WorldWideScience

Sample records for mean-field dynamo theory

  1. Mean-field magnetohydrodynamics and dynamo theory

    CERN Document Server

    Krause, F

    2013-01-01

    Mean-Field Magnetohydrodynamics and Dynamo Theory provides a systematic introduction to mean-field magnetohydrodynamics and the dynamo theory, along with the results achieved. Topics covered include turbulence and large-scale structures; general properties of the turbulent electromotive force; homogeneity, isotropy, and mirror symmetry of turbulent fields; and turbulent electromotive force in the case of non-vanishing mean flow. The turbulent electromotive force in the case of rotational mean motion is also considered. This book is comprised of 17 chapters and opens with an overview of the gen

  2. Mean-field theory and self-consistent dynamo modeling

    International Nuclear Information System (INIS)

    Yoshizawa, Akira; Yokoi, Nobumitsu

    2001-12-01

    Mean-field theory of dynamo is discussed with emphasis on the statistical formulation of turbulence effects on the magnetohydrodynamic equations and the construction of a self-consistent dynamo model. The dynamo mechanism is sought in the combination of the turbulent residual-helicity and cross-helicity effects. On the basis of this mechanism, discussions are made on the generation of planetary magnetic fields such as geomagnetic field and sunspots and on the occurrence of flow by magnetic fields in planetary and fusion phenomena. (author)

  3. Statistical theory of dynamo

    Science.gov (United States)

    Kim, E.; Newton, A. P.

    2012-04-01

    One major problem in dynamo theory is the multi-scale nature of the MHD turbulence, which requires statistical theory in terms of probability distribution functions. In this contribution, we present the statistical theory of magnetic fields in a simplified mean field α-Ω dynamo model by varying the statistical property of alpha, including marginal stability and intermittency, and then utilize observational data of solar activity to fine-tune the mean field dynamo model. Specifically, we first present a comprehensive investigation into the effect of the stochastic parameters in a simplified α-Ω dynamo model. Through considering the manifold of marginal stability (the region of parameter space where the mean growth rate is zero), we show that stochastic fluctuations are conductive to dynamo. Furthermore, by considering the cases of fluctuating alpha that are periodic and Gaussian coloured random noise with identical characteristic time-scales and fluctuating amplitudes, we show that the transition to dynamo is significantly facilitated for stochastic alpha with random noise. Furthermore, we show that probability density functions (PDFs) of the growth-rate, magnetic field and magnetic energy can provide a wealth of useful information regarding the dynamo behaviour/intermittency. Finally, the precise statistical property of the dynamo such as temporal correlation and fluctuating amplitude is found to be dependent on the distribution the fluctuations of stochastic parameters. We then use observations of solar activity to constrain parameters relating to the effect in stochastic α-Ω nonlinear dynamo models. This is achieved through performing a comprehensive statistical comparison by computing PDFs of solar activity from observations and from our simulation of mean field dynamo model. The observational data that are used are the time history of solar activity inferred for C14 data in the past 11000 years on a long time scale and direct observations of the sun spot

  4. Mean-field dynamos: The old concept and some recent developments. Karl Schwarzschild Award Lecture 2013

    Science.gov (United States)

    Rädler, K.-H.

    This article elucidates the basic ideas of electrodynamics and magnetohydrodynamics of mean fields in turbulently moving conducting fluids. It is stressed that the connection of the mean electromotive force with the mean magnetic field and its first spatial derivatives is in general neither local nor instantaneous and that quite a few claims concerning pretended failures of the mean-field concept result from ignoring this aspect. In addition to the mean-field dynamo mechanisms of α2 and α Ω type several others are considered. Much progress in mean-field electrodynamics and magnetohydrodynamics results from the test-field method for calculating the coefficients that determine the connection of the mean electromotive force with the mean magnetic field. As an important example the memory effect in homogeneous isotropic turbulence is explained. In magnetohydrodynamic turbulence there is the possibility of a mean electromotive force that is primarily independent of the mean magnetic field and labeled as Yoshizawa effect. Despite of many efforts there is so far no convincing comprehensive theory of α quenching, that is, the reduction of the α effect with growing mean magnetic field, and of the saturation of mean-field dynamos. Steps toward such a theory are explained. Finally, some remarks on laboratory experiments with dynamos are made.

  5. DOUBLE DYNAMO SIGNATURES IN A GLOBAL MHD SIMULATION AND MEAN-FIELD DYNAMOS

    Energy Technology Data Exchange (ETDEWEB)

    Beaudoin, Patrice; Simard, Corinne; Cossette, Jean-François; Charbonneau, Paul [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7 (Canada)

    2016-08-01

    The 11 year solar activity cycle is the most prominent periodic manifestation of the magnetohydrodynamical (MHD) large-scale dynamo operating in the solar interior, yet longer and shorter (quasi-) periodicities are also present. The so-called “quasi-biennial” signal appearing in many proxies of solar activity has been gaining increasing attention since its detection in p -mode frequency shifts, which suggests a subphotospheric origin. A number of candidate mechanisms have been proposed, including beating between co-existing global dynamo modes, dual dynamos operating in spatially separated regions of the solar interior, and Rossby waves driving short-period oscillations in the large-scale solar magnetic field produced by the 11 year activity cycle. In this article, we analyze a global MHD simulation of solar convection producing regular large-scale magnetic cycles, and detect and characterize shorter periodicities developing therein. By constructing kinematic mean-field α {sup 2}Ω dynamo models incorporating the turbulent electromotive force (emf) extracted from that same simulation, we find that dual-dynamo behavior materializes in fairly wide regions of the model’s parameters space. This suggests that the origin of the similar behavior detected in the MHD simulation lies with the joint complexity of the turbulent emf and differential rotation profile, rather that with dynamical interactions such as those mediated by Rossby waves. Analysis of the simulation also reveals that the dual dynamo operating therein leaves a double-period signature in the temperature field, consistent with a dual-period helioseismic signature. Order-of-magnitude estimates for the magnitude of the expected frequency shifts are commensurate with helioseismic measurements. Taken together, our results support the hypothesis that the solar quasi-biennial oscillations are associated with a secondary dynamo process operating in the outer reaches of the solar convection zone.

  6. Time independent mean-field theory

    International Nuclear Information System (INIS)

    Negele, J.W.

    1980-02-01

    The physical and theoretical motivations for the time-dependent mean-field theory are presented, and the successes and limitations of the time-dependent Hartree-Fock initial-vaue problem are reviewed. New theoretical developments are described in the treatment of two-body correlations and the formulation of a quantum mean-field theory of large-amplitude collective motion and tunneling decay. Finally, the mean-field theory is used to obtain new insights into the phenomenon of pion condensation in finite nuclei. 18 figures

  7. Effects of anisotropies in turbulent magnetic diffusion in mean-field solar dynamo models

    Energy Technology Data Exchange (ETDEWEB)

    Pipin, V. V. [Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, Irkutsk 664033 (Russian Federation); Kosovichev, A. G. [Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-04-10

    We study how anisotropies of turbulent diffusion affect the evolution of large-scale magnetic fields and the dynamo process on the Sun. The effect of anisotropy is calculated in a mean-field magnetohydrodynamics framework assuming that triple correlations provide relaxation to the turbulent electromotive force (so-called the 'minimal τ-approximation'). We examine two types of mean-field dynamo models: the well-known benchmark flux-transport model and a distributed-dynamo model with a subsurface rotational shear layer. For both models, we investigate effects of the double- and triple-cell meridional circulation, recently suggested by helioseismology and numerical simulations. To characterize the anisotropy effects, we introduce a parameter of anisotropy as a ratio of the radial and horizontal intensities of turbulent mixing. It is found that the anisotropy affects the distribution of magnetic fields inside the convection zone. The concentration of the magnetic flux near the bottom and top boundaries of the convection zone is greater when the anisotropy is stronger. It is shown that the critical dynamo number and the dynamo period approach to constant values for large values of the anisotropy parameter. The anisotropy reduces the overlap of toroidal magnetic fields generated in subsequent dynamo cycles, in the time-latitude 'butterfly' diagram. If we assume that sunspots are formed in the vicinity of the subsurface shear layer, then the distributed dynamo model with the anisotropic diffusivity satisfies the observational constraints from helioseismology and is consistent with the value of effective turbulent diffusion estimated from the dynamics of surface magnetic fields.

  8. Bipolar Jets Launched by a Mean-field Accretion Disk Dynamo

    Science.gov (United States)

    Fendt, Christian; Gaßmann, Dennis

    2018-03-01

    By applying magnetohydrodynamic simulations, we investigate the launching of jets driven by a disk magnetic field generated by a mean-field disk dynamo. Extending our earlier studies, we explore the bipolar evolution of the disk α 2Ω-dynamo and the outflow. We confirm that a negative dynamo-α leads to a dipolar field geometry, whereas positive values generate quadrupolar fields. The latter remain mainly confined to the disk and cannot launch outflows. We investigate a parameter range for the dynamo-α ranging from a critical value below which field generation is negligible, {α }0,{crit}=-0.0005, to α 0 = ‑1.0. For weak | {α }0| ≤slant 0.07, two magnetic loop structures with opposite polarity may arise, which leads to reconnection and disturbs the field evolution and accretion-ejection process. For a strong dynamo-α, a higher poloidal magnetic energy is reached, roughly scaling with {E}mag}∼ | {α }0| , which also leads to higher accretion and ejection rates. The terminal jet speed is governed by the available magnetic energy and increases with the dynamo-α. We find jet velocities on the order of the inner disk Keplerian velocity. For a strong dynamo-α, oscillating dynamo modes may occur that can lead to a pulsed ejection. This is triggered by an oscillating mode in the toroidal field component. The oscillation period is comparable to the Keplerian timescale in the launching region, thus too short to be associated with the knots in observed jets. We find a hemispherically asymmetric evolution for the jet and counter-jet in the mass flux and field structure.

  9. Mean-field theory and solitonic matter

    International Nuclear Information System (INIS)

    Cohen, T.D.

    1989-01-01

    Finite density solitonic matter is considered in the context of quantum field theory. Mean-field theory, which provides a reasonable description for single-soliton properties gives rise to a crystalline description. A heuristic description of solitonic matter is given which shows that the low-density limit of solitonic matter (the limit which is presumably relevant for nuclear matter) does not commute with the mean-field theory limit and gives rise to a Fermi-gas description of the system. It is shown on the basis of a formal expansion of simple soliton models in terms of the coupling constant why one expects mean-field theory to fail at low densities and why the corrections to mean-field theory are nonperturbative. This heuristic description is tested against an exactly solvable 1+1 dimensional model (the sine-Gordon model) and found to give the correct behavior. The relevance of these results to the program of doing nuclear physics based on soliton models is discussed. (orig.)

  10. Band mixing effects in mean field theories

    International Nuclear Information System (INIS)

    Kuyucak, S.; Morrison, I.

    1989-01-01

    The 1/N expansion method, which is an angular momentum projected mean field theory, is used to investigate the nature of electromagnetic transitions in the interacting boson model (IBM). Conversely, comparison with the exact IBM results sheds light on the range of validity of the mean field theory. It is shown that the projected mean field results for the E2 transitions among the ground, β and γ bands are incomplete for the spin dependent terms and it is essential to include band mixing effect for a correct (Mikhailov) analysis of E2 data. The algebraic expressions derived are general and will be useful in the analysis of experimental data in terms of both the sd and sdg boson models. 17 refs., 7 figs., 8 tabs

  11. Dynamos and MHD theory of turbulence suppression

    International Nuclear Information System (INIS)

    Yoshizawa, Akira; Yokoi, Nobumitsu; Itoh, Sanae-I; Itoh, Kimitaka

    2003-12-01

    Characteristics of electrically-conducting media are reviewed from the macroscopic viewpoint based on the mean-field magnetohydrodynamics, while being compared with the methodology and knowledge in fluid mechanics. The themes covered in this review range from the generation mechanism of stellar magnetic fields (dynamo) to transport properties in fusion. The primary concern here is to see the characteristics common to these apparently different phenomena, within the framework of the mean-field theory. Owing to the intrinsic limitation of the approach, the present discussions are limited more or less to specific aspects of phenomena. They are supplemented with the reference to theoretical, numerical, and observational approaches intrinsic to each theme. In the description of dynamo phenomena, an emphasis is put on the cross-helicity dynamo. Features common to the stellar magnetic-field generation and the rotational-motion drive in toroidal plasmas are illustrated on this basis. (author)

  12. THE MEAN-FIELD SOLAR DYNAMO WITH A DOUBLE CELL MERIDIONAL CIRCULATION PATTERN

    Energy Technology Data Exchange (ETDEWEB)

    Pipin, V. V. [Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, Irkutsk, 664033 (Russian Federation); Kosovichev, A. G. [Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2013-10-10

    Recent helioseismology findings, as well as advances in direct numerical simulations of global dynamics of the Sun, have indicated that in each solar hemisphere meridional circulation may form more than one cell along the radius in the convection zone. In particular, recent helioseismology results revealed a double-cell structure of the meridional circulation. We investigate properties of a mean-field solar dynamo with such double-cell meridional circulation. The dynamo model also includes the realistic profile of solar differential rotation (including the tachocline and subsurface shear layer) and takes into account effects of turbulent pumping, anisotropic turbulent diffusivity, and conservation of magnetic helicity. Contrary to previous flux-transport dynamo models, we find that the dynamo model can robustly reproduce the basic properties of the solar magnetic cycles for a wide range of model parameters and circulation speeds. The best agreement with observations is achieved when the surface meridional circulation speed is about 12 m s{sup –1}. For this circulation speed, the simulated sunspot activity shows good synchronization with the polar magnetic fields. Such synchronization was indeed observed during previous sunspot Cycles 21 and 22. We compare theoretical and observed phase diagrams of the sunspot number and the polar field strength and discuss the peculiar properties of Cycle 23.

  13. Relativistic mean field theory for unstable nuclei

    International Nuclear Information System (INIS)

    Toki, Hiroshi

    2000-01-01

    We discuss the properties of unstable nuclei in the framework of the relativistic mean field (RMF) theory. We take the RMF theory as a phenomenological theory with several parameters, whose form is constrained by the successful microscopic theory (RBHF), and whose values are extracted from the experimental values of unstable nuclei. We find the outcome with the newly obtained parameter sets (TM1 and TMA) is promising in comparison with various experimental data. We calculate systematically the ground state properties of even-even nuclei up to the drip lines; about 2000 nuclei. We find that the neutron magic shells (N=82, 128) at the standard magic numbers stay at the same numbers even far from the stability line and hence provide the feature of the r-process nuclei. However, many proton magic numbers disappear at the neutron numbers far away from the magic numbers due to the deformations. We discuss how to describe giant resonances for the case of the non-linear coupling terms for the sigma and omega mesons in the relativistic RPA. We mention also the importance of the relativistic effect on the spin observables as the Gamow-Teller strength and the longitudinal and transverse spin responses. (author)

  14. Nonequilibrium dynamical mean-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Eckstein, Martin

    2009-12-21

    The aim of this thesis is the investigation of strongly interacting quantum many-particle systems in nonequilibrium by means of the dynamical mean-field theory (DMFT). An efficient numerical implementation of the nonequilibrium DMFT equations within the Keldysh formalism is provided, as well a discussion of several approaches to solve effective single-site problem to which lattice models such as the Hubbard-model are mapped within DMFT. DMFT is then used to study the relaxation of the thermodynamic state after a sudden increase of the interaction parameter in two different models: the Hubbard model and the Falicov-Kimball model. In the latter case an exact solution can be given, which shows that the state does not even thermalize after infinite waiting times. For a slow change of the interaction, a transition to adiabatic behavior is found. The Hubbard model, on the other hand, shows a very sensitive dependence of the relaxation on the interaction, which may be called a dynamical phase transition. Rapid thermalization only occurs at the interaction parameter which corresponds to this transition. (orig.)

  15. Nonequilibrium dynamical mean-field theory

    International Nuclear Information System (INIS)

    Eckstein, Martin

    2009-01-01

    The aim of this thesis is the investigation of strongly interacting quantum many-particle systems in nonequilibrium by means of the dynamical mean-field theory (DMFT). An efficient numerical implementation of the nonequilibrium DMFT equations within the Keldysh formalism is provided, as well a discussion of several approaches to solve effective single-site problem to which lattice models such as the Hubbard-model are mapped within DMFT. DMFT is then used to study the relaxation of the thermodynamic state after a sudden increase of the interaction parameter in two different models: the Hubbard model and the Falicov-Kimball model. In the latter case an exact solution can be given, which shows that the state does not even thermalize after infinite waiting times. For a slow change of the interaction, a transition to adiabatic behavior is found. The Hubbard model, on the other hand, shows a very sensitive dependence of the relaxation on the interaction, which may be called a dynamical phase transition. Rapid thermalization only occurs at the interaction parameter which corresponds to this transition. (orig.)

  16. Classification of networks of automata by dynamical mean field theory

    International Nuclear Information System (INIS)

    Burda, Z.; Jurkiewicz, J.; Flyvbjerg, H.

    1990-01-01

    Dynamical mean field theory is used to classify the 2 24 =65,536 different networks of binary automata on a square lattice with nearest neighbour interactions. Application of mean field theory gives 700 different mean field classes, which fall in seven classes of different asymptotic dynamics characterized by fixed points and two-cycles. (orig.)

  17. Nuclear response beyond mean field theory

    International Nuclear Information System (INIS)

    Brand, M.G.E.; Allaart, K.; Dickhoff, W.H.

    1990-01-01

    An extension of the RPA equations is derived, with emphasis on the relation between the single-particle Green function and the polarization propagator. Including second order self-energy contributions the resulting particle-hole interaction includes the coupling to two-particle-two-hole (2p2h) states and the resulting response satisfies relevant conservation laws. This aspect of the theory is shown to be essential to obtain reliable and meaningful results for excitation strengths and to avoid ghost solutions. This method is applied to electromagnetic and charge exchange excitations in 48 Ca up to 100 MeV. A G-matrix interaction based on meson exchange is used which takes care of short-range correlations. The results compare favourably with measured excitation strengths and electromagnetic form factors both at low energy as well as in the giant resonance region. Remaining discrepancies point in the direction of further strength reduction due to short-range correlations as well as a possible stronger coupling to 2p2h states at low energy. (orig.)

  18. Stellar convection and dynamo theory

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, R L

    1989-10-01

    In considering the large scale stellar convection problem the outer layers of a star are modelled as two co-rotating plane layers coupled at a fluid/fluid interface. Heating from below causes only the upper fluid to convect, although this convection can penetrate into the lower fluid. Stability analysis is then used to find the most unstable mode of convection. With parameters appropriate to the Sun the most unstable mode is steady convection in thin cells (aspect ratio {approx equal} 0.2) filling the convection zone. There is negligible vertical motion in the lower fluid, but considerable thermal penetration, and a large jump in helicity at the interface, which has implications for dynamo theory. An {alpha}{omega} dynamo is investigated in isolation from the convection problem. Complexity is included by allowing both latitudinal and time dependence in the magnetic fields. The nonlinear dynamics of the resulting partial differential equations are analysed in considerable detail. On varying the main control parameter D (the dynamo number), many transitions of behaviour are found involving many forms of time dependence, but not chaos. Further, solutions which break equatorial symmetry are common and provide a theoretical explanation of solar observations which have this symmetry. Overall the behaviour was more complicated than expected. In particular, there were multiple stable solutions at fixed D, meaning that similar stars can have very different magnetic patterns, depending upon their history. (author).

  19. Modification of linear response theory for mean-field approximations

    NARCIS (Netherlands)

    Hütter, M.; Öttinger, H.C.

    1996-01-01

    In the framework of statistical descriptions of many particle systems, the influence of mean-field approximations on the linear response theory is studied. A procedure, analogous to one where no mean-field approximation is involved, is used in order to determine the first order response of the

  20. Some approximate calculations in SU2 lattice mean field theory

    International Nuclear Information System (INIS)

    Hari Dass, N.D.; Lauwers, P.G.

    1981-12-01

    Approximate calculations are performed for small Wilson loops of SU 2 lattice gauge theory in mean field approximation. Reasonable agreement is found with Monte Carlo data. Ways of improving these calculations are discussed. (Auth.)

  1. Dynamical Mean Field Approximation Applied to Quantum Field Theory

    CERN Document Server

    Akerlund, Oscar; Georges, Antoine; Werner, Philipp

    2013-12-04

    We apply the Dynamical Mean Field (DMFT) approximation to the real, scalar phi^4 quantum field theory. By comparing to lattice Monte Carlo calculations, perturbation theory and standard mean field theory, we test the quality of the approximation in two, three, four and five dimensions. The quantities considered in these tests are the critical coupling for the transition to the ordered phase and the associated critical exponents nu and beta. We also map out the phase diagram in four dimensions. In two and three dimensions, DMFT incorrectly predicts a first order phase transition for all bare quartic couplings, which is problematic, because the second order nature of the phase transition of lattice phi^4-theory is crucial for taking the continuum limit. Nevertheless, by extrapolating the behaviour away from the phase transition, one can obtain critical couplings and critical exponents. They differ from those of mean field theory and are much closer to the correct values. In four dimensions the transition is sec...

  2. Mean-field theory of nuclear structure and dynamics

    International Nuclear Information System (INIS)

    Negele, J.W.

    1982-01-01

    The physical and theoretical foundations are presented for the mean-field theory of nuclear structure and dynamics. Salient features of the many-body theory of stationary states are reviewed to motivate the time-dependent mean-field approximation. The time-dependent Hartree-Fock approximation and its limitations are discussed and general theoretical formulations are presented which yield time-dependent mean-field equations in lowest approximation and provide suitable frameworks for overcoming various conceptual and practical limitations of the mean-field theory. Particular emphasis is placed on recent developments utilizing functional integral techniques to obtain a quantum mean-field theory applicable to quantized eigenstates, spontaneous fission, the nuclear partition function, and scattering problems. Applications to a number of simple, idealized systems are presented to verify the approximations for solvable problems and to elucidate the essential features of mean-field dynamics. Finally, calculations utilizing moderately realistic geometries and interactions are reviewed which address heavy-ion collisions, fusion, strongly damped collisions, and fission

  3. Symplectic manifolds, coadjoint orbits, and Mean Field Theory

    International Nuclear Information System (INIS)

    Rosensteel, G.

    1986-01-01

    Mean field theory is given a geometrical interpretation as a Hamiltonian dynamical system. The Hartree-Fock phase space is the Grassmann manifold, a symplectic submanifold of the projective space of the full many-fermion Hilbert space. The integral curves of the Hartree-Fock vector field are the time-dependent Hartree-Fock solutions, while the critical points of the energy function are the time-independent states. The mean field theory is generalized beyond determinants to coadjoint orbit spaces of the unitary group; the Grassmann variety is the minimal coadjoint orbit

  4. Mean field with corrections in lattice gauge theory

    International Nuclear Information System (INIS)

    Flyvbjerg, H.; Zuber, J.B.; Lautrup, B.

    1981-12-01

    A systematic expansion of the path integral for lattice gauge theory is performed around the mean field solution. In this letter the authors present the results for the pure gauge groups Z(2), SU(2) and SO(3). The agreement with Monte Carlo calculations is excellent. For the discrete group the calculation is performed with and without gauge fixing, whereas for the continuous groups gauge fixing is mandatory. In the case of SU(2) the absence of a phase transition is correctly signalled by mean field theory. (Auth.)

  5. Regularity theory for mean-field game systems

    CERN Document Server

    Gomes, Diogo A; Voskanyan, Vardan

    2016-01-01

    Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.

  6. Regularity Theory for Mean-Field Game Systems

    KAUST Repository

    Gomes, Diogo A.

    2016-09-14

    Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.

  7. Regularity Theory for Mean-Field Game Systems

    KAUST Repository

    Gomes, Diogo A.; Pimentel, Edgard A.; Voskanyan, Vardan K.

    2016-01-01

    Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.

  8. A mean field theory of coded CDMA systems

    International Nuclear Information System (INIS)

    Yano, Toru; Tanaka, Toshiyuki; Saad, David

    2008-01-01

    We present a mean field theory of code-division multiple-access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean-field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems

  9. A mean field theory of coded CDMA systems

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Toru [Graduate School of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa 223-8522 (Japan); Tanaka, Toshiyuki [Graduate School of Informatics, Kyoto University, Yoshida Hon-machi, Sakyo-ku, Kyoto-shi, Kyoto 606-8501 (Japan); Saad, David [Neural Computing Research Group, Aston University, Birmingham B4 7ET (United Kingdom)], E-mail: yano@thx.appi.keio.ac.jp

    2008-08-15

    We present a mean field theory of code-division multiple-access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean-field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems.

  10. General Relativistic Mean Field Theory for rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Madokoro, Hideki [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Matsuzaki, Masayuki

    1998-03-01

    The {sigma}-{omega} model Lagrangian is generalized to an accelerated frame by using the technique of general relativity which is known as tetrad formalism. We apply this model to the description of rotating nuclei within the mean field approximation, which we call General Relativistic Mean Field Theory (GRMFT) for rotating nuclei. The resulting equations of motion coincide with those of Munich group whose formulation was not based on the general relativistic transformation property of the spinor fields. Some numerical results are shown for the yrast states of the Mg isotopes and the superdeformed rotational bands in the A {approx} 60 mass region. (author)

  11. Nuclear collective vibrations in extended mean-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, D. [Lab. de Physique Corpusculaire/ ENSICAEN, 14 - Caen (France); Ayik, S. [Tennessee Technological Univ., Cookeville, TN (United States); Chomaz, Ph. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)

    2003-07-01

    The extended mean-field theory, which includes both the incoherent dissipation mechanism due to nucleon-nucleon collisions and the coherent dissipation mechanism due to coupling to low-lying surface vibrations, is briefly reviewed. Expressions of the strength functions for the collective excitations are presented in the small amplitude limit of this approach. This fully microscopic theory is applied by employing effective Skyrme forces to various giant resonance excitations at zero and finite temperature. The theory is able to describe the gross properties of giant resonance excitations, the fragmentation of the strength distributions as well as their fine structure. At finite temperature, the success and limitations of this extended mean-field description are discussed. (authors)

  12. Instability in relativistic mean-field theories of nuclear matter

    International Nuclear Information System (INIS)

    Friman, B.L.; Henning, P.A.

    1988-01-01

    We investigate the stability of the nuclear matter ground state with respect to small-perturbations of the meson fields in relativistic mean-field theories. The popular σ-ω model is shown to have an instability at about twice the nuclear density, which gives rise to a new ground state with periodic spin alignment. Taking into account the contributions of the Dirac sea properly, this instability vanishes. Consequences for relativistic heavy-ion-collisions are discussed briefly. (orig.)

  13. Instability in relativistic mean-field theories of nuclear matter

    International Nuclear Information System (INIS)

    Friman, B.L.; Henning, P.A.

    1988-01-01

    We investigate the stability of the nuclear matter ground state with respect to small perturbations of the meson fields in relativistic mean-field theories. The popular σ-ω model is shown to have an instability at about twice the nuclear density, which gives rise to a new ground state with periodic spin alignment. Taking into account the contributions of the Dirac sea properly, this instability vanishes. Consequences for relativistic heavy-ion collisions are discussed briefly. (orig.)

  14. Nonlinear mean field theory for nuclear matter and surface properties

    International Nuclear Information System (INIS)

    Boguta, J.; Moszkowski, S.A.

    1983-01-01

    Nuclear matter properties are studied in a nonlinear relativistic mean field theory. We determine the parameters of the model from bulk properties of symmetric nuclear matter and a reasonable value of the effective mass. In this work, we stress the nonrelativistic limit of the theory which is essentially equivalent to a Skyrme hamiltonian, and we show that most of the results can be obtained, to a good approximation, analytically. The strength of the required parameters is determined from the binding energy and density of nuclear matter and the effective nucleon mass. For realistic values of the parameters, the nonrelativistic approximation turns out to be quite satisfactory. Using reasonable values of the parameters, we can account for other key properties of nuclei, such as the spin-orbit coupling, surface energy, and diffuseness of the nuclear surface. Also the energy dependence of the nucleon-nucleus optical model is accounted for reasonably well except near the Fermi surface. It is found, in agreement with empirical results, that the Landau parameter F 0 is quite small in normal nuclear matter. Both density dependence and momentum dependence of the NN interaction, but especially the former, are important for nuclear saturation. The required scalar and vector coupling constants agree fairly well with those obtained from analyses of NN scattering phase shifts with one-boson-exchange models. The mean field theory provides a semiquantitative justification for the weak Skyrme interaction in odd states. The strength of the required nonlinear term is roughly consistent with that derived using a new version of the chiral mean field theory in which the vector mass as well as the nucleon mass is generated by the sigma-field. (orig.)

  15. Quantum mean-field theory of collective dynamics and tunneling

    International Nuclear Information System (INIS)

    Negele, J.W.

    1981-01-01

    A fundamental problem in quantum many-body theory is formulation of a microscopic theory of collective motion. For self-bound, saturating systems like finite nuclei described in the context of nonrelativistic quantum mechanics with static interactions, the essential problem is how to formulate a systematic quantal theory in which the relevant collective variables and their dynamics arise directly and naturally from the Hamiltonian and the system under consideration. Significant progress has been made recently in formulating the quantum many-body problem in terms of an expansion about solutions to time-dependent mean-field equations. The essential ideas, principal results, and illustrative examples are summarized. An exact expression for an observable of interest is written using a functional integral representation for the evolution operator, and tractable time-dependent mean field equations are obtained by application of the stationary-phase approximation (SPA) to the functional integral. Corrections to the lowest-order theory may be systematically enumerated. 6 figures

  16. Probabilistic theory of mean field games with applications

    CERN Document Server

    Carmona, René

    2018-01-01

    This two-volume book offers a comprehensive treatment of the probabilistic approach to mean field game models and their applications. The book is self-contained in nature and includes original material and applications with explicit examples throughout, including numerical solutions. Volume I of the book is entirely devoted to the theory of mean field games without a common noise. The first half of the volume provides a self-contained introduction to mean field games, starting from concrete illustrations of games with a finite number of players, and ending with ready-for-use solvability results. Readers are provided with the tools necessary for the solution of forward-backward stochastic differential equations of the McKean-Vlasov type at the core of the probabilistic approach. The second half of this volume focuses on the main principles of analysis on the Wasserstein space. It includes Lions' approach to the Wasserstein differential calculus, and the applications of its results to the analysis of stochastic...

  17. Applicability of self-consistent mean-field theory

    International Nuclear Information System (INIS)

    Guo Lu; Sakata, Fumihiko; Zhao Enguang

    2005-01-01

    Within the constrained Hartree-Fock (CHF) theory, an analytic condition is derived to estimate whether a concept of the self-consistent mean field is realized in the level repulsive region. The derived condition states that an iterative calculation of the CHF equation does not converge when the quantum fluctuations coming from two-body residual interaction and quadrupole deformation become larger than a single-particle energy difference between two avoided crossing orbits. By means of numerical calculation, it is shown that the analytic condition works well for a realistic case

  18. Fictive impurity approach to dynamical mean field theory

    Energy Technology Data Exchange (ETDEWEB)

    Fuhrmann, A.

    2006-10-15

    A new extension of the dynamical mean-field theory was investigated in the regime of large Coulomb repulsion. A number of physical quantities such as single-particle density of states, spin-spin correlation, internal energy and Neel temperature, were computed for a two-dimensional Hubbard model at half-filling. The numerical data were compared to our analytical results as well as to the results computed using the dynamical cluster approximation. In the second part of this work we consider a two-plane Hubbard model. The transport properties of the bilayer were investigated and the phase diagram was obtained. (orig.)

  19. Mean-field theory for a ferroelectric transition

    International Nuclear Information System (INIS)

    Dobry, A.; Greco, A.; Stachiotti, M.

    1990-01-01

    For the treatment of anharmonic models of solids presenting structural transitions, a commonly used approximation is that of self-consistent phonons. Rather than the usual site decoupling, this mean-field theory is based on decoupling of modes in reciprocal space. A self-consistent phonon approximation for the non-linear polarizability model is developed in this work. The model describes the dynamical properties of ferroelectric materials. Phase diagrams as a function of relevant model parameters are presented. An analysis is made of critical behaviour and it is shown that the approximation leads to the same anomalies found in other models. (Author). 9 refs., 3 figs

  20. Fictive impurity approach to dynamical mean field theory

    International Nuclear Information System (INIS)

    Fuhrmann, A.

    2006-10-01

    A new extension of the dynamical mean-field theory was investigated in the regime of large Coulomb repulsion. A number of physical quantities such as single-particle density of states, spin-spin correlation, internal energy and Neel temperature, were computed for a two-dimensional Hubbard model at half-filling. The numerical data were compared to our analytical results as well as to the results computed using the dynamical cluster approximation. In the second part of this work we consider a two-plane Hubbard model. The transport properties of the bilayer were investigated and the phase diagram was obtained. (orig.)

  1. The application of mean field theory to image motion estimation.

    Science.gov (United States)

    Zhang, J; Hanauer, G G

    1995-01-01

    Previously, Markov random field (MRF) model-based techniques have been proposed for image motion estimation. Since motion estimation is usually an ill-posed problem, various constraints are needed to obtain a unique and stable solution. The main advantage of the MRF approach is its capacity to incorporate such constraints, for instance, motion continuity within an object and motion discontinuity at the boundaries between objects. In the MRF approach, motion estimation is often formulated as an optimization problem, and two frequently used optimization methods are simulated annealing (SA) and iterative-conditional mode (ICM). Although the SA is theoretically optimal in the sense of finding the global optimum, it usually takes many iterations to converge. The ICM, on the other hand, converges quickly, but its results are often unsatisfactory due to its "hard decision" nature. Previously, the authors have applied the mean field theory to image segmentation and image restoration problems. It provides results nearly as good as SA but with much faster convergence. The present paper shows how the mean field theory can be applied to MRF model-based motion estimation. This approach is demonstrated on both synthetic and real-world images, where it produced good motion estimates.

  2. Spin and orbital exchange interactions from Dynamical Mean Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, A., E-mail: a.secchi@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands); Lichtenstein, A.I., E-mail: alichten@physnet.uni-hamburg.de [Universitat Hamburg, Institut für Theoretische Physik, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I., E-mail: m.katsnelson@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands)

    2016-02-15

    We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Green's functions and self-energies. This allows to establish a mapping between the initial electronic system and a spin model including up to quadratic interactions between the effective spins, with a general interaction (exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii–Moriya interaction and other symmetric terms such as dipole–dipole interaction. We present the formulas in a format that can be used for computations via Dynamical Mean Field Theory algorithms. - Highlights: • We give formulas for the exchange interaction tensor in strongly correlated systems. • Interactions are written in terms of electronic Green's functions and self-energies. • The method is suitable for a Dynamical Mean Field Theory implementation. • No quenching of the orbital magnetic moments is assumed. • Spin and orbital contributions to magnetism can be computed separately.

  3. Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory

    Science.gov (United States)

    Rohringer, G.; Hafermann, H.; Toschi, A.; Katanin, A. A.; Antipov, A. E.; Katsnelson, M. I.; Lichtenstein, A. I.; Rubtsov, A. N.; Held, K.

    2018-04-01

    Strong electronic correlations pose one of the biggest challenges to solid state theory. Recently developed methods that address this problem by starting with the local, eminently important correlations of dynamical mean field theory (DMFT) are reviewed. In addition, nonlocal correlations on all length scales are generated through Feynman diagrams, with a local two-particle vertex instead of the bare Coulomb interaction as a building block. With these diagrammatic extensions of DMFT long-range charge, magnetic, and superconducting fluctuations as well as (quantum) criticality can be addressed in strongly correlated electron systems. An overview is provided of the successes and results achieved, mainly for model Hamiltonians, and an outline is given of future prospects for realistic material calculations.

  4. Mean fields and self consistent normal ordering of lattice spin and gauge field theories

    International Nuclear Information System (INIS)

    Ruehl, W.

    1986-01-01

    Classical Heisenberg spin models on lattices possess mean field theories that are well defined real field theories on finite lattices. These mean field theories can be self consistently normal ordered. This leads to a considerable improvement over standard mean field theory. This concept is carried over to lattice gauge theories. We construct first an appropriate real mean field theory. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean field theory are derived. (orig.)

  5. Non-local correlations within dynamical mean field theory

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang

    2009-03-15

    The contributions from the non-local fluctuations to the dynamical mean field theory (DMFT) were studied using the recently proposed dual fermion approach. Straight forward cluster extensions of DMFT need the solution of a small cluster, where all the short-range correlations are fully taken into account. All the correlations beyond the cluster scope are treated in the mean-field level. In the dual fermion method, only a single impurity problem needs to be solved. Both the short and long-range correlations could be considered on equal footing in this method. The weak-coupling nature of the dual fermion ensures the validity of the finite order diagram expansion. The one and two particle Green's functions calculated from the dual fermion approach agree well with the Quantum Monte Carlo solutions, and the computation time is considerably less than with the latter method. The access of the long-range order allows us to investigate the collective behavior of the electron system, e.g. spin wave excitations. (orig.)

  6. Non-local correlations within dynamical mean field theory

    International Nuclear Information System (INIS)

    Li, Gang

    2009-03-01

    The contributions from the non-local fluctuations to the dynamical mean field theory (DMFT) were studied using the recently proposed dual fermion approach. Straight forward cluster extensions of DMFT need the solution of a small cluster, where all the short-range correlations are fully taken into account. All the correlations beyond the cluster scope are treated in the mean-field level. In the dual fermion method, only a single impurity problem needs to be solved. Both the short and long-range correlations could be considered on equal footing in this method. The weak-coupling nature of the dual fermion ensures the validity of the finite order diagram expansion. The one and two particle Green's functions calculated from the dual fermion approach agree well with the Quantum Monte Carlo solutions, and the computation time is considerably less than with the latter method. The access of the long-range order allows us to investigate the collective behavior of the electron system, e.g. spin wave excitations. (orig.)

  7. Quantum Critical Point revisited by the Dynamical Mean Field Theory

    Science.gov (United States)

    Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei

    Dynamical mean field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low energy kink and the high energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high energy antiferromagnetic paramagnons. We use the frequency dependent four-point correlation function of spin operators to calculate the momentum dependent correction to the electron self energy. Our results reveal a substantial difference with the calculations based on the Spin-Fermion model which indicates that the frequency dependence of the the quasiparitcle-paramagnon vertices is an important factor. The authors are supported by Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant DE-FOA-0001276.

  8. Quantum critical point revisited by dynamical mean-field theory

    Science.gov (United States)

    Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.

    2017-03-01

    Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. We use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. By comparing with the calculations based on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.

  9. Quantum critical point revisited by dynamical mean-field theory

    International Nuclear Information System (INIS)

    Xu, Wenhu; Kotliar, Gabriel; Rutgers University, Piscataway, NJ; Tsvelik, Alexei M.

    2017-01-01

    Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. We characterize the QCP by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. Here, we use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. Furthermore, by comparing with the calculations based on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.

  10. Relativistic mean field theory for deformed nuclei with pairing correlations

    International Nuclear Information System (INIS)

    Geng, Lisheng; Toki, Hiroshi; Sugimoto, Satoru; Meng, Jie

    2003-01-01

    We develop a relativistic mean field (RMF) description of deformed nuclei with pairing correlations in the BCS approximation. The treatment of the pairing correlations for nuclei whose Fermi surfaces are close to the threshold of unbound states needs special attention. With this in mind, we use a delta function interaction for the pairing interaction to pick up those states whose wave functions are concentrated in the nuclear region and employ the standard BCS approximation for the single-particle states obtained from the BMF theory with deformation. We apply the RMF + BCS method to the Zr isotopes and obtain a good description of the binding energies and the nuclear radii of nuclei from the proton drip line to the neutron drip line. (author)

  11. Multiagent model and mean field theory of complex auction dynamics

    Science.gov (United States)

    Chen, Qinghua; Huang, Zi-Gang; Wang, Yougui; Lai, Ying-Cheng

    2015-09-01

    Recent years have witnessed a growing interest in analyzing a variety of socio-economic phenomena using methods from statistical and nonlinear physics. We study a class of complex systems arising from economics, the lowest unique bid auction (LUBA) systems, which is a recently emerged class of online auction game systems. Through analyzing large, empirical data sets of LUBA, we identify a general feature of the bid price distribution: an inverted J-shaped function with exponential decay in the large bid price region. To account for the distribution, we propose a multi-agent model in which each agent bids stochastically in the field of winner’s attractiveness, and develop a theoretical framework to obtain analytic solutions of the model based on mean field analysis. The theory produces bid-price distributions that are in excellent agreement with those from the real data. Our model and theory capture the essential features of human behaviors in the competitive environment as exemplified by LUBA, and may provide significant quantitative insights into complex socio-economic phenomena.

  12. Multiagent model and mean field theory of complex auction dynamics

    International Nuclear Information System (INIS)

    Chen, Qinghua; Wang, Yougui; Huang, Zi-Gang; Lai, Ying-Cheng

    2015-01-01

    Recent years have witnessed a growing interest in analyzing a variety of socio-economic phenomena using methods from statistical and nonlinear physics. We study a class of complex systems arising from economics, the lowest unique bid auction (LUBA) systems, which is a recently emerged class of online auction game systems. Through analyzing large, empirical data sets of LUBA, we identify a general feature of the bid price distribution: an inverted J-shaped function with exponential decay in the large bid price region. To account for the distribution, we propose a multi-agent model in which each agent bids stochastically in the field of winner’s attractiveness, and develop a theoretical framework to obtain analytic solutions of the model based on mean field analysis. The theory produces bid-price distributions that are in excellent agreement with those from the real data. Our model and theory capture the essential features of human behaviors in the competitive environment as exemplified by LUBA, and may provide significant quantitative insights into complex socio-economic phenomena. (paper)

  13. Sine-Gordon mean field theory of a Coulomb gas

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Alexandre; Barbosa, Marcia C.; Levin, Yan

    1997-12-31

    Full text. The Coulomb gas provides a paradigm for the study of various models of critical phenomena. In particular, it is well known that the two dimensional (2 D). Coulomb gas can be directly used to study the superfluidity transition in {sup 4} He films, arrays of Josephson junctions, roughening transition, etc. Not withstanding its versatility, our full understanding of the most basic model of Coulomb gas, namely an ensemble of hard spheres carrying either positive or negative charges at their center, is still lacking. It is now well accepted that at low density the two dimensional plasma of equal number of positive and negative particles undergoes a Kosterlitz-Thouless (KT) metal insulator transition. This transition is of an infinite order and is characterized by a diverging Debye screening length. As the density of particles increases, the validity of the KT theory becomes questionable and the possibility of the KT transition being replaced by some kind of first order discontinuity has been speculated for a long time. In this work sine-Gordon field theory is used to investigate the phase diagram of a neutral Coulomb gas. A variational mean-field free energy is constructed and the corresponding phase diagrams in two and three dimensions are obtained. When analyzed in terms of chemical potential, the sine-Gordon theory predicts the phase diagram topologically identical to the Monte Carlo simulations and a recently developed Debye-Huckel-Bjerrum theory. In 2D, we find that the infinite-order Kosterlitz-Thouless line terminates in a tricritical point, after which the metal-insulator transition becomes first order. However, when the transformation from chemical potential to the density is made the whole insulating phase is mapped onto zero density. (author)

  14. Superheavy nuclei in the relativistic mean-field theory

    International Nuclear Information System (INIS)

    Lalazissis, G.A.; Ring, P.; Gambhir, Y.K.

    1996-01-01

    We have carried out a study of superheavy nuclei in the framework of the relativistic mean-field theory. Relativistic Hartree-Bogoliubov (RHB) calculations have been performed for nuclei with large proton and neutron numbers. A finite-range pairing force of Gogny type has been used in the RHB calculations. The ground-state properties of very heavy nuclei with atomic numbers Z=100-114 and neutron numbers N=154-190 have been obtained. The results show that in addition to N=184 the neutron numbers N=160 and N=166 exhibit an extra stability as compared to their neighbors. For the case of protons the atomic number Z=106 is shown to demonstrate a closed-shell behavior in the region of well deformed nuclei about N=160. The proton number Z=114 also indicates a shell closure. Indications for a doubly magic character at Z=106 and N=160 are observed. Implications of shell closures on a possible synthesis of superheavy nuclei are discussed. (orig.)

  15. Mean-field theory of meta-learning

    International Nuclear Information System (INIS)

    Plewczynski, Dariusz

    2009-01-01

    We discuss here the mean-field theory for a cellular automata model of meta-learning. Meta-learning is the process of combining outcomes of individual learning procedures in order to determine the final decision with higher accuracy than any single learning method. Our method is constructed from an ensemble of interacting, learning agents that acquire and process incoming information using various types, or different versions, of machine learning algorithms. The abstract learning space, where all agents are located, is constructed here using a fully connected model that couples all agents with random strength values. The cellular automata network simulates the higher level integration of information acquired from the independent learning trials. The final classification of incoming input data is therefore defined as the stationary state of the meta-learning system using simple majority rule, yet the minority clusters that share the opposite classification outcome can be observed in the system. Therefore, the probability of selecting a proper class for a given input data, can be estimated even without the prior knowledge of its affiliation. The fuzzy logic can be easily introduced into the system, even if learning agents are built from simple binary classification machine learning algorithms by calculating the percentage of agreeing agents

  16. Present state of the theory of a MHD-dynamo

    Energy Technology Data Exchange (ETDEWEB)

    Soward, A M; Roberts, P H

    1976-01-01

    A review is given of the state of the theory of a MHD-dynamo, that is, the theory of self-excited magnetic fields in homogeneous moving liquids. A description is given of two basic approaches-the turbulent dynamos of Steinbeck, Krause and Redler and the high-conductivity dynamo of Braginski, and a look is also taken at the relation between these dynamos. Finally a look is taken at the results of recent studies of the total problem of a MHD-dynamo, that is, at the results of recent attempts to solve the electro- and hydrodynamic equations and to obtain self-excited fields. 6 figs., 122 ref. (SJR)

  17. Quantum mean-field theory of collective dynamics and tunneling

    International Nuclear Information System (INIS)

    Negele, J.W.; Massachusetts Inst. of Tech., Cambridge

    1981-01-01

    In collaboration with Shimon Levit and Zvi Paltiel, significant progress has been made recently in formulating the quantum many-body problem in terms of an expansion about solutions to time-dependent mean-field equations. The essential ideas, principal results, and illustrative examples will be summarized here. (orig./HSI)

  18. Mean-field theory of anyons near Bose statistics

    International Nuclear Information System (INIS)

    McCabe, J.; MacKenzie, R.

    1992-01-01

    The validity of a mean-field approximation for a boson-based free anyon gas near Bose statistics is shown. The magnetic properties of the system is discussed in the approximation that the statistical magnetic field is uniform. It is proved that the anyon gas does not exhibit a Meissner effect in the domain of validity the approximation. (K.A.) 7 refs

  19. Mean field theory for non-abelian gauge theories and fluid dynamics. A brief progress report

    International Nuclear Information System (INIS)

    Wadia, Spenta R.

    2009-01-01

    We review the long standing problem of 'mean field theory' for non-abelian gauge theories. As a consequence of the AdS/CFT correspondence, in the large N limit, at strong coupling, and high temperatures and density, the 'mean field theory' is described by the Navier-Stokes equations of fluid dynamics. We also discuss and present results on the non-conformal fluid dynamics of the D1 brane in 1+1 dim. (author)

  20. Mean field theory of dynamic phase transitions in ferromagnets

    International Nuclear Information System (INIS)

    Idigoras, O.; Vavassori, P.; Berger, A.

    2012-01-01

    We have studied the second order dynamic phase transition (DPT) of the two-dimensional kinetic Ising model by means of numerical calculations. While it is well established that the order parameter Q of the DPT is the average magnetization per external field oscillation cycle, the possible identity of the conjugate field has been addressed only recently. In this work, we demonstrate that our entire set of numerical data is fully consistent with the applied bias field H b being the conjugate field of order parameter Q. For this purpose, we have analyzed the Q(H b )-dependence and we have found that it follows the expected power law behavior with the same critical exponent as the mean field equilibrium case.

  1. Particle Production and Effective Thermalization in Inhomogeneous Mean Field Theory

    NARCIS (Netherlands)

    Aarts, G.; Smit, J.

    2000-01-01

    As a toy model for dynamics in nonequilibrium quantum field theory we consider the abelian Higgs model in 1+1 dimensions with fermions. In the approximate dynamical equations, inhomogeneous classical (mean) Bose fields are coupled to quantized fermion fields, which are treated with a mode function

  2. Does one see gluon condensation after subtraction of mean field perturbation theory from Monte Carlo data

    International Nuclear Information System (INIS)

    Schlichting, H.

    1985-01-01

    We do a linearised mean field calculation in axial gauge for the four dimensional mixed fundamental adjoint SU(2) lattice gauge theory and extract the gluon condensate parameter from the expectation values of the plaquette and the action by subtracting mean field perturbation theory from Monte Carlo data. (orig.)

  3. Generation of large-scale vorticity in rotating stratified turbulence with inhomogeneous helicity: mean-field theory

    Science.gov (United States)

    Kleeorin, N.

    2018-06-01

    We discuss a mean-field theory of the generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale non-uniform flow is produced due to either a combined action of a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.

  4. Mean field theory for a balanced hypercolumn model of orientation selectivity in primary visual cortex

    DEFF Research Database (Denmark)

    Lerchner, Alexander; Sterner, G.; Hertz, J.

    2006-01-01

    We present a complete mean field theory for a balanced state of a simple model of an orientation hypercolumn, with a numerical procedure for solving the mean-field equations quantitatively. With our treatment, one can determine self-consistently both the firing rates and the firing correlations...

  5. Semiclassical approximations in a mean-field theory with collision terms

    International Nuclear Information System (INIS)

    Galetti, D.

    1986-01-01

    Semiclassical approximations in a mean-field theory with collision terms are discussed taking the time dependent Hartree-Fock method as framework in the obtainment of the relevant parameters.(L.C.) [pt

  6. MHD turbulent dynamo in astrophysics: Theory and numerical simulation

    Science.gov (United States)

    Chou, Hongsong

    2001-10-01

    This thesis treats the physics of dynamo effects through theoretical modeling of magnetohydrodynamic (MHD) systems and direct numerical simulations of MHD turbulence. After a brief introduction to astrophysical dynamo research in Chapter 1, the following issues in developing dynamic models of dynamo theory are addressed: In Chapter 2, nonlinearity that arises from the back reaction of magnetic field on velocity field is considered in a new model for the dynamo α-effect. The dependence of α-coefficient on magnetic Reynolds number, kinetic Reynolds number, magnetic Prandtl number and statistical properties of MHD turbulence is studied. In Chapter 3, the time-dependence of magnetic helicity dynamics and its influence on dynamo effects are studied with a theoretical model and 3D direct numerical simulations. The applicability of and the connection between different dynamo models are also discussed. In Chapter 4, processes of magnetic field amplification by turbulence are numerically simulated with a 3D Fourier spectral method. The initial seed magnetic field can be a large-scale field, a small-scale magnetic impulse, and a combination of these two. Other issues, such as dynamo processes due to helical Alfvénic waves and the implication and validity of the Zeldovich relation, are also addressed in Appendix B and Chapters 4 & 5, respectively. Main conclusions and future work are presented in Chapter 5. Applications of these studies are intended for astrophysical magnetic field generation through turbulent dynamo processes, especially when nonlinearity plays central role. In studying the physics of MHD turbulent dynamo processes, the following tools are developed: (1)A double Fourier transform in both space and time for the linearized MHD equations (Chapter 2 and Appendices A & B). (2)A Fourier spectral numerical method for direct simulation of 3D incompressible MHD equations (Appendix C).

  7. Development of mean field theories in nuclear physics and in desordered media

    International Nuclear Information System (INIS)

    Orland, Henri.

    1981-04-01

    This work, in two parts, deals with the development of mean field theories in nuclear physics (nuclei in balance and collisions of heavy ions) as well as in disordered media. In the first part, two different ways of tackling the problem of developments around mean field theories are explained. Possessing an approach wave function for the system, the natural idea for including the correlations is to develop the exact wave function of the system around the mean field wave function. The first two chapters show two different ways of dealing with this problem: the perturbative approach - Hartree-Fock equations with two body collisions and functional methods. In the second part: mean field theory for spin glasses. The problem for spin glasses is to construct a physically acceptable mean field theory. The importance of this problem in statistical mechanics is linked to the fact that the mean field theory provides a qualitative description of the low temperature phase and is the starting point needed for using more sophisticated methods (renormalization group). Two approaches to this problem are presented, one based on the Sherrington-Kirkpatrick model and the other based on a model of spins with purely local disorder and competitive interaction between the spins [fr

  8. Mean Field Theory, Ginzburg Criterion, and Marginal Dimensionality of Phase-Transitions

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgenau, R. J.

    1977-01-01

    By applying a real space version of the Ginzburg criterion, the role of fluctuations and thence the self‐consistency of mean field theory are assessed in a simple fashion for a variety of phase transitions. It is shown that in using this approach the concept of ’’marginal dimensionality’’ emerges...... in a natural way. For example, it is shown that for many homogeneous structural transformations the marginal dimensionality is two, so that mean field theory will be valid for real three‐dimensional systems. It is suggested that this simple self‐consistent approach to Landau theory should be incorporated...

