    Directory of Open Access Journals (Sweden)

    Gene S Tan

    2016-04-01

    Full Text Available In the early spring of 2013, Chinese health authorities reported several cases of H7N9 influenza virus infections in humans. Since then the virus has established itself at the human-animal interface in Eastern China and continues to cause several hundred infections annually. In order to characterize the antibody response to the H7N9 virus we generated several mouse monoclonal antibodies against the hemagglutinin of the A/Shanghai/1/13 (H7N9 virus. Of particular note are two monoclonal antibodies, 1B2 and 1H5, that show broad reactivity to divergent H7 hemagglutinins. Monoclonal antibody 1B2 binds to viruses of the Eurasian and North American H7 lineages and monoclonal antibody 1H5 reacts broadly to virus isolates of the Eurasian lineage. Interestingly, 1B2 shows broad hemagglutination inhibiting and neutralizing activity, while 1H5 fails to inhibit hemagglutination and demonstrates no neutralizing activity in vitro. However, both monoclonal antibodies were highly protective in an in vivo passive transfer challenge model in mice, even at low doses. Experiments using mutant antibodies that lack the ability for Fc/Fc-receptor and Fc/complement interactions suggest that the protection provided by mAb 1H5 is, at least in part, mediated by the Fc-fragment of the mAb. These findings highlight that a protective response to a pathogen may not only be due to neutralizing antibodies, but can also be the result of highly efficacious non-neutralizing antibodies not readily detected by classical in vitro neutralization or hemagglutination inhibition assays. This is of interest because H7 influenza virus vaccines induce only low hemagglutination inhibiting antibody titers while eliciting robust antibody titers as measured by ELISA. Our data suggest that these binding but non-neutralizing antibodies contribute to protection in vivo.

  13. Recombinant Parainfluenza Virus 5 Expressing Hemagglutinin of Influenza A Virus H5N1 Protected Mice against Lethal Highly Pathogenic Avian Influenza Virus H5N1 Challenge

    Science.gov (United States)

    Li, Zhuo; Mooney, Alaina J.; Gabbard, Jon D.; Gao, Xiudan; Xu, Pei; Place, Ryan J.; Hogan, Robert J.; Tompkins, S. Mark

    2013-01-01

    A safe and effective vaccine is the best way to prevent large-scale highly pathogenic avian influenza virus (HPAI) H5N1 outbreaks in the human population. The current FDA-approved H5N1 vaccine has serious limitations. A more efficacious H5N1 vaccine is urgently needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, is not known to cause any illness in humans. PIV5 is an attractive vaccine vector. In our studies, a single dose of a live recombinant PIV5 expressing a hemagglutinin (HA) gene of H5N1 (rPIV5-H5) from the H5N1 subtype provided sterilizing immunity against lethal doses of HPAI H5N1 infection in mice. Furthermore, we have examined the effect of insertion of H5N1 HA at different locations within the PIV5 genome on the efficacy of a PIV5-based vaccine. Interestingly, insertion of H5N1 HA between the leader sequence, the de facto promoter of PIV5, and the first viral gene, nucleoprotein (NP), did not lead to a viable virus. Insertion of H5N1 HA between NP and the next gene, V/phosphorprotein (V/P), led to a virus that was defective in growth. We have found that insertion of H5N1 HA at the junction between the small hydrophobic (SH) gene and the hemagglutinin-neuraminidase (HN) gene gave the best immunity against HPAI H5N1 challenge: a dose as low as 1,000 PFU was sufficient to protect against lethal HPAI H5N1 challenge in mice. The work suggests that recombinant PIV5 expressing H5N1 HA has great potential as an HPAI H5N1 vaccine. PMID:23077314

  14. Immune status of health care workers to measles virus: evaluation of protective titers in four measles IgG EIAs

    NARCIS (Netherlands)

    Dorigo-Zetsma, J.W.; Hall, M.A.; Vreeswijk, J.; Vries, J.J. de; Vossen, A.C.; Hulscher, H.I. Ten; Kerkhof, J.; Smits, G.P.; Ruijs, W.L.M.; Koopmans, M.P.; Binnendijk, R.S. van

    2015-01-01

    BACKGROUND: Following the recognition of a measles case in a hospital in The Netherlands, health care workers (HCW) from the premises were screened by a commercial enzyme immunoassay (EIA) for measles IgG to identify persons at risk for measles. At least 10% of the HCW were tested measles

  15. [Measles in Germany: An Epidemiological Analysis and First Measures for Containment].

    Science.gov (United States)

    Matysiak-Klose, Dorothea; Wicker, Sabine

    2017-11-01

    Measles are one of the most contagious diseases of mankind. Measles incidence has declined worldwide since the introduction of vaccinations. Due to low numbers of measles cases in countries with high vaccination rates the population is not aware of possible complications of measles any more. Measles elimination is an important goal set by all regions of the World Health Organization. However, it remains a challenge for Germany and other European countries. Because of a high proportion of susceptibles in specific population and age groups outbreaks take place in Germany every year after importation of the virus. More than 50 % of measles cases are 20 years and older. However, the highest incidences have been seen in two-year-olds since several years. In addition to epidemiological findings such as case numbers and risk groups, genotyping permits e. g. an assessment of the endemic circulation of viruses. Suspicion of a measles case should result in immediate and consistent measures. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Rash after measles vaccination: laboratory analysis of cases reported in São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Oliveira Maria I

    2002-01-01

    Full Text Available OBJECTIVE: The clinical differential diagnosis of rash due to viral infections is often difficult, and misdiagnosis is not rare, especially after the introduction of measles and rubella vaccination. A study to determine the etiological diagnosis of exanthema was carried out in a group of children after measles vaccination. METHODS: Sera collected from children with rash who received measles vaccine were reported in 1999. They were analyzed for IgM antibodies against measles virus, rubella virus, human parvovirus B19 (HPV B19 using ELISA commercial techniques, and human herpes virus 6 (HHV 6 using immunofluorescence commercial technique. Viremia for each of those viruses was tested using a polimerase chain reaction (PCR. RESULTS: A total of 17 cases of children with exanthema after measles immunization were reported in 1999. The children, aged 9 to 12 months (median 10 months, had a blood sample taken for laboratory analysis. The time between vaccination and the first rash signs varied from 1 to 60 days. The serological results of those 17 children suspected of measles or rubella infection showed the following etiological diagnosis: 17.6% (3 in 17 HPV B19 infection; 76.5% (13 in 17 HHV 6 infection; 5.9% (1 in 17 rash due to measles vaccine. CONCLUSIONS: The study data indicate that infection due to HPV B19 or HHV 6 can be misdiagnosed as exanthema due to measles vaccination. Therefore, it is important to better characterize the etiology of rash in order to avoid attributing it incorrectly to measles vaccine.

  17. Rash after measles vaccination: laboratory analysis of cases reported in São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Maria I Oliveira

    2002-04-01

    Full Text Available OBJECTIVE: The clinical differential diagnosis of rash due to viral infections is often difficult, and misdiagnosis is not rare, especially after the introduction of measles and rubella vaccination. A study to determine the etiological diagnosis of exanthema was carried out in a group of children after measles vaccination. METHODS: Sera collected from children with rash who received measles vaccine were reported in 1999. They were analyzed for IgM antibodies against measles virus, rubella virus, human parvovirus B19 (HPV B19 using ELISA commercial techniques, and human herpes virus 6 (HHV 6 using immunofluorescence commercial technique. Viremia for each of those viruses was tested using a polimerase chain reaction (PCR. RESULTS: A total of 17 cases of children with exanthema after measles immunization were reported in 1999. The children, aged 9 to 12 months (median 10 months, had a blood sample taken for laboratory analysis. The time between vaccination and the first rash signs varied from 1 to 60 days. The serological results of those 17 children suspected of measles or rubella infection showed the following etiological diagnosis: 17.6% (3 in 17 HPV B19 infection; 76.5% (13 in 17 HHV 6 infection; 5.9% (1 in 17 rash due to measles vaccine. CONCLUSIONS: The study data indicate that infection due to HPV B19 or HHV 6 can be misdiagnosed as exanthema due to measles vaccination. Therefore, it is important to better characterize the etiology of rash in order to avoid attributing it incorrectly to measles vaccine.

  18. Molecular detection of measles virus from children during a sporadic ...

    African Journals Online (AJOL)

    Background: According to the World Health Organization (WHO), African region accounts for 36% of deaths caused by measles worldwide. Nigeria has, over the years, recorded the highest average annual measles incidence per 100,000 populations in Africa. Measles epidemics have consistently been reported in northern ...

  19. Unique Measles Virus in Canada

    Centers for Disease Control (CDC) Podcasts

    2017-08-24

    Dr. Shelley Deeks, chief of communicable diseases at Public Health Ontario, discusses a measles outbreak in Canada.  Created: 8/24/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/24/2017.

  20. Development and characterization of neutralizing monoclonal antibodies against canine distemper virus hemagglutinin protein.

    Science.gov (United States)

    Bi, Zhenwei; Xia, Xingxia; Wang, Yongshan; Mei, Yongjie

    2015-04-01

    Canine distemper virus (CDV) causes a serious multisystemic disease in dogs and other carnivora. Hemagglutinin (H) protein-specific antibodies are mainly responsible for protective immunity against CDV infection. In the present study, six neutralizing MAbs to the H protein of CDV were newly obtained and characterized by immunizing BALB/c mice with a recent Chinese field isolate. Competitive binding inhibition assay revealed that they recognized four distinct antigenic regions of the H protein. Immunofluorescence assay and western blotting showed that all MAbs recognize the conformational rather than the linear epitopes of the H protein. Furthermore, in immunofluorescence and virus neutralization assays, two of the MAbs were found to react only with the recent Chinese field isolate and not with older CDV strains, including vaccine strain Onderstepoort, indicating there are neutralization-related antigenic variations between the recent Chinese field isolate and the older CDV strains examined in this study. The newly established MAbs are useful for differentiating the expanding CDV strains and could be used in immunotherapy and immunodiagnosis against infection with CDV. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  1. Measles in Sudan: Diagnosis, Epidemiology and Humoral Immune Response

    NARCIS (Netherlands)

    H.S. El Mubarak

    2004-01-01

    textabstractDespite the availability of safe and effective live attenuated vaccines, measles remains endemic in many developing countries. Little is known about the pathogenesis of measles virus (MV) infections in the areas of itsendemicity, largely due to the limited infrastructure and political

  2. Measles in HIV-infected children in southern Africa | Sheikh | South ...

    African Journals Online (AJOL)

    . Given the high human immunodeficiency virus (HIV) prevalence in the region, the particular features of measles in HIV-infected individuals are of interest to clinicians, especially as regards children, as are measles immunisation strategies for ...

  3. Accurate Measurement of the Effects of All Amino-Acid Mutations on Influenza Hemagglutinin.

    Science.gov (United States)

    Doud, Michael B; Bloom, Jesse D

    2016-06-03

    Influenza genes evolve mostly via point mutations, and so knowing the effect of every amino-acid mutation provides information about evolutionary paths available to the virus. We and others have combined high-throughput mutagenesis with deep sequencing to estimate the effects of large numbers of mutations to influenza genes. However, these measurements have suffered from substantial experimental noise due to a variety of technical problems, the most prominent of which is bottlenecking during the generation of mutant viruses from plasmids. Here we describe advances that ameliorate these problems, enabling us to measure with greatly improved accuracy and reproducibility the effects of all amino-acid mutations to an H1 influenza hemagglutinin on viral replication in cell culture. The largest improvements come from using a helper virus to reduce bottlenecks when generating viruses from plasmids. Our measurements confirm at much higher resolution the results of previous studies suggesting that antigenic sites on the globular head of hemagglutinin are highly tolerant of mutations. We also show that other regions of hemagglutinin-including the stalk epitopes targeted by broadly neutralizing antibodies-have a much lower inherent capacity to tolerate point mutations. The ability to accurately measure the effects of all influenza mutations should enhance efforts to understand and predict viral evolution.

  4. Genotyping of circulating measles strains in Italy in 2010

    Directory of Open Access Journals (Sweden)

    Melissa Baggieri

    2014-12-01

    Full Text Available INTRODUCTION: The European Regional Office of the World Health Organization developed a strategic approach to stop the indigenous transmission of measles in its 53 Member States by 2015. In Italy, laboratory surveillance activity is implemented by the National Reference Laboratory for Measles and Rubella at the Italian National Institute of Health (Istituto Superiore di Sanità, Rome. The role of the National Reference Laboratory is to strengthen surveillance systems through rigorous case investigation and laboratory confirmation of suspected sporadic cases and outbreaks. Genetic characterization of wild-type measles virus is an essential component of the laboratory-based surveillance. This study describes the molecular characterization of measles virus strains isolated during 2010. METHODS: Dried blood spots, urine and oral fluid samples were collected from patients with a suspected measles infection. Serological tests were performed on capillary blood, and viral detection was performed on urine and oral fluid samples through molecular assay. Positive samples were sequenced and phylogenetically analysed. RESULTS AND DISCUSSION: The phylogenetic analysis showed a co-circulation of genotypes D4 and D8, and sporadic cases associated to genotypes D9 and B3. Then, molecular epidemiology of measles cases permitted to establish that D4 and D8 were the endemic genotypes in Italy during 2010.

  5. Production of antibodies against measles virions by use of the mouse hybridoma technique

    International Nuclear Information System (INIS)

    Togashi, T.; Oervell, C.; Norrby, E.; Vartdal, F.

    1981-01-01

    Mouse hybridoma cell lines were produced by fusion of P3 x 63 Ag8 mycloma cells with spleen cells from BALB/c mice immunized with purified measles virions. About 60 per cent of single cell colonies in wells were found to produce measles antibodies as determined by a radioimmune assay. Selected measles antibody producing hybridoma cell lines were passaged intraperitoncally in mice and ascites fluids were collected. This material contained 20 - 200 times higher antibody titers than unconcentrated medium from hybridoma cell lines propagated in tissue culture. The ascites fluid antibody products of 23 hybridoma cell lines were characterized by different measles serological tests. Seventeen lines produced high titers of hemagglutination inhibiting (HI) and hemolysis-inhibition (HLI) antibodies. One hybridoma cell line produced Ig with low HI but high HLI activity and the remaining 5 hybridoma cell line products only carried HLI activity. Unexepctedly it was found in radioimmune precipitation assays that all hybridomas studied, including those showing HLI but no HI antibody activity, gave a selective precipitation of the 79 K measles hemagglutinin polypeptide. Radioimmune precipitation assays with sera from immunized animals showed that they contained high titers of antibodies precipitating the 79 K polypeptide but in addition also somewhat lower titers of antibodies precipitating the 60 K nucleoprotein, 40 K fusion and 36 K matrix polypeptides. Homogeneous Ig products carrying measles antibody activity were demonstrated by imprint immunoelectrophoresis of ascites materials. (Author)

  6. Production of antibodies against measles virions by use of the mouse hybridoma technique

    Energy Technology Data Exchange (ETDEWEB)

    Togashi, T; Oervell, C; Norrby, E [Kungliga Karolinska Mediko-Kirurgiska Inst., Stockholm (Sweden); Vartdal, F [Rikshospitalet, Oslo (Norway)

    1981-01-01

    Mouse hybridoma cell lines were produced by fusion of P3 x 63 Ag8 mycloma cells with spleen cells from BALB/c mice immunized with purified measles virions. About 60 per cent of single cell colonies in wells were found to produce measles antibodies as determined by a radioimmune assay. Selected measles antibody producing hybridoma cell lines were passaged intraperitoncally in mice and ascites fluids were collected. This material contained 20 - 200 times higher antibody titers than unconcentrated medium from hybridoma cell lines propagated in tissue culture. The ascites fluid antibody products of 23 hybridoma cell lines were characterized by different measles serological tests. Seventeen lines produced high titers of hemagglutination inhibiting (HI) and hemolysis-inhibition (HLI) antibodies. One hybridoma cell line produced Ig with low HI but high HLI activity and the remaining 5 hybridoma cell line products only carried HLI activity. Unexepctedly it was found in radioimmune precipitation assays that all hybridomas studied, including those showing HLI but no HI antibody activity, gave a selective precipitation of the 79 K measles hemagglutinin polypeptide. Radioimmune precipitation assays with sera from immunized animals showed that they contained high titers of antibodies precipitating the 79 K polypeptide but in addition also somewhat lower titers of antibodies precipitating the 60 K nucleoprotein, 40 K fusion and 36 K matrix polypeptides. Homogeneous Ig products carrying measles antibody activity were demonstrated by imprint immunoelectrophoresis of ascites materials.

  7. Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Brian S.; Chung, Changik; Cyphers, Soreen Y.; Rinaldi, Vera D.; Marcano, Valerie C.; Whittaker, Gary R., E-mail: grw7@cornell.edu

    2014-07-25

    Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza.

  8. Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2

    International Nuclear Information System (INIS)

    Hamilton, Brian S.; Chung, Changik; Cyphers, Soreen Y.; Rinaldi, Vera D.; Marcano, Valerie C.; Whittaker, Gary R.

    2014-01-01

    Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza

  9. A human monoclonal antibody derived from a vaccinated volunteer recognizes heterosubtypically a novel epitope on the hemagglutinin globular head of H1 and H9 influenza A viruses

    International Nuclear Information System (INIS)

    Boonsathorn, Naphatsawan; Panthong, Sumolrat; Koksunan, Sarawut; Chittaganpitch, Malinee; Phuygun, Siripaporn; Waicharoen, Sunthareeya; Prachasupap, Apichai; Sasaki, Tadahiro; Kubota-Koketsu, Ritsuko; Yasugi, Mayo; Ono, Ken-ichiro; Arai, Yasuha

    2014-01-01

    Highlights: • A human monoclonal antibody against influenza virus was produced from a volunteer. • The antibody was generated from the PBMCs of the volunteer using the fusion method. • The antibody neutralized heterosubtypically group 1 influenza A viruses (H1 and H9). • The antibody targeted a novel epitope in globular head region of the hemagglutinin. • Sequences of the identified epitope are highly conserved among H1 and H9 subtypes. - Abstract: Most neutralizing antibodies elicited during influenza virus infection or by vaccination have a narrow spectrum because they usually target variable epitopes in the globular head region of hemagglutinin (HA). In this study, we describe a human monoclonal antibody (HuMAb), 5D7, that was prepared from the peripheral blood lymphocytes of a vaccinated volunteer using the fusion method. The HuMAb heterosubtypically neutralizes group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H9N2, with a strong hemagglutinin inhibition activity. Selection of an escape mutant showed that the HuMAb targets a novel conformational epitope that is located in the HA head region but is distinct from the receptor binding site. Furthermore, Phe114Ile substitution in the epitope made the HA unrecognizable by the HuMAb. Amino acid residues in the predicted epitope region are also highly conserved in the HAs of H1N1 and H9N2. The HuMAb reported here may be a potential candidate for the development of therapeutic/prophylactic antibodies against H1 and H9 influenza viruses

  10. A human monoclonal antibody derived from a vaccinated volunteer recognizes heterosubtypically a novel epitope on the hemagglutinin globular head of H1 and H9 influenza A viruses

    Energy Technology Data Exchange (ETDEWEB)

    Boonsathorn, Naphatsawan; Panthong, Sumolrat [Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo (Japan); Koksunan, Sarawut [Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); Chittaganpitch, Malinee; Phuygun, Siripaporn; Waicharoen, Sunthareeya [National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); Prachasupap, Apichai [Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo (Japan); Sasaki, Tadahiro [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo (Japan); Kubota-Koketsu, Ritsuko [Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa (Japan); Yasugi, Mayo [Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka (Japan); Ono, Ken-ichiro [Ina Laboratory, Medical and Biological Laboratories Corporation, Ltd., Ina, Nagano (Japan); Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo (Japan); Arai, Yasuha [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); and others

    2014-09-26

    Highlights: • A human monoclonal antibody against influenza virus was produced from a volunteer. • The antibody was generated from the PBMCs of the volunteer using the fusion method. • The antibody neutralized heterosubtypically group 1 influenza A viruses (H1 and H9). • The antibody targeted a novel epitope in globular head region of the hemagglutinin. • Sequences of the identified epitope are highly conserved among H1 and H9 subtypes. - Abstract: Most neutralizing antibodies elicited during influenza virus infection or by vaccination have a narrow spectrum because they usually target variable epitopes in the globular head region of hemagglutinin (HA). In this study, we describe a human monoclonal antibody (HuMAb), 5D7, that was prepared from the peripheral blood lymphocytes of a vaccinated volunteer using the fusion method. The HuMAb heterosubtypically neutralizes group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H9N2, with a strong hemagglutinin inhibition activity. Selection of an escape mutant showed that the HuMAb targets a novel conformational epitope that is located in the HA head region but is distinct from the receptor binding site. Furthermore, Phe114Ile substitution in the epitope made the HA unrecognizable by the HuMAb. Amino acid residues in the predicted epitope region are also highly conserved in the HAs of H1N1 and H9N2. The HuMAb reported here may be a potential candidate for the development of therapeutic/prophylactic antibodies against H1 and H9 influenza viruses.

  11. [EIA-IgG antibody measles prevention level estimated from measles neutralizing, particle agglutination and hemagglutination-inhibition antibody titer].

    Science.gov (United States)

    Takayama, Naohide; Saika, Shizuko; Ichinohe, Sadato

    2009-09-01

    Measles hemagglutination inhibition (HI) antibody titer, widely used in clinical practice to simply and easily determine the measles immunity level has, in recent years, been increasingly replaced by measles IgG-antibody titer determined by enzyme-immunoassay (EIA). HI antibody titer appears to reflect this protective level, because HI measures the antibody against H protein required for the measles virus to adhere to host cells. EIA-IgG antibody titer does not correlate with the protective level, similar to particle agglutination (PA) titer, because EIA measures different antibodies, including those unrelated to measles protection. After determining HI, PA, neutralizing test (NT) results, and EIA-IgG antibody titer for individual specimens, we compared EIA-IgG antibody titer obtained using an EIA-Kit (Denka Seiken) to HI, PA, and NT titer with the following results: (1) Subjects with EIA-IgG titer of > or = 12.0 may be protected against measles: (2) Subjects with EIA-IgG titer of 4.0 to 8.0 appear to be protected insufficiently requiring a booster dose against measles: (3) Subjects with EIA-IgG titer of 8.0 to 12.0 may benefit from booster vaccination.

  12. Neuraminidase stalk length and additional glycosylation of the hemagglutinin influence the virulence of influenza H5N1 viruses for mice.

    Science.gov (United States)

    Matsuoka, Yumiko; Swayne, David E; Thomas, Colleen; Rameix-Welti, Marie-Anne; Naffakh, Nadia; Warnes, Christine; Altholtz, Melanie; Donis, Ruben; Subbarao, Kanta

    2009-05-01

    Following circulation of avian influenza H5 and H7 viruses in poultry, the hemagglutinin (HA) can acquire additional glycosylation sites, and the neuraminidase (NA) stalk becomes shorter. We investigated whether these features play a role in the pathogenesis of infection in mammalian hosts. From 1996 to 2007, H5N1 viruses with a short NA stalk have become widespread in several avian species. Compared to viruses with a long-stalk NA, viruses with a short-stalk NA showed a decreased capacity to elute from red blood cells and an increased virulence in mice, but not in chickens. The presence of additional HA glycosylation sites had less of an effect on virulence than did NA stalk length. The short-stalk NA of H5N1 viruses circulating in Asia may contribute to virulence in humans.

  13. Neuraminidase Stalk Length and Additional Glycosylation of the Hemagglutinin Influence the Virulence of Influenza H5N1 Viruses for Mice▿

    Science.gov (United States)

    Matsuoka, Yumiko; Swayne, David E.; Thomas, Colleen; Rameix-Welti, Marie-Anne; Naffakh, Nadia; Warnes, Christine; Altholtz, Melanie; Donis, Ruben; Subbarao, Kanta

    2009-01-01

    Following circulation of avian influenza H5 and H7 viruses in poultry, the hemagglutinin (HA) can acquire additional glycosylation sites, and the neuraminidase (NA) stalk becomes shorter. We investigated whether these features play a role in the pathogenesis of infection in mammalian hosts. From 1996 to 2007, H5N1 viruses with a short NA stalk have become widespread in several avian species. Compared to viruses with a long-stalk NA, viruses with a short-stalk NA showed a decreased capacity to elute from red blood cells and an increased virulence in mice, but not in chickens. The presence of additional HA glycosylation sites had less of an effect on virulence than did NA stalk length. The short-stalk NA of H5N1 viruses circulating in Asia may contribute to virulence in humans. PMID:19225004

  14. Measles virus antibody responses in children randomly assigned to receive standard-titer edmonston-zagreb measles vaccine at 4.5 and 9 months of age, 9 months of age, or 9 and 18 months of age.

    Science.gov (United States)

    Martins, Cesario; Garly, May-Lill; Bale, Carlitos; Rodrigues, Amabelia; Njie-Jobe, Jainaba; Benn, Christine S; Whittle, Hilton; Aaby, Peter

    2014-09-01

    The World Health Organization recommends administration of measles vaccine (MV) at age 9 months in low-income countries. We tested the measles virus antibody response at 4.5, 9, 18, and 24 months of age for children randomly assigned to receive standard-titer Edmonston-Zagreb MV at 4.5 and 9 months, at 9 months, or at 9 and 18 months of age. At 4.5 months of age, 75% had nonprotective measles virus antibody levels. Following receipt of MV at 4.5 months of age, 77% (316/408) had protective antibody levels at 9 months of age; after a second dose at 9 months of age, 97% (326/337) had protective levels at 24 months of age. In addition, the response at both 9 and 24 months of age was inversely correlated with the antibody level at receipt of the first dose of MV, and the second dose of MV, received at 9 months of age, provided a significant boost in antibody level to children who had low antibody levels. In the group of 318 children who received MV at 9 months of age, with or without a second dose at 18 months of age, 99% (314) had protective levels at 24 months of age. The geometric mean titer at 24 months of age was significantly lower in the group that received MV at 4.5 and 9 months of age than in the group that received MV at 9 months of age (P = .0001). In conclusion, an early 2-dose MV schedule was associated with protective measles virus antibody levels at 24 months of age in nearly all children. Clinical Trials Registration. NCT00168558. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. The measles virus N(TAIL)-XD complex: an illustrative example of fuzziness.

    Science.gov (United States)

    Longhi, Sonia

    2012-01-01

    In this chapter, I focus on the biochemical and structural characterization of the complex between the intrinsically disordered C-terminal domain of the measles virus nucleoprotein (N(TAIL)) and the C-terminal X domain (XD) of the viral phosphoprotein (P). I summarize the main experimental data available so far pointing out the prevalently disordered nature of N(TAIL) even after complex formation and the role of the flexible C-terminal appendage in the binding reaction. I finally discuss the possible functional role of these residual disordered regions within the complex in terms of their ability to capture other regulatory, binding partners.

  16. Identifying antigenicity-associated sites in highly pathogenic H5N1 influenza virus hemagglutinin by using sparse learning.

    OpenAIRE

    Cai, Zhipeng; Yang, Jialiang; Zhang, Tong; Long, Li-Ping; Boon, Adrianus C; Webby, Richard J; Wan, Xiu-Feng

    2012-01-01

    Since the isolation of A/goose/Guangdong/1/1996 (H5N1) in farmed geese in southern China, highly pathogenic H5N1 avian influenza viruses have posed a continuous threat to both public and animal health. The non-synonymous mutation of the H5 hemagglutinin (HA) gene has resulted in antigenic drift, leading to difficulties in both clinical diagnosis and vaccine strain selection. Characterizing H5N1's antigenic profiles would help resolve these problems. In this study, a novel sparse learning meth...

  17. Recombinant measles virus vaccine expressing the Nipah virus glycoprotein protects against lethal Nipah virus challenge.

    Directory of Open Access Journals (Sweden)

    Misako Yoneda

    Full Text Available Nipah virus (NiV is a member of the genus Henipavirus, which emerged in Malaysia in 1998. In pigs, infection resulted in a predominantly non-lethal respiratory disease; however, infection in humans resulted in over 100 deaths. Nipah virus has continued to re-emerge in Bangladesh and India, and person-to-person transmission appeared in the outbreak. Although a number of NiV vaccine studies have been reported, there are currently no vaccines or treatments licensed for human use. In this study, we have developed a recombinant measles virus (rMV vaccine expressing NiV envelope glycoproteins (rMV-HL-G and rMV-Ed-G. Vaccinated hamsters were completely protected against NiV challenge, while the mortality of unvaccinated control hamsters was 90%. We trialed our vaccine in a non-human primate model, African green monkeys. Upon intraperitoneal infection with NiV, monkeys showed several clinical signs of disease including severe depression, reduced ability to move and decreased food ingestion and died at 7 days post infection (dpi. Intranasal and oral inoculation induced similar clinical illness in monkeys, evident around 9 dpi, and resulted in a moribund stage around 14 dpi. Two monkeys immunized subcutaneously with rMV-Ed-G showed no clinical illness prior to euthanasia after challenge with NiV. Viral RNA was not detected in any organ samples collected from vaccinated monkeys, and no pathological changes were found upon histopathological examination. From our findings, we propose that rMV-NiV-G is an appropriate NiV vaccine candidate for use in humans.

  18. Evolutionary trends of A(H1N1 influenza virus hemagglutinin since 1918.

    Directory of Open Access Journals (Sweden)

    Jun Shen

    2009-11-01

    Full Text Available The Pandemic (H1N1 2009 is spreading to numerous countries and causing many human deaths. Although the symptoms in humans are mild at present, fears are that further mutations in the virus could lead to a potentially more dangerous outbreak in subsequent months. As the primary immunity-eliciting antigen, hemagglutinin (HA is the major agent for host-driven antigenic drift in A(H3N2 virus. However, whether and how the evolution of HA is influenced by existing immunity is poorly understood for A(H1N1. Here, by analyzing hundreds of A(H1N1 HA sequences since 1918, we show the first evidence that host selections are indeed present in A(H1N1 HAs. Among a subgroup of human A(H1N1 HAs between 1918 approximately 2008, we found strong diversifying (positive selection at HA(1 156 and 190. We also analyzed the evolutionary trends at HA(1 190 and 225 that are critical determinants for receptor-binding specificity of A(H1N1 HA. Different A(H1N1 viruses appeared to favor one of these two sites in host-driven antigenic drift: epidemic A(H1N1 HAs favor HA(1 190 while the 1918 pandemic and swine HAs favor HA(1 225. Thus, our results highlight the urgency to understand the interplay between antigenic drift and receptor binding in HA evolution, and provide molecular signatures for monitoring future antigenically drifted 2009 pandemic and seasonal A(H1N1 influenza viruses.

  19. Molecular Characterizations of Surface Proteins Hemagglutinin and Neuraminidase from Recent H5Nx Avian Influenza Viruses

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hua; Carney, Paul J.; Mishin, Vasiliy P.; Guo, Zhu; Chang, Jessie C.; Wentworth, David E.; Gubareva, Larisa V.; Stevens, James; Schultz-Cherry, S.

    2016-04-06

    ABSTRACT

    During 2014, a subclade 2.3.4.4 highly pathogenic avian influenza (HPAI) A(H5N8) virus caused poultry outbreaks around the world. In late 2014/early 2015, the virus was detected in wild birds in Canada and the United States, and these viruses also gave rise to reassortant progeny, composed of viral RNA segments (vRNAs) from both Eurasian and North American lineages. In particular, viruses were found with N1, N2, and N8 neuraminidase vRNAs, and these are collectively referred to as H5Nx viruses. In the United States, more than 48 million domestic birds have been affected. Here we present a detailed structural and biochemical analysis of the surface antigens of H5N1, H5N2, and H5N8 viruses in addition to those of a recent human H5N6 virus. Our results with recombinant hemagglutinin reveal that these viruses have a strict avian receptor binding preference, while recombinantly expressed neuraminidases are sensitive to FDA-approved and investigational antivirals. Although H5Nx viruses currently pose a low risk to humans, it is important to maintain surveillance of these circulating viruses and to continually assess future changes that may increase their pandemic potential.

    IMPORTANCEThe H5Nx viruses emerging in North America, Europe, and Asia pose a great public health concern. Here we report a molecular and structural study of the major surface proteins of several H5Nx influenza viruses. Our results improve the understanding of these new viruses and provide important information on their receptor preferences and susceptibilities to antivirals, which are central to pandemic risk assessment.

  20. Measles: What we have learned from non-human primate models

    NARCIS (Netherlands)

    R.L. de Swart (Rik)

    2018-01-01

    textabstractStudies in non-human primates (NHPs) have been crucial for our understanding of measles as a high impact viral disease of humans. Over a century ago, inoculations of NHPs with filtered secretions from measles patients first identified a virus as the causative agent of this disease. In

  1. Identifying antigenicity associated sites in highly pathogenic H5N1 influenza virus hemagglutinin by using sparse learning

    OpenAIRE

    Cai, Zhipeng; Ducatez, Mariette F.; Yang, Jialiang; Zhang, Tong; Long, Li-Ping; Boon, Adrianus C.; Webby, Richard J.; Wan, Xiu-Feng

    2012-01-01

    Since the isolation of A/goose/Guangdong/1/1996 (H5N1) in farmed geese in southern China, highly pathogenic H5N1 avian influenza viruses have posed a continuous threat to both public and animal health. The non-synonymous mutation of the H5 hemagglutinin gene has resulted in antigenic drift, leading to difficulties in both clinical diagnosis and vaccine strain selection. Characterizing H5N1’s antigenic profiles would help resolve these problems. In this study, a novel sparse learning method wa...

  2. Establishment of the cross-clade antigen detection system for H5 subtype influenza viruses using peptide monoclonal antibodies specific for influenza virus H5 hemagglutinin.

    Science.gov (United States)

    Takahashi, Hitoshi; Nagata, Shiho; Odagiri, Takato; Kageyama, Tsutomu

    2018-04-15

    The H5 subtype of highly pathogenic avian influenza (H5 HPAI) viruses is a threat to both animal and human public health and has the potential to cause a serious future pandemic in humans. Thus, specific and rapid detection of H5 HPAI viruses is required for infection control in humans. To develop a simple and rapid diagnostic system to detect H5 HPAI viruses with high specificity and sensitivity, we attempted to prepare monoclonal antibodies (mAbs) that specifically recognize linear epitopes in hemagglutinin (HA) of H5 subtype viruses. Nine mAb clones were obtained from mice immunized with a synthetic partial peptide of H5 HA molecules conserved among various H5 HPAI viruses. The antigen-capture enzyme-linked immunosorbent assay using the most suitable combination of these mAbs, which bound specifically to lysed H5 HA under an optimized detergent condition, was specific for H5 viruses and could broadly detect H5 viruses in multiple different clades. Taken together, these peptide mAbs, which recognize linear epitopes in a highly conserved region of H5 HA, may be useful for specific and highly sensitive detection of H5 HPAI viruses and can help in the rapid diagnosis of human, avian, and animal H5 virus infections. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Experimental adaptation of wild-type canine distemper virus (CDV to the human entry receptor CD150.

    Directory of Open Access Journals (Sweden)

    Maria Bieringer

    Full Text Available Canine distemper virus (CDV, a close relative of measles virus (MV, is widespread and well known for its broad host range. When the goal of measles eradication may be achieved, and when measles vaccination will be stopped, CDV might eventually cross the species barrier to humans and emerge as a new human pathogen. In order to get an impression how fast such alterations may occur, we characterized required adaptive mutations to the human entry receptors CD150 (SLAM and nectin-4 as first step to infect human target cells. Recombinant wild-type CDV-A75/17(red adapted quickly to growth in human H358 epithelial cells expressing human nectin-4. Sequencing of the viral attachment proteins (hemagglutinin, H, and fusion protein, F genes revealed that no adaptive alteration was required to utilize human nectin-4. In contrast, the virus replicated only to low titres (10(2 pfu/ml in Vero cells expressing human CD150 (Vero-hSLAM. After three passages using these cells virus was adapted to human CD150 and replicated to high titres (10(5 pfu/ml. Sequence analyses revealed that only one amino acid exchange in the H-protein at position 540 Asp→Gly (D540G was required for functional adaptation to human CD150. Structural modelling suggests that the adaptive mutation D540G in H reflects the sequence alteration from canine to human CD150 at position 70 and 71 from Pro to Leu (P70L and Gly to Glu (G71E, and compensates for the gain of a negative charge in the human CD150 molecule. Using this model system our data indicate that only a minimal alteration, in this case one adaptive mutation, is required for adaptation of CDV to the human entry receptors, and help to understand the molecular basis why this adaptive mutation occurs.

  4. Epidemiological and molecular investigation of a measles outbreak in Punjab, Pakistan, 2013-2015.

    Science.gov (United States)

    Zaidi, Syed Sohail Zahoor; Hameed, Abdul; Ali, Naeem; Rana, Muhammad Suleman; Umair, Massab; Alam, Muhammad Masroor; Aamir, Uzma Bashir; Khurshid, Adnan; Sharif, Salmaan; Shaukat, Shahzad; Angez, Mehar; Mujtaba, Ghulam; Arshad, Yasir; Akthar, Ribqa; Sufian, Mian Muhammad; Mehmood, Nayab

    2018-04-28

    Despite the availability of an effective vaccine, the measles virus continues to cause significant morbidity and mortality in children worldwide. Molecular characterization of wild-type measles strains is an invaluable component of epidemiological studies or surveillance systems that provides important information pertinent to outbreak linkages and transmission pathways. Serum samples and throat swabs were collected from suspected measles cases from the Punjab province of Pakistan (2013-2015) and further tested for measles immunoglobulin M (IgM) through enzyme-linked immunosorbent assay and reverse-transcriptase polymerase chain reaction for molecular characterization. Among the total of 5415 blood samples, 59% tested positive for measles IgM. Males had a higher infection rate (55%) than females (45%), and the highest frequency of positive cases (63%) was found in the age group of 0 to 5 years. Partial sequencing of the nucleoprotein gene showed that 27 strains belonged to the B3 genotype, whereas 2 viruses were identified as D4. On phylogenetic analysis, Pakistani B3 strains were found to be closely related to previously reported indigenous strains and those from neighboring countries of Iran and Qatar. This is the first report on the detection of the measles B3 genotype from Punjab, Pakistan. The current study shows a high burden of measles infections in Punjab province owing to poor routine immunization coverage in major cities. It is imperative that national health authorities adopt strategic steps on an urgent basis for improvement of routine immunization coverage. Molecular epidemiology of the measles viruses circulating in different parts of the country can provide useful data to manage future outbreaks. © 2018 Wiley Periodicals, Inc.

  5. A simple Pichia pastoris fermentation and downstream processing strategy for making recombinant pandemic Swine Origin Influenza a virus Hemagglutinin protein.

    Science.gov (United States)

    Athmaram, T N; Singh, Anil Kumar; Saraswat, Shweta; Srivastava, Saurabh; Misra, Princi; Kameswara Rao, M; Gopalan, N; Rao, P V L

    2013-02-01

    The present Influenza vaccine manufacturing process has posed a clear impediment to initiation of rapid mass vaccination against spreading pandemic influenza. New vaccine strategies are therefore needed that can accelerate the vaccine production. Pichia offers several advantages for rapid and economical bulk production of recombinant proteins and, hence, can be attractive alternative for producing an effective influenza HA based subunit vaccine. The recombinant Pichia harboring the transgene was subjected to fed-batch fermentation at 10 L scale. A simple fermentation and downstream processing strategy is developed for high-yield secretory expression of the recombinant Hemagglutinin protein of pandemic Swine Origin Influenza A virus using Pichia pastoris via fed-batch fermentation. Expression and purification were optimized and the expressed recombinant Hemagglutinin protein was verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blot and MALDI-TOF analysis. In this paper, we describe a fed-batch fermentation protocol for the secreted production of Swine Influenza A Hemagglutinin protein in the P. pastoris GS115 strain. We have shown that there is a clear relationship between product yield and specific growth rate. The fed-batch fermentation and downstream processing methods optimized in the present study have immense practical application for high-level production of the recombinant H1N1 HA protein in a cost effective way using P. pastoris.

  6. A Review of Measles

    Science.gov (United States)

    Dardis, Melissa R.

    2012-01-01

    Measles, once a common childhood illness that many older school nurses could recognize without difficulty, needs review again after reemerging from Europe and other continents. A highly contagious disease, which has been referenced since the seventh century, the virus can cause serious illness and death, despite the fact that it is vaccine…

  7. Impact of Mutations in the Hemagglutinin of H10N7 Viruses Isolated from Seals on Virus Replication in Avian and Human Cells

    Directory of Open Access Journals (Sweden)

    Anne Dittrich

    2018-02-01

    Full Text Available Wild birds are the reservoir for low-pathogenic avian influenza viruses, which are frequently transmitted to domestic birds and occasionally to mammals. In 2014, an H10N7 virus caused severe mortality in harbor seals in northeastern Europe. Although the hemagglutinin (HA of this virus was closely related to H10 of avian H10N4 virus, it possessed unique nonsynonymous mutations, particularly in the HA1 subunit in or adjacent to the receptor binding domain and proteolytic cleavage site. Here, the impact of these mutations on virus replication was studied in vitro. Using reverse genetics, an avian H10N4 virus was cloned, and nine recombinant viruses carrying one of eight unique mutations or the complete HA from the seal virus were rescued. Receptor binding affinity, replication in avian and mammalian cell cultures, cell-to-cell spread, and HA cleavability of these recombinant viruses were studied. Results show that wild-type recombinant H10N4 virus has high affinity to avian-type sialic acid receptors and no affinity to mammalian-type receptors. The H10N7 virus exhibits dual receptor binding affinity. Interestingly, Q220L (H10 numbering in the rim of the receptor binding pocket increased the affinity of the H10N4 virus to mammal-type receptors and completely abolished the affinity to avian-type receptors. No remarkable differences in cell-to-cell spread or HA cleavability were observed. All viruses, including the wild-type H10N7 virus, replicated at higher levels in chicken cells than in human cells. These results indicate that H10N7 acquired adaptive mutations (e.g., Q220L to enhance replication in mammals and retained replication efficiency in the original avian host.

  8. Impact of Mutations in the Hemagglutinin of H10N7 Viruses Isolated from Seals on Virus Replication in Avian and Human Cells.

    Science.gov (United States)

    Dittrich, Anne; Scheibner, David; Salaheldin, Ahmed H; Veits, Jutta; Gischke, Marcel; Mettenleiter, Thomas C; Abdelwhab, Elsayed M

    2018-02-14

    Wild birds are the reservoir for low-pathogenic avian influenza viruses, which are frequently transmitted to domestic birds and occasionally to mammals. In 2014, an H10N7 virus caused severe mortality in harbor seals in northeastern Europe. Although the hemagglutinin (HA) of this virus was closely related to H10 of avian H10N4 virus, it possessed unique nonsynonymous mutations, particularly in the HA1 subunit in or adjacent to the receptor binding domain and proteolytic cleavage site. Here, the impact of these mutations on virus replication was studied in vitro. Using reverse genetics, an avian H10N4 virus was cloned, and nine recombinant viruses carrying one of eight unique mutations or the complete HA from the seal virus were rescued. Receptor binding affinity, replication in avian and mammalian cell cultures, cell-to-cell spread, and HA cleavability of these recombinant viruses were studied. Results show that wild-type recombinant H10N4 virus has high affinity to avian-type sialic acid receptors and no affinity to mammalian-type receptors. The H10N7 virus exhibits dual receptor binding affinity. Interestingly, Q220L (H10 numbering) in the rim of the receptor binding pocket increased the affinity of the H10N4 virus to mammal-type receptors and completely abolished the affinity to avian-type receptors. No remarkable differences in cell-to-cell spread or HA cleavability were observed. All viruses, including the wild-type H10N7 virus, replicated at higher levels in chicken cells than in human cells. These results indicate that H10N7 acquired adaptive mutations (e.g., Q220L) to enhance replication in mammals and retained replication efficiency in the original avian host.

  9. Aerosol measles vaccination in macaques: Preclinical studies of immune responses and safety

    NARCIS (Netherlands)

    R.L. de Swart (Rik); T. Kuiken (Thijs); J. Fernandez-de Castro (Jorge); M.J. Papania (Mark); J.V. Bennett (John); J.L. Valdespino (José); P.D. Minor; C.L. Witham (Clyde); S. Yüksel (Selma); H.W. Vos (Helma); G. van Amerongen (Geert); A.D.M.E. Osterhaus (Albert)

    2006-01-01

    textabstractThe comparative efficacy and safety of measles vaccination via the aerosol route versus subcutaneous injection has not been fully resolved. We vaccinated cynomolgus monkeys (Macaca fascicularis) with the live-attenuated Edmonston-Zagreb measles virus (MV) vaccine and compared different

  10. Isolation of recombinant phage antibodies targeting the hemagglutinin cleavage site of highly pathogenic avian influenza virus.

    Directory of Open Access Journals (Sweden)

    Jinhua Dong

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 viruses, which have emerged in poultry and other wildlife worldwide, contain a characteristic multi-basic cleavage site (CS in the hemagglutinin protein (HA. Because this arginine-rich CS is unique among influenza virus subtypes, antibodies against this site have the potential to specifically diagnose pathogenic H5N1. By immunizing mice with the CS peptide and screening a phage display library, we isolated four antibody Fab fragment clones that specifically bind the antigen peptide and several HPAI H5N1 HA proteins in different clades. The soluble Fab fragments expressed in Escherichia coli bound the CS peptide and the H5N1 HA protein with nanomolar affinity. In an immunofluorescence assay, these Fab fragments stained cells infected with HPAI H5N1 but not those infected with a less virulent strain. Lastly, all the Fab clones could detect the CS peptide and H5N1 HA protein by open sandwich ELISA. Thus, these recombinant Fab fragments will be useful novel reagents for the rapid and specific detection of HPAI H5N1 virus.

  11. Selective translation of the measles virus nucleocapsid mRNA by La protein

    Directory of Open Access Journals (Sweden)

    Yoshihisa eInoue

    2011-08-01

    Full Text Available Measles, caused by measles virus (MeV infection, is the leading cause of death in children because of secondary infections attributable to MeV-induced immune suppression. Recently, we have shown that wild-type MeVs induce the suppression of protein synthesis in host cells (referred to as "shutoff" and that viral mRNAs are preferentially translated under shutoff conditions in infected cells. To determine the mechanism behind the preferential translation of viral mRNA, we focused on the 5 untranslated region (UTR of nucleocapsid (N mRNA. The La/SSB autoantigen (La was found to specifically bind to an N-5UTR probe. Recombinant La enhanced the translation of luciferase mRNA containing the N-5UTR (N-fLuc, and RNA interference of La suppressed N-fLuc translation. Furthermore, recombinant MeV lacking the La-binding motif in the N-5UTR displayed delayed viral protein synthesis and growth kinetics at an early phase of infection. These results suggest that La induced predominant translation of N mRNA via binding to its 5UTR under shutoff conditions. This is the first report on a cellular factor that specifically regulates paramyxovirus mRNA translation.

  12. Analyses of Evolutionary Characteristics of the Hemagglutinin-Esterase Gene of Influenza C Virus during a Period of 68 Years Reveals Evolutionary Patterns Different from Influenza A and B Viruses

    Directory of Open Access Journals (Sweden)

    Yuki Furuse

    2016-11-01

    Full Text Available Infections with the influenza C virus causing respiratory symptoms are common, particularly among children. Since isolation and detection of the virus are rarely performed, compared with influenza A and B viruses, the small number of available sequences of the virus makes it difficult to analyze its evolutionary dynamics. Recently, we reported the full genome sequence of 102 strains of the virus. Here, we exploited the data to elucidate the evolutionary characteristics and phylodynamics of the virus compared with influenza A and B viruses. Along with our data, we obtained public sequence data of the hemagglutinin-esterase gene of the virus; the dataset consists of 218 unique sequences of the virus collected from 14 countries between 1947 and 2014. Informatics analyses revealed that (1 multiple lineages have been circulating globally; (2 there have been weak and infrequent selective bottlenecks; (3 the evolutionary rate is low because of weak positive selection and a low capability to induce mutations; and (4 there is no significant positive selection although a few mutations affecting its antigenicity have been induced. The unique evolutionary dynamics of the influenza C virus must be shaped by multiple factors, including virological, immunological, and epidemiological characteristics.

  13. Successful public health response to four cases of imported measles in Panama.

    Science.gov (United States)

    Sosa, Nestor; Guerra, Ilka; Abrego, Leyda; Cisneros, Julio; Castillo, Juan; Nieto-Guevara, Javier; Gálvez, Carlos; Moltó, Yadira; Smith, Rebecca E; Pascale, Juan Miguel

    2012-08-21

    In Panama, the last endemic cases of measles occurred in 1995. In this paper, we report four cases of imported measles in three girls and one boy after they returned from a trip to Poland and Israel between 28 April and 11 May 2011. The etiologic diagnosis of the four cases was confirmed by detection of IgM antibodies against measles virus and positive polymerase chain reaction using measles-specific primers. All cases had genotype D4 with close genetic similarity to virus reported from Poland. Public health interventions included isolation of the cases in their homes and an extensive search for and vaccination of contacts of the four cases, regardless of their vaccination status. A nationwide vaccination campaign was also implemented after the first case was identified. A total of 70,950 measles vaccine doses were administered in Panama in the two months following the identification of these cases. In addition, 94,179 persons were confirmed to have their immunization schedule up-to-date and did not receive the vaccine. No secondary cases were detected in Panama in the following six months.

