WorldWideScience

Sample records for mdx dystrophic mice

  1. Dysfunctional Muscle and Liver Glycogen Metabolism in mdx Dystrophic Mice

    Science.gov (United States)

    Stapleton, David I.; Lau, Xianzhong; Flores, Marcelo; Trieu, Jennifer; Gehrig, Stefan M.; Chee, Annabel; Naim, Timur; Lynch, Gordon S.; Koopman, René

    2014-01-01

    Background Duchenne muscular dystrophy (DMD) is a severe, genetic muscle wasting disorder characterised by progressive muscle weakness. DMD is caused by mutations in the dystrophin (dmd) gene resulting in very low levels or a complete absence of the dystrophin protein, a key structural element of muscle fibres which is responsible for the proper transmission of force. In the absence of dystrophin, muscle fibres become damaged easily during contraction resulting in their degeneration. DMD patients and mdx mice (an animal model of DMD) exhibit altered metabolic disturbances that cannot be attributed to the loss of dystrophin directly. We tested the hypothesis that glycogen metabolism is defective in mdx dystrophic mice. Results Dystrophic mdx mice had increased skeletal muscle glycogen (79%, (Pglycogen synthesis is initiated by glycogenin, the expression of which was increased by 50% in mdx mice (PGlycogen synthase activity was 12% higher (Pglycogen branching enzyme activity was 70% lower (Pglycogen breakdown, glycogen phosphorylase, had 62% lower activity (Pglycogen debranching enzyme expression was 50% higher (Pglycogen (Pglycogen metabolism in mdx mice identified reduced glycogenin protein expression (46% less; Pglycogen but reduced amounts of liver glycogen. PMID:24626262

  2. Nerve terminal contributes to acetylcholine receptor organization at the dystrophic neuromuscular junction of mdx mice.

    Science.gov (United States)

    Marques, Maria Julia; Taniguti, Ana Paula Tiemi; Minatel, Elaine; Neto, Humberto Santo

    2007-02-01

    Changes in the distribution of acetylcholine receptors have been reported to occur at the neuromuscular junction of mdx mice and may be a consequence of muscle fiber regeneration rather than the absence of dystrophin. In the present study, we examined whether the nerve terminal determines the fate of acetylcholine receptor distribution in the dystrophic muscle fibers of mdx mice. The left sternomastoid muscle of young (1-month-old) and adult (6-month-old) mdx mice was injected with 60 microl lidocaine hydrochloride to induce muscle degeneration-regeneration. Some mice had their sternomastoid muscle denervated at the time of lidocaine injection. After 10 days of muscle denervation, nerve terminals and acetylcholine receptors were labeled with 4-Di-2-ASP and rhodamine-alpha-bungarotoxin, respectively, for confocal microscopy. In young mdx mice, 75% (n = 137 endplates) of the receptors were distributed in islands. The same was observed in 100% (n = 114 endplates) of the adult junctions. In denervated-regenerated fibers of young mice, the receptors were distributed as branches in 89% of the endplates (n = 90). In denervated-regenerated fibers of adult mice, the receptors were distributed in islands in 100% of the endplates (n = 100). These findings show that nerve-dependent mechanisms are also involved in the changes in receptor distribution in young dystrophic muscles. In older dystrophic muscles, other factors may play a role in receptor distribution.

  3. Mutation types and aging differently affect revertant fiber expansion in dystrophic mdx and mdx52 mice.

    Directory of Open Access Journals (Sweden)