  9. Non-equilibrium mean-field theories on scale-free networks

    International Nuclear Information System (INIS)

    Caccioli, Fabio; Dall'Asta, Luca

    2009-01-01

    Many non-equilibrium processes on scale-free networks present anomalous critical behavior that is not explained by standard mean-field theories. We propose a systematic method to derive stochastic equations for mean-field order parameters that implicitly account for the degree heterogeneity. The method is used to correctly predict the dynamical critical behavior of some binary spin models and reaction–diffusion processes. The validity of our non-equilibrium theory is further supported by showing its relation with the generalized Landau theory of equilibrium critical phenomena on networks

  10. Mean field theories and dual variation mathematical structures of the mesoscopic model

    CERN Document Server

    Suzuki, Takashi

    2015-01-01

    Mean field approximation has been adopted to describe macroscopic phenomena from microscopic overviews. It is still in progress; fluid mechanics, gauge theory, plasma physics, quantum chemistry, mathematical oncology, non-equilibirum thermodynamics.  spite of such a wide range of scientific areas that are concerned with the mean field theory, a unified study of its mathematical structure has not been discussed explicitly in the open literature.  The benefit of this point of view on nonlinear problems should have significant impact on future research, as will be seen from the underlying features of self-assembly or bottom-up self-organization which is to be illustrated in a unified way. The aim of this book is to formulate the variational and hierarchical aspects of the equations that arise in the mean field theory from macroscopic profiles to microscopic principles, from dynamics to equilibrium, and from biological models to models that arise from chemistry and physics.

  11. Mean field theory of nuclei and shell model. Present status and future outlook

    International Nuclear Information System (INIS)

    Nakada, Hitoshi

    2003-01-01

    Many of the recent topics of the nuclear structure are concerned on the problems of unstable nuclei. It has been revealed experimentally that the nuclear halos and the neutron skins as well as the cluster structures or the molecule-like structures can be present in the unstable nuclei, and the magic numbers well established in the stable nuclei disappear occasionally while new ones appear. The shell model based on the mean field approximation has been successfully applied to stable nuclei to explain the nuclear structure as the finite many body system quantitatively and it is considered as the standard model at present. If the unstable nuclei will be understood on the same model basis or not is a matter related to fundamental principle of nuclear structure theories. In this lecture, the fundamental concept and the framework of the theory of nuclear structure based on the mean field theory and the shell model are presented to make clear the problems and to suggest directions for future researches. At first fundamental properties of nuclei are described under the subtitles: saturation and magic numbers, nuclear force and effective interactions, nuclear matter, and LS splitting. Then the mean field theory is presented under subtitles: the potential model, the mean field theory, Hartree-Fock approximation for nuclear matter, density dependent force, semiclassical mean field theory, mean field theory and symmetry, Skyrme interaction and density functional, density matrix expansion, finite range interactions, effective masses, and motion of center of mass. The subsequent section is devoted to the shell model with the subtitles: beyond the mean field approximation, core polarization, effective interaction of shell model, one-particle wave function, nuclear deformation and shell model, and shell model of cross shell. Finally structure of unstable nuclei is discussed with the subtitles: general remark on the study of unstable nuclear structure, asymptotic behavior of wave

  12. Mean field theory for a balanced hypercolumn model of orientation selectivity in primary visual cortex

    CERN Document Server

    Lerchner, A; Hertz, J; Ahmadi, M

    2004-01-01

    We present a complete mean field theory for a balanced state of a simple model of an orientation hypercolumn. The theory is complemented by a description of a numerical procedure for solving the mean-field equations quantitatively. With our treatment, we can determine self-consistently both the firing rates and the firing correlations, without being restricted to specific neuron models. Here, we solve the analytically derived mean-field equations numerically for integrate-and-fire neurons. Several known key properties of orientation selective cortical neurons emerge naturally from the description: Irregular firing with statistics close to -- but not restricted to -- Poisson statistics; an almost linear gain function (firing frequency as a function of stimulus contrast) of the neurons within the network; and a contrast-invariant tuning width of the neuronal firing. We find that the irregularity in firing depends sensitively on synaptic strengths. If Fano factors are bigger than 1, then they are so for all stim...

  13. Mean-field theory of spin-glasses with finite coordination number

    Science.gov (United States)

    Kanter, I.; Sompolinsky, H.

    1987-01-01

    The mean-field theory of dilute spin-glasses is studied in the limit where the average coordination number is finite. The zero-temperature phase diagram is calculated and the relationship between the spin-glass phase and the percolation transition is discussed. The present formalism is applicable also to graph optimization problems.

  14. Functional differential equation approach to the large N expansion and mean field perturbation theory

    International Nuclear Information System (INIS)

    Bender, C.M.; Cooper, F.

    1985-01-01

    An apparent difference between formulating mean field perturbation theory for lambdaphi 4 field theory via path integrals or via functional differential equations when there are external sources present is shown not to exist when mean field theory is considered as the N = 1 limit of the 0(N)lambdaphi 4 field theory. A simply method is given for determining the 1/N expansion for the Green's functions in the presence of external sources by directly solving the functional differential equations order by order in 1/N. The 1/N expansion for the effective action GAMMA(phi,chi) is obtained by directly integrating the functional differential equations for the fields phi and chi (equivalent1/2lambda/Nphi/sub α/phi/sup α/-μ 2 ) in the presence of two external sources j = -deltaGAMMA/deltaphi, S = -deltaGAMMA/deltachi

  15. Time-odd mean fields in covariant density functional theory: Rotating systems

    International Nuclear Information System (INIS)

    Afanasjev, A. V.; Abusara, H.

    2010-01-01

    Time-odd mean fields (nuclear magnetism) and their impact on physical observables in rotating nuclei are studied in the framework of covariant density functional theory (CDFT). It is shown that they have profound effect on the dynamic and kinematic moments of inertia. Particle number, configuration, and rotational frequency dependencies of their impact on the moments of inertia have been analyzed in a systematic way. Nuclear magnetism can also considerably modify the band crossing features such as crossing frequencies and the properties of the kinematic and dynamic moments of inertia in the band crossing region. The impact of time-odd mean fields on the moments of inertia in the regions away from band crossing only weakly depends on the relativistic mean-field parametrization, reflecting good localization of the properties of time-odd mean fields in CDFT. The moments of inertia of normal-deformed nuclei considerably deviate from the rigid-body value. On the contrary, superdeformed and hyperdeformed nuclei have the moments of inertia which are close to rigid-body value. The structure of the currents in rotating frame, their microscopic origin, and the relations to the moments of inertia have been systematically analyzed. The phenomenon of signature separation in odd-odd nuclei, induced by time-odd mean fields, has been analyzed in detail.

  16. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory

    Energy Technology Data Exchange (ETDEWEB)

    Rogachevskii, Igor; Kleeorin, Nathan [Department of Mechanical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Ruchayskiy, Oleg [Discovery Center, Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Boyarsky, Alexey [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Fröhlich, Jürg [Institute of Theoretical Physics, ETH Hönggerberg, CH-8093 Zurich (Switzerland); Brandenburg, Axel; Schober, Jennifer, E-mail: gary@bgu.ac.il [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2017-09-10

    The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma ( chiral magnetic effect ). We present a self-consistent treatment of the chiral MHD equations , which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that the chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.

  17. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory

    International Nuclear Information System (INIS)

    Rogachevskii, Igor; Kleeorin, Nathan; Ruchayskiy, Oleg; Boyarsky, Alexey; Fröhlich, Jürg; Brandenburg, Axel; Schober, Jennifer

    2017-01-01

    The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma ( chiral magnetic effect ). We present a self-consistent treatment of the chiral MHD equations , which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that the chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.

  18. An impurity solver for nonequilibrium dynamical mean field theory based on hierarchical quantum master equations

    Energy Technology Data Exchange (ETDEWEB)

    Haertle, Rainer [Institut fuer Theoretische Physik, Georg-August-Universitaet Goettingen, Goettingen (Germany); Millis, Andrew J. [Department of Physics, Columbia University, New York (United States)

    2016-07-01

    We present a new impurity solver for real-time and nonequilibrium dynamical mean field theory applications, based on the recently developed hierarchical quantum master equation approach. Our method employs a hybridization expansion of the time evolution operator, including an advanced, systematic truncation scheme. Convergence to exact results for not too low temperatures has been demonstrated by a direct comparison to quantum Monte Carlo simulations. The approach is time-local, which gives us access to slow dynamics such as, e.g., in the presence of magnetic fields or exchange interactions and to nonequilibrium steady states. Here, we present first results of this new scheme for the description of strongly correlated materials in the framework of dynamical mean field theory, including benchmark and new results for the Hubbard and periodic Anderson model.

  19. Covariant density functional theory beyond mean field and applications for nuclei far from stability

    International Nuclear Information System (INIS)

    Ring, P

    2010-01-01

    Density functional theory provides a very powerful tool for a unified microscopic description of nuclei all over the periodic table. It is not only successful in reproducing bulk properties of nuclear ground states such as binding energies, radii, or deformation parameters, but it also allows the investigation of collective phenomena, such as giant resonances and rotational excitations. However, it is based on the mean field concept and therefore it has its limits. We discuss here two methods based based on covariant density functional theory going beyond the mean field concept, (i) models with an energy dependent self energy allowing the coupling to complex configurations and a quantitative description of the width of giant resonances and (ii) methods of configuration mixing between Slater determinants with different deformation and orientation providing are very successful description of transitional nuclei and quantum phase transitions.

  20. Hidden Fermi liquid, scattering rate saturation, and Nernst effect: a dynamical mean-field theory perspective.

    Science.gov (United States)

    Xu, Wenhu; Haule, Kristjan; Kotliar, Gabriel

    2013-07-19

    We investigate the transport properties of a correlated metal within dynamical mean-field theory. Canonical Fermi liquid behavior emerges only below a very low temperature scale T(FL). Surprisingly the quasiparticle scattering rate follows a quadratic temperature dependence up to much higher temperatures and crosses over to saturated behavior around a temperature scale T(sat). We identify these quasiparticles as constituents of the hidden Fermi liquid. The non-Fermi-liquid transport above T(FL), in particular the linear-in-T resistivity, is shown to be a result of a strongly temperature dependent band dispersion. We derive simple expressions for the resistivity, Hall angle, thermoelectric power and Nernst coefficient in terms of a temperature dependent renormalized band structure and the quasiparticle scattering rate. We discuss possible tests of the dynamical mean-field theory picture of transport using ac measurements.

  1. Double giant resonances in time-dependent relativistic mean-field theory

    International Nuclear Information System (INIS)

    Ring, P.; Podobnik, B.

    1996-01-01

    Collective vibrations in spherical nuclei are described in the framework of time-dependent relativistic mean-field theory (RMFT). Isoscalar quadrupole and isovector dipole oscillations that correspond to giant resonances are studied, and possible excitations of higher modes are investigated. We find evidence for modes which can be interpreted as double resonances. In a quantized RMFT they correspond to two-phonon states. (orig.)

  2. Nonlinear many-body reaction theories from nuclear mean field approximations

    International Nuclear Information System (INIS)

    Griffin, J.J.

    1983-01-01

    Several methods of utilizing nonlinear mean field propagation in time to describe nuclear reaction have been studied. The property of physical asymptoticity is analyzed in this paper, which guarantees that the prediction by a reaction theory for the physical measurement of internal fragment properties shall not depend upon the precise location of the measuring apparatus. The physical asymptoticity is guaranteed in the Schroedinger collision theory of a scuttering system with translationally invariant interaction by the constancy of the S-matrix elements and by the translational invariance of the internal motion for well-separated fragments. Both conditions are necessary for the physical asymptoticity. The channel asymptotic single-determinantal propagation can be described by the Dirac-TDHF (time dependent Hartree-Fock) time evolution. A new asymptotic Hartree-Fock stationary phase (AHFSP) description together with the S-matrix time-dependent Hartree-Fock (TD-S-HF) theory constitute the second example of a physically asymptotic nonlinear many-body reaction theory. A review of nonlinear mean field many-body reaction theories shows that initial value TDHF is non-asymptotic. The TD-S-HF theory is asymptotic by the construction. The gauge invariant periodic quantized solution of the exact Schroedinger problem has been considered to test whether it includes all of the exact eigenfunctions as it ought to. It did, but included as well an infinity of all spurions solutions. (Kato, T.)

  3. Mean-field theory of photoinduced molecular reorientation in azobenzene liquid crystalline side-chain polymers

    DEFF Research Database (Denmark)

    Pedersen, T.G.; Johansen, P.M.

    1997-01-01

    . The theory provides an explanation for the high long-term stability of the photoinduced anisotropy as well as a theoretical prediction of the temporal behavior of photoinduced birefringence. The theoretical results agree favorably with measurements in the entire range of writing intensities used......A novel mean-field theory of photoinduced reorientation and optical anisotropy in liquid crystalline side-chain polymers is presented and compared with experiments, The reorientation mechanism is based on photoinduced trans cis isomerization and a multidomain model of the material is introduced...

  4. Advances in dynamic and mean field games theory, applications, and numerical methods

    CERN Document Server

    Viscolani, Bruno

    2017-01-01

    This contributed volume considers recent advances in dynamic games and their applications, based on presentations given at the 17th Symposium of the International Society of Dynamic Games, held July 12-15, 2016, in Urbino, Italy. Written by experts in their respective disciplines, these papers cover various aspects of dynamic game theory including mean-field games, stochastic and pursuit-evasion games, and computational methods for dynamic games. Topics covered include Pedestrian flow in crowded environments Models for climate change negotiations Nash Equilibria for dynamic games involving Volterra integral equations Differential games in healthcare markets Linear-quadratic Gaussian dynamic games Aircraft control in wind shear conditions Advances in Dynamic and Mean-Field Games presents state-of-the-art research in a wide spectrum of areas. As such, it serves as a testament to the continued vitality and growth of the field of dynamic games and their applications. It will be of interest to an interdisciplinar...

  5. Neutron stars in relativistic mean field theory with isovector scalar meson

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S.; Kutschera, M.; Stachniewicz, S. [H. Niewodniczanski Institute of Nuclear Physics, Cracow (Poland)

    1998-03-01

    We study the equation of state (EOS) of {beta}-stable dense matter and models of neutron stars in the relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the {delta}-meson (a{sub 0}(980)). A range of values of the {delta}-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E{sub s}{approx}30 MeV. We find that the quantity most sensitive to the {delta}-meson coupling is the proton fraction of neutron star matter. It increases significantly in the presence of the {delta}-field. The energy per baryon also increases but the effect is smaller. The EOS becomes slightly stiffer and the maximum neutron star mass increases for stronger {delta}-meson coupling. (author) 8 refs, 6 figs, 2 tabs

  6. Nuclear matter in relativistic mean field theory with isovector scalar meson.

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S.; Kutschera, M. [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-01

    Relativistic mean field (RMF) theory of nuclear matter with the isovector scalar mean field corresponding to the {delta}-meson [a{sub 0}(980)] is studied. While the {delta}-meson field vanishes in symmetric nuclear matter, it can influence properties of asymmetric nuclear matter in neutron stars. The RMF contribution due to {delta}-field to the nuclear symmetry energy is negative. To fit the empirical value, E{sub s}{approx}30 MeV, a stronger {rho}-meson coupling is required than in absence of the {delta}-field. The energy per particle of neutron star matter is than larger at high densities than the one with no {delta}-field included. Also, the proton fraction of {beta}-stable matter increases. Splitting of proton and neutron effective masses due to the {delta}-field can affect transport properties of neutron star matter. (author). 4 refs, 6 figs.

  7. Neutron stars in relativistic mean field theory with isovector scalar meson

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.; Stachniewicz, S.

    1996-12-01

    We study the equation of state (EOS) of neutron star matter in a relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the δ-meson [a 0 (980)]. A range of values of the δ-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E s ∼ 30 MeV. We find that proton fraction of neutron star matter is higher in the presence of the δ-field whereas the energy per particle is lower. The EOS becomes slightly stiffer and the maximum mass of the neutron star increased with increasing δmeson coupling. The effect is stronger for soft EOS. (author). 7 refs, 6 figs, 1 tab

  8. Neutron stars in relativistic mean field theory with isovector scalar meson

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.; Stachniewicz, S.

    1998-01-01

    We study the equation of state (EOS) of β-stable dense matter and models of neutron stars in the relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the δ-meson (a 0 (980)). A range of values of the δ-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E s ∼30 MeV. We find that the quantity most sensitive to the δ-meson coupling is the proton fraction of neutron star matter. It increases significantly in the presence of the δ-field. The energy per baryon also increases but the effect is smaller. The EOS becomes slightly stiffer and the maximum neutron star mass increases for stronger δ-meson coupling. (author)

  9. Neutron stars in relativistic mean field theory with isovector scalar meson

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S.; Kutschera, M.; Stachniewicz, S. [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-01

    We study the equation of state (EOS) of neutron star matter in a relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the {delta}-meson [a{sub 0}(980)]. A range of values of the {delta}-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E{sub s} {approx} 30 MeV. We find that proton fraction of neutron star matter is higher in the presence of the {delta}-field whereas the energy per particle is lower. The EOS becomes slightly stiffer and the maximum mass of the neutron star increased with increasing {delta}meson coupling. The effect is stronger for soft EOS. (author). 7 refs, 6 figs, 1 tab.

  10. Nuclear matter in relativistic mean field theory with isovector scalar meson

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    1996-12-01

    Relativistic mean field (RMF) theory of nuclear matter with the isovector scalar mean field corresponding to the δ-meson [a 0 (980)] is studied. While the δ-meson field vanishes in symmetric nuclear matter, it can influence properties of asymmetric nuclear matter in neutron stars. The RMF contribution due to δ-field to the nuclear symmetry energy is negative. To fit the empirical value, E s ∼30 MeV, a stronger ρ-meson coupling is required than in absence of the δ-field. The energy per particle of neutron star matter is than larger at high densities than the one with no δ-field included. Also, the proton fraction of β-stable matter increases. Splitting of proton and neutron effective masses due to the δ-field can affect transport properties of neutron star matter. (author). 4 refs, 6 figs

  11. Short-range correlations in an extended time-dependent mean-field theory

    International Nuclear Information System (INIS)

    Madler, P.

    1982-01-01

    A generalization is performed of the time-dependent mean-field theory by an explicit inclusion of strong short-range correlations on a level of microscopic reversibility relating them to realistic nucleon-nucleon forces. Invoking a least action principle for correlated trial wave functions, equations of motion for the correlation functions and the single-particle model wave function are derived in lowest order of the FAHT cluster expansion. Higher order effects as well as long-range correlations are consider only to the extent to which they contribute to the mean field via a readjusted phenomenological effective two-body interaction. The corresponding correlated stationary problem is investigated and appropriate initial conditions to describe a heavy ion reaction are proposed. The singleparticle density matrix is evaluated

  12. Simple Theory for the Dynamics of Mean-Field-Like Models of Glass-Forming Fluids

    Science.gov (United States)

    Szamel, Grzegorz

    2017-10-01

    We propose a simple theory for the dynamics of model glass-forming fluids, which should be solvable using a mean-field-like approach. The theory is based on transparent physical assumptions, which can be tested in computer simulations. The theory predicts an ergodicity-breaking transition that is identical to the so-called dynamic transition predicted within the replica approach. Thus, it can provide the missing dynamic component of the random first order transition framework. In the large-dimensional limit the theory reproduces the result of a recent exact calculation of Maimbourg et al. [Phys. Rev. Lett. 116, 015902 (2016), 10.1103/PhysRevLett.116.015902]. Our approach provides an alternative, physically motivated derivation of this result.

  13. Conserving gapless mean-field theory for weakly interacting Bose gases

    International Nuclear Information System (INIS)

    Kita, Takafumi

    2006-01-01

    This paper presents a conserving gapless mean-field theory for weakly interacting Bose gases. We first construct a mean-field Luttinger-Ward thermodynamic functional in terms of the condensate wave function Ψ and the Nambu Green's function G for the quasiparticle field. Imposing its stationarity respect to Ψ and G yields a set of equations to determine the equilibrium for general non-uniform systems. They have a plausible property of satisfying the Hugenholtz-Pines theorem to provide a gapless excitation spectrum. Also, the corresponding dynamical equations of motion obey various conservation laws. Thus, the present mean-field theory shares two important properties with the exact theory: 'conserving' and 'gapless'. The theory is then applied to a homogeneous weakly interacting Bose gas with s-wave scattering length a and particle mass m to clarify its basic thermodynamic properties under two complementary conditions of constant density n and constant pressure p. The superfluid transition is predicted to be first-order because of the non-analytic nature of the order-parameter expansion near T c inherent in Bose systems, i.e., the Landau-Ginzburg expansion is not possible here. The transition temperature T c shows quite a different interaction dependence between the n-fixed and p-fixed cases. In the former case T c increases from the ideal gas value T 0 as T c /T 0 =1+2.33an 1/3 , whereas it decreases in the latter as T c /T 0 =1-3.84a(mp/2πℎ 2 ) 1/5 . Temperature dependences of basic thermodynamic quantities are clarified explicitly. (author)

  14. MAGNETIC QUENCHING OF TURBULENT DIFFUSIVITY: RECONCILING MIXING-LENGTH THEORY ESTIMATES WITH KINEMATIC DYNAMO MODELS OF THE SOLAR CYCLE

    International Nuclear Information System (INIS)

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu

    2011-01-01

    The turbulent magnetic diffusivity in the solar convection zone is one of the most poorly constrained ingredients of mean-field dynamo models. This lack of constraint has previously led to controversy regarding the most appropriate set of parameters, as different assumptions on the value of turbulent diffusivity lead to radically different solar cycle predictions. Typically, the dynamo community uses double-step diffusivity profiles characterized by low values of diffusivity in the bulk of the convection zone. However, these low diffusivity values are not consistent with theoretical estimates based on mixing-length theory, which suggest much higher values for turbulent diffusivity. To make matters worse, kinematic dynamo simulations cannot yield sustainable magnetic cycles using these theoretical estimates. In this work, we show that magnetic cycles become viable if we combine the theoretically estimated diffusivity profile with magnetic quenching of the diffusivity. Furthermore, we find that the main features of this solution can be reproduced by a dynamo simulation using a prescribed (kinematic) diffusivity profile that is based on the spatiotemporal geometric average of the dynamically quenched diffusivity. This bridges the gap between dynamically quenched and kinematic dynamo models, supporting their usage as viable tools for understanding the solar magnetic cycle.

  15. Naturalness of Nonlinear Scalar Self-Couplings in a Relativistic Mean Field Theory for Neutron Stars

    International Nuclear Information System (INIS)

    Maekawa, Claudio; Razeira, Moises; Vasconcellos, Cesar A. Z.; Dillig, Manfred; Bodmann, Bardo E. J.

    2004-01-01

    We investigate the role of naturalness in effective field theory. We focus on dense hadronic matter using a generalized relativistic multi-baryon lagrangian density mean field approach which contains nonlinear self-couplings of the σ, δ meson fields and the fundamental baryon octet. We adjust the model parameters to describe bulk static properties of ordinary nuclear matter. Then, we show that our approach represents a natural modelling of nuclear matter under the extreme conditions of density as the ones found in the interior of neutron stars

  16. One-pion exchange current corrections for nuclear magnetic moments in relativistic mean field theory

    International Nuclear Information System (INIS)

    Li Jian; Yao, J.M.; Meng Jie; Arima, Akito

    2011-01-01

    The one-pion exchange current corrections to isoscalar and isovector magnetic moments of double-closed shell nuclei plus and minus one nucleon with A = 15, 17, 39 and 41 have been studied in the relativistic mean field (RMF) theory and compared with previous relativistic and non-relativistic results. It has been found that the one-pion exchange current gives a negligible contribution to the isoscalar magnetic moments but a significant correction to the isovector ones. However, the one-pion exchange current enhances the isovector magnetic moments further and does not improve the corresponding description for the concerned nuclei in the present work. (author)

  17. Pionic atoms, the relativistic mean-field theory and the pion-nucleon scattering lenghts

    International Nuclear Information System (INIS)

    Goudsmit, P.F.A.; Leisi, H.J.; Matsinos, E.

    1991-01-01

    Analysing pionic-atom data of isoscalar nuclei within the relativistic mean-field (RMF) theory, we determine the pseudoscalar πNN mixing parameter x=0.24±0.06 (syst.) and the strength of the nuclear scalar meson field for pions, S π =-34±14 (syst.) MeV. We show that these values are compatible with the elementary π-N interaction. Our RMF model provides a solution to the long-standing problem of the s-wave repulsion. (orig.)

  18. Relativistic mean-field theory for unstable nuclei with non-linear σ and ω terms

    International Nuclear Information System (INIS)

    Sugahara, Y.; Toki, H.

    1994-01-01

    We search for a new parameter set for the description of stable as well as unstable nuclei in the wide mass range within the relativistic mean-field theory. We include a non-linear ω self-coupling term in addition to the non-linear σ self-coupling terms, the necessity of which is suggested by the relativistic Brueckner-Hartree-Fock (RBHF) theory of nuclear matter. We find two parameter sets, one of which is for nuclei above Z=20 and the other for nuclei below that. The calculated results agree very well with the existing data for finite nuclei. The parameter set for the heavy nuclei provides the equation of state of nuclear matter similar to the one of the RBHF theory. ((orig.))

  19. Mean-field theory of differential rotation in density stratified turbulent convection

    Science.gov (United States)

    Rogachevskii, I.

    2018-04-01

    A mean-field theory of differential rotation in a density stratified turbulent convection has been developed. This theory is based on the combined effects of the turbulent heat flux and anisotropy of turbulent convection on the Reynolds stress. A coupled system of dynamical budget equations consisting in the equations for the Reynolds stress, the entropy fluctuations and the turbulent heat flux has been solved. To close the system of these equations, the spectral approach, which is valid for large Reynolds and Péclet numbers, has been applied. The adopted model of the background turbulent convection takes into account an increase of the turbulence anisotropy and a decrease of the turbulent correlation time with the rotation rate. This theory yields the radial profile of the differential rotation which is in agreement with that for the solar differential rotation.

  20. Active matter beyond mean-field: ring-kinetic theory for self-propelled particles.

    Science.gov (United States)

    Chou, Yen-Liang; Ihle, Thomas

    2015-02-01

    Recently, Hanke et al. [Phys. Rev. E 88, 052309 (2013)] showed that mean-field kinetic theory fails to describe collective motion in soft active colloids and that correlations must not be neglected. Correlation effects are also expected to be essential in systems of biofilaments driven by molecular motors and in swarms of midges. To obtain correlations in an active matter system from first principles, we derive a ring-kinetic theory for Vicsek-style models of self-propelled agents from the exact N-particle evolution equation in phase space. The theory goes beyond mean-field and does not rely on Boltzmann's approximation of molecular chaos. It can handle precollisional correlations and cluster formation, which are both important to understand the phase transition to collective motion. We propose a diagrammatic technique to perform a small-density expansion of the collision operator and derive the first two equations of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. An algorithm is presented that numerically solves the evolution equation for the two-particle correlations on a lattice. Agent-based simulations are performed and informative quantities such as orientational and density correlation functions are compared with those obtained by ring-kinetic theory. Excellent quantitative agreement between simulations and theory is found at not-too-small noises and mean free paths. This shows that there are parameter ranges in Vicsek-like models where the correlated closure of the BBGKY hierarchy gives correct and nontrivial results. We calculate the dependence of the orientational correlations on distance in the disordered phase and find that it seems to be consistent with a power law with an exponent around -1.8, followed by an exponential decay. General limitations of the kinetic theory and its numerical solution are discussed.

  1. Exact mean-field theory of ionic solutions: non-Debye screening

    International Nuclear Information System (INIS)

    Varela, L.M.; Garcia, Manuel; Mosquera, Victor

    2003-01-01

    The main aim of this report is to analyze the equilibrium properties of primitive model (PM) ionic solutions in the formally exact mean-field formalism. Previously, we review the main theoretical and numerical results reported throughout the last century for homogeneous (electrolytes) and inhomogeneous (electric double layer, edl) ionic systems, starting with the classical mean-field theory of electrolytes due to Debye and Hueckel (DH). In this formalism, the effective potential is derived from the Poisson-Boltzmann (PB) equation and its asymptotic behavior analyzed in the classical Debye theory of screening. The thermodynamic properties of electrolyte solutions are briefly reviewed in the DH formalism. The main analytical and numerical extensions of DH formalism are revised, ranging from the earliest extensions that overcome the linearization of the PB equation to the more sophisticated integral equation techniques introduced after the late 1960s. Some Monte Carlo and molecular dynamic simulations are also reviewed. The potential distributions in an inhomogeneous ionic system are studied in the classical PB framework, presenting the classical Gouy-Chapman (GC) theory of the electric double layer (edl) in a brief manner. The mean-field theory is adequately contextualized using field theoretic (FT) results and it is proven that the classical PB theory is recovered at the Gaussian or one-loop level of the exact FT, and a systematic way to obtain the corrections to the DH theory is derived. Particularly, it is proven following Kholodenko and Beyerlein that corrections to DH theory effectively lead to a renormalization of charges and Debye screening length. The main analytical and numerical results for this non-Debye screening length are reviewed, ranging from asymptotic expansions, self-consistent theory, nonlinear DH results and hypernetted chain (HNC) calculations. Finally, we study the exact mean-field theory of ionic solutions, the so-called dressed-ion theory

  2. Density functional theory and dynamical mean-field theory. A way to model strongly correlated systems

    International Nuclear Information System (INIS)

    Backes, Steffen

    2017-04-01

    The study of the electronic properties of correlated systems is a very diverse field and has lead to valuable insight into the physics of real materials. In these systems, the decisive factor that governs the physical properties is the ratio between the electronic kinetic energy, which promotes delocalization over the lattice, and the Coulomb interaction, which instead favours localized electronic states. Due to this competition, correlated electronic systems can show unique and interesting properties like the Metal-Insulator transition, diverse phase diagrams, strong temperature dependence and in general a high sensitivity to the environmental conditions. A theoretical description of these systems is not an easy task, since perturbative approaches that do not preserve the competition between the kinetic and interaction terms can only be applied in special limiting cases. One of the most famous approaches to obtain the electronic properties of a real material is the ab initio density functional theory (DFT) method. It allows one to obtain the ground state density of the system under investigation by mapping onto an effective non-interacting system that has to be found self-consistently. While being an exact theory, in practical implementations certain approximations have to be made to the exchange-correlation potential. The local density approximation (LDA), which approximates the exchange-correlation contribution to the total energy by that of a homogeneous electron gas with the corresponding density, has proven quite successful in many cases. Though, this approximation in general leads to an underestimation of electronic correlations and is not able to describe a metal-insulator transition due to electronic localization in the presence of strong Coulomb interaction. A different approach to the interacting electronic problem is the dynamical mean-field theory (DMFT), which is non-perturbative in the kinetic and interaction term but neglects all non

  3. Density functional theory and dynamical mean-field theory. A way to model strongly correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Backes, Steffen

    2017-04-15

    The study of the electronic properties of correlated systems is a very diverse field and has lead to valuable insight into the physics of real materials. In these systems, the decisive factor that governs the physical properties is the ratio between the electronic kinetic energy, which promotes delocalization over the lattice, and the Coulomb interaction, which instead favours localized electronic states. Due to this competition, correlated electronic systems can show unique and interesting properties like the Metal-Insulator transition, diverse phase diagrams, strong temperature dependence and in general a high sensitivity to the environmental conditions. A theoretical description of these systems is not an easy task, since perturbative approaches that do not preserve the competition between the kinetic and interaction terms can only be applied in special limiting cases. One of the most famous approaches to obtain the electronic properties of a real material is the ab initio density functional theory (DFT) method. It allows one to obtain the ground state density of the system under investigation by mapping onto an effective non-interacting system that has to be found self-consistently. While being an exact theory, in practical implementations certain approximations have to be made to the exchange-correlation potential. The local density approximation (LDA), which approximates the exchange-correlation contribution to the total energy by that of a homogeneous electron gas with the corresponding density, has proven quite successful in many cases. Though, this approximation in general leads to an underestimation of electronic correlations and is not able to describe a metal-insulator transition due to electronic localization in the presence of strong Coulomb interaction. A different approach to the interacting electronic problem is the dynamical mean-field theory (DMFT), which is non-perturbative in the kinetic and interaction term but neglects all non

  4. Orbital effect of the magnetic field in dynamical mean-field theory

    Science.gov (United States)

    Acheche, S.; Arsenault, L.-F.; Tremblay, A.-M. S.

    2017-12-01

    The availability of large magnetic fields at international facilities and of simulated magnetic fields that can reach the flux-quantum-per-unit-area level in cold atoms calls for systematic studies of orbital effects of the magnetic field on the self-energy of interacting systems. Here we demonstrate theoretically that orbital effects of magnetic fields can be treated within single-site dynamical mean-field theory with a translationally invariant quantum impurity problem. As an example, we study the one-band Hubbard model on the square lattice using iterated perturbation theory as an impurity solver. We recover the expected quantum oscillations in the scattering rate, and we show that the magnetic fields allow the interaction-induced effective mass to be measured through the single-particle density of states accessible in tunneling experiments. The orbital effect of magnetic fields on scattering becomes particularly important in the Hofstadter butterfly regime.

  5. Mott-Hubbard transition and Anderson localization: A generalized dynamical mean-field theory approach

    International Nuclear Information System (INIS)

    Kuchinskii, E. Z.; Nekrasov, I. A.; Sadovskii, M. V.

    2008-01-01

    The DOS, the dynamic (optical) conductivity, and the phase diagram of a strongly correlated and strongly disordered paramagnetic Anderson-Hubbard model are analyzed within the generalized dynamical mean field theory (DMFT + Σ approximation). Strong correlations are taken into account by the DMFT, and disorder is taken into account via an appropriate generalization of the self-consistent theory of localization. The DMFT effective single-impurity problem is solved by a numerical renormalization group (NRG); we consider the three-dimensional system with a semielliptic DOS. The correlated metal, Mott insulator, and correlated Anderson insulator phases are identified via the evolution of the DOS and dynamic conductivity, demonstrating both the Mott-Hubbard and Anderson metal-insulator transition and allowing the construction of the complete zero-temperature phase diagram of the Anderson-Hubbard model. Rather unusual is the possibility of a disorder-induced Mott insulator-to-metal transition

  6. Quantum correlated cluster mean-field theory applied to the transverse Ising model.

    Science.gov (United States)

    Zimmer, F M; Schmidt, M; Maziero, Jonas

    2016-06-01

    Mean-field theory (MFT) is one of the main available tools for analytical calculations entailed in investigations regarding many-body systems. Recently, there has been a surge of interest in ameliorating this kind of method, mainly with the aim of incorporating geometric and correlation properties of these systems. The correlated cluster MFT (CCMFT) is an improvement that succeeded quite well in doing that for classical spin systems. Nevertheless, even the CCMFT presents some deficiencies when applied to quantum systems. In this article, we address this issue by proposing the quantum CCMFT (QCCMFT), which, in contrast to its former approach, uses general quantum states in its self-consistent mean-field equations. We apply the introduced QCCMFT to the transverse Ising model in honeycomb, square, and simple cubic lattices and obtain fairly good results both for the Curie temperature of thermal phase transition and for the critical field of quantum phase transition. Actually, our results match those obtained via exact solutions, series expansions or Monte Carlo simulations.

  7. Atomically flat superconducting nanofilms: multiband properties and mean-field theory

    Science.gov (United States)

    Shanenko, A. A.; Aguiar, J. Albino; Vagov, A.; Croitoru, M. D.; Milošević, M. V.

    2015-05-01

    Recent progress in materials synthesis enabled fabrication of superconducting atomically flat single-crystalline metallic nanofilms with thicknesses down to a few monolayers. Interest in such nano-thin systems is attracted by the dimensional 3D-2D crossover in their coherent properties which occurs with decreasing the film thickness. The first fundamental aspect of this crossover is dictated by the Mermin-Wagner-Hohenberg theorem and concerns frustration of the long-range order due to superconductive fluctuations and the possibility to track its impact with an unprecedented level of control. The second important aspect is related to the Fabri-Pérot modes of the electronic motion strongly bound in the direction perpendicular to the nanofilm. The formation of such modes results in a pronounced multiband structure that changes with the nanofilm thickness and affects both the mean-field behavior and superconductive fluctuations. Though the subject is very rich in physics, it is scarcely investigated to date. The main obstacle is that there are no manageable models to study a complex magnetic response in this case. Full microscopic consideration is rather time consuming, if practicable at all, while the standard Ginzburg-Landau theory is not applicable. In the present work we review the main achievements in the subject to date, and construct and justify an efficient multiband mean-field formalism which allows for numerical and even analytical treatment of nano-thin superconductors in applied magnetic fields.

  8. Atomically flat superconducting nanofilms: multiband properties and mean-field theory

    International Nuclear Information System (INIS)

    Shanenko, A A; Aguiar, J Albino; Vagov, A; Croitoru, M D; Milošević, M V

    2015-01-01

    Recent progress in materials synthesis enabled fabrication of superconducting atomically flat single-crystalline metallic nanofilms with thicknesses down to a few monolayers. Interest in such nano-thin systems is attracted by the dimensional 3D–2D crossover in their coherent properties which occurs with decreasing the film thickness. The first fundamental aspect of this crossover is dictated by the Mermin–Wagner–Hohenberg theorem and concerns frustration of the long-range order due to superconductive fluctuations and the possibility to track its impact with an unprecedented level of control. The second important aspect is related to the Fabri–Pérot modes of the electronic motion strongly bound in the direction perpendicular to the nanofilm. The formation of such modes results in a pronounced multiband structure that changes with the nanofilm thickness and affects both the mean-field behavior and superconductive fluctuations. Though the subject is very rich in physics, it is scarcely investigated to date. The main obstacle is that there are no manageable models to study a complex magnetic response in this case. Full microscopic consideration is rather time consuming, if practicable at all, while the standard Ginzburg–Landau theory is not applicable. In the present work we review the main achievements in the subject to date, and construct and justify an efficient multiband mean-field formalism which allows for numerical and even analytical treatment of nano-thin superconductors in applied magnetic fields. (paper)

  9. Mean-field Theory for Some Bus Transport Networks with Random Overlapping Clique Structure

    International Nuclear Information System (INIS)

    Yang Xuhua; Sun Bao; Wang Bo; Sun Youxian

    2010-01-01

    Transport networks, such as railway networks and airport networks, are a kind of random network with complex topology. Recently, more and more scholars paid attention to various kinds of transport networks and try to explore their inherent characteristics. Here we study the exponential properties of a recently introduced Bus Transport Networks (BTNs) evolution model with random overlapping clique structure, which gives a possible explanation for the observed exponential distribution of the connectivities of some BTNs of three major cities in China. Applying mean-field theory, we analyze the BTNs model and prove that this model has the character of exponential distribution of the connectivities, and develop a method to predict the growth dynamics of the individual vertices, and use this to calculate analytically the connectivity distribution and the exponents. By comparing mean-field based theoretic results with the statistical data of real BTNs, we observe that, as a whole, both of their data show similar character of exponential distribution of the connectivities, and their exponents have same order of magnitude, which show the availability of the analytical result of this paper. (general)

  10. Turbulent Diffusion of the Geomagnetic Field and Dynamo Theories

    OpenAIRE

    Filippi, Enrico

    2016-01-01

    The thesis deals with the Dynamo Theories of the Earth’s Magnetic Field and mainly deepens the turbulence phenomena in the fluid Earth’s core. Indeed, we think that these phenomena are very important to understand the recent decay of the geomagnetic field. The thesis concerns also the dynamics of the outer core and some very rapid changes of the geomagnetic field observed in the Earth’s surface and some aspects regarding the (likely) isotropic turbulence in the Magnetohydrodynamics. These top...

  11. Transport in simple liquids and dense gases: kinetic mean-field theory and the KAC limit

    International Nuclear Information System (INIS)

    Karkheck, J.; Stell, G.; Martina, E.

    1982-01-01

    Maximization of entropy is used in conjunction with the BBGKY hierarchy to obtain a closed one-particle kinetic equation. For an interparticle potential of hard-sphere core plus smooth attractive tail, this equation contains a hard-core collision integral, identical to that of the revised Enskog theory, plus a mean-field term which is linear in the tail strength. The thermodynamics contained therein leads directly to the now-standard statistical-mechanical methods to construct a state-dependent effective hard-core potential in relation to a more realistic potential. These methods induce an extension of the transport coefficients to the Lennard-Jones potential. Predictions of the resulting transport theory compare very favorably with thermal conductivity and shear viscosity experimental results for real simple liquids and dense gases, and also with molecular dynamics simulation results. Poor agreement between theory and experiment is found for moderately dense and dilute gases. The kinetic theory also contains an entropy functional and an H-theorem is proven. Extension to mixtures is straightforward and the Kac-limit is discussed in detail

  12. Mean field theory of EM algorithm for Bayesian grey scale image restoration

    International Nuclear Information System (INIS)

    Inoue, Jun-ichi; Tanaka, Kazuyuki

    2003-01-01

    The EM algorithm for the Bayesian grey scale image restoration is investigated in the framework of the mean field theory. Our model system is identical to the infinite range random field Q-Ising model. The maximum marginal likelihood method is applied to the determination of hyper-parameters. We calculate both the data-averaged mean square error between the original image and its maximizer of posterior marginal estimate, and the data-averaged marginal likelihood function exactly. After evaluating the hyper-parameter dependence of the data-averaged marginal likelihood function, we derive the EM algorithm which updates the hyper-parameters to obtain the maximum likelihood estimate analytically. The time evolutions of the hyper-parameters and so-called Q function are obtained. The relation between the speed of convergence of the hyper-parameters and the shape of the Q function is explained from the viewpoint of dynamics

  13. The mean field theory in EM procedures for blind Markov random field image restoration.

    Science.gov (United States)

    Zhang, J

    1993-01-01

    A Markov random field (MRF) model-based EM (expectation-maximization) procedure for simultaneously estimating the degradation model and restoring the image is described. The MRF is a coupled one which provides continuity (inside regions of smooth gray tones) and discontinuity (at region boundaries) constraints for the restoration problem which is, in general, ill posed. The computational difficulty associated with the EM procedure for MRFs is resolved by using the mean field theory from statistical mechanics. An orthonormal blur decomposition is used to reduce the chances of undesirable locally optimal estimates. Experimental results on synthetic and real-world images show that this approach provides good blur estimates and restored images. The restored images are comparable to those obtained by a Wiener filter in mean-square error, but are most visually pleasing.

  14. Regular and chaotic dynamics in time-dependent relativistic mean-field theory

    International Nuclear Information System (INIS)

    Vretenar, D.; Ring, P.; Lalazissis, G.A.; Poeschl, W.

    1997-01-01

    Isoscalar and isovector monopole oscillations that correspond to giant resonances in spherical nuclei are described in the framework of time-dependent relativistic mean-field theory. Time-dependent and self-consistent calculations that reproduce experimental data on monopole resonances in 208 Pb show that the motion of the collective coordinate is regular for isoscalar oscillations, and that it becomes chaotic when initial conditions correspond to the isovector mode. Regular collective dynamics coexists with chaotic oscillations on the microscopic level. Time histories, Fourier spectra, state-space plots, Poincare sections, autocorrelation functions, and Lyapunov exponents are used to characterize the nonlinear system and to identify chaotic oscillations. Analogous considerations apply to higher multipolarities. copyright 1997 The American Physical Society

  15. On the binding energy of double Λ hypernuclei in the relativistic mean field theory

    International Nuclear Information System (INIS)

    Marcos, S.; Lombard, R.J.

    1997-01-01

    The binding energy of two Λ hyperons bound to a nuclear core is calculated within the relativistic mean field theory. The starting point is a two body relativistic equation of the Breit type suggested by the RMFT, and corrected for the two-particle interaction. The 2 Λ correlation energy is evaluated and the contribution of the δ and φ mesons, acting solely between hyperons, to the bond energy σB ΛΛ of ( ΛΛ ) 6 He, ( ΛΛ ) 10 Be and ( ΛΛ ) 13 B is calculated. Predictions of the ΔB ΛΛ A dependence are made for heavier Λ-hypernuclei. (K.A.)

  16. Multichain Mean-Field Theory of Quasi-One-Dimensional Quantum Spin Systems

    International Nuclear Information System (INIS)

    Sandvik, A.W.

    1999-01-01

    A multichain mean-field theory is developed and applied to a two-dimensional system of weakly coupled S=1/2 Heisenberg chains. The environment of a chain C 0 is modeled by a number of neighboring chains C δ , δ=±1, hor-ellipsis,± , with the edge chains C ±n coupled to a staggered field. Using a quantum Monte Carlo method, the effective (2n+1) -chain Hamiltonian is solved self-consistently for n up to 4 . The results are compared with simulation results for the original Hamiltonian on large rectangular lattices. Both methods show that the staggered magnetization M for small interchain couplings α behaves as M∼√(α) enhanced by a multiplicative logarithmic correction. copyright 1999 The American Physical Society

  17. A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes

    International Nuclear Information System (INIS)

    Han, Yining; Huang, Shanghui; Yan, Tianying

    2014-01-01

    The size of ions significantly influences the electric double layer structure of room temperature ionic liquid (IL) electrolytes and their differential capacitance (C d ). In this study, we extended the mean-field theory (MFT) developed independently by Kornyshev (2007J. Phys. Chem. B 111 5545–57) and Kilic, Bazant, and Ajdari (2007 Phys. Rev. E 75 021502) (the KKBA MFT) to take into account the asymmetric 1:1 IL electrolytes by introducing an additional parameter ξ for the anion/cation volume ratio, besides the ionic compressibility γ in the KKBA MFT. The MFT of asymmetric ions becomes KKBA MFT upon ξ = 1, and further reduces to Gouy–Chapman theory in the γ → 0 limit. The result of the extended MFT demonstrates that the asymmetric ILs give rise to an asymmetric C d , with the higher peak in C d occurring at positive polarization for the smaller anionic size. At high potential, C d decays asymptotically toward KKBA MFT characterized by γ for the negative polarization, and characterized by ξγ for the positive polarization, with inverse-square-root behavior. At low potential, around the potential of zero charge, the asymmetric ions cause a higher C d , which exceeds that of Gouy–Chapman theory. (paper)

  18. Structural predictions for Correlated Electron Materials Using the Functional Dynamical Mean Field Theory Approach

    Science.gov (United States)

    Haule, Kristjan

    2018-04-01

    The Dynamical Mean Field Theory (DMFT) in combination with the band structure methods has been able to address reach physics of correlated materials, such as the fluctuating local moments, spin and orbital fluctuations, atomic multiplet physics and band formation on equal footing. Recently it is getting increasingly recognized that more predictive ab-initio theory of correlated systems needs to also address the feedback effect of the correlated electronic structure on the ionic positions, as the metal-insulator transition is almost always accompanied with considerable structural distortions. We will review recently developed extension of merger between the Density Functional Theory (DFT) and DMFT method, dubbed DFT+ embedded DMFT (DFT+eDMFT), whichsuccessfully addresses this challenge. It is based on the stationary Luttinger-Ward functional to minimize the numerical error, it subtracts the exact double-counting of DFT and DMFT, and implements self-consistent forces on all atoms in the unit cell. In a few examples, we will also show how the method elucidated the important feedback effect of correlations on crystal structure in rare earth nickelates to explain the mechanism of the metal-insulator transition. The method showed that such feedback effect is also essential to understand the dynamic stability of the high-temperature body-centered cubic phase of elemental iron, and in particular it predicted strong enhancement of the electron-phonon coupling over DFT values in FeSe, which was very recently verified by pioneering time-domain experiment.

  19. A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes.

    Science.gov (United States)

    Han, Yining; Huang, Shanghui; Yan, Tianying

    2014-07-16

    The size of ions significantly influences the electric double layer structure of room temperature ionic liquid (IL) electrolytes and their differential capacitance (Cd). In this study, we extended the mean-field theory (MFT) developed independently by Kornyshev (2007J. Phys. Chem. B 111 5545-57) and Kilic, Bazant, and Ajdari (2007 Phys. Rev. E 75 021502) (the KKBA MFT) to take into account the asymmetric 1:1 IL electrolytes by introducing an additional parameter ξ for the anion/cation volume ratio, besides the ionic compressibility γ in the KKBA MFT. The MFT of asymmetric ions becomes KKBA MFT upon ξ = 1, and further reduces to Gouy-Chapman theory in the γ → 0 limit. The result of the extended MFT demonstrates that the asymmetric ILs give rise to an asymmetric Cd, with the higher peak in Cd occurring at positive polarization for the smaller anionic size. At high potential, Cd decays asymptotically toward KKBA MFT characterized by γ for the negative polarization, and characterized by ξγ for the positive polarization, with inverse-square-root behavior. At low potential, around the potential of zero charge, the asymmetric ions cause a higher Cd, which exceeds that of Gouy-Chapman theory.

  20. Dynamic mean field theory for lattice gas models of fluid mixtures confined in mesoporous materials.

    Science.gov (United States)

    Edison, J R; Monson, P A

    2013-11-12

    We present the extension of dynamic mean field theory (DMFT) for fluids in porous materials (Monson, P. A. J. Chem. Phys. 2008, 128, 084701) to the case of mixtures. The theory can be used to describe the relaxation processes in the approach to equilibrium or metastable equilibrium states for fluids in pores after a change in the bulk pressure or composition. It is especially useful for studying systems where there are capillary condensation or evaporation transitions. Nucleation processes associated with these transitions are emergent features of the theory and can be visualized via the time dependence of the density distribution and composition distribution in the system. For mixtures an important component of the dynamics is relaxation of the composition distribution in the system, especially in the neighborhood of vapor-liquid interfaces. We consider two different types of mixtures, modeling hydrocarbon adsorption in carbon-like slit pores. We first present results on bulk phase equilibria of the mixtures and then the equilibrium (stable/metastable) behavior of these mixtures in a finite slit pore and an inkbottle pore. We then use DMFT to describe the evolution of the density and composition in the pore in the approach to equilibrium after changing the state of the bulk fluid via composition or pressure changes.

  1. Coagulation kinetics beyond mean field theory using an optimised Poisson representation

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, James [Department of Mathematics, UCL, Gower Street, London WC1E 6BT (United Kingdom); Ford, Ian J. [Department of Physics and Astronomy, UCL, Gower Street, London WC1E 6BT (United Kingdom)

    2015-05-21

    Binary particle coagulation can be modelled as the repeated random process of the combination of two particles to form a third. The kinetics may be represented by population rate equations based on a mean field assumption, according to which the rate of aggregation is taken to be proportional to the product of the mean populations of the two participants, but this can be a poor approximation when the mean populations are small. However, using the Poisson representation, it is possible to derive a set of rate equations that go beyond mean field theory, describing pseudo-populations that are continuous, noisy, and complex, but where averaging over the noise and initial conditions gives the mean of the physical population. Such an approach is explored for the simple case of a size-independent rate of coagulation between particles. Analytical results are compared with numerical computations and with results derived by other means. In the numerical work, we encounter instabilities that can be eliminated using a suitable “gauge” transformation of the problem [P. D. Drummond, Eur. Phys. J. B 38, 617 (2004)] which we show to be equivalent to the application of the Cameron-Martin-Girsanov formula describing a shift in a probability measure. The cost of such a procedure is to introduce additional statistical noise into the numerical results, but we identify an optimised gauge transformation where this difficulty is minimal for the main properties of interest. For more complicated systems, such an approach is likely to be computationally cheaper than Monte Carlo simulation.

  2. A self-consistent mean field theory for diffusion in alloys

    International Nuclear Information System (INIS)

    Nastar, M.; Barbe, V.

    2007-01-01

    Starting from a microscopic model of the atomic transport via vacancies and interstitials in alloys, a self-consistent mean field (SCMF) kinetic theory yields the phenomenological coefficients L ij . In this theory, kinetic correlations are accounted for through a set of effective interactions within a non-equilibrium distribution function of the system. The introduction of a master equation describing the evolution with time of the distribution function and its moments leads to general self-consistent kinetic equations. The L ij of a face centered cubic alloy are calculated using the kinetic equations of Nastar (M. Nastar, Philos. Mag., 2005, 85, 3767, ref. 1) derived from a microscopic broken bond model of the vacancy jump frequency. A first approximation leads to an analytical expression of the L ij and a second approximation to a better agreement with the Monte Carlo simulations. A change of sign of the L ij is studied as a function of the microscopic parameters of the jump frequency. The L ij of a cubic centered alloy obtained for the complex diffusion mechanism of the dumbbell configuration of the interstitial are used to study the effect of an on-site rotation of the dumbbell on the transport. (authors)

  3. The time-dependent relativistic mean-field theory and the random phase approximation

    International Nuclear Information System (INIS)

    Ring, P.; Ma, Zhong-yu; Van Giai, Nguyen; Vretenar, D.; Wandelt, A.; Cao, Li-gang

    2001-01-01

    The Relativistic Random Phase Approximation (RRPA) is derived from the Time-Dependent Relativistic Mean-Field (TD RMF) theory in the limit of small amplitude oscillations. In the no-sea approximation of the RMF theory, the RRPA configuration space includes not only the usual particle-hole ph-states, but also αh-configurations, i.e. pairs formed from occupied states in the Fermi sea and empty negative-energy states in the Dirac sea. The contribution of the negative-energy states to the RRPA matrices is examined in a schematic model, and the large effect of Dirac-sea states on isoscalar strength distributions is illustrated for the giant monopole resonance in 116 Sn. It is shown that, because the matrix elements of the time-like component of the vector-meson fields which couple the αh-configurations with the ph-configurations are strongly reduced with respect to the corresponding matrix elements of the isoscalar scalar meson field, the inclusion of states with unperturbed energies more than 1.2 GeV below the Fermi energy has a pronounced effect on giant resonances with excitation energies in the MeV region. The influence of nuclear magnetism, i.e. the effect of the spatial components of the vector fields is examined, and the difference between the nonrelativistic and relativistic RPA predictions for the nuclear matter compression modulus is explained

  4. Relationship between Feshbach's and Green's function theories of the nucleon-nucleus mean field

    International Nuclear Information System (INIS)

    Capuzzi, F.; Mahaux, C.