  14. Oncolytic measles virus enhances antitumour responses of adoptive CD8+NKG2D+ cells in hepatocellular carcinoma treatment.

    Science.gov (United States)

    Chen, Aiping; Zhang, Yonghui; Meng, Gang; Jiang, Dengxu; Zhang, Hailin; Zheng, Meihong; Xia, Mao; Jiang, Aiqin; Wu, Junhua; Beltinger, Christian; Wei, Jiwu

    2017-07-12

    There is an urgent need for novel effective treatment for hepatocellular carcinoma (HCC). Oncolytic viruses (OVs) not only directly lyse malignant cells, but also induce potent antitumour immune responses. The potency and precise mechanisms of antitumour immune activation by attenuated measles virus remain unclear. In this study, we investigated the potency of the measles virus vaccine strain Edmonston (MV-Edm) in improving adoptive CD8 + NKG2D + cells for HCC treatment. We show that MV-Edm-infected HCC enhanced the antitumour activity of CD8 + NKG2D + cells, mediated by at least three distinct mechanisms. First, MV-Edm infection compelled HCC cells to express the specific NKG2D ligands MICA/B, which may contribute to the activation of CD8 + NKG2D + cells. Second, MV-Edm-infected HCC cells stimulated CD8 + NKG2D + cells to express high level of FasL resulting in enhanced induction of apoptosis. Third, intratumoural administration of MV-Edm enhanced infiltration of intravenously injected CD8 + NKG2D + cells. Moreover, we found that MV-Edm and adoptive CD8 + NKG2D + cells, either administered alone or combined, upregulated the immune suppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1) in HCC. Elimination of IDO1 by fludarabine enhanced antitumour responses. Taken together, our data provide a novel and clinically relevant strategy for treatment of HCC.

  15. Measles Virus Suppresses RIG-I-like Receptor Activation in Dendritic Cells via DC-SIGN-Mediated Inhibition of PP1 Phosphatases

    NARCIS (Netherlands)

    Mesman, Annelies W.; Zijlstra-Willems, Esther M.; Kaptein, Tanja M.; de Swart, Rik L.; Davis, Meredith E.; Ludlow, Martin; Duprex, W. Paul; Gack, Michaela U.; Gringhuis, Sonja I.; Geijtenbeek, Teunis B. H.

    2014-01-01

    Dendritic cells (DCs) are targets of measles virus (MV) and play central roles in viral dissemination. However, DCs express the RIG-I-like receptors (RLRs) RIG-I and Mda5 that sense MV and induce type I interferon (IFN) production. Given the potency of this antiviral response, RLRs are tightly

  16. Measles virus suppresses RIG-I-like receptor activation in dendritic cells via DC-SIGN-mediated inhibition of PP1 phosphatases

    NARCIS (Netherlands)

    A.W. Mesman (Annelies ); E.M. Zijlstra-Willems (Esther); T.M. Kaptein (Tanja); R.L. de Swart (Rik); M.E. Davis (Meredith); M. Ludlow (Martin); W.P. Duprex (Paul); M.U. Gack (Michaela); S.I. Gringhuis (Sonja); T.B.H. Geijtenbeek (Teunis)

    2014-01-01

    textabstractDendritic cells (DCs) are targets of measles virus (MV) and play central roles in viral dissemination. However, DCs express the RIG-I-like receptors (RLRs) RIG-I and Mda5 that sense MV and induce type I interferon (IFN) production. Given the potency of this antiviral response, RLRs are

  17. Association between seroprevalence of measles and various social determinants in the year following a measles outbreak in Turkey.

    Science.gov (United States)

    Emek, M; Islek, D; Atasoylu, G; Ozbek, O A; Ceylan, A; Acikgoz, A; Tay, Z; Demiral, Y; Oktem, M A; Unal, B

    2017-06-01

    Despite an ongoing measles elimination programme, a measles outbreak occurred in 2013 in Turkey. Population-based seroprevalence studies are needed to determine seronegativity and explore the reasons for this outbreak. This study aimed to explore the seroprevalence of measles and its association with various social determinants in a provincial population in Turkey in the year following a measles outbreak. Cross-sectional study. This study was conducted in Manisa Province in 2014 in a sample of 1740 people aged >2 years. The dependent variable was the seroprevalence of measles. Independent variables were sex, age, migration, household size, household density, income, education level, existence of chronic disease and occupational class. Blood samples were collected from participants at family health centres. The presence of specific measles antibodies in serum samples was determined using an anti-measles virus IgG enzyme-linked immunosorbent assay test. Chi-squared test and logistic regression analysis were performed. Overall, data from 1250 people were analysed. The seroprevalence of measles in the whole study population was 82.2% (95% confidence interval 80.0-84.2). Seroprevalence was 55.4% among subjects aged 2-9 years, 48.7% among subjects aged 10-19 years, 74.1% among subjects aged 20-29 years and 93.6% among subjects aged 30-39 years (P 40 years was >95%. The lowest seroprevalence was found in primary school children (40.2%), followed by those below the age for primary education (69.8%) and secondary school graduates (75.1%). The prevalence of measles seronegativity was not associated with any of the social determinants when adjusted for age. The seroprevalence of measles was lower than expected in the study population and was particularly low in subjects aged measles elimination targets, suggesting that it may be necessary to re-evaluate the need for an extra dose of measles vaccine. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier

  18. Progress Toward Regional Measles Elimination - Worldwide, 2000-2016.

    Science.gov (United States)

    Dabbagh, Alya; Patel, Minal K; Dumolard, Laure; Gacic-Dobo, Marta; Mulders, Mick N; Okwo-Bele, Jean-Marie; Kretsinger, Katrina; Papania, Mark J; Rota, Paul A; Goodson, James L

    2017-10-27

    The fourth United Nations Millennium Development Goal, adopted in 2000, set a target to reduce child mortality by two thirds by 2015. One indicator of progress toward this target was measles vaccination coverage (1). In 2010, the World Health Assembly (WHA) set three milestones for measles control by 2015: 1) increase routine coverage with the first dose of a measles-containing vaccine (MCV1) among children aged 1 year to ≥90% at the national level and to ≥80% in every district; 2) reduce global annual measles incidence to measles mortality by 95% from the 2000 estimate (2).* In 2012, WHA endorsed the Global Vaccine Action Plan, † with the objective of eliminating measles in four World Health Organization (WHO) regions by 2015 and in five regions by 2020. Countries in all six WHO regions have adopted goals for measles elimination by or before 2020. Measles elimination is defined as the absence of endemic measles virus transmission in a region or other defined geographic area for ≥12 months, in the presence of a high quality surveillance system that meets targets of key performance indicators. This report updates a previous report (3) and describes progress toward global measles control milestones and regional measles elimination goals during 2000-2016. During this period, annual reported measles incidence decreased 87%, from 145 to 19 cases per million persons, and annual estimated measles deaths decreased 84%, from 550,100 to 89,780; measles vaccination prevented an estimated 20.4 million deaths. However, the 2015 milestones have not yet been met; only one WHO region has been verified as having eliminated measles. Improved implementation of elimination strategies by countries and their partners is needed, with focus on increasing vaccination coverage through substantial and sustained additional investments in health systems, strengthening surveillance systems, using surveillance data to drive programmatic actions, securing political commitment, and raising

  19. Transmission of measles among healthcare Workers in Hospital W, Xinjiang Autonomous Region, China, 2016.

    Science.gov (United States)

    Jia, Haimei; Ma, Chao; Lu, Mengting; Fu, Jianping; Rodewald, Lance E; Su, Qiru; Wang, Huaqin; Hao, Lixin

    2018-01-12

    As China approaches the elimination of measles, outbreaks of measles continue to occur. Healthcare workers (HCWs) are known to be at high risk of infection and transmission of measles virus. A measles outbreak occurred in a hospital in Xinjiang Uighur Autonomous Region of the People's Republic of China. We report an investigation of this outbreak and its implications for measles elimination and outbreak preparedness. We conducted a retrospective search for measles cases using hospital records. Information on cases was collected by interview, and was used to determine epidemiological linkages. We surveyed HCWs to determine their demographic characteristics, disease history and vaccination status, and knowledge about measles. We identified 19 cases, ages 18 to 45 years, in Hospital W between December 2015 and January 2016; 14 were laboratory-confirmed, and 5 were epidemiologically linked. The primary case was a 25-year-old neurology department nurse who developed a rash on 22 December 2015 that was reported on 11 January 2016. She continued working and living with her workmates in a dormitory during her measles transmission period. Among the 19 infected HCWs, 2 had received a dose of measles-containing vaccine (MCV) before the outbreak, and 16 had unknown vaccination status. Outbreak response immunization activities were started on 8 January in a non-selective manner by offering vaccine regardless of vaccination history; 605(68%) of 890 HCWs were vaccinated. The HCW survey had a 73% response rate (646/890); 41% of HCWs reported that they had received MCV before outbreak, and 56% exhibited good knowledge of measles symptoms, transmission, complications, and vaccination. Low MCV coverage, low measles knowledge among HCWs, delayed reporting of measles cases, and absence of proper case management were associated with this outbreak. Training and vaccinating HCWs against measles are essential activities to prevent measles virus transmission among HCWs.

  20. Positive Selection on Hemagglutinin and Neuraminidase Genes of H1N1 Influenza Viruses

    LENUS (Irish Health Repository)

    Li, Wenfu

    2011-04-21

    Abstract Background Since its emergence in March 2009, the pandemic 2009 H1N1 influenza A virus has posed a serious threat to public health. To trace the evolutionary path of these new pathogens, we performed a selection-pressure analysis of a large number of hemagglutinin (HA) and neuraminidase (NA) gene sequences of H1N1 influenza viruses from different hosts. Results Phylogenetic analysis revealed that both HA and NA genes have evolved into five distinct clusters, with further analyses indicating that the pandemic 2009 strains have experienced the strongest positive selection. We also found evidence of strong selection acting on the seasonal human H1N1 isolates. However, swine viruses from North America and Eurasia were under weak positive selection, while there was no significant evidence of positive selection acting on the avian isolates. A site-by-site analysis revealed that the positively selected sites were located in both of the cleaved products of HA (HA1 and HA2), as well as NA. In addition, the pandemic 2009 strains were subject to differential selection pressures compared to seasonal human, North American swine and Eurasian swine H1N1 viruses. Conclusions Most of these positively and\\/or differentially selected sites were situated in the B-cell and\\/or T-cell antigenic regions, suggesting that selection at these sites might be responsible for the antigenic variation of the viruses. Moreover, some sites were also associated with glycosylation and receptor-binding ability. Thus, selection at these positions might have helped the pandemic 2009 H1N1 viruses to adapt to the new hosts after they were introduced from pigs to humans. Positive selection on position 274 of NA protein, associated with drug resistance, might account for the prevalence of drug-resistant variants of seasonal human H1N1 influenza viruses, but there was no evidence that positive selection was responsible for the spread of the drug resistance of the pandemic H1N1 strains.

  1. Trials of Edmonston-Zagreb measles vaccine in Guinea-Bissau

    DEFF Research Database (Denmark)

    Jensen, T G; Whittle, H; Mordhorst, Camilla

    1994-01-01

    In two trials of measles vaccination in Guinea-Bissau, children were randomized to receive either the Edmonston-Zagreb (EZ) virus at age 4-8 months or, as a control group, a standard dose (5000 p.f.u.) of the Schwarz (SW) virus at 9-12 months. In the first trial a medium dose of EZ virus (40,000 p...

  2. Nosocomial measles cluster in Denmark following an imported case, December 2008-January 2009

    DEFF Research Database (Denmark)

    Groth, C; Bottiger, Be; Plesner, A

    2009-01-01

    A cluster of six confirmed cases with identical measles virus genotype was reported in Denmark between December 2008 and January 2009. The findings highlight the importance of vaccination before travelling and adherence to the routine vaccination schedule.......A cluster of six confirmed cases with identical measles virus genotype was reported in Denmark between December 2008 and January 2009. The findings highlight the importance of vaccination before travelling and adherence to the routine vaccination schedule....

  3. Measles outbreak in the Republic of the Marshall Islands, 2003.

    Science.gov (United States)

    Hyde, Terri B; Dayan, Gustavo H; Langidrik, Justina R; Nandy, Robin; Edwards, Russell; Briand, Kennar; Konelios, Mailynn; Marin, Mona; Nguyen, Huong Q; Khalifah, Anthony P; O'leary, Michael J; Williams, Nobia J; Bellini, William J; Bi, Daoling; Brown, Cedric J; Seward, Jane F; Papania, Mark J

    2006-04-01

    Measles is a highly contagious viral infection. Measles transmission can be prevented through high population immunity (>or=95%) achieved by measles vaccination. In the Republic of the Marshall Islands (RMI), no measles cases were reported during 1989-2002; however, a large measles outbreak occurred in 2003. Reported 1-dose measles vaccine coverage among children aged 12-23 months varied widely (52-94%) between 1990 and 2000. RMI is a Pacific island nation (1999 population: 50,840). A measles case was defined as fever, rash, and cough, or coryza, or conjunctivitis, in an RMI resident between July 13 and November 7, 2003. A vaccination campaign was used for outbreak control. Of the 826 reported measles cases, 766 (92%) occurred in the capital (Majuro). There were 186 (23%) cases in infants aged or=15 years. The attack rate was highest among infants (Majuro atoll: 213 cases/1,000 infants). Among cases aged 1-14 years, 281 (59%) reported no measles vaccination before July 2003. There were 100 hospitalizations and 3 deaths. The measles H1 genotype was identified. The vaccination campaign resulted in 93% coverage among persons aged 6 months to 40 years. Interpretation Populations without endemic measles transmission can accumulate substantial susceptibility and be at risk for large outbreaks when measles virus is imported. 'Islands' of measles susceptibility may develop in infants, adults, and any groups with low vaccine coverage. To prevent outbreaks, high population immunity must be sustained by maintaining and documenting high vaccine coverage.

  4. Kallistatin Ameliorates Influenza Virus Pathogenesis by Inhibition of Kallikrein-Related Peptidase 1-Mediated Cleavage of Viral Hemagglutinin

    Science.gov (United States)

    Leu, Chia-Hsing; Yang, Mei-Lin; Chung, Nai-Hui; Huang, Yen-Jang; Su, Yu-Chu; Chen, Yi-Cheng; Lin, Chia-Cheng; Shieh, Gia-Shing; Chang, Meng-Ya; Wang, Shainn-Wei; Chang, Yao; Chao, Julie; Chao, Lee

    2015-01-01

    Proteolytic cleavage of the hemagglutinin (HA) of influenza virus by host trypsin-like proteases is required for viral infectivity. Some serine proteases are capable of cleaving influenza virus HA, whereas some serine protease inhibitors (serpins) inhibit the HA cleavage in various cell types. Kallikrein-related peptidase 1 (KLK1, also known as tissue kallikrein) is a widely distributed serine protease. Kallistatin, a serpin synthesized mainly in the liver and rapidly secreted into the circulation, forms complexes with KLK1 and inhibits its activity. Here, we investigated the roles of KLK1 and kallistatin in influenza virus infection. We show that the levels of KLK1 increased, whereas those of kallistatin decreased, in the lungs of mice during influenza virus infection. KLK1 cleaved H1, H2, and H3 HA molecules and consequently enhanced viral production. In contrast, kallistatin inhibited KLK1-mediated HA cleavage and reduced viral production. Cells transduced with the kallistatin gene secreted kallistatin extracellularly, which rendered them more resistant to influenza virus infection. Furthermore, lentivirus-mediated kallistatin gene delivery protected mice against lethal influenza virus challenge by reducing the viral load, inflammation, and injury in the lung. Taking the data together, we determined that KLK1 and kallistatin contribute to the pathogenesis of influenza virus by affecting the cleavage of the HA peptide and inflammatory responses. This study provides a proof of principle for the potential therapeutic application of kallistatin or other KLK1 inhibitors for influenza. Since proteolytic activation also enhances the infectivity of some other viruses, kallistatin and other kallikrein inhibitors may be explored as antiviral agents against these viruses. PMID:26149981

  5. Influence of the water molecules near surface of viral protein on virus activation process

    Energy Technology Data Exchange (ETDEWEB)

    O, Shepelenko S; S, Salnikov A; V, Rak S; P, Goncharova E; B, Ryzhikov A, E-mail: shep@vector.nsc.r, E-mail: shep@ngs.r [Federal State Research Institution State Research Center of Virology and Biotechnology VECTOR of the Federal Service for Surveillance in Consumer Rights Protection and Human Well-being (FSRI SRC VB VECTOR) Koltsovo, Novosibirsk Region (Russian Federation)

    2009-06-01

    The infection of a cell with influenza virus comprises the stages of receptor binding to the cell membrane, endocytosis of virus particle, and fusion of the virus envelope and cell endosome membrane, which is determined by the conformational changes in hemagglutinin, a virus envelope protein, caused by pH decrease within the endosome. The pH value that induces conformation rearrangements of hemagglutinin molecule considerably varies for different influenza virus strains, first and foremost, due to the differences in amino acid structure of the corresponding proteins. The main goal of this study was to construct a model making it possible to assess the critical pH value characterizing the fusogenic activity of influenza virus hemagglutinin from the data on hemagglutinin structure and experimental verification of this model. Under this model, we assume that when the electrostatic force between interacting hemagglutinin molecules in the virus envelop exceeds a certain value, the hemagglutinin HA1 subunits are arranged so that they form a cavity sufficient for penetration of water molecules. This event leads to an irreversible hydration of the inner fragments of hemagglutinin molecule in a trimer and to the completion of conformational changes. The geometry of electrostatic field in hemagglutinin trimer was calculated taking into account the polarization effects near the interface of two dielectrics, aqueous medium and protein macromolecule. The critical pH values for the conformational changes in hemagglutinin were measured by the erythrocyte hemolysis induced by influenza virus particles when decreasing pH. The critical pH value conditionally separating the pH range into the regions with and without the conformational changes was calculated for several influenza virus H1N1 and H3N2 strains based on the data on the amino acid structure of the corresponding hemagglutinin molecules. Comparison of the theoretical and experimental values of critical pH values for

  6. The significance for epidemiological studies anti-measles antibody detection examined by enzyme immunoassay (EIA) and plaque reduction neutralization test (PRNT).

    Science.gov (United States)

    Siennicka, Joanna; Częścik, Agnieszka; Trzcińska, Agnieszka

    2014-01-01

    The paper discusses the role of anti-measles antibodies for protection and significance for epidemiological studies determination of antibodies by different serological methods. The comparison of anti-measles virus antibodies levels measured by enzyme immunoassay (EIA) and Plaque Reduction Neutralization Test (PRNT) was described. It was found that the 200 mIU/ml of anti-measles activity measured by PRNT (level protection against symp- tomatic disease) is equivalent of 636 mIU/ml measured by EIA (Enzygnost®Anti-Measles Virus/IgG, Simens).

  7. Biased hypermutation occurred frequently in a gene inserted into the IC323 recombinant measles virus during its persistence in the brains of nude mice

    Energy Technology Data Exchange (ETDEWEB)

    Otani, Sanae [Department of Virology and Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585 (Japan); Department of Pediatrics, Graduate School of Medicine, Osaka City University, Osaka (Japan); Ayata, Minoru, E-mail: maverick@med.osaka-cu.ac.jp [Department of Virology and Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585 (Japan); Takeuchi, Kaoru [Laboratory of Environmental Microbiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Ibaraki (Japan); Takeda, Makoto [Department of Virology 3, National Institute of Infectious Diseases, Tokyo (Japan); Shintaku, Haruo [Department of Pediatrics, Graduate School of Medicine, Osaka City University, Osaka (Japan); Ogura, Hisashi [Department of Virology and Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585 (Japan)

    2014-08-15

    Measles virus (MV) is the causative agent of measles and its neurological complications, subacute sclerosing panencephalitis (SSPE) and measles inclusion body encephalitis (MIBE). Biased hypermutation in the M gene is a characteristic feature of SSPE and MIBE. To determine whether the M gene is the preferred target of hypermutation, an additional transcriptional unit containing a humanized Renilla reniformis green fluorescent protein (hrGFP) gene was introduced into the IC323 MV genome, and nude mice were inoculated intracerebrally with the virus. Biased hypermutation occurred in the M gene and also in the hrGFP gene when it was inserted between the leader and the N gene, but not between the H and L gene. These results indicate that biased hypermutation is usually found in a gene whose function is not essential for viral proliferation in the brain and that the location of a gene in the MV genome can affect its mutational frequency. - Highlights: • Wild-type MV can cause persistent infections in nude mice. • Biased hypermutation occurred in the M gene. • Biased hypermutation occurred in an inessential gene inserted between the leader and the N gene.

  8. Biased hypermutation occurred frequently in a gene inserted into the IC323 recombinant measles virus during its persistence in the brains of nude mice

    International Nuclear Information System (INIS)

    Otani, Sanae; Ayata, Minoru; Takeuchi, Kaoru; Takeda, Makoto; Shintaku, Haruo; Ogura, Hisashi

    2014-01-01

    Measles virus (MV) is the causative agent of measles and its neurological complications, subacute sclerosing panencephalitis (SSPE) and measles inclusion body encephalitis (MIBE). Biased hypermutation in the M gene is a characteristic feature of SSPE and MIBE. To determine whether the M gene is the preferred target of hypermutation, an additional transcriptional unit containing a humanized Renilla reniformis green fluorescent protein (hrGFP) gene was introduced into the IC323 MV genome, and nude mice were inoculated intracerebrally with the virus. Biased hypermutation occurred in the M gene and also in the hrGFP gene when it was inserted between the leader and the N gene, but not between the H and L gene. These results indicate that biased hypermutation is usually found in a gene whose function is not essential for viral proliferation in the brain and that the location of a gene in the MV genome can affect its mutational frequency. - Highlights: • Wild-type MV can cause persistent infections in nude mice. • Biased hypermutation occurred in the M gene. • Biased hypermutation occurred in an inessential gene inserted between the leader and the N gene

  9. Measles and canine distemper virus antibodies in patients with multiple sclerosis determined by radioimmunoassay

    International Nuclear Information System (INIS)

    Arnadottir, T.

    1980-01-01

    Antibodies against measles virus (MV) and canine distemper virus (CDV) were measured by solid-phase radioimmunoassay (RIA) of sera and cerebrospinal fluid (CSF) from 28 patients with multiple sclerosis (MS) and matched neurological controls. When the groups were compared for MV antibody titers and CDV antibody titers of sera and MV/CDV serum antibody titer ratios, no significant difference was found. The CDV antibody titers and the MV antibody titers were in good correlation. CDV antibodies showed RIA titration curves typical of low avidity antibodies. In tests for MV antibodies in CSF, 82% of the MS patients and 19% of the controls were positive, whereas 36% of the MS patients and 4% of the controls were positive in CDV RIA. The correlation between MV and CDV antibody levels, the low avidity of CDV antibodies and the fact that absorption of the specimens with MV antigen abolished all CDV antibody activity suggest that the CDV antibodies are MV antibodies cross-reacting with CDV. It is concluded that canine distemper virus is unlikely to be involved in the etiology of multiple sclerosis. (author)

  10. Mean protein evolutionary distance: a method for comparative protein evolution and its application.

    Directory of Open Access Journals (Sweden)

    Michael J Wise

    Full Text Available Proteins are under tight evolutionary constraints, so if a protein changes it can only do so in ways that do not compromise its function. In addition, the proteins in an organism evolve at different rates. Leveraging the history of patristic distance methods, a new method for analysing comparative protein evolution, called Mean Protein Evolutionary Distance (MeaPED, measures differential resistance to evolutionary pressure across viral proteomes and is thereby able to point to the proteins' roles. Different species' proteomes can also be compared because the results, consistent across virus subtypes, concisely reflect the very different lifestyles of the viruses. The MeaPED method is here applied to influenza A virus, hepatitis C virus, human immunodeficiency virus (HIV, dengue virus, rotavirus A, polyomavirus BK and measles, which span the positive and negative single-stranded, doubled-stranded and reverse transcribing RNA viruses, and double-stranded DNA viruses. From this analysis, host interaction proteins including hemagglutinin (influenza, and viroporins agnoprotein (polyomavirus, p7 (hepatitis C and VPU (HIV emerge as evolutionary hot-spots. By contrast, RNA-directed RNA polymerase proteins including L (measles, PB1/PB2 (influenza and VP1 (rotavirus, and internal serine proteases such as NS3 (dengue and hepatitis C virus emerge as evolutionary cold-spots. The hot spot influenza hemagglutinin protein is contrasted with the related cold spot H protein from measles. It is proposed that evolutionary cold-spot proteins can become significant targets for second-line anti-viral therapeutics, in cases where front-line vaccines are not available or have become ineffective due to mutations in the hot-spot, generally more antigenically exposed proteins. The MeaPED package is available from www.pam1.bcs.uwa.edu.au/~michaelw/ftp/src/meaped.tar.gz.

  11. Mean protein evolutionary distance: a method for comparative protein evolution and its application.

    Science.gov (United States)

    Wise, Michael J

    2013-01-01

    Proteins are under tight evolutionary constraints, so if a protein changes it can only do so in ways that do not compromise its function. In addition, the proteins in an organism evolve at different rates. Leveraging the history of patristic distance methods, a new method for analysing comparative protein evolution, called Mean Protein Evolutionary Distance (MeaPED), measures differential resistance to evolutionary pressure across viral proteomes and is thereby able to point to the proteins' roles. Different species' proteomes can also be compared because the results, consistent across virus subtypes, concisely reflect the very different lifestyles of the viruses. The MeaPED method is here applied to influenza A virus, hepatitis C virus, human immunodeficiency virus (HIV), dengue virus, rotavirus A, polyomavirus BK and measles, which span the positive and negative single-stranded, doubled-stranded and reverse transcribing RNA viruses, and double-stranded DNA viruses. From this analysis, host interaction proteins including hemagglutinin (influenza), and viroporins agnoprotein (polyomavirus), p7 (hepatitis C) and VPU (HIV) emerge as evolutionary hot-spots. By contrast, RNA-directed RNA polymerase proteins including L (measles), PB1/PB2 (influenza) and VP1 (rotavirus), and internal serine proteases such as NS3 (dengue and hepatitis C virus) emerge as evolutionary cold-spots. The hot spot influenza hemagglutinin protein is contrasted with the related cold spot H protein from measles. It is proposed that evolutionary cold-spot proteins can become significant targets for second-line anti-viral therapeutics, in cases where front-line vaccines are not available or have become ineffective due to mutations in the hot-spot, generally more antigenically exposed proteins. The MeaPED package is available from www.pam1.bcs.uwa.edu.au/~michaelw/ftp/src/meaped.tar.gz.

  12. Structure of the parainfluenza virus 5 (PIV5 hemagglutinin-neuraminidase (HN ectodomain.

    Directory of Open Access Journals (Sweden)

    Brett D Welch

    Full Text Available Paramyxoviruses cause a wide variety of human and animal diseases. They infect host cells using the coordinated action of two surface glycoproteins, the receptor binding protein (HN, H, or G and the fusion protein (F. HN binds sialic acid on host cells (hemagglutinin activity and hydrolyzes these receptors during viral egress (neuraminidase activity, NA. Additionally, receptor binding is thought to induce a conformational change in HN that subsequently triggers major refolding in homotypic F, resulting in fusion of virus and target cell membranes. HN is an oligomeric type II transmembrane protein with a short cytoplasmic domain and a large ectodomain comprising a long helical stalk and large globular head domain containing the enzymatic functions (NA domain. Extensive biochemical characterization has revealed that HN-stalk residues determine F specificity and activation. However, the F/HN interaction and the mechanisms whereby receptor binding regulates F activation are poorly defined. Recently, a structure of Newcastle disease virus (NDV HN ectodomain revealed the heads (NA domains in a "4-heads-down" conformation whereby two of the heads form a symmetrical interaction with two sides of the stalk. The interface includes stalk residues implicated in triggering F, and the heads sterically shield these residues from interaction with F (at least on two sides. Here we report the x-ray crystal structure of parainfluenza virus 5 (PIV5 HN ectodomain in a "2-heads-up/2-heads-down" conformation where two heads (covalent dimers are in the "down position," forming a similar interface as observed in the NDV HN ectodomain structure, and two heads are in an "up position." The structure supports a model in which the heads of HN transition from down to up upon receptor binding thereby releasing steric constraints and facilitating the interaction between critical HN-stalk residues and F.

  13. Measles mimicking HIV seroconversion syndrome: a case report

    Directory of Open Access Journals (Sweden)

    Brook Gary

    2010-02-01

    Full Text Available Abstract Introduction Measles is on the rise in the United Kingdom and must be considered in the differential diagnosis of any patient presenting with fever and rash. As a highly infectious disease, identified patients must be isolated in the hospital setting. Case presentation A 28-year-old Polish woman presented ill to the accident and emergency department of a district general hospital. She had painful genital ulceration, oral soreness, fever, and a facial rash. She became hypoxic within 24 hours of presentation and began to tire, thus requiring noninvasive ventilation. Her respiratory symptoms were out of proportion to the findings of her chest radiograph, which remained virtually normal. Human immunodeficiency virus seroconversion syndrome complicated by Pneumocystis carinii pneumonia was high among the differential diagnoses. She was given cotrimoxazole, high-dose steroids, broad spectrum antibiotics, and anti fungal cover. Human immunodeficiency virus polymerase chain reaction came back as negative and her symptoms resolved within 10 days of presentation. She was taken off all treatment and discharged home feeling well. Serological measles was confirmed as part of a viral screen, but its clinical suspicion was low. Conclusion The presentation of measles in this patient was unique and atypical. With its incidence rising in the United Kingdom, measles must be increasingly considered as a differential diagnosis in patients presenting with fever and rash.

  14. Acute measles encephalitis in partially vaccinated adults.

    Directory of Open Access Journals (Sweden)

    Annette Fox

    Full Text Available The pathogenesis of acute measles encephalitis (AME is poorly understood. Treatment with immune-modulators is based on theories that post-infectious autoimmune responses cause demyelination. The clinical course and immunological parameters of AME were examined during an outbreak in Vietnam.Fifteen measles IgM-positive patients with confusion or Glasgow Coma Scale (GCS score below 13, and thirteen with uncomplicated measles were enrolled from 2008-2010. Standardized clinical exams were performed and blood collected for lymphocyte and measles- and auto-antibody analysis. The median age of AME patients was 21 years, similar to controls. Eleven reported receiving measles vaccination when aged one year. Confusion developed a median of 4 days after rash. Six patients had GCS <8 and four required mechanical ventilation. CSF showed pleocytosis (64% and proteinorrhachia (71% but measles virus RNA was not detected. MRI revealed bilateral lesions in the cerebellum and brain stem in some patients. Most received dexamethasone +/- IVIG within 4 days of admission but symptoms persisted for ≥3 weeks in five. The concentration of voltage gated calcium channel-complex-reactive antibodies was 900 pM in one patient, and declined to 609 pM ∼ 3 months later. Measles-reactive IgG antibody avidity was high in AME patients born after vaccine coverage exceeded 50% (∼ 25 years earlier. AME patients had low CD4 (218/µl, p = 0.029 and CD8 (200/µl, p = 0.012 T-cell counts compared to controls.Young adults presenting with AME in Vietnam reported a history of one prior measles immunization, and those aged <25 years had high measles-reactive IgG avidity indicative of prior vaccination. This suggests that one-dose measles immunization is not sufficient to prevent AME in young adults and reinforces the importance of maintaining high coverage with a two-dose measles immunization schedule. Treatment with corticosteroids and IVIG is common practice, and should be

  15. Computational Identification of Antigenicity-Associated Sites in the Hemagglutinin Protein of A/H1N1 Seasonal Influenza Virus.

    Directory of Open Access Journals (Sweden)

    Xiaowei Ren

    Full Text Available The antigenic variability of influenza viruses has always made influenza vaccine development challenging. The punctuated nature of antigenic drift of influenza virus suggests that a relatively small number of genetic changes or combinations of genetic changes may drive changes in antigenic phenotype. The present study aimed to identify antigenicity-associated sites in the hemagglutinin protein of A/H1N1 seasonal influenza virus using computational approaches. Random Forest Regression (RFR and Support Vector Regression based on Recursive Feature Elimination (SVR-RFE were applied to H1N1 seasonal influenza viruses and used to analyze the associations between amino acid changes in the HA1 polypeptide and antigenic variation based on hemagglutination-inhibition (HI assay data. Twenty-three and twenty antigenicity-associated sites were identified by RFR and SVR-RFE, respectively, by considering the joint effects of amino acid residues on antigenic drift. Our proposed approaches were further validated with the H3N2 dataset. The prediction models developed in this study can quantitatively predict antigenic differences with high prediction accuracy based only on HA1 sequences. Application of the study results can increase understanding of H1N1 seasonal influenza virus antigenic evolution and accelerate the selection of vaccine strains.

  16. An increasing, potentially measles-susceptible population over time after vaccination in Korea.

    Science.gov (United States)

    Kang, Hae Ji; Han, Young Woo; Kim, Su Jin; Kim, You-Jin; Kim, A-Reum; Kim, Joo Ae; Jung, Hee-Dong; Eom, Hye Eun; Park, Ok; Kim, Sung Soon

    2017-07-24

    In Korea, measles occurs mainly in infants measles infection. Age-specific measles seroprevalence was evaluated by performing enzyme immunoassays and plaque reduction-neutralization tests on 3050 subjects aged 0-50years (birth cohort 1964-2014) and 480 subjects aged 2-30years (birth cohort 1984-2012). The overall seropositivity and measles antibody concentrations were 71.5% and 1366mIU/mL, respectively. Progressive decline in antibody levels and seropositivity were observed over time after vaccination in infants, adolescents, and young adults. The accumulation of potentially susceptible individuals in the population was confirmed by comparing data from 2010 and 2014 seroprevalence surveys. The statistical correlation between measles incidence and measles seronegativity was determined. Waning levels of measles antibodies with increasing time post-vaccination suggests that measles susceptibility is potentially increasing in Korea. This trend may be related to limitations of vaccine-induced immunity in the absence of natural boosting by the wild virus, compared to naturally acquired immunity triggered by measles infection. This study provides an important view into the current measles herd immunity in Korea. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Neuraminidase and hemagglutinin matching patterns of a highly pathogenic avian and two pandemic H1N1 influenza A viruses.

    Directory of Open Access Journals (Sweden)

    Yonghui Zhang

    Full Text Available BACKGROUND: Influenza A virus displays strong reassortment characteristics, which enable it to achieve adaptation in human infection. Surveying the reassortment and virulence of novel viruses is important in the prevention and control of an influenza pandemic. Meanwhile, studying the mechanism of reassortment may accelerate the development of anti-influenza strategies. METHODOLOGY/PRINCIPAL FINDINGS: The hemagglutinin (HA and neuraminidase (NA matching patterns of two pandemic H1N1 viruses (the 1918 and current 2009 strains and a highly pathogenic avian influenza A virus (H5N1 were studied using a pseudotyped particle (pp system. Our data showed that four of the six chimeric HA/NA combinations could produce infectious pps, and that some of the chimeric pps had greater infectivity than did their ancestors, raising the possibility of reassortment among these viruses. The NA of H5N1 (A/Anhui/1/2005 could hardly reassort with the HAs of the two H1N1 viruses. Many biological characteristics of HA and NA, including infectivity, hemagglutinating ability, and NA activity, are dependent on their matching pattern. CONCLUSIONS/SIGNIFICANCE: Our data suggest the existence of an interaction between HA and NA, and the HA NA matching pattern is critical for valid viral reassortment.

  18. [Monitoring of implementation of international programs of poliomyelitis eradication and measles and rubella elimination in the Republic of Belarus].

    Science.gov (United States)

    2012-01-01

    Monitoring of implementation of international programs of poliomyelitis eradication, and measles and rubella elimination in the Republic of Belarus based on results of molecular-epidemiologic studies of 2009 - 2010. 271 viral agents isolated from children with acute flaccid paralysis syndrome, other diseases, healthy children and from sewage water within the framework of poliomyelitis control implementation were identified by serological and molecular methods. Blood sera of 528 patients with fever and rash were examined for the presence of IgM to measles and rubella virus, 418 - for the presence of IgM to parvovirus B19 and parvovirus DNA. Blood sera of 33 pregnant women and 64 children with signs of intrauterine infection were studied for IgM and IgG antibodies to rubella virus. Measles virus was isolated, N-gene sequence and phylogenetic analysis carried out. The studies performed confirmed that indigenous wild polioviruses in the country do not circulate, imported wild or vaccine-related polioviruses were also not detected. Measles and rubella morbidity in the Republic of Belarus was less than 1 in 1 000 000. 2 cases of rubella (2009) and 1 case of measles (2010) was detected during adequate control level: the rate of detection of patients with fever and rash, in whom measles and rubella diagnosis was excluded by the results of laboratory examination, was more than 2 in 100 000 of the population. The etiologic agent in more than 20% of diseases with fever and rash was parvovirus B19. A single case of measles was caused by genotype D8 virus imported from India. The data obtained give evidence to conformance of the poliomyelitis, measles, rubella, innate rubella syndrome control implemented in the Republic of Belarus to WHO recommendations; maintenance of status of country as free from poliomyelitis and achievement of main criteria of elimination of both measles and rubella by 2010.

  19. Interaction of measles virus vectors with Auger electron emitting radioisotopes

    International Nuclear Information System (INIS)

    Dingli, David; Peng, K.-W.; Harvey, Mary E.; Vongpunsawad, Sompong; Bergert, Elizabeth R.; Kyle, Robert A.; Cattaneo, Roberto; Morris, John C.; Russell, Stephen J.

    2005-01-01

    A recombinant measles virus (MV) expressing the sodium iodide symporter (NIS) is being considered for therapy of advanced multiple myeloma. Auger electrons selectively damage cells in which the isotope decays. We hypothesized that the Auger electron emitting isotope 125 I can be used to control viral proliferation. MV was engineered to express both carcinoembryonic antigen and NIS (MV-NICE). Cells were infected with MV-NICE and exposed to 125 I with appropriate controls. MV-NICE replication in vitro is inhibited by the selective uptake of 125 I by cells expressing NIS. Auger electron damage is partly mediated by free radicals and abrogated by glutathione. In myeloma xenografts, control of MV-NICE with 125 I was not possible under the conditions of the experiment. MV-NICE does not replicate faster in the presence of radiation. Auger electron emitting isotopes effectively stop propagation of MV vectors expressing NIS in vitro. Additional work is necessary to translate these observations in vivo

  20. A Phylogeny-Based Global Nomenclature System and Automated Annotation Tool for H1 Hemagglutinin Genes from Swine Influenza A Viruses

    Science.gov (United States)

    Macken, Catherine A.; Lewis, Nicola S.; Van Reeth, Kristien; Brown, Ian H.; Swenson, Sabrina L.; Simon, Gaëlle; Saito, Takehiko; Berhane, Yohannes; Ciacci-Zanella, Janice; Pereda, Ariel; Davis, C. Todd; Donis, Ruben O.; Webby, Richard J.

    2016-01-01

    ABSTRACT The H1 subtype of influenza A viruses (IAVs) has been circulating in swine since the 1918 human influenza pandemic. Over time, and aided by further introductions from nonswine hosts, swine H1 viruses have diversified into three genetic lineages. Due to limited global data, these H1 lineages were named based on colloquial context, leading to a proliferation of inconsistent regional naming conventions. In this study, we propose rigorous phylogenetic criteria to establish a globally consistent nomenclature of swine H1 virus hemagglutinin (HA) evolution. These criteria applied to a data set of 7,070 H1 HA sequences led to 28 distinct clades as the basis for the nomenclature. We developed and implemented a web-accessible annotation tool that can assign these biologically informative categories to new sequence data. The annotation tool assigned the combined data set of 7,070 H1 sequences to the correct clade more than 99% of the time. Our analyses indicated that 87% of the swine H1 viruses from 2010 to the present had HAs that belonged to 7 contemporary cocirculating clades. Our nomenclature and web-accessible classification tool provide an accurate method for researchers, diagnosticians, and health officials to assign clade designations to HA sequences. The tool can be updated readily to track evolving nomenclature as new clades emerge, ensuring continued relevance. A common global nomenclature facilitates comparisons of IAVs infecting humans and pigs, within and between regions, and can provide insight into the diversity of swine H1 influenza virus and its impact on vaccine strain selection, diagnostic reagents, and test performance, thereby simplifying communication of such data. IMPORTANCE A fundamental goal in the biological sciences is the definition of groups of organisms based on evolutionary history and the naming of those groups. For influenza A viruses (IAVs) in swine, understanding the hemagglutinin (HA) genetic lineage of a circulating strain aids

  1. Epidemiology and genetic characterization of measles strains in Senegal, 2004-2013.

    Science.gov (United States)

    Dia, Ndongo; Fall, Ameth; Ka, Rouguiyatou; Fall, Amary; Kiori, David E; Goudiaby, Deborah G; Fall, Aichatou D; Faye, El Hadj Abdourahmane; Dosseh, Annick; Ndiaye, Kader; Diop, Ousmane M; Niang, Mbayame Nd

    2015-01-01

    In Senegal, with the variable routine vaccination coverage, the risk for illness and death from measles still exists as evidenced by the measles epidemic episode in 2009. Since 2002 a laboratory-based surveillance system of measles was established by the Ministry of Health and the Institut Pasteur de Dakar. The present study analysed the data collected over the 10 years inclusive between 2004-2013 in order to define a measles epidemiological profile in Senegal, and we carried out a phylogenetic analysis of measles virus circulating in Senegal over the period 2009-2012. A total number of 4580 samples were collected from suspected cases, with the most cases between 2008 and 2010 (2219/4580; 48.4%). The majority of suspected cases are found in children from 4-6 years old (29%). 981 (21.4%) were measles laboratory-confirmed by IgM ELISA. The measles confirmation rate per year is very high during 2009-2010 periods (48.5% for each year). Regarding age groups, the highest measles IgM-positivity rate occurred among persons aged over 15 years with 39.4% (115/292) followed by 2-3 years old age group with 30.4% (323/1062) and 30% (148/494) in children under one year old group. The majority of suspected cases were collected between February and June and paradoxically confirmed cases rates increased from July (77/270; 28.6%) and reached a peak in November with 60% (93/155). Phylogenetic analysis showed that all the 29 sequences from strains that circulated in Senegal between 2009 and 2012 belong to the B3 genotype and they are clustered in B3.1 (2011-2012) and B3.3 (2009-2011) sub-genotypes according to a temporal parameter. Improvements in the measles surveillance in Senegal are required and the introduction of oral fluid and FTA cards as an alternative to transportation of sera should be investigated to improve surveillance. The introduction of a national vaccine database including number of doses of measles-containing vaccine will greatly improve efforts to interrupt and

  2. Diagnostic potential of recombinant scFv antibodies generated against hemagglutinin protein of influenza A virus

    Directory of Open Access Journals (Sweden)

    Roopali eRajput

    2015-09-01

    Full Text Available Human influenza A viruses have been the cause of enormous socio-economic losses worldwide. In order to combat such a notorious pathogen, hemagglutinin protein (HA has been a preferred target for generation of neutralizing-antibodies, as potent therapeutic/ diagnostic agents. In the present study, recombinant anti-HA single chain variable fragment (scFv antibodies were constructed using the phage display technology to aid in diagnosis and treatment of human influenza A virus infections. Spleen cells of mice hyper-immunized with A/New Caledonia/20/99 (H1N1 virus were used as the source for recombinant antibody (rAb production. The antigen-binding phages were quantified after 6 rounds of bio-panning against A/New Caledonia/20/99 (H1N1, A/California/07/2009 (H1N1-like, or A/Udorn/307/72(H3N2 viruses. The phage yield was maximum for the A/New Caledonia/20/99 (H1N1, however, considerable cross-reactivity was observed for the other virus strains as well. The HA-specific polyclonal rAb preparation was subjected to selection of single clones for identification of high reactive relatively conserved epitopes. The high affinity rAbs were tested against certain known conserved HA epitopes by peptide ELISA. Three recombinant mAbs showed reactivity with both the H1N1 strains and one (C5 showed binding with all the three viral strains. The C5 antibody was thus used for development of an ELISA test for diagnosis of influenza virus infection. Based on the sample size in the current analysis, the ELISA test demonstrated 83.9% sensitivity and 100% specificity. Thus, the ELISA, developed in our study, may prove as a cheaper alternative to the presently used real time RT-PCR test for detection of human influenza A viruses in clinical specimens, which will be beneficial, especially in the developing countries. Since, the two antibodies identified in this study are reactive to conserved HA epitopes; these may prove as potential therapeutic agents as well.

  3. Detection of Measles Virus Genotypes B3, D4, D5, D8, and H1 in the Surveillance System in Hokkaido, Japan, 2006-2015, the Last Decade toward the Elimination.

    Science.gov (United States)

    Miyoshi, Masahiro; Komagome, Rika; Yamaguchi, Hiroki; Ohnishi, Asami; Kikuchi, Masayuki; Ishida, Setsuko; Nagano, Hideki; Okano, Motohiko

    2017-05-24

    Measles is an acute and highly contagious disease caused by measles virus (MeV). The government of Japan, following the last epidemic in 2007 and 2008, which was caused by genotype D5 strains, introduced a catch-up-vaccination program for teenagers during Japan fiscal years 2008-2012 and a mandatory case-based reporting system for the nationwide elimination. Furthermore, laboratory confirmation of measles cases by genotyping of isolates has been performed to clarify the source of infection and support the interruption of measles cases. Owing to these preventive measures, the number of measles cases has been steadily decreasing after the last epidemic. In March 2015, Japan was internationally verified as having achieved measles elimination by the World Health Organization Regional Office for the Western Pacific. The continuous elimination of measles and high levels of vaccination coverage for MeV have been maintained nationally. However, imported or import-associated cases of measles have sporadically occurred during this time. After the last nationwide epidemic, 17 imported or import-associated measles cases (MeV strains identified as genotypes H1, D4, D8, and B3) were reported in Hokkaido, the northern islands of Japan. In this study, we present the occurrence of measles and surveillance activities in Hokkaido during 2006-2015.

  4. The recombinant EHV-1 vector producing CDV hemagglutinin as potential vaccine against canine distemper.

    Science.gov (United States)

    Pan, Zihao; Liu, Jin; Ma, Jiale; Jin, Qiuli; Yao, Huochun; Osterrieder, Nikolaus

    2017-10-01

    Canine distemper virus (CDV), is a pantropic agent of morbillivirus that causes fetal disease in dogs. Base on a broad host rang of CDV, the continued vaccines inoculation is unavoidable to pose gene recombination risk in vaccine virus and wild virus. The current study presents the construction of novel vectors, using equine herpesvirus type 1 (EHV-1) expressing the canine distemper virus (CDV). The recent field strain hemagglutinin protein and nucleoprotein were used for the construction of the viral vector vaccines. Based on the Bacterial artificial chromosome (BAC) genomes of EHV-1 RacH strain, the recombinant EHV-1 vaccine virus encoding CDV hemagglutinin protein (EHV-H) or CDV nucleoprotein (EHV-N) was constructed separately. The constructed BACs were rescued after 72 h post infection, and the expression of H or N in the recombinant viruses was confirmed by western-blotting. Furthermore, high levels of neutralizing antibodies were induced persistently following vaccination in the groups EHV-H&EHV-N and EHV-H, but the EHV-N group. The groups of vaccinated EHV-H and EHV-H&EHV-N pups were monitored for clinical signs, whereas the vaccinated EHV-N group developed moderate symptoms. The present study demonstrated that EHV-1 based recombinant virus carrying CDV H could be a promising vaccine candidate against canine distemper. Copyright © 2017. Published by Elsevier Ltd.

  5. Playing Hide and Seek: How Glycosylation of the Influenza Virus Hemagglutinin Can Modulate the Immune Response to Infection

    Directory of Open Access Journals (Sweden)

    Michelle D. Tate

    2014-03-01

    Full Text Available Seasonal influenza A viruses (IAV originate from pandemic IAV and have undergone changes in antigenic structure, including addition of glycans to the hemagglutinin (HA glycoprotein. The viral HA is the major target recognized by neutralizing antibodies and glycans have been proposed to shield antigenic sites on HA, thereby promoting virus survival in the face of widespread vaccination and/or infection. However, addition of glycans can also interfere with the receptor binding properties of HA and this must be compensated for by additional mutations, creating a fitness barrier to accumulation of glycosylation sites. In addition, glycans on HA are also recognized by phylogenetically ancient lectins of the innate immune system and the benefit provided by evasion of humoral immunity is balanced by attenuation of infection. Therefore, a fine balance must exist regarding the optimal pattern of HA glycosylation to offset competing pressures associated with recognition by innate defenses, evasion of humoral immunity and maintenance of virus fitness. In this review, we examine HA glycosylation patterns of IAV associated with pandemic and seasonal influenza and discuss recent advancements in our understanding of interactions between IAV glycans and components of innate and adaptive immunity.

  6. Playing Hide and Seek: How Glycosylation of the Influenza Virus Hemagglutinin Can Modulate the Immune Response to Infection

    Science.gov (United States)

    Tate, Michelle D.; Job, Emma R.; Deng, Yi-Mo; Gunalan, Vithiagaran; Maurer-Stroh, Sebastian; Reading, Patrick C.