    Yusuke Echigoya

    Full Text Available Duchenne muscular dystrophy (DMD, one of the most common and lethal genetic disorders, and the mdx mouse myopathies are caused by a lack of dystrophin protein. These dystrophic muscles contain sporadic clusters of dystrophin-expressing revertant fibers (RFs, as detected by immunohistochemistry. RFs are known to arise from muscle precursor cells with spontaneous exon skipping (alternative splicing and clonally expand in size with increasing age through the process of muscle degeneration/regeneration. The expansion of revertant clusters is thought to represent the cumulative history of muscle regeneration and proliferation of such precursor cells. However, the precise mechanisms by which RFs arise and expand are poorly understood. Here, to test the effects of mutation types and aging on RF expansion and muscle regeneration, we examined the number of RFs in mdx mice (containing a nonsense mutation in exon 23 and mdx52 mice (containing deletion mutation of exon 52 with the same C57BL/6 background at 2, 6, 12, and 18months of age. Mdx mice displayed a significantly higher number of RFs compared to mdx52 mice in all age groups, suggesting that revertant fiber expansion largely depends on the type of mutation and/or location in the gene. A significant increase in the expression and clustering levels of RFs was found beginning at 6months of age in mdx mice compared with mdx52 mice. In contrast to the significant expansion of RFs with increasing age, the number of centrally nucleated fibers and embryonic myosin heavy chain-positive fibers (indicative of cumulative and current muscle regeneration, respectively decreased with age in both mouse strains. These results suggest that mutation types and aging differently affect revertant fiber expansion in mdx and mdx52 mice.

  4. Skeletal muscle-specific overexpression of IGFBP-2 promotes a slower muscle phenotype in healthy but not dystrophic mdx mice and does not affect the dystrophic pathology.

    Science.gov (United States)

    Swiderski, Kristy; Martins, Karen Janet Bernice; Chee, Annabel; Trieu, Jennifer; Naim, Timur; Gehrig, Stefan Martin; Baum, Dale Michael; Brenmoehl, Julia; Chau, Luong; Koopman, René; Gregorevic, Paul; Metzger, Friedrich; Hoeflich, Andreas; Lynch, Gordon Stuart

    The insulin-like growth factor binding proteins (IGFBPs) are thought to modulate cell size and homeostasis via IGF-I-dependent and -independent pathways. There is a considerable dearth of information regarding the function of IGFBPs in skeletal muscle, particularly their role in the pathophysiology of Duchenne muscular dystrophy (DMD). In this study we tested the hypothesis that intramuscular IGFBP-2 overexpression would ameliorate the pathology in mdx dystrophic mice. 4week old male C57Bl/10 and mdx mice received a single intramuscular injection of AAV6-empty or AAV6-IGFBP-2 vector into the tibialis anterior muscle. At 8weeks post-injection the effect of IGFBP-2 overexpression on the structure and function of the injected muscle was assessed. AAV6-mediated IGFBP-2 overexpression in the tibialis anterior (TA) muscles of 4-week-old C57BL/10 and mdx mice reduced the mass of injected muscle after 8weeks, inducing a slower muscle phenotype in C57BL/10 but not mdx mice. Analysis of inflammatory and fibrotic gene expression revealed no changes between control and IGFBP-2 injected muscles in dystrophic (mdx) mice. Together these results indicate that the IGFBP-2-induced promotion of a slower muscle phenotype is impaired in muscles of dystrophin-deficient mdx mice, which contributes to the inability of IGFBP-2 to ameliorate the dystrophic pathology. The findings implicate the dystrophin-glycoprotein complex (DGC) in the signaling required for this adaptation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Dystrophic phenotype improvement in the diaphragm muscle of mdx mice by diacerhein.

    Directory of Open Access Journals (Sweden)