    1995-01-01

    We clarify the relationship and difference between theories of the optical-model potential which had previously been developed in the framework of Feshbach's projection operator approach to nuclear reactions and of Green's function theory, respectively. For definiteness, we consider the nucleon-nucleus system but all results can readily be adapted to the atomic case. The effects of antisymmetrization are properly taken into account. It is shown that one can develop along closely parallel lines the theories of open-quotes holeclose quotes and open-quotes particleclose quotes mean fields. The open-quotes holeclose quotes one-body Hamiltonians describe the single-particle properties of the system formed when one nucleon is taken away from the target ground state, for instance in knockout of pickup processes. The particle one-body Hamiltonians are associated with the system formed when one nucleon is elastically scattered from the ground state, or is added to it by means of stripping reactions. An infinite number of particle, as well as of hole, Hamiltonians are constructed which all yield exactly the same single-particle wave functions. Many open-quotes equivalentclose quotes one-body Hamiltonians can coexist because these operators have a complicated structure: they are nonlocal, complex, and energy-dependent. They do not have the same analytic properties in the complex energy plane. Their real and imaginary parts fulfill dispersion relations which may be different. It is shown that hole and particle Hamiltonians can also be constructed by decomposing any vector of the Hilbert space into two parts which are not orthogonal to one another, in contrast to Feshbach's original theory; one interest of this procedure is that the construction and properties of the corresponding hole Hamiltonian can be justified in a mathematically rigorous way. We exhibit the relationship between the hole and particle Hamiltonians and the open-quotes mass operator.close quotes

  5. Cluster radioactive decay within the preformed cluster model using relativistic mean-field theory densities

    International Nuclear Information System (INIS)

    Singh, BirBikram; Patra, S. K.; Gupta, Raj K.

    2010-01-01

    We have studied the (ground-state) cluster radioactive decays within the preformed cluster model (PCM) of Gupta and collaborators [R. K. Gupta, in Proceedings of the 5th International Conference on Nuclear Reaction Mechanisms, Varenna, edited by E. Gadioli (Ricerca Scientifica ed Educazione Permanente, Milano, 1988), p. 416; S. S. Malik and R. K. Gupta, Phys. Rev. C 39, 1992 (1989)]. The relativistic mean-field (RMF) theory is used to obtain the nuclear matter densities for the double folding procedure used to construct the cluster-daughter potential with M3Y nucleon-nucleon interaction including exchange effects. Following the PCM approach, we have deduced empirically the preformation probability P 0 emp from the experimental data on both the α- and exotic cluster-decays, specifically of parents in the trans-lead region having doubly magic 208 Pb or its neighboring nuclei as daughters. Interestingly, the RMF-densities-based nuclear potential supports the concept of preformation for both the α and heavier clusters in radioactive nuclei. P 0 α(emp) for α decays is almost constant (∼10 -2 -10 -3 ) for all the parent nuclei considered here, and P 0 c(emp) for cluster decays of the same parents decrease with the size of clusters emitted from different parents. The results obtained for P 0 c(emp) are reasonable and are within two to three orders of magnitude of the well-accepted phenomenological model of Blendowske-Walliser for light clusters.

  6. Nuclear sub-structure in 112–122Ba nuclei within relativistic mean field theory

    International Nuclear Information System (INIS)

    Bhuyan, M.; Patra, S.K.; Arumugam, P.; Gupta, Raj K.

    2011-01-01

    Working within the framework of relativistic mean field theory, we study for the first time the clustering structure (nuclear sub-structure) of 112–122 Ba nuclei in an axially deformed cylindrical coordinate. We calculate the individual neutrons and protons density distributions for Ba-isotopes. From the analysis of the clustering configurations in total (neutrons-plus-protons) density distributions for various shapes of both the ground and excited states, we find different sub-structures inside the Ba nuclei considered here. The important step, carried out here for the first time, is the counting of number of protons and neutrons present in the clustering region(s). 12 C is shown to constitute the cluster configuration in prolate-deformed ground-states of 112–116 Ba and oblate-deformed first excited states of 118–122 Ba nuclei. Presence of other lighter clusters such as 2 H, 3 H and nuclei in the neighborhood of N = Z, 14 N, 34–36 Cl, 36 Ar and 42 Ca are also indicated in the ground and excited states of these nuclei. Cases with no cluster configuration are shown for 112–116 Ba in their first and second excited states. All these results are of interest for the observed intermediate-mass-fragments and fusion–fission processes, and the so far unobserved evaporation residues from the decaying Ba* compound nuclei formed in heavy ion reactions. (author)

  7. Dynamical mean-field theory and path integral renormalisation group calculations of strongly correlated electronic states

    Energy Technology Data Exchange (ETDEWEB)

    Heilmann, D.B.

    2007-02-15

    The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)

  8. Dynamical mean-field theory and path integral renormalisation group calculations of strongly correlated electronic states

    International Nuclear Information System (INIS)

    Heilmann, D.B.

    2007-02-01

    The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)

  9. Higgs-Yukawa model with higher dimension operators via extended mean field theory

    CERN Document Server

    Akerlund, Oscar

    2016-01-01

    Using Extended Mean Field Theory (EMFT) on the lattice, we study properties of the Higgs-Yukawa model as an approximation of the Standard Model Higgs sector, and the effect of higher dimension operators. We note that the discussion of vacuum stability is completely modified in the presence of a $\\phi^6$ term, and that the Higgs mass no longer appears fine tuned. We also study the finite temperature transition. Without higher dimension operators the transition is found to be second order (crossover with gauge fields) for the experimental value of the Higgs mass $M_h=125$ GeV. By taking a $\\phi^6$ interaction in the Higgs potential as a proxy for a UV completion of the Standard Model, the transition becomes stronger and turns first order if the scale of new physics, i.e. the mass of the lightest mediator particle, is around $1.5$ TeV. This implies that electroweak baryogenesis may be viable in models which introduce new particles around that scale.

  10. Non-degeneracy, Mean Field Equations and the Onsager Theory of 2D Turbulence

    Science.gov (United States)

    Bartolucci, Daniele; Jevnikar, Aleks; Lee, Youngae; Yang, Wen

    2018-04-01

    The understanding of some large energy, negative specific heat states in the Onsager description of 2D turbulence seem to require the analysis of a subtle open problem about bubbling solutions of the mean field equation. Motivated by this application we prove that, under suitable non-degeneracy assumptions on the associated m-vortex Hamiltonian, the m-point bubbling solutions of the mean field equation are non-degenerate as well. Then we deduce that the Onsager mean field equilibrium entropy is smooth and strictly convex in the high energy regime on domains of second kind.

  11. Mean-field theory of active electrolytes: Dynamic adsorption and overscreening

    Science.gov (United States)

    Frydel, Derek; Podgornik, Rudolf

    2018-05-01

    We investigate active electrolytes within the mean-field level of description. The focus is on how the double-layer structure of passive, thermalized charges is affected by active dynamics of constituting ions. One feature of active dynamics is that particles adhere to hard surfaces, regardless of chemical properties of a surface and specifically in complete absence of any chemisorption or physisorption. To carry out the mean-field analysis of the system that is out of equilibrium, we develop the "mean-field simulation" technique, where the simulated system consists of charged parallel sheets moving on a line and obeying active dynamics, with the interaction strength rescaled by the number of sheets. The mean-field limit becomes exact in the limit of an infinite number of movable sheets.

  12. Magnetic moments in present relativistic nuclear theories: a mean-field problem

    International Nuclear Information System (INIS)

    Desplanques, B.

    1986-07-01

    We show that the magnetic moments of LS closed shell nuclei plus or minus one nucleon derived from non-relativistic Hartree-Fock mean-fields are as bad as those obtained in relativistic approaches of nuclear structure. Deviations with respect to more complete results in both cases are ascribed to the mean-field approximation which neglects some degrees of freedom in the nucleus description. 18 refs

  13. General model of phospholipid bilayers in fluid phase within the single chain mean field theory

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yachong; Baulin, Vladimir A. [Departament d’Enginyeria Química, Universitat Rovira i Virgili, Av. dels Paisos Catalans 26, 43007 Tarragona (Spain); Pogodin, Sergey [Institute of Chemical Research of Catalonia, ICIQ, Av. Paisos Catalans 16, 43007 Tarragona (Spain)

    2014-05-07

    Coarse-grained model for saturated phospholipids: 1,2-didecanoyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and unsaturated phospholipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC) is introduced within the single chain mean field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description of equilibrium and mechanical properties of a range of saturated lipid molecules that differ only in length of their hydrophobic tails and unsaturated (POPC, DOPC) phospholipids which have double bonds in the tails. A double bond is modeled with a fixed angle of 120°, while the rest of the parameters are kept the same as saturated lipids. The thickness of the bilayer and its hydrophobic core, the compressibility, and the equilibrium area per lipid correspond to experimentally measured values for each lipid, changing linearly with the length of the tail. The model for unsaturated phospholipids also fetches main thermodynamical properties of the bilayers. This model is used for an accurate estimation of the free energies of the compressed or stretched bilayers in stacks or multilayers and gives reasonable estimates for free energies. The proposed model may further be used for studies of mixtures of lipids, small molecule inclusions, interactions of bilayers with embedded proteins.

  14. A mean field theory of study of lattice gauge theory with finite temperature and with finite fermion density

    International Nuclear Information System (INIS)

    Naik, S.

    1990-01-01

    We have developed a mean field theory technique to study the confinement-deconfinement phase transition and chiral symmetry restoring phase transition with dynamical fermions and with finite chemical potential and finite temperature. The approximation scheme concerns the saddle point scenario and large space dimension. The static quark-antiquark potentials are identified from the Wilson loop correlation functions in both the fundamental and the adjoint representation of the gauge group with different temperatures. The difference between the responses of the chemical potential to the fermion number with singlet and non-singlet isospin configuration is found. We compare our results with recent Monte Carlo data. (orig.)

  15. Role of elasticity forces in thermodynamics of intercalation compounds : Self-consistent mean-field theory and Monte Carlo simulations

    NARCIS (Netherlands)

    Kalikmanov, V.I.; De Leeuw, S.W.

    2002-01-01

    We propose a self-consistent mean-field lattice-gas theory of intercalation compounds based on effective interactions between interstitials in the presence of the host atoms. In addition to short-range screened Coulomb repulsions, usually discussed in the lattice gas models, the present theory takes

  16. An MHD Dynamo Experiment.

    Science.gov (United States)

    O'Connell, R.; Forest, C. B.; Plard, F.; Kendrick, R.; Lovell, T.; Thomas, M.; Bonazza, R.; Jensen, T.; Politzer, P.; Gerritsen, W.; McDowell, M.

    1997-11-01

    A MHD experiment is being constructed which will have the possibility of showing dynamo action: the self--generation of currents from fluid motion. The design allows sufficient experimental flexibility and diagnostic access to study a variety of issues central to dynamo theory, including mean--field electrodynamics and saturation (backreaction physics). Initially, helical flows required for dynamo action will be driven by propellers embedded in liquid sodium. The flow fields will first be measured using laser doppler velocimetry in a water experiment with an identical fluid Reynolds number. The magnetic field evolution will then be predicted using a MHD code, replacing the water with sodium; if growing magnetic fields are found, the experiment will be repeated with sodium.

  17. An effective correlated mean-field theory applied in the spin-1/2 Ising ferromagnetic model

    Energy Technology Data Exchange (ETDEWEB)

    Roberto Viana, J.; Salmon, Octávio R. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil); Ricardo de Sousa, J. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil); National Institute of Science and Technology for Complex Systems, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus, AM (Brazil); Neto, Minos A.; Padilha, Igor T. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil)

    2014-11-15

    We developed a new treatment for mean-field theory applied in spins systems, denominated effective correlated mean-field (ECMF). We apply this theory to study the spin-1/2 Ising ferromagnetic model with nearest-neighbor interactions on a square lattice. We use clusters of finite sizes and study the criticality of the ferromagnetic system, where we obtain a convergence of critical temperature for the value k{sub B}T{sub c}/J≃2.27905±0.00141. Also the behavior of magnetic and thermodynamic properties, using the condition of minimum energy of the physical system is obtained. - Highlights: • We developed spin models to study real magnetic systems. • We study the thermodynamic and magnetic properties of the ferromagnetism. • We enhanced a mean-field theory applied in spins models.

  18. Generator coordinate representation of the time independent mean field theory of collisions

    International Nuclear Information System (INIS)

    Giraud, B.G.; Lemm, J.; Weiguny, A.; Wierling, A.

    1991-01-01

    We show how matrix elements of the T-matrix can be easily estimated on a basis of Slater determinants, with a mean field approximation. Linear superpositions of these Slater determinants then generate plane waves, or distorted (Coulomb) waves. This provides physical matrix elements of T

  19. Kinetic mean field theories: Results of energy constraint in maximizing entropy

    NARCIS (Netherlands)

    Stell, G.; Karkheck, J.; Beijeren, H. van

    1983-01-01

    Structure of liquids and solids; crystallography Classical, semiclassical, and quantum theories of liquid structure Statistical theories of liquid structure - Kinetic and transport theory of fluids; physical properties of gases Kinetic and transport theory

  20. An RVB state with fermionic charges and bosonic spins: Mean field theory

    International Nuclear Information System (INIS)

    Flensberg, K.; Hedegard, P.; Brix Pedersen, M.

    1989-01-01

    We consider a representation of the Hubbard model, in which the charge carriers are fermions and the spin carriers are bosons. We show that there exist a mean-field solution with a condensate of spin-singlets and we characterize the low temperature behavior of the quasiparticles. Finally we calculate the tunneling spectrum for a normal metal-RVB state tunnel junction and suggest the tunneling experiment as a probe of the statistics of the RVB quasiparticles. (orig.)

  1. A mean field theory for the cold quark gluon plasma applied to stellar structure

    Energy Technology Data Exchange (ETDEWEB)

    Fogaca, D. A.; Navarra, F. S.; Franzon, B. [Instituto de Fisica, Universidade de Sao Paulo Rua do Matao, Travessa R, 187, 05508-090 Sao Paulo, SP (Brazil); Horvath, J. E. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao, 1226, 05508-090, Sao Paulo, SP (Brazil)

    2013-03-25

    An equation of state based on a mean-field approximation of QCD is used to describe the cold quark gluon plasma and also to study the structure of compact stars. We obtain stellar masses compatible with the pulsar PSR J1614-2230 that was determined to have a mass of (1.97 {+-} 0.04 M{sub Circled-Dot-Operator }), and the corresponding radius around 10-11 km.

  2. Statistical thermodynamics and mean-field theory for the alloy under irradiation model

    International Nuclear Information System (INIS)

    Kamyshendo, V.

    1993-01-01

    A generalization of statistical thermodynamics to the open systems case, is discussed, using as an example the alloy-under-irradiation model. The statistical properties of stationary states are described with the use of generalized thermodynamic potentials and 'quasi-interactions' determined from the master equation for micro-configuration probabilities. Methods for resolving this equation are illustrated by the mean-field type calculations of correlators, thermodynamic potentials and phase diagrams for disordered alloys

  3. Accurate nonadiabatic quantum dynamics on the cheap: making the most of mean field theory with master equations.

    Science.gov (United States)

    Kelly, Aaron; Brackbill, Nora; Markland, Thomas E

    2015-03-07

    In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.

  4. Coulomb repulsion and correlation strength in LaFeAsO from density functional and dynamical mean-field theories

    Czech Academy of Sciences Publication Activity Database

    Anisimov, V.I.; Korotin, D. M.; Korotin, M. A.; Kozhevnikov, A, V.; Kuneš, Jan; Shorikov, A.O.; Skornyakov, S.L.; Streltsov, S. V.

    2009-01-01

    Roč. 21, č. 7 (2009), 075602/1-075602/7 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z10100521 Keywords : iron pnictide * electronic correlations * dynamical mean-field theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.964, year: 2009

  5. Accurate nonadiabatic quantum dynamics on the cheap: Making the most of mean field theory with master equations

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Aaron; Markland, Thomas E., E-mail: tmarkland@stanford.edu [Department of Chemistry, Stanford University, Stanford, California 94305 (United States); Brackbill, Nora [Department of Physics, Stanford University, Stanford, California 94305 (United States)

    2015-03-07

    In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.

  6. Electronic structure and core-level spectra of light actinide dioxides in the dynamical mean-field theory

    Czech Academy of Sciences Publication Activity Database

    Kolorenč, Jindřich; Shick, Alexander; Lichtenstein, A.I.

    2015-01-01

    Roč. 92, č. 8 (2015), "085125-1"-"085125-10" ISSN 1098-0121 R&D Projects: GA ČR GC15-05872J Institutional support: RVO:68378271 Keywords : electronic-structure calculations * dynamical mean-field theory * Mott insulators * actinides * oxides * photoemission Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  7. Fission barriers and asymmetric ground states in the relativistic mean-field theory

    International Nuclear Information System (INIS)

    Rutz, K.; Reinhard, P.G.; Greiner, W.

    1995-01-01

    The symmetric and asymmetric fission path for 240 Pu, 232 Th and 226 Ra is investigated within the relativistic mean-field model. Standard parametrizations which are well fitted to nuclear ground-state properties are found to deliver reasonable qualitative and quantitative features of fission, comparable to similar nonrelativistic calculations. Furthermore, stable octupole deformations in the ground states of radium isotopes are investigated. They are found in a series of isotopes, qualitatively in agreement with nonrelativistic models. But the quantitative details differ amongst the models and between the various relativistic parametrizations. (orig.)

  8. Mean-field theory of photoinduced formation of surface reliefs in side-chain azobenzene polymers

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Johansen, Per Michael; Holme, N.C.R.

    1998-01-01

    A mean-field model of photoinduced surface reliefs in dye containing side-chain polymers is presented. It is demonstrated that photoinduced ordering of dye molecules subject to anisotropic intermolecular interactions leads to mass transport even when the intensity of the incident light is spatially...... uniform. Theoretical profiles are obtained using a simple variational method and excellent agreement with experimental surface reliefs recorded under various polarization configurations is found. The polarization dependence of both period and shape of the profiles is correctly reproduced by the model....

  9. Gutzwiller-RVB theory of high temperature superconductivity. Results from renormalized mean field theory and variational Monte Carlo calculations

    International Nuclear Information System (INIS)

    Edegger, B.

    2007-01-01

    We consider the theory of high temperature superconductivity from the viewpoint of a strongly correlated electron system. In particular, we discuss Gutzwiller projected wave functions, which incorporate strong correlations by prohibiting double occupancy in orbitals with strong on-site repulsion. After a general overview on high temperature superconductivity, we discuss Anderson's resonating valence bond (RVB) picture and its implementation by renormalized mean field theory (RMFT) and variational Monte Carlo (VMC) techniques. In the following, we present a detailed review on RMFT and VMC results with emphasis on our recent contributions. Especially, we are interested in spectral features of Gutzwiller-Bogolyubov quasiparticles obtained by extending VMC and RMFT techniques to excited states. We explicitly illustrate this method to determine the quasiparticle weight and provide a comparison with angle resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). We conclude by summarizing recent successes and by discussing open questions, which must be solved for a thorough understanding of high temperature superconductivity by Gutzwiller projected wave functions. (orig.)

  10. Gutzwiller-RVB theory of high temperature superconductivity. Results from renormalized mean field theory and variational Monte Carlo calculations

    Energy Technology Data Exchange (ETDEWEB)

    Edegger, B.

    2007-08-10

    We consider the theory of high temperature superconductivity from the viewpoint of a strongly correlated electron system. In particular, we discuss Gutzwiller projected wave functions, which incorporate strong correlations by prohibiting double occupancy in orbitals with strong on-site repulsion. After a general overview on high temperature superconductivity, we discuss Anderson's resonating valence bond (RVB) picture and its implementation by renormalized mean field theory (RMFT) and variational Monte Carlo (VMC) techniques. In the following, we present a detailed review on RMFT and VMC results with emphasis on our recent contributions. Especially, we are interested in spectral features of Gutzwiller-Bogolyubov quasiparticles obtained by extending VMC and RMFT techniques to excited states. We explicitly illustrate this method to determine the quasiparticle weight and provide a comparison with angle resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). We conclude by summarizing recent successes and by discussing open questions, which must be solved for a thorough understanding of high temperature superconductivity by Gutzwiller projected wave functions. (orig.)

  11. Finite nucleus Dirac mean field theory and random phase approximation using finite B splines

    International Nuclear Information System (INIS)

    McNeil, J.A.; Furnstahl, R.J.; Rost, E.; Shepard, J.R.; Department of Physics, University of Maryland, College Park, Maryland 20742; Department of Physics, University of Colorado, Boulder, Colorado 80309)

    1989-01-01

    We calculate the finite nucleus Dirac mean field spectrum in a Galerkin approach using finite basis splines. We review the method and present results for the relativistic σ-ω model for the closed-shell nuclei 16 O and 40 Ca. We study the convergence of the method as a function of the size of the basis and the closure properties of the spectrum using an energy-weighted dipole sum rule. We apply the method to the Dirac random-phase-approximation response and present results for the isoscalar 1/sup -/ and 3/sup -/ longitudinal form factors of 16 O and 40 Ca. We also use a B-spline spectral representation of the positive-energy projector to evaluate partial energy-weighted sum rules and compare with nonrelativistic sum rule results

  12. Adaptive and self-averaging Thouless-Anderson-Palmer mean-field theory for probabilistic modeling

    DEFF Research Database (Denmark)

    Opper, Manfred; Winther, Ole

    2001-01-01

    We develop a generalization of the Thouless-Anderson-Palmer (TAP) mean-field approach of disorder physics. which makes the method applicable to the computation of approximate averages in probabilistic models for real data. In contrast to the conventional TAP approach, where the knowledge...... of the distribution of couplings between the random variables is required, our method adapts to the concrete set of couplings. We show the significance of the approach in two ways: Our approach reproduces replica symmetric results for a wide class of toy models (assuming a nonglassy phase) with given disorder...... distributions in the thermodynamic limit. On the other hand, simulations on a real data model demonstrate that the method achieves more accurate predictions as compared to conventional TAP approaches....

  13. Parity doubling structure of nucleon at non-zero density in the holographic mean field theory

    Directory of Open Access Journals (Sweden)

    He Bing-Ran

    2014-06-01

    Full Text Available We summarize our recent work in which we develope the holographic mean field approach to study the dense baryonic matter in a bottom-up holographic QCD model including baryons and scalar mesons in addition to vector mesons. We first show that, at zero density, the rate of the chiral invariant mass of nucleon is controlled by the ratio of the infrared boundary values of two baryon fields included in the model. Then, at non-zero density, we find that the chiral condensate decreases with the increasing density indicating the partial restoration of the chiral symmetry. Our result shows that the more amount of the proton mass comes from the chiral symmetry breaking, the faster the effective nucleon mass decrease with density.

  14. Mean field theory of epidemic spreading with effective contacts on networks

    International Nuclear Information System (INIS)

    Wu, Qingchu; Chen, Shufang

    2015-01-01

    We present a general approach to the analysis of the susceptible-infected-susceptible model with effective contacts on networks, where each susceptible node will be infected with a certain probability only for effective contacts. In the network, each node has a given effective contact number. By using the one-vertex heterogenous mean-field (HMF) approximation and the pair HMF approximation, we obtain conditions for epidemic outbreak on degree-uncorrelated networks. Our results suggest that the epidemic threshold is closely related to the effective contact and its distribution. However, when the effective contact is only dependent of node degree, the epidemic threshold can be established by the degree distribution of networks.

  15. Landau-like theory for universality of critical exponents in quasistationary states of isolated mean-field systems.

    Science.gov (United States)

    Ogawa, Shun; Yamaguchi, Yoshiyuki Y

    2015-06-01

    An external force dynamically drives an isolated mean-field Hamiltonian system to a long-lasting quasistationary state, whose lifetime increases with population of the system. For second order phase transitions in quasistationary states, two nonclassical critical exponents have been reported individually by using a linear and a nonlinear response theories in a toy model. We provide a simple way to compute the critical exponents all at once, which is an analog of the Landau theory. The present theory extends the universality class of the nonclassical exponents to spatially periodic one-dimensional systems and shows that the exponents satisfy a classical scaling relation inevitably by using a key scaling of momentum.

  16. Temperature dependence of magnetic anisotropy and magnetostriction: Beyond the mean-field theory

    International Nuclear Information System (INIS)

    Millev, Y.; Faehnle, M.

    1994-05-01

    The first nonvanishing magnetic anisotropy coefficient is calculated as a function of temperature for any spin quantum number and all temperatures below the Curie temperature for the case of face-centred cubic symmetry within the random-phase approximation (RPA). A detailed and instructive comparison between the mean-field and the RPA predictions is carried out. The RPA magnetization curves are also given for the first time for spins S>1/2. Most of the theoretical considerations are quite general as regard lattice type and even decoupling scheme and can thus be applied straightforwardly to other cases of interest. The progress reported here has been attained with the help of a new simplified and improved parametric approach and of a recent calculation of the average occupation number of magnons within the RPA. In particular, the new approach makes unnecessary the solving of integral equations so that the proposed procedure is especially simple and practically versatile in applications to any particular anisotropic material. (author). Refs, 6 figs

  17. Effective interactions and mean field theory: from nuclear matter to nuclei

    International Nuclear Information System (INIS)

    Cochet, B.

    2005-07-01

    The Skyrme force is a zero-range force that allows the construction of the mean field inside the nucleus in a simple way. Skyrme forces are reasonably predictive but some features of the infinite nuclear matter or the mass of heavy nuclei are not well computed. The aim of this work is to propose an expanded parametrization of the Skyrme force in order to improve its predictive power. The first part is dedicated to the construction of the expansion of the parametrization. We recall how the effective forces are linked to the nucleon-nucleon interaction then we show the limits of the standard Skyrme forces and we propose a relatively natural improvements based on the integration of spin and isospin instabilities. The second part deals with the validation of the model, first by describing infinite nuclear matter then by studying β-balanced nuclear matter which has enabled us to reproduce some features of neutron stars like mass and radius. The computation of properties of nuclei like binding energy, mass, radii depends strongly on the adjustment procedure. (A.C.)

  18. Quasiparticle method in relativistic mean-field theories of nuclear structure

    International Nuclear Information System (INIS)

    Ai, H.

    1988-01-01

    In recent years, in order to understand the success of Dirac phenomenology, relativistic Brueckner-Hartree-Fock (RBHF) theory has been developed. This theory is a relativistic many-body theory of nuclear structure. Based upon the RBHF theory, which is characterized as having no free parameters other than those introduced in fitting free-space nucleon-nucleon scattering data, we construct an effective interaction. This interaction, when treated in a relativistic Hartree-Fock approximation, reproduces, rather accurately, the nucleon self-energy in nuclear matter, Migdal parameters obtained via relativistic Brueckner-Hartree-Fock calculations, and the saturation curves calculated with the full relativistic Brueckner-Hartree-Fock theory. This effective interaction is constructed by adding a number of pseudoparticles to the mesons used to construct one-boson-exchange (OBE) models of the nuclear force. The pseudoparticles have relatively large masses and either real or imaginary coupling constants. (For example, exchange of a pseudo-sigma with an imaginary coupling constant has the effect of reducing the scalar attraction arising from sigma exchange, while exchange of a pseudo-omega with an imaginary coupling constant has the effect of reducing the repulsion arising from omega exchange. The terms beyond the Born term in the case of pion exchange are well simulated by pseudo-sigma exchange with a real coupling constant.) The effective interaction constructed here may be used for calculations of the properties of finite nuclei in a relativistic Hartree-Fock approximation

  19. Linear response in stochastic mean-field theories and the onset of instabilities

    International Nuclear Information System (INIS)

    Colonna, M.; Chomaz, Ph.

    1993-01-01

    The small amplitude response of stochastic one-body theories, such as the Boltzmann-Langevin approach is studied. Whereas the two-time correlation function only describes the propagation of fluctuations initially present, the equal-time correlation function is related to the source of stochasticity. For stable systems it yields the Einstein relation, while for unstable systems it determines the growth of the instabilities. These features are illustrated for unstable nuclear matter in two dimensions. (author) 14 refs.; 5 figs

  20. Odd-even mass differences from self-consistent mean field theory

    International Nuclear Information System (INIS)

    Bertsch, G. F.; Bertulani, C. A.; Nazarewicz, W.; Schunck, N.; Stoitsov, M. V.

    2009-01-01

    We survey odd-even nuclear binding energy staggering using density functional theory with several treatments of the pairing interaction including the BCS, Hartree-Fock-Bogoliubov, and the Hartree-Fock-Bogoliubov with the Lipkin-Nogami approximation. We calculate the second difference of binding energies and compare the results with 443 measured neutron energy differences in isotope chains and 418 measured proton energy differences in isotone chains. The particle-hole part of the energy functional is taken as the SLy4 Skyrme parametrization, and the pairing part of the functional is based on a contact interaction with possible density dependence. An important feature of the data, reproduced by the theory, is the sharp gap quenching at magic numbers. With the strength of the interaction as a free parameter, the theory can reproduce the data to an rms accuracy of about 0.25 MeV. This is slightly better than a single-parameter phenomenological description but slightly poorer than the usual two-parameter phenomenological form c/A α . The following conclusions can be made about the performance of common parametrization of the pairing interaction: (i) there is a weak preference for a surface-peaked neutron-neutron pairing, which might be attributable to many-body effects, (ii) a larger strength is required in the proton pairing channel than in the neutron pairing channel, and (iii) pairing strengths adjusted to the well-known spherical isotope chains are too weak to give a good overall fit to the mass differences

  1. Transport processes in macroscopically disordered media from mean field theory to percolation

    CERN Document Server

    Snarskii, Andrei A; Sevryukov, Vladimir A; Morozovskiy, Alexander; Malinsky, Joseph

    2016-01-01

    This book reflects on recent advances in the understanding of percolation systems to present a wide range of transport phenomena in inhomogeneous disordered systems. Further developments in the theory of macroscopically inhomogeneous media are also addressed. These developments include galvano-electric, thermoelectric, elastic properties, 1/f noise and higher current momenta, Anderson localization, and harmonic generation in composites in the vicinity of the percolation threshold. The book describes how one can find effective characteristics, such as conductivity, dielectric permittivity, magnetic permeability, with knowledge of the distribution of different components constituting an inhomogeneous medium. Considered are a wide range of recent studies dedicated to the elucidation of physical properties of macroscopically disordered systems. Aimed at researchers and advanced students, it contains a straightforward set of useful tools which will allow the reader to derive the basic physical properties of compli...

  2. Rare-earth nuclei: Radii, isotope-shifts and deformation properties in the relativistic mean-field theory

    International Nuclear Information System (INIS)

    Lalazissis, G.A.; Ring, P.

    1996-01-01

    A systematic study of the ground-state properties of even-even rare earth nuclei has been performed in the framework of the Relativistic Mean-Field (RMF) theory using the parameter set NL-SH. Nuclear radii, isotope shifts and deformation properties of the heavier rare-earth nuclei have been obtained, which encompass atomic numbers ranging from Z=60 to Z=70 and include a large range of isospin. It is shown that RMF theory is able to provide a good and comprehensive description of the empirical binding energies of the isotopic chains. At the same time the quadrupole deformations β 2 obtained in the RMF theory are found to be in good agreement with the available empirical values. The theory predicts a shape transition from prolate to oblate for nuclei at neutron number N=78 in all the chains. A further addition of neutrons up to the magic number 82 brings about the spherical shape. For nuclei above N=82, the RMF theory predicts the well-known onset of prolate deformation at about N=88, which saturates at about N=102. The deformation properties display an identical behaviour for all the nuclear chains. A good description of the above deformation transitions in the RMF theory in all the isotopic chains leads to a successful reproduction of the anomalous behaviour of the empirical isotopic shifts of the rare-earth nuclei. The RMF theory exhibits a remarkable success in providing a unified and microscopic description of various empirical data. (orig.)

  3. Solar and Stellar Dynamos Saas-Fee Advanced Course 39 Swiss Society for Astrophysics and Astronomy

    CERN Document Server

    2013-01-01

    Astrophysical dynamos are at the heart of cosmic magnetic fields of a wide range of scales, from planets and stars to entire galaxies. This book presents a thorough, step-by-step introduction to solar and stellar dynamos. Looking first at the ultimate origin of cosmic seed magnetic fields, the antagonists of field amplification are next considered: resistive decay, flux expulsion, and flows ruled out by anti-dynamo theorems. Two kinematic flows that can act as dynamos are then studied: the Roberts cell and the CP-flow. Mean-field electrodynamics and derivation of the mean-field dynamo equations lead to the alpha Omega-dynamo, the flux transport dynamo, and dynamos based on the Babcock-Leighton mechanism. Alternatives to the mean-field theory are also presented, as are global MHD dynamo simulations. Fluctuations and grand minima in the solar cycle are discussed in terms of dynamo modulations through stochastic forcing and nonlinear effects. The book concludes with an overview of the major challenges in underst...

  4. Superfluid and insulating phases in an interacting-boson model: mean-field theory and the RPA

    International Nuclear Information System (INIS)

    Sheshadri, K.; Pandit, R.; Krishnamurthy, H.R.; Ramakrishnan, T.V.

    1993-01-01

    The bosonic Hubbard model is studied via a simple mean-field theory. At zero temperature, in addition to yielding a phase diagram that is qualitatively correct, namely a superfluid phase for non-integer fillings and a Mott transition from a superfluid to an insulating phase for integer fillings, this theory gives results that are in good agreement with Monte Carlo simulations. In particular, the superfluid fraction obtained as a function of the interaction strength U for both integer and non-integer fillings is close to the simulation results. In all phases the excitation spectra are obtained by using the random phase approximation (RPA): the spectrum has a gap in the insulating phase and is gapless (and linear at small wave vectors) in the superfluid phase. Analytic results are presented in the limits of large U and small superfluid density. Finite-temperature phase diagrams and the Mott-insulator-normal-phase crossover are also described. (orig.)

  5. The magnetic universe geophysical and astrophysical dynamo theory

    CERN Document Server

    Rüdiger, Günther

    2004-01-01

    Magnetism is one of the most pervasive features of the Universe, with planets, stars and entire galaxies all having associated magnetic fields. All of these fields are generated by the motion of electrically conducting fluids, the so-called dynamo effect. The precise details of what drives the motion, and indeed what the fluid consists of, differ widely though. In this work the authors draw upon their expertise in geophysical and astrophysical MHD to explore some of these phenomena, and describe the similarities and differences between different magnetized objects. They also explain why magn

  6. Ground-state properties of exotic nuclei near Z=40 in the relativistic mean-field theory

    International Nuclear Information System (INIS)

    Lalazissis, G.A.

    1995-01-01

    Study of the ground-state properties of Kr, Sr and Zr isotopes has been performed in the framework of the relativistic mean-field (RMF) theory using the recently proposed relativistic parameter set NL-SH. It is shown that the RMF theory provides an unified and excellent description of the binding energies, isotope shifts and deformation properties of nuclei over a large range of isospin in the Z=40 region. It is observed that the RMF theory with the force NL-SH is able to describe the anomalous kinks in isotope shifts in Kr and Sr nuclei, the problem which has hitherto remained unresolved. This is in contrast with the density-dependent Skyrme-Hartree-Fock approach which does not reproduce the behaviour of the isotope shifts about shell closure. On the Zr chain we predict that the isotope shifts exhibit a trend similar to that of the Kr and Sr nuclei. The RMF theory also predicts shape coexistence in heavy Sr isotopes. Several dramatic shape transitions in the isotopic chains are shown to be a general feature of nuclei in this region. A comparison of the properties with the available mass models shows that the results of the RMF theory are generally in accord with the predictions of the finite-range droplet model. ((orig.))

  7. Self-consistent mean field theory studies of the thermodynamics and quantum spin dynamics of magnetic Skyrmions.

    Science.gov (United States)

    Wieser, R

    2017-05-04

    A self-consistent mean field theory is introduced and used to investigate the thermodynamics and spin dynamics of an S  =  1 quantum spin system with a magnetic Skyrmion. The temperature dependence of the Skyrmion profile as well as the phase diagram are calculated. In addition, the spin dynamics of a magnetic Skyrmion is described by solving the time dependent Schrödinger equation with additional damping term. The Skyrmion annihilation process driven by an electric field is used to compare the trajectories of the quantum mechanical simulation with a semi-classical description for the spin expectation values using a differential equation similar to the classical Landau-Lifshitz-Gilbert equation.

  8. Relativistic mean field theory with density dependent coupling constants for nuclear matter and finite nuclei with large charge asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Typel, S; Wolter, H H [Sektion Physik, Univ. Muenchen, Garching (Germany)

    1998-06-01

    Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)

  9. From microscopic to macroscopic dynamics in mean-field theory: effect of neutron skin on fusion barrier and dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, D

    2001-07-01

    In this work, we introduce a method to reduce the microscopic mean-field theory to a classical macroscopic dynamics at the initial stage of fusion reaction. We show that TDHF (Time-dependent Hartree-Fock) could be a useful tool to infer information on the fusion barrier as well as on one-body dissipation effect. We apply the reduction of information to the case of head-on reaction between a {sup 16}O and {sup 16,22,24,28}O in order to quantify the effect of neutron skin on fusion. We show that the precise determination of fusion barrier requires, in addition to the relative distance between center of mass, the introduction of an additional collective coordinate that explicitly breaks the neutron-proton symmetry. With this additional collective variable, we obtain a rather precise determination of the barrier position, height and diffuseness as well as one-body friction. (author)

  10. A systematic study of even-even nuclei in the nuclear chart by the relativistic mean field theory

    Energy Technology Data Exchange (ETDEWEB)

    Sumiyoshi, K.; Hirata, D.; Tanihata, I.; Sugahara, Y.; Toki, H. [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-03-01

    We study systematically the properties of nuclei in the whole mass range up to the drip lines by the relativistic mean field (RMF) theory with deformations as a microscopic framework to provide the data of nuclear structure in the nuclear chart. The RMF theory is a phenomenological many-body framework, in which the self-consistent equations for nucleons and mesons are solved with arbitrary deformation, and has a potential ability to provide all the essential information of nuclear structure such as masses, radii and deformations together with single particle states and wave functions from the effective lagrangian containing nuclear interaction. As a first step toward the whole project, we study the ground state properties of even-even nuclei ranging from Z=8 to Z=120 up to the proton and neutron drip lines in the RMF theory. We adopt the parameter set TMA, which has been determined by the experimental masses and charge radii in a wide mass range, for the effective lagrangian of the RMF theory. We take into account the axially symmetric deformation using the constrained method on the quadrupole moment. We provide the properties of all even-even nuclei with all the possible ground state deformations extracted from the deformation energy curves by the constrained calculations. By studying the calculated ground state properties systematically, we aim to explore the general trend of masses, radii and deformations in the whole region of the nuclear chart. We discuss the agreement with experimental data and the predictions such as magicness and triaxial deformations beyond the experimental frontier. (author)

  11. Novel Approaches to Spectral Properties of Correlated Electron Materials: From Generalized Kohn-Sham Theory to Screened Exchange Dynamical Mean Field Theory

    Science.gov (United States)

    Delange, Pascal; Backes, Steffen; van Roekeghem, Ambroise; Pourovskii, Leonid; Jiang, Hong; Biermann, Silke

    2018-04-01

    The most intriguing properties of emergent materials are typically consequences of highly correlated quantum states of their electronic degrees of freedom. Describing those materials from first principles remains a challenge for modern condensed matter theory. Here, we review, apply and discuss novel approaches to spectral properties of correlated electron materials, assessing current day predictive capabilities of electronic structure calculations. In particular, we focus on the recent Screened Exchange Dynamical Mean-Field Theory scheme and its relation to generalized Kohn-Sham Theory. These concepts are illustrated on the transition metal pnictide BaCo2As2 and elemental zinc and cadmium.

  12. Diagrammatic Monte Carlo approach for diagrammatic extensions of dynamical mean-field theory: Convergence analysis of the dual fermion technique

    Science.gov (United States)

    Gukelberger, Jan; Kozik, Evgeny; Hafermann, Hartmut

    2017-07-01

    The dual fermion approach provides a formally exact prescription for calculating properties of a correlated electron system in terms of a diagrammatic expansion around dynamical mean-field theory (DMFT). Most practical implementations, however, neglect higher-order interaction vertices beyond two-particle scattering in the dual effective action and further truncate the diagrammatic expansion in the two-particle scattering vertex to a leading-order or ladder-type approximation. In this work, we compute the dual fermion expansion for the two-dimensional Hubbard model including all diagram topologies with two-particle interactions to high orders by means of a stochastic diagrammatic Monte Carlo algorithm. We benchmark the obtained self-energy against numerically exact diagrammatic determinant Monte Carlo simulations to systematically assess convergence of the dual fermion series and the validity of these approximations. We observe that, from high temperatures down to the vicinity of the DMFT Néel transition, the dual fermion series converges very quickly to the exact solution in the whole range of Hubbard interactions considered (4 ≤U /t ≤12 ), implying that contributions from higher-order vertices are small. As the temperature is lowered further, we observe slower series convergence, convergence to incorrect solutions, and ultimately divergence. This happens in a regime where magnetic correlations become significant. We find, however, that the self-consistent particle-hole ladder approximation yields reasonable and often even highly accurate results in this regime.

  13. Dynamical mean-field theory of noisy spiking neuron ensembles: Application to the Hodgkin-Huxley model

    International Nuclear Information System (INIS)

    Hasegawa, Hideo

    2003-01-01

    A dynamical mean-field approximation (DMA) previously proposed by the present author [H. Hasegawa, Phys. Rev E 67, 041903 (2003)] has been extended to ensembles described by a general noisy spiking neuron model. Ensembles of N-unit neurons, each of which is expressed by coupled K-dimensional differential equations (DEs), are assumed to be subject to spatially correlated white noises. The original KN-dimensional stochastic DEs have been replaced by K(K+2)-dimensional deterministic DEs expressed in terms of means and the second-order moments of local and global variables: the fourth-order contributions are taken into account by the Gaussian decoupling approximation. Our DMA has been applied to an ensemble of Hodgkin-Huxley (HH) neurons (K=4), for which effects of the noise, the coupling strength, and the ensemble size on the response to a single-spike input have been investigated. Numerical results calculated by the DMA theory are in good agreement with those obtained by direct simulations, although the former computation is about a thousand times faster than the latter for a typical HH neuron ensemble with N=100

  14. Perturbation Theory versus Thermodynamic Integration. Beyond a Mean-Field Treatment of Pair Correlations in a Nematic Model Liquid Crystal.

    Science.gov (United States)

    Schoen, Martin; Haslam, Andrew J; Jackson, George

    2017-10-24

    The phase behavior and structure of a simple square-well bulk fluid with anisotropic interactions is described in detail. The orientation dependence of the intermolecular interactions allows for the formation of a nematic liquid-crystalline phase in addition to the more conventional isotropic gas and liquid phases. A version of classical density functional theory (DFT) is employed to determine the properties of the model, and comparisons are made with the corresponding data from Monte Carlo (MC) computer simulations in both the grand canonical and canonical ensembles, providing a benchmark to assess the adequacy of the DFT results. A novel element of the DFT approach is the assumption that the structure of the fluid is dominated by intermolecular interactions in the isotropic fluid. A so-called augmented modified mean-field (AMMF) approximation is employed accounting for the influence of anisotropic interactions. The AMMF approximation becomes exact in the limit of vanishing density. We discuss advantages and disadvantages of the AMMF approximation with respect to an accurate description of isotropic and nematic branches of the phase diagram, the degree of orientational order, and orientation-dependent pair correlations. The performance of the AMMF approximations is found to be good in comparison with the MC data; the AMMF approximation has clear advantages with respect to an accurate and more detailed description of the fluid structure. Possible strategies to improve the DFT are discussed.

  15. MFPred: Rapid and accurate prediction of protein-peptide recognition multispecificity using self-consistent mean field theory.

    Directory of Open Access Journals (Sweden)

    Aliza B Rubenstein

    2017-06-01

    Full Text Available Multispecificity-the ability of a single receptor protein molecule to interact with multiple substrates-is a hallmark of molecular recognition at protein-protein and protein-peptide interfaces, including enzyme-substrate complexes. The ability to perform structure-based prediction of multispecificity would aid in the identification of novel enzyme substrates, protein interaction partners, and enable design of novel enzymes targeted towards alternative substrates. The relatively slow speed of current biophysical, structure-based methods limits their use for prediction and, especially, design of multispecificity. Here, we develop a rapid, flexible-backbone self-consistent mean field theory-based technique, MFPred, for multispecificity modeling at protein-peptide interfaces. We benchmark our method by predicting experimentally determined peptide specificity profiles for a range of receptors: protease and kinase enzymes, and protein recognition modules including SH2, SH3, MHC Class I and PDZ domains. We observe robust recapitulation of known specificities for all receptor-peptide complexes, and comparison with other methods shows that MFPred results in equivalent or better prediction accuracy with a ~10-1000-fold decrease in computational expense. We find that modeling bound peptide backbone flexibility is key to the observed accuracy of the method. We used MFPred for predicting with high accuracy the impact of receptor-side mutations on experimentally determined multispecificity of a protease enzyme. Our approach should enable the design of a wide range of altered receptor proteins with programmed multispecificities.

  16. How well do mean field theories of spiking quadratic-integrate-and-fire networks work in realistic parameter regimes?

    Science.gov (United States)

    Grabska-Barwińska, Agnieszka; Latham, Peter E

    2014-06-01

    We use mean field techniques to compute the distribution of excitatory and inhibitory firing rates in large networks of randomly connected spiking quadratic integrate and fire neurons. These techniques are based on the assumption that activity is asynchronous and Poisson. For most parameter settings these assumptions are strongly violated; nevertheless, so long as the networks are not too synchronous, we find good agreement between mean field prediction and network simulations. Thus, much of the intuition developed for randomly connected networks in the asynchronous regime applies to mildly synchronous networks.

  17. Meta-orbital transition in heavy-fermion systems. Analysis by dynamical mean field theory and self-consistent renormalization theory of orbital fluctuations

    International Nuclear Information System (INIS)

    Hattori, Kazumasa

    2010-01-01

    We investigate a two-orbital Anderson lattice model with Ising orbital intersite exchange interactions on the basis of a dynamical mean field theory combined with the static mean field approximation of intersite orbital interactions. Focusing on Ce-based heavy-fermion compounds, we examine the orbital crossover between two orbital states, when the total f-electron number per site n f is ∼1. We show that a 'meta-orbital' transition, at which the occupancy of two orbitals changes steeply, occurs when the hybridization between the ground-state f-electron orbital and conduction electrons is smaller than that between the excited f-electron orbital and conduction electrons at low pressures. Near the meta-orbital critical end point, orbital fluctuations are enhanced and couple with charge fluctuations. A critical theory of meta-orbital fluctuations is also developed by applying the self-consistent renormalization theory of itinerant electron magnetism to orbital fluctuations. The critical end point, first-order transition, and crossover are described within Gaussian approximations of orbital fluctuations. We discuss the relevance of our results to CeAl 2 , CeCu 2 Si 2 , CeCu 2 Ge 2 , and related compounds, which all have low-lying crystalline-electric-field excited states. (author)

  18. Tetragonal and collapsed-tetragonal phases of CaFe2As2 : A view from angle-resolved photoemission and dynamical mean-field theory

    Science.gov (United States)

    van Roekeghem, Ambroise; Richard, Pierre; Shi, Xun; Wu, Shangfei; Zeng, Lingkun; Saparov, Bayrammurad; Ohtsubo, Yoshiyuki; Qian, Tian; Sefat, Athena S.; Biermann, Silke; Ding, Hong

    2016-06-01

    We present a study of the tetragonal to collapsed-tetragonal transition of CaFe2As2 using angle-resolved photoemission spectroscopy and dynamical mean field theory-based electronic structure calculations. We observe that the collapsed-tetragonal phase exhibits reduced correlations and a higher coherence temperature due to the stronger Fe-As hybridization. Furthermore, a comparison of measured photoemission spectra and theoretical spectral functions shows that momentum-dependent corrections to the density functional band structure are essential for the description of low-energy quasiparticle dispersions. We introduce those using the recently proposed combined "screened exchange + dynamical mean field theory" scheme.

  19. Relativistic approach to superfluidity in nuclear matter. Constructing effective pair wave function from relativistic mean field theory with a cutoff

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, M. [Fukuoka Univ. of Education, Dept. of Physics, Munakata, Fukuoka (Japan); Tanigawa, T.

    1999-08-01

    We propose a simple method to reproduce the {sup 1}S{sub 0} pairing properties of nuclear matter, which are obtained by a sophisticated model, by introducing a density-independent cutoff into the relativistic mean field model. This applies well to the physically relevant density range. (author)

  20. Mean-field theory for the Tsub(c2)-minimum in the phase diagram of Ersub(1-x)Hosub(x)Rh4B4

    International Nuclear Information System (INIS)

    Schuh, B.; Grewe, N.

    1981-01-01

    The experimentally observed shape of the phase boundary between the superconducting and the ferromagnetically ordered state in the reentrant ferromagnetic superconductor compound Ersub(1-x)Hosub(x)Rh 4 B 4 is explained within a simple Ginsburg-Landau mean field theory as resulting from a competition of two order parameters corresponding to the magnetic Ho- and Er-moments respectively. (author)

  1. Using dynamo theory to predict the sunspot number during solar cycle 21

    Science.gov (United States)

    Schatten, K. H.; Scherrer, P. H.; Svalgaard, L.; Wilcox, J. M.

    1978-01-01

    On physical grounds it is suggested that the polar field strength of the sun near a solar minimum is closely related to the solar activity of the following cycle. Four methods of estimating the polar magnetic field strength of the sun near solar minimum are employed to provide an estimate of the yearly mean sunspot number of cycle 21 at solar maximum of 140 + or - 20. This estimate may be considered a first-order attempt to predict the cycle activity using one parameter of physical importance based upon dynamo theory.

  2. Influence of the mode of deformation on recrystallisation behaviour of titanium through experiments, mean field theory and phase field model

    Science.gov (United States)

    Athreya, C. N.; Mukilventhan, A.; Suwas, Satyam; Vedantam, Srikanth; Subramanya Sarma, V.

    2018-04-01

    The influence of the mode of deformation on recrystallisation behaviour of Ti was studied by experiments and modelling. Ti samples were deformed through torsion and rolling to the same equivalent strain of 0.5. The deformed samples were annealed at different temperatures for different time durations and the recrystallisation kinetics were compared. Recrystallisation is found to be faster in the rolled samples compared to the torsion deformed samples. This is attributed to the differences in stored energy and number of nuclei per unit area in the two modes of deformation. Considering decay in stored energy during recrystallisation, the grain boundary mobility was estimated through a mean field model. The activation energy for recrystallisation obtained from experiments matched with the activation energy for grain boundary migration obtained from mobility calculation. A multi-phase field model (with mobility estimated from the mean field model as a constitutive input) was used to simulate the kinetics, microstructure and texture evolution. The recrystallisation kinetics and grain size distributions obtained from experiments matched reasonably well with the phase field simulations. The recrystallisation texture predicted through phase field simulations compares well with experiments though few additional texture components are present in simulations. This is attributed to the anisotropy in grain boundary mobility, which is not accounted for in the present study.

  3. Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles

    Energy Technology Data Exchange (ETDEWEB)

    Speck, Thomas [Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz (Germany); Menzel, Andreas M.; Bialké, Julian; Löwen, Hartmut [Institut für Theoretische Physik II, Heinrich-Heine-Universität, D-40225 Düsseldorf (Germany)

    2015-06-14

    Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.

  4. The emission of heavy clusters described in the mean-field HFB theory: the case of 242Cm

    International Nuclear Information System (INIS)

    Robledo, L.M.; Warda, M.

    2008-01-01

    The emission of a nucleus of 34 Si by the parent 96 242 Cm is a process in the diffuse borderline between cluster emission and standard mass asymmetric fission. In this paper we analyze in a microscopic framework such process using the standard mean field techniques used to describe cluster emission. They include Hartree-Fock-Bogoliubov constrained calculations with the Gogny D1S interaction and the octupole moment operator as the collective coordinate to describe the process. Collective masses and all kind of zero point energy corrections are considered which allows for a parameter free estimation of the process' half-life. The agreement with experiment is quite satisfactory. (author)

  5. Mean field games

    KAUST Repository

    Gomes, Diogo A.

    2014-01-06

    In this talk we will report on new results concerning the existence of smooth solutions for time dependent mean-field games. This new result is established through a combination of various tools including several a-priori estimates for time-dependent mean-field games combined with new techniques for the regularity of Hamilton-Jacobi equations.

  6. Mean field games

    KAUST Repository

    Gomes, Diogo A.

    2014-01-01

    In this talk we will report on new results concerning the existence of smooth solutions for time dependent mean-field games. This new result is established through a combination of various tools including several a-priori estimates for time-dependent mean-field games combined with new techniques for the regularity of Hamilton-Jacobi equations.