    2014-01-01

    Seasonal influenza A viruses (IAV) originate from pandemic IAV and have undergone changes in antigenic structure, including addition of glycans to the hemagglutinin (HA) glycoprotein. The viral HA is the major target recognized by neutralizing antibodies and glycans have been proposed to shield antigenic sites on HA, thereby promoting virus survival in the face of widespread vaccination and/or infection. However, addition of glycans can also interfere with the receptor binding properties of HA and this must be compensated for by additional mutations, creating a fitness barrier to accumulation of glycosylation sites. In addition, glycans on HA are also recognized by phylogenetically ancient lectins of the innate immune system and the benefit provided by evasion of humoral immunity is balanced by attenuation of infection. Therefore, a fine balance must exist regarding the optimal pattern of HA glycosylation to offset competing pressures associated with recognition by innate defenses, evasion of humoral immunity and maintenance of virus fitness. In this review, we examine HA glycosylation patterns of IAV associated with pandemic and seasonal influenza and discuss recent advancements in our understanding of interactions between IAV glycans and components of innate and adaptive immunity. PMID:24638204

  7. Systemic and oral immunogenicity of hemagglutinin protein of rinderpest virus expressed by transgenic peanut plants in a mouse model

    International Nuclear Information System (INIS)

    Khandelwal, Abha; Renukaradhya, G.J.; Rajasekhar, M.; Sita, G. Lakshmi; Shaila, M.S.

    2004-01-01

    Rinderpest causes a devastating disease, often fatal, in wild and domestic ruminants. It has been eradicated successfully using a live, attenuated vaccine from most part of the world leaving a few foci of disease in parts of Africa, the Middle East, and South Asia. We have developed transgenic peanut (Arachis hypogaea L.) plants expressing hemagglutinin (H) protein of rinderpest virus (RPV), which is antigenically authentic. In this work, we have evaluated the immunogenicity of peanut-expressed H protein using mouse model, administered parenterally as well as orally. Intraperitoneal immunization of mice with the transgenic peanut extract elicited antibody response specific to H. These antibodies neutralized virus infectivity in vitro. Oral immunization of mice with transgenic peanut induced H-specific serum IgG and IgA antibodies. The systemic and oral immunogenicity of plant-derived H in absence of any adjuvant indicates the potential of edible vaccine for rinderpest

  8. Modified vaccinia virus Ankara expressing the hemagglutinin of pandemic (H1N1) 2009 virus induces cross-protective immunity against Eurasian 'avian-like' H1N1 swine viruses in mice.

    Science.gov (United States)

    Castrucci, Maria R; Facchini, Marzia; Di Mario, Giuseppina; Garulli, Bruno; Sciaraffia, Ester; Meola, Monica; Fabiani, Concetta; De Marco, Maria A; Cordioli, Paolo; Siccardi, Antonio; Kawaoka, Yoshihiro; Donatelli, Isabella

    2014-05-01

    To examine cross-reactivity between hemagglutinin (HA) derived from A/California/7/09 (CA/09) virus and that derived from representative Eurasian "avian-like" (EA) H1N1 swine viruses isolated in Italy between 1999 and 2008 during virological surveillance in pigs. Modified vaccinia virus Ankara (MVA) expressing the HA gene of CA/09 virus (MVA-HA-CA/09) was used as a vaccine to investigate cross-protective immunity against H1N1 swine viruses in mice. Two classical swine H1N1 (CS) viruses and four representative EA-like H1N1 swine viruses previously isolated during outbreaks of respiratory disease in pigs on farms in Northern Italy were used in this study. Female C57BL/6 mice were vaccinated with MVA/HA/CA/09 and then challenged intranasally with H1N1 swine viruses. Cross-reactive antibody responses were determined by hemagglutination- inhibition (HI) and virus microneutralizing (MN) assays of sera from MVA-vaccinated mice. The extent of protective immunity against infection with H1N1 swine viruses was determined by measuring lung viral load on days 2 and 4 post-challenge. Systemic immunization of mice with CA/09-derived HA, vectored by MVA, elicited cross-protective immunity against recent EA-like swine viruses. This immune protection was related to the levels of cross-reactive HI antibodies in the sera of the immunized mice and was dependent on the similarity of the antigenic site Sa of H1 HAs. Our findings suggest that the herd immunity elicited in humans by the pandemic (H1N1) 2009 virus could limit the transmission of recent EA-like swine HA genes into the influenza A virus gene pool in humans. © 2013 The Authors Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  9. Prevalence of measles neutralizing antibody in children under 15 ...

    African Journals Online (AJOL)

    The immune status of children under 15 years in the Southwestern region of Nigeria against measles virus was determined using the neutralization test with a view to assessing the herd immunity to the virus in these communities. A total of 256 serum samples collected from children were tested by the beta method of ...

  10. Meeting measles elimination indicators: surveillance performance in a regional area of Australia

    Directory of Open Access Journals (Sweden)

    David N Durrheim

    2011-08-01

    Full Text Available The World Health Organization (WHO Western Pacific Region has established specific measles elimination surveillance indicators. There has been concern in Australia that these indicators may be too stringent and that measles elimination can occur without all surveillance prerequisites being met, in particular the minimum fever and rash clinician-suspected measles reporting rate with subsequent laboratory exclusion of measles. A regional public health unit in northern New South Wales, Australia, prompted local general practitioners to report fever and rash presentations that met the measles case definition or that they considered to be clinical measles. These notifications from July 2006 to June 2008 were reviewed to determine whether measles indicators for monitoring progress towards measles elimination could be achieved in Australia. Results confirmed that the surveillance indicators of “>2 reported suspected measles cases per 100 000 population,” “at least 80% of suspected cases adequately investigated within 48 hours” and “greater than 80% of cases had adequate blood samples collected” could be met. Only half the cases had virology that would allow genotyping of measles virus. Special efforts to engage and convince Australian medical doctors about the public health value of reporting clinically suggestive measles cases and collecting confirmatory blood tests, resulted in the current WHO Western Pacific Region indicators for progress towards measles elimination being met in a regional area of Australia.

  11. Protection of pigs against pandemic swine origin H1N1 influenza A virus infection by hemagglutinin- or neuraminidase-expressing attenuated pseudorabies virus recombinants.

    Science.gov (United States)

    Klingbeil, Katharina; Lange, Elke; Blohm, Ulrike; Teifke, Jens P; Mettenleiter, Thomas C; Fuchs, Walter

    2015-03-02

    Influenza is an important respiratory disease of pigs, and may lead to novel human pathogens like the 2009 pandemic H1N1 swine-origin influenza virus (SoIV). Therefore, improved influenza vaccines for pigs are required. Recently, we demonstrated that single intranasal immunization with a hemagglutinin (HA)-expressing pseudorabies virus recombinant of vaccine strain Bartha (PrV-Ba) protected pigs from H1N1 SoIV challenge (Klingbeil et al., 2014). Now we investigated enhancement of efficacy by prime-boost vaccination and/or intramuscular administration. Furthermore, a novel PrV-Ba recombinant expressing codon-optimized N1 neuraminidase (NA) was included. In vitro replication of this virus was only slightly affected compared to parental virus. Unlike HA, the abundantly expressed NA was efficiently incorporated into PrV particles. Immunization of pigs with the two PrV recombinants, either singly or in combination, induced B cell proliferation and the expected SoIV-specific antibodies, whose titers increased substantially after boost vaccination. After immunization of animals with either PrV recombinant H1N1 SoIV challenge virus replication was significantly reduced compared to PrV-Ba vaccinated or naïve controls. Protective efficacy of HA-expressing PrV was higher than of NA-expressing PrV, and not significantly enhanced by combination. Despite higher serum antibody titers obtained after intramuscular immunization, transmission of challenge virus to naïve contact animals was only prevented after intranasal prime-boost vaccination with HA-expressing PrV-Ba. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Structure, Receptor Binding, and Antigenicity of Influenza Virus Hemagglutinins from the 1957 H2N2 Pandemic

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Rui; McBride, Ryan; Paulson, James C.; Basler, Christopher F.; Wilson, Ian A. (Sinai); (Scripps)

    2010-03-04

    The hemagglutinin (HA) envelope protein of influenza viruses mediates essential viral functions, including receptor binding and membrane fusion, and is the major viral antigen for antibody neutralization. The 1957 H2N2 subtype (Asian flu) was one of the three great influenza pandemics of the last century and caused 1 million deaths globally from 1957 to 1968. Three crystal structures of 1957 H2 HAs have been determined at 1.60 to 1.75 {angstrom} resolutions to investigate the structural basis for their antigenicity and evolution from avian to human binding specificity that contributed to its introduction into the human population. These structures, which represent the highest resolutions yet recorded for a complete ectodomain of a glycosylated viral surface antigen, along with the results of glycan microarray binding analysis, suggest that a hydrophobicity switch at residue 226 and elongation of receptor-binding sites were both critical for avian H2 HA to acquire human receptor specificity. H2 influenza viruses continue to circulate in birds and pigs and, therefore, remain a substantial threat for transmission to humans. The H2 HA structure also reveals a highly conserved epitope that could be harnessed in the design of a broader and more universal influenza A virus vaccine.

  13. Anti-Hemagglutinin Antibody Derived Lead Peptides for Inhibitors of Influenza Virus Binding.

    Directory of Open Access Journals (Sweden)

    Henry Memczak

    Full Text Available Antibodies against spike proteins of influenza are used as a tool for characterization of viruses and therapeutic approaches. However, development, production and quality control of antibodies is expensive and time consuming. To circumvent these difficulties, three peptides were derived from complementarity determining regions of an antibody heavy chain against influenza A spike glycoprotein. Their binding properties were studied experimentally, and by molecular dynamics simulations. Two peptide candidates showed binding to influenza A/Aichi/2/68 H3N2. One of them, termed PeB, with the highest affinity prevented binding to and infection of target cells in the micromolar region without any cytotoxic effect. PeB matches best the conserved receptor binding site of hemagglutinin. PeB bound also to other medical relevant influenza strains, such as human-pathogenic A/California/7/2009 H1N1, and avian-pathogenic A/Mute Swan/Rostock/R901/2006 H7N1. Strategies to improve the affinity and to adapt specificity are discussed and exemplified by a double amino acid substituted peptide, obtained by substitutional analysis. The peptides and their derivatives are of great potential for drug development as well as biosensing.

  14. Low titers of measles antibody in mothers whose infants suffered from measles before eligible age for measles vaccination

    Directory of Open Access Journals (Sweden)

    Wu Qiaozhen

    2010-05-01

    Full Text Available Abstract Background Resurgence or outbreak of measles recently occurred in both developed and developing countries despite long-standing widespread use of measles vaccine. Measles incidence in China has increased since 2002, particularly in infants and in persons ≥ 15 years of age. It is speculated that infants may acquire fewer measles IgG from their mothers, resulting in the reduced duration of protection during their early months of life. This study aimed to clarify the reason of increased susceptibility to measles in young infants in China. Measles IgG in 24 measles infants ≤ 9 months of age and their vaccinated mothers was quantitatively measured. The mean measles neutralizing titer in the vaccinated mothers and in 13 age-match women with the histories of clinical measles were compared. Results All the mothers were confirmed to be vaccinated successfully by the presence of measles IgG. Six vaccinated mothers were positive for measles IgM and had high concentrations of measles IgG and the neutralizing antibody, indicating underwent natural boosting. The mean measles neutralizing titer in 18 vaccinated mothers without natural boosting were significantly lower than that in 13 age-match women with the histories of clinical measles (1:37 vs 1:182, P Conclusions Our results suggest that infants born to mothers who acquired immunity to measles by vaccination may get a relatively small amount of measles antibody, resulting in loss of the immunity to measles before the vaccination age. Measures to improve the immunity in young infants not eligible for measles vaccination would be critical to interrupt the measles transmission in China.

  15. Rubella (German Measles, Three-Day Measles) Photos

    Science.gov (United States)

    ... Controls Cancel Submit Search The CDC Rubella (German Measles, Three-Day Measles) Note: Javascript is disabled or is not supported ... child's back. Distribution is similar to that of measles, but the lesions are less intensely red. This ...

  16. Accurate Measurement of the Effects of All Amino-Acid Mutations on Influenza Hemagglutinin

    Directory of Open Access Journals (Sweden)

    Michael B. Doud

    2016-06-01

    Full Text Available Influenza genes evolve mostly via point mutations, and so knowing the effect of every amino-acid mutation provides information about evolutionary paths available to the virus. We and others have combined high-throughput mutagenesis with deep sequencing to estimate the effects of large numbers of mutations to influenza genes. However, these measurements have suffered from substantial experimental noise due to a variety of technical problems, the most prominent of which is bottlenecking during the generation of mutant viruses from plasmids. Here we describe advances that ameliorate these problems, enabling us to measure with greatly improved accuracy and reproducibility the effects of all amino-acid mutations to an H1 influenza hemagglutinin on viral replication in cell culture. The largest improvements come from using a helper virus to reduce bottlenecks when generating viruses from plasmids. Our measurements confirm at much higher resolution the results of previous studies suggesting that antigenic sites on the globular head of hemagglutinin are highly tolerant of mutations. We also show that other regions of hemagglutinin—including the stalk epitopes targeted by broadly neutralizing antibodies—have a much lower inherent capacity to tolerate point mutations. The ability to accurately measure the effects of all influenza mutations should enhance efforts to understand and predict viral evolution.

  17. Patterns of measles transmission among airplane travelers.

    Science.gov (United States)

    Edelson, Paul J

    2012-09-01

    With advanced air handling systems on modern aircraft and the high level of measles immunity in many countries, measles infection in air travelers may be considered a low-risk event. However, introduction of measles into countries where transmission has been controlled or eliminated can have substantial consequences both for the use of public health resources and for those still susceptible. In an effort to balance the relatively low likelihood of disease transmission among largely immune travelers and the risk to the public health of the occurrence of secondary cases resulting from importations, criteria in the United States for contact investigations for measles exposures consider contacts to be those passengers who are seated within 2 rows of the index case. However, recent work has shown that cabin air flow may not be as reliable a barrier to the spread of measles virus as previously believed. Along with these new studies, several reports have described measles developing after travel in passengers seated some distance from the index case. To understand better the potential for measles virus to spread on an airplane, reports of apparent secondary cases occurring in co-travelers of passengers with infectious cases of measles were reviewed. Medline™ was searched for articles in all languages from 1946 to week 1 of March 2012, using the search terms "measles [human] or rubeola" and ("aircraft" or "airplane" or "aeroplane" or "aviation" or "travel" or "traveler" or "traveller"); 45 citations were returned. Embase™ was searched from 1988 to week 11 2012, using the same search strategy; 95 citations were returned. Papers were included in this review if they reported secondary cases of measles occurring in persons traveling on an airplane on which a person or persons with measles also flew, and which included the seating location of both the index case(s) and the secondary case(s) on the plane. Nine reports, including 13 index cases and 23 apparent secondary cases

  18. Photos of Measles and People with Measles

    Science.gov (United States)

    ... Spanish Resources Related Links Measles and Rubella Initiative World Health Organization Pan American Health Organization Photos of Measles and ... Library (PHIL) Related Links Measles and Rubella Initiative World Health Organization Pan American Health Organization Language: English (US) Español ( ...

  19. Correlation between live attenuated measles viral load and growth inhibition percentage in non-small cell lung cancer cell line

    Directory of Open Access Journals (Sweden)

    Rasha Fadhel Obaid

    2018-03-01

    Conclusion Live attenuated measles virus strain induced cytotoxic effect against human lung cancer cell line (A549 by induction of apoptosis as an important mechanism of anti-tumor activity, in addition, it indicates a correlation between the quantity of MV genomesand percentage of growth inhibition. This relation  has proved that measles virus had anticancer effect.

  20. Measles IgG antibody index correlates with T2 lesion load on MRI in patients with early multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Berit Rosche

    Full Text Available BACKGROUND: B cells and humoral immune responses play an important role in the pathogenesis and diagnosis of multiple sclerosis (MS. A characteristic finding in patients with MS is a polyspecific intrathecal B cell response against neurotropic viruses, specifically against measles virus, rubella virus, and varicella zoster virus, also known as an MRZ reaction (MRZR. Here, we correlated from the routine clinical diagnostics individual IgG antibody indices (AIs of MRZR with magnetic resonance imaging (MRI findings in patients with first MS diagnosis. METHODS/RESULTS: MRZR was determined in 68 patients with a clinically isolated syndrome (CIS or early relapsing-remitting MS (RRMS. Absolute AI values for measles virus, rubella virus, and varicella zoster virus were correlated with T2 lesion load and gadolinium enhancing lesions on cerebral MRI (cMRI and cMRI combined with spinal MRI (sMRI. Measles virus AI correlated significantly with T2 lesion load on cMRI (p = 0.0312, Mann-Whitney U test and the sum of lesions on cMRI and sMRI (p = 0.0413. Varicella zoster virus AI also showed a correlation with T2 lesion load on cMRI but did not reach statistical significance (p = 0.2893. CONCLUSION: The results confirm MRZR as part of the polyspecific immune reaction in MS with possible prognostic impact on MRI and clinical parameters. Furthermore, the data indicate that intrathecal measles virus IgG production correlates with disease activity on cMRI and sMRI in patients with early MS.

  1. In Vitro Measles Virus Infection of Human Lymphocyte Subsets Demonstrates High Susceptibility and Permissiveness of both Naive and Memory B Cells.

    Science.gov (United States)

    Laksono, Brigitta M; Grosserichter-Wagener, Christina; de Vries, Rory D; Langeveld, Simone A G; Brem, Maarten D; van Dongen, Jacques J M; Katsikis, Peter D; Koopmans, Marion P G; van Zelm, Menno C; de Swart, Rik L

    2018-04-15

    Measles is characterized by a transient immune suppression, leading to an increased risk of opportunistic infections. Measles virus (MV) infection of immune cells is mediated by the cellular receptor CD150, expressed by subsets of lymphocytes, dendritic cells, macrophages, and thymocytes. Previous studies showed that human and nonhuman primate memory T cells express higher levels of CD150 than naive cells and are more susceptible to MV infection. However, limited information is available about the CD150 expression and relative susceptibility to MV infection of B-cell subsets. In this study, we assessed the susceptibility and permissiveness of naive and memory T- and B-cell subsets from human peripheral blood or tonsils to in vitro MV infection. Our study demonstrates that naive and memory B cells express CD150, but at lower frequencies than memory T cells. Nevertheless, both naive and memory B cells proved to be highly permissive to MV infection. Furthermore, we assessed the susceptibility and permissiveness of various functionally distinct T and B cells, such as helper T (T H ) cell subsets and IgG- and IgA-positive memory B cells, in peripheral blood and tonsils. We demonstrated that T H 1T H 17 cells and plasma and germinal center B cells were the subsets most susceptible and permissive to MV infection. Our study suggests that both naive and memory B cells, along with several other antigen-experienced lymphocytes, are important target cells of MV infection. Depletion of these cells potentially contributes to the pathogenesis of measles immune suppression. IMPORTANCE Measles is associated with immune suppression and is often complicated by bacterial pneumonia, otitis media, or gastroenteritis. Measles virus infects antigen-presenting cells and T and B cells, and depletion of these cells may contribute to lymphopenia and immune suppression. Measles has been associated with follicular exhaustion in lymphoid tissues in humans and nonhuman primates, emphasizing the

  2. Do HIV-positive adult immigrants need to be screened for measles-mumps-rubella and varicella zoster virus immunization?

    Science.gov (United States)

    Llenas-García, Jara; Rubio, Rafael; Hernando, Asunción; Arrazola, Pilar; Pulido, Federico

    2013-08-01

    A systematic screening for measles, mumps, rubella (MMR) and varicella zoster virus (VZV) in HIV-positive adult immigrants in Spain was evaluated, and factors associated with MMR and VZV vaccines' indication were studied. Every HIV-positive immigrant was tested for VZV and MMR-IgG. MMR vaccine was indicated to patients with lymphocytes CD4+ >200 cells/mm³ and a negative measles-IgG, a negative mumps-IgG and/or a negative rubella-IgG. VZV vaccine was indicated to every VZV-IgG negative patient with CD4+ >400 cells/mm³. In total, 289 patients were screened; seroprevalence was 95.2%, 92.2%, 70.3% and 89.3% for VZV, measles, mumps and rubella IgG, respectively. Having a negative VZV-IgG was statistically associated with coming from sub-Saharan Africa (prevalence ratio [PR]: 6.52; 95% CI: 1.71-24.84; p=0.006), while having secondary education was a protective factor (PR: 0.25; 95% CI: 0.07-0.97; p=0.045). Fourteen patients (4.8%) had indication of VZV vaccine; vaccination was feasible in 21.4% of them at first visit. Eighty-one patients (29.7%) had indication of MMR vaccine, most of them due to mumps-IgG negative (53.1%) or rubella-IgG negative (24.7%). Age Especial attention should be given to immigrant women of childbearing age.

  3. Quantitative characterization of glycan-receptor binding of H9N2 influenza A virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Karunya Srinivasan

    Full Text Available Avian influenza subtypes such as H5, H7 and H9 are yet to adapt to the human host so as to establish airborne transmission between humans. However, lab-generated reassorted viruses possessing hemagglutinin (HA and neuraminidase (NA genes from an avian H9 isolate and other genes from a human-adapted (H3 or H1 subtype acquired two amino acid changes in HA and a single amino acid change in NA that confer respiratory droplet transmission in ferrets. We previously demonstrated for human-adapted H1, H2 and H3 subtypes that quantitative binding affinity of their HA to α2→6 sialylated glycan receptors correlates with respiratory droplet transmissibility of the virus in ferrets. Such a relationship remains to be established for H9 HA. In this study, we performed a quantitative biochemical characterization of glycan receptor binding properties of wild-type and mutant forms of representative H9 HAs that were previously used in context of reassorted viruses in ferret transmission studies. We demonstrate here that distinct molecular interactions in the glycan receptor-binding site of different H9 HAs affect the glycan-binding specificity and affinity. Further we show that α2→6 glycan receptor-binding affinity of a mutant H9 HA carrying Thr-189→Ala amino acid change correlates with the respiratory droplet transmission in ferrets conferred by this change. Our findings contribute to a framework for monitoring the evolution of H9 HA by understanding effects of molecular changes in HA on glycan receptor-binding properties.

  4. Epidemiology of two large measles virus outbreaks in Catalonia: what a difference the month of administration of the first dose of vaccine makes.

    Science.gov (United States)

    Torner, Núria; Anton, Andres; Barrabeig, Irene; Lafuente, Sara; Parron, Ignasi; Arias, César; Camps, Neus; Costa, Josep; Martínez, Ana; Torra, Roser; Godoy, Pere; Minguell, Sofia; Ferrús, Glòria; Cabezas, Carmen; Domínguez, Ángela; Spain

    2013-03-01

    Measles cases in the European Region have been increasing in the last decade; this illustrates the challenge of what we are now encountering in the form of pediatric preventable diseases. In Catalonia, autochthonous measles was declared eliminated in the year 2000 as the result of high measles-mumps-rubella vaccine (MMR) coverage for first and second dose (15 mo and 4 y) since the mid-1990s. From then on, sporadic imported cases and small outbreaks appeared, until in 2006-2007 a large measles outbreak affecting mostly unvaccinated toddlers hit the Barcelona Health Region. Consequently, in January 2008, first dose administration of MMR was lowered from 15 to 12 mo of age. A new honeymoon period went by until the end of 2010, when several importations of cases triggered new sustained transmission of different wild measles virus genotypes, but this time striking young adults. The aim of this study is to show the effect of a change in MMR vaccination schedule policy, and the difference in age incidence and hospitalization rates of affected individuals between both outbreaks.   Epidemiologic data were obtained by case interviews and review of medical records. Samples for virological confirmation and genotyping of cases were collected as established in the Measles Elimination plan guidelines. Incidence rate (IR), rate ratio (RR) and their 95% CI and hospitalization rate (HR) by age group were determined. Statistic z was used for comparing proportions. Total number of confirmed cases was 305 in the 2010 outbreak and 381 in the 2006-2007 outbreak; mean age 20 y (SD 14.8 y; 3 mo to 51 y) vs. 15 mo (SD 13.1 y; 1 mo to 50 y). Highest proportion of cases was set in ≥ 25 y (47%) vs. 24.2% in 2006 (p < 0.001). Differences in IR for ≤ 15 mo (49/100,000 vs. 278.2/100,000; RR: 3,9; 95%CI 2,9-5.4) and in overall HR 29.8% vs. 15.7% were all statistically significant (p < 0.001). The change of the month of age for the administration of the first MMR dose proved successful to

  5. Identification of Low- and High-Impact Hemagglutinin Amino Acid Substitutions That Drive Antigenic Drift of Influenza A(H1N1 Viruses.

    Directory of Open Access Journals (Sweden)

    William T Harvey

    2016-04-01

    Full Text Available Determining phenotype from genetic data is a fundamental challenge. Identification of emerging antigenic variants among circulating influenza viruses is critical to the vaccine virus selection process, with vaccine effectiveness maximized when constituents are antigenically similar to circulating viruses. Hemagglutination inhibition (HI assay data are commonly used to assess influenza antigenicity. Here, sequence and 3-D structural information of hemagglutinin (HA glycoproteins were analyzed together with corresponding HI assay data for former seasonal influenza A(H1N1 virus isolates (1997-2009 and reference viruses. The models developed identify and quantify the impact of eighteen amino acid substitutions on the antigenicity of HA, two of which were responsible for major transitions in antigenic phenotype. We used reverse genetics to demonstrate the causal effect on antigenicity for a subset of these substitutions. Information on the impact of substitutions allowed us to predict antigenic phenotypes of emerging viruses directly from HA gene sequence data and accuracy was doubled by including all substitutions causing antigenic changes over a model incorporating only the substitutions with the largest impact. The ability to quantify the phenotypic impact of specific amino acid substitutions should help refine emerging techniques that predict the evolution of virus populations from one year to the next, leading to stronger theoretical foundations for selection of candidate vaccine viruses. These techniques have great potential to be extended to other antigenically variable pathogens.

  6. Identification of Low- and High-Impact Hemagglutinin Amino Acid Substitutions That Drive Antigenic Drift of Influenza A(H1N1) Viruses

    Science.gov (United States)

    Harvey, William T.; Benton, Donald J.; Gregory, Victoria; Hall, James P. J.; Daniels, Rodney S.; Bedford, Trevor; Haydon, Daniel T.; Hay, Alan J.; McCauley, John W.; Reeve, Richard

    2016-01-01

    Determining phenotype from genetic data is a fundamental challenge. Identification of emerging antigenic variants among circulating influenza viruses is critical to the vaccine virus selection process, with vaccine effectiveness maximized when constituents are antigenically similar to circulating viruses. Hemagglutination inhibition (HI) assay data are commonly used to assess influenza antigenicity. Here, sequence and 3-D structural information of hemagglutinin (HA) glycoproteins were analyzed together with corresponding HI assay data for former seasonal influenza A(H1N1) virus isolates (1997–2009) and reference viruses. The models developed identify and quantify the impact of eighteen amino acid substitutions on the antigenicity of HA, two of which were responsible for major transitions in antigenic phenotype. We used reverse genetics to demonstrate the causal effect on antigenicity for a subset of these substitutions. Information on the impact of substitutions allowed us to predict antigenic phenotypes of emerging viruses directly from HA gene sequence data and accuracy was doubled by including all substitutions causing antigenic changes over a model incorporating only the substitutions with the largest impact. The ability to quantify the phenotypic impact of specific amino acid substitutions should help refine emerging techniques that predict the evolution of virus populations from one year to the next, leading to stronger theoretical foundations for selection of candidate vaccine viruses. These techniques have great potential to be extended to other antigenically variable pathogens. PMID:27057693

  7. Large-scale FMO-MP3 calculations on the surface proteins of influenza virus, hemagglutinin (HA) and neuraminidase (NA)

    Science.gov (United States)

    Mochizuki, Yuji; Yamashita, Katsumi; Fukuzawa, Kaori; Takematsu, Kazutomo; Watanabe, Hirofumi; Taguchi, Naoki; Okiyama, Yoshio; Tsuboi, Misako; Nakano, Tatsuya; Tanaka, Shigenori

    2010-06-01

    Two proteins on the influenza virus surface have been well known. One is hemagglutinin (HA) associated with the infection to cells. The fragment molecular orbital (FMO) calculations were performed on a complex consisting of HA trimer and two Fab-fragments at the third-order Møller-Plesset perturbation (MP3) level. The numbers of residues and 6-31G basis functions were 2351 and 201276, and thus a massively parallel-vector computer was utilized to accelerate the processing. This FMO-MP3 job was completed in 5.8 h with 1024 processors. Another protein is neuraminidase (NA) involved in the escape from infected cells. The FMO-MP3 calculation was also applied to analyze the interactions between oseltamivir and surrounding residues in pharmacophore.

  8. Synonymous Mutations at the Beginning of the Influenza A Virus Hemagglutinin Gene Impact Experimental Fitness.

    Science.gov (United States)

    Canale, Aneth S; Venev, Sergey V; Whitfield, Troy W; Caffrey, Daniel R; Marasco, Wayne A; Schiffer, Celia A; Kowalik, Timothy F; Jensen, Jeffrey D; Finberg, Robert W; Zeldovich, Konstantin B; Wang, Jennifer P; Bolon, Daniel N A

    2018-04-13

    The fitness effects of synonymous mutations can provide insights into biological and evolutionary mechanisms. We analyzed the experimental fitness effects of all single-nucleotide mutations, including synonymous substitutions, at the beginning of the influenza A virus hemagglutinin (HA) gene. Many synonymous substitutions were deleterious both in bulk competition and for individually isolated clones. Investigating protein and RNA levels of a subset of individually expressed HA variants revealed that multiple biochemical properties contribute to the observed experimental fitness effects. Our results indicate that a structural element in the HA segment viral RNA may influence fitness. Examination of naturally evolved sequences in human hosts indicates a preference for the unfolded state of this structural element compared to that found in swine hosts. Our overall results reveal that synonymous mutations may have greater fitness consequences than indicated by simple models of sequence conservation, and we discuss the implications of this finding for commonly used evolutionary tests and analyses. Copyright © 2018. Published by Elsevier Ltd.

  9. Epstein–Barr Virus, but Not Cytomegalovirus, Latency Accelerates the Decay of Childhood Measles and Rubella Vaccine Responses—A 10-Year Follow-up of a Swedish Birth Cohort

    Directory of Open Access Journals (Sweden)

    Gintare Lasaviciute

    2017-12-01

    Full Text Available BackgroundEpstein–Barr virus (EBV and cytomegalovirus (CMV are ubiquitous and persistent herpesviruses commonly acquired during childhood. Both viruses have a significant impact on the immune system, especially through mediating the establishment of cellular immunity, which keeps these viruses under control for life. Far less is known about how these viruses influence B-cell responses.ObjectivesTo evaluate the impact of latent EBV and CMV infection on rubella- and measles-specific antibody responses as well as on the B-cell compartment in a prospective birth cohort followed during the first 10 years of life.MethodsIgG titers against rubella and measles vaccines were measured in plasma obtained from the same donors at 2, 5, and 10 years of age. Peripheral B-cell subsets were evaluated ex vivo at 2 and 5 years of age. Factors related to optimal B-cell responses including IL-21 and CXCL13 levels in plasma were measured at all-time points.ResultsEBV carriage in the absence of CMV associated with an accelerated decline of rubella and measles-specific IgG levels (p = 0.003 and p = 0.019, respectively, linear mixed model analysis, while CMV carriage in the absence of EBV associated with delayed IgG decay over time for rubella (p = 0.034. At 5 years of age, EBV but not CMV latency associated with a lower percentage of plasmablasts, but higher IL-21 levels in the circulation.ConclusionOur findings suggest that EBV carriage in the absence of CMV influences the B-cell compartment and the dynamics of antibody responses over time during steady state in the otherwise healthy host.

  10. Etiology of maculopapular rash in measles and rubella suspected patients from Belarus.

    Directory of Open Access Journals (Sweden)

    Marina A Yermalovich

    Full Text Available As a result of successful implementation of the measles/rubella elimination program, the etiology of more and more double negative cases remains elusive. The present study determined the role of different viruses as causative agents in measles or rubella suspected cases in Belarus. A total of 856 sera sent to the WHO National Laboratory between 2009 and 2011 were tested for specific IgM antibodies to measles virus (MV, rubella virus (RV and human parvovirus B19 (B19V. The negatives were further investigated for antibodies to enterovirus (EV and adenovirus (AdV. Children of up to 3 years were tested for IgM antibodies to human herpesvirus 6 (HHV6. A viral etiology was identified in 451 (52.7% cases, with 6.1% of the samples being positive for MV; 2.6% for RV; 26.2% for B19V; 9.7% for EV; 4.6% for AdV; and 3.6% for HHV6. Almost all measles and rubella cases occurred during limited outbreaks in 2011 and nearly all patients were at least 15 years old. B19V, EV and AdV infections were prevalent both in children and adults and were found throughout the 3 years. B19V occurred mainly in 3-10 years old children and 20-29 years old adults. EV infection was most common in children up to 6 years of age and AdV was confirmed mainly in 3-6 years old children. HHV6 infection was mostly detected in 6-11 months old infants. Laboratory investigation of measles/rubella suspected cases also for B19V, EV, AdV and HHV6 allows diagnosing more than half of all cases, thus strengthening rash/fever disease surveillance in Belarus.

  11. Polio and Measles Down the Drain: Environmental Enterovirus Surveillance in the Netherlands, 2005 to 2015.

    Science.gov (United States)

    Benschop, Kimberley S M; van der Avoort, Harrie G; Jusic, Edin; Vennema, Harry; van Binnendijk, Rob; Duizer, Erwin

    2017-07-01

    Polioviruses (PVs) are members of the genus Enterovirus In the Netherlands, the exclusion of PV circulation is based on clinical enterovirus (EV) surveillance (CEVS) of EV-positive cases and routine environmental EV surveillance (EEVS) conducted on sewage samples collected in the region of the Netherlands where vaccination coverage is low due to religious reasons. We compared the EEVS data to those of the CEVS to gain insight into the relevance of EEVS for poliovirus and nonpolio enterovirus surveillance. Following the polio outbreak in Syria, EEVS was performed at the primary refugee center in Ter Apel in the Netherlands, and data were compared to those of CEVS and EEVS. Furthermore, we assessed the feasibility of poliovirus detection by EEVS using measles virus detection in sewage during a measles outbreak as a proxy. Two Sabin-like PVs were found in routine EEVS, 11 Sabin-like PVs were detected in the CEVS, and one Sabin-like PV was found in the Ter Apel sewage. We observed significant differences between the three programs regarding which EVs were found. In 6 sewage samples collected during the measles outbreak in 2013, measles virus RNA was detected in regions where measles cases were identified. In conclusion, we detected PVs, nonpolio EVs, and measles virus in sewage and showed that environmental surveillance is useful for poliovirus detection in the Netherlands, where live oral poliovirus vaccine is not used and communities with lower vaccination coverage exist. EEVS led to the detection of EV types not seen in the CEVS, showing that EEVS is complementary to CEVS. IMPORTANCE We show that environmental enterovirus surveillance complements clinical enterovirus surveillance for poliovirus detection, or exclusion, and for nonpolio enterovirus surveillance. Even in the presence of adequate surveillance, only a very limited number of Sabin-like poliovirus strains were detected in a 10-year period, and no signs of transmission of oral polio vaccine (OPV) strains

  12. Chicken galectin-1B inhibits Newcastle disease virus adsorption and replication through binding to hemagglutinin-neuraminidase (HN) glycoprotein.

    Science.gov (United States)

    Sun, Junfeng; Han, Zongxi; Qi, Tianming; Zhao, Ran; Liu, Shengwang

    2017-12-08

    Galectin-1 is an important immunoregulatory factor and can mediate the host-pathogen interaction via binding glycans on the surface of various viruses. We previously reported that avian respiratory viruses, including lentogenic Newcastle disease virus (NDV), can induce up-regulation of chicken galectin (CG)-1B in the primary target organ. In this study, we investigated whether CG-1B participated in the infectious process of NDV in chickens. We demonstrated that velogenic NDV induced up-regulation of CG-1B in target organs. We also found that CG-1B directly bound to NDV virions and inhibited their hemagglutination activity in vitro We confirmed that CG-1B interacted with NDV hemagglutinin-neuraminidase (HN) glycoprotein, in which the specific G4 N -glycans significantly contributed to the interaction between CG-1B and HN glycoprotein. The presence of extracellular CG-1B, rather than the internalization process, inhibited adsorption of NDV. The interaction between intracellular CG-1B and NDV HN glycoproteins inhibited cell-surface expression of HN glycoprotein and reduced the titer of progeny virus in NDV-infected DF-1 cells. Significantly, the replication of parental and HN glycosylation mutant viruses in CG-1B knockdown and overexpression cells demonstrated that the replication of NDV was correlated with the expression of CG-1B in a specific glycan-dependent manner. Collectively, our results indicate that CG-1B has anti-NDV activity by binding to N -glycans on HN glycoprotein. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Acid Stability of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, Rebecca M.; Zaraket, Hassan; Reddivari, Muralidhar; Heath, Richard J.; White, Stephen W.; Russell, Charles J. (Tennessee-HSC); (SJCH)

    2012-12-10

    Highly pathogenic avian influenza viruses of the H5N1 subtype continue to threaten agriculture and human health. Here, we use biochemistry and x-ray crystallography to reveal how amino-acid variations in the hemagglutinin (HA) protein contribute to the pathogenicity of H5N1 influenza virus in chickens. HA proteins from highly pathogenic (HP) A/chicken/Hong Kong/YU562/2001 and moderately pathogenic (MP) A/goose/Hong Kong/437-10/1999 isolates of H5N1 were found to be expressed and cleaved in similar amounts, and both proteins had similar receptor-binding properties. However, amino-acid variations at positions 104 and 115 in the vestigial esterase sub-domain of the HA1 receptor-binding domain (RBD) were found to modulate the pH of HA activation such that the HP and MP HA proteins are activated for membrane fusion at pH 5.7 and 5.3, respectively. In general, an increase in H5N1 pathogenicity in chickens was found to correlate with an increase in the pH of HA activation for mutant and chimeric HA proteins in the observed range of pH 5.2 to 6.0. We determined a crystal structure of the MP HA protein at 2.50 {angstrom} resolution and two structures of HP HA at 2.95 and 3.10 {angstrom} resolution. Residues 104 and 115 that modulate the acid stability of the HA protein are situated at the N- and C-termini of the 110-helix in the vestigial esterase sub-domain, which interacts with the B loop of the HA2 stalk domain. Interactions between the 110-helix and the stalk domain appear to be important in regulating HA protein acid stability, which in turn modulates influenza virus replication and pathogenesis. Overall, an optimal activation pH of the HA protein is found to be necessary for high pathogenicity by H5N1 influenza virus in avian species.

  14. Tyrosine 110 in the measles virus phosphoprotein is required to block STAT1 phosphorylation

    International Nuclear Information System (INIS)

    Devaux, Patricia; Messling, Veronika von; Songsungthong, Warangkhana; Springfeld, Christoph; Cattaneo, Roberto

    2007-01-01

    The measles virus (MV) P gene encodes three proteins: P, an essential polymerase cofactor, and C and V, which have multiple functions including immune evasion. We show here that the MV P protein also contributes to immune evasion, and that tyrosine 110 is required to block nuclear translocation of the signal transducer and activator of transcription factors (STAT) after interferon type I treatment. In particular, MV P inhibits STAT1 phosphorylation. This is shown not only by transient expression but also by reverse genetic analyses based on a new functional infectious cDNA derived from a MV vaccine vial (Moraten strain). Our study also identifies a conserved sequence around P protein tyrosine 110 as a candidate interaction site with a cellular protein

  15. Measles outbreak reveals measles susceptibility among adults in ...

    African Journals Online (AJOL)

    Background. The World Health Organization, African Region, set the goal of achieving measles elimination by 2020. Namibia was one of seven African countries to implement an accelerated measles control strategy beginning in 1996. Following implementation of this strategy, measles incidence decreased; however, ...

  16. Annexin A2 Mediates the Localization of Measles Virus Matrix Protein at the Plasma Membrane.

    Science.gov (United States)

    Koga, Ritsuko; Kubota, Marie; Hashiguchi, Takao; Yanagi, Yusuke; Ohno, Shinji

    2018-02-28

    Annexins are a family of structurally related proteins that bind negatively charged membrane phospholipids in a Ca 2+ -dependent manner. Annexin A2 (AnxA2), a member of the family, has been implicated in a variety of cellular functions including the organization of membrane domains, vesicular trafficking and cell-cell adhesion. AnxA2 generally forms the heterotetrameric complex with a small Ca 2+ -binding protein S100A10. Measles virus (MV), a member of the family Paramyxoviridae , is an enveloped virus with a nonsegmented negative strand RNA genome. Knockdown of AnxA2 greatly reduced MV growth in cells, without affecting its entry and viral RNA production. In MV-infected, AnxA2-knockdown cells, the expression level of the matrix (M) protein, but not other viral proteins, was reduced compared with that in control cells, and the distribution of the M protein at the plasma membrane was decreased. The M protein lines the inner surface of the envelope and plays an important role in virus assembly by connecting the nucleocapsid to the envelope proteins. The M protein bound to AnxA2 independently of AnxA2's phosphorylation or its association with S100A10, and was co-localized with AnxA2 within cells. Truncation of the N-terminal 10 amino acid residues, but not the N-terminal 5 residues, compromised the ability of the M protein to interact with AnxA2 and localize at the plasma membrane. These results indicate that AnxA2 mediates the localization of the MV M protein at the plasma membrane by interacting with its N-terminal region (especially residues at positions 6-10), thereby aiding in MV assembly. IMPORTANCE Measles virus (MV) is an important human pathogen, still claiming ∼ 100,000 lives per year despite the presence of effective vaccines, and causes occasional outbreaks even in developed countries. Replication of viruses largely relies on the functions of host cells. Our study revealed that the reduction of the host protein annexin A2 compromises the replication of

  17. Immunization with plasmid DNA encoding the hemagglutinin and the nucleoprotein confers robust protection against a lethal canine distemper virus challenge.

    Science.gov (United States)

    Dahl, Lotte; Jensen, Trine Hammer; Gottschalck, Elisabeth; Karlskov-Mortensen, Peter; Jensen, Tove Dannemann; Nielsen, Line; Andersen, Mads Klindt; Buckland, Robin; Wild, T Fabian; Blixenkrone-Møller, Merete

    2004-09-09

    We have investigated the protective effect of immunization of a highly susceptible natural host of canine distemper virus (CDV) with DNA plasmids encoding the viral nucleoprotein (N) and hemagglutinin (H). The combined intradermal and intramuscular routes of immunization elicited high virus-neutralizing serum antibody titres in mink (Mustela vison). To mimic natural exposure, we also conducted challenge infection by horizontal transmission from infected contact animals. Other groups received a lethal challenge infection by administration to the mucosae of the respiratory tract and into the muscle. One of the mink vaccinated with N plasmid alone developed severe disease after challenge. In contrast, vaccination with the H plasmid together with the N plasmid conferred solid protection against disease and we were unable to detect CDV infection in PBMCs or in different tissues after challenge. Our findings show that DNA immunization by the combined intradermal and intramuscular routes can confer solid protective immunity against naturally transmitted morbillivirus infection and disease.

  18. High Concentrations of Measles Neutralizing Antibodies and High-Avidity Measles IgG Accurately Identify Measles Reinfection Cases

    Science.gov (United States)

    Rota, Jennifer S.; Hickman, Carole J.; Mercader, Sara; Redd, Susan; McNall, Rebecca J.; Williams, Nobia; McGrew, Marcia; Walls, M. Laura; Rota, Paul A.; Bellini, William J.

    2016-01-01

    In the United States, approximately 9% of the measles cases reported from 2012 to 2014 occurred in vaccinated individuals. Laboratory confirmation of measles in vaccinated individuals is challenging since IgM assays can give inconclusive results. Although a positive reverse transcription (RT)-PCR assay result from an appropriately timed specimen can provide confirmation, negative results may not rule out a highly suspicious case. Detection of high-avidity measles IgG in serum samples provides laboratory evidence of a past immunologic response to measles from natural infection or immunization. High concentrations of measles neutralizing antibody have been observed by plaque reduction neutralization (PRN) assays among confirmed measles cases with high-avidity IgG, referred to here as reinfection cases (RICs). In this study, we evaluated the utility of measuring levels of measles neutralizing antibody to distinguish RICs from noncases by receiver operating characteristic curve analysis. Single and paired serum samples with high-avidity measles IgG from suspected measles cases submitted to the CDC for routine surveillance were used for the analysis. The RICs were confirmed by a 4-fold rise in PRN titer or by RT-quantitative PCR (RT-qPCR) assay, while the noncases were negative by both assays. Discrimination accuracy was high with serum samples collected ≥3 days after rash onset (area under the curve, 0.953; 95% confidence interval [CI], 0.854 to 0.993). Measles neutralizing antibody concentrations of ≥40,000 mIU/ml identified RICs with 90% sensitivity (95% CI, 74 to 98%) and 100% specificity (95% CI, 82 to 100%). Therefore, when serological or RT-qPCR results are unavailable or inconclusive, suspected measles cases with high-avidity measles IgG can be confirmed as RICs by measles neutralizing antibody concentrations of ≥40,000 mIU/ml. PMID:27335386

  19. Characterization of Hemagglutinin Negative Botulinum Progenitor Toxins

    Directory of Open Access Journals (Sweden)

    Suzanne R. Kalb

    2017-06-01

    Full Text Available Botulism is a disease involving intoxication with botulinum neurotoxins (BoNTs, toxic proteins produced by Clostridium botulinum and other clostridia. The 150 kDa neurotoxin is produced in conjunction with other proteins to form the botulinum progenitor toxin complex (PTC, alternating in size from 300 kDa to 500 kDa. These progenitor complexes can be classified into hemagglutinin positive or hemagglutinin negative, depending on the ability of some of the neurotoxin-associated proteins (NAPs to cause hemagglutination. The hemagglutinin positive progenitor toxin complex consists of BoNT, nontoxic non-hemagglutinin (NTNH, and three hemagglutinin proteins; HA-70, HA-33, and HA-17. Hemagglutinin negative progenitor toxin complexes contain BoNT and NTNH as the minimally functional PTC (M-PTC, but not the three hemagglutinin proteins. Interestingly, the genome of hemagglutinin negative progenitor toxin complexes comprises open reading frames (orfs which encode for three proteins, but the existence of these proteins has not yet been extensively demonstrated. In this work, we demonstrate that these three proteins exist and form part of the PTC for hemagglutinin negative complexes. Several hemagglutinin negative strains producing BoNT/A, /E, and /F were found to contain the three open reading frame proteins. Additionally, several BoNT/A-containing bivalent strains were examined, and NAPs from both genes, including the open reading frame proteins, were associated with BoNT/A. The open reading frame encoded proteins are more easily removed from the botulinum complex than the hemagglutinin proteins, but are present in several BoNT/A and /F toxin preparations. These are not easily removed from the BoNT/E complex, however, and are present even in commercially-available purified BoNT/E complex.

  20. [Drug clinics. Drug of the month. A new measles-rubella-mumps vaccine (Priorix)].

    Science.gov (United States)

    Senterre, J

    1999-02-01

    A novel measles-mumps-rubella vaccine (Priorix) has been marketed by SmithKline Beecham. It contains live attenuated virus with measles and mumps strains slightly different from those present in MMR VAX (Pasteur Merieux MSD). The indications and contraindications are similar for both vaccines. Immunogenicity is also equivalent as well as general reactogenicity. By contrast local symptoms were reported significantly less frequently after Priorix.

  1. Combination of Vaccine-Strain Measles and Mumps Viruses Enhances Oncolytic Activity against Human Solid Malignancies.

    Science.gov (United States)

    Son, Ho Anh; Zhang, LiFeng; Cuong, Bui Khac; Van Tong, Hoang; Cuong, Le Duy; Hang, Ngo Thu; Nhung, Hoang Thi My; Yamamoto, Naoki; Toan, Nguyen Linh

    2018-02-07

    Oncolytic measles and mumps viruses (MeV, MuV) have a potential for anti-cancer treatment. We examined the anti-tumor activity of MeV, MuV, and MeV-MuV combination (MM) against human solid malignancies (HSM). MeV, MuV, and MM targeted and significantly killed various cancer cell lines of HSM but not normal cells. MM demonstrated a greater anti-tumor effect and prolonged survival in a human prostate cancer xenograft tumor model compared to MeV and MuV. MeV, MuV, and MM significantly induced the expression of immunogenic cell death markers and enhanced spleen-infiltrating immune cells. In conclusion, MM combination significantly improves the treatment of human solid malignancies.