    Rafael Dias Mâncio

    Full Text Available Chronic inflammation and oxidative stress are striking features of Duchenne muscular dystrophy disease. Diacerhein is an anthraquinone, which exhibits anti-inflammatory and antioxidant properties. Based on their actions, the present study evaluated the effects of diacerhein against myonecrosis, oxidative stress and inflammatory response in the diaphragm muscle of mdx mice and compared these results to current treatment widely used in DMD patients, with a main focus on the impact of prednisone. The results demonstrated that diacerhein treatment prevented muscle damage indicated by a decrease in the IgG uptake by muscle fibers, lower CK levels in serum, reduction of fibers with central nuclei with a concomitant increase in fibers with peripheral nuclei. It also had an effect on the inflammatory process, decreasing the inflammatory area, macrophage staining and TNF-α and IL-1β content. Regarding oxidative stress, diacerhein treatment was effective in reducing the ROS and lipid peroxidation in the diaphragm muscle from mdx mice. Compared to prednisone treatment, our findings demonstrated that diacerhein treatment improved the dystrophic phenotype in the diaphragm muscle of mdx mice similar to that of glucocorticoid therapy. In this respect, this work suggests that diacerhein has a potential use as an alternative drug in dystrophinopathy treatment and recommends that its anti-inflammatory and antioxidants properties in the dystrophic muscle should be better understood.

  6. Matrix metalloproteinase-9 inhibition improves proliferation and engraftment of myogenic cells in dystrophic muscle of mdx mice.

    Directory of Open Access Journals (Sweden)

    Sajedah M Hindi

    Full Text Available Duchenne muscular dystrophy (DMD caused by loss of cytoskeletal protein dystrophin is a devastating disorder of skeletal muscle. Primary deficiency of dystrophin leads to several secondary pathological changes including fiber degeneration and regeneration, extracellular matrix breakdown, inflammation, and fibrosis. Matrix metalloproteinases (MMPs are a group of extracellular proteases that are involved in tissue remodeling, inflammation, and development of interstitial fibrosis in many disease states. We have recently reported that the inhibition of MMP-9 improves myopathy and augments myofiber regeneration in mdx mice (a mouse model of DMD. However, the mechanisms by which MMP-9 regulates disease progression in mdx mice remain less understood. In this report, we demonstrate that the inhibition of MMP-9 augments the proliferation of satellite cells in dystrophic muscle. MMP-9 inhibition also causes significant reduction in percentage of M1 macrophages with concomitant increase in the proportion of promyogenic M2 macrophages in mdx mice. Moreover, inhibition of MMP-9 increases the expression of Notch ligands and receptors, and Notch target genes in skeletal muscle of mdx mice. Furthermore, our results show that while MMP-9 inhibition augments the expression of components of canonical Wnt signaling, it reduces the expression of genes whose products are involved in activation of non-canonical Wnt signaling in mdx mice. Finally, the inhibition of MMP-9 was found to dramatically improve the engraftment of transplanted myoblasts in skeletal muscle of mdx mice. Collectively, our study suggests that the inhibition of MMP-9 is a promising approach to stimulate myofiber regeneration and improving engraftment of muscle progenitor cells in dystrophic muscle.

  7. Novel adeno-associated viral vector delivering the utrophin gene regulator jazz counteracts dystrophic pathology in mdx mice.

    Science.gov (United States)

    Strimpakos, Georgios; Corbi, Nicoletta; Pisani, Cinzia; Di Certo, Maria Grazia; Onori, Annalisa; Luvisetto, Siro; Severini, Cinzia; Gabanella, Francesca; Monaco, Lucia; Mattei, Elisabetta; Passananti, Claudio

    2014-09-01

    Over-expression of the dystrophin-related gene utrophin represents a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). The strategy is based on the ability of utrophin to functionally replace defective dystrophin. We developed the artificial zinc finger transcription factor "Jazz" that up-regulates both the human and mouse utrophin promoter. We observed a significant recovery of muscle strength in dystrophic Jazz-transgenic mdx mice. Here we demonstrate the efficacy of an experimental gene therapy based on the systemic delivery of Jazz gene in mdx mice by adeno-associated virus (AAV). AAV serotype 8 was chosen on the basis of its high affinity for skeletal muscle. Muscle-specific expression of the therapeutic Jazz gene was enhanced by adding the muscle α-actin promoter to the AAV vector (mAAV). Injection of mAAV8-Jazz viral preparations into mdx mice resulted in muscle-specific Jazz expression coupled with up-regulation of the utrophin gene. We show a significant recovery from the dystrophic phenotype in mAAV8-Jazz-treated mdx mice. Histological and physiological analysis revealed a reduction of fiber necrosis and inflammatory cell infiltration associated with functional recovery in muscle contractile force. The combination of ZF-ATF technology with the AAV delivery can open a new avenue to obtain a therapeutic strategy for treatment of DMD. © 2014 Wiley Periodicals, Inc.