  7. Dynamic magnetic behavior of the mixed-spin bilayer system in an oscillating field within the mean-field theory

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Keskin, Mustafa

    2012-01-01

    The dynamic magnetic behavior of the mixed Ising bilayer system (σ=2 and S=5/2), with a crystal-field interaction in an oscillating field are studied, within the mean-field approach, by using the Glauber-type stochastic dynamics for both ferromagnetic/ferromagnetic and antiferromagnetic/ferromagnetic interactions. The time variations of average magnetizations and the temperature dependence of the dynamic magnetizations are investigated. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and they exhibit several ordered phases, coexistence phase regions and critical points as well as a re-entrant behavior depending on interaction parameters. -- Highlights: ► Dynamic magnetic behavior of the mixed Ising bilayer system is investigated within the Glauber-type stochastic dynamics. ► The time variations of average magnetizations are studied to find the phases. ► The temperature dependence of the dynamic magnetizations is investigated to obtain the dynamic phase transition points. ► The dynamic phase diagrams are presented and they exhibit several ordered phases, coexistence phase regions and critical points as well as a re-entrant behavior.

  8. Dynamic magnetic behavior of the mixed-spin bilayer system in an oscillating field within the mean-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ertaş, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-07-23

    The dynamic magnetic behavior of the mixed Ising bilayer system (σ=2 and S=5/2), with a crystal-field interaction in an oscillating field are studied, within the mean-field approach, by using the Glauber-type stochastic dynamics for both ferromagnetic/ferromagnetic and antiferromagnetic/ferromagnetic interactions. The time variations of average magnetizations and the temperature dependence of the dynamic magnetizations are investigated. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and they exhibit several ordered phases, coexistence phase regions and critical points as well as a re-entrant behavior depending on interaction parameters. -- Highlights: ► Dynamic magnetic behavior of the mixed Ising bilayer system is investigated within the Glauber-type stochastic dynamics. ► The time variations of average magnetizations are studied to find the phases. ► The temperature dependence of the dynamic magnetizations is investigated to obtain the dynamic phase transition points. ► The dynamic phase diagrams are presented and they exhibit several ordered phases, coexistence phase regions and critical points as well as a re-entrant behavior.

  9. Mean-Field Theory of Electrical Double Layer In Ionic Liquids with Account of Short-Range Correlations

    International Nuclear Information System (INIS)

    Goodwin, Zachary A.H.; Feng, Guang; Kornyshev, Alexei A.

    2017-01-01

    We develop the theory of the electrical double layer in ionic liquids as proposed earlier by Kornyshev (2007). In the free energy function we keep the so called ‘short-range correlation terms’ which were omitted there. With some simplifying assumptions, we arrive at a modified expression for differential capacitance, which makes differential capacitance curves less sharply depending on electrode potential and having smaller values at extrema than in the previous theory. This brings the results closer to typical experimental observations, and makes it appealing to use this formalism for treatment of experimental data. Implications on Debye length and the extent of ion paring in ionic liquids are then briefly discussed.

  10. Comparison of the order of magnetic phase transitions in several magnetocaloric materials using the rescaled universal curve, Banerjee and mean field theory criteria

    Energy Technology Data Exchange (ETDEWEB)

    Burrola-Gándara, L. A., E-mail: andres.burrola@gmail.com; Santillan-Rodriguez, C. R.; Rivera-Gomez, F. J.; Saenz-Hernandez, R. J.; Botello-Zubiate, M. E.; Matutes-Aquino, J. A. [Departamento de Física de Materiales, Centro de Investigación en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31109 (Mexico)

    2015-05-07

    Magnetocaloric materials with second order phase transition near the Curie temperature can be described by critical phenomena theory. In this theory, scaling, universality, and renormalization are key concepts from which several phase transition order criteria are derived. In this work, the rescaled universal curve, Banerjee and mean field theory criteria were used to make a comparison for several magnetocaloric materials including pure Gd, SmCo{sub 1.8}Fe{sub 0.2}, MnFeP{sub 0.46}As{sub 0.54}, and La{sub 0.7}Ca{sub 0.15}Sr{sub 0.15}MnO{sub 3}. Pure Gd, SmCo{sub 1.8}Fe{sub 0.2}, and La{sub 0.7}Ca{sub 0.15}Sr{sub 0.15}MnO{sub 3} present a collapse of the rescaled magnetic entropy change curves into a universal curve, which indicates a second order phase transition; applying Banerjee criterion to H/σ vs σ{sup 2} Arrot plots and the mean field theory relation |ΔS{sub M}| ∝ (μ{sub 0}H/T{sub c}){sup 2/3} for the same materials also determines a second order phase transition. However, in the MnFeP{sub 0.46}As{sub 0.54} sample, the Banerjee criterion applied to the H/σ vs σ{sup 2} Arrot plot indicates a first order magnetic phase transition, while the mean field theory prediction for a second order phase transition, |ΔS{sub M}| ∝ (μ{sub 0}H/T{sub c}){sup 2/3}, describes a second order behavior. Also, a mixture of first and second order behavior was indicated by the rescaled universal curve criterion. The diverse results obtained for each criterion in MnFeP{sub 0.46}As{sub 0.54} are apparently related to the magnetoelastic effect and to the simultaneous presence of weak and strong magnetism in Fe (3f) and Mn (3g) alternate atomic layers, respectively. The simultaneous application of the universal curve, the Banerjee and the mean field theory criteria has allowed a better understanding about the nature of the order of the phase transitions in different magnetocaloric materials.

  11. Derivation and precision of mean field electrodynamics with mesoscale fluctuations

    Science.gov (United States)

    Zhou, Hongzhe; Blackman, Eric G.

    2018-06-01

    Mean field electrodynamics (MFE) facilitates practical modelling of secular, large scale properties of astrophysical or laboratory systems with fluctuations. Practitioners commonly assume wide scale separation between mean and fluctuating quantities, to justify equality of ensemble and spatial or temporal averages. Often however, real systems do not exhibit such scale separation. This raises two questions: (I) What are the appropriate generalized equations of MFE in the presence of mesoscale fluctuations? (II) How precise are theoretical predictions from MFE? We address both by first deriving the equations of MFE for different types of averaging, along with mesoscale correction terms that depend on the ratio of averaging scale to variation scale of the mean. We then show that even if these terms are small, predictions of MFE can still have a significant precision error. This error has an intrinsic contribution from the dynamo input parameters and a filtering contribution from differences in the way observations and theory are projected through the measurement kernel. Minimizing the sum of these contributions can produce an optimal scale of averaging that makes the theory maximally precise. The precision error is important to quantify when comparing to observations because it quantifies the resolution of predictive power. We exemplify these principles for galactic dynamos, comment on broader implications, and identify possibilities for further work.

  12. Non-linear quenching of current fluctuations in a self-exciting homopolar dynamo, proved by feedback system theory

    Science.gov (United States)

    de Paor, A. M.

    Hide (Nonlinear Processes in Geophysics, 1998) has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ɛ has the value 1 is proved via the Popov theorem from feedback system stability theory.

  13. Self-interaction error in density functional theory: a mean-field correction for molecules and large systems

    International Nuclear Information System (INIS)

    Ciofini, Ilaria; Adamo, Carlo; Chermette, Henry

    2005-01-01

    Corrections to the self-interaction error which is rooted in all standard exchange-correlation functionals in the density functional theory (DFT) have become the object of an increasing interest. After an introduction reminding the origin of the self-interaction error in the DFT formalism, and a brief review of the self-interaction free approximations, we present a simple, yet effective, self-consistent method to correct this error. The model is based on an average density self-interaction correction (ADSIC), where both exchange and Coulomb contributions are screened by a fraction of the electron density. The ansatz on which the method is built makes it particularly appealing, due to its simplicity and its favorable scaling with the size of the system. We have tested the ADSIC approach on one of the classical pathological problem for density functional theory: the direct estimation of the ionization potential from orbital eigenvalues. A large set of different chemical systems, ranging from simple atoms to large fullerenes, has been considered as test cases. Our results show that the ADSIC approach provides good numerical values for all the molecular systems, the agreement with the experimental values increasing, due to its average ansatz, with the size (conjugation) of the systems

  14. Exponential Convergence of Cellular Dynamical Mean Field Theory: Reply to the comment by K. Aryanpour, Th. Maier and M. Jarrell (cond-mat/0301460)

    OpenAIRE

    Biroli, G.; Kotliar, G.

    2004-01-01

    We reply to the comment by K. Aryanpour, Th. Maier and M. Jarrell (cond-mat/0301460) on our paper (Phys. Rev. B {\\bf 65} 155112 (2002)). We demonstrate using general arguments and explicit examples that whenever the correlation length is finite, local observables converge exponentially fast in the cluster size, $L_{c}$, within Cellular Dynamical Mean Field Theory (CDMFT). This is a faster rate of convergence than the $1/L_{c}^{2}$ behavior of the Dynamical Cluster approximation (DCA) thus ref...

  15. The effective dielectric constant of plasmas - A mean field theory built from the electromagnetic ionic T-matrix

    International Nuclear Information System (INIS)

    Niez, Jean-Jacques

    2010-01-01

    This work aims to obtain the effective dielectric constant tensor of a warm plasma in the spirit of the derivation of a mixing law. The medium is made of non point-like ions immersed in an electron gas with usual conditions relating the various lengths which define the problem. In this paper the ion dielectric constants are taken from their RPA responses as developed in a previous paper [1]. Furthermore the treatment of the screening effects is made through a mathematical redefinition of the initial problem as proposed in Ref. [1]. Here the complete calculation of the T-matrix describing the scattering of an electromagnetic wave on an isolated ion immersed in an 'effective medium' is given. It is used for building , in the spirit of a mixing law, a self-consistent effective medium theory for the plasma dielectric tensor. We then extend the results obtained in Ref. [1] to higher orders in ion or dielectric inclusion densities. The techniques presented are generic and can be used in areas such as elasticity, thermoelasticity, and piezoelectricity.

  16. Dynamics of capillary condensation in lattice gas models of confined fluids: a comparison of dynamic mean field theory with dynamic Monte Carlo simulations.

    Science.gov (United States)

    Edison, John R; Monson, Peter A

    2013-06-21

    This article addresses the accuracy of a dynamic mean field theory (DMFT) for fluids in porous materials [P. A. Monson, J. Chem. Phys. 128, 084701 (2008)]. The theory is used to study the relaxation processes of fluids in pores driven by step changes made to a bulk reservoir in contact with the pore. We compare the results of the DMFT to those obtained by averaging over large numbers of dynamic Monte Carlo (DMC) simulation trajectories. The problem chosen for comparison is capillary condensation in slit pores, driven by step changes in the chemical potential in the bulk reservoir and involving a nucleation process via the formation of a liquid bridge. The principal difference between the DMFT results and DMC is the replacement of a distribution of nucleation times and location along the pore for the formation of liquid bridges by a single time and location. DMFT is seen to yield an otherwise qualitatively accurate description of the dynamic behavior.

  17. Non-linear quenching of current fluctuations in a self-exciting homopolar dynamo, proved by feedback system theory

    OpenAIRE

    A. M. de Paor

    1998-01-01

    International audience; Hide (Nonlinear Processes in Geophysics, 1998) has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ? has the value 1 is proved via ...

  18. Mean Field Game for Marriage

    KAUST Repository

    Bauso, Dario; Dia, Ben Mansour; Djehiche, Boualem; Tembine, Hamidou; Tempone, Raul

    2014-01-01

    The myth of marriage has been and is still a fascinating historical societal phenomenon. Paradoxically, the empirical divorce rates are at an all-time high. This work describes a unique paradigm for preserving relationships and marital stability from mean-field game theory. We show that optimizing the long-term well-being via effort and society feeling state distribution will help in stabilizing relationships.

  19. Mean Field Game for Marriage

    KAUST Repository

    Bauso, Dario

    2014-01-06

    The myth of marriage has been and is still a fascinating historical societal phenomenon. Paradoxically, the empirical divorce rates are at an all-time high. This work describes a unique paradigm for preserving relationships and marital stability from mean-field game theory. We show that optimizing the long-term well-being via effort and society feeling state distribution will help in stabilizing relationships.

  20. Mean-field density functional theory of a nanoconfined classical, three-dimensional Heisenberg fluid. I. The role of molecular anchoring

    Science.gov (United States)

    Cattes, Stefanie M.; Gubbins, Keith E.; Schoen, Martin

    2016-05-01

    In this work, we employ classical density functional theory (DFT) to investigate for the first time equilibrium properties of a Heisenberg fluid confined to nanoscopic slit pores of variable width. Within DFT pair correlations are treated at modified mean-field level. We consider three types of walls: hard ones, where the fluid-wall potential becomes infinite upon molecular contact but vanishes otherwise, and hard walls with superimposed short-range attraction with and without explicit orientation dependence. To model the distance dependence of the attractions, we employ a Yukawa potential. The orientation dependence is realized through anchoring of molecules at the substrates, i.e., an energetic discrimination of specific molecular orientations. If the walls are hard or attractive without specific anchoring, the results are "quasi-bulk"-like in that they can be linked to a confinement-induced reduction of the bulk mean field. In these cases, the precise nature of the walls is completely irrelevant at coexistence. Only for specific anchoring nontrivial features arise, because then the fluid-wall interaction potential affects the orientation distribution function in a nontrivial way and thus appears explicitly in the Euler-Lagrange equations to be solved for minima of the grand potential of coexisting phases.

  1. Dynamics of a quantum spin liquid beyond integrability: The Kitaev-Heisenberg-Γ model in an augmented parton mean-field theory

    Science.gov (United States)

    Knolle, Johannes; Bhattacharjee, Subhro; Moessner, Roderich

    2018-04-01

    We present an augmented parton mean-field theory which (i) reproduces the exact ground state, spectrum, and dynamics of the quantum spin-liquid phase of Kitaev's honeycomb model, and (ii) is amenable to the inclusion of integrability breaking terms, allowing a perturbation theory from a controlled starting point. Thus, we exemplarily study dynamical spin correlations of the honeycomb Kitaev quantum spin liquid within the K -J -Γ model, which includes Heisenberg and symmetric-anisotropic (pseudodipolar) interactions. This allows us to trace changes of the correlations in the regime of slowly moving fluxes, where the theory captures the dominant deviations when integrability is lost. These include an asymmetric shift together with a broadening of the dominant peak in the response as a function of frequency, the generation of further-neighbor correlations and their structure in real and spin space, and a resulting loss of an approximate rotational symmetry of the structure factor in reciprocal space. We discuss the limitations of this approach and also view the neutron-scattering experiments on the putative proximate quantum spin-liquid material α -RuCl3 in the light of the results from this extended parton theory.

  2. Accurate mean-field modeling of the Barkhausen noise power in ferromagnetic materials, using a positive-feedback theory of ferromagnetism

    Science.gov (United States)

    Harrison, R. G.

    2015-07-01

    A mean-field positive-feedback (PFB) theory of ferromagnetism is used to explain the origin of Barkhausen noise (BN) and to show why it is most pronounced in the irreversible regions of the hysteresis loop. By incorporating the ABBM-Sablik model of BN into the PFB theory, we obtain analytical solutions that simultaneously describe both the major hysteresis loop and, by calculating separate expressions for the differential susceptibility in the irreversible and reversible regions, the BN power response at all points of the loop. The PFB theory depends on summing components of the applied field, in particular, the non-monotonic field-magnetization relationship characterizing hysteresis, associated with physical processes occurring in the material. The resulting physical model is then validated by detailed comparisons with measured single-peak BN data in three different steels. It also agrees with the well-known influence of a demagnetizing field on the position and shape of these peaks. The results could form the basis of a physics-based method for modeling and understanding the significance of the observed single-peak (and in multi-constituent materials, multi-peak) BN envelope responses seen in contemporary applications of BN, such as quality control in manufacturing, non-destructive testing, and monitoring the microstructural state of ferromagnetic materials.

  3. Non-linear quenching of current fluctuations in a self-exciting homopolar dynamo, proved by feedback system theory

    Directory of Open Access Journals (Sweden)

    A. M. de Paor

    1998-01-01

    Full Text Available Hide (Nonlinear Processes in Geophysics, 1998 has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ε has the value 1 is proved via the Popov theorem from feedback system stability theory.

  4. Stochastic mean-field theory: Method and application to the disordered Bose-Hubbard model at finite temperature and speckle disorder

    International Nuclear Information System (INIS)

    Bissbort, Ulf; Hofstetter, Walter; Thomale, Ronny

    2010-01-01

    We discuss the stochastic mean-field theory (SMFT) method, which is a new approach for describing disordered Bose systems in the thermodynamic limit including localization and dimensional effects. We explicate the method in detail and apply it to the disordered Bose-Hubbard model at finite temperature, with on-site box disorder, as well as experimentally relevant unbounded speckle disorder. We find that disorder-induced condensation and re-entrant behavior at constant filling are only possible at low temperatures, beyond the reach of current experiments [M. Pasienski, D. McKay, M. White, and B. DeMarco, e-print arXiv:0908.1182]. Including off-diagonal hopping disorder as well, we investigate its effect on the phase diagram in addition to pure on-site disorder. To make connection to present experiments on a quantitative level, we also combine SMFT with an LDA approach and obtain the condensate fraction in the presence of an external trapping potential.

  5. A dynamo theory prediction for solar cycle 22: Sunspot number, radio flux, exospheric temperature, and total density at 400 km

    Science.gov (United States)

    Schatten, K. H.; Hedin, A. E.

    1986-01-01

    Using the dynamo theory method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.

  6. A dynamo theory prediction for solar cycle 22 - Sunspot number, radio flux, exospheric temperature, and total density at 400 km

    Science.gov (United States)

    Schatten, K. H.; Hedin, A. E.

    1984-01-01

    Using the 'dynamo theory' method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.

  7. Mean-field approximation minimizes relative entropy

    International Nuclear Information System (INIS)

    Bilbro, G.L.; Snyder, W.E.; Mann, R.C.

    1991-01-01

    The authors derive the mean-field approximation from the information-theoretic principle of minimum relative entropy instead of by minimizing Peierls's inequality for the Weiss free energy of statistical physics theory. They show that information theory leads to the statistical mechanics procedure. As an example, they consider a problem in binary image restoration. They find that mean-field annealing compares favorably with the stochastic approach

  8. The aurora and the magnetosphere - The Chapman Memorial Lecture. [dynamo theory development, 1600-present

    Science.gov (United States)

    Akasofu, S.-I.

    1974-01-01

    Review of recent progress in magnetospheric physics, in particular, in understanding the magnetospheric substorm. It is shown that a number of magnetospheric phenomena can now be understood by viewing the solar wind-magnetosphere interaction as an MHD dynamo; auroral phenomena are powered by the dynamo. Also, magnetospheric responses to variations of the north-south and east-west components of the interplanetary magnetic field have been identified. The magnetospheric substorm is entirely different from the responses of the magnetosphere to the southward component of the interplanetary magnetic field. It may be associated with the formation of a neutral line within the plasma sheet and with an enhanced reconnection along the line. A number of substorm-associated phenomena can be understood by noting that the new neutral line formation is caused by a short-circuiting of a part of the magnetotail current.

  9. The Global Solar Dynamo

    Science.gov (United States)

    Cameron, R. H.; Dikpati, M.; Brandenburg, A.

    2017-09-01

    A brief summary of the various observations and constraints that underlie solar dynamo research are presented. The arguments that indicate that the solar dynamo is an alpha-omega dynamo of the Babcock-Leighton type are then shortly reviewed. The main open questions that remain are concerned with the subsurface dynamics, including why sunspots emerge at preferred latitudes as seen in the familiar butterfly wings, why the cycle is about 11 years long, and why the sunspot groups emerge tilted with respect to the equator (Joy's law). Next, we turn to magnetic helicity, whose conservation property has been identified with the decline of large-scale magnetic fields found in direct numerical simulations at large magnetic Reynolds numbers. However, magnetic helicity fluxes through the solar surface can alleviate this problem and connect theory with observations, as will be discussed.

  10. Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars

    Science.gov (United States)

    Warnecke, J.; Rheinhardt, M.; Tuomisto, S.; Käpylä, P. J.; Käpylä, M. J.; Brandenburg, A.

    2018-01-01

    Aims: We investigate dynamo action in global compressible solar-like convective dynamos in the framework of mean-field theory. Methods: We simulate a solar-type star in a wedge-shaped spherical shell, where the interplay between convection and rotation self-consistently drives a large-scale dynamo. To analyze the dynamo mechanism we apply the test-field method for azimuthally (φ) averaged fields to determine the 27 turbulent transport coefficients of the electromotive force, of which six are related to the α tensor. This method has previously been used either in simulations in Cartesian coordinates or in the geodynamo context and is applied here for the first time to fully compressible simulations of solar-like dynamos. Results: We find that the φφ-component of the α tensor does not follow the profile expected from that of kinetic helicity. The turbulent pumping velocities significantly alter the effective mean flows acting on the magnetic field and therefore challenge the flux transport dynamo concept. All coefficients are significantly affected by dynamically important magnetic fields. Quenching as well as enhancement are being observed. This leads to a modulation of the coefficients with the activity cycle. The temporal variations are found to be comparable to the time-averaged values and seem to be responsible for a nonlinear feedback on the magnetic field generation. Furthermore, we quantify the validity of the Parker-Yoshimura rule for the equatorward propagation of the mean magnetic field in the present case.

  11. Mean-field lattice trees

    NARCIS (Netherlands)

    Borgs, C.; Chayes, J.T.; Hofstad, van der R.W.; Slade, G.

    1999-01-01

    We introduce a mean-field model of lattice trees based on embeddings into d of abstract trees having a critical Poisson offspring distribution. This model provides a combinatorial interpretation for the self-consistent mean-field model introduced previously by Derbez and Slade [9], and provides an

  12. Understanding Short-Term Nonmigrating Tidal Variability in the Ionospheric Dynamo Region from SABER Using Information Theory and Bayesian Statistics

    Science.gov (United States)

    Kumari, K.; Oberheide, J.

    2017-12-01

    Nonmigrating tidal diagnostics of SABER temperature observations in the ionospheric dynamo region reveal a large amount of variability on time-scales of a few days to weeks. In this paper, we discuss the physical reasons for the observed short-term tidal variability using a novel approach based on Information theory and Bayesian statistics. We diagnose short-term tidal variability as a function of season, QBO, ENSO, and solar cycle and other drivers using time dependent probability density functions, Shannon entropy and Kullback-Leibler divergence. The statistical significance of the approach and its predictive capability is exemplified using SABER tidal diagnostics with emphasis on the responses to the QBO and solar cycle. Implications for F-region plasma density will be discussed.

  13. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. II. Simulations

    Science.gov (United States)

    Schober, Jennifer; Rogachevskii, Igor; Brandenburg, Axel; Boyarsky, Alexey; Fröhlich, Jürg; Ruchayskiy, Oleg; Kleeorin, Nathan

    2018-05-01

    Using direct numerical simulations (DNS), we study laminar and turbulent dynamos in chiral magnetohydrodynamics with an extended set of equations that accounts for an additional contribution to the electric current due to the chiral magnetic effect (CME). This quantum phenomenon originates from an asymmetry between left- and right-handed relativistic fermions in the presence of a magnetic field and gives rise to a chiral dynamo. We show that the magnetic field evolution proceeds in three stages: (1) a small-scale chiral dynamo instability, (2) production of chiral magnetically driven turbulence and excitation of a large-scale dynamo instability due to a new chiral effect (α μ effect), and (3) saturation of magnetic helicity and magnetic field growth controlled by a conservation law for the total chirality. The α μ effect becomes dominant at large fluid and magnetic Reynolds numbers and is not related to kinetic helicity. The growth rate of the large-scale magnetic field and its characteristic scale measured in the numerical simulations agree well with theoretical predictions based on mean-field theory. The previously discussed two-stage chiral magnetic scenario did not include stage (2), during which the characteristic scale of magnetic field variations can increase by many orders of magnitude. Based on the findings from numerical simulations, the relevance of the CME and the chiral effects revealed in the relativistic plasma of the early universe and of proto-neutron stars are discussed.

  14. Nonasymptotic mean-field games

    KAUST Repository

    Tembine, Hamidou

    2014-01-01

    a mean-field framework that is suitable not only for large systems but also for a small world with few number of entities. The applicability of the proposed framework is illustrated through various examples including dynamic auction with asymmetric

  15. Mean Field Type Control with Congestion

    Energy Technology Data Exchange (ETDEWEB)

    Achdou, Yves, E-mail: achdou@ljll.univ-paris-diderot.fr; Laurière, Mathieu [Univ. Paris Diderot, Sorbonne Paris Cité, Laboratoire Jacques-Louis Lions, UMR 7598, UPMC, CNRS (France)

    2016-06-15

    We analyze some systems of partial differential equations arising in the theory of mean field type control with congestion effects. We look for weak solutions. Our main result is the existence and uniqueness of suitably defined weak solutions, which are characterized as the optima of two optimal control problems in duality.

  16. Helicity, Reconnection, and Dynamo Effects

    International Nuclear Information System (INIS)

    Ji, Hantao

    1998-01-01

    The inter-relationships between magnetic helicity, magnetic reconnection, and dynamo effects are discussed. In laboratory experiments, where two plasmas are driven to merge, the helicity content of each plasma strongly affects the reconnection rate, as well as the shape of the diffusion region. Conversely, magnetic reconnection events also strongly affect the global helicity, resulting in efficient helicity cancellation (but not dissipation) during counter-helicity reconnection and a finite helicity increase or decrease (but less efficiently than dissipation of magnetic energy) during co-helicity reconnection. Close relationships also exist between magnetic helicity and dynamo effects. The turbulent electromotive force along the mean magnetic field (alpha-effect), due to either electrostatic turbulence or the electron diamagnetic effect, transports mean-field helicity across space without dissipation. This has been supported by direct measurements of helicity flux in a laboratory plasma. When the dynamo effect is driven by electromagnetic turbulence, helicity in the turbulent field is converted to mean-field helicity. In all cases, however, dynamo processes conserve total helicity except for a small battery effect, consistent with the observation that the helicity is approximately conserved during magnetic relaxation

  17. Mean-field models and superheavy elements

    International Nuclear Information System (INIS)

    Reinhard, P.G.; Bender, M.; Maruhn, J.A.; Frankfurt Univ.

    2001-03-01

    We discuss the performance of two widely used nuclear mean-field models, the relativistic mean-field theory (RMF) and the non-relativistic Skyrme-Hartree-Fock approach (SHF), with particular emphasis on the description of superheavy elements (SHE). We provide a short introduction to the SHF and RMF, the relations between these two approaches and the relations to other nuclear structure models, briefly review the basic properties with respect to normal nuclear observables, and finally present and discuss recent results on the binding properties of SHE computed with a broad selection of SHF and RMF parametrisations. (orig.)

  18. Mean Field Games with a Dominating Player

    Energy Technology Data Exchange (ETDEWEB)

    Bensoussan, A., E-mail: axb046100@utdallas.edu [The University of Texas at Dallas, International Center for Decision and Risk Analysis, Jindal School of Management (United States); Chau, M. H. M., E-mail: michaelchaumanho@gmail.com; Yam, S. C. P., E-mail: scpyam@sta.cuhk.edu.hk [The Chinese University of Hong Kong, Department of Statistics (Hong Kong, People’s Republic of China) (China)

    2016-08-15

    In this article, we consider mean field games between a dominating player and a group of representative agents, each of which acts similarly and also interacts with each other through a mean field term being substantially influenced by the dominating player. We first provide the general theory and discuss the necessary condition for the optimal controls and equilibrium condition by adopting adjoint equation approach. We then present a special case in the context of linear-quadratic framework, in which a necessary and sufficient condition can be asserted by stochastic maximum principle; we finally establish the sufficient condition that guarantees the unique existence of the equilibrium control. The proof of the convergence result of finite player game to mean field counterpart is provided in Appendix.

  19. Mean field games for cognitive radio networks

    KAUST Repository

    Tembine, Hamidou

    2012-06-01

    In this paper we study mobility effect and power saving in cognitive radio networks using mean field games. We consider two types of users: primary and secondary users. When active, each secondary transmitter-receiver uses carrier sensing and is subject to long-term energy constraint. We formulate the interaction between primary user and large number of secondary users as an hierarchical mean field game. In contrast to the classical large-scale approaches based on stochastic geometry, percolation theory and large random matrices, the proposed mean field framework allows one to describe the evolution of the density distribution and the associated performance metrics using coupled partial differential equations. We provide explicit formulas and algorithmic power management for both primary and secondary users. A complete characterization of the optimal distribution of energy and probability of success is given.

  20. Co-non-solvency: Mean-field polymer theory does not describe polymer collapse transition in a mixture of two competing good solvents

    Energy Technology Data Exchange (ETDEWEB)

    Mukherji, Debashish; Stuehn, Torsten; Kremer, Kurt [Max-Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany); Marques, Carlos M. [Max-Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany); Institut Charles Sadron, Université de Strasbourg, CNRS, Strasbourg (France)

    2015-03-21

    Smart polymers are a modern class of polymeric materials that often exhibit unpredictable behavior in mixtures of solvents. One such phenomenon is co-non-solvency. Co-non-solvency occurs when two (perfectly) miscible and competing good solvents, for a given polymer, are mixed together. As a result, the same polymer collapses into a compact globule within intermediate mixing ratios. More interestingly, polymer collapses when the solvent quality remains good and even gets increasingly better by the addition of the better cosolvent. This is a puzzling phenomenon that is driven by strong local concentration fluctuations. Because of the discrete particle based nature of the interactions, Flory-Huggins type mean field arguments become unsuitable. In this work, we extend the analysis of the co-non-solvency effect presented earlier [D. Mukherji et al., Nat. Commun. 5, 4882 (2014)]. We explain why co-non-solvency is a generic phenomenon, which can only be understood by the thermodynamic treatment of the competitive displacement of (co)solvent components. This competition can result in a polymer collapse upon improvement of the solvent quality. Specific chemical details are not required to understand these complex conformational transitions. Therefore, a broad range of polymers are expected to exhibit similar reentrant coil-globule-coil transitions in competing good solvents.

  1. Co-non-solvency: Mean-field polymer theory does not describe polymer collapse transition in a mixture of two competing good solvents

    International Nuclear Information System (INIS)

    Mukherji, Debashish; Stuehn, Torsten; Kremer, Kurt; Marques, Carlos M.

    2015-01-01

    Smart polymers are a modern class of polymeric materials that often exhibit unpredictable behavior in mixtures of solvents. One such phenomenon is co-non-solvency. Co-non-solvency occurs when two (perfectly) miscible and competing good solvents, for a given polymer, are mixed together. As a result, the same polymer collapses into a compact globule within intermediate mixing ratios. More interestingly, polymer collapses when the solvent quality remains good and even gets increasingly better by the addition of the better cosolvent. This is a puzzling phenomenon that is driven by strong local concentration fluctuations. Because of the discrete particle based nature of the interactions, Flory-Huggins type mean field arguments become unsuitable. In this work, we extend the analysis of the co-non-solvency effect presented earlier [D. Mukherji et al., Nat. Commun. 5, 4882 (2014)]. We explain why co-non-solvency is a generic phenomenon, which can only be understood by the thermodynamic treatment of the competitive displacement of (co)solvent components. This competition can result in a polymer collapse upon improvement of the solvent quality. Specific chemical details are not required to understand these complex conformational transitions. Therefore, a broad range of polymers are expected to exhibit similar reentrant coil-globule-coil transitions in competing good solvents

  2. Nonasymptotic mean-field games

    KAUST Repository

    Tembine, Hamidou

    2014-01-01

    propose a mean-field framework that is suitable not only for large systems but also for a small world with few number of entities. The applicability of the proposed framework is illustrated through a dynamic auction with asymmetric valuation distributions.

  3. Nonasymptotic mean-field games

    KAUST Repository

    Tembine, Hamidou

    2014-12-01

    Mean-field games have been studied under the assumption of very large number of players. For such large systems, the basic idea consists to approximate large games by a stylized game model with a continuum of players. The approach has been shown to be useful in some applications. However, the stylized game model with continuum of decision-makers is rarely observed in practice and the approximation proposed in the asymptotic regime is meaningless for networked systems with few entities. In this paper we propose a mean-field framework that is suitable not only for large systems but also for a small world with few number of entities. The applicability of the proposed framework is illustrated through a dynamic auction with asymmetric valuation distributions.

  4. Nonasymptotic mean-field games

    KAUST Repository

    Tembine, Hamidou

    2014-12-01

    Mean-field games have been studied under the assumption of very large number of players. For such large systems, the basic idea consists of approximating large games by a stylized game model with a continuum of players. The approach has been shown to be useful in some applications. However, the stylized game model with continuum of decision-makers is rarely observed in practice and the approximation proposed in the asymptotic regime is meaningless for networks with few entities. In this paper, we propose a mean-field framework that is suitable not only for large systems but also for a small world with few number of entities. The applicability of the proposed framework is illustrated through various examples including dynamic auction with asymmetric valuation distributions, and spiteful bidders.

  5. The limits of the mean field

    International Nuclear Information System (INIS)

    Guerra, E.M. de

    2001-01-01

    In these talks, we review non relativistic selfconsistent mean field theories, their scope and limitations. We first discuss static and time dependent mean field approaches for particles and quasiparticles, together with applications. We then discuss extensions that go beyond the non-relativistic independent particle limit. On the one hand, we consider extensions concerned with restoration of symmetries and with the treatment of collective modes, particularly by means of quantized ATDHF. On the other hand, we consider extensions concerned with the relativistic dynamics of bound nucleons. We present data on nucleon momentum distributions that show the need for relativistic mean field approach and probe the limits of the mean field concept. Illustrative applications of various methods are presented stressing the role that selfconsistency plays in providing a unifying reliable framework to study all sorts of properties and phenomena. From global properties such as size, mass, lifetime,.., to detailed structure in excitation spectra (high spin, RPA modes,..), as well as charge, magnetization and velocity distributions. (orig.)

  6. Ab initio, mean field theory and series expansions calculations study of electronic and magnetic properties of antiferromagnetic MnSe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, BP. 63, 46000 Safi (Morocco); LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Mounkachi, O.; El Moussaoui, H. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2014-06-01

    Self-consistent ab initio calculations, based on DFT (Density Functional Theory) approach and using FLAPW (Full potential Linear Augmented Plane Wave) method, are performed to investigate both electronic and magnetic properties of the MnSe lattice. Polarized spin and spin–orbit coupling are included in calculations within the framework of the antiferromagnetic state between two adjacent Mn lattices. Magnetic moments considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters. The zero-field high temperature static susceptibility series of the spin −4.28 nearest-neighbor Ising model on face centered cubic (fcc) and lattices is thoroughly analyzed by means of a power series coherent anomaly method (CAM). The exchange interaction between the magnetic atoms and the Néel temperature are deduced using the mean filed and HTSEs theories. - Highlights: • Ab initio calculations are used to investigate both electronic and magnetic properties of the MnSe alloys. • Obtained data from ab initio calculations are used as input for the HTSEs. • The Néel temperature is obtained for MnSe alloys.

  7. A new effective correlation mean-field theory for the ferromagnetic spin-1 Blume-Capel model in a transverse crystal field

    Science.gov (United States)

    Roberto Viana, J.; Rodriguez Salmon, Octavio D.; Neto, Minos A.; Carvalho, Diego C.

    2018-02-01

    A new approximation technique is developed so as to study the quantum ferromagnetic spin-1 Blume-Capel model in the presence of a transverse crystal field in the square lattice. Our proposal consists of approaching the spin system by considering islands of finite clusters whose frontiers are surrounded by noninteracting spins that are treated by the effective-field theory. The resulting phase diagram is qualitatively correct, in contrast to most effective-field treatments, in which the first-order line exhibits spurious behavior by not being perpendicular to the anisotropy axis at low-temperatures. The effect of the transverse anisotropy is also verified by the presence of quantum phase transitions. The possibility of using larger sizes constitutes an advantage to other approaches where the implementation of larger sizes is computationally costly.

  8. Mean field interaction in biochemical reaction networks

    KAUST Repository

    Tembine, Hamidou; Tempone, Raul; Vilanova, Pedro

    2011-01-01

    In this paper we establish a relationship between chemical dynamics and mean field game dynamics. We show that chemical reaction networks can be studied using noisy mean field limits. We provide deterministic, noisy and switching mean field limits

  9. Bubble nuclei in relativistic mean field theory

    International Nuclear Information System (INIS)

    Shukla, A.; Aberg, S.; Patra, S.K.

    2011-01-01

    Bubble nuclei are characterized by a depletion of their central density, i.e. the formation of the proton or neutron void and subsequently forming proton or neutron bubble nuclei. Possibility of the formation of bubble nuclei has been explored through different nuclear models and in different mass regions. Advancements in experimental nuclear physics has led our experimental access to many new shapes and structures, which were inaccessible hitherto. In the present paper, the possibility of observing nuclear bubble in oxygen isotopes, particularly for 22 O has been studied

  10. Nuclear structure using relativistic mean field theory

    International Nuclear Information System (INIS)

    Maharana, J.P.; Warrier, L.S.; Gambhir, Y.K.

    1995-01-01

    The ground state binding energies of the studied Kr isotopes are well in agreement with the experiment and the variations of the nucleon single particle energies and occupancies are found to be as expected. (author). 10 refs., 12 figs

  11. Mean field methods for cortical network dynamics

    DEFF Research Database (Denmark)

    Hertz, J.; Lerchner, Alexander; Ahmadi, M.

    2004-01-01

    We review the use of mean field theory for describing the dynamics of dense, randomly connected cortical circuits. For a simple network of excitatory and inhibitory leaky integrate- and-fire neurons, we can show how the firing irregularity, as measured by the Fano factor, increases...... with the strength of the synapses in the network and with the value to which the membrane potential is reset after a spike. Generalizing the model to include conductance-based synapses gives insight into the connection between the firing statistics and the high- conductance state observed experimentally in visual...

  12. Stable Alfven wave dynamo action in the reversed field pinch

    International Nuclear Information System (INIS)

    Werley, K.A.

    1984-01-01

    Recent advances in linear resistive MHD stability analysis are used to calculate the quasi-linear dynamo mean electromotive force of Alfven waves. This emf is incorporated into a one-dimensional transport and mean-field evolution code. The changing equilibrium is then fed back to the stability code to complete a computational framework that self-consistently evaluates a dynamic plasma dynamo. Static quasi-linear Alfven wave calculations have shown that dynamo emfs on the order of eta vector J are possible. This suggested a possible explanation of RFP behavior and a new (externally driven) mechanism for extending operation and controlling field profiles (possibly reducing plasma transport). This thesis demonstrates that the dynamo emf can quickly induce plasma currents whose emf cancels the dynamo effect. This thesis also contains extensive studies of resistive Alfven wave properties. This includes behavior versus spectral location, magnetic Reynolds number and wave number

  13. Differential rotation and the solar dynamo

    International Nuclear Information System (INIS)

    Stix, M.

    1976-01-01

    A number of numerical models for the generation of mean magnetic fields is examined and the fields are compared with the mean field of the Sun. In particular, αω-dynamos, which are based on differential rotation and cyclonic turbulence, are studied in the case of cylindrical surfaces of isorotation. Such dynamos have an oscillatory antisymmetric field as the most easily excited mode. Only models with an angular velocity which increases with increasing depth appear to be compatible with observations. A search for oscillatory ω x j-dynamos, where the α-effect is replaced by a different mean electric field perpendicular to the rotation vector ω and the mean current density j is also made. Oscillatory modes do exist for models with radial shear. Their migration is equatorwards for inwards increasing angular velocity. (orig./BJ) [de

  14. Mean field interaction in biochemical reaction networks

    KAUST Repository

    Tembine, Hamidou

    2011-09-01

    In this paper we establish a relationship between chemical dynamics and mean field game dynamics. We show that chemical reaction networks can be studied using noisy mean field limits. We provide deterministic, noisy and switching mean field limits and illustrate them with numerical examples. © 2011 IEEE.

  15. Superheavy nuclei: a relativistic mean field outlook

    International Nuclear Information System (INIS)

    Afanasjev, A.V.

    2006-01-01

    The analysis of quasi-particle spectra in the heaviest A∼250 nuclei with spectroscopic data provides an additional constraint for the choice of effective interaction for the description of superheavy nuclei. It strongly suggests that only the parametrizations which predict Z = 120 and N = 172 as shell closures are reliable for superheavy nuclei within the relativistic mean field theory. The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell structure is studied. A large central depression produces large shell gaps at Z = 120 and N = 172. The shell gaps at Z = 126 and N = 184 are favoured by a flat density distribution in the central part of the nucleus. It is shown that approximate particle number projection (PNP) by means of the Lipkin-Nogami (LN) method removes pairing collapse seen at these gaps in the calculations without PNP

  16. Mean-field Ensemble Kalman Filter

    KAUST Repository

    Law, Kody

    2015-01-07

    A proof of convergence of the standard EnKF generalized to non-Gaussian state space models is provided. A density-based deterministic approximation of the mean-field limiting EnKF (MFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for d < 2 . The fidelity of approximation of the true distribution is also established using an extension of total variation metric to random measures. This is limited by a Gaussian bias term arising from non-linearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.

  17. Curie temperature study of {Y(Fe_{1-\\it x} {Co_{\\it x})_2}} and {Zr(Fe_{1-\\it x} {Co_{\\it x})_2}} systems using mean field theory and Monte Carlo method

    Science.gov (United States)

    Wasilewski, Bartosz; Marciniak, Wojciech; Werwiński, Mirosław

    2018-05-01

    Cubic Laves phases including , , , and are considered as promising candidates for application in hydrogen storage and magnetic refrigeration. While and are ferromagnets, alloying with Co decreases magnetic moments and Curie temperatures (T C) of pseudobinary and systems, leading to the paramagnetic states of and . The following study focuses on the investigation of Curie temperature of the and system from first principles. To do it, Monte Carlo (MC) simulations and the mean field theory (MFT) based on the disordered local moments (DLM) calculations are used. The DLM-MFT results agree qualitatively with the experimental data from the literature and preserve the characteristic features of dependencies for both and . However, we have encountered complications in the Co-rich regions due to failure of the local density approximation (LDA) in describing the Co magnetic moment in the DLM state. The analysis of Fe–Fe exchange couplings for and phases indicates that the nearest-neighbor interactions play the main role in the formation of .

  18. Continuous time finite state mean field games

    KAUST Repository

    Gomes, Diogo A.; Mohr, Joana; Souza, Rafael Rigã o

    2013-01-01

    In this paper we consider symmetric games where a large number of players can be in any one of d states. We derive a limiting mean field model and characterize its main properties. This mean field limit is a system of coupled ordinary differential equations with initial-terminal data. For this mean field problem we prove a trend to equilibrium theorem, that is convergence, in an appropriate limit, to stationary solutions. Then we study an N+1-player problem, which the mean field model attempts to approximate. Our main result is the convergence as N→∞ of the mean field model and an estimate of the rate of convergence. We end the paper with some further examples for potential mean field games. © 2013 Springer Science+Business Media New York.

  19. Risk-sensitive mean-field games

    KAUST Repository

    Tembine, Hamidou

    2014-04-01

    In this paper, we study a class of risk-sensitive mean-field stochastic differential games. We show that under appropriate regularity conditions, the mean-field value of the stochastic differential game with exponentiated integral cost functional coincides with the value function satisfying a Hamilton -Jacobi- Bellman (HJB) equation with an additional quadratic term. We provide an explicit solution of the mean-field best response when the instantaneous cost functions are log-quadratic and the state dynamics are affine in the control. An equivalent mean-field risk-neutral problem is formulated and the corresponding mean-field equilibria are characterized in terms of backward-forward macroscopic McKean-Vlasov equations, Fokker-Planck-Kolmogorov equations, and HJB equations. We provide numerical examples on the mean field behavior to illustrate both linear and McKean-Vlasov dynamics. © 1963-2012 IEEE.

  20. Risk-sensitive mean-field games

    KAUST Repository

    Tembine, Hamidou; Zhu, Quanyan; Başar, Tamer

    2014-01-01

    In this paper, we study a class of risk-sensitive mean-field stochastic differential games. We show that under appropriate regularity conditions, the mean-field value of the stochastic differential game with exponentiated integral cost functional coincides with the value function satisfying a Hamilton -Jacobi- Bellman (HJB) equation with an additional quadratic term. We provide an explicit solution of the mean-field best response when the instantaneous cost functions are log-quadratic and the state dynamics are affine in the control. An equivalent mean-field risk-neutral problem is formulated and the corresponding mean-field equilibria are characterized in terms of backward-forward macroscopic McKean-Vlasov equations, Fokker-Planck-Kolmogorov equations, and HJB equations. We provide numerical examples on the mean field behavior to illustrate both linear and McKean-Vlasov dynamics. © 1963-2012 IEEE.

  1. Continuous time finite state mean field games

    KAUST Repository

    Gomes, Diogo A.

    2013-04-23

    In this paper we consider symmetric games where a large number of players can be in any one of d states. We derive a limiting mean field model and characterize its main properties. This mean field limit is a system of coupled ordinary differential equations with initial-terminal data. For this mean field problem we prove a trend to equilibrium theorem, that is convergence, in an appropriate limit, to stationary solutions. Then we study an N+1-player problem, which the mean field model attempts to approximate. Our main result is the convergence as N→∞ of the mean field model and an estimate of the rate of convergence. We end the paper with some further examples for potential mean field games. © 2013 Springer Science+Business Media New York.

  2. Continuous Time Finite State Mean Field Games

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Diogo A., E-mail: dgomes@math.ist.utl.pt [Instituto Superior Tecnico, Center for Mathematical Analysis, Geometry, and Dynamical Systems, Departamento de Matematica (Portugal); Mohr, Joana, E-mail: joana.mohr@ufrgs.br; Souza, Rafael Rigao, E-mail: rafars@mat.ufrgs.br [UFRGS, Instituto de Matematica (Brazil)

    2013-08-01

    In this paper we consider symmetric games where a large number of players can be in any one of d states. We derive a limiting mean field model and characterize its main properties. This mean field limit is a system of coupled ordinary differential equations with initial-terminal data. For this mean field problem we prove a trend to equilibrium theorem, that is convergence, in an appropriate limit, to stationary solutions. Then we study an N+1-player problem, which the mean field model attempts to approximate. Our main result is the convergence as N{yields}{infinity} of the mean field model and an estimate of the rate of convergence. We end the paper with some further examples for potential mean field games.

  3. Continuous Time Finite State Mean Field Games

    International Nuclear Information System (INIS)

    Gomes, Diogo A.; Mohr, Joana; Souza, Rafael Rigão

    2013-01-01

    In this paper we consider symmetric games where a large number of players can be in any one of d states. We derive a limiting mean field model and characterize its main properties. This mean field limit is a system of coupled ordinary differential equations with initial-terminal data. For this mean field problem we prove a trend to equilibrium theorem, that is convergence, in an appropriate limit, to stationary solutions. Then we study an N+1-player problem, which the mean field model attempts to approximate. Our main result is the convergence as N→∞ of the mean field model and an estimate of the rate of convergence. We end the paper with some further examples for potential mean field games

  4. Self-consistent mean field forces in turbulent plasmas: Current and momentum relaxation

    International Nuclear Information System (INIS)

    Hegna, C.C.

    1997-08-01

    The properties of turbulent plasmas are described using the two-fluid equations. Under some modest assumptions, global constraints for the turbulent mean field forces that act on the ion and electron fluids are derived. These constraints imply a functional form for the parallel mean field forces in the Ohm's law and the momentum balance equation. These forms suggest that the fluctuations attempt to relax the plasma to a state where both the current and the bulk plasma momentum are aligned along the mean magnetic field with proportionality constants that are global constants. Observations of flow profile evolution during discrete dynamo activity in reversed field pinch experiments are interpreted

  5. Extended Deterministic Mean-Field Games

    KAUST Repository

    Gomes, Diogo A.

    2016-04-21

    In this paper, we consider mean-field games where the interaction of each player with the mean field takes into account not only the states of the players but also their collective behavior. To do so, we develop a random variable framework that is particularly convenient for these problems. We prove an existence result for extended mean-field games and establish uniqueness conditions. In the last section, we consider the Master Equation and discuss properties of its solutions.

  6. Extended Deterministic Mean-Field Games

    KAUST Repository

    Gomes, Diogo A.; Voskanyan, Vardan K.

    2016-01-01

    In this paper, we consider mean-field games where the interaction of each player with the mean field takes into account not only the states of the players but also their collective behavior. To do so, we develop a random variable framework that is particularly convenient for these problems. We prove an existence result for extended mean-field games and establish uniqueness conditions. In the last section, we consider the Master Equation and discuss properties of its solutions.

  7. Mean-field models and exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M; Buervenich, T; Maruhn, J A; Greiner, W [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); Rutz, K [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Reinhard, P G [Inst. fuer Theoretische Physik, Univ. Erlangen (Germany)

    1998-06-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)

  8. Mean-field models and exotic nuclei

    International Nuclear Information System (INIS)

    Bender, M.; Buervenich, T.; Maruhn, J.A.; Greiner, W.; Rutz, K.; Reinhard, P.G.

    1998-01-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)

  9. The Hottest Hot Jupiters May Host Atmospheric Dynamos

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, T. M. [Department of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne (United Kingdom); McElwaine, J. N. [Planetary Science Institute, Tucson, AZ 85721 (United States)

    2017-06-01

    Hot Jupiters have proven themselves to be a rich class of exoplanets that test our theories of planetary evolution and atmospheric dynamics under extreme conditions. Here, we present three-dimensional magnetohydrodynamic simulations and analytic results that demonstrate that a dynamo can be maintained in the thin, stably stratified atmosphere of a hot Jupiter, independent of the presumed deep-seated dynamo. This dynamo is maintained by conductivity variations arising from strong asymmetric heating from the planets’ host star. The presence of a dynamo significantly increases the surface magnetic field strength and alters the overall planetary magnetic field geometry, possibly affecting star–planet magnetic interactions.

  10. Magnetism, dynamo action and the solar-stellar connection

    Directory of Open Access Journals (Sweden)

    Allan Sacha Brun

    2017-09-01

    Full Text Available Abstract The Sun and other stars are magnetic: magnetism pervades their interiors and affects their evolution in a variety of ways. In the Sun, both the fields themselves and their influence on other phenomena can be uncovered in exquisite detail, but these observations sample only a moment in a single star’s life. By turning to observations of other stars, and to theory and simulation, we may infer other aspects of the magnetism—e.g., its dependence on stellar age, mass, or rotation rate—that would be invisible from close study of the Sun alone. Here, we review observations and theory of magnetism in the Sun and other stars, with a partial focus on the “Solar-stellar connection”: i.e., ways in which studies of other stars have influenced our understanding of the Sun and vice versa. We briefly review techniques by which magnetic fields can be measured (or their presence otherwise inferred in stars, and then highlight some key observational findings uncovered by such measurements, focusing (in many cases on those that offer particularly direct constraints on theories of how the fields are built and maintained. We turn then to a discussion of how the fields arise in different objects: first, we summarize some essential elements of convection and dynamo theory, including a very brief discussion of mean-field theory and related concepts. Next we turn to simulations of convection and magnetism in stellar interiors, highlighting both some peculiarities of field generation in different types of stars and some unifying physical processes that likely influence dynamo action in general. We conclude with a brief summary of what we have learned, and a sampling of issues that remain uncertain or unsolved.

  11. Deterministic Mean-Field Ensemble Kalman Filtering

    KAUST Repository

    Law, Kody

    2016-05-03

    The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. A density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence k between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d<2k. The fidelity of approximation of the true distribution is also established using an extension of the total variation metric to random measures. This is limited by a Gaussian bias term arising from nonlinearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.

  12. Mean-field approach to unconventional superconductivity

    International Nuclear Information System (INIS)

    Sacks, William; Mauger, Alain; Noat, Yves

    2014-01-01

    Highlights: • A model Hamiltonian for unconventional superconductivity (SC) is proposed. • The pseudogap (PG) state is described in terms of pair fluctuations. • SC coherence is restored by a new pair–pair interaction, which counteracts fluctuations. • Given the temperature dependence of the parameters, the SC to PG transition is examined. • The theory fits the ‘peak–dip–hump’ features of cuprate and pnictide excitation spectra. - Abstract: We propose a model that connects the quasiparticle spectral function of high-T c superconductors to the condensation energy. Given the evidence for pair correlations above T c , we consider a coarse-grain Hamiltonian of fluctuating pairs describing the incoherent pseudogap (PG) state, together with a novel pair–pair interaction term that restores long-range superconducting (SC) coherence below T c . A mean-field solution then leads to a self-consistent gap equation containing the new pair–pair coupling. The corresponding spectral function A(k,E) reveals the characteristic peak–dip–hump features of cuprates, now observed on iron pnictides (LiFeAs). The continuous transition from SC to PG states is discussed

  13. Deterministic Mean-Field Ensemble Kalman Filtering

    KAUST Repository

    Law, Kody; Tembine, Hamidou; Tempone, Raul

    2016-01-01

    The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. A density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence k between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d<2k. The fidelity of approximation of the true distribution is also established using an extension of the total variation metric to random measures. This is limited by a Gaussian bias term arising from nonlinearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.