  2. Phase I Trial of Intratumoral Administration of NIS-Expressing Strain of Measles Virus in Unresectable or Recurrent Malignant Peripheral Nerve Sheath Tumor

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0115 TITLE: Phase I Trial of Intratumoral Administration of NIS-Expressing Strain of Measles Virus in Unresectable or...Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited REPORT DOCUMENTATION PAGE Form...Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time

  3. Measles immune suppression: lessons from the macaque model.

    Directory of Open Access Journals (Sweden)

    Rory D de Vries

    Full Text Available Measles remains a significant childhood disease, and is associated with a transient immune suppression. Paradoxically, measles virus (MV infection also induces robust MV-specific immune responses. Current hypotheses for the mechanism underlying measles immune suppression focus on functional impairment of lymphocytes or antigen-presenting cells, caused by infection with or exposure to MV. We have generated stable recombinant MVs that express enhanced green fluorescent protein, and remain virulent in non-human primates. By performing a comprehensive study of virological, immunological, hematological and histopathological observations made in animals euthanized at different time points after MV infection, we developed a model explaining measles immune suppression which fits with the "measles paradox". Here we show that MV preferentially infects CD45RA(- memory T-lymphocytes and follicular B-lymphocytes, resulting in high infection levels in these populations. After the peak of viremia MV-infected lymphocytes were cleared within days, followed by immune activation and lymph node enlargement. During this period tuberculin-specific T-lymphocyte responses disappeared, whilst strong MV-specific T-lymphocyte responses emerged. Histopathological analysis of lymphoid tissues showed lymphocyte depletion in the B- and T-cell areas in the absence of apoptotic cells, paralleled by infiltration of T-lymphocytes into B-cell follicles and reappearance of proliferating cells. Our findings indicate an immune-mediated clearance of MV-infected CD45RA(- memory T-lymphocytes and follicular B-lymphocytes, which causes temporary immunological amnesia. The rapid oligoclonal expansion of MV-specific lymphocytes and bystander cells masks this depletion, explaining the short duration of measles lymphopenia yet long duration of immune suppression.

  4. Measles Outbreak among Unvaccinated Children in Bajura

    Directory of Open Access Journals (Sweden)

    S Sitaula

    2010-12-01

    CFR of this outbreak is higher than the national CFR. Vaccine efficacy of 50% points towards the need for investigation of vaccine logistics and cold chain system. Moreover, this laboratory test confirmed an outbreak showing that the measles virus could be imported from an endemic region and rapidly spread through a susceptible population who were previously not immunized.

  5. The nucleocapsid protein of measles virus blocks host interferon response

    International Nuclear Information System (INIS)

    Takayama, Ikuyo; Sato, Hiroki; Watanabe, Akira; Omi-Furutani, Mio; Sugai, Akihiro; Kanki, Keita; Yoneda, Misako; Kai, Chieko

    2012-01-01

    Measles virus (MV) belongs to the genus Morbillivirus of the family Paramyxoviridae. A number of paramyxoviruses inhibit host interferon (IFN) signaling pathways in host immune systems by various mechanisms. Inhibition mechanisms have been described for many paramyxoviruses. Although there are inconsistencies among previous reports concerning MV, it appears that P/V/C proteins interfere with the pathways. In this study, we confirmed the effects of MV P gene products of a wild MV strain on IFN pathways and examined that of other viral proteins on it. Interestingly, we found that N protein acts as an IFN-α/β and γ-antagonist as strong as P gene products. We further investigated the mechanisms of MV-N inhibition, and revealed that MV-N blocks the nuclear import of activated STAT without preventing STAT and Jak activation or STAT degradation, and that the nuclear translocation of MV-N is important for the inhibition. The inhibitory effect of the N protein was observed as a common feature of other morbilliviruses. The results presented in this report suggest that N protein of MV as well as P/V/C proteins is involved in the inhibition of host IFN signaling pathways.

  6. The nucleocapsid protein of measles virus blocks host interferon response

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, Ikuyo; Sato, Hiroki; Watanabe, Akira; Omi-Furutani, Mio; Sugai, Akihiro; Kanki, Keita; Yoneda, Misako; Kai, Chieko, E-mail: ckai@ims.u-tokyo.ac.jp

    2012-03-01

    Measles virus (MV) belongs to the genus Morbillivirus of the family Paramyxoviridae. A number of paramyxoviruses inhibit host interferon (IFN) signaling pathways in host immune systems by various mechanisms. Inhibition mechanisms have been described for many paramyxoviruses. Although there are inconsistencies among previous reports concerning MV, it appears that P/V/C proteins interfere with the pathways. In this study, we confirmed the effects of MV P gene products of a wild MV strain on IFN pathways and examined that of other viral proteins on it. Interestingly, we found that N protein acts as an IFN-{alpha}/{beta} and {gamma}-antagonist as strong as P gene products. We further investigated the mechanisms of MV-N inhibition, and revealed that MV-N blocks the nuclear import of activated STAT without preventing STAT and Jak activation or STAT degradation, and that the nuclear translocation of MV-N is important for the inhibition. The inhibitory effect of the N protein was observed as a common feature of other morbilliviruses. The results presented in this report suggest that N protein of MV as well as P/V/C proteins is involved in the inhibition of host IFN signaling pathways.

  7. Development of new therapy for canine mammary cancer with recombinant measles virus

    Directory of Open Access Journals (Sweden)

    Koichiro Shoji

    2016-01-01

    Full Text Available Oncolytic virotherapy is a promising treatment strategy for cancer. We previously generated a recombinant measles virus (rMV-SLAMblind that selectively uses a poliovirus receptor-related 4 (PVRL4/Nectin4 receptor, but not signaling lymphocyte activation molecule (SLAM. We demonstrated that the virus exerts therapeutic effects against human breast cancer cells. Here, we examined the applicability of rMV-SLAMblind to treating canine mammary cancers (CMCs. We found that the susceptibilities of host cells to rMV-SLAMblind were dependent on canine Nectin-4 expression. Nectin-4 was detected in four of nine CMC cell lines. The rMV-SLAMblind efficiently infected those four Nectin-4-positive cell lines and was cytotoxic for three of them (CF33, CHMm, and CTBm. In vivo experiment showed that the administration of rMV-SLAMblind greatly suppressed the progression of tumors in mice xenografted with a CMC cell line (CF33. Immunohistochemistry revealed that canine Nectin-4 was expressed in 45% of canine mammary tumors, and the tumor cells derived from one clinical specimen were efficiently infected with rMV-SLAMblind. These results suggest that rMV-SLAMblind infects CMC cells and displays antitumor activity in vitro, in xenografts, and ex vivo. Therefore, oncolytic virotherapy with rMV-SLAMblind can be a novel method for treating CMCs.

  8. Antecedent causes of a measles resurgence in the Democratic Republic of the Congo

    Science.gov (United States)

    Scobie, Heather Melissa; Ilunga, Benoît Kebela; Mulumba, Audry; Shidi, Calixte; Coulibaly, Tiekoura; Obama, Ricardo; Tamfum, Jean-Jacques Muyembe; Simbu, Elisabeth Pukuta; Smit, Sheilagh Brigitte; Masresha, Balcha; Perry, Robert Tyrrell; Alleman, Mary Margaret; Kretsinger, Katrina; Goodson, James

    2015-01-01

    Introduction Despite accelerated measles control efforts, a massive measles resurgence occurred in the Democratic Republic of the Congo (DRC) starting in mid-2010, prompting an investigation into likely causes. Methods We conducted a descriptive epidemiological analysis using measles immunization and surveillance data to understand the causes of the measles resurgence and to develop recommendations for elimination efforts in DRC. Results During 2004-2012, performance indicator targets for case-based surveillance and routine measles vaccination were not met. Estimated coverage with the routine first dose of measles-containing vaccine (MCV1) increased from 57% to 73%. Phased supplementary immunization activities (SIAs) were conducted starting in 2002, in some cases with sub-optimal coverage (≤95%). In 2010, SIAs in five of 11 provinces were not implemented as planned, resulting in a prolonged interval between SIAs, and a missed birth cohort in one province. During July 1, 2010-December 30, 2012, high measles attack rates (>100 cases per 100,000 population) occurred in provinces that had estimated MCV1 coverage lower than the national estimate and did not implement planned 2010 SIAs. The majority of confirmed case-patients were aged measles virus strains that were previously identified in the region. Conclusion The resurgence was likely caused by an accumulation of unvaccinated, measles-susceptible children due to low MCV1 coverage and suboptimal SIA implementation. To achieve the regional goal of measles elimination by 2020, efforts are needed in DRC to improve case-based surveillance and increase two-dose measles vaccination coverage through routine services and SIAs. PMID:26401224

  9. Determinants of glycan receptor specificity of H2N2 influenza A virus hemagglutinin.

    Science.gov (United States)

    Viswanathan, Karthik; Koh, Xiaoying; Chandrasekaran, Aarthi; Pappas, Claudia; Raman, Rahul; Srinivasan, Aravind; Shriver, Zachary; Tumpey, Terrence M; Sasisekharan, Ram

    2010-10-29

    The H2N2 subtype of influenza A virus was responsible for the Asian pandemic of 1957-58. However, unlike other subtypes that have caused pandemics such as H1N1 and H3N2, which continue to circulate among humans, H2N2 stopped circulating in the human population in 1968. Strains of H2 subtype still continue to circulate in birds and occasionally pigs and could be reintroduced into the human population through antigenic drift or shift. Such an event is a potential global health concern because of the waning population immunity to H2 hemagglutinin (HA). The first step in such a cross-species transmission and human adaptation of influenza A virus is the ability for its surface glycoprotein HA to bind to glycan receptors expressed in the human upper respiratory epithelia. Recent structural and biochemical studies have focused on understanding the glycan receptor binding specificity of the 1957-58 pandemic H2N2 HA. However, there has been considerable HA sequence divergence in the recent avian-adapted H2 strains from the pandemic H2N2 strain. Using a combination of structural modeling, quantitative glycan binding and human respiratory tissue binding methods, we systematically identify mutations in the HA from a recent avian-adapted H2N2 strain (A/Chicken/PA/2004) that make its quantitative glycan receptor binding affinity (defined using an apparent binding constant) comparable to that of a prototypic pandemic H2N2 (A/Albany/6/58) HA.

  10. Determinants of glycan receptor specificity of H2N2 influenza A virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Karthik Viswanathan

    Full Text Available The H2N2 subtype of influenza A virus was responsible for the Asian pandemic of 1957-58. However, unlike other subtypes that have caused pandemics such as H1N1 and H3N2, which continue to circulate among humans, H2N2 stopped circulating in the human population in 1968. Strains of H2 subtype still continue to circulate in birds and occasionally pigs and could be reintroduced into the human population through antigenic drift or shift. Such an event is a potential global health concern because of the waning population immunity to H2 hemagglutinin (HA. The first step in such a cross-species transmission and human adaptation of influenza A virus is the ability for its surface glycoprotein HA to bind to glycan receptors expressed in the human upper respiratory epithelia. Recent structural and biochemical studies have focused on understanding the glycan receptor binding specificity of the 1957-58 pandemic H2N2 HA. However, there has been considerable HA sequence divergence in the recent avian-adapted H2 strains from the pandemic H2N2 strain. Using a combination of structural modeling, quantitative glycan binding and human respiratory tissue binding methods, we systematically identify mutations in the HA from a recent avian-adapted H2N2 strain (A/Chicken/PA/2004 that make its quantitative glycan receptor binding affinity (defined using an apparent binding constant comparable to that of a prototypic pandemic H2N2 (A/Albany/6/58 HA.

  11. Enhanced lysis by bispecific oncolytic measles viruses simultaneously using HER2/neu or EpCAM as target receptors

    Directory of Open Access Journals (Sweden)

    Jan RH Hanauer

    2016-01-01

    Full Text Available To target oncolytic measles viruses (MV to tumors, we exploit the binding specificity of designed ankyrin repeat proteins (DARPins. These DARPin-MVs have high tumor selectivity while maintaining excellent oncolytic potency. Stability, small size, and efficacy of DARPins allowed the generation of MVs simultaneously targeted to tumor marker HER2/neu and cancer stem cell (CSC marker EpCAM. For optimization, the linker connecting both DARPins was varied in flexibility and length. Flexibility had no impact on fusion helper activity whereas length had. MVs with bispecific MV-H are genetically stable and revealed the desired double-target specificity. In vitro, the cytolytic activity of bispecific MVs was superior or comparable to mono-targeted viruses depending on the target cells. In vivo, therapeutic efficacy of the bispecific viruses was validated in an orthotopic ovarian carcinoma model revealing an effective reduction of tumor mass. Finally, the power of bispecific targeting was demonstrated on cocultures of different tumor cells thereby mimicking tumor heterogeneity in vitro, more closely reflecting real tumors. Here, bispecific excelled monospecific viruses in efficacy. DARPin-based targeting domains thus allow the generation of efficacious oncolytic viruses with double specificity, with the potential to handle intratumoral variation of antigen expression and to simultaneously target CSCs and the bulk tumor mass.

  12. New Orf virus (Parapoxvirus) recombinant expressing H5 hemagglutinin protects mice against H5N1 and H1N1 influenza A virus.

    Science.gov (United States)

    Rohde, Jörg; Amann, Ralf; Rziha, Hanns-Joachim

    2013-01-01

    Previously we demonstrated the versatile utility of the Parapoxvirus Orf virus (ORFV) as a vector platform for the development of potent recombinant vaccines. In this study we present the generation of new ORFV recombinants expressing the hemagglutinin (HA) or nucleoprotein (NP) of the highly pathogenic avian influenza virus (HPAIV) H5N1. Correct foreign gene expression was examined in vitro by immunofluorescence, Western blotting and flow cytometry. The protective potential of both recombinants was evaluated in the mouse challenge model. Despite adequate expression of NP, the recombinant D1701-V-NPh5 completely failed to protect mice from lethal challenge. However, the H5 HA-expressing recombinant D1701-V-HAh5n mediated solid protection in a dose-dependent manner. Two intramuscular (i.m.) injections of the HA-expressing recombinant protected all animals from lethal HPAIV infection without loss of body weight. Notably, the immunized mice resisted cross-clade H5N1 and heterologous H1N1 (strain PR8) influenza virus challenge. In vivo antibody-mediated depletion of CD4-positive and/or CD8-posititve T-cell subpopulations during immunization and/or challenge infection implicated the relevance of CD4-positive T-cells for induction of protective immunity by D1701-V-HAh5n, whereas the absence of CD8-positive T-cells did not significantly influence protection. In summary, this study validates the potential of the ORFV vectored vaccines also to combat HPAIV.

  13. New Orf virus (Parapoxvirus recombinant expressing H5 hemagglutinin protects mice against H5N1 and H1N1 influenza A virus.

    Directory of Open Access Journals (Sweden)

    Jörg Rohde

    Full Text Available Previously we demonstrated the versatile utility of the Parapoxvirus Orf virus (ORFV as a vector platform for the development of potent recombinant vaccines. In this study we present the generation of new ORFV recombinants expressing the hemagglutinin (HA or nucleoprotein (NP of the highly pathogenic avian influenza virus (HPAIV H5N1. Correct foreign gene expression was examined in vitro by immunofluorescence, Western blotting and flow cytometry. The protective potential of both recombinants was evaluated in the mouse challenge model. Despite adequate expression of NP, the recombinant D1701-V-NPh5 completely failed to protect mice from lethal challenge. However, the H5 HA-expressing recombinant D1701-V-HAh5n mediated solid protection in a dose-dependent manner. Two intramuscular (i.m. injections of the HA-expressing recombinant protected all animals from lethal HPAIV infection without loss of body weight. Notably, the immunized mice resisted cross-clade H5N1 and heterologous H1N1 (strain PR8 influenza virus challenge. In vivo antibody-mediated depletion of CD4-positive and/or CD8-posititve T-cell subpopulations during immunization and/or challenge infection implicated the relevance of CD4-positive T-cells for induction of protective immunity by D1701-V-HAh5n, whereas the absence of CD8-positive T-cells did not significantly influence protection. In summary, this study validates the potential of the ORFV vectored vaccines also to combat HPAIV.

  14. Immunoglobulin GM and KM genes and measles vaccine-induced humoral immunity.

    Science.gov (United States)

    Ovsyannikova, Inna G; Larrabee, Beth R; Schaid, Daniel J; Poland, Gregory A

    2017-10-04

    Identifying genetic polymorphisms that explain variations in humoral immunity to live measles virus vaccine is of great interest. Immunoglobulin GM (heavy chain) and KM (light chain) allotypes are genetic markers known to be associated with susceptibility to several infectious diseases. We assessed associations between GM and KM genotypes and measles vaccine humoral immunity (neutralizing antibody titers) in a combined cohort (n=1796) of racially diverse healthy individuals (age 18-41years). We did not discover any significant associations between GM and/or KM genotypes and measles vaccine-induced neutralizing antibody titers. African-American subjects had higher neutralizing antibody titers than Caucasians (1260mIU/mL vs. 740mIU/mL, p=7.10×10 -13 ), and those titers remained statistically significant (p=1.68×10 -09 ) after adjusting for age at enrollment and time since last vaccination. There were no statistically significant sex-specific differences in measles-induced neutralizing antibody titers in our study (p=0.375). Our data indicate a surprising lack of evidence for an association between GM and KM genotypes and measles-specific neutralizing antibody titers, despite the importance of these immune response genes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Conserved synthetic peptides from the hemagglutinin of influenza viruses induce broad humoral and T-cell responses in a pig model.

    Directory of Open Access Journals (Sweden)

    Júlia Vergara-Alert

    Full Text Available Outbreaks involving either H5N1 or H1N1 influenza viruses (IV have recently become an increasing threat to cause potential pandemics. Pigs have an important role in this aspect. As reflected in the 2009 human H1N1 pandemia, they may act as a vehicle for mixing and generating new assortments of viruses potentially pathogenic to animals and humans. Lack of universal vaccines against the highly variable influenza virus forces scientists to continuously design vaccines à la carte, which is an expensive and risky practice overall when dealing with virulent strains. Therefore, we focused our efforts on developing a broadly protective influenza vaccine based on the Informational Spectrum Method (ISM. This theoretical prediction allows the selection of highly conserved peptide sequences from within the hemagglutinin subunit 1 protein (HA1 from either H5 or H1 viruses which are located in the flanking region of the HA binding site and with the potential to elicit broader immune responses than conventional vaccines. Confirming the theoretical predictions, immunization of conventional farm pigs with the synthetic peptides induced humoral responses in every single pig. The fact that the induced antibodies were able to recognize in vitro heterologous influenza viruses such as the pandemic H1N1 virus (pH1N1, two swine influenza field isolates (SwH1N1 and SwH3N2 and a H5N1 highly pathogenic avian virus, confirm the broad recognition of the antibodies induced. Unexpectedly, all pigs also showed T-cell responses that not only recognized the specific peptides, but also the pH1N1 virus. Finally, a partial effect on the kinetics of virus clearance was observed after the intranasal infection with the pH1N1 virus, setting forth the groundwork for the design of peptide-based vaccines against influenza viruses. Further insights into the understanding of the mechanisms involved in the protection afforded will be necessary to optimize future vaccine formulations.

  16. Plasticity in Structural and Functional Interactions between the Phosphoprotein and Nucleoprotein of Measles Virus*

    Science.gov (United States)

    Shu, Yaoling; Habchi, Johnny; Costanzo, Stéphanie; Padilla, André; Brunel, Joanna; Gerlier, Denis; Oglesbee, Michael; Longhi, Sonia

    2012-01-01

    The measles virus (MeV) phosphoprotein (P) tethers the polymerase to the nucleocapsid template for transcription and genome replication. Binding of P to nucleocapsid is mediated by the X domain of P (XD) and a conserved sequence (Box-2) within the C-terminal domain of the nucleoprotein (NTAIL). XD binding induces NTAIL α-helical folding, which in turn has been proposed to stabilize the polymerase-nucleocapsid complex, with cycles of binding and release required for transcription and genome replication. The current work directly assessed the relationships among XD-induced NTAIL folding, XD-NTAIL binding affinity, and polymerase activity. Amino acid substitutions that abolished XD-induced NTAIL α-helical folding were created within Box-2 of Edmonston MeV NTAIL. Polymerase activity in minireplicons was maintained despite a 35-fold decrease in XD-NTAIL binding affinity or reduction/loss of XD-induced NTAIL alpha-helical folding. Recombinant infectious virus was recovered for all mutants, and transcriptase elongation rates remained within a 1.7-fold range of parent virus. Box-2 mutations did however impose a significant cost to infectivity, reflected in an increase in the amount of input genome required to match the infectivity of parent virus. Diminished infectivity could not be attributed to changes in virion protein composition or production of defective interfering particles, where changes from parent virus were within a 3-fold range. The results indicated that MeV polymerase activity, but not infectivity, tolerates amino acid changes in the XD-binding region of the nucleoprotein. Selectional pressure for conservation of the Box-2 sequence may thus reflect a role in assuring the fidelity of polymerase functions or the assembly of viral particles required for optimal infectivity. PMID:22318731

  17. Plasticity in structural and functional interactions between the phosphoprotein and nucleoprotein of measles virus.

    Science.gov (United States)

    Shu, Yaoling; Habchi, Johnny; Costanzo, Stéphanie; Padilla, André; Brunel, Joanna; Gerlier, Denis; Oglesbee, Michael; Longhi, Sonia

    2012-04-06

    The measles virus (MeV) phosphoprotein (P) tethers the polymerase to the nucleocapsid template for transcription and genome replication. Binding of P to nucleocapsid is mediated by the X domain of P (XD) and a conserved sequence (Box-2) within the C-terminal domain of the nucleoprotein (N(TAIL)). XD binding induces N(TAIL) α-helical folding, which in turn has been proposed to stabilize the polymerase-nucleocapsid complex, with cycles of binding and release required for transcription and genome replication. The current work directly assessed the relationships among XD-induced N(TAIL) folding, XD-N(TAIL) binding affinity, and polymerase activity. Amino acid substitutions that abolished XD-induced N(TAIL) α-helical folding were created within Box-2 of Edmonston MeV N(TAIL). Polymerase activity in minireplicons was maintained despite a 35-fold decrease in XD-N(TAIL) binding affinity or reduction/loss of XD-induced N(TAIL) alpha-helical folding. Recombinant infectious virus was recovered for all mutants, and transcriptase elongation rates remained within a 1.7-fold range of parent virus. Box-2 mutations did however impose a significant cost to infectivity, reflected in an increase in the amount of input genome required to match the infectivity of parent virus. Diminished infectivity could not be attributed to changes in virion protein composition or production of defective interfering particles, where changes from parent virus were within a 3-fold range. The results indicated that MeV polymerase activity, but not infectivity, tolerates amino acid changes in the XD-binding region of the nucleoprotein. Selectional pressure for conservation of the Box-2 sequence may thus reflect a role in assuring the fidelity of polymerase functions or the assembly of viral particles required for optimal infectivity.

  18. Enhancement of the safety of live influenza vaccine by attenuating mutations from cold-adapted hemagglutinin

    International Nuclear Information System (INIS)

    Lee, Yoon Jae; Jang, Yo Han; Kim, Paul; Lee, Yun Ha; Lee, Young Jae; Byun, Young Ho; Lee, Kwang-Hee; Kim, Kyusik; Seong, Baik Lin

    2016-01-01

    In our previous study, X-31ca-based H5N1 LAIVs, in particular, became more virulent in mice than the X-31ca MDV, possibly by the introduction of the surface antigens of highly pathogenic H5N1 influenza virus, implying that additional attenuation is needed in this cases to increase the safety level of the vaccine. In this report we suggest an approach to further increase the safety of LAIV through additional cold-adapted mutations in the hemagglutinin. The cold-adaptation of X-31 virus resulted in four amino acid mutations in the HA. We generated a panel of 7:1 reassortant viruses each carrying the hemagglutinins with individual single amino acid mutations. We examined their phenotypes and found a major attenuating mutation, N81K. This attenuation marker conferred additional temperature-sensitive and attenuation phenotype to the LAIV. Our data indicate that the cold-adapted mutation in the HA confers additional attenuation to the LAIV strain, without compromising its productivity and immune response. - Highlights: • Cold-adaptation process induced four amino acid mutations in the HA of X-31 virus. • The four mutations in the HA also contributed to attenuation of the X-31ca virus • N81K mutation was the most significant marker for the attenuation of X-31ca virus. • Introduction of N81K mutation into H3N2 LAIV further attenuated the vaccine. • This approach provides a useful guideline for enhancing the safety of the LAIVs.

  19. Enhancement of the safety of live influenza vaccine by attenuating mutations from cold-adapted hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Jae [Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Vaccine Translational Research Center, Yonsei University, Seoul (Korea, Republic of); Jang, Yo Han [Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Kim, Paul; Lee, Yun Ha; Lee, Young Jae [Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Vaccine Translational Research Center, Yonsei University, Seoul (Korea, Republic of); Byun, Young Ho; Lee, Kwang-Hee; Kim, Kyusik [Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Seong, Baik Lin, E-mail: blseong@yonsei.ac.kr [Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Vaccine Translational Research Center, Yonsei University, Seoul (Korea, Republic of)

    2016-04-15

    In our previous study, X-31ca-based H5N1 LAIVs, in particular, became more virulent in mice than the X-31ca MDV, possibly by the introduction of the surface antigens of highly pathogenic H5N1 influenza virus, implying that additional attenuation is needed in this cases to increase the safety level of the vaccine. In this report we suggest an approach to further increase the safety of LAIV through additional cold-adapted mutations in the hemagglutinin. The cold-adaptation of X-31 virus resulted in four amino acid mutations in the HA. We generated a panel of 7:1 reassortant viruses each carrying the hemagglutinins with individual single amino acid mutations. We examined their phenotypes and found a major attenuating mutation, N81K. This attenuation marker conferred additional temperature-sensitive and attenuation phenotype to the LAIV. Our data indicate that the cold-adapted mutation in the HA confers additional attenuation to the LAIV strain, without compromising its productivity and immune response. - Highlights: • Cold-adaptation process induced four amino acid mutations in the HA of X-31 virus. • The four mutations in the HA also contributed to attenuation of the X-31ca virus • N81K mutation was the most significant marker for the attenuation of X-31ca virus. • Introduction of N81K mutation into H3N2 LAIV further attenuated the vaccine. • This approach provides a useful guideline for enhancing the safety of the LAIVs.

  20. Viral hemagglutinin is involved in promoting the internalisation of Staphylococcus aureus into human pneumocytes during influenza A H1N1 virus infection.

    Science.gov (United States)

    Passariello, Claudio; Nencioni, Lucia; Sgarbanti, Rossella; Ranieri, Danilo; Torrisi, Maria Rosaria; Ripa, Sandro; Garaci, Enrico; Palamara, Anna Teresa

    2011-02-01

    Secondary pneumonia caused by Staphylococcus aureus is reemerging as a primary cause of excess mortality associated with infection by the influenza A virus. We have investigated in vitro the cellular and molecular mechanisms underlying this synergism. Experimental data show a significant increase in the efficiency of internalisation of S. aureus into cultured pneumocytes during the early phases of viral infection, while a relevant increase in the efficiency of adhesion is evident only later during viral infection, suggesting that the 2 effects are based on different molecular mechanisms. Data reported in this paper show that S. aureus cells can bind the viral hemagglutinin (HA) and that this binding promotes enhanced bacterial internalisation by 2 mechanisms: binding to HA exposed at the surface of infected cells and binding to free extracellular virions, enabling internalisation at high efficiency also in cells that are not infected by the virus. The affinity of binding that involves S. aureus and HA was shown to be enhanced by the reducing extracellular environment that the virus can generate. Copyright © 2010 Elsevier GmbH. All rights reserved.

  1. Disneyland Measles Outbreak

    OpenAIRE

    Palladino, Erica

    2015-01-01

    This media information sheet analyzes print and online coverage of the 2015 Disneyland measles outbreak. The frameworks that the media used to report on the outbreak presented vaccination as the only viable option from preventing the spread of measles. Reporting also failed to mention that the 2015 Disneyland measles outbreak was smaller than U.S. measles outbreaks in 2013 and 2014.

  2. Measles (lecture, continuing

    Directory of Open Access Journals (Sweden)

    Shostakovych-Koretsraya L.R.

    2013-12-01

    Full Text Available The second part of the article discusses differential diagnosis during different measles periods. Routine and confirmatory laboratory diagnosis, including cytological, serological and molecular genetic methods is outlined. Criteria of suspected, probable and proved diagnosis of measles cases are provided. Principles of diagnosis formulation according to WHO criteria are described. Complications of measles ac¬cording to cause (viral and bacterial, by different systems and particularities in high risk patients are considered. Complications of measles from central nervous system are described in details. Therapeutic management of measles is described in details, including indications for hospital admission, etiotropic therapy, strict indications for steroids and immunoglobulins prescription, vitamin A in dosages, therapy of complications, indications for antibiotics usage and other pathogenetic therapy. Specific therapy of measles complications from central nervous system is outlined. Active and passive immunization, anti-epidemic activities, patient follow-up after episode of measles and disease prognosis are described. The literature reference list consists of 121 items, including Cyrillic, Latin articles and electronic resources.

  3. Molecular Evolution and Characterization of Hemagglutinin (H in Peste des Petits Ruminants Virus.

    Directory of Open Access Journals (Sweden)

    Zhongxiang Liang

    Full Text Available Peste des Petits Ruminants (PPR is an acute, highly contagious, and febrile viral disease that affects both domestic and wild small ruminants. The disease has become a major obstacle to the development of sustainable Agriculture. Hemagglutinin (H, the envelope glycoprotein of Peste des Petits Ruminants Virus (PPRV, plays a crucial role in regulating viral adsorption and entry, thus determining pathogenicity, and release of newly produced viral particles. In order to accurately understand the epidemic of the disease and the interactions between the virus and host, we launch the work. Here, we examined H gene from all four lineages of the PPRV to investigate evolutionary and epidemiologic dynamics of PPRV by the Bayesian method. In addition, we predicted positive selection sites due to selective pressures. Finally, we studied the interaction between H protein and SLAM receptor based on homology model of the complex. Phylogenetic analysis suggested that H gene can also be used to investigate evolutionary and epidemiologic dynamics of PPRV. Positive selection analysis identified four positive selection sites in H gene, in which only one common site (aa246 was detected by two methods, suggesting strong operation structural and/or functional constraint of changes on the H protein. This target site may be of interest for future mutagenesis studies. The results of homology modeling showed PPRVHv-shSLAM binding interface and MVH-maSLAM binding interface were consistent, wherein the groove in the B4 blade and B5 of the head domain of PPRVHv bound to the AGFCC' β-sheets of the membrane-distal ectodomain of shSLAM. The binding regions could provide insight on the nature of the protein for epitope vaccine design, novel drug discovery, and rational drug design against PPRV.

  4. Girls may have lower levels of maternal measles antibodies and higher risk of subclinical measles infection before the age of measles vaccination.

    Science.gov (United States)

    Martins, Cesario; Bale, Carlitos; Garly, May-Lill; Rodrigues, Amabelia; Lisse, Ida M; Andersen, Andreas; Eriksson, Mia; Benn, Christine S; Whittle, Hilton; Aaby, Peter

    2009-08-20

    Previous studies have suggested that girls may have lower maternal measles antibody levels than boys. Girls might therefore be more likely to contract measles infection before the normal age of measles vaccination at 9 months of age. In connection with a clinical trial of different measles vaccination strategies, we collected pre-measles vaccination blood samples at 4.5 months of age from two subgroups of children. Samples from these children were used to assess possible differences in maternal antibody levels for boys and girls. At 9 months of age another subgroup of children was sampled before the normal measles vaccination; these samples were used to assess the frequency of subclinical measles infection among boys and girls. We determined measles-specific antibody levels for 812 children at 4.5 months of age and for 896 children at 9 months of age. At 4.5 months of age girls were less likely to have protective maternal antibody levels, the male-female ratio for protective antibody level being 1.23 (1.00-1.51). Among children sampled at 9 months of age, girls were more likely to have protective levels, the female-male ratio for having protective antibody levels being 1.65 (0.98-2.78) (p=0.054) and the geometric mean titre was significantly higher for girls (p=0.007). Children who lived in houses with known measles cases were more likely to have protective levels at 9 months of age even though they had not reported measles infection. Since we had excluded children with known measles infection, girls may have been more likely to have had subclinical measles infection. Combining clinical and possible subclinical measles infection, girls tended to be more likely than boys to contract measles infection before 9 months of age, the RR being 1.36 (0.97-1.90). Girls lost maternal measles antibodies more rapidly than boys and well before 9 months of age. They may be more likely to contract subclinical measles infection before the current age of measles vaccination.

  5. Characteristics of patients with measles admitted to allied hospital rawalpindi

    International Nuclear Information System (INIS)

    Sultana, A.; Sabir, S.A.; Awan, A.

    2015-01-01

    Measles, a virus borne droplet infection, is one of the leading causes of death among young children worldwide despite presence of a safe and cost-effective vaccine. Objective of our study was to identify the characteristics of measles patients admitted to Allied Hospitals, Rawalpindi. Methods: This cross-sectional study was conducted amongst patients admitted with measles in paediatric units of Rawalpindi Medical College Allied Hospitals, Rawalpindi. A standard proforma was used to collect data from the respondents. Results: A total of 55 patients (mean age-29.36 months) with measles were included in the study. 65.5% children were vaccinated while 34.5% were not vaccinated. Among those vaccinated 14 were male. Out of the vaccinated children 52.6% were residents of middle class areas, 31.6% lower middle class area, 10.5% upper middle class areas and 5.3% rural areas. In 55.0% of patients who were vaccinated with at least one dose of measles at nine month of age the estimated calendar months of vaccination was March to April while in 30% the overall climatic period of vaccination was of summer (May to September). Twenty one study subjects were exposed to a case of measles in the family and thirty five out of all developed at least one known complication of the disease. Pneumonia was the most common complication reported in patients (63.6%) followed by diarrhoea (27.3%). Conclusion: Majority of the patients suffering from measles were not vaccinated and the most common reason for failure to immunize children was lack of awareness. Educated and well off fathers were more likely to get their children immunized. The vaccinated children who developed measles majority were vaccinated during months of March, April and May. (author)

  6. Measles vaccination using a microneedle patch☆

    Science.gov (United States)

    Edens, Chris; Collins, Marcus L.; Ayers, Jessica; Rota, Paul A.; Prausnitz, Mark R.

    2013-01-01

    Measles vaccination programs would benefit from delivery methods that decrease cost, simplify logistics, and increase safety. Conventional subcutaneous injection is limited by the need for skilled healthcare professionals to reconstitute and administer injections, and by the need for safe needle handling and disposal to reduce the risk of disease transmission through needle re-use and needlestick injury. Microneedles are micron-scale, solid needles coated with a dry formulation of vaccine that dissolves in the skin within minutes after patch application. By avoiding the use of hypodermic needles, vaccination using a microneedle patch could be carried out by minimally trained personnel with reduced risk of blood-borne disease transmission. The goal of this study was to evaluate measles vaccination using a microneedle patch to address some of the limitations of subcutaneous injection. Viability of vaccine virus dried onto a microneedle patch was stabilized by incorporation of the sugar, trehalose, and loss of viral titer was less than 1 log10(TCID50) after storage for at least 30 days at room temperature. Microneedle patches were then used to immunize cotton rats with the Edmonston-Zagreb measles vaccine strain. Vaccination using microneedles at doses equaling the standard human dose or one-fifth the human dose generated neutralizing antibody levels equivalent to those of a subcutaneous immunization at the same dose. These results show that measles vaccine can be stabilized on microneedles and that vaccine efficiently reconstitutes in vivo to generate a neutralizing antibody response equivalent to that generated by subcutaneous injection. PMID:23044406

  7. Measles transmission following the tsunami in a population with a high one-dose vaccination coverage, Tamil Nadu, India 2004–2005

    Directory of Open Access Journals (Sweden)

    Wairgkar Niteen S

    2006-09-01

    Full Text Available Abstract Background On 26 December 2004, a tsunami struck the coast of the state of Tamil Nadu, India, where one-dose measles coverage exceeded 95%. On 29 December, supplemental measles immunization activities targeted children 6 to 60 months of age in affected villages. On 30 December, Cuddalore, a tsunami-affected district in Tamil Nadu reported a cluster of measles cases. We investigated this cluster to estimate the magnitude of the problem and to propose recommendations for control. Methods We received notification of WHO-defined measles cases through stimulated passive surveillance. We collected information regarding date of onset, age, sex, vaccination status and residence. We collected samples for IgM antibodies and genotype studies. We modeled the accumulation of susceptible individuals over the time on the basis of vaccination coverage, vaccine efficacy and birth rate. Results We identified 101 measles cases and detected IgM antibodies against measles virus in eight of 11 sera. Cases were reported from tsunami-affected (n = 71 and unaffected villages (n = 30 with attack rates of 1.3 and 1.7 per 1000, respectively. 42% of cases in tsunami-affected villages had an onset date within 14 days of the tsunami. The median ages of case-patients in tsunami-affected and un-affected areas were 54 months and 60 months respectively (p = 0.471. 36% of cases from tsunami-affected areas were above 60 months of age. Phylogenetic analyses indicated that the sequences of virus belonged to genotype D8 that circulated in Tamil Nadu. Conclusion Measles virus circulated in Cuddalore district following the tsunami, although there was no association between the two events. Transmission despite high one-dose vaccination coverage pointed to the limitations of this vaccination strategy. A second opportunity for measles immunization may help reducing measles mortality and morbidity in such areas. Children from 6 month to 14 years of age must be targeted for

  8. Universal antibodies against the highly conserved influenza fusion peptide cross-neutralize several subtypes of influenza A virus

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, Anwar M. [Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON (Canada); Department of Microbiology, Faculty of Medicine, King Abdulaziz University, Jeddah (Saudi Arabia); Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON (Canada); Van Domselaar, Gary [National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB (Canada); Li, Changgui; Wang, Junzhi [National Institute for the Control of Pharmaceutical and Biological Products, Beijing (China); She, Yi-Min; Cyr, Terry D. [Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON (Canada); Sui, Jianhua [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States); He, Runtao [National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB (Canada); Marasco, Wayne A. [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States); Li, Xuguang, E-mail: Sean.Li@hc-sc.gc.ca [Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON (Canada); Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON (Canada)

    2010-12-10

    Research highlights: {yields} The fusion peptide is the only universally conserved epitope in all influenza viral hemagglutinins. {yields} Anti-fusion peptide antibodies are universal antibodies that cross-react with all influenza HA subtypes. {yields} The universal antibodies cross-neutralize different influenza A subtypes. {yields} The universal antibodies inhibit the fusion process between the viruses and the target cells. -- Abstract: The fusion peptide of influenza viral hemagglutinin plays a critical role in virus entry by facilitating membrane fusion between the virus and target cells. As the fusion peptide is the only universally conserved epitope in all influenza A and B viruses, it could be an attractive target for vaccine-induced immune responses. We previously reported that antibodies targeting the first 14 amino acids of the N-terminus of the fusion peptide could bind to virtually all influenza virus strains and quantify hemagglutinins in vaccines produced in embryonated eggs. Here we demonstrate that these universal antibodies bind to the viral hemagglutinins in native conformation presented in infected mammalian cell cultures and neutralize multiple subtypes of virus by inhibiting the pH-dependant fusion of viral and cellular membranes. These results suggest that this unique, highly-conserved linear sequence in viral hemagglutinin is exposed sufficiently to be attacked by the antibodies during the course of infection and merits further investigation because of potential importance in the protection against diverse strains of influenza viruses.

  9. Universal antibodies against the highly conserved influenza fusion peptide cross-neutralize several subtypes of influenza A virus

    International Nuclear Information System (INIS)

    Hashem, Anwar M.; Van Domselaar, Gary; Li, Changgui; Wang, Junzhi; She, Yi-Min; Cyr, Terry D.; Sui, Jianhua; He, Runtao; Marasco, Wayne A.; Li, Xuguang

    2010-01-01

    Research highlights: → The fusion peptide is the only universally conserved epitope in all influenza viral hemagglutinins. → Anti-fusion peptide antibodies are universal antibodies that cross-react with all influenza HA subtypes. → The universal antibodies cross-neutralize different influenza A subtypes. → The universal antibodies inhibit the fusion process between the viruses and the target cells. -- Abstract: The fusion peptide of influenza viral hemagglutinin plays a critical role in virus entry by facilitating membrane fusion between the virus and target cells. As the fusion peptide is the only universally conserved epitope in all influenza A and B viruses, it could be an attractive target for vaccine-induced immune responses. We previously reported that antibodies targeting the first 14 amino acids of the N-terminus of the fusion peptide could bind to virtually all influenza virus strains and quantify hemagglutinins in vaccines produced in embryonated eggs. Here we demonstrate that these universal antibodies bind to the viral hemagglutinins in native conformation presented in infected mammalian cell cultures and neutralize multiple subtypes of virus by inhibiting the pH-dependant fusion of viral and cellular membranes. These results suggest that this unique, highly-conserved linear sequence in viral hemagglutinin is exposed sufficiently to be attacked by the antibodies during the course of infection and merits further investigation because of potential importance in the protection against diverse strains of influenza viruses.

  10. [Ophthalmological symptoms of measles and their treatment].

    Science.gov (United States)

    Végh, Mihály; Hári-Kovács, András; Roth, Hans-Walter; Facskó, Andrea

    2017-10-01

    Measles, caused by the Morbilli virus, is a highly (about 95 %) contagious disease affecting primarily children, but without proper immunisation, adults can also be infected. The leading symptoms of the disease are high fever that presents after an incubation period of 9-10 days and the red rash that begins several days after the fever starts. Beyond specific generalized symptoms, measles may have ocular symptoms. The most commonly occurring conjunctivitis, the so-called "red eye symptom", is not characteristic only for measles infection, however, by taking the generalized symptoms it can suggest the diagnosis at the beginning of the disease. Conjunctivitis of varying severity is noticed in the half of the cases without using ophthalmological instrumentation. Using ophthalmological instrumentation, the mild forms of conjunctivitis can be diagnosed, by meticulous ophthalmological examination, further eye diseases can be discovered. The viral conjunctivitis can progress to keratitis and bacterial superinfection can occur. If the infection presents in childhood it can affect the posterior segment. The fight against measles is very effective in Hungary since the vaccination has been introduced, and the lack of vaccination is also the primary cause of the risk to the disease. In the diagnosis, symptomatic treatment of the disease and the curbing of possible mass infections, the practicing physician (general practitioner) has a key role. The correct care of the infected patient in Hungary is provided by a methodological letter, professional information and legal guides. Orv Hetil. 2017; 158(39): 1523-1527.

  11. Routine vitamin A supplementation for the prevention of blindness due to measles infection in children

    DEFF Research Database (Denmark)

    Bello, Segun; Meremikwu, Martin M; Ejemot-Nwadiaro, Regina I

    2016-01-01

    BACKGROUND: Reduced vitamin A concentration increases the risk of blindness in children infected with the measles virus. Promoting vitamin A supplementation in children with measles contributes to the control of blindness in children, which is a high priority within the World Health Organization...... (WHO) VISION 2020 The Right to Sight Program. OBJECTIVES: To assess the efficacy of vitamin A in preventing blindness in children with measles without prior clinical features of vitamin A deficiency. SEARCH METHODS: We searched CENTRAL 2015, Issue 11, MEDLINE (1950 to December week 3, 2015), Embase...... (1974 to December 2015) and LILACS (1985 to December 2015). SELECTION CRITERIA: Randomised controlled trials (RCTs) assessing the efficacy of vitamin A in preventing blindness in well-nourished children diagnosed with measles but with no prior clinical features of vitamin A deficiency. DATA COLLECTION...

  12. A combination in-ovo vaccine for avian influenza virus and Newcastle disease virus.

    Science.gov (United States)

    Steel, John; Burmakina, Svetlana V; Thomas, Colleen; Spackman, Erica; García-Sastre, Adolfo; Swayne, David E; Palese, Peter

    2008-01-24

    The protection of poultry from H5N1 highly pathogenic avian influenza A (HPAI) and Newcastle disease virus (NDV) can be achieved through vaccination, as part of a broader disease control strategy. We have previously generated a recombinant influenza virus expressing, (i) an H5 hemagglutinin protein, modified by the removal of the polybasic cleavage peptide and (ii) the ectodomain of the NDV hemagglutinin-neuraminidase (HN) protein in the place of the ectodomain of influenza neuraminidase (Park MS, et al. Proc Natl Acad Sci USA 2006;103(21):8203-8). Here we show this virus is attenuated in primary normal human bronchial epithelial (NHBE) cell culture, and demonstrate protection of C57BL/6 mice from lethal challenge with an H5 HA-containing influenza virus through immunisation with the recombinant virus. In addition, in-ovo vaccination of 18-day-old embryonated chicken eggs provided 90% and 80% protection against highly stringent lethal challenge by NDV and H5N1 virus, respectively. We propose that this virus has potential as a safe in-ovo live, attenuated, bivalent avian influenza and Newcastle disease virus vaccine.

  13. Girls may have lower levels of maternal measles antibodies and higher risk of subclinical measles infection before the age of measles vaccination

    DEFF Research Database (Denmark)

    Martins, Cesario; Bale, Carlitos; Garly, May-Lill

    2009-01-01

    BACKGROUND: Previous studies have suggested that girls may have lower maternal measles antibody levels than boys. Girls might therefore be more likely to contract measles infection before the normal age of measles vaccination at 9 months of age. METHODS: In connection with a clinical trial...... of different measles vaccination strategies, we collected pre-measles vaccination blood samples at 4.5 months of age from two subgroups of children. Samples from these children were used to assess possible differences in maternal antibody levels for boys and girls. At 9 months of age another subgroup...... of children was sampled before the normal measles vaccination; these samples were used to assess the frequency of subclinical measles infection among boys and girls. RESULTS: We determined measles-specific antibody levels for 812 children at 4.5 months of age and for 896 children at 9 months of age. At 4...

  14. Molecular surveillance of measles and rubella in the WHO European Region: new challenges in the elimination phase.

    Science.gov (United States)

    Santibanez, S; Hübschen, J M; Ben Mamou, M C; Muscat, M; Brown, K E; Myers, R; Donoso Mantke, O; Zeichhardt, H; Brockmann, D; Shulga, S V; Muller, C P; O'Connor, P M; Mulders, M N; Mankertz, A

    2017-08-01

    The WHO European Region (EUR) has adopted the goal of eliminating measles and rubella but individual countries perform differently in achieving this goal. Measles virus spread across the EUR by mobile groups has recently led to large outbreaks in the insufficiently vaccinated resident population. As an instrument for monitoring the elimination process and verifying the interruption of endemic virus transmission, molecular surveillance has to provide valid and representative data. Irrespective of the country's specific situation, it is required to ensure the functionality of the laboratory surveillance that is supported by the WHO Global Measles and Rubella Laboratory Network. To investigate whether the molecular surveillance in the EUR is adequate for the challenges in the elimination phase, we addressed the quality assurance of molecular data, the continuity and intensity of molecular monitoring, and the analysis of transmission chains. Published articles, the molecular External Quality Assessment Programme of the WHO, the Centralized Information System for Infectious Diseases of the WHO EUR and the WHO Measles and Rubella Nucleotide Surveillance databases served as information sources. Molecular proficiency testing conducted by the WHO in 2016 has shown that the expertise for measles and rubella virus genotyping exists in all parts of the EUR. The analysis of surveillance data reported nationally to the WHO in 2013-2016 has revealed some countries with outbreaks but not sufficiently representative molecular data. Long-lasting supranational MV transmission chains were identified. A more systematic molecular monitoring and recording of the transmission pattern for the whole EUR could help to create a meaningful picture of the elimination process. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. All rights reserved.

  15. [Difficulties in the epidemiological surveillance of measles in Africa: exemplified by the Ivory Coast].

    Science.gov (United States)

    Rey, J L; Trolet, C; Soro, B; Cunin, P; Merouze, F

    1991-06-01

    In tropical areas measles cases often are under-reported but the authors comment here two epidemics which had at first been considered as outbreaks of measles but were not. The first epidemic resembled a Chikungunya virus outbreak with important rashes, hyperthermia and pain attacks and was due to Igbo-Ora arbovirus. In the second epidemic children were having rashes with hyperthermia and adenopathy evoking rubella. The authors consider the possibility of over-reporting in view of the surveillance of measles, the target-disease in EPI (Expanded Programme on Immunization). This hypothesis is confirmed by the distribution of reported cases at national level with a high rate of out-season cases and among adults.

  16. H1N1 influenza viruses varying widely in hemagglutinin stability transmit efficiently from swine to swine and to ferrets.

    Directory of Open Access Journals (Sweden)

    Marion Russier

    2017-03-01

    Full Text Available A pandemic-capable influenza virus requires a hemagglutinin (HA surface glycoprotein that is immunologically unseen by most people and is capable of supporting replication and transmission in humans. HA stabilization has been linked to 2009 pH1N1 pandemic potential in humans and H5N1 airborne transmissibility in the ferret model. Swine have served as an intermediate host for zoonotic influenza viruses, yet the evolutionary pressure exerted by this host on HA stability was unknown. For over 70 contemporary swine H1 and H3 isolates, we measured HA activation pH to range from pH 5.1 to 5.9 for H1 viruses and pH 5.3 to 5.8 for H3 viruses. Thus, contemporary swine isolates vary widely in HA stability, having values favored by both avian (pH >5.5 and human and ferret (pH ≤5.5 species. Using an early 2009 pandemic H1N1 (pH1N1 virus backbone, we generated three viruses differing by one HA residue that only altered HA stability: WT (pH 5.5, HA1-Y17H (pH 6.0, and HA2-R106K (pH 5.3. All three replicated in pigs and transmitted from pig-to-pig and pig-to-ferret. WT and R106 viruses maintained HA genotype and phenotype after transmission. Y17H (pH 6.0 acquired HA mutations that stabilized the HA protein to pH 5.8 after transmission to pigs and 5.5 after transmission to ferrets. Overall, we found swine support a broad range of HA activation pH for contact transmission and many recent swine H1N1 and H3N2 isolates have stabilized (human-like HA proteins. This constitutes a heightened pandemic risk and underscores the importance of ongoing surveillance and control efforts for swine viruses.

  17. Deliberate reduction of hemagglutinin and neuraminidase expression of influenza virus leads to an ultraprotective live vaccine in mice.