  8. The artificial gene Jazz, a transcriptional regulator of utrophin, corrects the dystrophic pathology in mdx mice.

    Science.gov (United States)

    Di Certo, Maria Grazia; Corbi, Nicoletta; Strimpakos, Georgios; Onori, Annalisa; Luvisetto, Siro; Severini, Cinzia; Guglielmotti, Angelo; Batassa, Enrico Maria; Pisani, Cinzia; Floridi, Aristide; Benassi, Barbara; Fanciulli, Maurizio; Magrelli, Armando; Mattei, Elisabetta; Passananti, Claudio

    2010-03-01

    The absence of the cytoskeletal protein dystrophin results in Duchenne muscular dystrophy (DMD). The utrophin protein is the best candidate for dystrophin replacement in DMD patients. To obtain therapeutic levels of utrophin expression in dystrophic muscle, we developed an alternative strategy based on the use of artificial zinc finger transcription factors (ZF ATFs). The ZF ATF 'Jazz' was recently engineered and tested in vivo by generating a transgenic mouse specifically expressing Jazz at the muscular level. To validate the ZF ATF technology for DMD treatment we generated a second mouse model by crossing Jazz-transgenic mice with dystrophin-deficient mdx mice. Here, we show that the artificial Jazz protein restores sarcolemmal integrity and prevents the development of the dystrophic disease in mdx mice. This exclusive animal model establishes the notion that utrophin-based therapy for DMD can be efficiently developed using ZF ATF technology and candidates Jazz as a novel therapeutic molecule for DMD therapy.

  9. Erythropoietin reduces the expression of myostatin in mdx dystrophic mice

    International Nuclear Information System (INIS)

    Feder, D.; Rugollini, M.; Santomauro, A. Jr; Oliveira, L.P.; Lioi, V.P.; Santos, R. dos; Ferreira, L.G.; Nunes, M.T.; Carvalho, M.H.; Delgado, P.O.; Carvalho, A.A.S.; Fonseca, F.L.A.

    2014-01-01

    Erythropoietin (EPO) has been well characterized as a renal glycoprotein hormone regulating red blood cell production by inhibiting apoptosis of erythrocyte progenitors in hematopoietic tissues. EPO exerts regulatory effects in cardiac and skeletal muscles. Duchenne muscular dystrophy is a lethal degenerative disorder of skeletal and cardiac muscle. In this study, we tested the possible therapeutic beneficial effect of recombinant EPO (rhEPO) in dystrophic muscles in mdx mice. Total strength was measured using a force transducer coupled to a computer. Gene expression for myostatin, transforming growth factor-β1 (TGF-β1), and tumor necrosis factor-α (TNF-α) was determined by quantitative real time polymerase chain reaction. Myostatin expression was significantly decreased in quadriceps from mdx mice treated with rhEPO (rhEPO=0.60±0.11, control=1.07±0.11). On the other hand, rhEPO had no significant effect on the expression of TGF-β1 (rhEPO=0.95±0.14, control=1.05±0.16) and TNF-α (rhEPO=0.73±0.20, control=1.01±0.09). These results may help to clarify some of the direct actions of EPO on skeletal muscle

  10. Erythropoietin reduces the expression of myostatin in mdx dystrophic mice

    Energy Technology Data Exchange (ETDEWEB)