  14. Waldmeier's Rules in the Solar and Stellar Dynamos

    Science.gov (United States)

    Pipin, Valery; Kosovichev, Alexander

    2015-08-01

    The Waldmeier's rules [1] establish important empirical relations between the general parameters of magnetic cycles (such as the amplitude, period, growth rate and time profile) on the Sun and solar-type stars [2]. Variations of the magnetic cycle parameters depend on properties of the global dynamo processes operating in the stellar convection zones. We employ nonlinear mean-field axisymmetric dynamo models [3] and calculate of the magnetic cycle parameters, such as the dynamo cycle period, total magnetic and Poynting fluxes for the Sun and solar-type stars with rotational periods from 15 to 30 days. We consider two types of the dynamo models: 1) distributed (D-type) models employing the standard α - effect distributed in the whole convection zone, and 2) Babcock-Leighton (BL-type) models with a non-local α - effect. The dynamo models take into account the principal mechanisms of the nonlinear dynamo generation and saturation, including the magnetic helicity conservation, magnetic buoyancy effects, and the feedback on the angular momentum balance inside the convection zones. Both types of models show that the dynamo generated magnetic flux increases with the increase of the rotation rate. This corresponds to stronger brightness variations. The distributed dynamo model reproduces the observed dependence of the cycle period on the rotation rate for the Sun analogs better than the BL-type model. For the solar-type stars rotating more rapidly than the Sun we find dynamo regimes with multiple periods. Such stars with multiple cycles form a separate branch in the variability-rotation diagram.1. Waldmeier, M., Prognose für das nächste Sonnenfleckenmaximum, 1936, Astron. Nachrichten, 259,262. Soon,W.H., Baliunas,S.L., Zhang,Q.,An interpretation of cycle periods of stellar chromospheric activity, 1993, ApJ, 414,333. Pipin,V.V., Dependence of magnetic cycle parameters on period of rotation in nonlinear solar-type dynamos, 2015, astro-ph: 14125284

  15. Mean field games for cognitive radio networks

    KAUST Repository

    Tembine, Hamidou; Tempone, Raul; Vilanova, Pedro

    2012-01-01

    In this paper we study mobility effect and power saving in cognitive radio networks using mean field games. We consider two types of users: primary and secondary users. When active, each secondary transmitter-receiver uses carrier sensing

  16. Mean-field games for marriage

    KAUST Repository

    Bauso, Dario

    2014-05-07

    This article examines mean-field games for marriage. The results support the argument that optimizing the long-term well-being through effort and social feeling state distribution (mean-field) will help to stabilize marriage. However, if the cost of effort is very high, the couple fluctuates in a bad feeling state or the marriage breaks down. We then examine the influence of society on a couple using mean-field sentimental games. We show that, in mean-field equilibrium, the optimal effort is always higher than the one-shot optimal effort. We illustrate numerically the influence of the couple\\'s network on their feeling states and their well-being. © 2014 Bauso et al.

  17. Mean field approach to nuclear structure

    International Nuclear Information System (INIS)

    Nazarewicz, W.; Tennessee Univ., Knoxville, TN

    1993-01-01

    Several examples of mean-field calculations, relevant to the recent and planned low-spin experimental works, are presented. The perspectives for future studies (mainly related to spectroscopy of exotic nuclei) are reviewd

  18. Weakly coupled mean-field game systems

    KAUST Repository

    Gomes, Diogo A.; Patrizi, Stefania

    2016-01-01

    Here, we prove the existence of solutions to first-order mean-field games (MFGs) arising in optimal switching. First, we use the penalization method to construct approximate solutions. Then, we prove uniform estimates for the penalized problem

  19. Mean-Field Games for Marriage

    Science.gov (United States)

    Bauso, Dario; Dia, Ben Mansour; Djehiche, Boualem; Tembine, Hamidou; Tempone, Raul

    2014-01-01

    This article examines mean-field games for marriage. The results support the argument that optimizing the long-term well-being through effort and social feeling state distribution (mean-field) will help to stabilize marriage. However, if the cost of effort is very high, the couple fluctuates in a bad feeling state or the marriage breaks down. We then examine the influence of society on a couple using mean-field sentimental games. We show that, in mean-field equilibrium, the optimal effort is always higher than the one-shot optimal effort. We illustrate numerically the influence of the couple’s network on their feeling states and their well-being. PMID:24804835

  20. Mean-field games for marriage

    KAUST Repository

    Bauso, Dario; Dia, Ben Mansour; Djehiche, Boualem; Tembine, Hamidou; Tempone, Raul

    2014-01-01

    This article examines mean-field games for marriage. The results support the argument that optimizing the long-term well-being through effort and social feeling state distribution (mean-field) will help to stabilize marriage. However, if the cost of effort is very high, the couple fluctuates in a bad feeling state or the marriage breaks down. We then examine the influence of society on a couple using mean-field sentimental games. We show that, in mean-field equilibrium, the optimal effort is always higher than the one-shot optimal effort. We illustrate numerically the influence of the couple's network on their feeling states and their well-being. © 2014 Bauso et al.

  1. Mean-field games for marriage.

    Directory of Open Access Journals (Sweden)

    Dario Bauso

    Full Text Available This article examines mean-field games for marriage. The results support the argument that optimizing the long-term well-being through effort and social feeling state distribution (mean-field will help to stabilize marriage. However, if the cost of effort is very high, the couple fluctuates in a bad feeling state or the marriage breaks down. We then examine the influence of society on a couple using mean-field sentimental games. We show that, in mean-field equilibrium, the optimal effort is always higher than the one-shot optimal effort. We illustrate numerically the influence of the couple's network on their feeling states and their well-being.

  2. Virtual-site correlation mean field approach to criticality in spin systems

    International Nuclear Information System (INIS)

    Sen, Aditi; Sen, Ujjwal

    2013-01-01

    We propose a virtual-site correlation mean field theory for dealing with interacting many-body systems. It involves a coarse-graining technique that terminates a step before the mean field theory: While mean field theory deals with only single-body physical parameters, the virtual-site correlation mean field theory deals with single- as well as two-body ones, and involves a virtual site for every interaction term in the Hamiltonian. We generalize the theory to a cluster virtual-site correlation mean field, that works with a fundamental unit of the lattice of the many-body system. We apply these methods to interacting Ising spin systems in several lattice geometries and dimensions, and show that the predictions of the onset of criticality of these models are generally much better in the proposed theories as compared to the corresponding ones in mean field theories

  3. Turbulent Liquid Metal Dynamo Experiments

    International Nuclear Information System (INIS)

    Forest, Cary

    2007-01-01

    The self-generation of magnetic fields in planets and stars--the dynamo effect--is a long-standing problem of magnetohydrodynamics and plasma physics. Until recently, research on the self-excitation process has been primarily theoretical. In this talk, I will begin with a tutorial on how magnetic fields are generated in planets and stars, describing the 'Standard Model' of self-excitation known as the alpha-omega dynamo. In this model, axisymmetric differential rotation can produce the majority of the magnetic field, but some non-axisymmetric, turbulence driven currents are also necessary. Understanding the conversion of turbulent kinetic energy in the fluid motion into electrical currents and thus magnetic fields, is a major challenge for both experiments and theory at this time. I will then report on recent results from a 1 meter diameter, spherical, liquid sodium dynamo experiment at the University of Wisconsin, in which the first clear evidence for these turbulence driven currents has been observed.

  4. An Experimental MHD Dynamo

    International Nuclear Information System (INIS)

    Forest, C. B.

    2002-01-01

    The project is designed to understand current and magnetic field generation in plasmas and other magnetohydrodynamic systems. The experiments will investigate the generation of a dynamo using liquid Na

  5. The mean field in many body quantum physics

    International Nuclear Information System (INIS)

    Llano, M. de

    1984-01-01

    As an introduction to the quantum problem of many bodies we present a panoramic view of the most elementary theories called mean field theories. They comprise: i) the fermions ideal gas theory which implies, in a simple manner, the stability of white dwarf stars and of neutron stars, ii) the Hartree-Fock approximation for thermodynamical systems which is presented here in the context of a liquid-crystal phase transition, and iii) the Thomas-Fermi theory which is applied to the total binding energy of neutral atoms. (author)

  6. Transitions in rapidly rotating convection dynamos

    Science.gov (United States)

    Tilgner, A.

    2013-12-01

    It is commonly assumed that buoyancy in the fluid core powers the geodynamo. We study here the minimal model of a convection driven dynamo, which is a horizontal plane layer in a gravity field, filled with electrically conducting fluid, heated from below and cooled from above, and rotating about a vertical axis. Such a plane layer may be viewed as a local approximation to the geophysically more relevant spherical geometry. The numerical simulations have been run on graphics processing units with at least 960 cores. If the convection is driven stronger and stronger at fixed rotation rate, the flow behaves at some point as if it was not rotating. This transition shows in the scaling of the heat transport which can be used to distinguish slow from rapid rotation. One expects dynamos to behave differently in these two flow regimes. But even within the convection flows which are rapidly rotating according to this criterion, it will be shown that different types of dynamos exist. In one state, the magnetic field strength obeys a scaling indicative of a magnetostrophic balance, in which the Lorentz force is in equilibrium with the Coriolis force. The flow in this case is helical. A different state exists at higher magnetic Reynolds numbers, in which the magnetic energy obeys a different scaling law and the helicity of the flow is much reduced. As one increases the Rayleigh number, all other parameters kept constant, one may find both types of dynamos separated by an interval of Rayleigh numbers in which there are no dynamos at all. The effect of these transitions on energy dissipation and mean field generation have also been studied.

  7. Simulation of 3D mesoscale structure formation in concentrated aqueous solution of the triblock polymer surfactants (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) and (propylene oxide)(19)(ethylene oxide)(33)(propylene oxide)(19). Application of dynamic mean-field density functional theory

    NARCIS (Netherlands)

    van Vlimmeren, BAC; Maurits, NM; Zvelindovsky, AV; Sevink, GJA; Fraaije, JGEM

    1999-01-01

    We simulate the microphase separation dynamics of aqueous solutions of the triblock polymer surfactants (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) and (propylene oxide)(19)(ethylene oxide)(33)(propylene oxide)(19) by a dynamic variant of mean-field density functional theory for

  8. Obstacle mean-field game problem

    KAUST Repository

    Gomes, Diogo A.; Patrizi, Stefania

    2015-01-01

    In this paper, we introduce and study a first-order mean-field game obstacle problem. We examine the case of local dependence on the measure under assumptions that include both the logarithmic case and power-like nonlinearities. Since the obstacle operator is not differentiable, the equations for first-order mean field game problems have to be discussed carefully. Hence, we begin by considering a penalized problem. We prove this problem admits a unique solution satisfying uniform bounds. These bounds serve to pass to the limit in the penalized problem and to characterize the limiting equations. Finally, we prove uniqueness of solutions. © European Mathematical Society 2015.

  9. A theory of the Earth's magnetic field and of sunspots, based on a self-excited dynamo incorporating the Hall effect

    Directory of Open Access Journals (Sweden)

    A. de Paor

    2001-01-01

    Full Text Available A new viewpoint on the generation and maintenance of the Earth's magnetic field is put forward, which integrates self-exciting dynamo theory with the possibility of energy coupling along orthogonal axes provided by the Hall effect. A nonlinear third-order system is derived, with a fourth equation serving as an observer of unspecified geophysical processes which could result in field reversal. Lyapunov analysis proves that chaos is not intrinsic to this system. Relative constancy of one of the variables produces pseudo equilibrium in a second order subsystem and allows for self-excitation of the geomagnetic field. Electromagnetic analysis yields expressions for key parameters. Models for secular variations recorded at London, Palermo and at the Cape of Good Hope over the past four hundred years are offered. Offset of the Earth's magnetic axis from the geographic axis is central to time-varying declination, but its causes have not yet been established. Applicability of the model to the explanation of sunspot activity is outlined. A corroborating experiment published by Peter Barlow in 1831 is appended.

  10. A regularized stationary mean-field game

    KAUST Repository

    Yang, Xianjin

    2016-01-01

    In the thesis, we discuss the existence and numerical approximations of solutions of a regularized mean-field game with a low-order regularization. In the first part, we prove a priori estimates and use the continuation method to obtain the existence of a solution with a positive density. Finally, we introduce the monotone flow method and solve the system numerically.

  11. A regularized stationary mean-field game

    KAUST Repository

    Yang, Xianjin

    2016-04-19

    In the thesis, we discuss the existence and numerical approximations of solutions of a regularized mean-field game with a low-order regularization. In the first part, we prove a priori estimates and use the continuation method to obtain the existence of a solution with a positive density. Finally, we introduce the monotone flow method and solve the system numerically.

  12. Weakly coupled mean-field game systems

    KAUST Repository

    Gomes, Diogo A.

    2016-07-14

    Here, we prove the existence of solutions to first-order mean-field games (MFGs) arising in optimal switching. First, we use the penalization method to construct approximate solutions. Then, we prove uniform estimates for the penalized problem. Finally, by a limiting procedure, we obtain solutions to the MFG problem. © 2016 Elsevier Ltd

  13. Mean-field Ensemble Kalman Filter

    KAUST Repository

    Law, Kody; Tembine, Hamidou; Tempone, Raul

    2015-01-01

    A proof of convergence of the standard EnKF generalized to non-Gaussian state space models is provided. A density-based deterministic approximation of the mean-field limiting EnKF (MFEnKF) is proposed, consisting of a PDE solver and a quadrature

  14. Configuration mixing of mean-field states

    International Nuclear Information System (INIS)

    Bender, M; Heenen, P-H

    2005-01-01

    Starting from self-consistent mean-field models, we discuss how to include correlations from fluctuations in collective degrees of freedom through symmetry restoration and configuration mixing, which give access to ground-state correlations and collective excitations. As an example for the method, we discuss the spectroscopy of neutron-deficient Pb isotopes

  15. Integral equation approach to time-dependent kinematic dynamos in finite domains

    International Nuclear Information System (INIS)

    Xu Mingtian; Stefani, Frank; Gerbeth, Gunter

    2004-01-01

    The homogeneous dynamo effect is at the root of cosmic magnetic field generation. With only a very few exceptions, the numerical treatment of homogeneous dynamos is carried out in the framework of the differential equation approach. The present paper tries to facilitate the use of integral equations in dynamo research. Apart from the pedagogical value to illustrate dynamo action within the well-known picture of the Biot-Savart law, the integral equation approach has a number of practical advantages. The first advantage is its proven numerical robustness and stability. The second and perhaps most important advantage is its applicability to dynamos in arbitrary geometries. The third advantage is its intimate connection to inverse problems relevant not only for dynamos but also for technical applications of magnetohydrodynamics. The paper provides the first general formulation and application of the integral equation approach to time-dependent kinematic dynamos, with stationary dynamo sources, in finite domains. The time dependence is restricted to the magnetic field, whereas the velocity or corresponding mean-field sources of dynamo action are supposed to be stationary. For the spherically symmetric α 2 dynamo model it is shown how the general formulation is reduced to a coupled system of two radial integral equations for the defining scalars of the poloidal and toroidal field components. The integral equation formulation for spherical dynamos with general stationary velocity fields is also derived. Two numerical examples - the α 2 dynamo model with radially varying α and the Bullard-Gellman model - illustrate the equivalence of the approach with the usual differential equation method. The main advantage of the method is exemplified by the treatment of an α 2 dynamo in rectangular domains

  16. Mean-field learning for satisfactory solutions

    KAUST Repository

    Tembine, Hamidou

    2013-12-01

    One of the fundamental challenges in distributed interactive systems is to design efficient, accurate, and fair solutions. In such systems, a satisfactory solution is an innovative approach that aims to provide all players with a satisfactory payoff anytime and anywhere. In this paper we study fully distributed learning schemes for satisfactory solutions in games with continuous action space. Considering games where the payoff function depends only on own-action and an aggregate term, we show that the complexity of learning systems can be significantly reduced, leading to the so-called mean-field learning. We provide sufficient conditions for convergence to a satisfactory solution and we give explicit convergence time bounds. Then, several acceleration techniques are used in order to improve the convergence rate. We illustrate numerically the proposed mean-field learning schemes for quality-of-service management in communication networks. © 2013 IEEE.

  17. Stochastic quantization and mean field approximation

    International Nuclear Information System (INIS)

    Jengo, R.; Parga, N.

    1983-09-01

    In the context of the stochastic quantization we propose factorized approximate solutions for the Fokker-Planck equation for the XY and Zsub(N) spin systems in D dimensions. The resulting differential equation for a factor can be solved and it is found to give in the limit of t→infinity the mean field or, in the more general case, the Bethe-Peierls approximation. (author)

  18. Nonlocal Coulomb correlations in pure and electron-doped Sr2IrO4 : Spectral functions, Fermi surface, and pseudo-gap-like spectral weight distributions from oriented cluster dynamical mean-field theory

    Science.gov (United States)

    Martins, Cyril; Lenz, Benjamin; Perfetti, Luca; Brouet, Veronique; Bertran, François; Biermann, Silke

    2018-03-01

    We address the role of nonlocal Coulomb correlations and short-range magnetic fluctuations in the high-temperature phase of Sr2IrO4 within state-of-the-art spectroscopic and first-principles theoretical methods. Introducing an "oriented-cluster dynamical mean-field scheme", we compute momentum-resolved spectral functions, which we find to be in excellent agreement with angle-resolved photoemission spectra. We show that while short-range antiferromagnetic fluctuations are crucial to accounting for the electronic properties of Sr2IrO4 even in the high-temperature paramagnetic phase, long-range magnetic order is not a necessary ingredient of the insulating state. Upon doping, an exotic metallic state is generated, exhibiting cuprate-like pseudo-gap spectral properties, for which we propose a surprisingly simple theoretical mechanism.

  19. The solar dynamo

    International Nuclear Information System (INIS)

    Brandenburg, A.; Helsinki Univ.; Tuominen, I.

    1991-01-01

    The traditional αΩ-dynamo as a model for the solar cycle has been successful in explaining the butterfly diagram, phase relations between poloidal and toroidal field, and polar branch migration features. Observational and theoretical achievements in recent years have however shaken this picture. The current trend is towards dynamos operating in the overshoot region of the convection zone. Nevertheless, there are many open questions and a consistent picture has not been established. In this paper we compare recent approaches and discuss remaining problems. (orig.)

  20. Sums over geometries and improvements on the mean field approximation

    International Nuclear Information System (INIS)

    Sacksteder, Vincent E. IV

    2007-01-01

    The saddle points of a Lagrangian due to Efetov are analyzed. This Lagrangian was originally proposed as a tool for calculating systematic corrections to the Bethe approximation, a mean-field approximation which is important in statistical mechanics, glasses, coding theory, and combinatorial optimization. Detailed analysis shows that the trivial saddle point generates a sum over geometries reminiscent of dynamically triangulated quantum gravity, which suggests new possibilities to design sums over geometries for the specific purpose of obtaining improved mean-field approximations to D-dimensional theories. In the case of the Efetov theory, the dominant geometries are locally treelike, and the sum over geometries diverges in a way that is similar to quantum gravity's divergence when all topologies are included. Expertise from the field of dynamically triangulated quantum gravity about sums over geometries may be able to remedy these defects and fulfill the Efetov theory's original promise. The other saddle points of the Efetov Lagrangian are also analyzed; the Hessian at these points is nonnormal and pseudo-Hermitian, which is unusual for bosonic theories. The standard formula for Gaussian integrals is generalized to nonnormal kernels

  1. Pedestrian Flow in the Mean Field Limit

    KAUST Repository

    Haji Ali, Abdul Lateef

    2012-11-01

    We study the mean-field limit of a particle-based system modeling the behavior of many indistinguishable pedestrians as their number increases. The base model is a modified version of Helbing\\'s social force model. In the mean-field limit, the time-dependent density of two-dimensional pedestrians satisfies a four-dimensional integro-differential Fokker-Planck equation. To approximate the solution of the Fokker-Planck equation we use a time-splitting approach and solve the diffusion part using a Crank-Nicholson method. The advection part is solved using a Lax-Wendroff-Leveque method or an upwind Backward Euler method depending on the advection speed. Moreover, we use multilevel Monte Carlo to estimate observables from the particle-based system. We discuss these numerical methods, and present numerical results showing the convergence of observables that were calculated using the particle-based model as the number of pedestrians increases to those calculated using the probability density function satisfying the Fokker-Planck equation.

  2. Effective masses and the nuclear mean field

    International Nuclear Information System (INIS)

    Mahaux, C.; Sartor, R.

    1985-01-01

    The effective mass characterizes the energy dependence of the empirical average nuclear potential. This energy dependence has two different sources, namely the nonlocality in space of the microscopic mean field on the one hand, and its true energy dependence on the other hand. Correspondingly it is convenient to divide the effective mass into two components, the k-mass and the ω-mass. The latter is responsible for the existence of a peak in the energy dependence of the effective mass. This peak is located near the Fermi energy in nuclear matter and in nuclei, as well as in the electron gas, the hard sphere Fermi gas and liquid helium 3. A related phenomenon is the existence of a low energy anomaly in the energy dependence of the optical model potential between two heavy ions. (orig.)

  3. Surface incompressibility from semiclassical relativistic mean field calculations

    International Nuclear Information System (INIS)

    Patra, S.K.; Centelles, M.; Vinas, X.; Estal, M. del

    2002-01-01

    By using the scaling method and the Thomas-Fermi and extended Thomas-Fermi approaches to relativistic mean field theory the surface contribution to the leptodermous expansion of the finite nuclei incompressibility K A has been self-consistently computed. The validity of the simplest expansion, which contains volume, volume-symmetry, surface, and Coulomb terms, is examined by comparing it with self-consistent results of K A for some currently used nonlinear σ-ω parameter sets. A numerical estimate of higher-order contributions to the leptodermous expansion, namely, the curvature and surface-symmetry terms, is made

  4. Generating functional of the mean field in quantum electrodynamics with non-stable vacuum

    International Nuclear Information System (INIS)

    Gitman, D.M.; Kuchin, V.A.

    1981-01-01

    Generating functional for calculating a mean field, in the case of unstable vacuum, in quantum field theory has been suggested. Continual representation for the generating functional of the mean field has been found in the case of quantum electrodynamics with an external field. Generating electron-positron pairs from vacuum [ru

  5. Mean Field Analysis of Quantum Annealing Correction.

    Science.gov (United States)

    Matsuura, Shunji; Nishimori, Hidetoshi; Albash, Tameem; Lidar, Daniel A

    2016-06-03

    Quantum annealing correction (QAC) is a method that combines encoding with energy penalties and decoding to suppress and correct errors that degrade the performance of quantum annealers in solving optimization problems. While QAC has been experimentally demonstrated to successfully error correct a range of optimization problems, a clear understanding of its operating mechanism has been lacking. Here we bridge this gap using tools from quantum statistical mechanics. We study analytically tractable models using a mean-field analysis, specifically the p-body ferromagnetic infinite-range transverse-field Ising model as well as the quantum Hopfield model. We demonstrate that for p=2, where the phase transition is of second order, QAC pushes the transition to increasingly larger transverse field strengths. For p≥3, where the phase transition is of first order, QAC softens the closing of the gap for small energy penalty values and prevents its closure for sufficiently large energy penalty values. Thus QAC provides protection from excitations that occur near the quantum critical point. We find similar results for the Hopfield model, thus demonstrating that our conclusions hold in the presence of disorder.

  6. Time dependent mean-field games

    KAUST Repository

    Gomes, Diogo A.

    2014-01-06

    We consider time dependent mean-field games (MFG) with a local power-like dependence on the measure and Hamiltonians satisfying both sub and superquadratic growth conditions. We establish existence of smooth solutions under a certain set of conditions depending both on the growth of the Hamiltonian as well as on the dimension. In the subquadratic case this is done by combining a Gagliardo-Nirenberg type of argument with a new class of polynomial estimates for solutions of the Fokker-Planck equation in terms of LrLp- norms of DpH. These techniques do not apply to the superquadratic case. In this setting we recur to a delicate argument that combines the non-linear adjoint method with polynomial estimates for solutions of the Fokker-Planck equation in terms of L1L1-norms of DpH. Concerning the subquadratic case, we substantially improve and extend the results previously obtained. Furthermore, to the best of our knowledge, the superquadratic case has not been addressed in the literature yet. In fact, it is likely that our estimates may also add to the current understanding of Hamilton-Jacobi equations with superquadratic Hamiltonians.

  7. Instabilities constraint and relativistic mean field parametrization

    International Nuclear Information System (INIS)

    Sulaksono, A.; Kasmudin; Buervenich, T.J.; Reinhard, P.-G.; Maruhn, J.A.

    2011-01-01

    Two parameter sets (Set 1 and Set 2) of the standard relativistic mean field (RMF) model plus additional vector isoscalar nonlinear term, which are constrained by a set of criteria 20 determined by symmetric nuclear matter stabilities at high densities due to longitudinal and transversal particle–hole excitation modes are investigated. In the latter parameter set, δ meson and isoscalar as well as isovector tensor contributions are included. The effects in selected finite nuclei and nuclear matter properties predicted by both parameter sets are systematically studied and compared with the ones predicted by well-known RMF parameter sets. The vector isoscalar nonlinear term addition and instability constraints have reasonably good effects in the high-density properties of the isoscalar sector of nuclear matter and certain finite nuclei properties. However, even though the δ meson and isovector tensor are included, the incompatibility with the constraints from some experimental data in certain nuclear properties at saturation point and the excessive stiffness of the isovector nuclear matter equation of state at high densities as well as the incorrect isotonic trend in binding the energies of finite nuclei are still encountered. It is shown that the problem may be remedied if we introduce additional nonlinear terms not only in the isovector but also in the isoscalar vectors. (author)

  8. Magnetohydrodynamic dynamos in the presence of fossil magnetic fields

    International Nuclear Information System (INIS)

    Boyer, D.W.

    1982-01-01

    A fossil magnetic field embedded in the radiative core of the Sun has been thought possible for some time now. However, such a fossil magnetic field has, a priori, not been considered a visible phenomenon due to the effects of turbulence in the solar convection zone. Since a well developed theory (referred to herein as magnetohydrodynamic dynamo theory) exists for describing the regeneration of magnetic fields in astrophysical objects like the Sun, it is possible to quantitatively evaluate the interaction of a fossil magnetic field with the magnetohydrodynamic dynamo operating in the solar convection zone. In this work, after a brief description of the basic dynamo equations, a spherical model calculation of the solar dynamo is introduced. First, the interaction of a fossil magnetic field with a dynamo in which the regeneration mechanisms of cyclonic convection and large-scale, nonuniform rotation are confined to spherical shells is calculated. It is argued that the amount of amplification or suppression of a fossil magnetic field will be smallest for a uniform distribution of cyclonic convection and nonuniform rotation, as expected in the Sun. Secondly, the interaction of a fossil magnetic field with a dynamo having a uniform distribution of cyclonic convection and large-scale, nonuniform rotation is calculated. It is found that the dipole or quadrupole moments of a fossil magnetic field are suppressed by factors of -0.35 and -0.37, respectively

  9. Saturn Dynamo Model (Invited)

    Science.gov (United States)

    Glatzmaier, G. A.

    2010-12-01

    There has been considerable interest during the past few years about the banded zonal winds and global magnetic field on Saturn (and Jupiter). Questions regarding the depth to which the intense winds extend below the surface and the role they play in maintaining the dynamo continue to be debated. The types of computer models employed to address these questions fall into two main classes: general circulation models (GCMs) based on hydrostatic shallow-water assumptions from the atmospheric and ocean modeling communities and global non-hydrostatic deep convection models from the geodynamo and solar dynamo communities. The latter class can be further divided into Boussinesq models, which do not account for density stratification, and anelastic models, which do. Recent efforts to convert GCMs to deep circulation anelastic models have succeeded in producing fluid flows similar to those obtained from the original deep convection anelastic models. We describe results from one of the original anelastic convective dynamo simulations and compare them to a recent anelastic dynamo benchmark for giant gas planets. This benchmark is based on a polytropic reference state that spans five density scale heights with a radius and rotation rate similar to those of our solar system gas giants. The resulting magnetic Reynolds number is about 3000. Better spatial resolution will be required to produce more realistic predictions that capture the effects of both the density and electrical conductivity stratifications and include enough of the turbulent kinetic energy spectrum. Important additional physics may also be needed in the models. However, the basic models used in all simulation studies of the global dynamics of giant planets will hopefully first be validated by doing these simpler benchmarks.

  10. Ionospheric disturbance dynamo

    International Nuclear Information System (INIS)

    Blanc, M.; Richmond, A.D.

    1980-01-01

    A numerical simulation study of the thermospheric winds produced by auroral heating during magnetic storms, and of their global dynamo effects, establishes the main features of the ionospheric disturbanc dynamo. Driven by auroral heating, a Hadley cell is created with equatorward winds blowing above about 120 km at mid-latitudes. The transport of angular momentum by these winds produces a subrotation of the midlatitude thermosphere, or westward motion with respect to the earth. The westward winds in turn drive equatorward Pedersen currents which accumulate charge toward the equator, resulting in the generation of a poleward electric field, a westward E x B drift, and an eastward current. When realistic local time conductivity variations are simulated, the eastward mid-latitude current is found to close partly via lower latitudes, resulting in an 'anti-Sq' type of current vortex. Both electric field and current at low latitudes thus vary in opposition to their normal quiet-day behavior. This total pattern of distrubance winds, electric fields, and currents is superimposed upon the background quiet-day pattern. When the neutral winds are artificially confined on the nightside, the basic pattern of predominantly westward E x B plasma drifts still prevails on the nightside but no longer extends into the dayside. Considerable observational evidence exists, suggesting that the ionospheric disturbance dynamo has an appreciable influence on storm-time ionospheric electric fields at middle and low latitudes

  11. A simple stochastic model for dipole moment fluctuations in numerical dynamo simulations

    Directory of Open Access Journals (Sweden)

    Domenico G. eMeduri

    2016-04-01

    Full Text Available Earth's axial dipole field changes in a complex fashion on many differenttime scales ranging from less than a year to tens of million years.Documenting, analysing, and replicating this intricate signalis a challenge for data acquisition, theoretical interpretation,and dynamo modelling alike. Here we explore whether axial dipole variationscan be described by the superposition of a slow deterministic driftand fast stochastic fluctuations, i.e. by a Langevin-type system.The drift term describes the time averaged behaviour of the axial dipole variations,whereas the stochastic part mimics complex flow interactions over convective time scales.The statistical behaviour of the system is described by a Fokker-Planck equation whichallows useful predictions, including the average rates of dipole reversals and excursions.We analyse several numerical dynamo simulations, most of which havebeen integrated particularly long in time, and also the palaeomagneticmodel PADM2M which covers the past 2 Myr.The results show that the Langevin description provides a viable statistical modelof the axial dipole variations on time scales longer than about 1 kyr.For example, the axial dipole probability distribution and the average reversalrate are successfully predicted.The exception is PADM2M where the stochastic model reversal rate seems too low.The dependence of the drift on the axial dipolemoment reveals the nonlinear interactions that establish thedynamo balance. A separate analysis of inductive and diffusive magnetic effectsin three dynamo simulations suggests that the classical quadraticquenching of induction predicted by mean-field theory seems at work.

  12. Relativistic mean-field mass models

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Arteaga, D.; Goriely, S.; Chamel, N. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium)

    2016-10-15

    We present a new effort to develop viable mass models within the relativistic mean-field approach with density-dependent meson couplings, separable pairing and microscopic estimations for the translational and rotational correction energies. Two interactions, DD-MEB1 and DD-MEB2, are fitted to essentially all experimental masses, and also to charge radii and infinite nuclear matter properties as determined by microscopic models using realistic interactions. While DD-MEB1 includes the σ, ω and ρ meson fields, DD-MEB2 also considers the δ meson. Both mass models describe the 2353 experimental masses with a root mean square deviation of about 1.1 MeV and the 882 measured charge radii with a root mean square deviation of 0.029 fm. In addition, we show that the Pb isotopic shifts and moments of inertia are rather well reproduced, and the equation of state in pure neutron matter as well as symmetric nuclear matter are in relatively good agreement with existing realistic calculations. Both models predict a maximum neutron-star mass of more than 2.6 solar masses, and thus are able to accommodate the heaviest neutron stars observed so far. However, the new Lagrangians, like all previously determined RMF models, present the drawback of being characterized by a low effective mass, which leads to strong shell effects due to the strong coupling between the spin-orbit splitting and the effective mass. Complete mass tables have been generated and a comparison with other mass models is presented. (orig.)

  13. Antiferromagnetism, charge density wave, and d-wave superconductivity in the extended t-J-U model: role of intersite Coulomb interaction and a critical overview of renormalized mean field theory.

    Science.gov (United States)

    Abram, M; Zegrodnik, M; Spałek, J

    2017-09-13

    In the first part of the paper, we study the stability of antiferromagnetic (AF), charge density wave (CDW), and superconducting (SC) states within the t-J-U-V model of strongly correlated electrons by using the statistically consistent Gutzwiller approximation (SGA). We concentrate on the role of the intersite Coulomb interaction term V in stabilizing the CDW phase. In particular, we show that the charge ordering appears only above a critical value of V in a limited hole-doping range δ. The effect of the V term on SC and AF phases is that a strong interaction suppresses SC, whereas the AF order is not significantly influenced by its presence. In the second part, separate calculations for the case of a pure SC phase have been carried out within an extended approach (the diagrammatic expansion for the Gutzwiller wave function, DE-GWF) in order to analyze the influence of the intersite Coulomb repulsion on the SC phase with the higher-order corrections included beyond the SGA method. The upper concentration for the SC disappearance decreases with increasing V, bringing the results closer to experiment. In appendices A and B we discuss the ambiguity connected with the choice of the Gutzwiller renormalization factors within the renormalized mean filed theory when either AF or CDW orders are considered. At the end, we overview briefly the possible extensions of the current models to put descriptions of the SC, AF, and CDW states on equal footing.

  14. Nonlinear dynamo in the intracluster medium

    Science.gov (United States)

    Beresnyak, Andrey; Miniati, Francesco

    2018-05-01

    Hot plasma in galaxy clusters, the intracluster medium is observed to be magnetized with magnetic fields of around a μG and the correlation scales of tens of kiloparsecs, the largest scales of the magnetic field so far observed in the Universe. Can this magnetic field be used as a test of the primordial magnetic field in the early Universe? In this paper, we argue that if the cluster field was created by the nonlinear dynamo, the process would be insensitive to the value of the initial field. Our model combines state of the art hydrodynamic simulations of galaxy cluster formation in a fully cosmological context with nonlinear dynamo theory. Initial field is not a parameter in this model, yet it predicts magnetic scale and strength compatible with observations.

  15. Stochastic mean-field dynamics for fermions in the weak coupling limit

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, D

    2005-09-15

    Assuming that the effect of the residual interaction beyond mean-field is weak and can be treated as a statistical ensemble of two-body interactions, a Markovian quantum jump theory is developed for fermionic systems. In this theory, jumps occur between many-body densities formed of pairs of states D |{phi}{sub a}> <|{phi}{sub b}| / <|{phi}{sub b} | |{phi} {sub a}> where |{phi}{sub a}> and |{phi}{sub b}> are anti-symmetrized products of single-particle states. The underlying Stochastic Mean-Field (SMF) theory is discussed and applied to the monopole vibration of a spherical {sup 40}Ca nucleus under the influence of a statistical ensemble of two-body contact interactions. In this example, the mean-field evolution of one-body observables is recovered by averaging over different stochastic trajectories while fluctuations beyond mean-field are observed. Finally, the nature of the fluctuations is discussed. (author)

  16. Stochastic mean-field dynamics for fermions in the weak coupling limit

    International Nuclear Information System (INIS)

    Lacroix, D.

    2005-09-01

    Assuming that the effect of the residual interaction beyond mean-field is weak and can be treated as a statistical ensemble of two-body interactions, a Markovian quantum jump theory is developed for fermionic systems. In this theory, jumps occur between many-body densities formed of pairs of states D |Φ a > b | / b | |Φ a > where |Φ a > and |Φ b > are anti-symmetrized products of single-particle states. The underlying Stochastic Mean-Field (SMF) theory is discussed and applied to the monopole vibration of a spherical 40 Ca nucleus under the influence of a statistical ensemble of two-body contact interactions. In this example, the mean-field evolution of one-body observables is recovered by averaging over different stochastic trajectories while fluctuations beyond mean-field are observed. Finally, the nature of the fluctuations is discussed. (author)

  17. Time-resolved observation of discrete and continuous MHD dynamo in the reversed-field pinch edge

    International Nuclear Information System (INIS)

    Ji, H.; Almagri, A.F.; Prager, S.C.; Sarff, J.S.

    1994-01-01

    We report the first experimental verification of the MHD dynamo in the RFP. A burst of magnetohydrodynamic (MHD) dynamo electric field is observed during the sawtooth crash, followed by an increase in the local parallel current in the MST RFP edge. By measuring each term, the parallel MHD mean-field Ohm's law is observed to hold within experimental error bars both between and during sawtooth crashes

  18. Chains of mean-field models

    International Nuclear Information System (INIS)

    Hamed Hassani, S; Macris, Nicolas; Urbanke, Ruediger

    2012-01-01

    We consider a collection of Curie–Weiss (CW) spin systems, possibly with a random field, each of which is placed along the positions of a one-dimensional chain. The CW systems are coupled together by a Kac-type interaction in the longitudinal direction of the chain and by an infinite-range interaction in the direction transverse to the chain. Our motivations for studying this model come from recent findings in the theory of error-correcting codes based on spatially coupled graphs. We find that, although much simpler than the codes, the model studied here already displays similar behavior. We are interested in the van der Waals curve in a regime where the size of each Curie–Weiss model tends to infinity, and the length of the chain and range of the Kac interaction are large but finite. Below the critical temperature, and with appropriate boundary conditions, there appears a series of equilibrium states representing kink-like interfaces between the two equilibrium states of the individual system. The van der Waals curve oscillates periodically around the Maxwell plateau. These oscillations have a period inversely proportional to the chain length and an amplitude exponentially small in the range of the interaction; in other words, the spinodal points of the chain model lie exponentially close to the phase transition threshold. The amplitude of the oscillations is closely related to a Peierls–Nabarro free energy barrier for the motion of the kink along the chain. Analogies to similar phenomena and their possible algorithmic significance for graphical models of interest in coding theory and theoretical computer science are pointed out

  19. Trapped Bose gas. Mean-field approximation and beyond

    International Nuclear Information System (INIS)

    Pitaevskii, L.P.

    1998-01-01

    The recent realization of Bose-Einstein condensation in atomic gases opens new possibilities for observation of macroscopic quantum phenomena. There are two important features of the system - weak interaction and significant spatial inhomogeneity. Because of this inhomogeneity a non-trivial 'zeroth-order' theory exists, compared to the 'first-order' Bogoliubov theory. This theory is based on the mean-field Gross-Pitaevskii equation for the condensate ψ -function. The equation is classical in its essence but contains the ℎ constant explicitly. Phenomena such as collective modes, interference, tunneling, Josephson-like current and quantized vortex lines can be described using this equation. The study of deviations from the zeroth-order theory arising from zero-point and thermal fluctuations is also of great interest. Thermal fluctuations are described by elementary excitations which define the thermodynamic behaviour of the system and result in Landau-type damping of collective modes. Fluctuations of the phase of the condensate wave function restrict the monochromaticity of the Josephson current. Fluctuations of the numbers of quanta result in the quantum collapse-revival of the collective oscillations. This phenomenon is considered in some details. Collapse time for the JILA experimental conditions turns out to be of the order of seconds. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  20. Warm and cold pasta phase in relativistic mean field theory

    International Nuclear Information System (INIS)

    Avancini, S. S.; Menezes, D. P.; Alloy, M. D.; Marinelli, J. R.; Moraes, M. M. W.; Providencia, C.

    2008-01-01

    In the present article we investigate the onset of the pasta phase with different parametrizations of the nonlinear Walecka model. At zero temperature two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature only the coexistence phases method is used. matter with fixed proton fractions and in β equilibrium is studied. The pasta phase decreases with the increase of temperature. The internal pasta structure and the beginning of the homogeneous phase vary depending on the proton fraction (or the imposition of β equilibrium), on the method used, and on the chosen parametrization. It is shown that a good parametrization of the surface tension with dependence on the temperature, proton fraction, and geometry is essential to describe correctly large isospin asymmetries and the transition from pasta to homogeneous matter

  1. Quark mean field theory and consistency with nuclear matter

    International Nuclear Information System (INIS)

    Dey, J.; Dey, M.; Frederico, T.; Tomio, L.

    1990-09-01

    1/N c expansion in QCD (with N c the number of colours) suggests using a potential from meson sector (e.g. Richardson) for baryons. For light quarks a σ field has to be introduced to ensure chiral symmetry breaking ( χ SB). It is found that nuclear matter properties can be used to pin down the χ SB-modelling. All masses, M N , m σ , m ω are found to scale with density. The equations are solved self consistently. (author). 29 refs, 2 tabs

  2. Warm and cold pasta phase in relativistic mean field theory

    Science.gov (United States)

    Avancini, S. S.; Menezes, D. P.; Alloy, M. D.; Marinelli, J. R.; Moraes, M. M. W.; Providência, C.

    2008-07-01

    In the present article we investigate the onset of the pasta phase with different parametrizations of the nonlinear Walecka model. At zero temperature two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature only the coexistence phases method is used. npe matter with fixed proton fractions and in β equilibrium is studied. The pasta phase decreases with the increase of temperature. The internal pasta structure and the beginning of the homogeneous phase vary depending on the proton fraction (or the imposition of β equilibrium), on the method used, and on the chosen parametrization. It is shown that a good parametrization of the surface tension with dependence on the temperature, proton fraction, and geometry is essential to describe correctly large isospin asymmetries and the transition from pasta to homogeneous matter.

  3. Quark mean field theory and consistency with nuclear matter

    International Nuclear Information System (INIS)

    Dey, J.; Tomio, L.; Dey, M.; Frederico, T.

    1989-01-01

    1/N c expansion in QCD (with N c the number of colours) suggests using a potential from meson sector (e.g. Richardson) for baryons. For light quarks a σ field has to be introduced to ensure chiral symmetry breaking ( χ SB). It is found that nuclear matter properties can be used to pin down the χ SB-modelling. All masses, M Ν , m σ , m ω are found to scale with density. The equations are solved self consistently. (author)

  4. Explicit Solutions for One-Dimensional Mean-Field Games

    KAUST Repository

    Prazeres, Mariana

    2017-04-05

    In this thesis, we consider stationary one-dimensional mean-field games (MFGs) with or without congestion. Our aim is to understand the qualitative features of these games through the analysis of explicit solutions. We are particularly interested in MFGs with a nonmonotonic behavior, which corresponds to situations where agents tend to aggregate. First, we derive the MFG equations from control theory. Then, we compute explicit solutions using the current formulation and examine their behavior. Finally, we represent the solutions and analyze the results. This thesis main contributions are the following: First, we develop the current method to solve MFG explicitly. Second, we analyze in detail non-monotonic MFGs and discover new phenomena: non-uniqueness, discontinuous solutions, empty regions and unhappiness traps. Finally, we address several regularization procedures and examine the stability of MFGs.

  5. Numerical models of planetary dynamos

    International Nuclear Information System (INIS)

    Glatzmaier, G.A.; Roberts, P.H.

    1992-01-01

    We describe a nonlinear, axisymmetric, spherical-shell model of planetary dynamos. This intermediate-type dynamo model requires a prescribed helicity field (the alpha effect) and a prescribed buoyancy force or thermal wind (the omega effect) and solves for the axisymmetric time-dependent magnetic and velocity fields. Three very different time dependent solutions are obtained from different prescribed sets of alpha and omega fields

  6. When did the lunar core dynamo cease?

    Science.gov (United States)

    Tikoo, S. M.; Weiss, B. P.; Shuster, D. L.; Fuller, M.

    2013-12-01

    Remanent magnetization in the lunar crust and in returned Apollo samples has long suggested that the Moon formed a metallic core and an ancient dynamo magnetic field. Recent paleomagnetic investigations of lunar samples demonstrate that the Moon had a core dynamo which produced ~30-110 μT surface fields between at least 4.2 and 3.56 billion years ago (Ga). Tikoo et al. (1) recently found that the field declined to below several μT by 3.19 Ga. However, given that even values of a few μT are at the upper end of the intensities predicted by dynamo theory for this late in lunar history, it remains uncertain when the lunar dynamo actually ceased completely. Determining this requires a young lunar rock with extraordinarily high magnetic recording fidelity. With this goal, we are conducting a new analysis of young regolith breccia 15498. Although the breccia's age is currently uncertain, the presence of Apollo 15-type mare basalt clasts provides an upper limit constraint of ~3.3 Ga, while trapped Ar data suggest a lithification age of ~1.3 Ga. In stark contrast to the multidomain character of virtually all lunar crystalline rocks, the magnetic carriers in 15498 are on average pseudo-single domain to superparamagnetic, indicating that the sample should provide high-fidelity paleointensity records. A previous alternating field (AF) and thermal demagnetization study of 15498 by Gose et al. (2) observed that the sample carries stable remanent magnetization which persists to unblocking temperatures of at least 650°C. Using a modified Thellier technique, they reported a paleointensity of 2 μT. Although this value may have been influenced by spurious remanence acquired during pretreatment with AF demagnetization, our results confirm the presence of an extremely stable (blocked to coercivities >290 mT) magnetization in the glassy matrix. We also found that this magnetization is largely unidirectional across mutually oriented subsamples. The cooling timescale of this rock (~1

  7. On the saturation of astrophysical dynamos

    DEFF Research Database (Denmark)

    Dorch, Bertil; Archontis, Vasilis

    2004-01-01

    In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate in the li......In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate...

  8. Stellar rotation, dynamo, electromagnetic braking, age an lithium burning

    International Nuclear Information System (INIS)

    Schatzmann, E.

    1989-01-01

    After an introduction describing the problem and the observational tests of the theory a consistant model of the dynamo mechanism in rotating star is presented. This provides for the electromagnetic braking a law Ω ∼ (1.t/t c har) -3 / 4 , in good agreement with the observations. This rests on the hypothesis that the main contribution to the EM braking is due to the magnetic field present in bipolar magnetic spots at the surface of the stellar disk. The premain sequence EM braking provides an initial angular velocity on arrival on the main sequence which is slightly smaller than the angular velocity when the dynamo turns on. Starting the dynamo takes place when the level at which the (αΩ) dynamo number becomes larger than one drops below the ionization level of hydrogen. Before that time, the surface dynamo mechanism would take place in a region of low ionization, where the magnetic Reynods number is so small that dissipation overtakes the building of the magnetic field. Turbulent mixing with a turbulent diffusion coefficient proportional to Ω 2 provides a consistant picture of the time and mass dependance of the surface abundance of Lithium. When the level of Li-burning is sufficiently far from the bottom of the convective zone an asymptotic value of lithium abundance is reached. This can explain the anomalous Li abundance of pop.II stars. (author). 40 refs

  9. Quantum mean-field approximations for nuclear bound states and tunneling

    International Nuclear Information System (INIS)

    Negele, J.W.; Levit, S.; Paltiel, Z.; Massachusetts Inst. of Tech., Cambridge

    1979-01-01

    A conceptual framework has been presented in which observables are approximated in terms of a self-consistent quantum mean-field theory. Since the SPA (Stationary Phase Approximation) determines the optimal mean field to approximate a given observable, it is natural that when one changes the observable, the best mean field to describe it changes as well. Although the theory superficially appears applicable to any observable expressible in terms of an evolution operator, for example an S-matrix element, one would have to go far beyond the SPA to adequately approximate the overlap of two many-body wave functions. The most salient open problems thus concern quantitative assessment of the accuracy of the SPA, reformulation of the theory to accomodate hard cores, and selection of sensible expectation values of few-body operators to address in scattering problems

  10. On the initial conditions of time-dependent mean-field equations of evolution. Pt. 2

    International Nuclear Information System (INIS)

    Troudet, T.; Paris-11 Univ., 91 - Orsay

    1986-01-01

    We analyze the problem so far untouched of determining the initial mean-field wavefunction in the context of zero-temperature mean-field descriptions of time-dependent expectation values and quantum fluctuations of nuclear observables. The nucleus, at zero temperature, is taken to be in a low-lying excited many-body eigenstate and is approximated by the corresponding RPA wavefunction as a continuous superposition of coherent states (i.e. Slater determinants). A generating function Gsub(A)(lambda) for time-dependent expectation values and quantum fluctuations is constructed within the formalism of functional integration. By applying the saddle-point method to the functional action of Gsub(A)(lambda) and then taking its lambda-derivatives, we recover the well-known TDHF theory and propose a simple determination of the initial Slater determinant for an appropriate mean-field description of time-dependent expectation values. The analog mean-field description of quadratic-quantum fluctuations proceeds similarly and in addition includes the contribution of the uncorrelated TDHF-RPA phonons coupled to collective excitations of the initial (static) mean-field configuration. When the collective TDHF-RPA excitations are solely taken into account, we obtain an improved version of the Balian-Veneroni dispersion formula by showing how to determine the initial mean-field wavefunction. By first taking the lambda-derivatives of Gsub(A)(lambda) before applying the saddle-point method, the initial mean-field wavefunction is found to be non-linearly coupled to the mean-field dynamics themselves. In return, and in contrast to the first quantization scheme, these both depend non-trivially upon the observable A being measured so that approximations must be proposed to simplify the resulting mean-field equations. (orig.)

  11. Two Populations Mean-Field Monomer-Dimer Model

    Science.gov (United States)

    Alberici, Diego; Mingione, Emanuele

    2018-04-01

    A two populations mean-field monomer-dimer model including both hard-core and attractive interactions between dimers is considered. The pressure density in the thermodynamic limit is proved to satisfy a variational principle. A detailed analysis is made in the limit of one population is much smaller than the other and a ferromagnetic mean-field phase transition is found.

  12. Exotic nuclei in self-consistent mean-field models

    International Nuclear Information System (INIS)

    Bender, M.; Rutz, K.; Buervenich, T.; Reinhard, P.-G.; Maruhn, J. A.; Greiner, W.

    1999-01-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei with emphasis on neutron-rich tin isotopes and superheavy nuclei. (c) 1999 American Institute of Physics

  13. Real-Space Application of the Mean-Field Description of Spin-Glass Dynamics

    International Nuclear Information System (INIS)

    Barrat, Alain; Berthier, Ludovic

    2001-01-01

    The out of equilibrium dynamics of finite dimensional spin glasses is considered from a point of view going beyond the standard 'mean-field theory' versus 'droplet picture' debate of the past decades. The main predictions of both theories concerning the spin-glass dynamics are discussed. It is shown, in particular, that predictions originating from mean-field ideas concerning the violations of the fluctuation-dissipation theorem apply quantitatively, provided one properly takes into account the role of a spin-glass coherence length, which plays a central role in the droplet picture. Dynamics in a uniform magnetic field is also briefly discussed

  14. Faraday's first dynamo: A retrospective

    Science.gov (United States)

    Smith, Glenn S.

    2013-12-01

    In the early 1830s, Michael Faraday performed his seminal experimental research on electromagnetic induction, in which he created the first electric dynamo—a machine for continuously converting rotational mechanical energy into electrical energy. His machine was a conducting disc, rotating between the poles of a permanent magnet, with the voltage/current obtained from brushes contacting the disc. In his first dynamo, the magnetic field was asymmetric with respect to the axis of the disc. This is to be contrasted with some of his later symmetric designs, which are the ones almost invariably discussed in textbooks on electromagnetism. In this paper, a theoretical analysis is developed for Faraday's first dynamo. From this analysis, the eddy currents in the disc and the open-circuit voltage for arbitrary positioning of the brushes are determined. The approximate analysis is verified by comparing theoretical results with measurements made on an experimental recreation of the dynamo. Quantitative results from the analysis are used to elucidate Faraday's qualitative observations, from which he learned so much about electromagnetic induction. For the asymmetric design, the eddy currents in the disc dissipate energy that makes the dynamo inefficient, prohibiting its use as a practical generator of electric power. Faraday's experiments with his first dynamo provided valuable insight into electromagnetic induction, and this insight was quickly used by others to design practical generators.

  15. One-Dimensional Forward–Forward Mean-Field Games

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Diogo A., E-mail: diogo.gomes@kaust.edu.sa; Nurbekyan, Levon; Sedjro, Marc [King Abdullah University of Science and Technology (KAUST), CEMSE Division (Saudi Arabia)

    2016-12-15

    While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.

  16. One-Dimensional Forward–Forward Mean-Field Games

    KAUST Repository

    Gomes, Diogo A.; Nurbekyan, Levon; Sedjro, Marc

    2016-01-01

    While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.

  17. One-Dimensional Forward–Forward Mean-Field Games

    KAUST Repository

    Gomes, Diogo A.

    2016-11-01

    While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.

  18. On Social Optima of Non-Cooperative Mean Field Games

    Energy Technology Data Exchange (ETDEWEB)

    Li, Sen; Zhang, Wei; Zhao, Lin; Lian, Jianming; Kalsi, Karanjit

    2016-12-12

    This paper studies the social optima in noncooperative mean-field games for a large population of agents with heterogeneous stochastic dynamic systems. Each agent seeks to maximize an individual utility functional, and utility functionals of different agents are coupled through a mean field term that depends on the mean of the population states/controls. The paper has the following contributions. First, we derive a set of control strategies for the agents that possess *-Nash equilibrium property, and converge to the mean-field Nash equilibrium as the population size goes to infinity. Second, we study the social optimal in the mean field game. We derive the conditions, termed the socially optimal conditions, under which the *-Nash equilibrium of the mean field game maximizes the social welfare. Third, a primal-dual algorithm is proposed to compute the *-Nash equilibrium of the mean field game. Since the *-Nash equilibrium of the mean field game is socially optimal, we can compute the equilibrium by solving the social welfare maximization problem, which can be addressed by a decentralized primal-dual algorithm. Numerical simulations are presented to demonstrate the effectiveness of the proposed approach.

  19. Evidence for an impact-induced magnetic fabric in Allende, and exogenous alternatives to the core dynamo theory for Allende magnetization

    Science.gov (United States)

    Muxworthy, Adrian R.; Bland, Phillip A.; Davison, Thomas M.; Moore, James; Collins, Gareth S.; Ciesla, Fred J.