    Science.gov (United States)

    Yang, Chen; Skiena, Steven; Futcher, Bruce; Mueller, Steffen; Wimmer, Eckard

    2013-06-04

    A long-held dogma posits that strong presentation to the immune system of the dominant influenza virus glycoprotein antigens neuraminidase (NA) and hemagglutinin (HA) is paramount for inducing protective immunity against influenza virus infection. We have deliberately violated this dogma by constructing a recombinant influenza virus strain of A/PR8/34 (H1N1) in which expression of NA and HA genes was suppressed. We down-regulated NA and HA expression by recoding the respective genes with suboptimal codon pair bias, thereby introducing hundreds of nucleotide changes while preserving their codon use and protein sequence. The variants PR8-NA(Min), PR8-HA(Min), and PR8-(NA+HA)(Min) (Min, minimal expression) were used to assess the contribution of reduced glycoprotein expression to growth in tissue culture and pathogenesis in BALB/c mice. All three variants proliferated in Madin-Darby canine kidney cells to nearly the degree as WT PR8. In mice, however, they expressed explicit attenuation phenotypes, as revealed by their LD50 values: PR8, 32 plaque-forming units (PFU); HA(Min), 1.7 × 10(3) PFU; NA(Min), 2.4 × 10(5) PFU; (NA+HA)(Min), ≥3.16 × 10(6) PFU. Remarkably, (NA+HA)(Min) was attenuated >100,000-fold, with NA(Min) the major contributor to attenuation. In vaccinated mice (NA+HA)(Min) was highly effective in providing long-lasting protective immunity against lethal WT challenge at a median protective dose (PD50) of 2.4 PFU. Moreover, at a PD50 of only 147 or 237, (NA+HA)(Min) conferred protection against heterologous lethal challenges with two mouse-adapted H3N2 viruses. We conclude that the suppression of HA and NA is a unique strategy in live vaccine development.

  18. IMPROVEMENT OF THE QUALITY CONTROL OF ELISA TESTING FOR THE LABORATORY CONFIRMATION OF MEASLES AND RUBELLA INFECTIONS AT THE STAGE OF THE MEASLES/ RUBELLA ELIMINATION PROGRAM

    Directory of Open Access Journals (Sweden)

    T. A. Mamaeva

    2017-01-01

    Full Text Available To estimate ELISA serological studies results of IgM and IgG specific Measles and Rubella Viruses (MRV antibodies detection the “in-house” laboratory controls (ILC including the specific markers of MRV infections were for the first time commercially prepared by the Vector Best PLC (Russia: “Measles-IgM, ser.1”, “Measles-IgM, ser.2”, “Rubella-IgM”, Measles-IgG” and “Rubella-IgG”. This task was realized under the special Executive Order of the Government of Russia N 523-r, 2014, April, 4. According to passport characteristics ILC samples are the lyophilized human sera, inactivated by heating (1 hour at 56°C and stabilized by the mixture of sucrose (5% and ProClin-3000 as the conservation agent. Samples are free of HBs Ag, anti-HVC, T.Pallidum, HIV-1/2, HIV-1Ag р24.The aim of the study was to evaluate the possibility of using the ILC for detection of the MRV IgM and IgG antibodies by ELISA with commercial ELISA kits used in Russia and CIS countries. In the process of detecting the specific activity of “Measles-IgM, ser.1”, “Measles-IgM, ser.2” and “Rubella-IgM” by ELISA kits of different formats (Vector Best, EcoLab and Siemens Companies the statistically different results were received (p < 0.05. The optical density (OD values of IgM in the “Measles-IgM, ser.1” and “Measles-IgM, ser.2” ILC, obtained by ELISA “VectoMeasles IgM” (Vector Best were significantly higher than those obtained by ELISA IgEnzygnost®Anti-MeaslesVirus/IgМ. These values consisted for the ser. 1–1.33±0.02 о.u. vs. 0.18±0.01 о.u. (р < 0.05 and for the ser. 2–2.83±0.03 о.u. vs. 0.7±0.02 о.е. (р < 0.05 in the Vector Best and Siemens ELISA kits correspondently. In the “Rubella-IgM” ILC the OD values of the specific IgM by the “ELISA-Rubella IgM” EcoLab were also higher than those obtained by IgEnzygnost®Anti-RubellaVirus/IgМ ELISA kit. These values consisted 2.92±0.04 о.u. vs. 0.88±0.03

  19. VIRUS FAMILIES – contd

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. VIRUS FAMILIES – contd. Minus strand RNA viruses. Rhabdovirus e.g. rabies. Paramyxovirus e.g. measles, mumps. Orthomyxovirus e.g. influenza. Retroviruses. RSV, HTLV, MMTV, HIV. Notes:

  20. Glycosylation of Hemagglutinin and Neuraminidase of Influenza A Virus as Signature for Ecological Spillover and Adaptation among Influenza Reservoirs

    Directory of Open Access Journals (Sweden)

    Paul Kim

    2018-04-01

    Full Text Available Glycosylation of the hemagglutinin (HA and neuraminidase (NA of the influenza provides crucial means for immune evasion and viral fitness in a host population. However, the time-dependent dynamics of each glycosylation sites have not been addressed. We monitored the potential N-linked glycosylation (NLG sites of over 10,000 HA and NA of H1N1 subtype isolated from human, avian, and swine species over the past century. The results show a shift in glycosylation sites as a hallmark of 1918 and 2009 pandemics, and also for the 1976 “abortive pandemic”. Co-segregation of particular glycosylation sites was identified as a characteristic of zoonotic transmission from animal reservoirs, and interestingly, of “reverse zoonosis” of human viruses into swine populations as well. After the 2009 pandemic, recent isolates accrued glycosylation at canonical sites in HA, reflecting gradual seasonal adaptation, and a novel glycosylation in NA as an independent signature for adaptation among humans. Structural predictions indicated a remarkably pleiotropic influence of glycans on multiple HA epitopes for immune evasion, without sacrificing the receptor binding of HA or the activity of NA. The results provided the rationale for establishing the ecological niche of influenza viruses among the reservoir and could be implemented for influenza surveillance and improving pandemic preparedness.

  1. Glycosylation of Hemagglutinin and Neuraminidase of Influenza A Virus as Signature for Ecological Spillover and Adaptation among Influenza Reservoirs

    Science.gov (United States)

    Kim, Paul; Jang, Yo Han; Kwon, Soon Bin; Lee, Chung Min; Han, Gyoonhee; Seong, Baik Lin

    2018-01-01

    Glycosylation of the hemagglutinin (HA) and neuraminidase (NA) of the influenza provides crucial means for immune evasion and viral fitness in a host population. However, the time-dependent dynamics of each glycosylation sites have not been addressed. We monitored the potential N-linked glycosylation (NLG) sites of over 10,000 HA and NA of H1N1 subtype isolated from human, avian, and swine species over the past century. The results show a shift in glycosylation sites as a hallmark of 1918 and 2009 pandemics, and also for the 1976 “abortive pandemic”. Co-segregation of particular glycosylation sites was identified as a characteristic of zoonotic transmission from animal reservoirs, and interestingly, of “reverse zoonosis” of human viruses into swine populations as well. After the 2009 pandemic, recent isolates accrued glycosylation at canonical sites in HA, reflecting gradual seasonal adaptation, and a novel glycosylation in NA as an independent signature for adaptation among humans. Structural predictions indicated a remarkably pleiotropic influence of glycans on multiple HA epitopes for immune evasion, without sacrificing the receptor binding of HA or the activity of NA. The results provided the rationale for establishing the ecological niche of influenza viruses among the reservoir and could be implemented for influenza surveillance and improving pandemic preparedness. PMID:29642453

  2. Post-Ebola Measles Outbreak in Lola, Guinea, January-June 2015(1).

    Science.gov (United States)

    Suk, Jonathan E; Paez Jimenez, Adela; Kourouma, Mamadou; Derrough, Tarik; Baldé, Mamadou; Honomou, Patric; Kolie, Nestor; Mamadi, Oularé; Tamba, Kaduono; Lamah, Kalaya; Loua, Angelo; Mollet, Thomas; Lamah, Molou; Camara, Amara Nana; Prikazsky, Vladimir

    2016-06-01

    During public health crises such as the recent outbreaks of Ebola virus disease in West Africa, breakdowns in public health systems can lead to epidemics of vaccine-preventable diseases. We report here on an outbreak of measles in the prefecture of Lola, Guinea, which started in January 2015.

  3. Structural and Functional Studies on the Fusion and Attachment Envelope Glycoproteins of Nipah Virus and Hendra Virus

    Science.gov (United States)

    2003-01-01

    including measles virus (MeV), mumps virus, Sendai virus (SeV), Newcastle disease virus (NDV), rinderpest virus, canine distemper virus (CDV), human...Institute of Health, Bethesda, MD. Hut 102, MT2, MT4, and CEM human T cell lines were provided by Chou-Zen Giam, USUHS, Bethesda, MD. The human osteosarcoma

  4. Resurgence of measles in a country of elimination: interim assessment and current control measures in the Republic of Korea in early 2014

    Directory of Open Access Journals (Sweden)

    Tae Un Yang

    2015-04-01

    Full Text Available Since the beginning of 2014, the Republic of Korea has experienced a resurgence of measles cases. Among the 220 cases confirmed as measles during epidemiological weeks 1–20 (December 29, 2013 to May 17, 2014, 10 imported cases were identified. The predominant genotype was B3, which reflects the circulating measles virus in adjacent countries. Even with the verification of measles elimination in March 2014 by the World Health Organization, recent importation has been related to international travel. Targeted control measures have been implemented in addition to proper isolation and patient care. A vigilant surveillance system and high levels of vaccine coverage should be maintained to sustain the measles elimination status.

  5. Biological Feasibility of Measles Eradication

    Science.gov (United States)

    Strebel, Peter

    2011-01-01

    Recent progress in reducing global measles mortality has renewed interest in measles eradication. Three biological criteria are deemed important for disease eradication: (1) humans are the sole pathogen reservoir; (2) accurate diagnostic tests exist; and (3) an effective, practical intervention is available at reasonable cost. Interruption of transmission in large geographical areas for prolonged periods further supports the feasibility of eradication. Measles is thought by many experts to meet these criteria: no nonhuman reservoir is known to exist, accurate diagnostic tests are available, and attenuated measles vaccines are effective and immunogenic. Measles has been eliminated in large geographical areas, including the Americas. Measles eradication is biologically feasible. The challenges for measles eradication will be logistical, political, and financial. PMID:21666201

  6. Recombinant Vaccinia Virus: Immunization against Multiple Pathogens

    Science.gov (United States)

    Perkus, Marion E.; Piccini, Antonia; Lipinskas, Bernard R.; Paoletti, Enzo

    1985-09-01

    The coding sequences for the hepatitis B virus surface antigen, the herpes simplex virus glycoprotein D, and the influenza virus hemagglutinin were inserted into a single vaccinia virus genome. Rabbits inoculated intravenously or intradermally with this polyvalent vaccinia virus recombinant produced antibodies reactive to all three authentic foreign antigens. In addition, the feasibility of multiple rounds of vaccination with recombinant vaccinia virus was demonstrated.

  7. Measles burden in urban settings: characteristics of measles cases in Addis Ababa city administration, Ethiopia, 2004-2014.

    Science.gov (United States)

    Mersha, Amare Mengistu; Braka, Fiona; Gallagher, Kathleen; Tegegne, Aysheshim Ademe; Argay, Aron Kassahun; Mekonnen, Mekonnen Admassu; Aragaw, Merawi; Abegaz, Debritu Mengesha; Worku, Etsehiwot Zeamlak; Baynesagn, Mekonen Getahun

    2017-01-01

    In developing countries, measles was a major cause of morbidity and mortality before the wide spread use of measles vaccine. The purpose of this study was to describe measles burden in an urban setting, Addis Ababa- since the implementation of measles case-based surveillance in Ethiopia. We analyzed measles surveillance data for 2004 -2014. Incidence of measles was described by sub city, by year and by age groups. Age specific incidence rate were calculated. Logistic regression was used to identify the predictors of confirmed measles cases. Of 4220 suspected measles cases 39% were confirmed cases. Males and females were equally affected. The mean affected age was 7.59 years. Measles cases peaked in 2010 and 2013-2014. Incidence of measles is higher among children less than five years old. Outer sub cities were more affected by measles in all years. Sub cities bordering with Oromia Regional State were more affected by measles. Older age groups were more affected than younger age groups (age ≤ five years old). Efforts to close immunity gaps against measles and further strengthen surveillance in urban settings, particularly among children below five years old, should be prioritized.

  8. Priming T-cell responses with recombinant measles vaccine vector in a heterologous prime-boost setting in non-human primates

    NARCIS (Netherlands)

    Bolton, Diane L.; Santra, Sampa; Swett-Tapia, Cindy; Custers, Jerome; Song, Kaimei; Balachandran, Harikrishnan; Mach, Linh; Naim, Hussein; Kozlowski, Pamela A.; Lifton, Michelle; Goudsmit, Jaap; Letvin, Norman; Roederer, Mario; Radošević, Katarina

    2012-01-01

    Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston

  9. Measles in vaccinated children 1.5 to 3 years of age in rural community of district peshawar, pakistan

    International Nuclear Information System (INIS)

    Khan, A.; Ullah, O.; Ahmad, I.

    2015-01-01

    In many developing countries measles is a leading cause of childhood morbidity and mortality. Despite of vaccination thousands of children have been infected by measles virus during last couple of years in Pakistan. The objective of this study was to determine the measles vaccination coverage rate and frequency of measles among vaccinated children of age 1.5-3 years in rural community of district Peshawar. Methods: The cross-sectional study was carried out among 385 children aged 1.5-3 year of rural community of Peshawar. After taking informed consent from parents/guardians a predesigned questionnaire was filled. Evidence of vaccination and measles history was taken by vaccination card, doctor prescription and parent/guardian recall. Data was gathered and analysed by using SPSS-16. Results: Of the 385 children, 361 (93.7%) were vaccinated against measles at 9 month. It was found that 27 (7.48%) vaccinated children had measles history of which 23 (6.74%) were infected after 9 month vaccination. One hundred and ninety-two (49.8%) children were vaccinated both at 9 and 15 months, and 14 (7.29%) dual vaccinated children had a measles history, 9 among them (4.68%) were infected after taking both measles doses. Conclusion: The occurrence of measles among vaccinated children and low coverage rate of second dose of measles vaccine raises many questions about vaccination program and its efficacy. Further studies are needed to evaluate the influence of other predisposing factors like vaccine quality, manufacturer, supply, cold chain, handling, nutritional status of children and technical approach, on measles vaccine efficacy. (author)

  10. Unique Infectious Strategy of H5N1 Avian Influenza Virus Is Governed by the Acid-Destabilized Property of Hemagglutinin.

    Science.gov (United States)

    Daidoji, Tomo; Watanabe, Yohei; Arai, Yasuha; Kajikawa, Junichi; Hirose, Ryohei; Nakaya, Takaaki

    Highly pathogenic avian influenza (HPAI) H5N1 virus emerged in 1997 as a zoonotic disease in Hong Kong. It has since spread to Asia and Europe and is a serious threat to both the poultry industry and human health. For effective surveillance and possible prevention/control of HPAI H5N1 viruses, it is necessary to understand the molecular mechanism underlying HPAI H5N1 pathogenesis. The hemagglutinin (HA) protein of influenza A viruses (IAVs) is one of the major determinants of host adaptation, transmissibility, and viral virulence. The main function of the HA protein is to facilitate viral entry and viral genome release within host cells before infection. To achieve viral infection, IAVs belonging to different subtypes or strains induce viral-cell membrane fusion at different endosomal pH levels after internalization through endocytosis. However, host-specific endosomal pH also affects induction of membrane fusion followed by infection. The HA protein of HPAI H5N1 has a higher pH threshold for membrane fusion than the HA protein of classical avian influenza viruses. Although this particular property of HA (which governs viral infection) is prone to deactivation in the avian intestine or in an ambient environment, it facilitates efficient infection of host cells, resulting in a broad host tropism, regardless of the pH in the host endosome. Accumulated knowledge, together with further research, about the HA-governed mechanism underlying HPAI H5N1 virulence (i.e., receptor tropism and pH-dependent viral-cell membrane fusion) will be helpful for developing effective surveillance strategies and for prevention/control of HPAI H5N1 infection.

  11. Is early measles vaccination better than later measles vaccination?

    DEFF Research Database (Denmark)

    Aaby, Peter; Martins, Cesário L; Ravn, Henrik

    2015-01-01

    WHO recommends delaying measles vaccination (MV) until maternal antibody has waned. However, early MV may improve child survival by reducing mortality from conditions other than measles infection. We tested whether early MV improves child survival compared with later MV. We found 43 studies compa...

  12. Case Based Measles Surveillance in Pune: Evidence to Guide Current and Future Measles Control and Elimination Efforts in India

    Science.gov (United States)

    Bose, Anindya Sekhar; Jafari, Hamid; Sosler, Stephen; Narula, Arvinder Pal Singh; Kulkarni, V. M.; Ramamurty, Nalini; Oommen, John; Jadi, Ramesh S.; Banpel, R. V.; Henao-Restrepo, Ana Maria

    2014-01-01

    Background According to WHO estimates, 35% of global measles deaths in 2011 occurred in India. In 2013, India committed to a goal of measles elimination by 2020. Laboratory supported case based measles surveillance is an essential component of measles elimination strategies. Results from a case-based measles surveillance system in Pune district (November 2009 through December 2011) are reported here with wider implications for measles elimination efforts in India. Methods Standard protocols were followed for case identification, investigation and classification. Suspected measles cases were confirmed through serology (IgM) or epidemiological linkage or clinical presentation. Data regarding age, sex, vaccination status were collected and annualized incidence rates for measles and rubella cases calculated. Results Of the 1011 suspected measles cases reported to the surveillance system, 76% were confirmed measles, 6% were confirmed rubella, and 17% were non-measles, non-rubella cases. Of the confirmed measles cases, 95% were less than 15 years of age. Annual measles incidence rate was more than 250 per million persons and nearly half were associated with outbreaks. Thirty-nine per cent of the confirmed measles cases were vaccinated with one dose of measles vaccine (MCV1). Conclusion Surveillance demonstrated high measles incidence and frequent outbreaks in Pune where MCV1 coverage in infants was above 90%. Results indicate that even high coverage with a single dose of measles vaccine was insufficient to provide population protection and prevent measles outbreaks. An effective measles and rubella surveillance system provides essential information to plan, implement and evaluate measles immunization strategies and monitor progress towards measles elimination. PMID:25290339

  13. Measles transmission from an anthroposophic community to the general population, Germany 2008

    Science.gov (United States)

    2011-01-01

    measles virus into a pocket of susceptible persons (e.g. vaccination opponents or sceptics) may lead to large outbreaks in the general population, if the general population's vaccination coverage is below the WHO recommended level. Education on the safety of measles vaccine needs to be strengthened to increase measles vaccination coverage. Early intervention may limit spread in schools or kindergartens. Suspected measles has to be reported immediately to the local health authorities in order to allow intervention as early as possible. PMID:21676265

  14. Expression of measles virus nucleoprotein induces apoptosis and modulates diverse functional proteins in cultured mammalian cells.

    Directory of Open Access Journals (Sweden)

    Ashima Bhaskar

    Full Text Available BACKGROUND: Measles virus nucleoprotein (N encapsidates the viral RNA, protects it from endonucleases and forms a virus specific template for transcription and replication. It is the most abundant protein during viral infection. Its C-terminal domain is intrinsically disordered imparting it the flexibility to interact with several cellular and viral partners. PRINCIPAL FINDINGS: In this study, we demonstrate that expression of N within mammalian cells resulted in morphological transitions, nuclear condensation, DNA fragmentation and activation of Caspase 3 eventuating into apoptosis. The rapid generation of intracellular reactive oxygen species (ROS was involved in the mechanism of cell death. Addition of ascorbic acid (AA or inhibitor of caspase-3 in the extracellular medium partially reversed N induced apoptosis. We also studied the protein profile of cells expressing N protein. MS analysis revealed the differential expression of 25 proteins out of which 11 proteins were up regulated while 14 show signs of down regulation upon N expression. 2DE results were validated by real time and semi quantitative RT-PCR analysis. CONCLUSION: These results show the pro-apoptotic effects of N indicating its possible development as an apoptogenic tool. Our 2DE results present prima facie evidence that the MV nucleoprotein interacts with or causes differential expression of a wide range of cellular factors. At this stage it is not clear as to what the adaptive response of the host cell is and what reflects a strategic modulation exerted by the virus.

  15. Treatment of medulloblastoma using an oncolytic measles virus encoding the thyroidal sodium iodide symporter shows enhanced efficacy with radioiodine

    International Nuclear Information System (INIS)

    Hutzen, Brian; Pierson, Christopher R; Russell, Stephen J; Galanis, Evanthia; Raffel, Corey; Studebaker, Adam W

    2012-01-01

    Medulloblastoma is the most common malignant brain tumor of childhood. Although the clinical outcome for medulloblastoma patients has improved significantly, children afflicted with the disease frequently suffer from debilitating side effects related to the aggressive nature of currently available therapy. Alternative means for treating medulloblastoma are desperately needed. We have previously shown that oncolytic measles virus (MV) can selectively target and destroy medulloblastoma tumor cells in localized and disseminated models of the disease. MV-NIS, an oncolytic measles virus that encodes the human thyroidal sodium iodide symporter (NIS), has the potential to deliver targeted radiotherapy to the tumor site and promote a localized bystander effect above and beyond that achieved by MV alone. We evaluated the efficacy of MV-NIS against medulloblastoma cells in vitro and examined their ability to incorporate radioiodine at various timepoints, finding peak uptake at 48 hours post infection. The effects of MV-NIS were also evaluated in mouse xenograft models of localized and disseminated medulloblastoma. Athymic nude mice were injected with D283med-Luc medulloblastoma cells in the caudate putamen (localized disease) or right lateral ventricle (disseminated disease) and subsequently treated with MV-NIS. Subsets of these mice were given a dose of 131 I at 24, 48 or 72 hours later. MV-NIS treatment, both by itself and in combination with 131 I, elicited tumor stabilization and regression in the treated mice and significantly extended their survival times. Mice given 131 I were found to concentrate radioiodine at the site of their tumor implantations. In addition, mice with localized tumors that were given 131 I either 24 or 48 hours after MV-NIS treatment exhibited a significant survival advantage over mice given MV-NIS alone. These data suggest MV-NIS plus radioiodine may be a potentially useful therapy for the treatment of medulloblastoma

  16. Treatment of medulloblastoma using an oncolytic measles virus encoding the thyroidal sodium iodide symporter shows enhanced efficacy with radioiodine

    Directory of Open Access Journals (Sweden)

    Hutzen Brian

    2012-11-01

    Full Text Available Abstract Background Medulloblastoma is the most common malignant brain tumor of childhood. Although the clinical outcome for medulloblastoma patients has improved significantly, children afflicted with the disease frequently suffer from debilitating side effects related to the aggressive nature of currently available therapy. Alternative means for treating medulloblastoma are desperately needed. We have previously shown that oncolytic measles virus (MV can selectively target and destroy medulloblastoma tumor cells in localized and disseminated models of the disease. MV-NIS, an oncolytic measles virus that encodes the human thyroidal sodium iodide symporter (NIS, has the potential to deliver targeted radiotherapy to the tumor site and promote a localized bystander effect above and beyond that achieved by MV alone. Methods We evaluated the efficacy of MV-NIS against medulloblastoma cells in vitro and examined their ability to incorporate radioiodine at various timepoints, finding peak uptake at 48 hours post infection. The effects of MV-NIS were also evaluated in mouse xenograft models of localized and disseminated medulloblastoma. Athymic nude mice were injected with D283med-Luc medulloblastoma cells in the caudate putamen (localized disease or right lateral ventricle (disseminated disease and subsequently treated with MV-NIS. Subsets of these mice were given a dose of 131I at 24, 48 or 72 hours later. Results MV-NIS treatment, both by itself and in combination with 131I, elicited tumor stabilization and regression in the treated mice and significantly extended their survival times. Mice given 131I were found to concentrate radioiodine at the site of their tumor implantations. In addition, mice with localized tumors that were given 131I either 24 or 48 hours after MV-NIS treatment exhibited a significant survival advantage over mice given MV-NIS alone. Conclusions These data suggest MV-NIS plus radioiodine may be a potentially useful therapy for

  17. A random PCR screening system for the identification of type 1 human herpes simplex virus.

    Science.gov (United States)

    Yu, Xuelian; Shi, Bisheng; Gong, Yan; Zhang, Xiaonan; Shen, Silan; Qian, Fangxing; Gu, Shimin; Hu, Yunwen; Yuan, Zhenghong

    2009-10-01

    Several viral diseases exhibit measles-like symptoms. Differentiation of suspected cases of measles with molecular epidemiological techniques in the laboratory is useful for measles surveillance. In this study, a random PCR screening system was undertaken for the identification of isolates from patients with measles-like symptoms who exhibited cytopathic effects, but who had negative results for measles virus-specific reverse transcription (RT)-PCR and indirect immunofluorescence assays. Sequence analysis of random amplified PCR products showed that they were highly homologous to type 1 human herpes simplex virus (HSV-1). The results were further confirmed by an HSV-1-specific TaqMan real-time PCR assay. The random PCR screening system described in this study provides an efficient procedure for the identification of unknown viral pathogens. Measles-like symptoms can also be caused by HSV-1, suggesting the need to include HSV-1 in differential diagnoses of measles-like diseases.

  18. Synergistic Effects of Sulfated Polysaccharides from Mexican Seaweeds against Measles Virus

    Directory of Open Access Journals (Sweden)

    Karla Morán-Santibañez

    2016-01-01

    Full Text Available Sulfated polysaccharides (SPs extracted from five seaweed samples collected or cultivated in Mexico (Macrocystis pyrifera, Eisenia arborea, Pelvetia compressa, Ulva intestinalis, and Solieria filiformis were tested in this study in order to evaluate their effect on measles virus in vitro. All polysaccharides showed antiviral activity (as measured by the reduction of syncytia formation and low cytotoxicity (MTT assay at inhibitory concentrations. SPs from Eisenia arborea and Solieria filiformis showed the highest antiviral activities (confirmed by qPCR and were selected to determine their combined effect. Their synergistic effect was observed at low concentrations (0.0274 μg/mL and 0.011 μg/mL of E. arborea and S. filiformis SPs, resp., which exhibited by far a higher inhibitory effect (96% syncytia reduction in comparison to the individual SP effects (50% inhibition with 0.275 μg/mL and 0.985 μg/mL of E. arborea and S. filiformis, resp.. Time of addition experiments and viral penetration assays suggest that best activities of these SPs occur at different stages of infection. The synergistic effect would allow reducing the treatment dose and toxicity and minimizing or delaying the induction of antiviral resistance; sulfated polysaccharides of the tested seaweed species thus appear as promising candidates for the development of natural antiviral agents.

  19. [Measles in Poland in 2004].

    Science.gov (United States)

    Czarkowski, Mirosław P; Kondej, Barbara; Paweł, Stefanoff

    2006-01-01

    In Poland 11 measles cases were registered in 2004 (0.03 per 100,000 population), of which 3 were cases imported from Chechnya. Of 8 local cases, 3 cases occurred in unvaccinated persons, 2 in persons vaccinated with one dose and 3 in vaccinated with two doses of measles vaccine (administered at the age of 13-15 months and 7 years). The most affected age groups were 1-year old children (0.29 per 100,000 population) and 6-year olds (0.25). Out of 11 reported cases 2 were hospitalized. There were no deaths attributed to measles. Poland participates in the WHO Measles Elimination Strategy. Presently, the most important is the maintenance of a sensitive and timely surveillance of measles and measles-compatible cases, with serologic testing of one suspect case per 100,000 population. The performance of the surveillance system was insufficient with only 44 measles-compatible cases reported in 2004 (12% of expected reports). Serologic confirmation of cases was also insufficient, with 5 cases confirmed in WHO accredited laboratory. These results indicate the need to maintain the high immunisation coverage and improve measles surveillance system.

  20. FastStats: Measles

    Science.gov (United States)

    ... Women’s Health State and Territorial Data Reproductive Health Contraceptive Use Infertility Reproductive Health Notice Regarding FastStats Mobile ... measles, mumps, rubella: 91.9% (2015) Percent of adolescents aged 13-17 years vaccinated against measles, mumps, ...

  1. The measles virus phosphoprotein interacts with the linker domain of STAT1

    International Nuclear Information System (INIS)

    Devaux, Patricia; Priniski, Lauren; Cattaneo, Roberto

    2013-01-01

    The measles virus (MV) phosphoprotein (P) and V proteins block the interferon (IFN) response by impeding phosphorylation of the signal transducer and activator of transcription 1 (STAT1) by the Janus kinase 1 (JAK1). We characterized how STAT1 mutants interact with P and JAK1 phosphorylation. Certain mutants of the linker, the Src-homology 2 domain (SH2), or the transactivation domain had reduced or abolished phosphorylation through JAK1 after IFN treatment. Other mutants, mainly localized in the linker, failed to interact with P as documented by the lack of interference with nuclear translocation. Thus the functional footprint of P on STAT1 localizes mainly to the linker domain; there is also some overlap with the STAT1 phosphorylation functional footprint on the SH2 domain. Based on these observations, we discuss how the MV-P might operate to inhibit the JAK/STAT pathway. - Highlights: • Residue in the linker and SH2 domains of STAT1 are important for MV-P interaction. • Residue in the linker and SH2 domains of STAT1 are important for STAT1 phosphorylation. • Residues interferring with both functions have similar location on STAT1. • The viral P and V proteins may operate in concert to inhibit the JAK/STAT pathway

  2. The measles virus phosphoprotein interacts with the linker domain of STAT1

    Energy Technology Data Exchange (ETDEWEB)

    Devaux, Patricia, E-mail: devaux.patricia@mayo.edu; Priniski, Lauren; Cattaneo, Roberto

    2013-09-15

    The measles virus (MV) phosphoprotein (P) and V proteins block the interferon (IFN) response by impeding phosphorylation of the signal transducer and activator of transcription 1 (STAT1) by the Janus kinase 1 (JAK1). We characterized how STAT1 mutants interact with P and JAK1 phosphorylation. Certain mutants of the linker, the Src-homology 2 domain (SH2), or the transactivation domain had reduced or abolished phosphorylation through JAK1 after IFN treatment. Other mutants, mainly localized in the linker, failed to interact with P as documented by the lack of interference with nuclear translocation. Thus the functional footprint of P on STAT1 localizes mainly to the linker domain; there is also some overlap with the STAT1 phosphorylation functional footprint on the SH2 domain. Based on these observations, we discuss how the MV-P might operate to inhibit the JAK/STAT pathway. - Highlights: • Residue in the linker and SH2 domains of STAT1 are important for MV-P interaction. • Residue in the linker and SH2 domains of STAT1 are important for STAT1 phosphorylation. • Residues interferring with both functions have similar location on STAT1. • The viral P and V proteins may operate in concert to inhibit the JAK/STAT pathway.

  3. Chemovirotherapy for head and neck squamous cell carcinoma with EGFR-targeted and CD/UPRT-armed oncolytic measles virus.

    Science.gov (United States)

    Zaoui, K; Bossow, S; Grossardt, C; Leber, M F; Springfeld, C; Plinkert, P K; Kalle, C von; Ungerechts, G

    2012-03-01

    First-line treatment of recurrent and/or refractory head and neck squamous cell carcinoma (HNSCC) is based on platinum, 5-fluorouracil (5-FU) and the monoclonal antiEGFR antibody cetuximab. However, in most cases this chemoimmunotherapy does not cure the disease, and more than 50% of HNSCC patients are dying because of local recurrence of the tumors. In the majority of cases, HNSCC overexpress the epidermal growth factor receptor (EGFR), and its presence is associated with a poor outcome. In this study, we engineered an EGFR-targeted oncolytic measles virus (MV), armed with the bifunctional enzyme cytosine deaminase/uracil phosphoribosyltransferase (CD/UPRT). CD/UPRT converts 5-fluorocytosine (5-FC) into the chemotherapeutic 5-FU, a mainstay of HNSCC chemotherapy. This virus efficiently replicates in and lyses primary HNSCC cells in vitro. Arming with CD/UPRT mediates efficient prodrug activation with high bystander killing of non-infected tumor cells. In mice bearing primary HNSCC xenografts, intratumoral administration of MV-antiEGFR resulted in statistically significant tumor growth delay and prolongation of survival. Importantly, combination with 5-FC is superior to virus-only treatment leading to significant tumor growth inhibition. Thus, chemovirotherapy with EGFR-targeted and CD/UPRT-armed MV is highly efficacious in preclinical settings with direct translational implications for a planned Phase I clinical trial of MV for locoregional treatment of HNSCC.

  4. Mitigating measles outbreaks in West Africa post-Ebola.

    Science.gov (United States)

    Truelove, Shaun A; Moss, William J; Lessler, Justin

    2015-01-01

    The Ebola outbreak in 2014-2015 devastated the populations, economies and healthcare systems of Guinea, Liberia and Sierra Leone. With this devastation comes the impending threat of outbreaks of other infectious diseases like measles. Strategies for mitigating these risks must include both prevention, through vaccination, and case detection and management, focused on surveillance, diagnosis and appropriate clinical care and case management. With the high transmissibility of measles virus, small-scale reactive vaccinations will be essential to extinguish focal outbreaks, while national vaccination campaigns are needed to guarantee vaccination coverage targets are reached in the long term. Rapid and multifaceted strategies should carefully navigate challenges present in the wake of Ebola, while also taking advantage of current Ebola-related activities and international attention. Above all, resources and focus currently aimed at these countries must be utilized to build up the deficit in infrastructure and healthcare systems that contributed to the extent of the Ebola outbreak.

  5. Measles (Rubeola) Cases and Outbreaks

    Science.gov (United States)

    ... Address What’s this? Submit What's this? Submit Button Measles Cases and Outbreaks Language: English (US) Español (Spanish) ... Español: Casos y brotes de sarampión Number of measles cases by year since 2010 Measles cases per ...

  6. Avian Influenza Virus Infection of Immortalized Human Respiratory Epithelial Cells Depends upon a Delicate Balance between Hemagglutinin Acid Stability and Endosomal pH.

    Science.gov (United States)

    Daidoji, Tomo; Watanabe, Yohei; Ibrahim, Madiha S; Yasugi, Mayo; Maruyama, Hisataka; Masuda, Taisuke; Arai, Fumihito; Ohba, Tomoyuki; Honda, Ayae; Ikuta, Kazuyoshi; Nakaya, Takaaki

    2015-04-24

    The highly pathogenic avian influenza (AI) virus, H5N1, is a serious threat to public health worldwide. Both the currently circulating H5N1 and previously circulating AI viruses recognize avian-type receptors; however, only the H5N1 is highly infectious and virulent in humans. The mechanism(s) underlying this difference in infectivity remains unclear. The aim of this study was to clarify the mechanisms responsible for the difference in infectivity between the current and previously circulating strains. Primary human small airway epithelial cells (SAECs) were transformed with the SV40 large T-antigen to establish a series of clones (SAEC-Ts). These clones were then used to test the infectivity of AI strains. Human SAEC-Ts could be broadly categorized into two different types based on their susceptibility (high or low) to the viruses. SAEC-T clones were poorly susceptible to previously circulating AI but were completely susceptible to the currently circulating H5N1. The hemagglutinin (HA) of the current H5N1 virus showed greater membrane fusion activity at higher pH levels than that of previous AI viruses, resulting in broader cell tropism. Moreover, the endosomal pH was lower in high susceptibility SAEC-T clones than that in low susceptibility SAEC-T clones. Taken together, the results of this study suggest that the infectivity of AI viruses, including H5N1, depends upon a delicate balance between the acid sensitivity of the viral HA and the pH within the endosomes of the target cell. Thus, one of the mechanisms underlying H5N1 pathogenesis in humans relies on its ability to fuse efficiently with the endosomes in human airway epithelial cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Zika virus infection.

    Science.gov (United States)

    Pougnet, Laurence; Thill, Chloé; Pougnet, Richard; Auvinet, Henri; Giacardi, Christophe; Drouillard, Isabelle

    2016-12-01

    A 21-year old woman from New-Caledonia had 40 ̊C fever with vomiting, arthralgia, myalgia, and measles-like rash. Etiological analyses showed primary infection with Zika virus. Because of severe clinical presentation, she was hospitalized in the intensive care unit of the Brest military Hospital. Zika virus is mainly transmitted by Aedes mosquitoes. If they settle in Metropolitan France, Zika virus might also spread there.

  8. Potent peptidic fusion inhibitors of influenza virus

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, Rameshwar U.; Juraszek, Jarek; Brandenburg, Boerries; Buyck, Christophe; Schepens, Wim B. G.; Kesteleyn, Bart; Stoops, Bart; Vreeken, Rob J.; Vermond, Jan; Goutier, Wouter; Tang, Chan; Vogels, Ronald; Friesen, Robert H. E.; Goudsmit, Jaap; van Dongen, Maria J. P.; Wilson, Ian A.

    2017-09-28

    Influenza therapeutics with new targets and mechanisms of action are urgently needed to combat potential pandemics, emerging viruses, and constantly mutating strains in circulation. We report here on the design and structural characterization of potent peptidic inhibitors of influenza hemagglutinin. The peptide design was based on complementarity-determining region loops of human broadly neutralizing antibodies against the hemagglutinin (FI6v3 and CR9114). The optimized peptides exhibit nanomolar affinity and neutralization against influenza A group 1 viruses, including the 2009 H1N1 pandemic and avian H5N1 strains. The peptide inhibitors bind to the highly conserved stem epitope and block the low pH–induced conformational rearrangements associated with membrane fusion. These peptidic compounds and their advantageous biological properties should accelerate the development of new small molecule– and peptide-based therapeutics against influenza virus.

  9. Measles: summary of worldwide impact.

    Science.gov (United States)

    Assaad, F

    1983-01-01

    Nearly every measles infection results in well-recognized clinical disease. In nonimmunized populations almost every child will get measles early in life. The universality of the disease in nonimmunized communities, particularly those in the developing world, has led to a more or less passive acceptance of measles as an unavoidable risk of early life. The clinical spectrum of measles ranges from a mild, self-limiting illness to a fatal disease. Conditions encountered mainly in the developing world, e.g., unfavorable nutrition, high risk of concurrent infection, and inadequate case management -- particularly at home -- favor the development of complications and adverse outcome. Conversely, good clinical management of an otherwise healthy child, a situation seen mostly in the developed world, greatly influences the course of the disease. Hence many in the medical profession believe that measles is a mild disease except among populations living under particularly unfavorable conditions. Measles vaccine is effective in preventing disease in the individual and in controlling it in the community if it is given at the critical age when maternal antibodies wane and the risk of natural infection increases sharply and if a high immunization rate is maintained in the target population. The experience with immunization, particularly in sub-saharan Africa, is rewarding: mothers who had previously accepted measles as an unavoidable risk clamour for immunization of their children once its effectiveness has been demonstrated. No reason exists for measles to claim its present toll of morbidity and mortality. With extension of the Expanded Programme on Immunization of the World Health Organization, the impact of measles should progressively decline.

  10. Measles hectic in Pakistan; Upsurge versus the lurking vaccination.

    Science.gov (United States)

    2015-02-01

    Measles has claimed more lives than anticipated, as the outbreaks hit Pakistan severely in 2013 as compared to 2012. Claiming 350 lives through the year 2013, Measles became a headache for the health agencies, authorities and common people. The sudden appearance of the virus in different parts of the country both rural and urban at the same time can be linked to more than one cause. The notable being corruption in health system, poor health infrastructure, destabilized routine immunization, shortage in number of vaccinators, negligence among parents, and floods. As a consequence of these causative factors, the unclear picture of immunization coverage can be presumed as the ultimate etiology of outbreaks in such numbers. Therefore, there is an urgent need to draw out the actual data of immunisation coverage and focus on elimination of hurdles in the road to success in fully coverage with vaccines.

  11. Canine distemper virus (CDV) infection of ferrets as a model for testing Morbillivirus vaccine strategies: NYVAC- and ALVAC-based CDV recombinants protect against symptomatic infection.

    Science.gov (United States)

    Stephensen, C B; Welter, J; Thaker, S R; Taylor, J; Tartaglia, J; Paoletti, E

    1997-02-01

    Canine distemper virus (CDV) infection of ferrets causes an acute systemic disease involving multiple organ systems, including the respiratory tract, lymphoid system, and central nervous system (CNS). We have tested candidate CDV vaccines incorporating the fusion (F) and hemagglutinin (HA) proteins in the highly attenuated NYVAC strain of vaccinia virus and in the ALVAC strain of canarypox virus, which does not productively replicate in mammalian hosts. Juvenile ferrets were vaccinated twice with these constructs, or with an attenuated live-virus vaccine, while controls received saline or the NYVAC and ALVAC vectors expressing rabies virus glycoprotein. Control animals did not develop neutralizing antibody and succumbed to distemper after developing fever, weight loss, leukocytopenia, decreased activity, conjunctivitis, an erythematous rash typical of distemper, CNS signs, and viremia in peripheral blood mononuclear cells (as measured by reverse transcription-PCR). All three CDV vaccines elicited neutralizing titers of at least 1:96. All vaccinated ferrets survived, and none developed viremia. Both recombinant vaccines also protected against the development of symptomatic distemper. However, ferrets receiving the live-virus vaccine lost weight, became lymphocytopenic, and developed the erythematous rash typical of CDV. These data show that ferrets are an excellent model for evaluating the ability of CDV vaccines to protect against symptomatic infection. Because the pathogenesis and clinical course of CDV infection of ferrets is quite similar to that of other Morbillivirus infections, including measles, this model will be useful in testing new candidate Morbillivirus vaccines.

  12. Fusion peptide of influenza hemagglutinin requires a fixed angle boomerang structure for activity.

    Science.gov (United States)

    Lai, Alex L; Park, Heather; White, Judith M; Tamm, Lukas K

    2006-03-03

    The fusion peptide of influenza hemagglutinin is crucial for cell entry of this virus. Previous studies showed that this peptide adopts a boomerang-shaped structure in lipid model membranes at the pH of membrane fusion. To examine the role of the boomerang in fusion, we changed several residues proposed to stabilize the kink in this structure and measured fusion. Among these, mutants E11A and W14A expressed hemagglutinins with hemifusion and no fusion activities, and F9A and N12A had no effect on fusion, respectively. Binding enthalpies and free energies of mutant peptides to model membranes and their ability to perturb lipid bilayer structures correlated well with the fusion activities of the parent full-length molecules. The structure of W14A determined by NMR and site-directed spin labeling features a flexible kink that points out of the membrane, in sharp contrast to the more ordered boomerang of the wild-type, which points into the membrane. A specific fixed angle boomerang structure is thus required to support membrane fusion.

  13. Centralized Consensus Hemagglutinin Genes Induce Protective Immunity against H1, H3 and H5 Influenza Viruses.

    Directory of Open Access Journals (Sweden)

    Richard J Webby

    Full Text Available With the exception of the live attenuated influenza vaccine there have been no substantial changes in influenza vaccine strategies since the 1940's. Here we report an alternative vaccine approach that uses Adenovirus-vectored centralized hemagglutinin (HA genes as vaccine antigens. Consensus H1-Con, H3-Con and H5-Con HA genes were computationally derived. Mice were immunized with Ad vaccines expressing the centralized genes individually. Groups of mice were vaccinated with 1 X 1010, 5 X 107 and 1 X 107 virus particles per mouse to represent high, intermediate and low doses, respectively. 100% of the mice that were vaccinated with the high dose vaccine were protected from heterologous lethal challenges within each subtype. In addition to 100% survival, there were no signs of weight loss and disease in 7 out of 8 groups of high dose vaccinated mice. Lower doses of vaccine showed a reduction of protection in a dose-dependent manner. However, even the lowest dose of vaccine provided significant levels of protection against the divergent influenza strains, especially considering the stringency of the challenge virus. In addition, we found that all doses of H5-Con vaccine were capable of providing complete protection against mortality when challenged with lethal doses of all 3 H5N1 influenza strains. This data demonstrates that centralized H1-Con, H3-Con and H5-Con genes can be effectively used to completely protect mice against many diverse strains of influenza. Therefore, we believe that these Ad-vectored centralized genes could be easily translated into new human vaccines.

  14. Measles elimination and immunisation: national surveillance trends in Japan, 2008-2015.

    Science.gov (United States)

    Inaida, S; Matsuno, S; Kobune, F

    2017-08-01

    Measles elimination relies on vaccination programmes. In Japan, a major outbreak started in 2007. In response, 5-year two-dose catch-up vaccination programme was initiated in April 2008 for children 13-16-years-old. In this study, we analysed the epidemic curves, incidence rates for each age group, virus genotype, vaccination coverage and ratio of measles gelatin particle agglutination (PA) antibody using surveillance data for 2008-2015. Monthly case counts markedly decreased as vaccination coverage increased. D5, which is the endemic virus type, disappeared after 2011, with the following epidemic caused by imported viruses. Most cases were confirmed to have a no-dose or single-dose vaccination status. Although the incidence rate among all age groups ⩾5-years-old decreased during the study period, for children <5-years-old, the incidence rate remained relatively high and increased in 2014. The ratio of PA antibody (⩾1:128 titres) increased for the majority of age groups, but with a decrease for specific age groups: the 0-5 months and the 2-4, 14, 19 and most of the 26-55- and the 60-year-old groups (-1 to -9%). This seems to be the result of higher vaccination coverage, which would result in decreasing natural immunity booster along with decreasing passive immunity in infants whose mothers did not have the natural immunity booster. The 20-29- and 30-39-year-old age groups had higher number of cases, suggesting that vaccination within these age groups might be important for eliminating imported viruses.

  15. Attenuated, oncolytic, but not wild-type measles virus infection has pleiotropic effects on human neutrophil function.

    Science.gov (United States)

    Zhang, Yu; Patel, Bella; Dey, Aditi; Ghorani, Ehsan; Rai, Lena; Elham, Mohammed; Castleton, Anna Z; Fielding, Adele K

    2012-02-01

    We previously showed that neutrophils play a role in regression of human tumor xenografts in immunodeficient mice following oncolytic vaccine measles virus (MV-Vac) treatment. In this study, we sought, using normal human neutrophils, to identify potential neutrophil-mediated mechanisms for the attenuated MV-Vac induced effects seen in vivo, by comparison with those consequent on wild-type (WT-MV) infection. Both MV-Vac and WT-MV infected and replicated within neutrophils, despite lack of SLAM expression. In both cases, neutrophils survived longer ex vivo postinfection. Furthermore, MV-Vac (but not WT-MV) infection activated neutrophils and stimulated secretion of several specific antitumor cytokines (IL-8, TNF-α, MCP-1, and IFN-α) via induction of de novo RNA and protein synthesis. In addition, MV-Vac (but not WT-MV) infection caused TRAIL secretion in the absence of de novo synthesis by triggering release of prefabricated TRAIL, via a direct effect upon degranulation. The differences between the outcome of infection by MV-Vac and WT-MV were not entirely explained by differential infection and replication of the viruses within neutrophils. To our knowledge, this is the first demonstration of potential mechanisms of oncolytic activity of an attenuated MV as compared with its WT parent. Furthermore, our study suggests that neutrophils have an important role to play in the antitumor effects of oncolytic MV.

  16. [Measles in Poland in 2003].

    Science.gov (United States)

    Stefanoff, Paweł; Czarkowski, Mirosław P

    2005-01-01

    In Poland 48 measles cases were registered in 2003 (0.13 per 100,000 population)--of which 65% were cases imported from Chechnya and Afghanistan. Measles outbreaks occurred in 3 centers for immigrants. In total, 31 cases were reported, of which 96.8% were unvaccinated, and 93.5% were under 15 years of age. Of 17 local cases, 5 (29.4%) cases occurred in unvaccinated persons, 3 (17.6%) in persons vaccinated with one dose and 7 (41.2%) in those vaccinated with two doses of measles vaccine (administered at the age of 13-15 months and 7 years). Among 12 vaccinated cases only one 2-year old child was recently vaccinated. The remaining cases were in the 3-7 and 10-24 age ranges. The most affected were infants (incidence 0.57 per 100,000), 1-year old (0.28) and 2-year old children (incidence 0.27). Cases among adolescents and adults over 15 years of age increased from 23.5% in 2002 to 47.1% in 2003. The increasing age of locally-acquired cases, together with constantly high immunization coverage indicates high effectiveness of vaccinations in Poland. Out of all reported cases 13 (38%) were hospitalized. There were no deaths due to measles in Poland in 2003. Poland participates in the WHO Measles Elimination Strategy. Presently, the most important is the maintenance of a sensitive and timely surveillance of measles and measles-compatible cases, with serologic confirmation of one rash-like illness per 100 000 population. The performance of the surveillance system is insufficient with only 55 measles-compatible cases reported in 2003 (15% of expected reports). Serologic confirmation of cases was also insufficient, with 22 cases (40.0%) confirmed by IgM ELISA test. These results indicate the need to maintain the high immunisation coverage and improve measles surveillance system.