    Feder, D.; Rugollini, M.; Santomauro, A. Jr; Oliveira, L.P.; Lioi, V.P. [Faculdade de Medicina do ABC, Santo André, SP (Brazil); Santos, R. dos; Ferreira, L.G.; Nunes, M.T.; Carvalho, M.H. [Universidade de São Paulo, Instituto de Ciências Biomédicas, São Paulo, SP (Brazil); Delgado, P.O.; Carvalho, A.A.S. [Faculdade de Medicina do ABC, Santo André, SP (Brazil); Fonseca, F.L.A. [Faculdade de Medicina do ABC, Santo André, SP (Brazil); Universidade Federal de São Paulo, Ambientais e Farmacêuticas, Instituto de Ciências Químicas, Diadema, SP (Brazil)

    2014-09-05

    Erythropoietin (EPO) has been well characterized as a renal glycoprotein hormone regulating red blood cell production by inhibiting apoptosis of erythrocyte progenitors in hematopoietic tissues. EPO exerts regulatory effects in cardiac and skeletal muscles. Duchenne muscular dystrophy is a lethal degenerative disorder of skeletal and cardiac muscle. In this study, we tested the possible therapeutic beneficial effect of recombinant EPO (rhEPO) in dystrophic muscles in mdx mice. Total strength was measured using a force transducer coupled to a computer. Gene expression for myostatin, transforming growth factor-β1 (TGF-β1), and tumor necrosis factor-α (TNF-α) was determined by quantitative real time polymerase chain reaction. Myostatin expression was significantly decreased in quadriceps from mdx mice treated with rhEPO (rhEPO=0.60±0.11, control=1.07±0.11). On the other hand, rhEPO had no significant effect on the expression of TGF-β1 (rhEPO=0.95±0.14, control=1.05±0.16) and TNF-α (rhEPO=0.73±0.20, control=1.01±0.09). These results may help to clarify some of the direct actions of EPO on skeletal muscle.

  11. Heregulin ameliorates the dystrophic phenotype in mdx mice

    DEFF Research Database (Denmark)

    Krag, Thomas O B; Bogdanovich, Sasha; Jensen, Claus J

    2004-01-01

    Duchenne's muscular dystrophy (DMD) is a fatal neuromuscular disease caused by absence of dystrophin. Utrophin is a chromosome 6-encoded dystrophin-related protein (DRP), sharing functional motifs with dystrophin. Utrophin's ability to compensate for dystrophin during development and when....... Therefore, this pathway offers a potential mechanism to modulate utrophin expression in muscle. We tested the ability of heregulin to improve the dystrophic phenotype in the mdx mouse model of DMD. Intraperitoneal injections of a small peptide encoding the epidermal growth factor-like region of heregulin...... ectodomain for 3 months in vivo resulted in up-regulation of utrophin, a marked improvement in the mechanical properties of muscle as evidenced by resistance to eccentric contraction mediated damage, and a reduction of muscle pathology. The amelioration of dystrophic phenotype by heregulin-mediated utrophin...

  12. Polyethylenimine-modified Pluronics (PCMs) Improve Morpholino Oligomer Delivery in Cell Culture and Dystrophic mdx Mice

    OpenAIRE

    Wang, Mingxing; Wu, Bo; Lu, Peijuan; Cloer, Caryn; Tucker, Jay D; Lu, Qilong

    2012-01-01

    We investigated a series of small-sized polyethylenimine (PEI, 0.8/1.2 k)-conjugated pluronic copolymers (PCMs) for their potential to enhance delivery of an antisense phosphorodiamidate morpholino oligomer (PMO) in vitro and in dystrophic mdx mice. PCM polymers containing pluronics of molecular weight (Mw) ranging 2–6 k, with hydrophilic-lipophilic balance (HLB) 7–23, significantly enhanced PMO-induced exon-skipping in a green fluorescent protein (GFP) reporter-based myoblast culture system....

  13. Alterations in Notch signalling in skeletal muscles from mdx and dko dystrophic mice and patients with Duchenne muscular dystrophy.