    2017-10-01

    We conducted a paleomagnetic study of the matrix of Allende CV3 chondritic meteorite, isolating the matrix's primary remanent magnetization, measuring its magnetic fabric and estimating the ancient magnetic field intensity. A strong planar magnetic fabric was identified; the remanent magnetization of the matrix was aligned within this plane, suggesting a mechanism relating the magnetic fabric and remanence. The intensity of the matrix's remanent magnetization was found to be consistent and low ( 6 μT). The primary magnetic mineral was found to be pyrrhotite. Given the thermal history of Allende, we conclude that the remanent magnetization was formed during or after an impact event. Recent mesoscale impact modeling, where chondrules and matrix are resolved, has shown that low-velocity collisions can generate significant matrix temperatures, as pore-space compaction attenuates shock energy and dramatically increases the amount of heating. Nonporous chondrules are unaffected, and act as heat-sinks, so matrix temperature excursions are brief. We extend this work to model Allende, and show that a 1 km/s planar impact generates bulk porosity, matrix porosity, and fabric in our target that match the observed values. Bimodal mixtures of a highly porous matrix and nominally zero-porosity chondrules make chondrites uniquely capable of recording transient or unstable fields. Targets that have uniform porosity, e.g., terrestrial impact craters, will not record transient or unstable fields. Rather than a core dynamo, it is therefore possible that the origin of the magnetic field in Allende was the impact itself, or a nebula field recorded during transient impact heating.

  20. Mean Field Games for Stochastic Growth with Relative Utility

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Minyi, E-mail: mhuang@math.carleton.ca [Carleton University, School of Mathematics and Statistics (Canada); Nguyen, Son Luu, E-mail: sonluu.nguyen@upr.edu [University of Puerto Rico, Department of Mathematics (United States)

    2016-12-15

    This paper considers continuous time stochastic growth-consumption optimization in a mean field game setting. The individual capital stock evolution is determined by a Cobb–Douglas production function, consumption and stochastic depreciation. The individual utility functional combines an own utility and a relative utility with respect to the population. The use of the relative utility reflects human psychology, leading to a natural pattern of mean field interaction. The fixed point equation of the mean field game is derived with the aid of some ordinary differential equations. Due to the relative utility interaction, our performance analysis depends on some ratio based approximation error estimate.

  1. Mean Field Games for Stochastic Growth with Relative Utility

    International Nuclear Information System (INIS)

    Huang, Minyi; Nguyen, Son Luu

    2016-01-01

    This paper considers continuous time stochastic growth-consumption optimization in a mean field game setting. The individual capital stock evolution is determined by a Cobb–Douglas production function, consumption and stochastic depreciation. The individual utility functional combines an own utility and a relative utility with respect to the population. The use of the relative utility reflects human psychology, leading to a natural pattern of mean field interaction. The fixed point equation of the mean field game is derived with the aid of some ordinary differential equations. Due to the relative utility interaction, our performance analysis depends on some ratio based approximation error estimate.

  2. Linear–Quadratic Mean-Field-Type Games: A Direct Method

    Directory of Open Access Journals (Sweden)

    Tyrone E. Duncan

    2018-02-01

    Full Text Available In this work, a multi-person mean-field-type game is formulated and solved that is described by a linear jump-diffusion system of mean-field type and a quadratic cost functional involving the second moments, the square of the expected value of the state, and the control actions of all decision-makers. We propose a direct method to solve the game, team, and bargaining problems. This solution approach does not require solving the Bellman–Kolmogorov equations or backward–forward stochastic differential equations of Pontryagin’s type. The proposed method can be easily implemented by beginners and engineers who are new to the emerging field of mean-field-type game theory. The optimal strategies for decision-makers are shown to be in a state-and-mean-field feedback form. The optimal strategies are given explicitly as a sum of the well-known linear state-feedback strategy for the associated deterministic linear–quadratic game problem and a mean-field feedback term. The equilibrium cost of the decision-makers are explicitly derived using a simple direct method. Moreover, the equilibrium cost is a weighted sum of the initial variance and an integral of a weighted variance of the diffusion and the jump process. Finally, the method is used to compute global optimum strategies as well as saddle point strategies and Nash bargaining solution in state-and-mean-field feedback form.

  3. Socio-economic applications of finite state mean field games

    KAUST Repository

    Gomes, Diogo A.; Machado Velho, Roberto; Wolfram, Marie Therese

    2014-01-01

    In this paper, we present different applications of finite state mean field games to socio-economic sciences. Examples include paradigm shifts in the scientific community or consumer choice behaviour in the free market. The corresponding finite

  4. Explicit Solutions for One-Dimensional Mean-Field Games

    KAUST Repository

    Prazeres, Mariana

    2017-01-01

    In this thesis, we consider stationary one-dimensional mean-field games (MFGs) with or without congestion. Our aim is to understand the qualitative features of these games through the analysis of explicit solutions. We are particularly interested

  5. Mean Field Games Models-A Brief Survey

    KAUST Repository

    Gomes, Diogo A.; Saú de, Joã o

    2013-01-01

    The mean-field framework was developed to study systems with an infinite number of rational agents in competition, which arise naturally in many applications. The systematic study of these problems was started, in the mathematical community by Lasry and Lions, and independently around the same time in the engineering community by P. Caines, Minyi Huang, and Roland Malhamé. Since these seminal contributions, the research in mean-field games has grown exponentially, and in this paper we present a brief survey of mean-field models as well as recent results and techniques. In the first part of this paper, we study reduced mean-field games, that is, mean-field games, which are written as a system of a Hamilton-Jacobi equation and a transport or Fokker-Planck equation. We start by the derivation of the models and by describing some of the existence results available in the literature. Then we discuss the uniqueness of a solution and propose a definition of relaxed solution for mean-field games that allows to establish uniqueness under minimal regularity hypothesis. A special class of mean-field games that we discuss in some detail is equivalent to the Euler-Lagrange equation of suitable functionals. We present in detail various additional examples, including extensions to population dynamics models. This section ends with a brief overview of the random variables point of view as well as some applications to extended mean-field games models. These extended models arise in problems where the costs incurred by the agents depend not only on the distribution of the other agents, but also on their actions. The second part of the paper concerns mean-field games in master form. These mean-field games can be modeled as a partial differential equation in an infinite dimensional space. We discuss both deterministic models as well as problems where the agents are correlated. We end the paper with a mean-field model for price impact. © 2013 Springer Science+Business Media New York.

  6. Mean Field Games Models-A Brief Survey

    KAUST Repository

    Gomes, Diogo A.

    2013-11-20

    The mean-field framework was developed to study systems with an infinite number of rational agents in competition, which arise naturally in many applications. The systematic study of these problems was started, in the mathematical community by Lasry and Lions, and independently around the same time in the engineering community by P. Caines, Minyi Huang, and Roland Malhamé. Since these seminal contributions, the research in mean-field games has grown exponentially, and in this paper we present a brief survey of mean-field models as well as recent results and techniques. In the first part of this paper, we study reduced mean-field games, that is, mean-field games, which are written as a system of a Hamilton-Jacobi equation and a transport or Fokker-Planck equation. We start by the derivation of the models and by describing some of the existence results available in the literature. Then we discuss the uniqueness of a solution and propose a definition of relaxed solution for mean-field games that allows to establish uniqueness under minimal regularity hypothesis. A special class of mean-field games that we discuss in some detail is equivalent to the Euler-Lagrange equation of suitable functionals. We present in detail various additional examples, including extensions to population dynamics models. This section ends with a brief overview of the random variables point of view as well as some applications to extended mean-field games models. These extended models arise in problems where the costs incurred by the agents depend not only on the distribution of the other agents, but also on their actions. The second part of the paper concerns mean-field games in master form. These mean-field games can be modeled as a partial differential equation in an infinite dimensional space. We discuss both deterministic models as well as problems where the agents are correlated. We end the paper with a mean-field model for price impact. © 2013 Springer Science+Business Media New York.

  7. GRAND MINIMA AND EQUATORWARD PROPAGATION IN A CYCLING STELLAR CONVECTIVE DYNAMO

    Energy Technology Data Exchange (ETDEWEB)

    Augustson, Kyle; Miesch, Mark [High Altitude Observatory, Center Green 1, Boulder, CO 80301 (United States); Brun, Allan Sacha [Laboratoire AIM Paris-Saclay, CEA/DSM–CNRS–Université Paris Diderot, IRFU/SAp, Gif-sur-Yvette (France); Toomre, Juri [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2015-08-20

    The 3D MHD Anelastic Spherical Harmonic code, using slope-limited diffusion, is employed to capture convective and dynamo processes achieved in a global-scale stellar convection simulation for a model solar-mass star rotating at three times the solar rate. The dynamo-generated magnetic fields possesses many timescales, with a prominent polarity cycle occurring roughly every 6.2 years. The magnetic field forms large-scale toroidal wreaths, whose formation is tied to the low Rossby number of the convection in this simulation. The polarity reversals are linked to the weakened differential rotation and a resistive collapse of the large-scale magnetic field. An equatorial migration of the magnetic field is seen, which is due to the strong modulation of the differential rotation rather than a dynamo wave. A poleward migration of magnetic flux from the equator eventually leads to the reversal of the polarity of the high-latitude magnetic field. This simulation also enters an interval with reduced magnetic energy at low latitudes lasting roughly 16 years (about 2.5 polarity cycles), during which the polarity cycles are disrupted and after which the dynamo recovers its regular polarity cycles. An analysis of this grand minimum reveals that it likely arises through the interplay of symmetric and antisymmetric dynamo families. This intermittent dynamo state potentially results from the simulation’s relatively low magnetic Prandtl number. A mean-field-based analysis of this dynamo simulation demonstrates that it is of the α-Ω type. The timescales that appear to be relevant to the magnetic polarity reversal are also identified.

  8. Gravitational dynamos and the low-frequency geomagnetic secular variation.

    Science.gov (United States)

    Olson, P

    2007-12-18

    Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions.

  9. Uncertainty quantification for mean field games in social interactions

    KAUST Repository

    Dia, Ben Mansour

    2016-01-09

    We present an overview of mean field games formulation. A comparative analysis of the optimality for a stochastic McKean-Vlasov process with time-dependent probability is presented. Then we examine mean-field games for social interactions and we show that optimizing the long-term well-being through effort and social feeling state distribution (mean-field) will help to stabilize couple (marriage). However , if the cost of effort is very high, the couple fluctuates in a bad feeling state or the marriage breaks down. We then examine the influence of society on a couple using mean field sentimental games. We show that, in mean-field equilibrium, the optimal effort is always higher than the one-shot optimal effort. Finally we introduce the Wiener chaos expansion for the construction of solution of stochastic differential equations of Mckean-Vlasov type. The method is based on the Cameron-Martin version of the Wiener Chaos expansion and allow to quantify the uncertainty in the optimality system.

  10. Uncertainty quantification for mean field games in social interactions

    KAUST Repository

    Dia, Ben Mansour

    2016-01-01

    We present an overview of mean field games formulation. A comparative analysis of the optimality for a stochastic McKean-Vlasov process with time-dependent probability is presented. Then we examine mean-field games for social interactions and we show that optimizing the long-term well-being through effort and social feeling state distribution (mean-field) will help to stabilize couple (marriage). However , if the cost of effort is very high, the couple fluctuates in a bad feeling state or the marriage breaks down. We then examine the influence of society on a couple using mean field sentimental games. We show that, in mean-field equilibrium, the optimal effort is always higher than the one-shot optimal effort. Finally we introduce the Wiener chaos expansion for the construction of solution of stochastic differential equations of Mckean-Vlasov type. The method is based on the Cameron-Martin version of the Wiener Chaos expansion and allow to quantify the uncertainty in the optimality system.

  11. Momentum and density dependence of the nuclear mean field

    International Nuclear Information System (INIS)

    Behera, B.; Routray, T.R.

    1999-01-01

    The purpose of this is to analyse the momentum, density and temperature dependence of the mean field in nuclear matter derived from finite range effective interactions and to examine the influence of the functional form of the interaction on the high momentum behaviour of the mean field. Emphasis will be given to use very simple parametrizations of the effective interaction with a minimum number of adjustable parameters and yet capable of giving a good description of the mean field in nuclear matter over a wide range of momentum, density and temperature. As an application of the calculated equation of state of nuclear matter, phase transitions to quark-gluon plasma is studied where the quark phase is described by a zeroth order bag model equation of state

  12. Mean field strategies induce unrealistic nonlinearities in calcium puffs

    Directory of Open Access Journals (Sweden)

    Guillermo eSolovey

    2011-08-01

    Full Text Available Mean field models are often useful approximations to biological systems, but sometimes, they can yield misleading results. In this work, we compare mean field approaches with stochastic models of intracellular calcium release. In particular, we concentrate on calcium signals generated by the concerted opening of several clustered channels (calcium puffs. To this end we simulate calcium puffs numerically and then try to reproduce features of the resulting calcium distribution using mean field models were all the channels open and close simultaneously. We show that an unrealistic nonlinear relationship between the current and the number of open channels is needed to reproduce the simulated puffs. Furthermore, a single channel current which is five times smaller than the one of the stochastic simulations is also needed. Our study sheds light on the importance of the stochastic kinetics of the calcium release channel activity to estimate the release fluxes.

  13. Self-consistent mean-field models for nuclear structure

    International Nuclear Information System (INIS)

    Bender, Michael; Heenen, Paul-Henri; Reinhard, Paul-Gerhard

    2003-01-01

    The authors review the present status of self-consistent mean-field (SCMF) models for describing nuclear structure and low-energy dynamics. These models are presented as effective energy-density functionals. The three most widely used variants of SCMF's based on a Skyrme energy functional, a Gogny force, and a relativistic mean-field Lagrangian are considered side by side. The crucial role of the treatment of pairing correlations is pointed out in each case. The authors discuss other related nuclear structure models and present several extensions beyond the mean-field model which are currently used. Phenomenological adjustment of the model parameters is discussed in detail. The performance quality of the SCMF model is demonstrated for a broad range of typical applications

  14. Back-reaction beyond the mean field approximation

    International Nuclear Information System (INIS)

    Kluger, Y.

    1993-01-01

    A method for solving an initial value problem of a closed system consisting of an electromagnetic mean field and its quantum fluctuations coupled to fermions is presented. By tailoring the large N f expansion method to the Schwinger-Keldysh closed time path (CTP) formulation of the quantum effective action, causality of the resulting equations of motion is ensured, and a systematic energy conserving and gauge invariant expansion about the electromagnetic mean field in powers of 1/N f is developed. The resulting equations may be used to study the quantum nonequilibrium effects of pair creation in strong electric fields and the scattering and transport processes of a relativistic e + e - plasma. Using the Bjorken ansatz of boost invariance initial conditions in which the initial electric mean field depends on the proper time only, we show numerical results for the case in which the N f expansion is truncated in the lowest order, and compare them with those of a phenomenological transport equation

  15. A Maximum Principle for SDEs of Mean-Field Type

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Daniel, E-mail: danieand@math.kth.se; Djehiche, Boualem, E-mail: boualem@math.kth.se [Royal Institute of Technology, Department of Mathematics (Sweden)

    2011-06-15

    We study the optimal control of a stochastic differential equation (SDE) of mean-field type, where the coefficients are allowed to depend on some functional of the law as well as the state of the process. Moreover the cost functional is also of mean-field type, which makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. Under the assumption of a convex action space a maximum principle of local form is derived, specifying the necessary conditions for optimality. These are also shown to be sufficient under additional assumptions. This maximum principle differs from the classical one, where the adjoint equation is a linear backward SDE, since here the adjoint equation turns out to be a linear mean-field backward SDE. As an illustration, we apply the result to the mean-variance portfolio selection problem.

  16. A Maximum Principle for SDEs of Mean-Field Type

    International Nuclear Information System (INIS)

    Andersson, Daniel; Djehiche, Boualem

    2011-01-01

    We study the optimal control of a stochastic differential equation (SDE) of mean-field type, where the coefficients are allowed to depend on some functional of the law as well as the state of the process. Moreover the cost functional is also of mean-field type, which makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. Under the assumption of a convex action space a maximum principle of local form is derived, specifying the necessary conditions for optimality. These are also shown to be sufficient under additional assumptions. This maximum principle differs from the classical one, where the adjoint equation is a linear backward SDE, since here the adjoint equation turns out to be a linear mean-field backward SDE. As an illustration, we apply the result to the mean-variance portfolio selection problem.

  17. Mean-field Ohm's law and coaxial helicity injection in force-free plasmas

    International Nuclear Information System (INIS)

    Weening, R. H.

    2011-01-01

    A theoretical analysis of steady-state coaxial helicity injection (CHI) in force-free plasmas is presented using a parallel mean-field Ohm's law that includes resistivity η and hyper-resistivity Λ terms. Using Boozer coordinates, a partial differential equation is derived for the time evolution of the mean-field poloidal magnetic flux, or magnetic Hamiltonian function, from the parallel mean-field Ohm's law. A general expression is obtained from the mean-field theory for the efficiency of CHI current drive in force-free plasmas. Inductances of internal energy, magnetic helicity, and poloidal magnetic flux are used to characterize axisymmetric plasma equilibria that have a model current profile. Using the model current profile, a method is suggested to determine the level of magnetohydrodynamic activity at the magnetic axis and the consequent deviation from the completely relaxed Taylor state. The mean-field Ohm's law model suggests that steady-state CHI can be viewed most simply as a boundary layer problem.

  18. Statistical Mechanics of Turbulent Dynamos

    Science.gov (United States)

    Shebalin, John V.

    2014-01-01

    Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much

  19. Shapes and dynamics from the time-dependent mean field

    International Nuclear Information System (INIS)

    Stevenson, P.D.; Goddard, P.M.; Rios, A.

    2015-01-01

    Explaining observed properties in terms of underlying shape degrees of freedom is a well-established prism with which to understand atomic nuclei. Self-consistent mean-field models provide one tool to understand nuclear shapes, and their link to other nuclear properties and observables. We present examples of how the time-dependent extension of the mean-field approach can be used in particular to shed light on nuclear shape properties, particularly looking at the giant resonances built on deformed nuclear ground states, and at dynamics in highly-deformed fission isomers. Example calculations are shown of 28 Si in the first case, and 240 Pu in the latter case

  20. Many-Body Mean-Field Equations: Parallel implementation

    International Nuclear Information System (INIS)

    Vallieres, M.; Umar, S.; Chinn, C.; Strayer, M.

    1993-01-01

    We describe the implementation of Hartree-Fock Many-Body Mean-Field Equations on a Parallel Intel iPSC/860 hypercube. We first discuss the Nuclear Mean-Field approach in physical terms. Then we describe our parallel implementation of this approach on the Intel iPSC/860 hypercube. We discuss and compare the advantages and disadvantages of the domain partition versus the Hilbert space partition for this problem. We conclude by discussing some timing experiments on various computing platforms

  1. Socio-economic applications of finite state mean field games

    KAUST Repository

    Gomes, Diogo A.

    2014-10-06

    In this paper, we present different applications of finite state mean field games to socio-economic sciences. Examples include paradigm shifts in the scientific community or consumer choice behaviour in the free market. The corresponding finite state mean field game models are hyperbolic systems of partial differential equations, for which we present and validate different numerical methods. We illustrate the behaviour of solutions with various numerical experiments,which show interesting phenomena such as shock formation. Hence, we conclude with an investigation of the shock structure in the case of two-state problems.

  2. Socio-economic applications of finite state mean field games.

    Science.gov (United States)

    Gomes, Diogo; Velho, Roberto M; Wolfram, Marie-Therese

    2014-11-13

    In this paper, we present different applications of finite state mean field games to socio-economic sciences. Examples include paradigm shifts in the scientific community or consumer choice behaviour in the free market. The corresponding finite state mean field game models are hyperbolic systems of partial differential equations, for which we present and validate different numerical methods. We illustrate the behaviour of solutions with various numerical experiments, which show interesting phenomena such as shock formation. Hence, we conclude with an investigation of the shock structure in the case of two-state problems. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Applying Mean-Field Approximation to Continuous Time Markov Chains

    NARCIS (Netherlands)

    Kolesnichenko, A.V.; Senni, Valerio; Pourranjabar, Alireza; Remke, A.K.I.; Stoelinga, M.I.A.

    2014-01-01

    The mean-field analysis technique is used to perform analysis of a system with a large number of components to determine the emergent deterministic behaviour and how this behaviour modifies when its parameters are perturbed. The computer science performance modelling and analysis community has found

  4. Constrained deterministic leader-follower mean field control

    NARCIS (Netherlands)

    Möller, L.; Gentile, B.; Parise, F.; Grammatico, S.; Lygeros, J.

    2016-01-01

    We consider a mean field game among a large population of noncooperative agents divided into two categories: leaders and followers. Each agent is subject to heterogeneous convex constraints and minimizes a quadratic cost function; the cost of each leader is affected by the leaders' aggregate

  5. A mean-field game economic growth model

    KAUST Repository

    Gomes, Diogo A.; Lafleche, Laurent; Nurbekyan, Levon

    2016-01-01

    Here, we examine a mean-field game (MFG) that models the economic growth of a population of non-cooperative, rational agents. In this MFG, agents are described by two state variables - the capital and consumer goods they own. Each agent seeks

  6. Two numerical methods for mean-field games

    KAUST Repository

    Gomes, Diogo A.

    2016-01-09

    Here, we consider numerical methods for stationary mean-field games (MFG) and investigate two classes of algorithms. The first one is a gradient flow method based on the variational characterization of certain MFG. The second one uses monotonicity properties of MFG. We illustrate our methods with various examples, including one-dimensional periodic MFG, congestion problems, and higher-dimensional models.

  7. Two numerical methods for mean-field games

    KAUST Repository

    Gomes, Diogo A.

    2016-01-01

    Here, we consider numerical methods for stationary mean-field games (MFG) and investigate two classes of algorithms. The first one is a gradient flow method based on the variational characterization of certain MFG. The second one uses monotonicity properties of MFG. We illustrate our methods with various examples, including one-dimensional periodic MFG, congestion problems, and higher-dimensional models.

  8. Two Numerical Approaches to Stationary Mean-Field Games

    KAUST Repository

    Almulla, Noha; Ferreira, Rita; Gomes, Diogo A.

    2016-01-01

    Here, we consider numerical methods for stationary mean-field games (MFG) and investigate two classes of algorithms. The first one is a gradient-flow method based on the variational characterization of certain MFG. The second one uses monotonicity properties of MFG. We illustrate our methods with various examples, including one-dimensional periodic MFG, congestion problems, and higher-dimensional models.

  9. Halo nuclei studied by relativistic mean-field approach

    International Nuclear Information System (INIS)

    Gmuca, S.

    1997-01-01

    Density distributions of light neutron-rich nuclei are studied by using the relativistic mean-field approach. The effective interaction which parameterizes the recent Dirac-Brueckner-Hartree-Fock calculations of nuclear matter is used. The results are discussed and compared with the experimental observations with special reference to the neutron halo in the drip-line nuclei. (author)

  10. Two Numerical Approaches to Stationary Mean-Field Games

    KAUST Repository

    Almulla, Noha

    2016-10-04

    Here, we consider numerical methods for stationary mean-field games (MFG) and investigate two classes of algorithms. The first one is a gradient-flow method based on the variational characterization of certain MFG. The second one uses monotonicity properties of MFG. We illustrate our methods with various examples, including one-dimensional periodic MFG, congestion problems, and higher-dimensional models.

  11. New results on an equipartition dynamo

    DEFF Research Database (Denmark)

    Dorch, S. B. F.; Archontis, V.

    2006-01-01

    This contribution presents results from numerical computer experiments with a 3-d steady sine flow (with zero mean helicity) that drives fast dynamo action. The mode of operation of this so-called ``no-cosines" dynamo (recently dubbed ``the Archontis dynamo"" by David Galloway) was studied during...... significantly higher that intermittent turbulent dynamos: Namely very close to energy equipartition for high Reynolds numbers. The equipartition solution however is not turbulent but a laminar solution that acts as an attractor to other modes. Similarities and differences, in the way the magnetic field...

  12. Heavy-ion interactions in relativistic mean-field models

    International Nuclear Information System (INIS)

    Rashdan, M.

    1996-01-01

    The interaction potential between spherical nuclei and the elastic scattering cross section are calculated within relativistic mean-field (linear and non-linear) models, using a generalized relativistic local density approximation. The nuclear densities are calculated self-consistently from the solution of the relativistic mean-field equations. It is found that both the linear and non-linear models predict the characteristic switching-over phenomenon of the heavy-ion nuclear potential, where the potential gets attraction with increasing energy up to some value where it reverses this behaviour. The non-linear NLC model predicts a deeper potential than the linear LW model. The elastic scattering cross section calculated within the non-linear NLC model is in better agreement with experiments than that calculated within the linear LW model. (orig.)

  13. Merging Belief Propagation and the Mean Field Approximation

    DEFF Research Database (Denmark)

    Riegler, Erwin; Kirkelund, Gunvor Elisabeth; Manchón, Carles Navarro

    2010-01-01

    We present a joint message passing approach that combines belief propagation and the mean field approximation. Our analysis is based on the region-based free energy approximation method proposed by Yedidia et al., which allows to use the same objective function (Kullback-Leibler divergence......) as a starting point. In this method message passing fixed point equations (which correspond to the update rules in a message passing algorithm) are then obtained by imposing different region-based approximations and constraints on the mean field and belief propagation parts of the corresponding factor graph....... Our results can be applied, for example, to algorithms that perform joint channel estimation and decoding in iterative receivers. This is demonstrated in a simple example....

  14. Condition monitoring with Mean field independent components analysis

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Sigurdsson, Sigurdur; Larsen, Jan

    2005-01-01

    We discuss condition monitoring based on mean field independent components analysis of acoustic emission energy signals. Within this framework it is possible to formulate a generative model that explains the sources, their mixing and also the noise statistics of the observed signals. By using...... a novelty approach we may detect unseen faulty signals as indeed faulty with high precision, even though the model learns only from normal signals. This is done by evaluating the likelihood that the model generated the signals and adapting a simple threshold for decision. Acoustic emission energy signals...... from a large diesel engine is used to demonstrate this approach. The results show that mean field independent components analysis gives a better detection of fault compared to principal components analysis, while at the same time selecting a more compact model...

  15. Retardation and dispersive effects in the nuclear mean field

    International Nuclear Information System (INIS)

    Mahaux, C.; Davies, K.T.R.; Satchler, G.R.

    1993-01-01

    We consider several parametrizations of the energy dependence of the imaginary part of the mean field, for nucleons as well as heavy ions. These parametrizations specify the energy dependence of the corresponding real part, because the real and imaginary parts are connected by a dispersion relation. The latter can be viewed as equivalent to the causality property. Since Hilbert transforms appear in the dispersion relation and since Fourier transforms give the correspondence between energy dependence and temporal nonlocality, we derive several properties of these transforms which are of particular interest in the present context. The most useful one is that the Fourier transform of a function F(E) which is analytic in the upper half of the complex E-plane can be expressed in terms of the Fourier transform of the imaginary part of F(E) alone. We investigate several schematic models for the mean field. They fall into two main categories. These correspond to the two main definitions which have been proposed for the mean field, namely the self-energy and Feshbach's potential. Both of these definitions can be used for the nucleon-nucleus system, in which case they correspond to two different ways of handling the combined influence of ground state correlations and antisymmetrization. The resulting two mean fields have different energy dependences and, correspondingly, temporal nonlocalities. Feshbach's approach can also be applied to the nucleus-nucleus system. Our schematic models are semi-realistic, in the sense that they all take account of the 'Fermi surface anomaly' for the nucleon-nucleus system or of the 'threshold anomaly' for the nucleus-nucleus case. The temporal nonlocality is investigated for each model. A physical interpretation of this nonlocality is given in terms delay of the response of the medium, in which an incident wave is partially trapped in nonelastic channels and subsequently reemitted. (orig./HSI)

  16. RPA correlations and nuclear densities in relativistic mean field approach

    International Nuclear Information System (INIS)

    Van Giai, N.; Liang, H.Z.; Meng, J.

    2007-02-01

    The relativistic mean field approach (RMF) is well known for describing accurately binding energies and nucleon distributions in atomic nuclei throughout the nuclear chart. The random phase approximation (RPA) built on top of the RMF is also a good framework for the study of nuclear excitations. Here, we examine the consequences of long range correlations brought about by the RPA on the neutron and proton densities as given by the RMF approach. (authors)

  17. A NEW SIMPLE DYNAMO MODEL FOR STELLAR ACTIVITY CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, N.; Hamba, F. [Institute of Industrial Science, University of Tokyo, Tokyo 153-8505 (Japan); Schmitt, D. [Max-Planck Institut für Sonnensystemforschung, Göttingen D-37077 (Germany); Pipin, V., E-mail: nobyokoi@iis.u-tokyo.ac.jp [Institute of Solar–Terrestrial Physics, Russian Academy of Science, Irkutsk 664033 (Russian Federation)

    2016-06-20

    A new simple dynamo model for stellar activity cycle is proposed. By considering an inhomogeneous flow effect on turbulence, it is shown that turbulent cross helicity (velocity–magnetic-field correlation) enters the expression of turbulent electromotive force as the coupling coefficient for the mean absolute vorticity. This makes the present model different from the current α –Ω-type models in two main ways. First, in addition to the usual helicity ( α ) and turbulent magnetic diffusivity ( β ) effects, we consider the cross-helicity effect as a key ingredient of the dynamo process. Second, the spatiotemporal evolution of cross helicity is solved simultaneously with the mean magnetic fields. The basic scenario is as follows. In the presence of turbulent cross helicity, the toroidal field is induced by the toroidal rotation. Then, as in usual models, the α effect generates the poloidal field from the toroidal one. This induced poloidal field produces a turbulent cross helicity whose sign is opposite to the original one (negative production). With this cross helicity of the reversed sign, a reversal in field configuration starts. Eigenvalue analyses of the simplest possible model give a butterfly diagram, which confirms the above scenario and the equatorward migrations, the phase relationship between the cross helicity and magnetic fields. These results suggest that the oscillation of the turbulent cross helicity is a key for the activity cycle. The reversal of the cross helicity is not the result of the magnetic-field reversal, but the cause of the latter. This new model is expected to open up the possibility of the mean-field or turbulence closure dynamo approaches.

  18. Nonlinear MHD dynamo operating at equipartition

    DEFF Research Database (Denmark)

    Archontis, V.; Dorch, Bertil; Nordlund, Åke

    2007-01-01

    Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy-equipartition a......Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy......, and that it can saturate at a level significantly higher than intermittent turbulent dynamos, namely at energy equipartition, for high values of the magnetic and fluid Reynolds numbers. The equipartition solution however does not remain time-independent during the simulation but exhibits a much more intricate...

  19. Derivation of mean-field dynamics for fermions

    International Nuclear Information System (INIS)

    Petrat, Soeren

    2014-01-01

    In this work, we derive the time-dependent Hartree(-Fock) equations as an effective dynamics for fermionic many-particle systems. Our main results are the first for a quantum mechanical mean-field dynamics for fermions; in previous works, the mean-field limit is usually either coupled to a semiclassical limit, or the interaction is scaled down so much, that the system behaves freely for large particle number N. We mainly consider systems with total kinetic energy bounded by const.N and long-range interaction potentials, e.g., Coulomb interaction. Examples for such systems are large molecules or certain solid states. Our analysis also applies to attractive interactions, as, e.g., in fermionic stars. The fermionic Hartree(-Fock) equations are a standard tool to describe, e.g., excited states or chemical reactions of large molecules (like proteins). A deeper understanding of these equations as an approximation to the time evolution of a many body quantum system is thus highly relevant. We consider the fermionic Hartree equations (i.e., the Hartree-Fock equations without exchange term) in this work, since the exchange term is subleading in our setting. The main result is that the fermionic Hartree dynamics approximates the Schroedinger dynamics well for large N. This statement becomes exact in the thermodynamic limit N→∞. We give explicit values for the rates of convergence. We prove two types of results. The first type is very general and concerns arbitrary free Hamiltonians (e.g., relativistic, non-relativistic, with external fields) and arbitrary interactions. The theorems give explicit conditions on the solutions to the fermionic Hartree equations under which a derivation of the mean-field dynamics succeeds. The second type of results scrutinizes situations where the conditions are fulfilled. These results are about non-relativistic free Hamiltonians with external fields, systems with total kinetic energy bounded by const.N and with long-range interactions of

  20. A dynamic mean-field glass model with reversible mode coupling and a trivial Hamiltonian

    International Nuclear Information System (INIS)

    Kawasaki, Kyozi; Kim, Bongsoo

    2002-01-01

    Often the current mode coupling theory (MCT) of glass transitions is compared with mean field theories. We explore this possible correspondence. After showing a simple-minded derivation of MCT with some difficulties we give a concise account of our toy model developed to gain more insight into MCT. We then reduce this toy model by adiabatically eliminating rapidly varying velocity-like variables to obtain a Fokker-Planck equation for the slowly varying density-like variables where the diffusion matrix can be singular. This gives room for non-ergodic stationary solutions of the above equation. (author)

  1. A mean-field game economic growth model

    KAUST Repository

    Gomes, Diogo A.

    2016-08-05

    Here, we examine a mean-field game (MFG) that models the economic growth of a population of non-cooperative, rational agents. In this MFG, agents are described by two state variables - the capital and consumer goods they own. Each agent seeks to maximize his/her utility by taking into account statistical data about the whole population. The individual actions drive the evolution of the players, and a market-clearing condition determines the relative price of capital and consumer goods. We study the existence and uniqueness of optimal strategies of the agents and develop numerical methods to compute these strategies and the equilibrium price.

  2. First-order, stationary mean-field games with congestion

    KAUST Repository

    Evangelista, David

    2018-04-30

    Mean-field games (MFGs) are models for large populations of competing rational agents that seek to optimize a suitable functional. In the case of congestion, this functional takes into account the difficulty of moving in high-density areas. Here, we study stationary MFGs with congestion with quadratic or power-like Hamiltonians. First, using explicit examples, we illustrate two main difficulties: the lack of classical solutions and the existence of areas with vanishing densities. Our main contribution is a new variational formulation for MFGs with congestion. With this formulation, we prove the existence and uniqueness of solutions. Finally, we consider applications to numerical methods.

  3. Mean field dynamics of some open quantum systems.

    Science.gov (United States)

    Merkli, Marco; Rafiyi, Alireza

    2018-04-01

    We consider a large number N of quantum particles coupled via a mean field interaction to another quantum system (reservoir). Our main result is an expansion for the averages of observables, both of the particles and of the reservoir, in inverse powers of [Formula: see text]. The analysis is based directly on the Dyson series expansion of the propagator. We analyse the dynamics, in the limit [Formula: see text], of observables of a fixed number n of particles, of extensive particle observables and their fluctuations, as well as of reservoir observables. We illustrate our results on the infinite mode Dicke model and on various energy-conserving models.

  4. Relativistic mean field calculations in neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, G.; Bhattacharya, Madhubrata [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Roy, Subinit [Saha Institute of Nuclear Physics, Block AF, Sector 1, Kolkata- 700 064 (India)

    2014-08-14

    Relativistic mean field calculations have been employed to study neutron rich nuclei. The Lagrange's equations have been solved in the co-ordinate space. The effect of the continuum has been effectively taken into account through the method of resonant continuum. It is found that BCS approximation performs as well as a more involved Relativistic Continuum Hartree Bogoliubov approach. Calculations reveal the possibility of modification of magic numbers in neutron rich nuclei. Calculation for low energy proton scattering cross sections shows that the present approach reproduces the density in very light neutron rich nuclei.

  5. Time-Dependent Mean-Field Games with Logarithmic Nonlinearities

    KAUST Repository

    Gomes, Diogo A.; Pimentel, Edgard

    2015-01-01

    In this paper, we prove the existence of classical solutions for time-dependent mean-field games with a logarithmic nonlinearity and subquadratic Hamiltonians. Because the logarithm is unbounded from below, this nonlinearity poses substantial mathematical challenges that have not been addressed in the literature. Our result is proven by recurring to a delicate argument which combines Lipschitz regularity for the Hamilton-Jacobi equation with estimates for the nonlinearity in suitable Lebesgue spaces. Lipschitz estimates follow from an application of the nonlinear adjoint method. These are then combined with a priori bounds for solutions of the Fokker-Planck equation and a concavity argument for the nonlinearity.

  6. Mean-field level analysis of epidemics in directed networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiazeng [School of Mathematical Sciences, Peking University, Beijing 100871 (China); Liu, Zengrong [Mathematics Department, Shanghai University, Shanghai 200444 (China)], E-mail: wangjiazen@yahoo.com.cn, E-mail: zrongliu@online.sh.cn

    2009-09-04

    The susceptible-infected-removed spreading model in a directed graph is studied. The mean-field level rate equations are built with the degree-degree connectivity correlation element and the (in, out)-degree distribution. And the outbreak threshold is obtained analytically-it is determined by the combination of connectivity probability and the degree distribution. Furthermore, the methods of calculating the degree-degree correlations in directed networks are presented. The numerical results of the discrete epidemic processes in networks verify our analyses.

  7. Mean-field level analysis of epidemics in directed networks

    International Nuclear Information System (INIS)

    Wang, Jiazeng; Liu, Zengrong

    2009-01-01

    The susceptible-infected-removed spreading model in a directed graph is studied. The mean-field level rate equations are built with the degree-degree connectivity correlation element and the (in, out)-degree distribution. And the outbreak threshold is obtained analytically-it is determined by the combination of connectivity probability and the degree distribution. Furthermore, the methods of calculating the degree-degree correlations in directed networks are presented. The numerical results of the discrete epidemic processes in networks verify our analyses.

  8. Mean field dynamics of some open quantum systems

    Science.gov (United States)

    Merkli, Marco; Rafiyi, Alireza

    2018-04-01

    We consider a large number N of quantum particles coupled via a mean field interaction to another quantum system (reservoir). Our main result is an expansion for the averages of observables, both of the particles and of the reservoir, in inverse powers of √{N }. The analysis is based directly on the Dyson series expansion of the propagator. We analyse the dynamics, in the limit N →∞ , of observables of a fixed number n of particles, of extensive particle observables and their fluctuations, as well as of reservoir observables. We illustrate our results on the infinite mode Dicke model and on various energy-conserving models.

  9. Time-Dependent Mean-Field Games with Logarithmic Nonlinearities

    KAUST Repository

    Gomes, Diogo A.

    2015-10-06

    In this paper, we prove the existence of classical solutions for time-dependent mean-field games with a logarithmic nonlinearity and subquadratic Hamiltonians. Because the logarithm is unbounded from below, this nonlinearity poses substantial mathematical challenges that have not been addressed in the literature. Our result is proven by recurring to a delicate argument which combines Lipschitz regularity for the Hamilton-Jacobi equation with estimates for the nonlinearity in suitable Lebesgue spaces. Lipschitz estimates follow from an application of the nonlinear adjoint method. These are then combined with a priori bounds for solutions of the Fokker-Planck equation and a concavity argument for the nonlinearity.

  10. First-order, stationary mean-field games with congestion

    KAUST Repository

    Evangelista, David; Ferreira, Rita; Gomes, Diogo A.; Nurbekyan, Levon; Voskanyan, Vardan K.

    2018-01-01

    Mean-field games (MFGs) are models for large populations of competing rational agents that seek to optimize a suitable functional. In the case of congestion, this functional takes into account the difficulty of moving in high-density areas. Here, we study stationary MFGs with congestion with quadratic or power-like Hamiltonians. First, using explicit examples, we illustrate two main difficulties: the lack of classical solutions and the existence of areas with vanishing densities. Our main contribution is a new variational formulation for MFGs with congestion. With this formulation, we prove the existence and uniqueness of solutions. Finally, we consider applications to numerical methods.

  11. Stable Alfven-wave dynamo action in the reversed-field pinch

    International Nuclear Information System (INIS)

    Werley, K.A.

    1984-01-01

    Previous theoretical work has suggested that Alfven waves may be related to the anomalous toroidal magnetic flux generation and extended (over classical expectations) discharge times observed in the reversed-field pinch. This thesis examines the dynamo action of stable Alfven waves as a means of generating toroidal flux. Recent advances in linear resistive MHD stability analysis are used to calculate the quasi-linear dynamo mean electromotive force of Alfven waves. This emf is incorporated into a one-dimensional transport and mean-field evolution code. The changing equilibrium is then fed back to the stability code to complete a computational framework that self-consistently evaluates a dynamic plasma dynamo. This technique is readily extendable to other plasmas in which dynamic stable model action is of interest. Such plasmas include Alfven wave current-drive and plasma heating for fusion devices, as well as astrophysical and geophysical dynamo systems. This study also contains extensive studies of resistive Alfven wave properties. This includes behavior versus spectral location, magnetic Reynolds number and wave number

  12. Pairing gaps from nuclear mean-field models

    International Nuclear Information System (INIS)

    Bender, M.; Rutz, K.; Maruhn, J.A.

    2000-01-01

    We discuss the pairing gap, a measure for nuclear pairing correlations, in chains of spherical, semi-magic nuclei in the framework of self-consistent nuclear mean-field models. The equations for the conventional BCS model and the approximate projection-before-variation Lipkin-Nogami method are formulated in terms of local density functionals for the effective interaction. We calculate the Lipkin-Nogami corrections of both the mean-field energy and the pairing energy. Various definitions of the pairing gap are discussed as three-point, four-point and five-point mass-difference formulae, averaged matrix elements of the pairing potential, and single-quasiparticle energies. Experimental values for the pairing gap are compared with calculations employing both a delta pairing force and a density-dependent delta interaction in the BCS and Lipkin-Nogami model. Odd-mass nuclei are calculated in the spherical blocking approximation which neglects part of the the core polarization in the odd nucleus. We find that the five-point mass difference formula gives a very robust description of the odd-even staggering, other approximations for the gap may differ from that up to 30% for certain nuclei. (orig.)

  13. Relativistic Chiral Mean Field Model for Finite Nuclei

    Science.gov (United States)

    Ogawa, Y.; Toki, H.; Tamenaga, S.; Haga, A.

    2009-08-01

    We present a relativistic chiral mean field (RCMF) model, which is a method for the proper treatment of pion-exchange interaction in the nuclear many-body problem. There the dominant term of the pionic correlation is expressed in two-particle two-hole (2p-2h) states with particle-holes having pionic quantum number, J^{π}. The charge-and-parity-projected relativistic mean field (CPPRMF) model developed so far treats surface properties of pionic correlation in 2p-2h states with J^{π} = 0^{-} (spherical ansatz). We extend the CPPRMF model by taking 2p-2h states with higher spin quantum numbers, J^{π} = 1^{+}, 2^{-}, 3^{+}, ... to describe the full strength of the pionic correlation in the intermediate range (r > 0.5 fm). We apply the RCMF model to the ^{4}He nucleus as a pilot calculation for the study of medium and heavy nuclei. We study the behavior of energy convergence with the pionic quantum number, J^{π}, and find convergence around J^{π}_{max} = 6^{-}. We include further the effect of the short-range repulsion in terms of the unitary correlation operator method (UCOM) for the central part of the pion-exchange interaction. The energy contribution of about 50% of the net two-body interaction comes from the tensor part and 20% comes from the spin-spin central part of the pion-exchange interaction.}

  14. An assessment of mean-field mixed semiclassical approaches: Equilibrium populations and algorithm stability

    International Nuclear Information System (INIS)

    Bellonzi, Nicole; Jain, Amber; Subotnik, Joseph E.

    2016-01-01

    We study several recent mean-field semiclassical dynamics methods, focusing on the ability to recover detailed balance for long time (equilibrium) populations. We focus especially on Miller and Cotton’s [J. Phys. Chem. A 117, 7190 (2013)] suggestion to include both zero point electronic energy and windowing on top of Ehrenfest dynamics. We investigate three regimes: harmonic surfaces with weak electronic coupling, harmonic surfaces with strong electronic coupling, and anharmonic surfaces with weak electronic coupling. In most cases, recent additions to Ehrenfest dynamics are a strong improvement upon mean-field theory. However, for methods that include zero point electronic energy, we show that anharmonic potential energy surfaces often lead to numerical instabilities, as caused by negative populations and forces. We also show that, though the effect of negative forces can appear hidden in harmonic systems, the resulting equilibrium limits do remain dependent on any windowing and zero point energy parameters.

  15. Mean-field games with logistic population dynamics

    KAUST Repository

    Gomes, Diogo A.

    2013-12-01

    In its standard form, a mean-field game can be defined by coupled system of equations, a Hamilton-Jacobi equation for the value function of agents and a Fokker-Planck equation for the density of agents. Traditionally, the latter equation is adjoint to the linearization of the former. Since the Fokker-Planck equation models a population dynamic, we introduce natural features such as seeding and birth, and nonlinear death rates. In this paper we analyze a stationary meanfield game in one dimension, illustrating various techniques to obtain regularity of solutions in this class of systems. In particular we consider a logistic-type model for birth and death of the agents which is natural in problems where crowding affects the death rate of the agents. The introduction of these new terms requires a number of new ideas to obtain wellposedness. In a forthcoming publication we will address higher dimensional models. ©2013 IEEE.

  16. A Stochastic Maximum Principle for General Mean-Field Systems

    International Nuclear Information System (INIS)

    Buckdahn, Rainer; Li, Juan; Ma, Jin

    2016-01-01

    In this paper we study the optimal control problem for a class of general mean-field stochastic differential equations, in which the coefficients depend, nonlinearly, on both the state process as well as of its law. In particular, we assume that the control set is a general open set that is not necessary convex, and the coefficients are only continuous on the control variable without any further regularity or convexity. We validate the approach of Peng (SIAM J Control Optim 2(4):966–979, 1990) by considering the second order variational equations and the corresponding second order adjoint process in this setting, and we extend the Stochastic Maximum Principle of Buckdahn et al. (Appl Math Optim 64(2):197–216, 2011) to this general case.

  17. Coalescing colony model: Mean-field, scaling, and geometry

    Science.gov (United States)

    Carra, Giulia; Mallick, Kirone; Barthelemy, Marc

    2017-12-01

    We analyze the coalescing model where a `primary' colony grows and randomly emits secondary colonies that spread and eventually coalesce with it. This model describes population proliferation in theoretical ecology, tumor growth, and is also of great interest for modeling urban sprawl. Assuming the primary colony to be always circular of radius r (t ) and the emission rate proportional to r (t) θ , where θ >0 , we derive the mean-field equations governing the dynamics of the primary colony, calculate the scaling exponents versus θ , and compare our results with numerical simulations. We then critically test the validity of the circular approximation for the colony shape and show that it is sound for a constant emission rate (θ =0 ). However, when the emission rate is proportional to the perimeter, the circular approximation breaks down and the roughness of the primary colony cannot be discarded, thus modifying the scaling exponents.

  18. Mean-field games with logistic population dynamics

    KAUST Repository

    Gomes, Diogo A.; De Lima Ribeiro, Ricardo

    2013-01-01

    In its standard form, a mean-field game can be defined by coupled system of equations, a Hamilton-Jacobi equation for the value function of agents and a Fokker-Planck equation for the density of agents. Traditionally, the latter equation is adjoint to the linearization of the former. Since the Fokker-Planck equation models a population dynamic, we introduce natural features such as seeding and birth, and nonlinear death rates. In this paper we analyze a stationary meanfield game in one dimension, illustrating various techniques to obtain regularity of solutions in this class of systems. In particular we consider a logistic-type model for birth and death of the agents which is natural in problems where crowding affects the death rate of the agents. The introduction of these new terms requires a number of new ideas to obtain wellposedness. In a forthcoming publication we will address higher dimensional models. ©2013 IEEE.

  19. Displacement Convexity for First-Order Mean-Field Games

    KAUST Repository

    Seneci, Tommaso

    2018-05-01

    In this thesis, we consider the planning problem for first-order mean-field games (MFG). These games degenerate into optimal transport when there is no coupling between players. Our aim is to extend the concept of displacement convexity from optimal transport to MFGs. This extension gives new estimates for solutions of MFGs. First, we introduce the Monge-Kantorovich problem and examine related results on rearrangement maps. Next, we present the concept of displacement convexity. Then, we derive first-order MFGs, which are given by a system of a Hamilton-Jacobi equation coupled with a transport equation. Finally, we identify a large class of functions, that depend on solutions of MFGs, which are convex in time. Among these, we find several norms. This convexity gives bounds for the density of solutions of the planning problem.

  20. A Stochastic Maximum Principle for General Mean-Field Systems

    Energy Technology Data Exchange (ETDEWEB)

    Buckdahn, Rainer, E-mail: Rainer.Buckdahn@univ-brest.fr [Université de Bretagne-Occidentale, Département de Mathématiques (France); Li, Juan, E-mail: juanli@sdu.edu.cn [Shandong University, Weihai, School of Mathematics and Statistics (China); Ma, Jin, E-mail: jinma@usc.edu [University of Southern California, Department of Mathematics (United States)

    2016-12-15

    In this paper we study the optimal control problem for a class of general mean-field stochastic differential equations, in which the coefficients depend, nonlinearly, on both the state process as well as of its law. In particular, we assume that the control set is a general open set that is not necessary convex, and the coefficients are only continuous on the control variable without any further regularity or convexity. We validate the approach of Peng (SIAM J Control Optim 2(4):966–979, 1990) by considering the second order variational equations and the corresponding second order adjoint process in this setting, and we extend the Stochastic Maximum Principle of Buckdahn et al. (Appl Math Optim 64(2):197–216, 2011) to this general case.

  1. Mean field games with nonlinear mobilities in pedestrian dynamics

    KAUST Repository

    Burger, Martin

    2014-04-01

    In this paper we present an optimal control approach modeling fast exit scenarios in pedestrian crowds. In particular we consider the case of a large human crowd trying to exit a room as fast as possible. The motion of every pedestrian is determined by minimizing a cost functional, which depends on his/her position, velocity, exit time and the overall density of people. This microscopic setup leads in the mean-field limit to a parabolic optimal control problem. We discuss the modeling of the macroscopic optimal control approach and show how the optimal conditions relate to the Hughes model for pedestrian flow. Furthermore we provide results on the existence and uniqueness of minimizers and illustrate the behavior of the model with various numerical results.

  2. Mean field games with nonlinear mobilities in pedestrian dynamics

    KAUST Repository

    Burger, Martin; Di Francesco, Marco; Markowich, Peter A.; Wolfram, Marie Therese

    2014-01-01

    In this paper we present an optimal control approach modeling fast exit scenarios in pedestrian crowds. In particular we consider the case of a large human crowd trying to exit a room as fast as possible. The motion of every pedestrian is determined by minimizing a cost functional, which depends on his/her position, velocity, exit time and the overall density of people. This microscopic setup leads in the mean-field limit to a parabolic optimal control problem. We discuss the modeling of the macroscopic optimal control approach and show how the optimal conditions relate to the Hughes model for pedestrian flow. Furthermore we provide results on the existence and uniqueness of minimizers and illustrate the behavior of the model with various numerical results.

  3. Mean field instabilities in dissipative heavy ion collisions

    International Nuclear Information System (INIS)

    Colonna, M.; Guarnera, A.; Istituto Nazionale di Fisica Nucleare, Bologna; Catania Univ.; Di Torro, M.; Catania Univ.

    1995-01-01

    We discuss new reaction mechanisms that may occur in semi-peripheral heavy ion collisions at intermediate energies. In particular we focus on the dynamics of the overlapping zone, showing the development of neck instabilities, coupled with the possibility of an increasing amount amount of dynamical fluctuations. In a very selected beam energy range between 40 and 70 MeV/u we observe an important interplay between stochastic nucleon exchange and the random nature of nucleon-nucleon collisions. Expected consequences are intermediate mass fragment emissions from the neck region and large variances in the projectile-like and target-like observables. The crucial importance of a time matching between the growth of mean field instabilities and the separation of the interacting system is stressed. Some hints towards the observation of relatively large instability effects in deep inelastic collisions at lower energy are finally suggested. (authors). 29 refs., 5 figs., 2 tabs

  4. A Model of the Turbulent Electric Dynamo in Multi-Phase Media

    Science.gov (United States)

    Dementyeva, Svetlana; Mareev, Evgeny

    2016-04-01

    Many terrestrial and astrophysical phenomena witness the conversion of kinetic energy into electric energy (the energy of the quasi-stationary electric field) in conducting media, which is natural to treat as manifestations of electric dynamo by analogy with well-known theory of magnetic dynamo. Such phenomena include thunderstorms and lightning in the Earth's atmosphere and atmospheres of other planets, electric activity caused by dust storms in terrestrial and Martian atmospheres, snow storms, electrical discharges occurring in technological setups, connected with intense mixing of aerosol particles like in the milling industry. We have developed a model of the large-scale turbulent electric dynamo in a weakly conducting medium, containing two heavy-particle components. We have distinguished two main classes of charging mechanisms (inductive and non-inductive) in accordance with the dependence or independence of the electric charge, transferred during a particle collision, on the electric field intensity and considered the simplified models which demonstrate the possibility of dynamo realization and its specific peculiarities for these mechanisms. Dynamo (the large-scale electric field growth) appears due to the charge separation between the colliding and rebounding particles. This process is may be greatly intensified by the turbulent mixing of particles with different masses and, consequently, different inertia. The particle charge fluctuations themselves (small-scale dynamo), however, do not automatically mean growth of the large-scale electric field without a large-scale asymmetry. Such an asymmetry arises due to the dependence of the transferred charge magnitude on the electric field intensity in the case of the inductive mechanism of charge separation, or due to the gravity and convection for non-inductive mechanisms. We have found that in the case of the inductive mechanism the large-scale dynamo occurs if the medium conductivity is small enough while the

  5. Non-kinematic Flux-transport Dynamos Including the Effects of Diffusivity Quenching

    Energy Technology Data Exchange (ETDEWEB)

    Ichimura, Chiaki; Yokoyama, Takaaki [Department of Earth and Planetary Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2017-04-10

    Turbulent magnetic diffusivity is quenched when strong magnetic fields suppress turbulent motion in a phenomenon known as diffusivity quenching. Diffusivity quenching can provide a mechanism for amplifying magnetic field and influencing global velocity fields through Lorentz force feedback. To investigate this effect, we conducted mean field flux-transport dynamo simulations that included the effects of diffusivity quenching in a non-kinematic regime. We found that toroidal magnetic field strength is amplified by up to approximately 1.5 times in the convection zone as a result of diffusivity quenching. This amplification is much weaker than that in kinematic cases as a result of Lorentz force feedback on the system’s differential rotation. While amplified toroidal fields lead to the suppression of equatorward meridional flow locally near the base of the convection zone, large-scale equatorward transport of magnetic flux via meridional flow, which is the essential process of the flux-transport dynamo, is sustainable in our calculations.