  17. Resistance of Sendai virus (HVJ) F-protein against gamma irradiation

    International Nuclear Information System (INIS)

    Hosokawa, Yasushi

    1980-01-01

    Sendai virus envelope proteins (hemagglutinin and F-protein), containing disulfide bonds in their molecules, were almost caused neither cleavage of protein molecules nor disappearance of antigenisitics by 10 5 R of γ-irradiation, but the liberated inner proteins (P, NP and M-protein) were severed into low molecules. By irradiation, hemagglutinin and F-protein of the virions were polymerized or aggregated together in such a way that the aggregate was not dissociated by SDS-2ME treatment on Slab gel electrophoresis, but in the liberated states hemagglutinin alone was aggregated and F-protein was separated with little loss of its anigenisity. From above results, the interaction between hemagglutinin and F-protein, and the utility of irradiation for isolation of F-protein were discussed. (author)

  18. The roentgenological study of measles pneumonia

    International Nuclear Information System (INIS)

    Shin, U.; Song, C. H.; Lee, H. Y.; Chung, H. K.; Joo, K. B.

    1983-01-01

    Measles is important infectious disease of pediatrics and pneumonia is the most commonest complication of measles. We have experienced 20 cases of pneumonia among 31 cases of measles in infant nursing home of Chae Chun during of December. 1981. The results a are as follows; 1. The incidence of measles pneumonia is 64.5%. 2. The patterns of pneumonic infiltration is : The pneumonia may have a bronchopneumonia (60%), Lobar pneumonia (15%), or combined form (35%). 3. Both lungs are involved by measles pneumonia: Right lung only (30%), Left lung only (5%), or Bilateral (65%). 4. Hilar lymphadenopathy (51.6%). Hilar lymphadenopathy with pneumonia (82.2%) and hilar lymphadenopathy without pneumonia (17.8%). 5. There is no pulmonary nodule which is noted frequently in atypical measles pneumonia as a seguale

  19. Determining infants' age for measles vaccination based on persistence of protective level of maternal measles antibody.

    Science.gov (United States)

    Shilpi, Tanjida; Sattar, Humayun; Miah, Md Ruhul Amin

    2009-12-01

    The present study was conducted over a period of one year to find the right time for measles vaccination when maternal antibody titer in infants was decayed rendering them susceptible to wild virus infection. Blood samples were collected from the cord of new born (147), 2-5 months (47) and 5 to 7.5 months (24) of age. The mean measles IgG antibody titer detected in cord blood at birth (0 months) was 348.8 mlU/mL which steeply decreased to 155.6 mlU/mL by the age of 2-3 months. After that the fall in antibody becomes relatively slower and decreased to 101.6 mIU/mL by the age of 3-5 months and 38.8 mlU/mL by the age of 5-6 months and to 19.2 mIU/mL between the age of 6 to 7.5 months. The fall in antibody level with the advance of age was statistically significant (p < 0.001 ). Majority of the subjects (97.6%) exhibited protective level of antibody at birth. But only a little above one-quarter (25.5%) of them persisted the protective level between the age of 2-5 months and none had protective level from 5 months onwards.

  20. Factors Influencing University Nursing Students' Measles Vaccination Rate During a Community Measles Outbreak

    Directory of Open Access Journals (Sweden)

    Ji Soo Kim, RN, PhD

    2016-03-01

    Conclusions: A systematic measles vaccination program targeting nursing students upon their entry to university is needed. In order to increase the measles vaccination rate, application of effective promotion campaigns and education programs is necessary.

  1. Computational design of protein interactions: designing proteins that neutralize influenza by inhibiting its hemagglutinin surface protein

    Science.gov (United States)

    Fleishman, Sarel

    2012-02-01

    Molecular recognition underlies all life processes. Design of interactions not seen in nature is a test of our understanding of molecular recognition and could unlock the vast potential of subtle control over molecular interaction networks, allowing the design of novel diagnostics and therapeutics for basic and applied research. We developed the first general method for designing protein interactions. The method starts by computing a region of high affinity interactions between dismembered amino acid residues and the target surface and then identifying proteins that can harbor these residues. Designs are tested experimentally for binding the target surface and successful ones are affinity matured using yeast cell surface display. Applied to the conserved stem region of influenza hemagglutinin we designed two unrelated proteins that, following affinity maturation, bound hemagglutinin at subnanomolar dissociation constants. Co-crystal structures of hemagglutinin bound to the two designed binders were within 1Angstrom RMSd of their models, validating the accuracy of the design strategy. One of the designed proteins inhibits the conformational changes that underlie hemagglutinin's cell-invasion functions and blocks virus infectivity in cell culture, suggesting that such proteins may in future serve as diagnostics and antivirals against a wide range of pathogenic influenza strains. We have used this method to obtain experimentally validated binders of several other target proteins, demonstrating the generality of the approach. We discuss the combination of modeling and high-throughput characterization of design variants which has been key to the success of this approach, as well as how we have used the data obtained in this project to enhance our understanding of molecular recognition. References: Science 332:816 JMB, in press Protein Sci 20:753

  2. Priming T-cell responses with recombinant measles vaccine vector in a heterologous prime-boost setting in non-human primates

    OpenAIRE

    Bolton, Diane L.; Santra, Sampa; Swett, Cindy; Custers, Jerome; Song, Kaimei; Balachandran, Harikrishnan; Kozlowski, Pamela A.; Letvin, Norman; Roederer, Mario; Radošević, Katarina

    2012-01-01

    Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston Zagreb vaccine strain was engineered to express simian immunodeficiency virus (SIV) Gag protein for the purpose of evaluating the immunogenicity of rMV as a vaccine vector in rhesus macaques. rMV-Gag...

  3. Acquisition of a novel eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site confers intracellular cleavage of an H7N7 influenza virus hemagglutinin

    International Nuclear Information System (INIS)

    Hamilton, Brian S.; Sun, Xiangjie; Chung, Changik; Whittaker, Gary R.

    2012-01-01

    A critical feature of highly pathogenic avian influenza viruses (H5N1 and H7N7) is the efficient intracellular cleavage of the hemagglutinin (HA) protein. H7N7 viruses also exist in equine species, and a unique feature of the equine H7N7 HA is the presence of an eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site. Here, we show that three histidine residues within the unique insertion of the equine H7N7 HA are essential for intracellular cleavage. An asparagine residue within the insertion-derived glycosylation site was also found to be essential for intracellular cleavage. The presence of the histidine residues also appear to be involved in triggering fusion, since mutation of the histidine residues resulted in a destabilizing effect. Importantly, the addition of a tetrabasic site and the eleven amino acid insertion conferred efficient intracellular cleavage to the HA of an H7N3 low pathogenicity avian influenza virus. Our studies show that acquisition of the eleven amino acid insertion offers an alternative mechanism for intracellular cleavage of influenza HA.

  4. Acquisition of a novel eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site confers intracellular cleavage of an H7N7 influenza virus hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Brian S.; Sun, Xiangjie; Chung, Changik [Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853 (United States); New York Center of Excellence for Influenza Research and Surveillance, University of Rochester Medical Center, Rochester NY 14627 (United States); Whittaker, Gary R., E-mail: grw7@cornell.edu [Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853 (United States); New York Center of Excellence for Influenza Research and Surveillance, University of Rochester Medical Center, Rochester NY 14627 (United States)

    2012-12-05

    A critical feature of highly pathogenic avian influenza viruses (H5N1 and H7N7) is the efficient intracellular cleavage of the hemagglutinin (HA) protein. H7N7 viruses also exist in equine species, and a unique feature of the equine H7N7 HA is the presence of an eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site. Here, we show that three histidine residues within the unique insertion of the equine H7N7 HA are essential for intracellular cleavage. An asparagine residue within the insertion-derived glycosylation site was also found to be essential for intracellular cleavage. The presence of the histidine residues also appear to be involved in triggering fusion, since mutation of the histidine residues resulted in a destabilizing effect. Importantly, the addition of a tetrabasic site and the eleven amino acid insertion conferred efficient intracellular cleavage to the HA of an H7N3 low pathogenicity avian influenza virus. Our studies show that acquisition of the eleven amino acid insertion offers an alternative mechanism for intracellular cleavage of influenza HA.

  5. Molecular surveillance of low pathogenic avian influenza viruses in wild birds across the United States: inferences from the hemagglutinin gene.

    Directory of Open Access Journals (Sweden)

    Antoinette J Piaggio

    Full Text Available A United States interagency avian influenza surveillance plan was initiated in 2006 for early detection of highly pathogenic avian influenza viruses (HPAIV in wild birds. The plan included a variety of wild bird sampling strategies including the testing of fecal samples from aquatic areas throughout the United States from April 2006 through December 2007. Although HPAIV was not detected through this surveillance effort we were able to obtain 759 fecal samples that were positive for low pathogenic avian influenza virus (LPAIV. We used 136 DNA sequences obtained from these samples along with samples from a public influenza sequence database for a phylogenetic assessment of hemagglutinin (HA diversity in the United States. We analyzed sequences from all HA subtypes except H5, H7, H14 and H15 to examine genetic variation, exchange between Eurasia and North America, and geographic distribution of LPAIV in wild birds in the United States. This study confirms intercontinental exchange of some HA subtypes (including a newly documented H9 exchange event, as well as identifies subtypes that do not regularly experience intercontinental gene flow but have been circulating and evolving in North America for at least the past 20 years. These HA subtypes have high levels of genetic diversity with many lineages co-circulating within the wild birds of North America. The surveillance effort that provided these samples demonstrates that such efforts, albeit labor-intensive, provide important information about the ecology of LPAIV circulating in North America.

  6. Epstein-Barr virus but not cytomegalovirus is associated with reduced vaccine antibody responses in Gambian infants.

    Directory of Open Access Journals (Sweden)

    Beth Holder

    2010-11-01

    Full Text Available Epstein-Barr virus (EBV and cytomegalovirus (CMV are persistent herpesviruses that have various immunomodulatory effects on their hosts. Both viruses are usually acquired in infancy in Sub-Saharan Africa, a region where childhood vaccines are less effective than in high income settings. To establish whether there is an association between these two observations, we tested the hypothesis that infection with one or both viruses modulate antibody responses to the T-cell independent meningococcal polysaccharide vaccine and the T-cell dependent measles vaccines.Infection with EBV and CMV was diagnosed by the presence of virus-specific IgM in the peripheral blood or by the presence of IgG at higher levels than that found in umbilical cord blood. Anti-meningococcus IgG and IgM were quantified by ELISA. Anti-measles antibody responses were quantified by haemagglutinin antibody inhibition assay. Infants infected with EBV had reduced IgG and IgM antibody responses to meningococcal polysaccharides and to measles vaccine. Infection with CMV alone predicted no changes in the response to meningococcal polysaccharide. While CMV alone had no discernable effect on the antibody response to measles, the response of infants infected with both CMV and EBV was similar to that of infants infected with neither, suggesting that the effects of CMV infection countered the effects of EBV on measles antibody responses.The results of this exploratory study indicate that infection with EBV is associated with reduced antibody responses to polysaccharides and to measles vaccine, but suggest that the response to T-cell dependent antigens such as measles haemagglutinin may be restored by infection with CMV.

  7. Hemagglutinin 222D/G polymorphism facilitates fast intra-host evolution of pandemic (H1N1 2009 influenza A viruses.

    Directory of Open Access Journals (Sweden)

    Nora Seidel

    Full Text Available The amino acid substitution of aspartic acid to glycine in hemagglutinin (HA in position 222 (HA-D222G as well as HA-222D/G polymorphism of pandemic (H1N1 2009 influenza viruses (A(H1N1pdm09 were frequently reported in severe influenza in humans and mice. Their impact on viral pathogenicity and the course of influenza has been discussed controversially and the underlying mechanism remained unclarified. In the present study, BALB/c mice, infected with the once mouse lung- and cell-passaged A(H1N1pdm09 isolate A/Jena/5258/09 (mpJena/5258, developed severe pneumonia. From day 2 to 3 or 4 post infection (p.i. symptoms (body weight loss and clinical score continuously worsened. After a short disease stagnation or even recovery phase in most mice, severity of disease further increased on days 6 and 7 p.i. Thereafter, surviving mice recovered. A 45 times higher virus titer maximum in the lung than in the trachea on day 2 p.i. and significantly higher tracheal virus titers compared to lung on day 6 p.i. indicated changes in the organ tropism during infection. Sequence analysis revealed an HA-222D/G polymorphism. HA-D222 and HA-G222 variants co-circulated in lung and trachea. Whereas, HA-D222 variant predominated in the lung, HA-G222 became the major variant in the trachea after day 4 p.i. This was accompanied by lower neutralizing antibody titers and broader receptor recognition including terminal sialic acid α-2,3-linked galactose, which is abundant on mouse trachea epithelial cells. Plaque-purified HA-G222-mpJena/5258 virus induced severe influenza with maximum symptom on day 6 p.i. These results demonstrated for the first time that HA-222D/G quasispecies of A(H1N1pdm09 caused severe biphasic influenza because of fast viral intra-host evolution, which enabled partial antibody escape and minor changes in receptor binding.

  8. Differential miRNA expression in B cells is associated with inter-individual differences in humoral immune response to measles vaccination.

    Science.gov (United States)

    Haralambieva, Iana H; Kennedy, Richard B; Simon, Whitney L; Goergen, Krista M; Grill, Diane E; Ovsyannikova, Inna G; Poland, Gregory A

    2018-01-01

    MicroRNAs are important mediators of post-transcriptional regulation of gene expression through RNA degradation and translational repression, and are emerging biomarkers of immune system activation/response after vaccination. We performed Next Generation Sequencing (mRNA-Seq) of intracellular miRNAs in measles virus-stimulated B and CD4+ T cells from high and low antibody responders to measles vaccine. Negative binomial generalized estimating equation (GEE) models were used for miRNA assessment and the DIANA tool was used for gene/target prediction and pathway enrichment analysis. We identified a set of B cell-specific miRNAs (e.g., miR-151a-5p, miR-223, miR-29, miR-15a-5p, miR-199a-3p, miR-103a, and miR-15a/16 cluster) and biological processes/pathways, including regulation of adherens junction proteins, Fc-receptor signaling pathway, phosphatidylinositol-mediated signaling pathway, growth factor signaling pathway/pathways, transcriptional regulation, apoptosis and virus-related processes, significantly associated with neutralizing antibody titers after measles vaccination. No CD4+ T cell-specific miRNA expression differences between high and low antibody responders were found. Our study demonstrates that miRNA expression directly or indirectly influences humoral immunity to measles vaccination and suggests that B cell-specific miRNAs may serve as useful predictive biomarkers of vaccine humoral immune response.

  9. Biological characterization of clones derived from the edmonston strain of measles virus in comparison with schwarz and CAM-70 vaccine strains

    Directory of Open Access Journals (Sweden)

    Maria Beatriz Junqueira Borges

    1996-08-01

    Full Text Available Four virus clones were derived from the Edmonston strain of measles virus by repeated plaque purification. These clones were compared with the vaccine strains Schwarz and CAM-70 in terms of biological activities including plaque formation, hemagglutination, hemolysis and replication in Vero cells and chick embryo fibroblasts (CEF. Two clones of intermediate plaque yielded mixed plaque populations on subcultivation whereas the other two, showing small and large plaque sizes, showed stable plaque phenotypes. The vaccine strains showed consistent homogeneous plaque populations. All the Edmonston clones showed agglutination of monkey erythrocytes in isotonic solution while both vaccine strains hemagglutinated only in the presence of high salt concentrations. Variation in the hemolytic activity was observed among the four clones but no hemolytic activity was detected for the vaccine virus strains. Vaccine strains replicated efficiently both in Vero cells and CEF. All four clones showed efficient replication in Vero cells but different replication profiles in CEF. Two of them replicated efficiently, one was of intermediate efficiency and the other showed no replication in CEF. Two of the clones showed characteristics similar to vaccine strains. One in terms of size and homogeneity of plaques, the other for a low hemolytic activity and both for the efficiency of propagation in CEF.

  10. A novel eight amino acid insertion contributes to the hemagglutinin cleavability and the virulence of a highly pathogenic avian influenza A (H7N3) virus in mice

    International Nuclear Information System (INIS)

    Sun, Xiangjie; Belser, Jessica A.; Tumpey, Terrence M.

    2016-01-01

    In 2012, an avian influenza A H7N3 (A/Mexico/InDRE7218/2012; Mx/7218) virus was responsible for two confirmed cases of human infection and led to the death or culling of more than 22 million chickens in Jalisco, Mexico. Interestingly, this virus acquired an 8-amino acid (aa)-insertion (..PENPK-DRKSRHRR-TR/GLF) near the hemagglutinin (HA) cleavage site by nonhomologous recombination with host rRNA. It remains unclear which specific residues at the cleavage site contribute to the virulence of H7N3 viruses in mammals. Using loss-of-function approaches, we generated a series of cleavage site mutant viruses by reverse genetics and characterized the viruses in vitro and in vivo. We found that the 8-aa insertion and the arginine at position P4 of the Mx/7218 HA cleavage site are essential for intracellular HA cleavage in 293T cells, but have no effect on the pH of membrane fusion. However, we identified a role for the histidine residue at P5 position in viral fusion pH. In mice, the 8-aa insertion is required for Mx/7218 virus virulence; however, the basic residues upstream of the P4 position are dispensable for virulence. Overall, our study provides the first line of evidence that the insertion in the Mx/7218 virus HA cleavage site confers its intracellular cleavability, and consequently contributes to enhanced virulence in mice. - Highlights: • An avian influenza H7N3 virus acquired a unique 8-amino acid (aa) insertion. • The role of specific basic residues in the HA insertion in viral pathogenesis was determined. • In mice, the 8-aa insertion is required for H7N3 virus virulence. • The R residue at position P4 is essential for HA intracellular cleavage and virus virulence.

  11. A novel eight amino acid insertion contributes to the hemagglutinin cleavability and the virulence of a highly pathogenic avian influenza A (H7N3) virus in mice

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiangjie; Belser, Jessica A.; Tumpey, Terrence M., E-mail: tft9@cdc.gov

    2016-01-15

    In 2012, an avian influenza A H7N3 (A/Mexico/InDRE7218/2012; Mx/7218) virus was responsible for two confirmed cases of human infection and led to the death or culling of more than 22 million chickens in Jalisco, Mexico. Interestingly, this virus acquired an 8-amino acid (aa)-insertion (..PENPK-DRKSRHRR-TR/GLF) near the hemagglutinin (HA) cleavage site by nonhomologous recombination with host rRNA. It remains unclear which specific residues at the cleavage site contribute to the virulence of H7N3 viruses in mammals. Using loss-of-function approaches, we generated a series of cleavage site mutant viruses by reverse genetics and characterized the viruses in vitro and in vivo. We found that the 8-aa insertion and the arginine at position P4 of the Mx/7218 HA cleavage site are essential for intracellular HA cleavage in 293T cells, but have no effect on the pH of membrane fusion. However, we identified a role for the histidine residue at P5 position in viral fusion pH. In mice, the 8-aa insertion is required for Mx/7218 virus virulence; however, the basic residues upstream of the P4 position are dispensable for virulence. Overall, our study provides the first line of evidence that the insertion in the Mx/7218 virus HA cleavage site confers its intracellular cleavability, and consequently contributes to enhanced virulence in mice. - Highlights: • An avian influenza H7N3 virus acquired a unique 8-amino acid (aa) insertion. • The role of specific basic residues in the HA insertion in viral pathogenesis was determined. • In mice, the 8-aa insertion is required for H7N3 virus virulence. • The R residue at position P4 is essential for HA intracellular cleavage and virus virulence.

  12. Applying Unique Molecular Identifiers in Next Generation Sequencing Reveals a Constrained Viral Quasispecies Evolution under Cross-Reactive Antibody Pressure Targeting Long Alpha Helix of Hemagglutinin

    Science.gov (United States)

    Hauck, Nastasja C.; Kirpach, Josiane; Kiefer, Christina; Farinelle, Sophie; Morris, Stephen A.; Muller, Claude P.; Lu, I-Na

    2018-01-01

    To overcome yearly efforts and costs for the production of seasonal influenza vaccines, new approaches for the induction of broadly protective and long-lasting immune responses have been developed in the past decade. To warrant safety and efficacy of the emerging crossreactive vaccine candidates, it is critical to understand the evolution of influenza viruses in response to these new immune pressures. Here we applied unique molecular identifiers in next generation sequencing to analyze the evolution of influenza quasispecies under in vivo antibody pressure targeting the hemagglutinin (HA) long alpha helix (LAH). Our vaccine targeting LAH of hemagglutinin elicited significant seroconversion and protection against homologous and heterologous influenza virus strains in mice. The vaccine not only significantly reduced lung viral titers, but also induced a well-known bottleneck effect by decreasing virus diversity. In contrast to the classical bottleneck effect, here we showed a significant increase in the frequency of viruses with amino acid sequences identical to that of vaccine targeting LAH domain. No escape mutant emerged after vaccination. These results not only support the potential of a universal influenza vaccine targeting the conserved LAH domains, but also clearly demonstrate that the well-established bottleneck effect on viral quasispecies evolution does not necessarily generate escape mutants. PMID:29587397

  13. Applying Unique Molecular Identifiers in Next Generation Sequencing Reveals a Constrained Viral Quasispecies Evolution under Cross-Reactive Antibody Pressure Targeting Long Alpha Helix of Hemagglutinin

    Directory of Open Access Journals (Sweden)

    Nastasja C. Hauck

    2018-03-01

    Full Text Available To overcome yearly efforts and costs for the production of seasonal influenza vaccines, new approaches for the induction of broadly protective and long-lasting immune responses have been developed in the past decade. To warrant safety and efficacy of the emerging crossreactive vaccine candidates, it is critical to understand the evolution of influenza viruses in response to these new immune pressures. Here we applied unique molecular identifiers in next generation sequencing to analyze the evolution of influenza quasispecies under in vivo antibody pressure targeting the hemagglutinin (HA long alpha helix (LAH. Our vaccine targeting LAH of hemagglutinin elicited significant seroconversion and protection against homologous and heterologous influenza virus strains in mice. The vaccine not only significantly reduced lung viral titers, but also induced a well-known bottleneck effect by decreasing virus diversity. In contrast to the classical bottleneck effect, here we showed a significant increase in the frequency of viruses with amino acid sequences identical to that of vaccine targeting LAH domain. No escape mutant emerged after vaccination. These results not only support the potential of a universal influenza vaccine targeting the conserved LAH domains, but also clearly demonstrate that the well-established bottleneck effect on viral quasispecies evolution does not necessarily generate escape mutants.

  14. Domain architecture and oligomerization properties of the paramyxovirus PIV 5 hemagglutinin-neuraminidase (HN) protein.

    Science.gov (United States)

    Yuan, Ping; Leser, George P; Demeler, Borries; Lamb, Robert A; Jardetzky, Theodore S

    2008-09-01

    The mechanism by which the paramyxovirus hemagglutinin-neuraminidase (HN) protein couples receptor binding to activation of virus entry remains to be fully understood, but the HN stalk is thought to play an important role in the process. We have characterized ectodomain constructs of the parainfluenza virus 5 HN to understand better the underlying architecture and oligomerization properties that may influence HN functions. The PIV 5 neuraminidase (NA) domain is monomeric whereas the ectodomain forms a well-defined tetramer. The HN stalk also forms tetramers and higher order oligomers with high alpha-helical content. Together, the data indicate that the globular NA domains form weak intersubunit interactions at the end of the HN stalk tetramer, while stabilizing the stalk and overall oligomeric state of the ectodomain. Electron microscopy of the HN ectodomain reveals flexible arrangements of the NA and stalk domains, which may be important for understanding how these two HN domains impact virus entry.

  15. Diagnosis of measles by clinical case definition in dengue-endemic areas: implications for measles surveillance and control.

    OpenAIRE

    Dietz, V. J.; Nieburg, P.; Gubler, D. J.; Gomez, I.

    1992-01-01

    In many countries, measles surveillance relies heavily on the use of a standard clinical case definition; however, the clinical signs and symptoms of measles are similar to those of dengue. For example, during 1985, in Puerto Rico, 22 (23%) of 94 cases of illnesses with rashes that met the measles clinical case definition were serologically confirmed as measles, but 32 (34%) others were serologically confirmed as dengue. Retrospective analysis at the San Juan Laboratories of the Centers for D...

  16. Lack of association between measles virus vaccine and autism with enteropathy: a case-control study.

    Directory of Open Access Journals (Sweden)

    Mady Hornig

    2008-09-01

    Full Text Available The presence of measles virus (MV RNA in bowel tissue from children with autism spectrum disorders (ASD and gastrointestinal (GI disturbances was reported in 1998. Subsequent investigations found no associations between MV exposure and ASD but did not test for the presence of MV RNA in bowel or focus on children with ASD and GI disturbances. Failure to replicate the original study design may contribute to continued public concern with respect to the safety of the measles, mumps, and rubella (MMR vaccine.The objective of this case-control study was to determine whether children with GI disturbances and autism are more likely than children with GI disturbances alone to have MV RNA and/or inflammation in bowel tissues and if autism and/or GI episode onset relate temporally to receipt of MMR. The sample was an age-matched group of US children undergoing clinically-indicated ileocolonoscopy. Ileal and cecal tissues from 25 children with autism and GI disturbances and 13 children with GI disturbances alone (controls were evaluated by real-time reverse transcription (RT-PCR for presence of MV RNA in three laboratories blinded to diagnosis, including one wherein the original findings suggesting a link between MV and ASD were reported. The temporal order of onset of GI episodes and autism relative to timing of MMR administration was examined. We found no differences between case and control groups in the presence of MV RNA in ileum and cecum. Results were consistent across the three laboratory sites. GI symptom and autism onset were unrelated to MMR timing. Eighty-eight percent of ASD cases had behavioral regression.This study provides strong evidence against association of autism with persistent MV RNA in the GI tract or MMR exposure. Autism with GI disturbances is associated with elevated rates of regression in language or other skills and may represent an endophenotype distinct from other ASD.

  17. Measles - Educational Resources for Parents and Childcare Providers

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Measles (Rubeola) Note: Javascript is disabled or is not ... message, please visit this page: About CDC.gov . Measles Home About Measles History of Measles Signs and ...

  18. Development of the Global Measles Laboratory Network.

    Science.gov (United States)

    Featherstone, David; Brown, David; Sanders, Ray

    2003-05-15

    The routine reporting of suspected measles cases and laboratory testing of samples from these cases is the backbone of measles surveillance. The Global Measles Laboratory Network (GMLN) has developed standards for laboratory confirmation of measles and provides training resources for staff of network laboratories, reference materials and expertise for the development and quality control of testing procedures, and accurate information for the Measles Mortality Reduction and Regional Elimination Initiative. The GMLN was developed along the lines of the successful Global Polio Laboratory Network, and much of the polio laboratory infrastructure was utilized for measles. The GMLN has developed as countries focus on measles control activities following successful eradication of polio. Currently more than 100 laboratories are part of the global network and follow standardized testing and reporting procedures. A comprehensive laboratory accreditation process will be introduced in 2002 with six quality assurance and performance indicators.

  19. An Immunosensor Based on Antibody Binding Fragments Attached to Gold Nanoparticles for the Detection of Peptides Derived from Avian Influenza Hemagglutinin H5

    Directory of Open Access Journals (Sweden)

    Urszula Jarocka

    2014-08-01

    Full Text Available This paper concerns the development of an immunosensor for detection of peptides derived from avian influenza hemagglutinin H5. Its preparation consists of successive gold electrode modification steps: (i modification with 1,6-hexanedithiol and gold colloidal nanoparticles; (ii immobilization of antibody-binding fragments (Fab’ of anti-hemagglutinin H5 monoclonal antibodies Mab 6-9-1 via S-Au covalent bonds; and (iii covering the remaining free space on the electrode surfaces with bovine serum albumin. The interactions between Fab’ fragments and hemagglutinin (HA variants have been explored with electrochemical impedance spectroscopy (EIS in the presence of [Fe(CN6]3−/4− as an electroactive marker. The immunosensor was able to recognize three different His-tagged variants of recombinant hemagglutinin from H5N1 viruses: H1 subunit (17–340 residues of A/swan/Poland/305-135V08/2006, the long HA (17–530 residues A/Bar-headed Goose/Qinghai/12/2005 and H1 subunit (1–345 residues of A/Vietnam/1194/2004. The strongest response has been observed for the long variant with detection limit of 2.2 pg/mL and dynamic range from 4.0 to 20.0 pg/mL.

  20. A global phylogenetic analysis in order to determine the host species and geography dependent features present in the evolution of avian H9N2 influenza hemagglutinin

    Directory of Open Access Journals (Sweden)

    Andrew R. Dalby

    2014-10-01

    Full Text Available A complete phylogenetic analysis of all of the H9N2 hemagglutinin sequences that were collected between 1966 and 2012 was carried out in order to build a picture of the geographical and host specific evolution of the hemagglutinin protein. To improve the quality and applicability of the output data the sequences were divided into subsets based upon location and host species.The phylogenetic analysis of hemagglutinin reveals that the protein has distinct lineages between China and the Middle East, and that wild birds in both regions retain a distinct form of the H9 molecule, from the same lineage as the ancestral hemagglutinin. The results add further evidence to the hypothesis that the current predominant H9N2 hemagglutinin lineage might have originated in Southern China. The study also shows that there are sampling problems that affect the reliability of this and any similar analysis. This raises questions about the surveillance of H9N2 and the need for wider sampling of the virus in the environment.The results of this analysis are also consistent with a model where hemagglutinin has predominantly evolved by neutral drift punctuated by occasional selection events. These selective events have produced the current pattern of distinct lineages in the Middle East, Korea and China. This interpretation is in agreement with existing studies that have shown that there is widespread intra-country sequence evolution.

  1. Risk Factors for Measles Virus Infection Among Adults During a Large Outbreak in Postelimination Era in Mongolia, 2015.

    Science.gov (United States)

    Hagan, José E; Takashima, Yoshihiro; Sarankhuu, Amarzaya; Dashpagma, Otgonbayar; Jantsansengee, Baigalmaa; Pastore, Roberta; Nyamaa, Gunregjav; Yadamsuren, Buyanjargal; Mulders, Mick N; Wannemuehler, Kathleen A; Anderson, Raydel; Bankamp, Bettina; Rota, Paul; Goodson, James L

    2017-12-05

    In 2015, a large nationwide measles outbreak occurred in Mongolia, with very high incidence in the capital city of Ulaanbaatar and among young adults. We conducted an outbreak investigation including a matched case-control study of risk factors for laboratory-confirmed measles among young adults living in Ulaanbaatar. Young adults with laboratory-confirmed measles, living in the capital city of Ulaanbaatar, were matched with 2-3 neighborhood controls. Conditional logistic regression was used to estimate adjusted matched odds ratios (aMORs) for risk factors, with 95% confidence intervals. During March 1-September 30, 2015, 20 077 suspected measles cases were reported; 14 010 cases were confirmed. Independent risk factors for measles included being unvaccinated (adjusted matched odds ratio [aMOR] 2.0, P < .01), being a high school graduate without college education (aMOR 2.6, P < .01), remaining in Ulaanbaatar during the outbreak (aMOR 2.5, P < .01), exposure to an inpatient healthcare facility (aMOR 4.5 P < .01), and being born outside of Ulaanbaatar (aMOR 1.8, P = .02). This large, nationwide outbreak shortly after verification of elimination had high incidence among young adults, particularly those born outside the national capital. In addition, findings indicated that nosocomial transmission within health facilities helped amplify the outbreak. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  2. MEASLES IN INFANTS

    Directory of Open Access Journals (Sweden)

    V. N. Timchenko

    2015-01-01

    Full Text Available A clinical observation and treatment of 36 children between the ages of 5 months up to 3 years old with measles. In 34 persons. (94.4% diagnosed with typical moderate forms, from 2 people (5.6% — atypical (mitigirovannaya a mild form of the disease. All children are vaccinated against measles. Typical measles char-acterized by moderate forms of cyclical flow with the change of the classical period and the presence of characteristic clinical syndromes. Pathognomonic symptom found: spots Belsky — Filatov — Koplik (67.7%, stages a rash (100%, stages of pigmentation (100%. Causal therapy was VIFERON®. Revealed the rapid disappearance of intoxication and normalization of body temperature, the early decline in the severity and duration of catarrhal syndrome, reducing the severity and frequency of complications, no stratification of SARS.

  3. Stable lentiviral transformation of CHO cells for the expression of the hemagglutinin H5 of avian influenza virus in suspension culture

    Directory of Open Access Journals (Sweden)

    Alaín González Pose

    2014-09-01

    Full Text Available Avian influenza virus H5N1 has caused extensive damage worldwide among poultry and humans. Effective expression systems are needed for the production of viral proteins required for monitoring this devastating disease. The present study deals with the establishment of a stable expression system for the hemagglutinin H5 (HAH5 of avian influenza virus using CHO cells in suspension culture transduced with a recombinant lentiviral vector. The synthetic gene coding the HAH5 protein was inserted in a lentiviral vector with the aim of performing a stable transduction of CHO cells. After the selection of recombinant clones, the one with the highest expression level was adapted to suspension culture and the HAH5 protein was purified by immunoaffinity chromatography from the culture supernatant. There were no significant differences when this protein, purified or direct from the culture supernatant of CHO or SiHa cells, was utilized in an immunologic assay using positive and negative sera as reference. It was also demonstrated that the HAH5 protein in its purified form is able to bind anti-HAH5 antibodies generated with proper and non-proper folded proteins. The results demonstrate that the CHO cell line stably transduced with a lentiviral vector coding the sequence of the HAH5 protein and cultured in suspension can be a suitable expression system to obtain this protein for diagnostic purpose in a consistent and reliable manner.

  4. The Role of the Hendra Virus and Nipah Virus Attachment Glycoproteins in Receptor Binding and Antibody Neutralization

    Science.gov (United States)

    2014-01-31

    of important human (measles (MeV), mumps, human parainfluenza and respiratory syncytial virus (RSV)) and animal ( canine distemper virus (CDV...occurrence of a natural canine infection (6; 7). Since the emergence of HeV there have been a total of 86 horse fatalities, 2 canine infections and 7...Infectious Diseases 6. Anonymous. 2011. HENDRA VIRUS, EQUINE - AUSTRALIA (21): (QUEENSLAND) CANINE . Pro-Med-mail, Archive No. 20110802.2324

  5. Measles Virus: Identification in the M Protein Primary Sequence of a Potential Molecular Marker for Subacute Sclerosing Panencephalitis

    Directory of Open Access Journals (Sweden)

    Hasan Kweder

    2015-01-01

    Full Text Available Subacute Sclerosing Panencephalitis (SSPE, a rare lethal disease of children and young adults due to persistence of measles virus (MeV in the brain, is caused by wild type (wt MeV. Why MeV vaccine strains never cause SSPE is completely unknown. Hypothesizing that this phenotypic difference could potentially be represented by a molecular marker, we compared glycoprotein and matrix (M genes from SSPE cases with those from the Moraten vaccine strain, searching for differential structural motifs. We observed that all known SSPE viruses have residues P64, E89, and A209 (PEA in their M proteins whereas the equivalent residues for vaccine strains are either S64, K89, and T209 (SKT as in Moraten or PKT. Through the construction of MeV recombinants, we have obtained evidence that the wt MeV-M protein PEA motif, in particular A209, is linked to increased viral spread. Importantly, for the 10 wt genotypes (of 23 that have had their M proteins sequenced, 9 have the PEA motif, the exception being B3, which has PET. Interestingly, cases of SSPE caused by genotype B3 have yet to be reported. In conclusion, our results strongly suggest that the PEA motif is a molecular marker for wt MeV at risk to cause SSPE.

  6. Immunohistochemical detection of virus through its nuclear cytopathic effect in idiopathic interstitial pneumonia other than acute exacerbation

    Directory of Open Access Journals (Sweden)

    G.C. dos Santos

    2013-11-01

    Full Text Available Idiopathic interstitial pneumonias include complex diseases that have a strong interaction between genetic makeup and environmental factors. However, in many cases, no infectious agent can be demonstrated, and these clinical diseases rapidly progress to death. Theoretically, idiopathic interstitial pneumonias could be caused by the Epstein-Barr virus, cytomegalovirus, adenovirus, hepatitis C virus, respiratory syncytial virus, and herpesvirus, which may be present in such small amounts or such configuration that routine histopathological analysis or viral culture techniques cannot detect them. To test the hypothesis that immunohistochemistry provides more accurate results than the mere histological demonstration of viral inclusions, this method was applied to 37 open lung biopsies obtained from patients with idiopathic interstitial pneumonias. As a result, immunohistochemistry detected measles virus and cytomegalovirus in diffuse alveolar damage-related histological patterns of acute exacerbation of idiopathic pulmonary fibrosis and nonspecific interstitial pneumonia in 38 and 10% of the cases, respectively. Alveolar epithelium infection by cytomegalovirus was observed in 25% of organizing pneumonia patterns. These findings were coincident with nuclear cytopathic effects but without demonstration of cytomegalovirus inclusions. These data indicate that diffuse alveolar damage-related cytomegalovirus or measles virus infections enhance lung injury, and a direct involvement of these viruses in diffuse alveolar damage-related histological patterns is likely. Immunohistochemistry was more sensitive than the histological demonstration of cytomegalovirus or measles virus inclusions. We concluded that all patients with diffuse alveolar damage-related histological patterns should be investigated for cytomegalovirus and measles virus using sensitive immunohistochemistry in conjunction with routine procedures.

  7. Measles epidemic in Brazil in the post-elimination period: Coordinated response and containment strategies.

    Science.gov (United States)

    Lemos, Daniele Rocha Queiroz; Franco, Aidée Ramirez; de Sá Roriz, Maria Lúcia Feitosa; Carneiro, Ana Karine Borges; de Oliveira Garcia, Márcio Henrique; de Souza, Fábia Lidiana; Duron Andino, Regina; de Góes Cavalcanti, Luciano Pamplona

    2017-03-23

    The measles virus circulation was halted in Brazil in 2001 and the country has a routine vaccination coverage against measles, mumps and rubella higher than 95%. In Ceará, the last confirmed case was in 1999. This article describes the strategies adopted and the effectiveness of surveillance and control measures implemented during a measles epidemic in the post-elimination period. The epidemic started in December 2013 and lasted 20 months, reaching 38 cities and 1,052 confirmed cases. The D8 genotype was identified. More than 50,000 samples were tested for measles and 86.4% of the confirmed cases had a laboratory diagnosis. The beginning of an campaign vaccination was delayed in part by the availability of vaccine. The classic control measures were not enough to control the epidemic. The creation of a committee of experts, the agreement signed between managers of the three spheres of government, the conducting of an institutional active search of suspected cases, vaccination door to door at alternative times, the use of micro planning, a broad advertising campaign at local media and technical operative support contributed to containing the epidemic. It is important to recognize the possibility of epidemics at this stage of post-elimination and prepare a sensitive surveillance system for timely response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Antibody levels to tetanus, diphtheria, measles and varicella in patients with primary immunodeficiency undergoing intravenous immunoglobulin therapy: a prospective study.

    Science.gov (United States)

    Nobre, Fernanda Aimée; Gonzalez, Isabela Garrido da Silva; Simão, Raquel Maria; de Moraes Pinto, Maria Isabel; Costa-Carvalho, Beatriz Tavares

    2014-06-21

    Patients with antibody deficiencies depend on the presence of a variety of antibody specificities in intravenous immunoglobulin (IVIG) to ensure continued protection against pathogens. Few studies have examined levels of antibodies to specific pathogens in IVIG preparations and little is known about the specific antibody levels in patients under regular IVIG treatment. The current study determined the range of antibodies to tetanus, diphtheria, measles and varicella in IVIG products and the levels of these antibodies in patients undergoing IVIG treatment. We selected 21 patients with primary antibody deficiencies who were receiving regular therapy with IVIG. Over a period of one year, we collected four blood samples from each patient (every 3 months), immediately before immunoglobulin infusion. We also collected samples from the IVIG preparation the patients received the month prior to blood collection. Antibody levels to tetanus, diphtheria, measles and varicella virus were measured in plasma and IVIG samples. Total IgG levels were determined in plasma samples. Antibody levels to tetanus, diphtheria, varicella virus and measles showed considerable variation in different IVIG lots, but they were similar when compared between commercial preparations. All patients presented with protective levels of antibodies specific for tetanus, measles and varicella. Some patients had suboptimal diphtheria antibody levels. There was a significant correlation between serum and IVIG antibodies to all pathogens, except tetanus. There was a significant correlation between diphtheria and varicella antibodies with total IgG levels, but there was no significant correlation with antibodies to tetanus or measles. The study confirmed the variation in specific antibody levels between batches of the same brand of IVIG. Apart from the most common infections to which these patients are susceptible, health care providers must be aware of other vaccine preventable diseases, which still exist

  9. Emergency measles control activities--Darfur, Sudan, 2004.

    Science.gov (United States)

    2004-10-01

    The Darfur region of Sudan, composed of three states with a population of approximately six million, has experienced civil conflict during the previous year, resulting in the internal displacement of approximately one million residents and an exodus of an estimated 170,000 persons to neighboring Chad. The conflict has left a vulnerable population with limited access to food, health care, and other basic necessities. In addition, measles vaccination coverage has been adversely affected; in 2003, coverage was reported to be 46%, 57%, and 77% in North, West, and South Darfur, respectively. This report describes measles-control activities in Darfur region conducted by the Federal Ministry of Health (FMOH) in Sudan in collaboration with the United Nations and nongovernmental organizations (NGOs) during March-August 2004. Ongoing measles transmission in camps for internally displaced persons (IDPs) and neighboring communities in Darfur led to a regionwide measles vaccination campaign targeting all children aged 9 months-15 years, resulting in a reduction in reported measles cases. Once security is improved, ongoing efforts to increase measles vaccine coverage will be required to eliminate persistent susceptibility to measles in the Darfur population.

  10. RESPONSE OF VOLTA CHILDREN TO JET INOCULATION OF COMBINED LIVE MEASLES, SMALLPOX AND YELLOW FEVER VACCINES.

    Science.gov (United States)

    MEYER, H M; HOSTETLER, D D; BERNHEIN, B C; ROGERS, N G; LAMBIN, P; CHASSARY, A; LABUSQUIERE, R; SMADEL, J E

    1964-01-01

    An earlier study established that Upper Volta children respond to vaccination with the Enders live attenuated measles strain in the same general fashion as do children in the USA. The present report describes a second pilot project carried out in Ouagadougou, Upper Volta. During this investigation various mixtures of live measles, smallpox and 17D yellow fever vaccines were introduced into susceptible infants by jet injection. Combining the attenuated virus vaccines did not alter or accentuate the characteristic clinical reactions elicited by the individual components, nor was there evidence of significant immunological interference. From this experience it is concluded that combined vaccination with these agents may be safely and effectively employed in larger programmes as the need dictates.

  11. Measles seroprevalence, outbreaks, and vaccine coverage in Rwanda.

    Science.gov (United States)

    Seruyange, Eric; Gahutu, Jean-Bosco; Mambo Muvunyi, Claude; Uwimana, Zena G; Gatera, Maurice; Twagirumugabe, Theogene; Katare, Swaibu; Karenzi, Ben; Bergström, Tomas

    2016-01-01

    Measles outbreaks are reported after insufficient vaccine coverage, especially in countries recovering from natural disaster or conflict. We compared seroprevalence to measles in blood donors in Rwanda and Sweden and explored distribution of active cases of measles and vaccine coverage in Rwanda. 516 Rwandan and 215 Swedish blood donors were assayed for measles-specific immunoglobulin G (IgG) by enzyme-linked immunosorbent assay (ELISA). Data on vaccine coverage and acute cases in Rwanda from 1980 to 2014 were collected, and IgM on serum samples and polymerase chain reaction (PCR) on nasopharyngeal (NPH) swabs from suspected measles cases during 2010-2011 were analysed. The seroprevalence of measles IgG was significantly higher in Swedish blood donors (92.6%; 95% CI: 89.1-96.1%) compared to Rwandan subjects (71.5%; 95% CI: 67.6-75.4%) and more pronounced Rwanda, with the exception of an outbreak in 1995 following the 1994 genocide. 76/544 serum samples were IgM positive and 21/31 NPH swabs were PCR positive for measles, determined by sequencing to be of genotype B3. Measles seroprevalence was lower in Rwandan blood donors compared to Swedish subjects. Despite this, the number of reported measles cases in Rwanda rapidly decreased during the study period, concomitant with increased vaccine coverage. Taken together, the circulation of measles was limited in Rwanda and vaccine coverage was favourable, but seroprevalence and IgG levels were low especially in younger age groups.

  12. Measles Vaccination in the Presence or Absence of Maternal Measles Antibody: Impact on Child Survival

    Science.gov (United States)

    Aaby, Peter; Martins, Cesário L.; Garly, May-Lill; Andersen, Andreas; Fisker, Ane B.; Claesson, Mogens H.; Ravn, Henrik; Rodrigues, Amabelia; Whittle, Hilton C.; Benn, Christine S.

    2014-01-01

    Background. Measles vaccine (MV) has a greater effect on child survival when administered in early infancy, when maternal antibody may still be present. Methods. To test whether MV has a greater effect on overall survival if given in the presence of maternal measles antibody, we reanalyzed data from 2 previously published randomized trials of a 2-dose schedule with MV given at 4–6 months and at 9 months of age. In both trials antibody levels had been measured before early measles vaccination. Results. In trial I (1993–1995), the mortality rate was 0.0 per 1000 person-years among children vaccinated with MV in the presence of maternal antibody and 32.3 per 1000 person-years without maternal antibody (mortality rate ratio [MRR], 0.0; 95% confidence interval [CI], 0–.52). In trial II (2003–2007), the mortality rate was 4.2 per 1000 person-years among children vaccinated in presence of maternal measles antibody and 14.5 per 1000 person-years without measles antibody (MRR, 0.29; 95% CI, .09–.91). Possible confounding factors did not explain the difference. In a combined analysis, children who had measles antibody detected when they received their first dose of MV at 4–6 months of age had lower mortality than children with no maternal antibody, the MRR being 0.22 (95% CI, .07–.64) between 4–6 months and 5 years. Conclusions. Child mortality in low-income countries may be reduced by vaccinating against measles in the presence of maternal antibody, using a 2-dose schedule with the first dose at 4–6 months (earlier than currently recommended) and a booster dose at 9–12 months of age. Clinical Trials Registration. NCT00168558. PMID:24829213

  13. Measles

    Science.gov (United States)

    ... Z Regions » Africa Americas South-East Asia Europe Eastern Mediterranean Western Pacific WHO in countries » Overview Statistics ... of children to receive measles vaccine in north-eastern Nigeria 16 January 2017 WHO strengthens South Sudan’s ...

  14. The C protein of measles virus inhibits the type I interferon response

    International Nuclear Information System (INIS)

    Shaffer, Jessica A.; Bellini, William J.; Rota, Paul A.

    2003-01-01

    Type I interferons (IFNα/β) are an important part of innate immunity to viral infections because they induce an antiviral response and limit viral replication until the adaptive response clears the infection. Since the nonstructural proteins of several paramyxoviruses inhibit the IFNα/β response, we chose to explore the role of the C protein of measles virus (MV) in such inhibition. Previous studies have suggested that the MV C protein may serve as a virulence factor, but its role in the pathogenesis of MV remains undefined. In the present study, a recombinant MV strain that does not express the C protein (MV C-) and its parental strain (Ed Tag) were used. Growth of MV C- was restricted in human peripheral blood mononuclear cells and HeLa cells, but in the presence of neutralizing antibodies to IFNα/β, MV C- produced titers that were equivalent to those of Ed Tag. In addition, expression of the MV C protein from plasmid DNA inhibited the production of an IFNα/β responsive reporter gene and, to a lesser extent, inhibited an IFNγ responsive reporter gene. The ability of the MV C protein to suppress the IFNα/β response was confirmed using a biologic assay. After IFNβ stimulation, HeLa cells infected with Ed Tag produced five-fold less IFNα/β than cells infected with MV C-. While the mechanism of inhibition remains unclear, these data suggest that the MV C protein plays an important role in the pathogenesis of MV by inhibiting IFNα/β signaling

  15. MVA recombinants expressing the fusion and hemagglutinin genes of PPRV protects goats against virulent challenge.

    Science.gov (United States)

    Chandran, Dev; Reddy, Kolli Bhaktavatsala; Vijayan, Shahana Pallichera; Sugumar, Parthasarthy; Rani, Gudavalli Sudha; Kumar, Ponsekaran Santha; Rajendra, Lingala; Srinivasan, Villuppanoor Alwar

    2010-09-01

    Peste des Petits Ruminants (PPR) is a highly contagious animal disease caused by the Peste des Petits Ruminants virus (PPRV) belonging to the genus morbillivirus and family Paramyxoviridae. The disease results in high morbidity and mortality in goats, sheep and in some small wild ruminants. The presence of large number of small ruminants reared in endemic areas makes PPR a notorious disease threatening the livelihood of poor farmers. Conventional vaccination using a live, attenuated vaccine gives adequate protection but cannot be used in case of eradication of the disease due to difficulty in differentiation of infected animals from the vaccinated ones.In the present study, we constructed two recombinant viruses using attenuated Modified Vaccinia virus Ankara virus (MVA) namely MVA-F and MVA-H expressing the full length PPRV fusion (F) and hemagglutinin (H) glycoproteins, respectively. Goats were vaccinated intramuscularly with 105 plaque forming units (PFU) each of the recombinant viruses and a live attenuated vaccine (RAKSHA PPR) and challenged 4 months later with PPRV challenge virus (10(3) goat LD(50)). All goats were completely protected from the clinical disease. This study gave an indication that mass vaccination of small ruminants with either of the above or both recombinant inexpensive virus vaccines could help in possible eradication of PPRV from endemic countries like India and subsequent seromonitoring of the disease for differentiation of infected animals from vaccinated ones.

  16. Clinical outcome in measles patients hospitalized with complications

    International Nuclear Information System (INIS)

    Rehman, A.U.; Saeed, T.

    2008-01-01

    Measles is a highly communicable viral illness and is common cause of childhood mortality and morbidity. Keeping in view the high prevalence of measles in the developing world, we carried out this study to look into the complicated measles cases and clinical outcome in patients admitted in children ward of Ayub Teaching Hospital. Detailed history and physical examination of all the hospitalized patients with complication of measles were recorded in a proforma. Immunization and nutritional status of each admitted patient was assessed and the clinical outcome of measles was compared with demographic profile. one hundred thirty six hospitalized patients with complications of measles were studied. There was 60.3% male and 57.3% of patients were vaccinated against measles. Malnourished patients were 71.35% and had longer hospital stay (>5 days). Pneumonia (39.7%) and diarrhoea (38.2%) were the commonest complications. Seven children died and encephalitis (57.1%) was the commonest cause of death. The most common complications of measles are pneumonia and diarrhoea with dehydration requiring admission. Malnutrition results in more complications and longer hospital stay. Mortality is significantly associated with encephalitis. (author)

  17. Transmission of Influenza A Viruses

    Science.gov (United States)

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to ‘novel’ viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages. PMID:25812763

  18. Circulating avian influenza viruses closely related to the 1918 virus have pandemic potential

    Science.gov (United States)

    Watanabe, Tokiko; Zhong, Gongxun; Russell, Colin A.; Nakajima, Noriko; Hatta, Masato; Hanson, Anthony; McBride, Ryan; Burke, David F.; Takahashi, Kenta; Fukuyama, Satoshi; Tomita, Yuriko; Maher, Eileen A.; Watanabe, Shinji; Imai, Masaki; Neumann, Gabriele; Hasegawa, Hideki; Paulson, James C.; Smith, Derek J.; Kawaoka, Yoshihiro

    2014-01-01

    Summary Wild birds harbor a large gene pool of influenza A viruses that have the potential to cause influenza pandemics. Foreseeing and understanding this potential is important for effective surveillance. Our phylogenetic and geographic analyses revealed the global prevalence of avian influenza virus genes whose proteins differ only a few amino acids from the 1918 pandemic influenza virus, suggesting that 1918-like pandemic viruses may emerge in the future. To assess this risk, we generated and characterized a virus composed of avian influenza viral segments with high homology to the 1918 virus. This virus exhibited higher pathogenicity in mice and ferrets than an authentic avian influenza virus. Further, acquisition of seven amino acid substitutions in the viral polymerases and the hemagglutinin surface glycoprotein conferred respiratory droplet transmission to the 1918-like avian virus in ferrets, demonstrating that contemporary avian influenza viruses with 1918 virus-like proteins may have pandemic potential. PMID:24922572

  19. Measles vaccination in the presence or absence of maternal measles antibody

    DEFF Research Database (Denmark)

    Aaby, Peter; Martins, Cesário L; Garly, May-Lill

    2014-01-01

    vaccinated with MV in the presence of maternal antibody and 32.3 per 1000 person-years without maternal antibody (mortality rate ratio [MRR], 0.0; 95% confidence interval [CI], 0-.52). In trial II (2003-2007), the mortality rate was 4.2 per 1000 person-years among children vaccinated in presence of maternal...... mortality than children with no maternal antibody, the MRR being 0.22 (95% CI, .07-.64) between 4-6 months and 5 years. CONCLUSIONS: Child mortality in low-income countries may be reduced by vaccinating against measles in the presence of maternal antibody, using a 2-dose schedule with the first dose at 4......BACKGROUND: Measles vaccine (MV) has a greater effect on child survival when administered in early infancy, when maternal antibody may still be present. METHODS: To test whether MV has a greater effect on overall survival if given in the presence of maternal measles antibody, we reanalyzed data...

  20. Allergic disease and atopic sensitization in children in relation to measles vaccination and measles infection.

    NARCIS (Netherlands)

    Rosenlund, H.; Bergstrom, A.; Alm, J.; Swartz, J.; Scheynius, A.; van Hage, M.; Johansen, K.; Brunekreef, B.|info:eu-repo/dai/nl/067548180; von Mutius, E.; Ege, M.; Riedler, J.; Braun-Fahrlander, C.; Waser, M.; Pershagen, G.

    2009-01-01

    OBJECTIVE: Our aim was to investigate the role of measles vaccination and measles infection in the development of allergic disease and atopic sensitization. METHODS: A total of 14 893 children were included from the cross-sectional, multicenter Prevention of Allergy-Risk Factors for Sensitization in

  1. Allergic Disease and Atopic Sensitization in Children in Relation to Measles Vaccination and Measles Infection

    NARCIS (Netherlands)

    Rosenlund, Helen; Bergstrom, Anna; Alm, Johan S.; Swartz, Jackie; Scheynius, Annika; van Hage, Marianne; Johansen, Kari; Brunekreef, Bert; von Mutius, Erika; Ege, Markus J.; Riedler, Josef; Braun-Fahrlaender, Charlotte; Waser, Marco; Pershagen, Goran

    OBJECTIVE. Our aim was to investigate the role of measles vaccination and measles infection in the development of allergic disease and atopic sensitization. METHODS. A total of 14 893 children were included from the cross-sectional, multicenter Prevention of Allergy-Risk Factors for Sensitization in

  2. Development and Characterization of Canine Distemper Virus Monoclonal Antibodies.

    Science.gov (United States)

    Liu, Yuxiu; Hao, Liying; Li, Xiangdong; Wang, Linxiao; Zhang, Jianpo; Deng, Junhua; Tian, Kegong

    2017-06-01

    Five canine distemper virus monoclonal antibodies were developed by immunizing BALB/c mice with a traditional vaccine strain Snyder Hill. Among these monoclonal antibodies, four antibodies recognized both field and vaccine strains of canine distemper virus without neutralizing ability. One monoclonal antibody, 1A4, against hemagglutinin protein of canine distemper virus was found to react only with vaccine strain virus but not field isolates, and showed neutralizing activity to vaccine strain virus. These monoclonal antibodies could be very useful tools in the study of the pathogenesis of canine distemper virus and the development of diagnostic reagents.

  3. Phylogeography of Influenza A(H3N2) Virus in Peru, 2010-2012.

    Science.gov (United States)

    Pollett, Simon; Nelson, Martha I; Kasper, Matthew; Tinoco, Yeny; Simons, Mark; Romero, Candice; Silva, Marita; Lin, Xudong; Halpin, Rebecca A; Fedorova, Nadia; Stockwell, Timothy B; Wentworth, David; Holmes, Edward C; Bausch, Daniel G

    2015-08-01

    It remains unclear whether lineages of influenza A(H3N2) virus can persist in the tropics and seed temperate areas. We used viral gene sequence data sampled from Peru to test this source-sink model for a Latin American country. Viruses were obtained during 2010-2012 from influenza surveillance cohorts in Cusco, Tumbes, Puerto Maldonado, and Lima. Specimens positive for influenza A(H3N2) virus were randomly selected and underwent hemagglutinin sequencing and phylogeographic analyses. Analysis of 389 hemagglutinin sequences from Peru and 2,192 global sequences demonstrated interseasonal extinction of Peruvian lineages. Extensive mixing occurred with global clades, but some spatial structure was observed at all sites; this structure was weakest in Lima and Puerto Maldonado, indicating that these locations may experience greater viral traffic. The broad diversity and co-circulation of many simultaneous lineages of H3N2 virus in Peru suggests that this country should not be overlooked as a potential source for novel pandemic strains.

  4. Influenza A Virus with a Human-Like N2 Gene Is Circulating in Pigs

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2013-01-01

    A novel reassortant influenza A virus, H1avN2hu, has been found in Danish swine. The virus contains an H1 gene similar to the hemagglutinin (HA) gene of H1N1 avian-like swine viruses and an N2 gene most closely related to the neuraminidase (NA) gene of human H3N2 viruses from the mid-1990s....

  5. Comparative study of the hemagglutinin and neuraminidase genes of influenza A virus H3N2, H9N2, and H5N1 subtypes using bioinformatics techniques.

    Science.gov (United States)

    Ahn, Insung; Son, Hyeon S

    2007-07-01

    To investigate the genomic patterns of influenza A virus subtypes, such as H3N2, H9N2, and H5N1, we collected 1842 sequences of the hemagglutinin and neuraminidase genes from the NCBI database and parsed them into 7 categories: accession number, host species, sampling year, country, subtype, gene name, and sequence. The sequences that were isolated from the human, avian, and swine populations were extracted and stored in a MySQL database for intensive analysis. The GC content and relative synonymous codon usage (RSCU) values were calculated using JAVA codes. As a result, correspondence analysis of the RSCU values yielded the unique codon usage pattern (CUP) of each subtype and revealed no extreme differences among the human, avian, and swine isolates. H5N1 subtype viruses exhibited little variation in CUPs compared with other subtypes, suggesting that the H5N1 CUP has not yet undergone significant changes within each host species. Moreover, some observations may be relevant to CUP variation that has occurred over time among the H3N2 subtype viruses isolated from humans. All the sequences were divided into 3 groups over time, and each group seemed to have preferred synonymous codon patterns for each amino acid, especially for arginine, glycine, leucine, and valine. The bioinformatics technique we introduce in this study may be useful in predicting the evolutionary patterns of pandemic viruses.

  6. Measles in Pakistan: Time to make steps towards eradication.

    Science.gov (United States)

    Rehman, Inayat Ur; Bukhsh, Allah; Khan, Tahir Mehmood

    World Health Organization (WHO) measles surveillance data report a reduction in cases of measles globally from 67,524 cases in 2015 to 16,846 in 2016, and a reduction in deaths from 546,800 to 114,900 during period of 2000-14. Pakistan is among the five nations where almost a million children did not receive their first dose of measles vaccination, and outbreaks of the disease resulted in 4386 cases in 2011, 14,687 cases in 2012 with 310 deaths. In 2013, about 25,401 cases of measles were reported and 321 affected children died. The measles vaccination coverage is very low in Pakistan for both 1st dose and booster dose. To prevent outbreaks of measles in Pakistan a national vaccination program should be launched side by side with a polio eradication program in each district and township and a campaign should be launched to educate parents on measles vaccination for childrens to reduce the measles case fatality rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Structural Basis for a Switch in Receptor Binding Specificity of Two H5N1 Hemagglutinin Mutants

    Directory of Open Access Journals (Sweden)

    Xueyong Zhu

    2015-11-01

    Full Text Available Avian H5N1 influenza viruses continue to spread in wild birds and domestic poultry with sporadic infection in humans. Receptor binding specificity changes are a prerequisite for H5N1 viruses and other zoonotic viruses to be transmitted among humans. Previous reported hemagglutinin (HA mutants from ferret-transmissible H5N1 viruses of A/Vietnam/1203/2004 and A/Indonesia/5/2005 showed slightly increased, but still very weak, binding to human receptors. From mutagenesis and glycan array studies, we previously identified two H5N1 HA mutants that could more effectively switch receptor specificity to human-like α2-6-linked sialosides with avidity comparable to wild-type H5 HA binding to avian-like α2-3-linked sialosides. Here, crystal structures of these two H5 HA mutants free and in complex with human and avian glycan receptor analogs reveal the structural basis for their preferential binding to human receptors. These findings suggest continuous surveillance should be maintained to monitor and assess human-to-human transmission potential of H5N1 viruses.

  8. Stop measles in Switzerland - The importance of travel medicine.

    Science.gov (United States)

    Bühler, Silja; Lang, Phung; Bally, Bettina; Hatz, Christoph; Jaeger, Veronika K

    2017-06-27

    In line with the worldwide strive to combat measles, the Swiss Federal Office of Public Heath (FOPH) launched a National Strategy for measles elimination 2011-2015. In this study, we highlight the importance of travel medicine consultations to complement measles vaccination programmes based on data from the Travel Clinic of the University of Zurich. We analysed measles vaccination data from the Zurich Travel Clinic between July 2010 and February 2016 and focused on three groups: (i) all clients who received the measles vaccination, (ii) all clients aged>two years who received the measles vaccination ("catch-up vaccination"), and (iii) all clients aged>two years and born after 1963 ("FOPH recommended catch-up vaccination"). 107,669 consultations were performed from 2010 to 2016. In 12,470 (11.6%) of these, a measles vaccination was administered; 90.9% measles vaccinations were given during a pre-travel consultation, and 99.4% were administered to individuals aged>two years ("catch-up vaccinations"). An "FOPH recommended catch-up vaccination" was received by 13.6% of all Zurich Travel Clinic clients aged >2years and born after 1963. In this study, we highlight the importance of travel medicine consultations to enhance the measles vaccination coverage in the adult Swiss population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Implication of health care personnel in measles transmission

    Science.gov (United States)

    Torner, Núria; Solano, Ruben; Rius, Cristina; Domínguez, Angela; Surveillance Network of Catalonia, Spain, the Measles Elimination Program

    2014-01-01

    Healthcare personnel (HCP) play an important role in transmission of highly contagious diseases such as measles. Current immunization guidelines in Catalonia include Measles-Mumps-Rubella (MMR) immunization for HCP born after 1967 without evidence of immunity. Despite high vaccination coverage (90%) a high burden of measles cases related to outbreaks have occurred. The aim of this study was to assess the implication of HCP in measles transmission related to healthcare setting. A review of surveillance case data from 2001 to 2013 gathered through the Measles Elimination Program in Catalonia was performed. Twenty six outbreaks involving 797 cases were reported, 52 (6.5%) were HCP aged 21–41 years, 72,5% (38) patient were care personnel (doctors and nurses) and 22,5% (14) other health care related personnel. Forty six 87%) were unvaccinated, 4(10%) had only one dose and 2 had two doses of MMR. In community outbreaks 30 clusters with HCP involved were observed, yet none were identified as index cases. Non-vaccinated HCPs against measles were all under 45 years of age. Vaccination is the only reliable protection against nosocomial spread of measles from HCPs. Assessing vaccination status of HCPs and implementing a 2 dose vaccination in those lacking evidence of immunity is needed in order to set to zero the risk of acquiring and spreading measles in healthcare (HC) settings. PMID:25483548

  10. Detection of closed influenza virus hemagglutinin fusion peptide structures in membranes by backbone {sup 13}CO-{sup 15}N rotational-echo double-resonance solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Ujjayini; Xie Li; Weliky, David P., E-mail: weliky@chemistry.msu.edu [Michigan State University, Department of Chemistry (United States)

    2013-02-15

    The influenza virus fusion peptide is the N-terminal {approx}20 residues of the HA2 subunit of the hemagglutinin protein and this peptide plays a key role in the fusion of the viral and endosomal membranes during initial infection of a cell. The fusion peptide adopts N-helix/turn/C-helix structure in both detergent and membranes with reports of both open and closed interhelical topologies. In the present study, backbone {sup 13}CO-{sup 15}N REDOR solid-state NMR was applied to the membrane-associated fusion peptide to detect the distribution of interhelical distances. The data clearly showed a large fraction of closed and semi-closed topologies and were best-fitted to a mixture of two structures that do not exchange. One of the earlier open structural models may have incorrect G13 dihedral angles derived from TALOS analysis of experimentally correct {sup 13}C shifts.

  11. Evidence of pestivirus RNA in human virus vaccines.

    Science.gov (United States)

    Harasawa, R; Tomiyama, T

    1994-01-01

    We examined live virus vaccines against measles, mumps, and rubella for the presence of pestivirus RNA or of pestiviruses by reverse transcription PCR. Pestivirus RNA was detected in two measles-mumps-rubella combined vaccines and in two monovalent vaccines against mumps and rubella. Nucleotide sequence analysis of the PCR products indicated that a modified live vaccine strain used for immunization of cattle against bovine viral diarrhea is not responsible for the contamination of the vaccines. Images PMID:8077414

  12. A Single-Amino-Acid Substitution at Position 225 in Hemagglutinin Alters the Transmissibility of Eurasian Avian-Like H1N1 Swine Influenza Virus in Guinea Pigs.

    Science.gov (United States)

    Wang, Zeng; Yang, Huanliang; Chen, Yan; Tao, Shiyu; Liu, Liling; Kong, Huihui; Ma, Shujie; Meng, Fei; Suzuki, Yasuo; Qiao, Chuanling; Chen, Hualan

    2017-11-01

    Efficient transmission from human to human is the prerequisite for an influenza virus to cause a pandemic; however, the molecular determinants of influenza virus transmission are still largely unknown. In this study, we explored the molecular basis for transmission of Eurasian avian-like H1N1 (EAH1N1) swine influenza viruses by comparing two viruses that are genetically similar but differ in their transmissibility in guinea pigs: the A/swine/Guangxi/18/2011 virus (GX/18) is highly transmissible by respiratory droplet in guinea pigs, whereas the A/swine/Heilongjiang/27/2012 virus (HLJ/27) does not transmit in this animal model. We used reverse genetics to generate a series of reassortants and mutants in the GX/18 background and tested their transmissibility in guinea pigs. We found that a single-amino-acid substitution of glycine (G) for glutamic acid (E) at position 225 (E225G) in the HA1 protein completely abolished the respiratory droplet transmission of GX/18, whereas the substitution of E for G at the same position (G225E) in HA1 enabled HLJ/27 to transmit in guinea pigs. We investigated the underlying mechanism and found that viruses bearing 225E in HA1 replicated more rapidly than viruses bearing 225G due to differences in assembly and budding efficiencies. Our study indicates that the amino acid 225E in HA1 plays a key role in EAH1N1 swine influenza virus transmission and provides important information for evaluating the pandemic potential of field influenza virus strains. IMPORTANCE Efficient transmission among humans is a prerequisite for a novel influenza virus to cause a human pandemic. Transmissibility of influenza viruses is a polygenic trait, and understanding the genetic determinants for transmissibility will provide useful insights for evaluating the pandemic potential of influenza viruses in the field. Several amino acids in the hemagglutinin (HA) protein of influenza viruses have been shown to be important for transmissibility, usually by

  13. Phylogeography of Influenza A(H3N2) Virus in Peru, 2010–2012

    Science.gov (United States)

    Nelson, Martha I.; Kasper, Matthew; Tinoco, Yeny; Simons, Mark; Romero, Candice; Silva, Marita; Lin, Xudong; Halpin, Rebecca A.; Fedorova, Nadia; Stockwell, Timothy B.; Wentworth, David; Holmes, Edward C.; Bausch, Daniel G.

    2015-01-01

    It remains unclear whether lineages of influenza A(H3N2) virus can persist in the tropics and seed temperate areas. We used viral gene sequence data sampled from Peru to test this source–sink model for a Latin American country. Viruses were obtained during 2010–2012 from influenza surveillance cohorts in Cusco, Tumbes, Puerto Maldonado, and Lima. Specimens positive for influenza A(H3N2) virus were randomly selected and underwent hemagglutinin sequencing and phylogeographic analyses. Analysis of 389 hemagglutinin sequences from Peru and 2,192 global sequences demonstrated interseasonal extinction of Peruvian lineages. Extensive mixing occurred with global clades, but some spatial structure was observed at all sites; this structure was weakest in Lima and Puerto Maldonado, indicating that these locations may experience greater viral traffic. The broad diversity and co-circulation of many simultaneous lineages of H3N2 virus in Peru suggests that this country should not be overlooked as a potential source for novel pandemic strains. PMID:26196599

  14. Migration and persistence of human influenza A viruses, Vietnam, 2001-2008.

    Science.gov (United States)

    Le, Mai Quynh; Lam, Ha Minh; Cuong, Vuong Duc; Lam, Tommy Tsan-Yuk; Halpin, Rebecca A; Wentworth, David E; Hien, Nguyen Tran; Thanh, Le Thi; Phuong, Hoang Vu Mai; Horby, Peter; Boni, Maciej F

    2013-11-01

    Understanding global influenza migration and persistence is crucial for vaccine strain selection. Using 240 new human influenza A virus whole genomes collected in Vietnam during 2001-2008, we looked for persistence patterns and migratory connections between Vietnam and other countries. We found that viruses in Vietnam migrate to and from China, Hong Kong, Taiwan, Cambodia, Japan, South Korea, and the United States. We attempted to reduce geographic bias by generating phylogenies subsampled at the year and country levels. However, migration events in these phylogenies were still driven by the presence or absence of sequence data, indicating that an epidemiologic study design that controls for prevalence is required for robust migration analysis. With whole-genome data, most migration events are not detectable from the phylogeny of the hemagglutinin segment alone, although general migratory relationships between Vietnam and other countries are visible in the hemagglutinin phylogeny. It is possible that virus lineages in Vietnam persisted for >1 year.

  15. Measles, One of the Re-emerging Diseases

    Directory of Open Access Journals (Sweden)

    Zeynep Türe

    2016-03-01

    Full Text Available Objective: The aim of the study is to stand out the measles which is a highly contagious re-emerging viral illness and may cause severe complications in susceptible population. Methods: This retrospective study was conducted on patients who were diagnosed with measles in the department of Infectious Diseases, Erciyes University Hospital, between January 2013 and February 2014. The diagnosis of measles was confirmed by measles specific immunoglobulin M (IgM antibody positivity in serum samples. Results: Nine patients were included the study. Three patients had a co-morbid condition including hematopoietic stem cell transplantation, pregnancy and diabetes mellitus. Four of the patients had hepatitis and one of them had pneumonia as a complication. Conclusion: Susceptible population, especially immunocompromised people are still at risk about measles. Adherence to universal vaccination programs is determinative in terms of breaking out of an outbreak. J Microbiol Infect Dis 2016;6(1: 19-22

  16. Investigation of a measles outbreak in Cordillera, northern Philippines, 2013

    Directory of Open Access Journals (Sweden)

    Paola Katrina Ching

    2016-07-01

    Full Text Available Introduction: Measles is a highly infectious viral illness that remains one of the leading causes of death among children worldwide. In the Philippines, decreasing routine vaccination coverage from 2007 to 2011 led to local measles outbreaks. A team investigated a measles outbreak reported in Cordillera of the Philippines in May 2013. Methods: Measles case data with symptom onset from 2 February to 27 May 2013 were obtained from official sources and verified on site. Data included age, sex, residential address, signs and symptoms and vaccination status. Active case-findings were also conducted for contacts of these cases. The living environments of the cases were investigated. A survey was conducted with the cases and caregivers to understand their knowledge and attitudes about measles. Results: There were 50 measles cases identified with an age range from six months to 32 years (median: 16 years. Thirty-two were male (64%. Twenty (40% were hospitalized with one death. Thirty-two (64% cases were laboratory confirmed, and 36 (72% received a single dose of measles vaccine. Overcrowded living environments were observed among many cases. The majority of respondents (46/48, 96% knew about measles, but there were misconceptions about the cause of measles and how it can be prevented and managed. Conclusion: This measles outbreak occurred in an area with low immunization coverage. Achieving 95% measles immunization coverage and strengthening routine immunization strategies to address high-risk populations are recommended. Also, we recommend health education campaigns to include components that address misconceptions about measles.

  17. Oral or parenteral administration of replication-deficient adenoviruses expressing the measles virus haemagglutinin and fusion proteins: protective immune responses in rodents.

    Science.gov (United States)

    Fooks, A R; Jeevarajah, D; Lee, J; Warnes, A; Niewiesk, S; ter Meulen, V; Stephenson, J R; Clegg, J C

    1998-05-01

    The genes encoding the measles virus (MV) haemagglutinin (H) and fusion (F) proteins were placed under the control of the human cytomegalovirus immediate early promoter in a replication-deficient adenovirus vector. Immunofluorescence and radioimmune precipitation demonstrated the synthesis of each protein and biological activity was confirmed by the detection of haemadsorption and fusion activities in infected cells. Oral as well as parenteral administration of the H-expressing recombinant adenovirus elicited a significant protective response in mice challenged with MV. While the F-expressing adenovirus failed to protect mice, cotton rats immunized with either the H- or F-expressing recombinant showed reduced MV replication in the lungs. Antibodies elicited in mice following immunization with either recombinant had no in vitro neutralizing activity, suggesting a protective mechanism involving a cell-mediated immune response. This study demonstrates the feasibility of using oral administration of adenovirus recombinants to induce protective responses to heterologous proteins.

  18. Immune Escape Variants of H9N2 Influenza Viruses Containing Deletions at the Hemagglutinin Receptor Binding Site Retain Fitness In Vivo and Display Enhanced Zoonotic Characteristics.

    Science.gov (United States)

    Peacock, Thomas P; Benton, Donald J; James, Joe; Sadeyen, Jean-Remy; Chang, Pengxiang; Sealy, Joshua E; Bryant, Juliet E; Martin, Stephen R; Shelton, Holly; Barclay, Wendy S; Iqbal, Munir

    2017-07-15

    H9N2 avian influenza viruses are enzootic in poultry across Asia and North Africa, where they pose a threat to human health as both zoonotic agents and potential pandemic candidates. Poultry vaccination against H9N2 viruses has been employed in many regions; however, vaccine effectiveness is frequently compromised due to antigenic drift arising from amino acid substitutions in the major influenza virus antigen hemagglutinin (HA). Using selection with HA-specific monoclonal antibodies, we previously identified H9N2 antibody escape mutants that contained deletions of amino acids in the 220 loop of the HA receptor binding sites (RBSs). Here we analyzed the impact of these deletions on virus zoonotic infection characteristics and fitness. We demonstrated that mutant viruses with RBS deletions are able to escape polyclonal antiserum binding and are able to infect and be transmitted between chickens. We showed that the deletion mutants have increased binding to human-like receptors and greater replication in primary human airway cells; however, the mutant HAs also displayed reduced pH and thermal stability. In summary, we infer that variant influenza viruses with deletions in the 220 loop could arise in the field due to immune selection pressure; however, due to reduced HA stability, we conclude that these viruses are unlikely to be transmitted from human to human by the airborne route, a prerequisite for pandemic emergence. Our findings underscore the complex interplay between antigenic drift and viral fitness for avian influenza viruses as well as the challenges of predicting which viral variants may pose the greatest threats for zoonotic and pandemic emergence. IMPORTANCE Avian influenza viruses, such as H9N2, cause disease in poultry as well as occasionally infecting humans and are therefore considered viruses with pandemic potential. Many countries have introduced vaccination of poultry to try to control the disease burden; however, influenza viruses are able to

  19. Unsustainability of a measles immunisation campaign - rise in ...

    African Journals Online (AJOL)

    The 1990 national mass measles immunisation campaign resulted in a marked reduction in measles incidence in Natal/KwaZulu in the first 6 months after the campaign. Data from the measles ward admissions book at Clairwood Hospital were collated for the period 1 January 1989 to 31 May 1992 to assess the ...

  20. Measles Case Fatality Rate in Bihar, India, 2011–12

    Science.gov (United States)

    Murhekar, Manoj V.; Ahmad, Mohammad; Shukla, Hemant; Abhishek, Kunwar; Perry, Robert T.; Bose, Anindya S.; Shimpi, Rahul; Kumar, Arun; Kaliaperumal, Kanagasabai; Sethi, Raman; Selvaraj, Vadivoo; Kamaraj, Pattabi; Routray, Satyabrata; Das, Vidya Nand; Menabde, Nata; Bahl, Sunil

    2014-01-01

    Background Updated estimates of measles case fatality rates (CFR) are critical for monitoring progress towards measles elimination goals. India accounted for 36% of total measles deaths occurred globally in 2011. We conducted a retrospective cohort study to estimate measles CFR and identify the risk factors for measles death in Bihar–one of the north Indian states historically known for its low vaccination coverage. Methods We systematically selected 16 of the 31 laboratory-confirmed measles outbreaks occurring in Bihar during 1 October 2011 to 30 April 2012. All households of the villages/urban localities affected by these outbreaks were visited to identify measles cases and deaths. We calculated CFR and used multivariate analysis to identify risk factors for measles death. Results The survey found 3670 measles cases and 28 deaths (CFR: 0.78, 95% confidence interval: 0.47–1.30). CFR was higher among under-five children (1.22%) and children belonging to scheduled castes/tribes (SC/ST, 1.72%). On multivariate analysis, independent risk factors associated with measles death were age Measles CFR in Bihar was low. To further reduce case fatality, health authorities need to ensure that SC/ST are targeted by the immunization programme and that outbreak investigations target for vitamin A treatment of cases in high risk groups such as SC/ST and young children and ensure regular visits by health-workers in affected villages to administer vitamin A to new cases. PMID:24824641

  1. Standardization of an inactivated H17N1 avian influenza vaccine and efficacy against A/Chicken/Italy/13474/99 high-pathogenicity virus infection.

    Science.gov (United States)

    Di Trani, L; Cordioli, P; Falcone, E; Lombardi, G; Moreno, A; Sala, G; Tollis, M

    2003-01-01

    The minimum requirements for assessing the immunogenicity of an experimental avian influenza (AI) vaccine prepared from inactivated A/Turkey/Italy/2676/99 (H7N1) low-pathogenicity (LP) AI (LPAI) virus were determined in chickens of different ages. A correlation between the amount of hemagglutinin (HA) per dose of vaccine and the protection against clinical signs of disease and infection by A/Chicken/Italy/13474/99 highly pathogenic (HP) AI (HPAI) virus was established. Depending on the vaccination schedule, one or two administrations of 0.5 microg of hemagglutinin protected chickens against clinical signs and death and completely prevented virus shedding from birds challenged at different times after vaccination.

  2. Seasonal trivalent inactivated influenza vaccine protects against 1918 Spanish influenza virus in ferrets

    Science.gov (United States)

    The influenza H1N1 pandemic of 1918 was one of the worst medical disasters in human history. Recent studies have demonstrated that the hemagglutinin (HA) protein of the 1918 virus and 2009 H1N1 pandemic virus, the latter now a component of the seasonal trivalent inactivated influenza vaccine (TIV),...

  3. THE RESULTS OF STUDY OF THE LEVELS OF SPECIFIC ANTIBODIES TO THE COMBINED INJECTION VACCINES AGAINST INFLUENZA, MEASLES, RUBELLA AND MUMPS AND DT IN CHILDREN WITH CHRONIC PHYSICAL ILLNESS

    Directory of Open Access Journals (Sweden)

    S. M. Haritе

    2014-01-01

    Full Text Available The levels of antibodies to the separate and combined administration of the vaccine plus Grippol® Plus and vaccines against measles, mumps and/or rubella, diphtheria and tetanus (DT in children with chronic medical illnesses, including HIV and organic CNS. Revealed that at low reactogenicity and safety of the vaccine Grippol® Plus, concomitant vaccination does not affect the dynamics of the synthesis (seroprotection, seroconversion, diphtheria, mumps, and rubella antibodies, however, reduces the synthesis of measles antibodies. When combined administration of DT and mumps-measles vaccines + Grippol® Plus suppressed antibody response to a strain of influenza virus A/H3N2. 

  4. Optimising measles virus-guided radiovirotherapy with external beam radiotherapy and specific checkpoint kinase 1 inhibition

    International Nuclear Information System (INIS)

    Touchefeu, Yann; Khan, Aadil A.; Borst, Gerben; Zaidi, Shane H.; McLaughlin, Martin; Roulstone, Victoria; Mansfield, David; Kyula, Joan; Pencavel, Tim; Karapanagiotou, Eleni M.; Clayton, Jamie; Federspiel, Mark J.; Russell, Steve J.; Garrett, Michelle; Collins, Ian; Harrington, Kevin J.

    2013-01-01

    Background and purpose: We previously reported a therapeutic strategy comprising replication-defective NIS-expressing adenovirus combined with radioiodide, external beam radiotherapy (EBRT) and DNA repair inhibition. We have now evaluated NIS-expressing oncolytic measles virus (MV-NIS) combined with NIS-guided radioiodide, EBRT and specific checkpoint kinase 1 (Chk1) inhibition in head and neck and colorectal models. Materials and methods: Anti-proliferative/cytotoxic effects of individual agents and their combinations were measured by MTS, clonogenic and Western analysis. Viral gene expression was measured by radioisotope uptake and replication by one-step growth curves. Potential synergistic interactions were tested in vitro by Bliss independence analysis and in in vivo therapeutic studies. Results: EBRT and MV-NIS were synergistic in vitro. Furthermore, EBRT increased NIS expression in infected cells. SAR-020106 was synergistic with EBRT, but also with MV-NIS in HN5 cells. MV-NIS mediated 131 I-induced cytotoxicity in HN5 and HCT116 cells and, in the latter, this was enhanced by SAR-020106. In vivo studies confirmed that MV-NIS, EBRT and Chk1 inhibition were effective in HCT116 xenografts. The quadruplet regimen of MV-NIS, virally-directed 131 I, EBRT and SAR-020106 had significant anti-tumour activity in HCT116 xenografts. Conclusion: This study strongly supports translational and clinical research on MV-NIS combined with radiation therapy and radiosensitising agents

  5. Migration and Persistence of Human Influenza A Viruses, Vietnam, 2001–2008

    Science.gov (United States)

    Le, Mai Quynh; Lam, Ha Minh; Cuong, Vuong Duc; Lam, Tommy Tsan-Yuk; Halpin, Rebecca A; Wentworth, David E; Hien, Nguyen Tran; Thanh, Le Thi; Phuong, Hoang Vu Mai; Horby, Peter

    2013-01-01

    Understanding global influenza migration and persistence is crucial for vaccine strain selection. Using 240 new human influenza A virus whole genomes collected in Vietnam during 2001–2008, we looked for persistence patterns and migratory connections between Vietnam and other countries. We found that viruses in Vietnam migrate to and from China, Hong Kong, Taiwan, Cambodia, Japan, South Korea, and the United States. We attempted to reduce geographic bias by generating phylogenies subsampled at the year and country levels. However, migration events in these phylogenies were still driven by the presence or absence of sequence data, indicating that an epidemiologic study design that controls for prevalence is required for robust migration analysis. With whole-genome data, most migration events are not detectable from the phylogeny of the hemagglutinin segment alone, although general migratory relationships between Vietnam and other countries are visible in the hemagglutinin phylogeny. It is possible that virus lineages in Vietnam persisted for >1 year. PMID:24188643

  6. Effects of supplemental measles immunization on cases of measles ...

    African Journals Online (AJOL)

    2014-03-01

    Mar 1, 2014 ... Background: Measles is a highly contagious vaccine-preventable infection which continues to be a significant cause of .... other exanthematous childhood illnesses not in con- .... Sixty-third World Health Assembly Agenda pro-.

  7. Diversity of the murine antibody response targeting influenza A(H1N1pdm09) hemagglutinin.

    Science.gov (United States)

    Wilson, Jason R; Tzeng, Wen-Pin; Spesock, April; Music, Nedzad; Guo, Zhu; Barrington, Robert; Stevens, James; Donis, Ruben O; Katz, Jacqueline M; York, Ian A

    2014-06-01

    We infected mice with the 2009 influenza A pandemic virus (H1N1pdm09), boosted with an inactivated vaccine, and cloned immunoglobulins (Igs) from HA-specific B cells. Based on the redundancy in germline gene utilization, we inferred that between 72-130 unique IgH VDJ and 35 different IgL VJ combinations comprised the anti-HA recall response. The IgH VH1 and IgL VK14 variable gene families were employed most frequently. A representative panel of antibodies were cloned and expressed to confirm reactivity with H1N1pdm09 HA. The majority of the recombinant antibodies were of high avidity and capable of inhibiting H1N1pdm09 hemagglutination. Three of these antibodies were subtype-specific cross-reactive, binding to the HA of A/South Carolina/1/1918(H1N1), and one further reacted with A/swine/Iowa/15/1930(H1N1). These results help to define the genetic diversity of the influenza anti-HA antibody repertoire profile induced following infection and vaccination, which may facilitate the development of influenza vaccines that are more protective and broadly neutralizing. Protection against influenza viruses is mediated mainly by antibodies, and in most cases this antibody response is narrow, only providing protection against closely related viruses. In spite of this limited range of protection, recent findings indicate that individuals immune to one influenza virus may contain antibodies (generally a minority of the overall response) that are more broadly reactive. These findings have raised the possibility that influenza vaccines could induce a more broadly protective response, reducing the need for frequent vaccine strain changes. However, interpretation of these observations is hampered by the lack of quantitative characterization of the antibody repertoire. In this study, we used single-cell cloning of influenza HA-specific B cells to assess the diversity and nature of the antibody response to influenza hemagglutinin in mice. Our findings help to put bounds on the

  8. Measles vaccine: a 27-year follow-up.

    LENUS (Irish Health Repository)

    Ramsay, M E

    1994-04-01

    In 1964, the Medical Research Council undertook a trial of measles vaccine in over 36,000 United Kingdom children; 9577 of whom received live vaccine, 10,625 received inactivated followed by live vaccines, and 16,328 acted as unvaccinated controls. Participants in this study have been followed to determine the long term protection from measles vaccine and follow-up data were available on 4194, 4638 and 274 respectively. During the 5-year period 1986-90, the protective efficacy of live measles vaccine has remained high at 87%, but the 95% confidence interval was wide (-43 to 99%) due to the small numbers of cases. Between 1976 and 1990, however, the overall efficacy of the live vaccine was 92% (95% confidence interval 86 to 95%) and there was no evidence of a decline in efficacy (P = 0.13) over the 15-year period. This study suggests that the protection from live measles vaccine persists for up to 27 years after vaccination, and that no change in the current United Kingdom measles immunization policy should be made on the grounds of waning immunity.

  9. Continuing evolution of H9N2 avian influenza virus in South Korea

    Science.gov (United States)

    The H9N2 low pathogenic avian influenza (LPAI) has caused great economic losses in Korean poultry industry since the first outbreak in 1996. Although the hemagglutinin gene of early H9N2 viruses were closely related to Chinese Y439-like lineage virus, it evolved into a unique Korean lineage after ...

  10. Priming T-cell responses with recombinant measles vaccine vector in a heterologous prime-boost setting in non-human primates.

    Science.gov (United States)

    Bolton, Diane L; Santra, Sampa; Swett-Tapia, Cindy; Custers, Jerome; Song, Kaimei; Balachandran, Harikrishnan; Mach, Linh; Naim, Hussein; Kozlowski, Pamela A; Lifton, Michelle; Goudsmit, Jaap; Letvin, Norman; Roederer, Mario; Radošević, Katarina

    2012-09-07

    Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston Zagreb vaccine strain was engineered to express simian immunodeficiency virus (SIV) Gag protein for the purpose of evaluating the immunogenicity of rMV as a vaccine vector in rhesus macaques. rMV-Gag immunization alone elicited robust measles-specific humoral and cellular responses, but failed to elicit transgene (Gag)-specific immune responses, following aerosol or intratracheal/intramuscular delivery. However, when administered as a priming vaccine to a heterologous boost with recombinant adenovirus serotype 5 expressing the same transgene, rMV-Gag significantly enhanced Gag-specific T lymphocyte responses following rAd5 immunization. Gag-specific humoral responses were not enhanced, however, which may be due to either the transgene or the vector. Cellular response priming by rMV against the transgene was highly effective even when using a suboptimal dose of rAd5 for the boost. These data demonstrate feasibility of using rMV as a priming component of heterologous prime-boost vaccine regimens for pathogens requiring strong cellular responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Antecedent causes of a measles resurgence in the Democratic ...

    African Journals Online (AJOL)

    Introduction: Despite accelerated measles control efforts, a massive measles resurgence occurred in the Democratic Republic of the Congo (DRC) starting in mid-2010, prompting an investigation into likely causes. Methods: We conducted a descriptive epidemiological analysis using measles immunization and surveillance ...

  12. Cowpox Virus in Llama, Italy

    Science.gov (United States)

    Brozzi, Alberto; Eleni, Claudia; Polici, Nicola; D’Alterio, Gianlorenzo; Carletti, Fabrizio; Scicluna, Maria Teresa; Castilletti, Concetta; Capobianchi, Maria R.; Di Caro, Antonino; Autorino, Gian Luca; Amaddeo, Demetrio

    2011-01-01

    Cowpox virus (CPXV) was isolated from skin lesions of a llama on a farm in Italy. Transmission electron microscopy showed brick-shaped particles consistent with orthopoxviruses. CPXV-antibodies were detected in llama and human serum samples; a CPXV isolate had a hemagglutinin sequence identical to CPXV-MonKre08/1–2-3 strains isolated from banded mongooses in Germany. PMID:21801638

  13. Measles trends and vaccine effectiveness in Nairobi, Kenya | Borus ...

    African Journals Online (AJOL)

    Objectives: To determine morbidity and mortality from measles and to estimate measles vaccine effectiveness among children hospitalised with measles in two hospitals in Nairobi. Design: A review of hospital records (index cards). Setting: Kenyatta National Hospital and Mbagathi District Hospitals covering the years ...

  14. A general measles vaccination campaign in urban Guinea-Bissau

    DEFF Research Database (Denmark)

    Byberg, S.; Thysen, S. M.; Rodrigues, A.

    2017-01-01

    Background Measles vaccination campaigns targeting children aged 9–59 months are conducted every three years in Guinea-Bissau. Studies have demonstrated beneficial non-specific effects of measles vaccine. We compared mortality one year after the December 2012 measles vaccination campaign in Bissa...

  15. Measles outbreak--California, December 2014-February 2015.

    Science.gov (United States)

    Zipprich, Jennifer; Winter, Kathleen; Hacker, Jill; Xia, Dongxiang; Watt, James; Harriman, Kathleen

    2015-02-20

    On January 5, 2015, the California Department of Public Health (CDPH) was notified about a suspected measles case. The patient was a hospitalized, unvaccinated child, aged 11 years with rash onset on December 28. The only notable travel history during the exposure period was a visit to one of two adjacent Disney theme parks located in Orange County, California. On the same day, CDPH received reports of four additional suspected measles cases in California residents and two in Utah residents, all of whom reported visiting one or both Disney theme parks during December 17-20. By January 7,seven California measles cases had been confirmed, and CDPH issued a press release and an Epidemic Information Exchange (Epi-X) notification to other states regarding this outbreak. Measles transmission is ongoing.

  16. Perspective of Use of Antiviral Peptides against Influenza Virus

    Czech Academy of Sciences Publication Activity Database

    Skaličková, S.; Heger, Z.; Krejčová, L.; Pekárik, V.; Bastl, K.; Janda, Jozef; Kostolanský, F.; Varečková, E.; Zítka, O.; Adam, V.; Kizek, R.

    2015-01-01

    Roč. 7, č. 10 (2015), s. 5428-5442 ISSN 1999-4915 R&D Projects: GA MŠk ED2.1.00/03.0124 Institutional support: RVO:67985904 Keywords : cationic peptides * hemagglutinin * influenza virus Subject RIV: EE - Microbiology, Virology Impact factor: 3.042, year: 2015

  17. Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses.

    Science.gov (United States)

    Holm, Christian K; Rahbek, Stine H; Gad, Hans Henrik; Bak, Rasmus O; Jakobsen, Martin R; Jiang, Zhaozaho; Hansen, Anne Louise; Jensen, Simon K; Sun, Chenglong; Thomsen, Martin K; Laustsen, Anders; Nielsen, Camilla G; Severinsen, Kasper; Xiong, Yingluo; Burdette, Dara L; Hornung, Veit; Lebbink, Robert Jan; Duch, Mogens; Fitzgerald, Katherine A; Bahrami, Shervin; Mikkelsen, Jakob Giehm; Hartmann, Rune; Paludan, Søren R

    2016-02-19

    Stimulator of interferon genes (STING) is known be involved in control of DNA viruses but has an unexplored role in control of RNA viruses. During infection with DNA viruses STING is activated downstream of cGAMP synthase (cGAS) to induce type I interferon. Here we identify a STING-dependent, cGAS-independent pathway important for full interferon production and antiviral control of enveloped RNA viruses, including influenza A virus (IAV). Further, IAV interacts with STING through its conserved hemagglutinin fusion peptide (FP). Interestingly, FP antagonizes interferon production induced by membrane fusion or IAV but not by cGAMP or DNA. Similar to the enveloped RNA viruses, membrane fusion stimulates interferon production in a STING-dependent but cGAS-independent manner. Abolishment of this pathway led to reduced interferon production and impaired control of enveloped RNA viruses. Thus, enveloped RNA viruses stimulate a cGAS-independent STING pathway, which is targeted by IAV.

  18. Measles in Italy, laboratory surveillance activity during 2010

    Directory of Open Access Journals (Sweden)

    Claudia Fortuna

    2014-12-01

    Full Text Available INTRODUCTION: The European Regional Office of the World Health Organization (WHO/Europe developed a strategic approach to stop the indigenous transmission of measles in its 53 Member States by 2015. This study describes the measles laboratory surveillance activity performed by the National Reference Laboratory for Measles and Rubella at the Italian National Institute of Health (Istituto Superiore di Sanità during 2010. METHODS: Urine, oral fluid and capillary blood samples from 211 suspected measles cases arrived to the NRL from different regions of Italy for confirmation of the clinical diagnosis. Serological and/or molecular assays were performed; after molecular detection, positive samples were sequenced and genotyped. RESULTS AND DISCUSSION: 85% (180/211 of the specimens were confirmed as measles cases and 139 of these were analyzed phylogenetically. The phylogenetic analysis revealed a co-circulation of D4 and D8 genotypes for the reviewed period.

  19. measles case-based surveillance and outbreak response in nigeria

    African Journals Online (AJOL)

    of the existing national technical guideline on measles case- based surveillance and outbreak response in Nigeria in ... according to the revised national measles technical guideline9. However, with the strengthening of the ... involves immediate reporting and investigating any suspected case of measles by clinicians using ...

  20. A Global Perspective of Vaccination of Healthcare Personnel against Measles: Systematic Review

    Science.gov (United States)

    Fiebelkorn, Amy Parker; Seward, Jane F.; Orenstein, Walter

    2015-01-01

    Measles transmission has been well documented in healthcare facilities. Healthcare personnel who are unvaccinated and who lack other evidence of measles immunity put themselves and their patients at risk for measles. We conducted a systematic literature review of measles vaccination policies and their implementation in healthcare personnel, measles seroprevalence among healthcare personnel, measles transmission and disease burden in healthcare settings, and impact/costs incurred by healthcare facilities for healthcare-associated measles transmission. Five database searches yielded 135 relevant articles; 47 additional articles were found through cross-referencing. The risk of acquiring measles is estimated to be 2 to 19 times higher for susceptible healthcare personnel than for the general population. Fifty-three articles published worldwide during 1989–2013 reported measles transmission from patients to healthcare personnel; many of the healthcare personnel were unvaccinated or had unknown vaccination status. Eighteen articles published worldwide during 1982–2013 described examples of transmission from healthcare personnel to patients or to other healthcare personnel. Half of European countries have no measles vaccine policies for healthcare personnel. There is no global policy recommendation for the vaccination of healthcare personnel against measles. Even in countries such as the United States or Finland that have national policies, the recommendations are not uniformly implemented in healthcare facilities. Measles serosusceptibility in healthcare personnel varied widely across studies (median 6.5%, range 0%-46%) but was consistently higher among younger healthcare personnel. Deficiencies in documentation of two doses of measles vaccination or other evidence of immunity among healthcare personnel presents challenges in responding to measles exposures in healthcare settings. Evaluating and containing exposures and outbreaks in healthcare settings can be

  1. Risk factors for measles death: Kyegegwa District, western Uganda, February-September, 2015.

    Science.gov (United States)

    Mafigiri, Richardson; Nsubuga, Fred; Ario, Alex Riolexus

    2017-07-03

    On 18 August 2015, Kyegegwa District reported eight deaths during a measles outbreak to the Uganda Ministry of Health (MoH). We investigated this death cluster to verify the cause, identify risk factors, and inform public health interventions. We defined a probable measles case as onset of fever and generalised rash in a Kyegegwa District resident from 1 February - 15 September 2015, plus ≥1 of the following: coryza, conjunctivitis, and cough. A confirmed measles case was a probable case with measles-specific IgM positivity. A measles death was a death of a probable or confirmed case-person. We conducted an active case-finding to identify measles patients who survived or died. In a case-control study, we compared risk factors between 16 measles patients who died (cases) and 48 who survived (controls), matched by age (±4 years) and village of residence. We identified 94 probable measles cases, 10 (11%) were confirmed by positive measles-specific IgM. Of the 64 probable measles patients aged measles was found in 94% (15/16) among the case-persons (i.e., measles patients who died) and 54% (26/48) among the controls (i.e., measles patients who survived) (OR M-H  = 12; 95% CI = 1.6-104), while 56% (9/16) of case-persons and 67% (17/48) of controls (OR M-H  = 2.3; 95% CI =0.74-7.4) did not receive vitamin A supplementation during illness. 63% (10/16) among the case-persons and 6.3% (3/48) of the controls (OR M-H  = 33; 95% CI = 6.8-159) were not treated for measles illness at a health facility (a proxy for more appropriate treatment), while 38% (6/16) of the case-persons and 25% (12/48) of the controls (OR M-H  = 2.5; 95% CI = 0.67-9.1) were malnourished. Lack of vaccination and no treatment in a health facility increased the risk for measles deaths. The one-dose measles vaccination currently in the national vaccination schedule had a protective effect against measles death. We recommended enhancing measles vaccination and adherence to measles treatment

  2. Measles outbreak in adults: A changing epidemiological pattern

    Directory of Open Access Journals (Sweden)

    Swati Bajaj

    2017-01-01

    Full Text Available Background: Thirty-one cases of fever with rash were reported among students of a college in Pune, India, from March to May 2014. The clinical profile was similar to that of measles and 7 of them tested positive for measles-specific immunoglobulin M (IgM. An outbreak of measles was declared, and epidemiological investigation was carried out to assess the situation and suggest preventive measures. Methods: An epidemiological case sheet filled for each case to identify the source and likely contacts. Medical and administrative authorities were sensitized about the increase in incidence and clustering of cases. A surveillance system was set up for detection of new cases and follow-up of contacts. Throat swabs and blood samples from 12 cases were tested by ELISA method for commonly occurring viral exanthematous fevers to confirm the diagnosis and 7 were positive for measles-specific IgM antibody. Preventive measures were advised to control the outbreak. Results: A total of 31 cases of fever with rashes were reported among students of a college in Pune, India, during the months of March–May 2014. Most of the students were in the age group of 18–24 years. Samples from 12 cases were sent for testing and 7 tested positive for measles-specific IgM antibodies. Seven cases were epidemiologically linked to a lab-confirmed case. All cases had fever, maculopapular rash, and sore throat and gave a history of vaccination for measles in childhood. Conclusion: An epidemiological investigation was carried out for outbreak of measles in a young adult population of college students from Pune. It is reported that, with increase in overall coverage of vaccination, there is a rise in incidence of measles in vaccinated individuals. The age profile also shifts to higher age groups. Investigation of such outbreaks provides an opportunity to identify high-risk groups, changes in measles epidemiology and weaknesses in the routine immunization programs.