  6. Linear Quadratic Mean Field Type Control and Mean Field Games with Common Noise, with Application to Production of an Exhaustible Resource

    Energy Technology Data Exchange (ETDEWEB)

    Graber, P. Jameson, E-mail: jameson-graber@baylor.edu [Baylor University, Department of Mathematics (United States)

    2016-12-15

    We study a general linear quadratic mean field type control problem and connect it to mean field games of a similar type. The solution is given both in terms of a forward/backward system of stochastic differential equations and by a pair of Riccati equations. In certain cases, the solution to the mean field type control is also the equilibrium strategy for a class of mean field games. We use this fact to study an economic model of production of exhaustible resources.

  7. Dynamo generated by the centrifugal instability

    Science.gov (United States)

    Marcotte, Florence; Gissinger, Christophe

    2016-10-01

    We present a scenario for magnetic field amplification where an electrically conducting fluid is confined in a differentially rotating, spherical shell with thin aspect ratio. When the angular momentum sufficiently decreases outwards, a hydrodynamic instability develops in the equatorial region, characterized by pairs of counter-rotating toroidal vortices similar to those observed in cylindrical Couette flow. These spherical Taylor-Couette vortices generate a subcritical dynamo magnetic field dominated by nonaxisymmetric components. We show that the critical magnetic Reynolds number seems to reach a constant value at large Reynolds number and that the global rotation can strongly decrease the dynamo onset. Our numerical results are understood within the framework of a simple dynamical system, and we propose a low-dimensional model for subcritical dynamo bifurcations. Implications for both laboratory dynamos and astrophysical magnetic fields are finally discussed.

  8. Saturation of the turbulent dynamo.

    Science.gov (United States)

    Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S

    2015-08-01

    The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.

  9. Communication: Electronic and transport properties of molecular junctions under a finite bias: A dual mean field approach

    International Nuclear Information System (INIS)

    Liu, Shuanglong; Feng, Yuan Ping; Zhang, Chun

    2013-01-01

    We show that when a molecular junction is under an external bias, its properties cannot be uniquely determined by the total electron density in the same manner as the density functional theory for ground state properties. In order to correctly incorporate bias-induced nonequilibrium effects, we present a dual mean field (DMF) approach. The key idea is that the total electron density together with the density of current-carrying electrons are sufficient to determine the properties of the system. Two mean fields, one for current-carrying electrons and the other one for equilibrium electrons can then be derived. Calculations for a graphene nanoribbon junction show that compared with the commonly used ab initio transport theory, the DMF approach could significantly reduce the electric current at low biases due to the non-equilibrium corrections to the mean field potential in the scattering region

  10. One-Dimensional Stationary Mean-Field Games with Local Coupling

    KAUST Repository

    Gomes, Diogo A.; Nurbekyan, Levon; Prazeres, Mariana

    2017-01-01

    A standard assumption in mean-field game (MFG) theory is that the coupling between the Hamilton–Jacobi equation and the transport equation is monotonically non-decreasing in the density of the population. In many cases, this assumption implies the existence and uniqueness of solutions. Here, we drop that assumption and construct explicit solutions for one-dimensional MFGs. These solutions exhibit phenomena not present in monotonically increasing MFGs: low-regularity, non-uniqueness, and the formation of regions with no agents.

  11. High-conductance states in a mean-field cortical network model

    CERN Document Server

    Lerchner, A; Hertz, J

    2004-01-01

    Measured responses from visual cortical neurons show that spike times tend to be correlated rather than exactly Poisson distributed. Fano factors vary and are usually greater than 1 due to the tendency of spikes being clustered into bursts. We show that this behavior emerges naturally in a balanced cortical network model with random connectivity and conductance-based synapses. We employ mean field theory with correctly colored noise to describe temporal correlations in the neuronal activity. Our results illuminate the connection between two independent experimental findings: high conductance states of cortical neurons in their natural environment, and variable non-Poissonian spike statistics with Fano factors greater than 1.

  12. One-Dimensional Stationary Mean-Field Games with Local Coupling

    KAUST Repository

    Gomes, Diogo A.

    2017-05-25

    A standard assumption in mean-field game (MFG) theory is that the coupling between the Hamilton–Jacobi equation and the transport equation is monotonically non-decreasing in the density of the population. In many cases, this assumption implies the existence and uniqueness of solutions. Here, we drop that assumption and construct explicit solutions for one-dimensional MFGs. These solutions exhibit phenomena not present in monotonically increasing MFGs: low-regularity, non-uniqueness, and the formation of regions with no agents.

  13. Neutron fraction and neutrino mean free path predictions in relativistic mean field models

    International Nuclear Information System (INIS)

    Hutauruk, P.T.P.; Williams, C.K.; Sulaksono, A.; Mart, T.

    2004-01-01

    The equation of state (EOS) of dense matter and neutrino mean free path (NMFP) in a neutron star have been studied by using relativistic mean field models motivated by effective field theory. It is found that the models predict too large proton fractions, although one of the models (G2) predicts an acceptable EOS. This is caused by the isovector terms. Except G2, the other two models predict anomalous NMFP's. In order to minimize the anomaly, besides an acceptable EOS, a large M* is favorable. A model with large M* retains the regularity in the NMFP even for a small neutron fraction

  14. Time dependent mean field approximation to the many-body S-matrix

    International Nuclear Information System (INIS)

    Alhassid, Y.; Koonin, S.E.

    1980-01-01

    Time-dependent Hartree-Fock (TDHF) calculations are a good description of some inclusive properties of deep inelastic heavy-ion collisions. The first steps toward a mean-field theory that approximates specific elements of the many-body S matrix are presented. A many-body system with pairwise interactions excited by an external, time-dependent one-body field is considered. The methods are used to solve the forced Lipkin model. The moduli of elastic and excitation amplitudes are plotted. 3 figures

  15. A mean field study of the quasi-one-dimensional antiferromagnetic anisotropic Heisenberg model

    International Nuclear Information System (INIS)

    Benyoussef, A.

    1996-10-01

    The effect of the chain and the dimer anisotropies on the ground state energy and the energy gap of the spin-1/2 quasi-one-dimensional antiferromagnetic Heisenberg model is investigated using a mean field theory. The dependence of the magnetization and the effective hopping parameters on the anisotropy α xy (=J xy perpendicular /J xy parallel ) are presented for several values of the chain anisotropy. However, such a system exhibits a transition from antiferromagnetic ordered to disordered phases for arbitrary chain anisotropy and dimer anisotropy. (author). 22 refs, 11 figs

  16. Identical bands at normal deformation: Necessity of going beyond the mean-field approach

    International Nuclear Information System (INIS)

    Sun, Y.; Wu, C.; Feng, D.H.; Egido, J.L.; Guidry, M.

    1996-01-01

    The validity of BCS theory has been questioned because the appearance of normally deformed identical bands in odd and even nuclei seems to contradict the conventional understanding of the blocking effect. This problem is examined with the projected shell model (PSM), which projects good angular momentum states and includes many-body correlations in both deformation and pairing channels. Satisfactory reproduction of identical band data by the PSM suggests that it may be necessary to go beyond the mean field to obtain a quantitative account of identical bands. copyright 1996 The American Physical Society

  17. First order mean field games - explicit solutions, perturbations and connection with classical mechanics

    KAUST Repository

    Gomes, Diogo A.

    2016-01-06

    We present recent developments in the theory of first-order mean-field games (MFGs). A standard assumption in MFGs is that the cost function of the agents is monotone in the density of the distribution. This assumption leads to a comprehensive existence theory and to the uniqueness of smooth solutions. Here, our goals are to understand the role of local monotonicity in the small perturbation regime and the properties of solutions for problems without monotonicity. Under a local monotonicity assumption, we show that small perturbations of MFGs have unique smooth solutions. In addition, we explore the connection between first-order MFGs and classical mechanics and KAM theory. Next, for non-monotone problems, we construct non-unique explicit solutions for a broad class of first-order mean-field games. We provide an alternative formulation of MFGs in terms of a new current variable. These examples illustrate two new phenomena: the non-uniqueness of solutions and the breakdown of regularity.

  18. First order mean field games - explicit solutions, perturbations and connection with classical mechanics

    KAUST Repository

    Gomes, Diogo A.; Nurbekyan, Levon; Prazeres, Mariana

    2016-01-01

    We present recent developments in the theory of first-order mean-field games (MFGs). A standard assumption in MFGs is that the cost function of the agents is monotone in the density of the distribution. This assumption leads to a comprehensive existence theory and to the uniqueness of smooth solutions. Here, our goals are to understand the role of local monotonicity in the small perturbation regime and the properties of solutions for problems without monotonicity. Under a local monotonicity assumption, we show that small perturbations of MFGs have unique smooth solutions. In addition, we explore the connection between first-order MFGs and classical mechanics and KAM theory. Next, for non-monotone problems, we construct non-unique explicit solutions for a broad class of first-order mean-field games. We provide an alternative formulation of MFGs in terms of a new current variable. These examples illustrate two new phenomena: the non-uniqueness of solutions and the breakdown of regularity.

  19. Elementary methods for statistical systems, mean field, large-n, and duality

    International Nuclear Information System (INIS)

    Itzykson, C.

    1983-01-01

    Renormalizable field theories are singled out by such precise restraints that regularization schemes must be used to break these invariances. Statistical methods can be adapted to these problems where asymptotically free models fail. This lecture surveys approximation schemes developed in the context of statistical mechanics. The confluence point of statistical mechanics and field theory is the use of discretized path integrals, where continuous space time has been replaced by a regular lattice. Dynamic variables, a Boltzman weight factor, and boundary conditions are the ingredients. Mean field approximations --field equations, Random field transform, and gauge invariant systems--are surveyed. Under Large-N limits vector models are found to simplify tremendously. The reasons why matrix models drawn from SU (n) gauge theories do not simplify are discussed. In the epilogue, random curves versus random surfaces are offered as an example where global and local symmetries are not alike

  20. Individual based and mean-field modeling of direct aggregation

    KAUST Repository

    Burger, Martin

    2013-10-01

    We introduce two models of biological aggregation, based on randomly moving particles with individual stochasticity depending on the perceived average population density in their neighborhood. In the firstorder model the location of each individual is subject to a density-dependent random walk, while in the second-order model the density-dependent random walk acts on the velocity variable, together with a density-dependent damping term. The main novelty of our models is that we do not assume any explicit aggregative force acting on the individuals; instead, aggregation is obtained exclusively by reducing the individual stochasticity in response to higher perceived density. We formally derive the corresponding mean-field limits, leading to nonlocal degenerate diffusions. Then, we carry out the mathematical analysis of the first-order model, in particular, we prove the existence of weak solutions and show that it allows for measure-valued steady states. We also perform linear stability analysis and identify conditions for pattern formation. Moreover, we discuss the role of the nonlocality for well-posedness of the first-order model. Finally, we present results of numerical simulations for both the first- and second-order model on the individual-based and continuum levels of description. 2012 Elsevier B.V. All rights reserved.

  1. Phase diagram of the mean field model of simplicial gravity

    International Nuclear Information System (INIS)

    Bialas, P.; Burda, Z.; Johnston, D.

    1999-01-01

    We discuss the phase diagram of the balls in boxes model, with a varying number of boxes. The model can be regarded as a mean-field model of simplicial gravity. We analyse in detail the case of weights of the form p(q) = q -β , which correspond to the measure term introduced in the simplicial quantum gravity simulations. The system has two phases: elongated (fluid) and crumpled. For β ε (2, ∞) the transition between these two phases is first-order, while for β ε (1, 2) it is continuous. The transition becomes softer when β approaches unity and eventually disappears at β = 1. We then generalise the discussion to an arbitrary set of weights. Finally, we show that if one introduces an additional kinematic bound on the average density of balls per box then a new condensed phase appears in the phase diagram. It bears some similarity to the crinkled phase of simplicial gravity discussed recently in models of gravity interacting with matter fields

  2. Individual based and mean-field modeling of direct aggregation

    KAUST Repository

    Burger, Martin; Haskovec, Jan; Wolfram, Marie-Therese

    2013-01-01

    We introduce two models of biological aggregation, based on randomly moving particles with individual stochasticity depending on the perceived average population density in their neighborhood. In the firstorder model the location of each individual is subject to a density-dependent random walk, while in the second-order model the density-dependent random walk acts on the velocity variable, together with a density-dependent damping term. The main novelty of our models is that we do not assume any explicit aggregative force acting on the individuals; instead, aggregation is obtained exclusively by reducing the individual stochasticity in response to higher perceived density. We formally derive the corresponding mean-field limits, leading to nonlocal degenerate diffusions. Then, we carry out the mathematical analysis of the first-order model, in particular, we prove the existence of weak solutions and show that it allows for measure-valued steady states. We also perform linear stability analysis and identify conditions for pattern formation. Moreover, we discuss the role of the nonlocality for well-posedness of the first-order model. Finally, we present results of numerical simulations for both the first- and second-order model on the individual-based and continuum levels of description. 2012 Elsevier B.V. All rights reserved.

  3. Spectral Gap Estimates in Mean Field Spin Glasses

    Science.gov (United States)

    Ben Arous, Gérard; Jagannath, Aukosh

    2018-05-01

    We show that mixing for local, reversible dynamics of mean field spin glasses is exponentially slow in the low temperature regime. We introduce a notion of free energy barriers for the overlap, and prove that their existence imply that the spectral gap is exponentially small, and thus that mixing is exponentially slow. We then exhibit sufficient conditions on the equilibrium Gibbs measure which guarantee the existence of these barriers, using the notion of replicon eigenvalue and 2D Guerra Talagrand bounds. We show how these sufficient conditions cover large classes of Ising spin models for reversible nearest-neighbor dynamics and spherical models for Langevin dynamics. Finally, in the case of Ising spins, Panchenko's recent rigorous calculation (Panchenko in Ann Probab 46(2):865-896, 2018) of the free energy for a system of "two real replica" enables us to prove a quenched LDP for the overlap distribution, which gives us a wider criterion for slow mixing directly related to the Franz-Parisi-Virasoro approach (Franz et al. in J Phys I 2(10):1869-1880, 1992; Kurchan et al. J Phys I 3(8):1819-1838, 1993). This condition holds in a wider range of temperatures.

  4. Antiferromagnetic and topological states in silicene: A mean field study

    Science.gov (United States)

    Liu, Feng; Liu, Cheng-Cheng; Yao, Yu-Gui

    2015-08-01

    It has been widely accepted that silicene is a topological insulator, and its gap closes first and then opens again with increasing electric field, which indicates a topological phase transition from the quantum spin Hall state to the band insulator state. However, due to the relatively large atomic spacing of silicene, which reduces the bandwidth, the electron-electron interaction in this system is considerably strong and cannot be ignored. The Hubbard interaction, intrinsic spin orbital coupling (SOC), and electric field are taken into consideration in our tight-binding model, with which the phase diagram of silicene is carefully investigated on the mean field level. We have found that when the magnitudes of the two mass terms produced by the Hubbard interaction and electric potential are close to each other, the intrinsic SOC flips the sign of the mass term at either K or K‧ for one spin and leads to the emergence of the spin-polarized quantum anomalous Hall state. Project supported by the National Key Basic Research Program of China (Grant Nos. 2014CB920903, 2013CB921903, 2011CBA00108, and 2012CB937500), the National Natural Science Foundation of China (Grant Nos. 11021262, 11172303, 11404022, 11225418, and 11174337), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20121101110046), the Excellent Young Scholars Research Fund of Beijing Institute of Technology (Grant No. 2014CX04028), and the Basic Research Funds of Beijing Institute of Technology (Grant No. 20141842001).

  5. Mean-field inference of Hawkes point processes

    International Nuclear Information System (INIS)

    Bacry, Emmanuel; Gaïffas, Stéphane; Mastromatteo, Iacopo; Muzy, Jean-François

    2016-01-01

    We propose a fast and efficient estimation method that is able to accurately recover the parameters of a d-dimensional Hawkes point-process from a set of observations. We exploit a mean-field approximation that is valid when the fluctuations of the stochastic intensity are small. We show that this is notably the case in situations when interactions are sufficiently weak, when the dimension of the system is high or when the fluctuations are self-averaging due to the large number of past events they involve. In such a regime the estimation of a Hawkes process can be mapped on a least-squares problem for which we provide an analytic solution. Though this estimator is biased, we show that its precision can be comparable to the one of the maximum likelihood estimator while its computation speed is shown to be improved considerably. We give a theoretical control on the accuracy of our new approach and illustrate its efficiency using synthetic datasets, in order to assess the statistical estimation error of the parameters. (paper)

  6. Energy coupling function and solar wind-magnetosphere dynamo

    International Nuclear Information System (INIS)

    Kan, J.R.; Lee, L.C.

    1979-01-01

    The power delivered by the solar wind dynamo to the open magnetosphere is calculated based on the concept of field line reconnection, independent of the MHD steady reconnection theories. By recognizing a previously overlooked geometrical relationship between the reconnection electric field and the magnetic field, the calculated power is shown to be approximately proportional to the Akasofu-Perreault energy coupling function for the magnetospheric substorm. In addition to the polar cap potential, field line reconnection also gives rise to parallel electric fields on open field lines in the high-latitude cusp and the polar cap reions

  7. Magnetic fluctuation induced transport and edge dynamo measurements in the MST reversed-field pinch

    International Nuclear Information System (INIS)

    Hokin, S.; Fiksel, G.; Ji, H.

    1994-09-01

    Probe measurements in MST indicate that RFP particle and energy loss is governed by magnetic fluctuations inside r/a = 0.8, with energy carried out convectively by superthermal electrons. The radial loss rate is lower than the Rechester-Rosenbluth level, presumably due to the establishment of a restraining ambipolar potential. Several aspects of these measurements contradict the Kinetic Dynamo Theory, while the MHD dynamo EMF is measured to be large enough to drive the edge current carried by these superthermal electrons

  8. Edge-Corrected Mean-Field Hubbard Model: Principle and Applications in 2D Materials

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2017-05-01

    Full Text Available This work reviews the current progress of tight-binding methods and the recent edge-modified mean-field Hubbard model. Undercoordinated atoms (atoms not fully coordinated exist at a high rate in nanomaterials with their impact overlooked. A quantum theory was proposed to calculate electronic structure of nanomaterials by incorporating bond order-length-strength (BOLS correlation to mean-field Hubbard model, i.e., BOLS-HM. Consistency between the BOLS-HM calculation and density functional theory (DFT calculation on 2D materials verified that (i bond contractions and potential well depression occur at the edge of graphene, phosphorene, and antimonene nanoribbons; (ii the physical origin of the band gap opening of graphene, phosphorene, and antimonene nanoribbons lays in the enhancement of edge potentials and hopping integrals due to the shorter and stronger bonds between undercoordinated atoms; (iii the band gap of 2D material nanoribbons expand as the width decreases due to the increasing under-coordination effects of edges which modulates the conductive behaviors; and (iv non-bond electrons at the edges and atomic vacancies of 2D material accompanied with the broken bond contribute to the Dirac-Fermi polaron (DFP with a local magnetic moment.

  9. Superconducting and other phases in organic high polymers of polyacenic carbon skeletons. II. The mean field method

    International Nuclear Information System (INIS)

    Kimura, M.; Kawabe, H.; Nishikawa, K.; Aono, S.

    1986-01-01

    Ordered phases such as CDW, SDW, and the singlet superconductivity(SSC) are predicted by means of a mean field theory. The electronic Hamiltonian is linearized by introducing order parameters which are expected to arise, and these order parameters are determined self-consistently. The behaviors of gap, transition temperature, and condensation energy are greatly different from those of BCS theory. The coexistence of the various phases is discussed. Aside from a very special case the single phase is most stable

  10. Exact axially symmetric galactic dynamos

    Science.gov (United States)

    Henriksen, R. N.; Woodfinden, A.; Irwin, J. A.

    2018-05-01

    We give a selection of exact dynamos in axial symmetry on a galactic scale. These include some steady examples, at least one of which is wholly analytic in terms of simple functions and has been discussed elsewhere. Most solutions are found in terms of special functions, such as associated Lagrange or hypergeometric functions. They may be considered exact in the sense that they are known to any desired accuracy in principle. The new aspect developed here is to present scale-invariant solutions with zero resistivity that are self-similar in time. The time dependence is either a power law or an exponential factor, but since the geometry of the solution is self-similar in time we do not need to fix a time to study it. Several examples are discussed. Our results demonstrate (without the need to invoke any other mechanisms) X-shaped magnetic fields and (axially symmetric) magnetic spiral arms (both of which are well observed and documented) and predict reversing rotation measures in galaxy haloes (now observed in the CHANG-ES sample) as well as the fact that planar magnetic spirals are lifted into the galactic halo.

  11. The effect of collisionality and diamagnetism on the plasma dynamo

    International Nuclear Information System (INIS)

    Ji, H.; Yagi, Y.; Hattori, K.; Hirano, Y.; Shimada, T.; Maejima, Y.; Hayase, K.; Almagri, A.F.; Prager, S.C.; Sarff, J.S.

    1995-01-01

    Fluctuation-induced dynamo forces are measured over a wide range of electron collisionality in the edge of TPE-1RM20 Reversed-Field Pinch (RFP). In the collisionless region the Magnetohydrodynamic (MHD) dynamo alone can sustain the parallel current, while in the collisional region a new dynamo mechanism resulting from the fluctuations in the electron diamagnetic drift becomes dominant. A comprehensive picture of the RFP dynamo emerges by combining with earlier results from MST and REPUTE RFPs

  12. Magnetic reversals from planetary dynamo waves

    DEFF Research Database (Denmark)

    Sheyko, Andrey; Finlay, Chris; Jackson, Andrew

    2016-01-01

    A striking feature of many natural dynamos is their ability to undergo polarity reversals. The best documented example is Earth's magnetic field, which has reversed hundreds of times during its history. The origin of geomagnetic polarity reversals lies in a magnetohydrodynamic process that takes ...... to kinematic dynamo waves. Because our results are relevant in a regime of low viscosity and high magnetic diffusivity, and with geophysically appropriate boundary conditions, this form of dynamo wave may also be involved in geomagnetic reversals.......A striking feature of many natural dynamos is their ability to undergo polarity reversals. The best documented example is Earth's magnetic field, which has reversed hundreds of times during its history. The origin of geomagnetic polarity reversals lies in a magnetohydrodynamic process that takes...... place in Earth's core, but the precise mechanism is debated. The majority of numerical geodynamo simulations that exhibit reversals operate in a regime in which the viscosity of the fluid remains important, and in which the dynamo mechanism primarily involves stretching and twisting of field lines...

  13. On the genesis of spike-wave oscillations in a mean-field model of human thalamic and corticothalamic dynamics

    International Nuclear Information System (INIS)

    Rodrigues, Serafim; Terry, John R.; Breakspear, Michael

    2006-01-01

    In this Letter, the genesis of spike-wave activity-a hallmark of many generalized epileptic seizures-is investigated in a reduced mean-field model of human neural activity. Drawing upon brain modelling and dynamical systems theory, we demonstrate that the thalamic circuitry of the system is crucial for the generation of these abnormal rhythms, observing that the combination of inhibition from reticular nuclei and excitation from the cortical signal, interplay to generate the spike-wave oscillation. The mechanism revealed provides an explanation of why approaches based on linear stability and Heaviside approximations to the activation function have failed to explain the phenomena of spike-wave behaviour in mean-field models. A mathematical understanding of this transition is a crucial step towards relating spiking network models and mean-field approaches to human brain modelling

  14. Resonances and reactions from mean-field dynamics

    Directory of Open Access Journals (Sweden)

    Stevenson P. D.

    2016-01-01

    Full Text Available The time-dependent version of nuclear density functional theory, using functionals derived from Skyrme interactions, is able to approximately describe nuclear dynamics. We present time-dependent results of calculations of dipole resonances, concentrating on excitations of valence neutrons against a proton plus neutron core in the neutron-rich doubly-magic 132Sn nucleus, and results of collision dynamics, highlighting potential routes to ternary fusion, with the example of a collision of 48Ca+48Ca+208Pb resulting in a compound nucleus of element 120 stable against immediate fission.

  15. Spectral gaps, inertial manifolds and kinematic dynamos

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)]. E-mail: mnjmhd@am.uva.es

    2005-10-17

    Inertial manifolds are desirable objects when ones wishes a dynamical process to behave asymptotically as a finite-dimensional ones. Recently [Physica D 194 (2004) 297] these manifolds are constructed for the kinematic dynamo problem with time-periodic velocity. It turns out, however, that the conditions imposed on the fluid velocity to guarantee the existence of inertial manifolds are too demanding, in the sense that they imply that all the solutions tend exponentially to zero. The inertial manifolds are meaningful because they represent different decay rates, but the classical dynamos where the magnetic field is maintained or grows are not covered by this approach, at least until more refined estimates are found.

  16. A DOUBLE-RING ALGORITHM FOR MODELING SOLAR ACTIVE REGIONS: UNIFYING KINEMATIC DYNAMO MODELS AND SURFACE FLUX-TRANSPORT SIMULATIONS

    International Nuclear Information System (INIS)

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu; Yeates, Anthony R.

    2010-01-01

    The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed α-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithm for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.

  17. A self-consistent mean-field approach to the dynamical symmetry breaking

    International Nuclear Information System (INIS)

    Kunihiro, Teiji; Hatsuda, Tetsuo.

    1984-01-01

    The dynamical symmetry breaking phenomena in the Nambu and Jona-Lasimio model are reexamined in the framework of a self-consistent mean-field (SCMF) theory. First, we formulate the SCMF theory in a lucid manner based on a successful decomposition of the Lagrangian into semiclassical and residual interaction parts by imposing a condition that ''the dangerous term'' in Bogoliubov's sense should vanish. Then, we show that the difference of the energy density between the super and normal phases, the correct expression of which the original authors failed to give, can be readily obtained by applying the SCMF theory. Futhermore, it is shown that the expression thus obtained is identical to that of the effective potential (E.P.) given by the path-integral method with an auxiliary field up to the one loop order in the loop expansion, then one finds a new and simple way to get the E.P. Some numerical results of the E.P. and the dynamically generated mass of fermion are also shown. As another demonstration of the powerfulness of the SCMF theory, we derive, in the Appendix, the energy density of the O(N)-phi 4 model including the higher order corrections in the sense of large N expansion. (author)

  18. High-conductance states in a mean-field cortical network model

    DEFF Research Database (Denmark)

    Lerchner, Alexander; Ahmadi, Mandana; Hertz, John

    2004-01-01

    cortical network model with random connectivity and conductance-based synapses. We employ mean-field theory with correctly colored noise to describe temporal correlations in the neuronal activity. Our results illuminate the connection between two independent experimental findings: high-conductance states......Measured responses from visual cortical neurons show that spike times tend to be correlated rather than exactly Poisson distributed. Fano factors vary and are usually greater than 1, indicating a tendency toward spikes being clustered. We show that this behavior emerges naturally in a balanced...... of cortical neurons in their natural environment, and variable non-Poissonian spike statistics with Fano factors greater than 1. (C) 2004 Elsevier B.V. All rights reserved....

  19. One-dimensional, forward-forward mean-field games with congestion

    KAUST Repository

    Gomes, Diogo A.

    2017-03-29

    Here, we consider one-dimensional forward-forward mean-field games (MFGs) with congestion, which were introduced to approximate stationary MFGs. We use methods from the theory of conservation laws to examine the qualitative properties of these games. First, by computing Riemann invariants and corresponding invariant regions, we develop a method to prove lower bounds for the density. Next, by combining the lower bound with an entropy function, we prove the existence of global solutions for parabolic forward-forward MFGs. Finally, we construct traveling-wave solutions, which settles in a negative way the convergence problem for forward-forward MFGs. A similar technique gives the existence of time-periodic solutions for non-monotonic MFGs.

  20. Antikaon condensation in neutron stars by a new nonlinear mean-field model

    CERN Document Server

    Miyazaki, K

    2005-01-01

    We have investigated both the K^- and \\bar{K}^0 condensations in beta-equilibrated neutron star (NS) matter using the relativistic mean-field model with the renormalized meson-baryon coupling constants. Adopting the antikaon optical potential of -120MeV, our model predicts the K^- condensation as the second-order phase transition inside the neutron star of maximum mass, while the deeper potential than -160MeV is ruled out. This is in contrast to the result of the density-dependent hadron field theory. Our model also predicts remarkable softening of the equation of state by the \\bar{K}^0 condensation at high densities. Although this is contrasted with the result of the nonlinear Walecka model, only the K^- condensation can be formed in NSs.

  1. Small traveling clusters in attractive and repulsive Hamiltonian mean-field models.

    Science.gov (United States)

    Barré, Julien; Yamaguchi, Yoshiyuki Y

    2009-03-01

    Long-lasting small traveling clusters are studied in the Hamiltonian mean-field model by comparing between attractive and repulsive interactions. Nonlinear Landau damping theory predicts that a Gaussian momentum distribution on a spatially homogeneous background permits the existence of traveling clusters in the repulsive case, as in plasma systems, but not in the attractive case. Nevertheless, extending the analysis to a two-parameter family of momentum distributions of Fermi-Dirac type, we theoretically predict the existence of traveling clusters in the attractive case; these findings are confirmed by direct N -body numerical simulations. The parameter region with the traveling clusters is much reduced in the attractive case with respect to the repulsive case.

  2. Relativistic deformed mean-field calculation of binding energy differences of mirror nuclei

    International Nuclear Information System (INIS)

    Koepf, W.; Barreiro, L.A.

    1996-01-01

    Binding energy differences of mirror nuclei for A=15, 17, 27, 29, 31, 33, 39 and 41 are calculated in the framework of relativistic deformed mean-field theory. The spatial components of the vector meson fields and the photon are fully taken into account in a self-consistent manner. The calculated binding energy differences are systematically smaller than the experimental values and lend support to the existence of the Okamoto-Nolen-Schiffer anomaly found decades ago in nonrelativistic calculations. For the majority of the nuclei studied, however, the results are such that the anomaly is significantly smaller than the one obtained within state-of-the-art nonrelativistic calculations. (author). 35 refs

  3. Quantum mean-field approximation for lattice quantum models: Truncating quantum correlations and retaining classical ones

    Science.gov (United States)

    Malpetti, Daniele; Roscilde, Tommaso

    2017-02-01

    The mean-field approximation is at the heart of our understanding of complex systems, despite its fundamental limitation of completely neglecting correlations between the elementary constituents. In a recent work [Phys. Rev. Lett. 117, 130401 (2016), 10.1103/PhysRevLett.117.130401], we have shown that in quantum many-body systems at finite temperature, two-point correlations can be formally separated into a thermal part and a quantum part and that quantum correlations are generically found to decay exponentially at finite temperature, with a characteristic, temperature-dependent quantum coherence length. The existence of these two different forms of correlation in quantum many-body systems suggests the possibility of formulating an approximation, which affects quantum correlations only, without preventing the correct description of classical fluctuations at all length scales. Focusing on lattice boson and quantum Ising models, we make use of the path-integral formulation of quantum statistical mechanics to introduce such an approximation, which we dub quantum mean-field (QMF) approach, and which can be readily generalized to a cluster form (cluster QMF or cQMF). The cQMF approximation reduces to cluster mean-field theory at T =0 , while at any finite temperature it produces a family of systematically improved, semi-classical approximations to the quantum statistical mechanics of the lattice theory at hand. Contrary to standard MF approximations, the correct nature of thermal critical phenomena is captured by any cluster size. In the two exemplary cases of the two-dimensional quantum Ising model and of two-dimensional quantum rotors, we study systematically the convergence of the cQMF approximation towards the exact result, and show that the convergence is typically linear or sublinear in the boundary-to-bulk ratio of the clusters as T →0 , while it becomes faster than linear as T grows. These results pave the way towards the development of semiclassical numerical

  4. Magnetic reversals from planetary dynamo waves.

    Science.gov (United States)

    Sheyko, Andrey; Finlay, Christopher C; Jackson, Andrew

    2016-11-24

    A striking feature of many natural dynamos is their ability to undergo polarity reversals. The best documented example is Earth's magnetic field, which has reversed hundreds of times during its history. The origin of geomagnetic polarity reversals lies in a magnetohydrodynamic process that takes place in Earth's core, but the precise mechanism is debated. The majority of numerical geodynamo simulations that exhibit reversals operate in a regime in which the viscosity of the fluid remains important, and in which the dynamo mechanism primarily involves stretching and twisting of field lines by columnar convection. Here we present an example of another class of reversing-geodynamo model, which operates in a regime of comparatively low viscosity and high magnetic diffusivity. This class does not fit into the paradigm of reversal regimes that are dictated by the value of the local Rossby number (the ratio of advection to Coriolis force). Instead, stretching of the magnetic field by a strong shear in the east-west flow near the imaginary cylinder just touching the inner core and parallel to the axis of rotation is crucial to the reversal mechanism in our models, which involves a process akin to kinematic dynamo waves. Because our results are relevant in a regime of low viscosity and high magnetic diffusivity, and with geophysically appropriate boundary conditions, this form of dynamo wave may also be involved in geomagnetic reversals.

  5. Magnetorotational Dynamo Action in the Shearing Box

    Science.gov (United States)

    Walker, Justin; Boldyrev, Stanislav

    2017-10-01

    Magnetic dynamo action caused by the magnetorotational instability is studied in the shearing-box approximation with no imposed net magnetic flux. Consistent with recent studies, the dynamo action is found to be sensitive to the aspect ratio of the box: it is much easier to obtain in tall boxes (stretched in the direction normal to the disk plane) than in long boxes (stretched in the radial direction). Our direct numerical simulations indicate that the dynamo is possible in both cases, given a large enough magnetic Reynolds number. To explain the relatively larger effort required to obtain the dynamo action in a long box, we propose that the turbulent eddies caused by the instability most efficiently fold and mix the magnetic field lines in the radial direction. As a result, in the long box the scale of the generated strong azimuthal (stream-wise directed) magnetic field is always comparable to the scale of the turbulent eddies. In contrast, in the tall box the azimuthal magnetic flux spreads in the vertical direction over a distance exceeding the scale of the turbulent eddies. As a result, different vertical sections of the tall box are permeated by large-scale nonzero azimuthal magnetic fluxes, facilitating the instability. NSF AGS-1261659, Vilas Associates Award, NSF-Teragrid Project TG-PHY110016.

  6. TIDALLY DRIVEN DYNAMOS IN A ROTATING SPHERE

    International Nuclear Information System (INIS)

    Cébron, D.; Hollerbach, R.

    2014-01-01

    Large-scale planetary or stellar magnetic fields generated by a dynamo effect are mostly attributed to flows forced by buoyancy forces in electrically conducting fluid layers. However, these large-scale fields may also be controlled by tides, as previously suggested for the star τ-boo, Mars, or the early Moon. By simulating a small local patch of a rotating fluid, Barker and Lithwick have recently shown that tides can drive small-scale dynamos by exciting a hydrodynamic instability, the so-called elliptical (or tidal) instability. By performing global magnetohydrodynamic simulations of a rotating spherical fluid body, we investigate if this instability can also drive the observed large-scale magnetic fields. We are thus interested in the dynamo threshold and the generated magnetic field in order to test if such a mechanism is relevant for planets and stars. Rather than solving the problem in a geometry deformed by tides, we consider a spherical fluid body and add a body force to mimic the tidal deformation in the bulk of the fluid. This allows us to use an efficient spectral code to solve the magnetohydrodynamic problem. We first compare the hydrodynamic results with theoretical asymptotic results and numerical results obtained in a truly deformed ellipsoid, which confirms the presence of elliptical instability. We then perform magnetohydrodynamic simulations and investigate the dynamo capability of the flow. Kinematic and self-consistent dynamos are finally simulated, showing that the elliptical instability is capable of generating a dipole-dominated large-scale magnetic field in global simulations of a fluid rotating sphere

  7. Systems with N correlated fermions. Mean-field models for nuclear structures and other N-body systems

    International Nuclear Information System (INIS)

    Grasso, M.

    2009-10-01

    This document is a summary of the author's research activities whose common topic is the N-body problem. The first chapter introduces the N-body issue through models based on the mean-field theory and on the Hartree-Fock-Bogoliubov equations. The second chapter presents the understanding of exotic nuclei features within the mean-field approach. Exotic phenomena like nuclear bubble structure, pairing correlations and pairing violations, giant neutron halos, non-standard terms in the Skyrme interactions are reviewed. The chapter 3 is dedicated to some extensions of the RPA (random phase approximation). For instance the computation of the shell structure far from the stability valley requires a more accurate assessment of the energy of the individual states through the introduction of a particle-vibration coupling. Different RPA extensions are described: first the self-consistent extension enlarged beyond particle-hole configurations, then the boson-mapping-based extension in a 3-level Lipkin model and also the second random-phase approximation. The chapter 4 gathers some studies concerning ultra-cold gases of trapped atoms. These systems are the only structures that allow the study of the correlations associated to superfluidity in terms of interaction intensity, temperature or system size. The mean-field approach is adequate for these studies. The last chapter draws a perspective for the mean-field-based models, their limits are assessed and ways of improvement are proposed. (A.C.)

  8. Probing of the isospin-dependent mean field and nucleon-nucleon cross section in a medium by nucleon emissions

    International Nuclear Information System (INIS)

    Liu Jianye; Xing Yongzhong; Guo Wenjun

    2003-01-01

    We study the isospin effects of the mean field and two-body collision on the nucleon emissions at the intermediate energy heavy-ion collisions by using an isospin-dependent transport theory. The calculated results show that the nucleon emission number N n depends sensitively on the isospin effect of nucleon-nucleon cross section and weakly on the isospin-dependent mean field for neutron-poor system in higher beam energy region. In particular, the correlation between the medium correction of two-body collision and the momentum-dependent interaction enhances the dependence of nucleon emission number N n on the isospin effect of nucleon-nucleon cross section. On the contrary, the ratio of the neutron-proton ratio of the gas phase to the neutron-proton ratio of the liquid phase, i.e., the degree of isospin fractionation [(N/Z) gas ] b /[(N/Z) liq ] b depends sensitively on the isospin-dependent mean field and weakly on the isospin effect of two-body collision for neutron-rich system in the lower beam energy region. In this case, N n and [(N/Z) gas ] b /[(N/Z) liq ] b are the probes for extracting the information about the isospin-dependent nucleon-nucleon cross section in the medium and the isospin-dependent mean field, respectively

  9. Magnetic cluster mean-field description of spin glasses in amorphous La-Gd-Au alloys

    International Nuclear Information System (INIS)

    Poon, S.J.; Durand, J.

    1978-03-01

    Bulk magnetic properties of splat-cooled amorphous alloys of composition La/sub 80-x/Gd/sub x/Au 20 (0 less than or equal to x less than or equal to 80) were studied. Zero-field susceptibility, high-field magnetization (up to 75 kOe) and saturated remanence were measured between 1.8 and 290 0 K. Data were analyzed using a cluster mean-field approximation for the spin-glass and mictomagnetic alloys (x less than or equal to 56). Mean-field theories can account for the experimental freezing-temperatures of dilute spin-glasses in which the Ruderman-Kittel-Kasuya-Yosida interaction is dominant. For the dilute alloys, the role of amorphousness on the magnetic interactions is discussed. By extending the mean-field approximation, the concentrated spin-glasses are represented by rigid ferromagnetic clusters as individual spin-entities interacting via random forces. Scaling laws for the magnetization M and saturation remanent magnetization M/sub rs/ are obtained and presented graphically for the x less than or equal to 32 alloys in which M/x = g(H/x*, T/x), M/sub rs/(T)/x = M/sub rs/(0)/x/ exp (-α*T/x/sup p/) where x* is the concentration of clusters, α* is a constant, and p is the freezing-temperature exponent given by T/sub M/ infinity x/sup p/. It is found that p = 1 and 1.3 for the regions 4 less than or equal to x less than or equal to 40 respectively. An attempt is also made to account for the freezing temperatures of concentrated spin glasses. The strength of the interaction among clusters is determined from high-field magnetization measurements using the Larkin-Smith method modified for clusters. It is shown that for the x < 24 alloys, the size of the clusters can be correlated to the structural short-range order in the amorphous state. More concentrated alloys are marked by the emergence of cluster percolation

  10. Mean field approximation versus exact treatment of collisions in few-body systems

    International Nuclear Information System (INIS)

    Lemm, J.; Weiguny, A.; Giraud, B.G.

    1990-01-01

    A variational principle for calculating matrix elements of the full resolvent operator for a many-body system is studied. Its mean field approximation results in non-linear equations of Hartree (-Fock) type, with initial and final channel wave functions as driving terms. The mean field equations will in general have many solutions whereas the exact problem being linear, has a unique solution. In a schematic model with separable forces the mean field equations are analytically soluble, and for the exact problem the resulting integral equations are solved numerically. Comparing exact and mean field results over a wide range of system parameters, the mean field approach proves to be a very reliable approximation, which is not plagued by the notorious problem of defining asymptotic channels in the time-dependent mean field method. (orig.)

  11. A spherical Taylor-Couette dynamo

    Science.gov (United States)

    Marcotte, Florence; Gissinger, Christophe

    2016-04-01

    We present a new scenario for magnetic field amplification in the planetary interiors where an electrically conducting fluid is confined in a differentially rotating, spherical shell (spherical Couette flow) with thin aspect-ratio. When the angular momentum sufficiently decreases outwards, a primary hydrodynamic instability is widely known to develop in the equatorial region, characterized by pairs of counter-rotating, axisymmetric toroidal vortices (Taylor vortices) similar to those observed in cylindrical Couette flow. We characterize the subcritical dynamo bifurcation due to this spherical Taylor-Couette flow and study its evolution as the flow successively breaks into wavy and turbulent Taylor vortices for increasing Reynolds number. We show that the critical magnetic Reynolds number seems to reach a constant value as the Reynolds number is gradually increased. The role of global rotation on the dynamo threshold and the implications for planetary interiors are finally discussed.

  12. New computation results for the solar dynamo

    International Nuclear Information System (INIS)

    Csada, I.K.

    1983-01-01

    The analytical solution to the solar dynamo equation leads to a relatively simple algorythm for the computation in terms of kinematic models. The internal and external velocities taken to be in the form of axisymmetric meridional circulation and differential rotation, respectively. Pure radial expanding motions in the corona are also taken into consideration. Numerical results are presented in terms of the velocity parameters for the period of field reversal, decay time, magnitudes and phases of the first four multipoles. (author)

  13. Continuous spin mean-field models : Limiting kernels and Gibbs properties of local transforms

    NARCIS (Netherlands)

    Kulske, Christof; Opoku, Alex A.

    2008-01-01

    We extend the notion of Gibbsianness for mean-field systems to the setup of general (possibly continuous) local state spaces. We investigate the Gibbs properties of systems arising from an initial mean-field Gibbs measure by application of given local transition kernels. This generalizes previous

  14. Pairing correlations. I. Description of odd nuclei in mean-field theories

    International Nuclear Information System (INIS)

    Duguet, T.; Bonche, P.; Heenen, P.-H.; Meyer, J.

    2002-01-01

    In order to extract informations on pairing correlations in nuclei from experimental masses, the different contributions to odd-even mass differences are investigated within the Skyrme Hartree-Fock-Bogoliubov (HFB) method. In this part of the paper, the description of odd nuclei within HFB is discussed since it is the key point for the understanding of the above mentioned contributions. To go from an even nucleus to an odd one, the advantage of a two steps process is demonstrated and its physical content is discussed. New results concerning time-reversal symmetry breaking in odd nuclei are also reported

  15. Half-lives of proton emitters using relativistic mean field theory

    International Nuclear Information System (INIS)

    Sahu, Bidhubhusan; Patra, S. K.; Agarwalla, S. K.

    2011-01-01

    The proton radioactivity lifetimes of proton emitters from the ground and the isomeric states are calculated using the microscopic M3Y + Ex and R3Y + Ex (proposed) nucleon-nucleus interaction potentials. These interaction potentials are obtained by single folding the densities of the daughter nuclei supplemented by a zero-range pseudopotential. The quantum-mechanical-tunneling probability is calculated within the WKB approximation. The calculated results are found to be in good agreement with the experimental data for both the M3Y and R3Y interactions.

  16. Mean-field kinetic theory approach to evaporation of a binary liquid into vacuum

    Science.gov (United States)

    Frezzotti, A.; Gibelli, L.; Lockerby, D. A.; Sprittles, J. E.

    2018-05-01

    Evaporation of a binary liquid into near-vacuum conditions has been studied using numerical solutions of a system of two coupled Enskog-Vlasov equations. Liquid-vapor coexistence curves have been mapped out for different liquid compositions. The evaporation process has been investigated at a range of liquid temperatures sufficiently lower than the critical one for the vapor not to significantly deviate from the ideal behavior. It is found that the shape of the distribution functions of evaporating atoms is well approximated by an anisotropic Maxwellian distribution with different characteristic temperatures for velocity components normal and parallel to the liquid-vapor interface. The anisotropy reduces as the evaporation temperature decreases. Evaporation coefficients are computed based on the separation temperature and the maximum concentration of the less volatile component close to the liquid-vapor interface. This choice leads to values which are almost constant in the simulation conditions.

  17. Effective interaction for relativistic mean-field theories of nuclear structure

    International Nuclear Information System (INIS)

    Ai, H.B.; Celenza, L.S.; Harindranath, A.; Shakin, C.M.

    1987-01-01

    We construct an effective interaction, which when treated in a relativistic Hartree-Fock approximation, reproduces rather accurately the nucleon self-energy in nuclear matter and the Migdal parameters obtained via relativistic Brueckner-Hartree-Fock calculations. This effective interaction is constructed by adding Born terms, describing the exchange of pseudoparticles, to the Born terms of the Dirac-Hartree-Fock analysis. The pseudoparticles have relatively large masses and either real or imaginary coupling constants. (For example, exchange of a pseudo-sigma with an imaginary coupling constant has the effect of reducing the scalar attraction arising from sigma exchange while exchange of a pseudo-omega with an imaginary coupling constant has the effect of reducing the repulsion arising from omega exchange. The terms beyond the Born term in the case of pion exchange are well simulated by pseudo-sigma exchange with a real coupling constant.) The effective interaction constructed here may be used for calculations of the properties of finite nuclei in a relativistic Hartree-Fock approximation

  18. Self-averaging correlation functions in the mean field theory of spin glasses

    International Nuclear Information System (INIS)

    Mezard, M.; Parisi, G.

    1984-01-01

    In the infinite range spin glass model, we consider the staggered spin σsub(lambda)associated with a given eigenvector of the interaction matrix. We show that the thermal average of sub(lambda)sup(2) is a self-averaging quantity and we compute it

  19. Magnetic properties of mixed Ni–Cu ferrites calculated using mean field approach

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63, 46000 Safi (Morocco); LMPHE, URAC 12, Faculté des Sciences, Université Mohamed V-Agdal, Rabat (Morocco); Hamedoun, M. [Institute for Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [LMPHE, URAC 12, Faculté des Sciences, Université Mohamed V-Agdal, Rabat (Morocco); Institute for Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Academie Hassan II des Sciences et Techniques, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France)

    2014-08-01

    The magnetic properties of spinel ferrites [Fe{sub 1−(1−x)y}{sup 3+}Cu{sub (1−x)y}{sup 2+}]{sub A}[Ni{sub x}{sup 2+}Cu{sub (1−x)(1−y)}{sup 2+}Fe{sub 1+(1−x)y}{sup 3+}]{sub B}O{sub 4} have been studied by the mean field theory (MFT) and high temperature series expansions (HTSEs) combined with the Padé approximants. The critical temperature, the saturation magnetisation (M{sub S}) and the intra-sublattice exchanges interactions (J{sub AA}(x,y), J{sub BB}(x,y) and J{sub AB}(x,y)) are obtained by using a probability distribution law. The critical exponents associate with the magnetic susceptibility have been obtained. The effect of copper doping on the magnetic properties of nickel ferrites has been examined. - Highlights: • The exchange and constants interactions of CuFe{sub 2}O{sub 4} material are obtained. • The saturation magnetisation, the critical temperature, the Curie Weiss temperature and the Curie constant of CuFe{sub 2}O{sub 4} are obtained. • The critical exponent associated with the magnetic susceptibility is given.

  20. Mean field analysis of exchange coupling in amorphous DyFe2-B alloy ribbons

    International Nuclear Information System (INIS)

    Lee, J.M.; Jung, J.K.; Lim, S.H.

    2001-01-01

    Experimental magnetization-temperature curves for melt-spun ribbons of amorphous alloys (Dy 0.33 Fe 0.67 ) 1-x B x with x=0, 0.05, 0.1 and 0.15 (in atomic fraction) are fitted with theoretical equations based on the mean field theory in order to investigate exchange couplings between constituent elements as a function of the B content. The sign of the exchange coupling between Dy and Fe is negative, indicating that the magnetization direction of Dy is antiparallel to that of Fe. The sign of the other two couplings are positive. The exchange coupling between Fe ions are greatest, while that between Dy ions is negligible. The exchange couplings between Fe ions, and between Dy and Fe increase with increasing B content, the increase of the latter being much greater than the former. Resulting, the exchange coupling between Dy and Fe becomes about one half of that between Fe ions at the highest B content. The increase of the exchange coupling between Fe ions may be explained by the increase of the Fe-Fe separation with the increase of the B content. The total magnetization is dominated by the Dy sublattice magnetization. As the B content increases, the magnetization decreases over the whole temperature range, and the Curie temperature also decreases

  1. Site-disorder driven superconductor–insulator transition: a dynamical mean field study

    International Nuclear Information System (INIS)

    Kamar, Naushad Ahmad; Vidhyadhiraja, N S

    2014-01-01

    We investigate the effect of site disorder on the superconducting state in the attractive Hubbard model within the framework of dynamical mean field theory. For a fixed interaction strength (U), the superconducting order parameter decreases monotonically with increasing disorder (x), while the single-particle spectral gap decreases for small x, reaches a minimum and keeps increasing for larger x. Thus, the system remains gapped beyond the destruction of the superconducting state, indicating a disorder-driven superconductor–insulator transition. We investigate this transition in depth considering the effects of weak and strong disorder for a range of interaction strengths. In the clean case, the order parameter is known to increase monotonically with increasing interaction, saturating at a finite value asymptotically for U→∞. The presence of disorder results in destruction of superconductivity at large U, thus drastically modifying the clean case behaviour. A physical understanding of our findings is obtained by invoking particle–hole asymmetry and the probability distributions of the order parameter and spectral gap. (paper)

  2. Thermal conduction in polymeric nanofluids under mean field approximation: role of interfacial adsorption layers

    International Nuclear Information System (INIS)

    Nisha, M R; Philip, J

    2013-01-01

    Polymeric nanofluids of TiO 2 /PVA (polyvinyl alcohol) and Cu/PVA have been prepared by dispersing nanoparticles of TiO 2 or metallic copper in PVA. The thermal diffusivities and thermal conductivities of these nanofluids have been measured as a function of particle loading following a thermal wave interference technique in a thermal wave resonant cavity. It is found that in both cases thermal conductivity increases with particle concentration, with Cu/PVA nanofluids showing a much larger increase. The results have been compared with the corresponding values calculated following different theoretical models. Comparison of the results with model-based calculations shows that the thermal conductivity variations in these nanofluids are within the framework of the classical mean field theory including the formation of thin interfacial adsorption layers around nanoparticles. Although the molecular weight of PVA is very high, it is found that the adsorption layer thickness is limited by the hydrodynamic radius of the nanoparticles. It is found that particle clustering followed by interfacial layering accounts for the larger increase in thermal conductivity found for Cu/PVA compared to TiO 2 /PVA. (paper)

  3. Mean-field approach to evolving spatial networks, with an application to osteocyte network formation

    Science.gov (United States)

    Taylor-King, Jake P.; Basanta, David; Chapman, S. Jonathan; Porter, Mason A.

    2017-07-01

    We consider evolving networks in which each node can have various associated properties (a state) in addition to those that arise from network structure. For example, each node can have a spatial location and a velocity, or it can have some more abstract internal property that describes something like a social trait. Edges between nodes are created and destroyed, and new nodes enter the system. We introduce a "local state degree distribution" (LSDD) as the degree distribution at a particular point in state space. We then make a mean-field assumption and thereby derive an integro-partial differential equation that is satisfied by the LSDD. We perform numerical experiments and find good agreement between solutions of the integro-differential equation and the LSDD from stochastic simulations of the full model. To illustrate our theory, we apply it to a simple model for osteocyte network formation within bones, with a view to understanding changes that may take place during cancer. Our results suggest that increased rates of differentiation lead to higher densities of osteocytes, but with a smaller number of dendrites. To help provide biological context, we also include an introduction to osteocytes, the formation of osteocyte networks, and the role of osteocytes in bone metastasis.