  3. Computation of Hemagglutinin Free Energy Difference by the Confinement Method

    Science.gov (United States)

    2017-01-01

    Hemagglutinin (HA) mediates membrane fusion, a crucial step during influenza virus cell entry. How many HAs are needed for this process is still subject to debate. To aid in this discussion, the confinement free energy method was used to calculate the conformational free energy difference between the extended intermediate and postfusion state of HA. Special care was taken to comply with the general guidelines for free energy calculations, thereby obtaining convergence and demonstrating reliability of the results. The energy that one HA trimer contributes to fusion was found to be 34.2 ± 3.4kBT, similar to the known contributions from other fusion proteins. Although computationally expensive, the technique used is a promising tool for the further energetic characterization of fusion protein mechanisms. Knowledge of the energetic contributions per protein, and of conserved residues that are crucial for fusion, aids in the development of fusion inhibitors for antiviral drugs. PMID:29151344

  4. Measles Outbreak in Pediatric Hematology and Oncology Patients in Shanghai, 2015

    Science.gov (United States)

    Ge, Yan-Ling; Zhai, Xiao-Wen; Zhu, Yan-Feng; Wang, Xiang-Shi; Xia, Ai-Mei; Li, Yue-Fang; Zeng, Mei

    2017-01-01

    Background: Despite substantial progress toward measles control are making in China, measles outbreaks in immunocompromised population still pose a challenge to interrupt endemic transmission. This study aimed to investigate the features of measles in pediatric hematology and oncology patients and explore the reasons behind the outbreak. Methods: We collected demographic, epidemiological, and clinical data of immunocompromised measles children. All suspected measles cases were laboratory-confirmed based on the presence of measles IgM and/or identification of measles RNA. The clinical data were statistically analyzed by t-test for continuous variables and Fisher's exact test for categorical variables. Results: From March 9 to July 25 in 2015, a total of 23 children with malignancies and post hematopoietic stem cell transplantation (post-HSCT) were notified to develop measles in Shanghai. Of these 23 patients with the median age of 5.5 years (range: 11 months–14 years), 20 (87.0%) had received 1–3 doses of measles vaccine previously; all patients had fever with the median fever duration of 8 days; 21 (91.3%) had cough; 18 (78.3%) had rash; 13 (56.5%) had Koplik's spot; 13 (56.5%) had complications including pneumonia and acute liver failure; and five (21.7%) vaccinated patients died from severe pneumonia or acute liver failure. Except the first patient, all patients had hospital visits within 7–21 days before measles onset and 20 patients were likely to be exposed to each other. Conclusions: The outcome of measles outbreak in previously vaccinated oncology and post-HSCT pediatric patients during chemotherapy and immunosuppressant medication was severe. Complete loss of protective immunity induced by measles vaccine during chemotherapy was the potential reason. Improved infection control practice was critical for the prevention of measles in malignancy patients and transplant recipients. PMID:28524832

  5. Adding interventions to mass measles vaccinations in India.

    Science.gov (United States)

    Johri, Mira; Verguet, Stéphane; Morris, Shaun K; Sharma, Jitendar K; Ram, Usha; Gauvreau, Cindy; Jones, Edward; Jha, Prabhat; Jit, Mark

    2016-10-01

    To quantify the impact on mortality of offering a hypothetical set of technically feasible, high-impact interventions for maternal and child survival during India's 2010-2013 measles supplementary immunization activity. We developed Lives Saved Tool models for 12 Indian states participating in the supplementary immunization, based on state- and sex-specific data on mortality from India's Million Deaths Study and on health services coverage from Indian household surveys. Potential add-on interventions were identified through a literature review and expert consultations. We quantified the number of lives saved for a campaign offering measles vaccine alone versus a campaign offering measles vaccine with six add-on interventions (nutritional screening and complementary feeding for children, vitamin A and zinc supplementation for children, multiple micronutrient and calcium supplementation in pregnancy, and free distribution of insecticide-treated bednets). The measles vaccination campaign saved an estimated 19 016 lives of children younger than 5 years. A hypothetical campaign including measles vaccine with add-on interventions was projected to save around 73 900 lives (range: 70 200-79 300), preventing 73 700 child deaths (range: 70 000-79 000) and 300 maternal deaths (range: 200-400). The most effective interventions in the whole package were insecticide-treated bednets, measles vaccine and preventive zinc supplementation. Girls accounted for 66% of expected lives saved (12 712/19 346) for the measles vaccine campaign, and 62% of lives saved (45 721/74 367) for the hypothetical campaign including add-on interventions. In India, a measles vaccination campaign including feasible, high-impact interventions could substantially increase the number of lives saved and mitigate gender-related inequities in child mortality.

  6. Structural Characterization of the Hemagglutinin Receptor Specificity from the 2009 H1N1 Influenza Pandemic

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Rui; McBride, Ryan; Nycholat, Corwin M.; Paulson, James C.; Wilson, Ian A. (Scripps)

    2012-02-13

    Influenza virus hemagglutinin (HA) is the viral envelope protein that mediates viral attachment to host cells and elicits membrane fusion. The HA receptor-binding specificity is a key determinant for the host range and transmissibility of influenza viruses. In human pandemics of the 20th century, the HA normally has acquired specificity for human-like receptors before widespread infection. Crystal structures of the H1 HA from the 2009 human pandemic (A/California/04/2009 [CA04]) in complex with human and avian receptor analogs reveal conserved recognition of the terminal sialic acid of the glycan ligands. However, favorable interactions beyond the sialic acid are found only for {alpha}2-6-linked glycans and are mediated by Asp190 and Asp225, which hydrogen bond with Gal-2 and GlcNAc-3. For {alpha}2-3-linked glycan receptors, no specific interactions beyond the terminal sialic acid are observed. Our structural and glycan microarray analyses, in the context of other high-resolution HA structures with {alpha}2-6- and {alpha}2-3-linked glycans, now elucidate the structural basis of receptor-binding specificity for H1 HAs in human and avian viruses and provide a structural explanation for the preference for {alpha}2-6 siaylated glycan receptors for the 2009 pandemic swine flu virus.

  7. Divergent genetic evolution of hemagglutinin in influenza A H1N1 and A H1N2 subtypes isolated in the south-France since the winter of 2001-2002.

    Science.gov (United States)

    Al Faress, Shaker; Cartet, Gaëlle; Ferraris, Olivier; Norder, Helene; Valette, Martine; Lina, Bruno

    2005-07-01

    Influenza A viruses are divided into subtypes based on their hemagglutinin (H1 to H15) and neuraminidase (N1 to N9) glycoproteins. Of these, three A subtypes H1N1, H3N2 and H1N2 circulate in the human population. Influenza A viruses display a high antigenic variability called "antigenic drift" which allows the virus to escape antibody neutralization. Evaluate the mutations apparition that might predict a divergent antigenic evolution of hemagglutinin in influenza A H1N1 and A H1N2 viruses. During the three winters of 2001-2002 to 2003-2004, 58 A H1N1 and 23 A H1N2 subtypes have been isolated from patients with influenza-like illness in the south of France. The HA1 region was analyzed by RT-PCR and subsequently sequenced to compare the HA1 genetic evolution of influenza A H1N1 and A H1N2 subtypes. Our results showed that 28 amino acid substitutions have accumulated in the HA1 region since the circulation of A/New Caledonia/20/99-like viruses in France. Of these, fifteen were located in four antigenic sites (B, C, D and E). Six of them were observed only in the A H1N2 isolates, six only in the A H1N1 isolates and three in both subtypes. Furthermore, nine of twenty two A H1N2 isolates from the winter of 2002-2003 shared a T90A amino acid change which has not been observed in any A H1N1 isolate; resulting in the introduction of a new glycosylation site close to the antigenic site E. This might mask some antigenic E determinants and therefore, modify the A H1N2 antigenicity. The divergent genetic evolution of hemagglutinin may ultimately lead to a significant different antigenicity between A H1N1 and A H1N2 subtypes that would require the introduction of a new subtype in the vaccine batches.

  8. Vaccination with Recombinant Parainfluenza Virus 5 Expressing Neuraminidase Protects against Homologous and Heterologous Influenza Virus Challenge.

    Science.gov (United States)

    Mooney, Alaina J; Gabbard, Jon D; Li, Zhuo; Dlugolenski, Daniel A; Johnson, Scott K; Tripp, Ralph A; He, Biao; Tompkins, S Mark

    2017-12-01

    Seasonal human influenza virus continues to cause morbidity and mortality annually, and highly pathogenic avian influenza (HPAI) viruses along with other emerging influenza viruses continue to pose pandemic threats. Vaccination is considered the most effective measure for controlling influenza; however, current strategies rely on a precise vaccine match with currently circulating virus strains for efficacy, requiring constant surveillance and regular development of matched vaccines. Current vaccines focus on eliciting specific antibody responses against the hemagglutinin (HA) surface glycoprotein; however, the diversity of HAs across species and antigenic drift of circulating strains enable the evasion of virus-inhibiting antibody responses, resulting in vaccine failure. The neuraminidase (NA) surface glycoprotein, while diverse, has a conserved enzymatic site and presents an appealing target for priming broadly effective antibody responses. Here we show that vaccination with parainfluenza virus 5 (PIV5), a promising live viral vector expressing NA from avian (H5N1) or pandemic (H1N1) influenza virus, elicited NA-specific antibody and T cell responses, which conferred protection against homologous and heterologous influenza virus challenges. Vaccination with PIV5-N1 NA provided cross-protection against challenge with a heterosubtypic (H3N2) virus. Experiments using antibody transfer indicate that antibodies to NA have an important role in protection. These findings indicate that PIV5 expressing NA may be effective as a broadly protective vaccine against seasonal influenza and emerging pandemic threats. IMPORTANCE Seasonal influenza viruses cause considerable morbidity and mortality annually, while emerging viruses pose potential pandemic threats. Currently licensed influenza virus vaccines rely on the antigenic match of hemagglutinin (HA) for vaccine strain selection, and most vaccines rely on HA inhibition titers to determine efficacy, despite the growing

  9. Prolonged hospital stay in measles patients | Ashir | Sahel Medical ...

    African Journals Online (AJOL)

    Background: Measles is still a major cause of childhood morbidity and mortality in Nigeria despite the availability of safe and effective vaccines. The burden of measles using length of hospital stay as a result of complications in hospitalised children with measles is reported. Methods: We carried out a two year retrospective ...

  10. Canine distemper virus (CDV) in another big cat: should CDV be renamed carnivore distemper virus?

    Science.gov (United States)

    Terio, Karen A; Craft, Meggan E

    2013-09-17

    One of the greatest threats to the conservation of wild cat populations may be dogs or, at least, one of their viruses. Canine distemper virus (CDV), a single-stranded RNA virus in the Paramyxoviridae family and genus Morbillivirus, infects and causes disease in a variety of species, not just canids. An outbreak of CDV in wild lions in the Serengeti, Tanzania, in 1994 was a wake-up call for conservationists, as it demonstrated that an infectious disease could swiftly impact a previously healthy felid population. To understand how this virus causes disease in noncanid hosts, researchers have focused on specific mutations in the binding site of the CDV hemagglutinin gene. Now, Seimon et al. provide information on CDV in its latest feline victim, the endangered wild Amur tiger (Panthera tigris altaica) [T. A. Seimon et al., mBio 4(4):e00410-13, 2013, doi:10.1128/mBio.00410-13]. Their findings of CDV strains infecting tigers, in combination with recent information from other felids, paints a different picture, one in which CDV strains from a variety of geographic lineages and with a variety of amino acid residues in the hemagglutinin gene binding site can infect cats and cause disease. Although CDV has been known as a multihost disease since its discovery in domestic dogs in 1905, perhaps it is time to reconsider whether these noncanid species are not just incidental or "spillover" hosts but, rather, a normal part of the complex ecology of this infectious disease.

  11. Canine Distemper Virus (CDV) in Another Big Cat: Should CDV Be Renamed Carnivore Distemper Virus?

    Science.gov (United States)

    Terio, Karen A.; Craft, Meggan E.

    2013-01-01

    ABSTRACT One of the greatest threats to the conservation of wild cat populations may be dogs or, at least, one of their viruses. Canine distemper virus (CDV), a single-stranded RNA virus in the Paramyxoviridae family and genus Morbillivirus, infects and causes disease in a variety of species, not just canids. An outbreak of CDV in wild lions in the Serengeti, Tanzania, in 1994 was a wake-up call for conservationists, as it demonstrated that an infectious disease could swiftly impact a previously healthy felid population. To understand how this virus causes disease in noncanid hosts, researchers have focused on specific mutations in the binding site of the CDV hemagglutinin gene. Now, Seimon et al. provide information on CDV in its latest feline victim, the endangered wild Amur tiger (Panthera tigris altaica) [T. A. Seimon et al., mBio 4(4):e00410-13, 2013, doi:10.1128/mBio.00410-13]. Their findings of CDV strains infecting tigers, in combination with recent information from other felids, paints a different picture, one in which CDV strains from a variety of geographic lineages and with a variety of amino acid residues in the hemagglutinin gene binding site can infect cats and cause disease. Although CDV has been known as a multihost disease since its discovery in domestic dogs in 1905, perhaps it is time to reconsider whether these noncanid species are not just incidental or “spillover” hosts but, rather, a normal part of the complex ecology of this infectious disease. PMID:24045642

  12. Measles control in the urbanising environment

    African Journals Online (AJOL)

    1991-04-20

    Apr 20, 1991 ... measles infection in childhood is characterised by a high risk between 5 and 11 months of age, soon after loss of ... urban areas compared with 10% in rural areas are infected with measles before 8 months of age. ... magnitude of in- and out-migration, and the respective vac- cination coverage rates.15In ...

  13. Modelling the effects of treatment and quarantine on measles

    Science.gov (United States)

    Beay, Lazarus Kalvein

    2018-03-01

    Treatment and quarantine are efforts to cure as well as to overcome the spread of diseases including measles. The spread of measles can be expressed by mathematical modelling in the form of nonlinear dynamical systems. In this study was conducted on the spread of measles by considering the effect of treatment and quarantine on the infected individuals. By using the basic reproduction number of the model, can be analyzed the effects of treatment and quarantine to reduce the spread of measles. Basic reproduction number of models is monotonically descreasing as treatment and quarantine increasing. Numerical simulations conducted on the analysis of the results. The results showed that treatment and quarantine was given to infected individuals who were infectious has a major influence to eliminate measles from the system.

  14. Is there enough vaccine to eradicate measles? An integrated analysis of measles-containing vaccine supply and demand.

    Science.gov (United States)

    Smith, Graegar; Michelson, Joshua; Singh, Rohit; Dabbagh, Alya; Hoekstra, Edward; van den Ent, Maya; Mallya, Apoorva

    2011-07-01

    Responding to regional advancements in combating measles, the World Health Organization in May 2008 called for an assessment of the feasibility of measles eradication, including whether sufficient vaccine supply exists. Interviews with international health officials and vaccine-makers provided data for a detailed model of worldwide demand and supply for measles-containing vaccine (MCV). The study projected global MCV demand through 2025 with and without a global eradication goal. The study found that 5.2 billion MCV doses must be administered during 2010-2025 to maintain current measles programs, and 5.9 billion doses would likely be needed with a 2020 eradication goal; in the most intensive scenario, demand could increase to 7.5 billion doses. These volumes are within existing and planned MCV-manufacturing capacity, although there are risks. In some markets, capacity is concentrated: Supply-chain disruptions could reduce supply or increase prices. Mitigation strategies could include stockpiling, long-term contracts, and further coordination with manufacturers. © The Author 2011. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved.

  15. Effects of supplemental measles immunization on cases of measles ...

    African Journals Online (AJOL)

    Background: Measles is a highly contagious vaccine-preventable infection which continues to be a significant cause of childhood morbidity and mortality in developing countries particularly those with poor routine immunisation coverage. Supplemental immunisation activities (SIAs) were thus introduced to improve vaccine ...

  16. Measles Antibodies in Mother-Infant Dyads in Tianjin, China.

    Science.gov (United States)

    Boulton, Matthew L; Wang, Xiexiu; Wagner, Abram L; Zhang, Ying; Carlson, Bradley F; Gillespie, Brenda W; Ding, Yaxing

    2017-11-27

    Many measles cases in Tianjin, China, occur in infants whose mothers were born after widespread vaccination programs. We assessed age-specific decreases in maternal measles antibodies in infants and examined maternal and infant characteristics in relation to infant antibody titers. Infant and mother dyads were enrolled from a sample of immunization clinics in all Tianjin districts. Participants' antibody titers were measured from dried blood spots. A multivariable log-linear model regressed infant antibody titers onto infant and mother characteristics. Among 551 infants aged ≤8 months, protective levels of measles antibodies were observed in infants whose mothers had measles titers ≥800 IU/mL (mean antibody titer, 542.5 IU/mL) or 400 to measles and an accordingly low efficiency of transplacental transmission to a fetus. Current vaccination programs, which target children aged 8 months through adolescence may be ineffective in controlling transmission of measles to infants. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  17. Placental malaria and immunity to infant measles

    NARCIS (Netherlands)

    Owens, S.; Harper, G.; Amuasi, J.; Offei-Larbi, G.; Ordi, J.; Brabin, B. J.

    2006-01-01

    The efficiency of transplacental transfer of measles specific antibody was assessed in relation to placental malaria. Infection at delivery was associated with a 30% decrease in expected cord measles antibody titres. Uninfected women who received anti-malarial drugs during pregnancy transmitted 30%

  18. Clinical features of measles pneumonia in adults

    International Nuclear Information System (INIS)

    Tanaka, Hiroshi; Honma, Shin-ichi; Yamagishi, Masahiko; Honda, Yasuhito; Abe, Shosaku; Igarashi, Tomofumi; Sekine, Kyuichiro.

    1993-01-01

    The clinical features, chest radiographs and computed tomographic (CT) images were evaluated in 11 cases of serologically proved adult measles complicated with pneumonia (10 were previously healthy and one had sarcoidosis). Pneumonia appeared during the rash period in all cases. Respiratory symptoms were cough (9/11), dyspnea (3/11), and hypoxemia (10/11). Pneumonia manifestations were detected in only 4 cases by chest radiograph; on the other hand, they were seen in all cases by CT scan and consisted of ground-glass opacities (73%), nodular opacities (64%) and consolidation (27%). CT seems to be useful method to detect measles pneumonia if it is suspected. Measles pneumonia in previously healthy patients had a good prognosis, as the hypoxemia disappeared within 6 days in all cases. The sarcoidosis patient showed prolonged pneumonic shadows and period of hypoxemia. Measles pneumonia occurring in a host with cellular immunodeficiency may have a severe clinical course. (author)

  19. The public health impact of avian influenza viruses.

    Science.gov (United States)

    Katz, J M; Veguilla, V; Belser, J A; Maines, T R; Van Hoeven, N; Pappas, C; Hancock, K; Tumpey, T M

    2009-04-01

    Influenza viruses with novel hemagglutinin and 1 or more accompanying genes derived from avian influenza viruses sporadically emerge in humans and have the potential to result in a pandemic if the virus causes disease and spreads efficiently in a population that lacks immunity to the novel hemagglutinin. Since 1997, multiple avian influenza virus subtypes have been transmitted directly from domestic poultry to humans and have caused a spectrum of human disease, from asymptomatic to severe and fatal. To assess the pandemic risk that avian influenza viruses pose, we have used multiple strategies to better understand the capacity of avian viruses to infect, cause disease, and transmit among mammals, including humans. Seroepidemiologic studies that evaluate the frequency and risk of human infection with avian influenza viruses in populations with exposure to domestic or wild birds can provide a better understanding of the pandemic potential of avian influenza subtypes. Investigations conducted in Hong Kong following the first H5N1 outbreak in humans in 1997 determined that exposure to poultry in live bird markets was a key risk factor for human disease. Among poultry workers, butchering and exposure to sick poultry were risk factors for antibody to H5 virus, which provided evidence for infection. A second risk assessment tool, the ferret, can be used to evaluate the level of virulence and potential for host-to-host transmission of avian influenza viruses in this naturally susceptible host. Avian viruses isolated from humans exhibit a level of virulence and transmissibility in ferrets that generally reflects that seen in humans. The ferret model thus provides a means to monitor emerging avian influenza viruses for pandemic risk, as well as to evaluate laboratory-generated reassortants and mutants to better understand the molecular basis of influenza virus transmissibility. Taken together, such studies provide valuable information with which we can assess the public

  20. The potential for measles transmission in England

    Directory of Open Access Journals (Sweden)

    Fraser Graham

    2008-09-01

    Full Text Available Abstract Background Since the schools vaccination campaign in 1994, measles has been eliminated from England. Maintaining elimination requires low susceptibility levels to keep the effective reproduction number R below 1. Since 1995, however, MMR coverage in two year old children has decreased by more than 10%. Methods Quarterly MMR coverage data for children aged two and five years resident in each district health authority in England were used to estimate susceptibility to measles by age. The effective reproduction numbers for each district and strategic health authority were calculated and possible outbreak sizes estimated. Results In 2004/05, about 1.9 million school children and 300,000 pre-school children were recorded as incompletely vaccinated against measles in England, including more than 800,000 children completely unvaccinated. Based on this, approximately 1.3 million children aged 2–17 years were susceptible to measles. In 14 of the 99 districts, the level of susceptibility is sufficiently high for R to exceed 1, indicating the potential for sustained measles transmission. Eleven of these districts are in London. Our model suggests that the potential exists for an outbreak of up to 100,000 cases. These results are sensitive to the accuracy of reported vaccination coverage data. Conclusion Our analysis identified several districts with the potential for sustaining measles transmission. Many London areas remain at high risk even allowing for considerable under-reporting of coverage. Primary care trusts should ensure that accurate systems are in place to identify unimmunised children and to offer catch-up immunisation for those not up to date for MMR.

  1. Immunovirotherapy with measles virus strains in combination with anti-PD-1 antibody blockade enhances antitumor activity in glioblastoma treatment.

    Science.gov (United States)

    Hardcastle, Jayson; Mills, Lisa; Malo, Courtney S; Jin, Fang; Kurokawa, Cheyne; Geekiyanage, Hirosha; Schroeder, Mark; Sarkaria, Jann; Johnson, Aaron J; Galanis, Evanthia

    2017-04-01

    Glioblastoma (GBM) is the most common primary malignant brain tumor and has a dismal prognosis. Measles virus (MV) therapy of GBM is a promising strategy due to preclinical efficacy, excellent clinical safety, and its ability to evoke antitumor pro-inflammatory responses. We hypothesized that combining anti- programmed cell death protein 1 (anti-PD-1) blockade and MV therapy can overcome immunosuppression and enhance immune effector cell responses against GBM, thus improving therapeutic outcome. In vitro assays of MV infection of glioma cells and infected glioma cells with mouse microglia ± aPD-1 blockade were established to assess damage associated molecular pattern (DAMP) molecule production, migration, and pro-inflammatory effects. C57BL/6 or athymic mice bearing syngeneic orthotopic GL261 gliomas were treated with MV, aPD-1, and combination treatment. T2* weighted immune cell-specific MRI and fluorescence activated cell sorting (FACS) analysis of treated mouse brains was used to examine adaptive immune responses following therapy. In vitro, MV infection induced human GBM cell secretion of DAMP (high-mobility group protein 1, heat shock protein 90) and upregulated programmed cell death ligand 1 (PD-L1). MV infection of GL261 murine glioma cells resulted in a pro-inflammatory response and increased migration of BV2 microglia. In vivo, MV+aPD-1 therapy synergistically enhanced survival of C57BL/6 mice bearing syngeneic orthotopic GL261 gliomas. MRI showed increased inflammatory cell influx into the brains of mice treated with MV+aPD-1; FACS analysis confirmed increased T-cell influx predominantly consisting of activated CD8+ T cells. This report demonstrates that oncolytic measles virotherapy in combination with aPD-1 blockade significantly improves survival outcome in a syngeneic GBM model and supports the potential of clinical/translational strategies combining MV with αPD-1 therapy in GBM treatment. © The Author(s) 2016. Published by Oxford University Press

  2. Measles epidemics of variable lethality in the early 20th century.

    Science.gov (United States)

    Shanks, G Dennis; Hu, Zheng; Waller, Michael; Lee, Seung-eun; Terfa, Daniel; Howard, Alan; van Heyningen, Elizabeth; Brundage, John F

    2014-02-15

    Until the mid-20th century, mortality rates were often very high during measles epidemics, particularly among previously isolated populations (e.g., islanders), refugees/internees who were forcibly crowded into camps, and military recruits. Searching for insights regarding measles mortality rates, we reviewed historical records of measles epidemics on the Polynesian island of Rotuma (in 1911), in Boer War concentration camps (in 1900-1902), and in US Army mobilization camps during the First World War (in 1917-1918). Records classified measles deaths by date and clinical causes; by demographic characteristics, family relationships (for Rotuma islanders and Boer camp internees), and prior residences; and by camp (for Boer internees and US Army recruits). During the Rotuman and Boer War epidemics, measles-related mortality rates were high (up to 40%); however, mortality rates differed more than 10-fold across camps/districts, even though conditions were similar. During measles epidemics, most deaths among camp internees/military recruits were due to secondary bacterial pneumonias; in contrast, most deaths among Rotuman islanders were due to gastrointestinal complications. The clinical expressions, courses, and outcomes of measles during first-contact epidemics differ from those during camp epidemics. The degree of isolation from respiratory pathogens other than measles may significantly determine measles-related mortality risk.

  3. Measles vaccination in children with neurological disorders

    Directory of Open Access Journals (Sweden)

    S. P. Kaplina

    2012-01-01

    Full Text Available The data on the current vaccination process and specific antibody in 212 children with pathology of nervous systems in age from 1 year to 6 years old, vaccinated against measles. The comparison group consisted of 36 children without neurological disease. 86 children (40,6% were vaccinated measles – mumps vaccine, and 126 children (59,4% only measles vaccine. Post-vaccination period in 77,8% immunized against measles, was uneventful, layering intercurrent infections was noted in 22,2% of vaccine’s, and demonstrated the development of viral respiratory infections, bronchitis, otitis media and exacerbation of underlying disease. It is shown that the level of specific antibody to measles in children with pathology of nervous systems at 30 days after vaccination was 5,04±0,16 log 2, which did not differ from the comparison group (5,88±0,31 log 2. No significant differences in the level of antibody in a smooth and complicated course of vaccination period were found. Immunization of children with disorders of the nervous system of live vaccines is quite effective and leads to the formation of protective antibody titers in all vaccinated.

  4. Pre-clinical evaluation of a replication-competent recombinant adenovirus serotype 4 vaccine expressing influenza H5 hemagglutinin.

    Science.gov (United States)

    Alexander, Jeff; Ward, Simone; Mendy, Jason; Manayani, Darly J; Farness, Peggy; Avanzini, Jenny B; Guenther, Ben; Garduno, Fermin; Jow, Lily; Snarsky, Victoria; Ishioka, Glenn; Dong, Xin; Vang, Lo; Newman, Mark J; Mayall, Tim

    2012-01-01

    Influenza virus remains a significant health and social concern in part because of newly emerging strains, such as avian H5N1 virus. We have developed a prototype H5N1 vaccine using a recombinant, replication-competent Adenovirus serotype 4 (Ad4) vector, derived from the U.S. military Ad4 vaccine strain, to express the hemagglutinin (HA) gene from A/Vietnam/1194/2004 influenza virus (Ad4-H5-Vtn). Our hypothesis is that a mucosally-delivered replicating Ad4-H5-Vtn recombinant vector will be safe and induce protective immunity against H5N1 influenza virus infection and disease pathogenesis. The Ad4-H5-Vtn vaccine was designed with a partial deletion of the E3 region of Ad4 to accommodate the influenza HA gene. Replication and growth kinetics of the vaccine virus in multiple human cell lines indicated that the vaccine virus is attenuated relative to the wild type virus. Expression of the HA transgene in infected cells was documented by flow cytometry, western blot analysis and induction of HA-specific antibody and cellular immune responses in mice. Of particular note, mice immunized intranasally with the Ad4-H5-Vtn vaccine were protected against lethal H5N1 reassortant viral challenge even in the presence of pre-existing immunity to the Ad4 wild type virus. Several non-clinical attributes of this vaccine including safety, induction of HA-specific humoral and cellular immunity, and efficacy were demonstrated using an animal model to support Phase 1 clinical trial evaluation of this new vaccine.

  5. A human-infecting H10N8 influenza virus retains a strong preference for avian-type receptors

    NARCIS (Netherlands)

    Zhang, Heng; de Vries, Robert P; Tzarum, Netanel; Zhu, Xueyong; Yu, Wenli; McBride, Ryan; Paulson, James C; Wilson, Ian A

    2015-01-01

    Recent avian-origin H10N8 influenza A viruses that have infected humans pose a potential pandemic threat. Alterations in the viral surface glycoprotein, hemagglutinin (HA), typically are required for influenza A viruses to cross the species barrier for adaptation to a new host, but whether H10N8

  6. An Outbreak of Measles in a University in Korea, 2014.

    Science.gov (United States)

    Choe, Young June; Park, Young Joon; Kim, Ju Whi; Eom, Hye Eun; Park, Ok; Oh, Myoung Don; Lee, Jong Koo

    2017-11-01

    Measles has been declared eliminated from the Korea since 2006. In April 2014, a measles outbreak occurred at a University in Seoul. A total of 85 measles cases were identified. In order to estimate vaccine effectiveness of measles vaccine, we reviewed the vaccination records of the university students. The vaccine effectiveness of two doses of measles containing vaccine was 60.0% (95% CI, 38.2-74.1; P < 0.05). Transmission was interrupted after the introduction of outbreak-response immunization. The outbreak shows that pockets of under-immunity among college students may have facilitated the disease transmission despite the high 2-dose vaccination coverage in the community. © 2017 The Korean Academy of Medical Sciences.

  7. Perspective on Global Measles Epidemiology and Control and the Role of Novel Vaccination Strategies

    Directory of Open Access Journals (Sweden)

    Melissa M. Coughlin

    2017-01-01

    Full Text Available Measles is a highly contagious, vaccine preventable disease. Measles results in a systemic illness which causes profound immunosuppression often leading to severe complications. In 2010, the World Health Assembly declared that measles can and should be eradicated. Measles has been eliminated in the Region of the Americas, and the remaining five regions of the World Health Organization (WHO have adopted measles elimination goals. Significant progress has been made through increased global coverage of first and second doses of measles-containing vaccine, leading to a decrease in global incidence of measles, and through improved case based surveillance supported by the WHO Global Measles and Rubella Laboratory Network. Improved vaccine delivery methods will likely play an important role in achieving measles elimination goals as these delivery methods circumvent many of the logistic issues associated with subcutaneous injection. This review highlights the status of global measles epidemiology, novel measles vaccination strategies, and describes the pathway toward measles elimination.

  8. Case report: Ribavirin and vitamin A in a severe case of measles.

    Science.gov (United States)

    Bichon, Amandine; Aubry, Camille; Benarous, Lucas; Drouet, Hortense; Zandotti, Christine; Parola, Philippe; Lagier, Jean-Christophe

    2017-12-01

    Despite a vaccine being widely available, measles continues to occur frequently, with sometimes lethal consequences. The mortality rate reaches 35% and measles represents 44% of the 1.4 million deaths which are due to preventable diseases. Severe forms of measles are reported, mainly in young, unvaccinated adults, and in specific populations. The risk factors for severe measles include no or incomplete vaccination and vitamin A deficiency. Apart from secondary measles-related infections, severe measles is mainly represented by neurological, respiratory, and digestive symptoms. Strengthening the hypothesis that there is a link between vitamin A deficiency and severe measles in this paper we report the case of a 25-year-old unvaccinated man hospitalized for severe and complicated measles. The evolution was good after administration of intramuscular vitamin A as well as intravenous ribavirin. Measles remains a fatal and serious disease. The early use of ribavirin and vitamin A shows significant improvements regarding morbimortality and should be systematic in severe cases. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  9. EPIDEMIOLOGICAL FEATURES OF THE MEASLES IN KIROVOGRAD REGION in 2004 – 2015

    OpenAIRE

    Operchuk, N.I.

    2018-01-01

    Introduction.The incidence of measles in Ukraine remains an actual problem. Measle is related to vaccine - controled infections. However, low levels of imunization of the child population by planned measles vaccine, insufficient provision of immunobiological drugs (vaccines) in recent years, anti-vaccine companies contribute to the increase of the measles morbidity in Ukraine.Prominent scientist L.V. Gromashevsky spoke about measles, which is a "disease of unique distribution". In the implem...

  10. pH Optimum of Hemagglutinin-Mediated Membrane Fusion Determines Sensitivity of Influenza A Viruses to the Interferon-Induced Antiviral State and IFITMs.

    Science.gov (United States)

    Gerlach, Thomas; Hensen, Luca; Matrosovich, Tatyana; Bergmann, Janina; Winkler, Michael; Peteranderl, Christin; Klenk, Hans-Dieter; Weber, Friedemann; Herold, Susanne; Pöhlmann, Stefan; Matrosovich, Mikhail

    2017-06-01

    The replication and pathogenicity of influenza A viruses (IAVs) critically depend on their ability to tolerate the antiviral interferon (IFN) response. To determine a potential role for the IAV hemagglutinin (HA) in viral sensitivity to IFN, we studied the restriction of IAV infection in IFN-β-treated human epithelial cells by using 2:6 recombinant IAVs that shared six gene segments of A/Puerto Rico/8/1934 virus (PR8) and contained HAs and neuraminidases of representative avian, human, and zoonotic H5N1 and H7N9 viruses. In A549 and Calu-3 cells, viruses displaying a higher pH optimum of HA-mediated membrane fusion, H5N1-PR8 and H7N9-PR8, were less sensitive to the IFN-induced antiviral state than their counterparts with HAs from duck and human viruses, which fused at a lower pH. The association between a high pH optimum of fusion and reduced IFN sensitivity was confirmed by using HA point mutants of A/Hong Kong/1/1968-PR8 that differed solely by their fusion properties. Furthermore, similar effects of the viral fusion pH on IFN sensitivity were observed in experiments with (i) primary human type II alveolar epithelial cells and differentiated cultures of human airway epithelial cells, (ii) nonrecombinant zoonotic and pandemic IAVs, and (iii) preparations of IFN-α and IFN-λ1. A higher pH of membrane fusion and reduced sensitivity to IFN correlated with lower restriction of the viruses in MDCK cells stably expressing the IFN-inducible transmembrane proteins IFITM2 and IFITM3, which are known to inhibit viral fusion. Our results reveal that the pH optimum of HA-driven membrane fusion of IAVs is a determinant of their sensitivity to IFN and IFITM proteins. IMPORTANCE The IFN system constitutes an important innate defense against viral infection. Substantial information is available on how IAVs avoid detection by sensors of the IFN system and disable IFN signaling pathways. Much less is known about the ability of IAVs to tolerate the antiviral activity of IFN

  11. Controlling measles using supplemental immunization activities: a mathematical model to inform optimal policy.

    Science.gov (United States)

    Verguet, Stéphane; Johri, Mira; Morris, Shaun K; Gauvreau, Cindy L; Jha, Prabhat; Jit, Mark

    2015-03-03

    The Measles & Rubella Initiative, a broad consortium of global health agencies, has provided support to measles-burdened countries, focusing on sustaining high coverage of routine immunization of children and supplementing it with a second dose opportunity for measles vaccine through supplemental immunization activities (SIAs). We estimate optimal scheduling of SIAs in countries with the highest measles burden. We develop an age-stratified dynamic compartmental model of measles transmission. We explore the frequency of SIAs in order to achieve measles control in selected countries and two Indian states with high measles burden. Specifically, we compute the maximum allowable time period between two consecutive SIAs to achieve measles control. Our analysis indicates that a single SIA will not control measles transmission in any of the countries with high measles burden. However, regular SIAs at high coverage levels are a viable strategy to prevent measles outbreaks. The periodicity of SIAs differs between countries and even within a single country, and is determined by population demographics and existing routine immunization coverage. Our analysis can guide country policymakers deciding on the optimal scheduling of SIA campaigns and the best combination of routine and SIA vaccination to control measles. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Serology indicates cytomegalovirus infection is associated with varicella-zoster virus reactivation.

    Science.gov (United States)

    Ogunjimi, Benson; Theeten, Heidi; Hens, Niel; Beutels, Philippe

    2014-05-01

    Varicella-zoster virus (VZV) causes chickenpox after which the virus remains latent in neural ganglia. Subsequent reactivation episodes occur, leading mainly to subclinical detection of VZV, but also to the clinical entity herpes zoster. These reactivations are known to occur most frequently amongst immunocompromised individuals, but the incidence of herpes zoster is also known to increase with age, supposedly as a consequence of immunosenescence. Our analysis aims to explore associations between cytomegalovirus (CMV) infection and VZV reactivation by analyzing VZV-specific antibody titers as a function of age, gender, and CMV serostatus. The analysis was repeated on measles and parvovirus B19 antibody titers. At the time of the observations, measles virus circulation was virtually eliminated, whereas parvovirus B19 circulated at lower levels than VZV. Multiple linear regression analyses, using the log-transformed antibody titers, identified a positive association between ageing and VZV antibody titers suggesting that ageing increasingly stimulates VZV reactivation. CMV infection further amplified the positive association between ageing and the reactivation rate. A negative association between CMV infection and VZV antibody titers was found in young individuals, thereby supporting the hypothesis that CMV infection may have a negative effect on the number of B-cells. However, no associations between CMV infection and measles or parvovirus B19 antibody titers occurred, but ageing tended to be associated with a decrease in the antibody titer against parvovirus B19. The combined results thus suggest that both CMV-dependent and CMV-independent immunosenescence occurs. This is supported by an in-depth analysis of VZV, measles and parvovirus B19 antibody titers. © 2013 Wiley Periodicals, Inc.

  13. What Obstetric Health Care Providers Need to Know About Measles and Pregnancy

    Science.gov (United States)

    Rasmussen, Sonja A.; Jamieson, Denise J.

    2015-01-01

    From January 1 to April 3, 2015, 159 people from 18 states and the District of Columbia were reported as having measles. Most cases are part of an outbreak linked to a California amusement park. Because measles was eliminated in the United States in 2000, most U.S. clinicians are unfamiliar with the condition. We reviewed information on the current outbreak, measles manifestations, diagnostic methods, treatment, and infection-control recommendations. To identify information on measles and pregnancy, we reviewed reports with 20 or more measles cases during pregnancy that included data on effects on pregnant women or pregnancy outcomes. These reports were identified through MEDLINE from inception through February 2015 using the following strategy: (((pregnan*) AND measles) AND English[Language]) NOT review[Publication Type]. Reference lists also were reviewed to identify additional articles. Pregnant women infected with measles are more likely to be hospitalized, develop pneumonia, and die than nonpregnant women. Adverse pregnancy outcomes, including pregnancy loss, preterm birth, and low birth weight, are associated with maternal measles; however, the risk of congenital defects does not appear to be increased. No antiviral therapy is available; treatment is supportive. Early identification of possible cases is needed so that appropriate infection control can be instituted promptly. The recent measles outbreak highlights the role that obstetric health care providers play in vaccine-preventable illnesses; obstetrician–gynecologists should ensure that patients are up to date on all vaccines, including measles-containing vaccines, and should recommend and ideally offer a measles-containing vaccine to women without evidence of measles immunity before or after pregnancy. PMID:25899422

  14. An evaluation of the 2012 measles mass vaccination campaign in ...

    African Journals Online (AJOL)

    Introduction: To estimate the post-campaign level of measles vaccination coverage in Guinea. Method: Interview of parents and observation of measles vaccination cards of children aged 9 to 59 months during the mass measles campaign. A nationwide cluster randomized sample under health District stratification. Results: ...

  15. Don't Let Measles Be Your Travel Souvenir

    Science.gov (United States)

    ... who have never had measles should be vaccinated. International Travel and Measles Traveling abroad for spring or ... site? Adobe PDF file Microsoft PowerPoint file Microsoft Word file Microsoft Excel file Audio/Video file Apple ...

  16. Measles: Make Sure Your Child Is Fully Immunized

    Science.gov (United States)

    ... this? Submit What's this? Submit Button Past Emails Measles: Make Sure Your Child is Fully Immunized Language: ... also become infected if they are not protected. Measles in the U.S. From January 2 to March ...

  17. No evidence of murine leukemia virus-related viruses in live attenuated human vaccines.

    Directory of Open Access Journals (Sweden)

    William M Switzer

    Full Text Available The association of xenotropic murine leukemia virus (MLV-related virus (XMRV in prostate cancer and chronic fatigue syndrome reported in previous studies remains controversial as these results have been questioned by recent data. Nonetheless, concerns have been raised regarding contamination of human vaccines as a possible source of introduction of XMRV and MLV into human populations. To address this possibility, we tested eight live attenuated human vaccines using generic PCR for XMRV and MLV sequences. Viral metagenomics using deep sequencing was also done to identify the possibility of other adventitious agents.All eight live attenuated vaccines, including Japanese encephalitis virus (JEV (SA-14-14-2, varicella (Varivax, measles, mumps, and rubella (MMR-II, measles (Attenuvax, rubella (Meruvax-II, rotavirus (Rotateq and Rotarix, and yellow fever virus were negative for XMRV and highly related MLV sequences. However, residual hamster DNA, but not RNA, containing novel endogenous gammaretrovirus sequences was detected in the JEV vaccine using PCR. Metagenomics analysis did not detect any adventitious viral sequences of public health concern. Intracisternal A particle sequences closest to those present in Syrian hamsters and not mice were also detected in the JEV SA-14-14-2 vaccine. Combined, these results are consistent with the production of the JEV vaccine in Syrian hamster cells.We found no evidence of XMRV and MLV in eight live attenuated human vaccines further supporting the safety of these vaccines. Our findings suggest that vaccines are an unlikely source of XMRV and MLV exposure in humans and are consistent with the mounting evidence on the absence of these viruses in humans.

  18. Measles Antibody Titres In 0-5 Years Children At Aligarh

    Directory of Open Access Journals (Sweden)

    Kandpal S D

    1999-01-01

    Full Text Available Research Question: What is the level of measles antibodies in 0-5 year children? Objectives: 1.To assess the pattern of decline of maternal antibodies in 0-9 months infants. 2. To estimate the seropositivity for measles antibodies in vaccinated 9 months infants. Study design: Cross- sectional. Setting: Rural areas of District Aligarh, U.P. Participants: 456 children in the age group of 0-5 years. Statistical analysis: Percentages, correlation coefficient. Results: 1. In all the study subjects below 9 months of age, the transplacentally acquired maternal measles antibodies showed a linear decline with increase in age. Out of 202 study subjects who had been immunized against measles 195(96.50% were seropositive and 7(3.5% were seronegative for measles antibodies.

  19. Measles: who pays the cost?

    OpenAIRE

    Hastings, A; Hostler, A; Solen, A

    1987-01-01

    An epidemic of measles resulting in 164 cases in a Leicester group practice was analysed by means of a case-control study and a questionnaire. Estimates were made of the physical, social, and financial costs to children, parents, and family doctors. On average each child was ill for 10.8 days and the illness cost his parents pounds 11.06. His family doctor spent 26 minutes providing care. These results provide an additional stimulus to the primary care team to promote the uptake of measles va...

  20. Production of polyclonal antibody against Tehran strain influenza virus (A/H1N1/2009 hemagglutinin conserved domain (HA2: brief report

    Directory of Open Access Journals (Sweden)

    Somayeh Zamani

    2015-10-01

    Full Text Available Background: The influenza virus is one of the most important factors for higher morbidity and mortality in the world. Recently, researchers have been focused on influenza conserved antigenic proteins such as hemagglutinin stalk domain (HA2 for vaccine production and serological studies. The HA2 plays a major role in the fusion of the virus with host cells membrane. The immunity system enables to produce antibody against HA2. The aim of this study is polyclonal antibody production against influenza HA2. Methods: This study was done in the Influenza Research Lab, Pasteur Institute of Iran, Tehran for one year from September 2013 to October 2014. In the present study, recombinant HA2 protein was produced in prokaryotic system and purified using Nickel affinity chromatography. The purified HA2 was mixed with Freund’s adjuvant (complete and incomplete and injected into two New Zealand white rabbits by intramuscularly and subcutaneously routes. Immunization was continued for several months with two weeks interval. Before each immunization, blood was drawn by venous puncture from the rabbit ear. Function of rabbit's sera was evaluated using radial immunodiffusion (RID in both forms, Single RID (SRID and Double RID (DRID. Finally, antiserum activity against HA2 was evaluated using western blotting as serological assay. Results: Sedimentary line and zone was observed in RID assays (SRID and DRID represent interaction between HA2 protein and anti- HA2 antibody. As well as, western blotting results was positive for HA2 protein. Therefore, these results showed that polyclonal antibody produced against HA2 protein can identify HA2 protein antigenic sites. Conclusion: These findings show that humoral immune responses have properly been stimulated in rabbits and these antibodies can identify HA2 protein and may be suitable for other serological methods.

  1. Genetic characterization of canine distemper virus involved in outbreaks in farmed mink in Denmark 2012

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Struve, T.; Hjulsager, Charlotte Kristiane

    Danish farmed mink herds experienced a large outbreak of canine distemper virus in 2012. Full-length sequence analysis (1824 nucleotides) of the variable hemagglutinin (H) gene were performed on 27 viruses collected from mink and on 7 viruses collected from wild foxes. Results of the study showed...... with other European canine distemper viruses and showed the highest level of similarity (99.3 - 99.6 %) to viruses isolated from wild foxes in Germany. The fox should therefore be considered as an important wild life reservoir of canine distemper virus and may also contribute to the transmission of the virus...

  2. The impact of declining vaccination coverage on measles control: a ...

    African Journals Online (AJOL)

    Introduction: Efforts at immunizing children against measles was intensified in Nigeria with nation-wide measles vaccination campaigns in 2005 - 2006, 2008 and 2011 targeting children between 9 and 59 months. However, there were measles outbreaks in 2010 and 2011in Abia state Nigeria. This study seeks to find out if ...

  3. Measles in Italy: Co-circulation of B3 variants during 2014.

    Science.gov (United States)

    Magurano, Fabio; Baggieri, Melissa; Bordi, Licia; Lalle, Eleonora; Chironna, Maria; Lazzarotto, Tiziana; Amendola, Antonella; Baldanti, Fausto; Ansaldi, Filippo; Filia, Antonietta; Declich, Silvia; Iannazzo, Stefania; Pompa, Maria Grazia; Bucci, Paola; Marchi, Antonella; Nicoletti, Loredana

    2016-06-01

    In 2013, the majority of the WHO/EUR countries reported an annual incidence of >1 case per one million population indicating that the elimination target is far from being met. Thus, there is the urgent need to uncover and analyze chains of measles virus (MV) transmission with the objective to identify vulnerable groups and avoid possible routes of introduction of MV variants in the European population. The analysis of molecular epidemiology of MV B3 strains identified in 2014 has shown that four different variants co-circulated in Italy, including the strain that caused a cruise-line ship outbreak at the beginning of the year. © 2015 Wiley Periodicals, Inc.

  4. Infection and transmission of live recombinant Newcastle disease virus vaccines in Rock Pigeons, European House Sparrows, and Japanese Quail

    Science.gov (United States)

    In China and Mexico, engineered recombinant Newcastle disease virus (rNDV) strains are used as live vaccines for the control of Newcastle disease and as vectors to express the avian influenza virus hemagglutinin (HA) gene to control avian influenza in poultry. In this study, non-target species wer...

  5. Measles control and elimination in Somalia: the good, the bad, and the ugly.

    Science.gov (United States)

    Kamadjeu, Raoul; Assegid, Kebede; Naouri, Boubker; Mirza, Imran Raza; Hirsi, Abdurazak; Mohammed, Abdurahman; Omer, Mohammed; Dualle, Abdi Hassan; Mulugeta, Abraham

    2011-07-01

    Despite enormous challenges, Somalia has been successfully implementing accelerated measles control activities since 2005. Through innovative strategies and with the support of local and international partners, the country has shown potentials of implementing measles mortality reduction activities in complex emerg