  4. Nuclear structure information studied through Dirac equation with deformed mean fields

    International Nuclear Information System (INIS)

    Dudek, J.

    2000-01-01

    Complete text of publication follows. Relativistic mean-field theory provides a formal expression for the Dirac equation for the nucleonic motion in an atomic nucleus. The 'potentials' within such a formalism are given in terms of the meson fields, the latter obtained through a coupled system of equations of the Klein-Grodon type. Usually the whole system is being solved by using a Hartree approximation by employing an iterative selfonsistent algorithms. On a more phenomenological level one can parametrize the potentials that enter into a Dirac equation rather than obtain the selfconsistently; such a simplification was suggested some time ago by the Munich group. We introduce a Woods-Saxon type parametrisation and verify by a non-linear search routine what are the 'best fit potential parameters' that reproduce the single particle excitations in the double-magic spherical nuclei as well as the band-head properties in some hundreds of deformed nuclei. Next, by introducing a low-energy reduction of the Dirac equation, one may obtain in a natural way a Pauli Schrodinger type equation with a position dependent effective mass. The role of the corresponding term in a description of single particle energies of the nucleons is illustrated and the implications for the cranking equation are discussed in some detail. (author)

  5. Energy fluxes in helical magnetohydrodynamics and dynamo action

    Indian Academy of Sciences (India)

    ... large-scale magnetic field arising due to non-helical interactions and (2) inverse energy flux of magnetic energy caused by helical interactions. Based on our flux results, a primitive model for galactic dynamo has been constructed. Our calculations yield dynamo time-scale for a typical galaxy to be of the order of 108 years.

  6. Efficiency Measurement Using a Motor-Dynamo Module

    Science.gov (United States)

    Ng, Pun-hon; Wong, Siu-ling; Mak, Se-yuen

    2009-01-01

    In this article, we describe a simple method which can be used to measure the efficiency of a low power dc motor, a motor-converted dynamo and a coupled motor-dynamo module as a function of the speed of rotation. The result can also be used to verify Faraday's law of electromagnetic induction. (Contains 1 table and 8 figures.)

  7. Small-scale kinematic dynamo and non-dynamo in inertial-range turbulence

    International Nuclear Information System (INIS)

    Eyink, Gregory L; Neto, Antonio F

    2010-01-01

    We investigate the Lagrangian mechanism of the kinematic 'fluctuation' magnetic dynamo in a turbulent plasma flow at small magnetic Prandtl numbers. The combined effect of turbulent advection and plasma resistivity is to carry infinitely many field lines to each space point, with the resultant magnetic field at that point given by the average over all the individual line vectors. As a consequence of the roughness of the advecting velocity, this remains true even in the limit of zero resistivity. We show that the presence of the dynamo effect requires sufficient angular correlation of the passive line vectors that arrive simultaneously at the same space point. We illustrate this in detail for the Kazantsev-Kraichnan model of the kinematic dynamo with a Gaussian advecting velocity that is spatially rough and white noise in time. In the regime where dynamo action fails, we also obtain the precise rate of decay of the magnetic energy. These exact results for the model are obtained by a generalization of the 'slow-mode expansion' of Bernard, Gawedzki and Kupiainen to non-Hermitian evolution. Much of our analysis applies also to magnetohydrodynamic turbulence.

  8. Convection and Dynamo Action in Ice Giant Dynamo Models with Electrical Conductivity Stratification

    Science.gov (United States)

    Soderlund, K. M.; Featherstone, N. A.; Heimpel, M. H.; Aurnou, J. M.

    2017-12-01

    Uranus and Neptune are relatively unexplored, yet critical for understanding the physical and chemical processes that control the behavior and evolution of giant planets. Because their multipolar magnetic fields, three-jet zonal winds, and extreme energy balances are distinct from other planets in our Solar System, the ice giants provide a unique opportunity to test hypotheses for internal dynamics and magnetic field generation. While it is generally agreed that dynamo action in the ionic ocean generates their magnetic fields, the mechanisms that control the morphology, strength, and evolution of the dynamos - which are likely distinct from those in the gas giants and terrestrial planets - are not well understood. We hypothesize that the dynamos and zonal winds are dynamically coupled and argue that their characteristics are a consequence of quasi-three-dimensional turbulence in their interiors. Here, we will present new dynamo simulations with an inner electrically conducting region and outer electrically insulating layer to self-consistently couple the ionic oceans and molecular envelopes of these planets. For each simulation, the magnetic field morphology and amplitude, zonal flow profile, and internal heat flux pattern will be compared against corresponding observations of Uranus and Neptune. We will also highlight how these simulations will both contribute to and benefit from a future ice giant mission.

  9. Solar activity simulation and forecast with a flux-transport dynamo

    Science.gov (United States)

    Macario-Rojas, Alejandro; Smith, Katharine L.; Roberts, Peter C. E.

    2018-06-01

    We present the assessment of a diffusion-dominated mean field axisymmetric dynamo model in reproducing historical solar activity and forecast for solar cycle 25. Previous studies point to the Sun's polar magnetic field as an important proxy for solar activity prediction. Extended research using this proxy has been impeded by reduced observational data record only available from 1976. However, there is a recognised need for a solar dynamo model with ample verification over various activity scenarios to improve theoretical standards. The present study aims to explore the use of helioseismology data and reconstructed solar polar magnetic field, to foster the development of robust solar activity forecasts. The research is based on observationally inferred differential rotation morphology, as well as observed and reconstructed polar field using artificial neural network methods via the hemispheric sunspot areas record. Results show consistent reproduction of historical solar activity trends with enhanced results by introducing a precursor rise time coefficient. A weak solar cycle 25, with slow rise time and maximum activity -14.4% (±19.5%) with respect to the current cycle 24 is predicted.

  10. A two-billion-year history for the lunar dynamo.

    Science.gov (United States)

    Tikoo, Sonia M; Weiss, Benjamin P; Shuster, David L; Suavet, Clément; Wang, Huapei; Grove, Timothy L

    2017-08-01

    Magnetic studies of lunar rocks indicate that the Moon generated a core dynamo with surface field intensities of ~20 to 110 μT between at least 4.25 and 3.56 billion years ago (Ga). The field subsequently declined to lunar dynamo by at least 1 billion years. Such a protracted history requires an extraordinarily long-lived power source like core crystallization or precession. No single dynamo mechanism proposed thus far can explain the strong fields inferred for the period before 3.56 Ga while also allowing the dynamo to persist in such a weakened state beyond ~2.5 Ga. Therefore, our results suggest that the dynamo was powered by at least two distinct mechanisms operating during early and late lunar history.

  11. Persistence and origin of the lunar core dynamo

    Science.gov (United States)

    Suavet, Clément; Weiss, Benjamin P.; Cassata, William S.; Shuster, David L.; Gattacceca, Jérôme; Chan, Lindsey; Garrick-Bethell, Ian; Head, James W.; Grove, Timothy L.; Fuller, Michael D.

    2013-01-01

    The lifetime of the ancient lunar core dynamo has implications for its power source and the mechanism of field generation. Here, we report analyses of two 3.56-Gy-old mare basalts demonstrating that they were magnetized in a stable and surprisingly intense dynamo magnetic field of at least ∼13 μT. These data extend the known lifetime of the lunar dynamo by ∼160 My and indicate that the field was likely continuously active until well after the final large basin-forming impact. This likely excludes impact-driven changes in rotation rate as the source of the dynamo at this time in lunar history. Rather, our results require a persistent power source like precession of the lunar mantle or a compositional convection dynamo. PMID:23650386

  12. Dynamical mean field study of the Mott transition in the half-filled Hubbard model on a triangular lattice

    OpenAIRE

    Aryanpour, K.; Pickett, W. E.; Scalettar, R. T.

    2006-01-01

    We employ dynamical mean field theory (DMFT) with a Quantum Monte Carlo (QMC) atomic solver to investigate the finite temperature Mott transition in the Hubbard model with the nearest neighbor hopping on a triangular lattice at half-filling. We estimate the value of the critical interaction to be $U_c=12.0 \\pm 0.5$ in units of the hopping amplitude $t$ through the evolution of the magnetic moment, spectral function, internal energy and specific heat as the interaction $U$ and temperature $T$ ...

  13. Phase diagrams of the ternary alloy with a single-ion anisotropy in the mean-field approximation

    International Nuclear Information System (INIS)

    Dely, J.; Bobak, A.

    2006-01-01

    The phase diagram of the AB p C 1-p ternary alloy consisting of Ising spins S A =32, S B =2, and S C =52 is investigated by the use of a mean-field theory based on the Bogoliubov inequality for the Gibbs free energy. The effect of the single-ion anisotropy on the phase diagrams is discussed by changing values of the parameters in the model Hamiltonian and comparison is made with the recently reported finite-temperature phase diagrams for the ternary alloy having spin S B =1

  14. MHD dynamo action in space plasmas

    International Nuclear Information System (INIS)

    Faelthammar, C.G.

    1984-05-01

    Electric currents are now recognized to play a major role in the physical process of the Earths magnetosphere as well as in distant astrophysical plasmas. In driving these currents MHD dynamos as well as generators of a thermoelectric nature are important. The primary source of power for the Earths magnetospheric process is the solar wind, which supplies a voltage of the order of 200 kV across the magnetosphere. The direction of the large-scale solar wind electric field varies of many different time scales. The power input to the magnetosphere is closely correlated with the direction of the large-scale solar wind electric field in such a fashion as to mimick the response of a half-wave rectifier with a down-to-dusk conduction direction. Behind this apparently simple response there are complex plasma physical processes that are still very incompletely understood. They are intimately related to auroras, magnetic storms, radiation belts and changes in magnetospheric plasma populations. Similar dynamo actions should occur at other planets having magnetospheres. Recent observations seem to indicate that part of the power input to the Earths magnetosphere comes through MHD dynamo action of a forced plasma flow inside the flanks of the magnetopause and may play a role in other parts of the magnetosphere, too. An example of a cosmical MHD connected to a solid load is the corotating plasma of Jupiters inner magnetosphere, sweeping past the plants inner satelites. In particular the electric currents thereby driven to and from the satellite Io have attracted considerable interest.(author)

  15. Noisy mean field game model for malware propagation in opportunistic networks

    KAUST Repository

    Tembine, Hamidou; Vilanova, Pedro; Debbah, Mé roú ane

    2012-01-01

    nodes is examined with a noisy mean field limit and compared to a deterministic one. The stochastic nature of the wireless environment make stochastic approaches more realistic for such types of networks. By introducing control strategies, we show

  16. On the existence of classical solutions for stationary extended mean field games

    KAUST Repository

    Gomes, Diogo A.; Patrizi, Stefania; Voskanyan, Vardan

    2014-01-01

    In this paper we consider extended stationary mean-field games, that is mean-field games which depend on the velocity field of the players. We prove various a-priori estimates which generalize the results for quasi-variational mean-field games in Gomes et al. (2012). In addition we use adjoint method techniques to obtain higher regularity bounds. Then we establish the existence of smooth solutions under fairly general conditions by applying the continuity method. When applied to standard stationary mean-field games as in Lasry and Lions (2006), Gomes and Sanchez-Morgado (2011) or Gomes et al. (2012) this paper yields various new estimates and regularity properties not available previously. We discuss additionally several examples where the existence of classical solutions can be proved. © 2013 Elsevier Ltd. All rights reserved.

  17. Explicit solutions of one-dimensional, first-order, stationary mean-field games with congestion

    KAUST Repository

    Gomes, Diogo A.; Nurbekyan, Levon; Prazeres, Mariana

    2017-01-01

    Here, we consider one-dimensional first-order stationary mean-field games with congestion. These games arise when crowds face difficulty moving in high-density regions. We look at both monotone decreasing and increasing interactions and construct

  18. Mean-field approximation for spacing distribution functions in classical systems

    Science.gov (United States)

    González, Diego Luis; Pimpinelli, Alberto; Einstein, T. L.

    2012-01-01

    We propose a mean-field method to calculate approximately the spacing distribution functions p(n)(s) in one-dimensional classical many-particle systems. We compare our method with two other commonly used methods, the independent interval approximation and the extended Wigner surmise. In our mean-field approach, p(n)(s) is calculated from a set of Langevin equations, which are decoupled by using a mean-field approximation. We find that in spite of its simplicity, the mean-field approximation provides good results in several systems. We offer many examples illustrating that the three previously mentioned methods give a reasonable description of the statistical behavior of the system. The physical interpretation of each method is also discussed.

  19. On the existence of classical solutions for stationary extended mean field games

    KAUST Repository

    Gomes, Diogo A.

    2014-04-01

    In this paper we consider extended stationary mean-field games, that is mean-field games which depend on the velocity field of the players. We prove various a-priori estimates which generalize the results for quasi-variational mean-field games in Gomes et al. (2012). In addition we use adjoint method techniques to obtain higher regularity bounds. Then we establish the existence of smooth solutions under fairly general conditions by applying the continuity method. When applied to standard stationary mean-field games as in Lasry and Lions (2006), Gomes and Sanchez-Morgado (2011) or Gomes et al. (2012) this paper yields various new estimates and regularity properties not available previously. We discuss additionally several examples where the existence of classical solutions can be proved. © 2013 Elsevier Ltd. All rights reserved.

  20. Finite-State Mean-Field Games, Crowd Motion Problems, and its Numerical Methods

    KAUST Repository

    Machado Velho, Roberto

    2017-01-01

    -economic sciences. Examples include paradigm shifts in the scientific community and the consumer choice behavior in a free market. The corresponding finite-state mean-field game models are hyperbolic systems of partial differential equations, for which we propose

  1. Isospin-dependent properties of asymmetric nuclear matter in relativistic mean-field models

    OpenAIRE

    Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An

    2007-01-01

    Using various relativistic mean-field models, including the nonlinear ones with meson field self-interactions, those with density-dependent meson-nucleon couplings, and the point-coupling models without meson fields, we have studied the isospin-dependent bulk and single-particle properties of asymmetric nuclear matter. In particular, we have determined the density dependence of nuclear symmetry energy from these different relativistic mean-field models and compare the results with the constra...

  2. A Stochastic Maximum Principle for Risk-Sensitive Mean-Field Type Control

    KAUST Repository

    Djehiche, Boualem; Tembine, Hamidou; Tempone, Raul

    2015-01-01

    In this paper we study mean-field type control problems with risk-sensitive performance functionals. We establish a stochastic maximum principle (SMP) for optimal control of stochastic differential equations (SDEs) of mean-field type, in which the drift and the diffusion coefficients as well as the performance functional depend not only on the state and the control but also on the mean of the distribution of the state. Our result extends the risk-sensitive SMP (without mean-field coupling) of Lim and Zhou (2005), derived for feedback (or Markov) type optimal controls, to optimal control problems for non-Markovian dynamics which may be time-inconsistent in the sense that the Bellman optimality principle does not hold. In our approach to the risk-sensitive SMP, the smoothness assumption on the value-function imposed in Lim and Zhou (2005) needs not be satisfied. For a general action space a Peng's type SMP is derived, specifying the necessary conditions for optimality. Two examples are carried out to illustrate the proposed risk-sensitive mean-field type SMP under linear stochastic dynamics with exponential quadratic cost function. Explicit solutions are given for both mean-field free and mean-field models.

  3. A Stochastic Maximum Principle for Risk-Sensitive Mean-Field Type Control

    KAUST Repository

    Djehiche, Boualem

    2015-02-24

    In this paper we study mean-field type control problems with risk-sensitive performance functionals. We establish a stochastic maximum principle (SMP) for optimal control of stochastic differential equations (SDEs) of mean-field type, in which the drift and the diffusion coefficients as well as the performance functional depend not only on the state and the control but also on the mean of the distribution of the state. Our result extends the risk-sensitive SMP (without mean-field coupling) of Lim and Zhou (2005), derived for feedback (or Markov) type optimal controls, to optimal control problems for non-Markovian dynamics which may be time-inconsistent in the sense that the Bellman optimality principle does not hold. In our approach to the risk-sensitive SMP, the smoothness assumption on the value-function imposed in Lim and Zhou (2005) needs not be satisfied. For a general action space a Peng\\'s type SMP is derived, specifying the necessary conditions for optimality. Two examples are carried out to illustrate the proposed risk-sensitive mean-field type SMP under linear stochastic dynamics with exponential quadratic cost function. Explicit solutions are given for both mean-field free and mean-field models.

  4. A Study of Multi-Λ Hypernuclei Within Spherical Relativistic Mean-Field Approach

    Science.gov (United States)

    Rather, Asloob A.; Ikram, M.; Usmani, A. A.; Kumar, B.; Patra, S. K.

    2017-12-01

    This research article is a follow up of an earlier work by M. Ikram et al., reported in Int. J. Mod. Phys. E 25, 1650103 (2016) where we searched for Λ magic numbers in experimentally confirmed doubly magic nucleonic cores in light to heavy mass region (i.e., 16 O-208 P b) by injecting Λ's into them. In the present manuscript, working within the state of the art relativistic mean field theory with the inclusion of Λ N and ΛΛ interaction in addition to nucleon-meson NL 3∗ effective force, we extend the search of lambda magic numbers in multi- Λ hypernuclei using the predicted doubly magic nucleonic cores 292120, 304120, 360132, 370132, 336138, 396138 of the elusive superheavy mass regime. In analogy to well established signatures of magicity in conventional nuclear theory, the prediction of hypernuclear magicities is made on the basis of one-, two- Λ separation energy ( S Λ, S 2Λ) and two lambda shell gaps ( δ 2Λ) in multi- Λ hypernuclei. The calculations suggest that the Λ numbers 92, 106, 126, 138, 184, 198, 240, and 258 might be the Λ shell closures after introducing the Λ's in the elusive superheavy nucleonic cores. The appearance of new lambda shell closures apart from the nucleonic ones predicted by various relativistic and non-relativistic theoretical investigations can be attributed to the relatively weak strength of the spin-orbit coupling in hypernuclei compared to normal nuclei. Further, the predictions made in multi- Λ hypernuclei under study resembles closely the magic numbers in conventional nuclear theory suggested by various relativistic and non-relativistic theoretical models. Moreover, in support of the Λ shell closure, the investigation of Λ pairing energy and effective Λ pairing gap has been made. We noticed a very close agreement of the predicted Λ shell closures with the survey made on the pretext of S Λ, S 2Λ, and δ 2Λ except for the appearance of magic numbers corresponding to Λ = 156 which manifest in Λ effective

  5. Sleuthing the Dynamo: the Final Frontier

    Science.gov (United States)

    Ayres, Thomas

    1996-07-01

    Innovative technologies are opening new windows into the Sun;from its hidden interior to the far reaches of its turbulentouter envelope: rare-earth detectors for solar neutrinos; theGONG project for helioseismology; SOHO for high-resolutionXUV spectroscopy, and YOHKOH for coronal X-ray imaging. Atthe same time, a fleet of space observatories--ROSAT, EUVE,ASCA, and HST itself--are providing unprecedented views ofthe vacuum-UV and X-ray emissions of stars in our Galacticneighborhood. These seemingly unrelated developments are infact deeply connected. A central issue of solar-stellarphysics is the nature and origin of magnetic activity: thelink between the interior dynamics of a late-type star and theviolent state of its outermost coronal layers. As solarphysicists are unlocking the secrets of the hydromagneticDynamo deep inside the Sun, we and others have beendocumenting the early evolution of the Dynamo and itsassociated external gas-dynamic activity. In particular, wehave obtained HST/FOS spectra of ten young solar-type starsin three nearby open clusters--the Hyades, Pleiades, andAlpha Persei--ranging in age from 50 Myr to 600 Myr. We havesupplemented the HST spectroscopy with deep ROSAT pointings, and ground-based studies. Here, we will continue the HSTside of our project by obtaining FUV spectra of two AlphaPerseids from our original program (but not yet observed),and high-S/N follow-up measurements of the hyperactive PleiadH II 314.

  6. Stochastic modeling of catalytic processes in nanoporous materials: Beyond mean-field approach

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Andres [Iowa State Univ., Ames, IA (United States)

    2017-08-05

    Transport and reaction in zeolites and other porous materials, such as mesoporous silica particles, has been a focus of interest in recent years. This is in part due to the possibility of anomalous transport effects (e.g. single-file diffusion) and its impact in the reaction yield in catalytic processes. Computational simulations are often used to study these complex nonequilibrium systems. Computer simulations using Molecular Dynamics (MD) techniques are prohibitive, so instead coarse grained one-dimensional models with the aid of Kinetic Monte Carlo (KMC) simulations are used. Both techniques can be computationally expensive, both time and resource wise. These coarse-grained systems can be exactly described by a set of coupled stochastic master equations, that describe the reaction-diffusion kinetics of the system. The equations can be written exactly, however, coupling between the equations and terms within the equations make it impossible to solve them exactly; approximations must be made. One of the most common methods to obtain approximate solutions is to use Mean Field (MF) theory. MF treatments yield reasonable results at high ratios of reaction rate k to hop rate h of the particles, but fail completely at low k=h due to the over-estimation of fluxes of particles within the pore. We develop a method to estimate fluxes and intrapore diffusivity in simple one- dimensional reaction-diffusion models at high and low k=h, where the pores are coupled to an equilibrated three-dimensional fluid. We thus successfully describe analytically these simple reaction-diffusion one-dimensional systems. Extensions to models considering behavior with long range steric interactions and wider pores require determination of multiple boundary conditions. We give a prescription to estimate the required parameters for these simulations. For one dimensional systems, if single-file diffusion is relaxed, additional parameters to describe particle exchange have to be introduced. We use

  7. Recovery from Maunder-like Grand Minima in a Babcock–Leighton Solar Dynamo Model

    Science.gov (United States)

    Karak, Bidya Binay; Miesch, Mark

    2018-06-01

    The Sun occasionally goes through Maunder-like extended grand minima when its magnetic activity drops considerably from the normal activity level for several decades. Many possible theories have been proposed to explain the origin of these minima. However, how the Sun managed to recover from such inactive phases every time is even more enigmatic. The Babcock–Leighton type dynamos, which are successful in explaining many features of the solar cycle remarkably well, are not expected to operate during grand minima due to the lack of a sufficient number of sunspots. In this Letter, we explore the question of how the Sun could recover from grand minima through the Babcock–Leighton dynamo. In our three-dimensional dynamo model, grand minima are produced spontaneously as a result of random variations in the tilt angle of emerging active regions. We find that the Babcock–Leighton process can still operate during grand minima with only a minimal number of sunspots, and that the model can emerge from such phases without the need for an additional generation mechanism for the poloidal field. The essential ingredient in our model is a downward magnetic pumping, which inhibits the diffusion of the magnetic flux across the solar surface.

  8. 3-dimensional simulation of dynamo effect of reversed field pinch

    International Nuclear Information System (INIS)

    Koide, Shinji.

    1990-09-01

    A non-linear numerical simulation of the dynamo effect of a reversed field pinch (RFP) with finite beta is presented. It is shown that the m=-1, n=(9,10,11,....,19) modes cause the dynamo effect and sustain the field reversed configuration. The role of the m=0 modes on the dynamo effect is carefully examined. Our simulation shows that the magnetic field fluctuation level scales as S -0.2 or S -0.3 in the range of 10 3 5 , while Nebel, Caramana and Schnack obtained the fluctuation level is independent of S for a pressureless RFP plasma. (author)

  9. A systematic study of even-even nuclei up to the drip lines within the relativistic mean field framework

    International Nuclear Information System (INIS)

    Hirata, D.; Sumiyoshi, K.; Tanihata, I.; Sugahara, Y.; Tachibana, T.; Toki, H.

    1997-01-01

    We apply the relativistic mean field theory to study the ground state properties of about 2000 even-even nuclei from Z=8 to Z=120 up to the proton and neutron drip lines. The calculations have been done under the axial symmetry assumption and a quadratic constraint method in order to obtain all possible ground state configurations. We do not take into account the pairing correlation in the present study. The calculations are performed with the TMA parameter set. We explore the generaI trend of masses, radii and deformations in the whole region of the nuclear chart. Using the masses obtained from RMF theory, we calculate the r-process abundances and the r-process path. (orig.)

  10. Solar Dynamo Driven by Periodic Flow Oscillation

    Science.gov (United States)

    Mayr, Hans G.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    We have proposed that the periodicity of the solar magnetic cycle is determined by wave mean flow interactions analogous to those driving the Quasi Biennial Oscillation in the Earth's atmosphere. Upward propagating gravity waves would produce oscillating flows near the top of the radiation zone that in turn would drive a kinematic dynamo to generate the 22-year solar magnetic cycle. The dynamo we propose is built on a given time independent magnetic field B, which allows us to estimate the time dependent, oscillating components of the magnetic field, (Delta)B. The toroidal magnetic field (Delta)B(sub phi) is directly driven by zonal flow and is relatively large in the source region, (Delta)(sub phi)/B(sub Theta) much greater than 1. Consistent with observations, this field peaks at low latitudes and has opposite polarities in both hemispheres. The oscillating poloidal magnetic field component, (Delta)B(sub Theta), is driven by the meridional circulation, which is difficult to assess without a numerical model that properly accounts for the solar atmosphere dynamics. Scale-analysis suggests that (Delta)B(sub Theta) is small compared to B(sub Theta) in the dynamo region. Relative to B(sub Theta), however, the oscillating magnetic field perturbations are expected to be transported more rapidly upwards in the convection zone to the solar surface. As a result, (Delta)B(sub Theta) (and (Delta)B(sub phi)) should grow relative to B(sub Theta), so that the magnetic fields reverse at the surface as observed. Since the meridional and zonai flow oscillations are out of phase, the poloidal magnetic field peaks during times when the toroidal field reverses direction, which is observed. With the proposed wave driven flow oscillation, the magnitude of the oscillating poloidal magnetic field increases with the mean rotation rate of the fluid. This is consistent with the Bode-Blackett empirical scaling law, which reveals that in massive astrophysical bodies the magnetic moment tends

  11. An update of Leighton's solar dynamo model

    Science.gov (United States)

    Cameron, R. H.; Schüssler, M.

    2017-03-01

    In 1969, Leighton developed a quasi-1D mathematical model of the solar dynamo, building upon the phenomenological scenario of Babcock published in 1961. Here we present a modification and extension of Leighton's model. Using the axisymmetric component (longitudinal average) of the magnetic field, we consider the radial field component at the solar surface and the radially integrated toroidal magnetic flux in the convection zone, both as functions of latitude. No assumptions are made with regard to the radial location of the toroidal flux. The model includes the effects of (I) turbulent diffusion at the surface and in the convection zone; (II) poleward meridional flow at the surface and an equatorward return flow affecting the toroidal flux; (III) latitudinal differential rotation and the near-surface layer of radial rotational shear; (iv) downward convective pumping of magnetic flux in the shear layer; and (v) flux emergence in the form of tilted bipolar magnetic regions treated as a source term for the radial surface field. While the parameters relevant for the transport of the surface field are taken from observations, the model condenses the unknown properties of magnetic field and flow in the convection zone into a few free parameters (turbulent diffusivity, effective return flow, amplitude of the source term, and a parameter describing the effective radial shear). Comparison with the results of 2D flux transport dynamo codes shows that the model captures the essential features of these simulations. We make use of the computational efficiency of the model to carry out an extended parameter study. We cover an extended domain of the 4D parameter space and identify the parameter ranges that provide solar-like solutions. Dipole parity is always preferred and solutions with periods around 22 yr and a correct phase difference between flux emergence in low latitudes and the strength of the polar fields are found for a return flow speed around 2 m s-1, turbulent

  12. Hubbard interaction in the arbitrary Chern number insulator: A mean-field study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Xiang, E-mail: wangyixiang@jiangnan.edu.cn [School of Science, Jiangnan University, Wuxi 214122 (China); Cao, Jie [College of Science, Hohai University, Nanjing 210098 (China)

    2017-05-10

    The low-dimensional electron gas owing topological property has attracted many interests recently. In this work, we study the influence of the electron-electron interaction on the arbitrary Chern number insulator. Using the mean-field method, we approximately solve the Hubbard model in the half-filling case and obtain the phase diagrams in different parametric spaces. We further verify the results by calculating the entanglement spectrum, which contains C chiral modes and corresponds to a real space partitioning. - Highlights: • In this work, we made a mean-field study of the Hubbard interaction in the arbitrary Chern number insulator. • We point out that how the Zeeman splitting, the local magnetization and the Hubbard interaction are intimately related. • The mean-field phase diagrams are obtained in different parametric spaces. • The Chern number phase is demonstrated by calculating the entanglement spectrum.

  13. Bent dark soliton dynamics in two spatial dimensions beyond the mean field approximation

    Science.gov (United States)

    Mistakidis, Simeon; Katsimiga, Garyfallia; Koutentakis, Georgios; Kevrekidis, Panagiotis; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team

    2017-04-01

    The dynamics of a bented dark soliton embedded in two spatial dimensions beyond the mean-field approximation is explored. We examine the case of a single bented dark soliton comparing the mean-field approximation to a correlated approach that involves multiple orbitals. Fragmentation is generally present and significantly affects the dynamics, especially in the case of stronger interparticle interactions and in that of lower atom numbers. It is shown that the presence of fragmentation allows for the appearance of solitonic and vortex structures in the higher-orbital dynamics. In particular, a variety of excitations including dark solitons in multiple orbitals and vortex-antidark complexes is observed to arise spontaneously within the beyond mean-field dynamics. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.

  14. The use of the empirical mode decomposition for the identification of mean field aligned reference frames

    Directory of Open Access Journals (Sweden)

    Mauro Regi

    2017-01-01

    Full Text Available The magnetic field satellite data are usually referred to geocentric coordinate reference frame. Conversely, the magnetohydrodynamic waves modes in magnetized plasma depend on the ambient magnetic field, and is then useful to rotate the magnetic field measurements into the mean field aligned (MFA coordinate system. This reference frame is useful to study the ultra low frequency magnetic field variations along the direction of the mean field and perpendicularly to it. In order to identify the mean magnetic field the classical moving average (MAVG approach is usually adopted but, under particular conditions, this procedure induces undesired features, such as spectral alteration in the rotated components. We discuss these aspects promoting an alternative and more efficient method for mean field aligned projection, based on the empirical mode decomposition (EMD.

  15. A General Stochastic Maximum Principle for SDEs of Mean-field Type

    International Nuclear Information System (INIS)

    Buckdahn, Rainer; Djehiche, Boualem; Li Juan

    2011-01-01

    We study the optimal control for stochastic differential equations (SDEs) of mean-field type, in which the coefficients depend on the state of the solution process as well as of its expected value. Moreover, the cost functional is also of mean-field type. This makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. For a general action space a Peng’s-type stochastic maximum principle (Peng, S.: SIAM J. Control Optim. 2(4), 966–979, 1990) is derived, specifying the necessary conditions for optimality. This maximum principle differs from the classical one in the sense that here the first order adjoint equation turns out to be a linear mean-field backward SDE, while the second order adjoint equation remains the same as in Peng’s stochastic maximum principle.

  16. Beyond the relativistic mean-field approximation. II. Configuration mixing of mean-field wave functions projected on angular momentum and particle number

    International Nuclear Information System (INIS)

    Niksic, T.; Vretenar, D.; Ring, P.

    2006-01-01

    The framework of relativistic self-consistent mean-field models is extended to include correlations related to the restoration of broken symmetries and to fluctuations of collective variables. The generator coordinate method is used to perform configuration mixing of angular-momentum and particle-number projected relativistic wave functions. The geometry is restricted to axially symmetric shapes, and the intrinsic wave functions are generated from the solutions of the relativistic mean-field+Lipkin-Nogami BCS equations, with a constraint on the mass quadrupole moment. The model employs a relativistic point-coupling (contact) nucleon-nucleon effective interaction in the particle-hole channel, and a density-independent δ-interaction in the pairing channel. Illustrative calculations are performed for 24 Mg, 32 S, and 36 Ar, and compared with results obtained employing the model developed in the first part of this work, i.e., without particle-number projection, as well as with the corresponding nonrelativistic models based on Skyrme and Gogny effective interactions

  17. Sensitivity of relativistic impulse approximation proton-nucleus elastic scattering calculations on relativistic mean-field parameterizations

    International Nuclear Information System (INIS)

    Hojsik, M.; Gmuca, S.

    1998-01-01

    Relativistic microscopic calculations are presented for proton elastic scattering from 40 Ca at 500 MeV. The underlying target densities are calculated within the framework of the relativistic mean-field theory with several parameter sets commonly in use. The self consistency of the scalar and vector densities (and thus to relativistic mean-field parameters) is investigated. Recently, the relativistic impulse approximation (RIA) has been widely and repeatedly used for the calculations of proton-nucleus scattering at intermediate energies. These calculations have exhibited significant improvements over the nonrelativistic approaches. The relativistic impulse approximation calculations. in particular, provide a dramatically better description of the spin observables, namely the analyzing power, A y , and the spin-rotation function, Q, at least for energies higher than 400 MeV. In the relativistic impulse approximation, the Dirac optical potential is obtained by folding of the local Lorentz-invariant amplitudes with the corresponding nuclear densities. For the spin zero targets the scalar and vector terms give the dominant contributions. Thus the scalar and vector nuclear densities (both, proton and neutron ones) play the dominant role in the relativistic impulse approximation. While the proton vector densities can be obtained by unfolding from the empirically known charge densities, all other densities used rely to a great extent on theoretical models. The various recipes are used to construct the neutron vector densities and the scalar densities for both, neutrons and protons. In this paper we will study the sensitivity of the relativistic impulse approximation results on the various sets of relativistic mean-field parameters currently in use

  18. Noisy mean field game model for malware propagation in opportunistic networks

    KAUST Repository

    Tembine, Hamidou

    2012-01-01

    In this paper we present analytical mean field techniques that can be used to better understand the behavior of malware propagation in opportunistic large networks. We develop a modeling methodology based on stochastic mean field optimal control that is able to capture many aspects of the problem, especially the impact of the control and heterogeneity of the system on the spreading characteristics of malware. The stochastic large process characterizing the evolution of the total number of infected nodes is examined with a noisy mean field limit and compared to a deterministic one. The stochastic nature of the wireless environment make stochastic approaches more realistic for such types of networks. By introducing control strategies, we show that the fraction of infected nodes can be maintained below some threshold. In contrast to most of the existing results on mean field propagation models which focus on deterministic equations, we show that the mean field limit is stochastic if the second moment of the number of object transitions per time slot is unbounded with the size of the system. This allows us to compare one path of the fraction of infected nodes with the stochastic trajectory of its mean field limit. In order to take into account the heterogeneity of opportunistic networks, the analysis is extended to multiple types of nodes. Our numerical results show that the heterogeneity can help to stabilize the system. We verify the results through simulation showing how to obtain useful approximations in the case of very large systems. © 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering.

  19. Introduction to Plasma Dynamo, Reconnection and Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, Thomas P. [Los Alamos National Laboratory

    2012-08-30

    In our plasma universe, most of what we can observe is composed of ionized gas, or plasma. This plasma is a conducting fluid, which advects magnetic fields when it flows. Magnetic structure occurs from the smallest planetary to the largest cosmic scales. We introduce at a basic level some interesting features of non linear magnetohydrodynamics (MHD). For example, in our plasma universe, dynamo creates magnetic fields from gravitationally driven flow energy in an electrically conducting medium, and conversely magnetic reconnection annihilates magnetic field and accelerates particles. Shocks occur when flows move faster than the local velocity (sonic or Alfven speed) for the propagation of information. Both reconnection and shocks can accelerate particles, perhaps to gigantic energies, for example as observed with 10{sup 20} eV cosmic rays.

  20. Computer simulation of a magnetohydrodynamic dynamo II

    International Nuclear Information System (INIS)

    Kageyama, Akira; Sato, Tetsuya.

    1994-11-01

    We performed a computer simulation of a magnetohydrodynamic dynamo in a rapidly rotating spherical shell. Extensive parameter runs are carried out changing the electrical resistivity. It is found that the total magnetic energy can grow more than ten times larger than the total kinetic energy of the convection motion when the resistivity is sufficiently small. When the resistivity is relatively large and the magnetic energy is comparable or smaller than the kinetic energy, the convection motion maintains its well-organized structure. However, when the resistivity is small and the magnetic energy becomes larger than the kinetic energy, the well-organized convection motion is highly disturbed. The generated magnetic field is organized as a set of flux tubes which can be divided into two categories. The magnetic field component parallel to the rotation axis tends to be confined inside the anticyclonic columnar convection cells. On the other hand, the component perpendicular to the rotation axis is confined outside the convection cells. (author)

  1. Planetary Dynamos: Investigations of Saturn and Ancient Mars

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Sabine [University of Toronto

    2012-04-18

    Magnetic field observations by spacecraft missions have provided vital information on planetary dynamos. The four giant planets as well as Earth, Mercury and Ganymede have observable magnetic fields generated by active dynamos. In contrast, Moon and Mars only have remanent crustal fields from dynamo action in their early histories. A variety of magnetic field morphologies and intensities can be found in the solar system. We have found that some of the differences between planetary magnetic fields can be explained as the result of the presence of boundary thermal variations or stably-stratified layers. In this talk, I will discuss how dynamos are affected by these complications and discuss the implications for Mars’ magnetic dichotomy and Saturn’s extremely axisymmetric magnetic field.

  2. Energy transfers in dynamos with small magnetic Prandtl numbers

    KAUST Repository

    Kumar, Rohit

    2015-06-25

    We perform numerical simulation of dynamo with magnetic Prandtl number Pm = 0.2 on 10243 grid, and compute the energy fluxes and the shell-to-shell energy transfers. These computations indicate that the magnetic energy growth takes place mainly due to the energy transfers from large-scale velocity field to large-scale magnetic field and that the magnetic energy flux is forward. The steady-state magnetic energy is much smaller than the kinetic energy, rather than equipartition; this is because the magnetic Reynolds number is near the dynamo transition regime. We also contrast our results with those for dynamo with Pm = 20 and decaying dynamo. © 2015 Taylor & Francis.

  3. Energy fluxes in helical magnetohydrodynamics and dynamo action

    Indian Academy of Sciences (India)

    Kinetic and magnetic helicities do not affect the renormalized parameters, ... Generation of magnetic field in plasma, usually referred to as 'dynamo', is one of the ..... energy fluxes for the inertial-range wave numbers where the same power.

  4. The quantum N-body problem in the mean-field and semiclassical regime.

    Science.gov (United States)

    Golse, François

    2018-04-28

    The present work discusses the mean-field limit for the quantum N -body problem in the semiclassical regime. More precisely, we establish a convergence rate for the mean-field limit which is uniform as the ratio of Planck constant to the action of the typical single particle tends to zero. This convergence rate is formulated in terms of a quantum analogue of the quadratic Monge-Kantorovich or Wasserstein distance. This paper is an account of some recent collaboration with C. Mouhot, T. Paul and M. Pulvirenti.This article is part of the themed issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  5. Comment on the presence of chaos in mean field dynamics inside the spinodal region

    International Nuclear Information System (INIS)

    Jacquot, B.; Colonna, M.; Chomaz, Ph.; Guarnera, A.

    1995-01-01

    The role of chaos in the mean field simulations of spinodal decomposition is analysed. It is demonstrated that, conversely to recent publications, the RPA unstable modes are only weakly non-linear and weakly coupled. The Lyapunov exponents are shown to be nothing by the largest imaginary RPA frequencies and the early mean field evolution, even of a randomly initialized trajectory, is shown to be mostly understandable within the framework of simple linear instabilities. Finally, it is recalled how the time scales are related to the use of a reasonable range for the nuclear force. (author)

  6. On the convergence of finite state mean-field games through Γ-convergence

    KAUST Repository

    Ferreira, Rita C.; Gomes, Diogo A.

    2014-01-01

    In this study, we consider the long-term convergence (trend toward an equilibrium) of finite state mean-field games using Γ-convergence. Our techniques are based on the observation that an important class of mean-field games can be viewed as the Euler-Lagrange equation of a suitable functional. Therefore, using a scaling argument, one can convert a long-term convergence problem into a Γ-convergence problem. Our results generalize previous results related to long-term convergence for finite state problems. © 2014 Elsevier Inc.

  7. Time-Dependent Mean-Field Games in the Subquadratic Case

    KAUST Repository

    Gomes, Diogo A.; Pimentel, Edgard A.; Sá nchez-Morgado, Hé ector

    2014-01-01

    In this paper we consider time-dependent mean-field games with subquadratic Hamiltonians and power-like local dependence on the measure. We establish existence of classical solutions under a certain set of conditions depending on both the growth of the Hamiltonian and the dimension. This is done by combining regularity estimates for the Hamilton-Jacobi equation based on the Gagliardo-Nirenberg interpolation inequality with polynomial estimates for the Fokker-Planck equation. This technique improves substantially the previous results on the regularity of time-dependent mean-field games.

  8. Generalized quantum mean-field systems and their application to ultracold atoms

    International Nuclear Information System (INIS)

    Trimborn-Witthaut, Friederike Annemarie

    2011-01-01

    Strongly interacting many-body systems consisting of a large number of indistinguishable particles play an important role in many areas of physics. Though such systems are hard to deal with theoretically since the dimension of the respective Hilbert space increases exponentially both in the particle number and in the number of system modes. Therefore, approximations are of considerable interest. The mean-field approximation describes the behaviour in the macroscopic limit N→∞, which leads to an effective nonlinear single-particle problem. Although this approximation is widely used, rigorous results on the applicability and especially on finite size corrections are extremely rare. One prominent example of strongly interacting many-body systems are ultracold atoms in optical lattices, which are a major subject of this thesis. Typically these systems consist of a large but well-defined number of particles, such that corrections to the mean-field limit can be systematically studied. This thesis is divided into two parts: In the first part we study generalized quantum mean-field systems in a C * -algebraic framework. These systems are characterized by their intrinsic permutation symmetry. In the limit of infinite system size, N→∞, the intensive observables converge to the commutative algebra of weak * -continuous functions on the single particle state space. To quantify the deviations from the meanfield prediction for large but finite N, we establish a differential calculus for state space functions and provide a generalized Taylor expansion around the mean-field limit. Furthermore, we introduce the algebra of macroscopic fluctuations around the mean-field limit and prove a quantum version of the central limit theorem. On the basis of these results, we give a detailed study of the finite size corrections to the ground state energy and establish bounds, for both the quantum and the classical case. Finally, we restrict ourselves to the subspace of Bose

  9. Time-Dependent Mean-Field Games in the Subquadratic Case

    KAUST Repository

    Gomes, Diogo A.

    2014-10-14

    In this paper we consider time-dependent mean-field games with subquadratic Hamiltonians and power-like local dependence on the measure. We establish existence of classical solutions under a certain set of conditions depending on both the growth of the Hamiltonian and the dimension. This is done by combining regularity estimates for the Hamilton-Jacobi equation based on the Gagliardo-Nirenberg interpolation inequality with polynomial estimates for the Fokker-Planck equation. This technique improves substantially the previous results on the regularity of time-dependent mean-field games.

  10. Coexistence of Cluster Structure and Mean-field-type Structure in Medium-weight Nuclei

    International Nuclear Information System (INIS)

    Taniguchi, Yasutaka; Horiuchi, Hisashi; Kimura, Masaaki

    2006-01-01

    We have studied the coexistence of cluster structure and mean-field-type structure in 20Ne and 40Ca using Antisymmetrized Molecular Dynamics (AMD) + Generator Coordinate Method (GCM). By energy variation with new constraint for clustering, we calculate cluster structure wave function. Superposing cluster structure wave functions and mean-field-type structure wave function, we found that 8Be-12C, α-36Ar and 12C-28Si cluster structure are important components of K π = 0 3 + band of 20Ne, that of normal deformed band of 40Ca and that of super deformed band of 40Ca, respectively

  11. Chimeralike states in networks of bistable time-delayed feedback oscillators coupled via the mean field.

    Science.gov (United States)

    Ponomarenko, V I; Kulminskiy, D D; Prokhorov, M D

    2017-08-01

    We study the collective dynamics of oscillators in a network of identical bistable time-delayed feedback systems globally coupled via the mean field. The influence of delay and inertial properties of the mean field on the collective behavior of globally coupled oscillators is investigated. A variety of oscillation regimes in the network results from the presence of bistable states with substantially different frequencies in coupled oscillators. In the physical experiment and numerical simulation we demonstrate the existence of chimeralike states, in which some of the oscillators in the network exhibit synchronous oscillations, while all other oscillators remain asynchronous.

  12. On the convergence of finite state mean-field games through Γ-convergence

    KAUST Repository

    Ferreira, Rita C.

    2014-10-01

    In this study, we consider the long-term convergence (trend toward an equilibrium) of finite state mean-field games using Γ-convergence. Our techniques are based on the observation that an important class of mean-field games can be viewed as the Euler-Lagrange equation of a suitable functional. Therefore, using a scaling argument, one can convert a long-term convergence problem into a Γ-convergence problem. Our results generalize previous results related to long-term convergence for finite state problems. © 2014 Elsevier Inc.

  13. Quark number density and susceptibility calculation with one correction in mean field potential

    International Nuclear Information System (INIS)

    Singh, S. Somorendro

    2016-01-01

    We calculate quark number density and susceptibility of a model which has one loop correction in mean field potential. The calculation shows continuous increasing in the number density and susceptibility up to the temperature T = 0.4 GeV. Then the value of number density and susceptibility approach to the lattice result for higher value of temperature. The result indicates that the calculated values of the model fit well and the result increase the temperature to reach the lattice data with the one loop correction in the mean field potential. (author)

  14. Epidemic spreading in weighted networks: an edge-based mean-field solution.

    Science.gov (United States)

    Yang, Zimo; Zhou, Tao

    2012-05-01

    Weight distribution greatly impacts the epidemic spreading taking place on top of networks. This paper presents a study of a susceptible-infected-susceptible model on regular random networks with different kinds of weight distributions. Simulation results show that the more homogeneous weight distribution leads to higher epidemic prevalence, which, unfortunately, could not be captured by the traditional mean-field approximation. This paper gives an edge-based mean-field solution for general weight distribution, which can quantitatively reproduce the simulation results. This method could be applied to characterize the nonequilibrium steady states of dynamical processes on weighted networks.

  15. Mean-Field Scenario for the Athermal Creep Dynamics of Yield-Stress Fluids

    Science.gov (United States)

    Liu, Chen; Martens, Kirsten; Barrat, Jean-Louis

    2018-01-01

    We develop a theoretical description based on an existent mean-field model for the transient dynamics prior to the steady flow of yielding materials. The mean-field model not only reproduces the experimentally observed nonlinear time dependence of the shear-rate response to an external stress, but also allows for the determination of the different physical processes involved in the onset of the reacceleration phase after the initial slowing down and a distinct fluidization phase. The fluidization time displays a power-law dependence on the distance of the applied stress to an age-dependent yield stress, which is not universal but strongly dependent on initial conditions.

  16. Magnetic Helicities and Dynamo Action in Magneto-rotational Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Bodo, G.; Rossi, P. [INAF/Osservatorio Astrofisico di Torino, Strada Osservatorio 20, I-10025 Pino Torinese (Italy); Cattaneo, F. [Department of Astronomy and Astrophysics, The University of Chicago, 5640 S. Ellis Avenue, Chicago IL 60637 (United States); Mignone, A., E-mail: bodo@oato.inaf.it [Dipartimento di Fisica, Università degli Studi di Torino, Via Pietro Giuria 1, 10125 Torino (Italy)

    2017-07-10

    We examine the relationship between magnetic flux generation, taken as an indicator of large-scale dynamo action, and magnetic helicity, computed as an integral over the dynamo volume, in a simple dynamo. We consider dynamo action driven by magneto-rotational turbulence (MRT) within the shearing-box approximation. We consider magnetically open boundary conditions that allow a flux of helicity in or out of the computational domain. We circumvent the problem of the lack of gauge invariance in open domains by choosing a particular gauge—the winding gauge—that provides a natural interpretation in terms of the average winding number of pairwise field lines. We use this gauge precisely to define and measure the helicity and the helicity flux for several realizations of dynamo action. We find in these cases that the system as a whole does not break reflectional symmetry and that the total helicity remains small even in cases when substantial magnetic flux is generated. We find no particular connection between the generation of magnetic flux and the helicity or the helicity flux through the boundaries. We suggest that this result may be due to the essentially nonlinear nature of the dynamo processes in MRT.

  17. DIPOLE COLLAPSE AND DYNAMO WAVES IN GLOBAL DIRECT NUMERICAL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Schrinner, Martin; Dormy, Emmanuel [MAG (ENS/IPGP), LRA, Ecole Normale Superieure, 24 Rue Lhomond, 75252 Paris Cedex 05 (France); Petitdemange, Ludovic, E-mail: martin@schrinner.eu [Previously at Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg, Germany. (Germany)

    2012-06-20

    Magnetic fields of low-mass stars and planets are thought to originate from self-excited dynamo action in their convective interiors. Observations reveal a variety of field topologies ranging from large-scale, axial dipoles to more structured magnetic fields. In this article, we investigate more than 70 three-dimensional, self-consistent dynamo models in the Boussinesq approximation obtained by direct numerical simulations. The control parameters, the aspect ratio, and the mechanical boundary conditions have been varied to build up this sample of models. Both strongly dipolar and multipolar models have been obtained. We show that these dynamo regimes in general can be distinguished by the ratio of a typical convective length scale to the Rossby radius. Models with a predominantly dipolar magnetic field were obtained, if the convective length scale is at least an order of magnitude larger than the Rossby radius. Moreover, we highlight the role of the strong shear associated with the geostrophic zonal flow for models with stress-free boundary conditions. In this case the above transition disappears and is replaced by a region of bistability for which dipolar and multipolar dynamos coexist. We interpret our results in terms of dynamo eigenmodes using the so-called test-field method. We can thus show that models in the dipolar regime are characterized by an isolated 'single mode'. Competing overtones become significant as the boundary to multipolar dynamos is approached. We discuss how these findings relate to previous models and to observations.

  18. STELLAR EVIDENCE THAT THE SOLAR DYNAMO MAY BE IN TRANSITION

    International Nuclear Information System (INIS)

    Metcalfe, Travis S.; Egeland, Ricky; Van Saders, Jennifer

    2016-01-01

    Precise photometry from the Kepler space telescope allows not only the measurement of rotation in solar-type field stars, but also the determination of reliable masses and ages from asteroseismology. These critical data have recently provided the first opportunity to calibrate rotation–age relations for stars older than the Sun. The evolutionary picture that emerges is surprising: beyond middle-age the efficiency of magnetic braking is dramatically reduced, implying a fundamental change in angular momentum loss beyond a critical Rossby number (Ro ∼ 2). We compile published chromospheric activity measurements for the sample of Kepler asteroseismic targets that were used to establish the new rotation–age relations. We use these data along with a sample of well-characterized solar analogs from the Mount Wilson HK survey to develop a qualitative scenario connecting the evolution of chromospheric activity to a fundamental shift in the character of differential rotation. We conclude that the Sun may be in a transitional evolutionary phase, and that its magnetic cycle might represent a special case of stellar dynamo theory.

  19. STELLAR EVIDENCE THAT THE SOLAR DYNAMO MAY BE IN TRANSITION

    Energy Technology Data Exchange (ETDEWEB)

    Metcalfe, Travis S. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder CO 80301 (United States); Egeland, Ricky [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder CO 80307 (United States); Van Saders, Jennifer [Carnegie Observatories, 813 Santa Barbara Street, Pasadena CA 91101 (United States)

    2016-07-20

    Precise photometry from the Kepler space telescope allows not only the measurement of rotation in solar-type field stars, but also the determination of reliable masses and ages from asteroseismology. These critical data have recently provided the first opportunity to calibrate rotation–age relations for stars older than the Sun. The evolutionary picture that emerges is surprising: beyond middle-age the efficiency of magnetic braking is dramatically reduced, implying a fundamental change in angular momentum loss beyond a critical Rossby number (Ro ∼ 2). We compile published chromospheric activity measurements for the sample of Kepler asteroseismic targets that were used to establish the new rotation–age relations. We use these data along with a sample of well-characterized solar analogs from the Mount Wilson HK survey to develop a qualitative scenario connecting the evolution of chromospheric activity to a fundamental shift in the character of differential rotation. We conclude that the Sun may be in a transitional evolutionary phase, and that its magnetic cycle might represent a special case of stellar dynamo theory.

  20. NONLINEAR DYNAMO IN A ROTATING ELECTRICALLY CONDUCTING FLUID

    Directory of Open Access Journals (Sweden)

    M. I. Kopp

    2017-05-01

    Full Text Available We found a new large-scale instability, which arises in the rotating conductive fluid with small-scale turbulence. Turbulence is generated by small-scale external force with a low Reynolds number. The theory is built simply by the method of multiscale asymptotic expansions. Nonlinear equations for vortex and magnetic perturbations obtained in the third order for small Reynolds number. It is shown that the combined effects of the Coriolis force and the small external forces in a rotating conducting fluid possible large-scale instability. The large-scale increments of the instability, correspond to generation as the vortex and magnetic disturbances. This type of instability is classified as hydrodynamic and MHD alpha-effect. We studied the stationary regimes of nonlinear equations of magneto-vortex dynamo. In the limit of weakly conducting fluid found stationary solutions in the form of helical kinks. In the limit of high conductivity fluid was obtained stationary solutions in the form of nonlinear periodic waves and kinks.