    Science.gov (United States)

    Church, Jarrod E; Trieu, Jennifer; Chee, Annabel; Naim, Timur; Gehrig, Stefan M; Lamon, Séverine; Angelini, Corrado; Russell, Aaron P; Lynch, Gordon S

    2014-04-01

    New Findings What is the central question of this study? The Notch signalling pathway plays an important role in muscle regeneration, and activation of the pathway has been shown to enhance muscle regeneration in aged mice. It is unknown whether Notch activation will have a similarly beneficial effect on muscle regeneration in the context of Duchenne muscular dystrophy (DMD). What is the main finding and its importance? Although expression of Notch signalling components is altered in both mouse models of DMD and in human DMD patients, activation of the Notch signalling pathway does not confer any functional benefit on muscles from dystrophic mice, suggesting that other signalling pathways may be more fruitful targets for manipulation in treating DMD. Abstract In Duchenne muscular dystrophy (DMD), muscle damage and impaired regeneration lead to progressive muscle wasting, weakness and premature death. The Notch signalling pathway represents a central regulator of gene expression and is critical for cellular proliferation, differentiation and apoptotic signalling during all stages of embryonic muscle development. Notch activation improves muscle regeneration in aged mice, but its potential to restore regeneration and function in muscular dystrophy is unknown. We performed a comprehensive examination of several genes involved in Notch signalling in muscles from dystrophin-deficient mdx and dko (utrophin- and dystrophin-null) mice and DMD patients. A reduction of Notch1 and Hes1 mRNA in tibialis anterior muscles of dko mice and quadriceps muscles of DMD patients and a reduction of Hes1 mRNA in the diaphragm of the mdx mice were observed, with other targets being inconsistent across species. Activation and inhibition of Notch signalling, followed by measures of muscle regeneration and function, were performed in the mouse models of DMD. Notch activation had no effect on functional regeneration in C57BL/10, mdx or dko mice. Notch inhibition significantly depressed the

  14. Muscle Structure Influences Utrophin Expression in mdx Mice

    Science.gov (United States)

    Banks, Glen B.; Combs, Ariana C.; Odom, Guy L.; Bloch, Robert J.; Chamberlain, Jeffrey S.

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder caused by mutations in the dystrophin gene. To examine the influence of muscle structure on the pathogenesis of DMD we generated mdx4cv:desmin double knockout (dko) mice. The dko male mice died of apparent cardiorespiratory failure at a median age of 76 days compared to 609 days for the desmin−/− mice. An ∼2.5 fold increase in utrophin expression in the dko skeletal muscles prevented necrosis in ∼91% of 1a, 2a and 2d/x fiber-types. In contrast, utrophin expression was reduced in the extrasynaptic sarcolemma of the dko fast 2b fibers leading to increased membrane fragility and dystrophic pathology. Despite lacking extrasynaptic utrophin, the dko fast 2b fibers were less dystrophic than the mdx4cv fast 2b fibers suggesting utrophin-independent mechanisms were also contributing to the reduced dystrophic pathology. We found no overt change in the regenerative capacity of muscle stem cells when comparing the wild-type, desmin−/−, mdx4cv and dko gastrocnemius muscles injured with notexin. Utrophin could form costameric striations with α-sarcomeric actin in the dko to maintain the integrity of the membrane, but the lack of restoration of the NODS (nNOS, α-dystrobrevin 1 and 2, α1-syntrophin) complex and desmin coincided with profound changes to the sarcomere alignment in the diaphragm, deposition of collagen between the myofibers, and impaired diaphragm function. We conclude that the dko mice may provide new insights into the structural mechanisms that influence endogenous utrophin expression that are pertinent for developing a therapy for DMD. PMID:24922526

  15. N-Acetylcysteine treatment of dystrophic mdx mice results in protein thiol modifications and inhibition of exercise induced myofibre necrosis.

    Science.gov (United States)

    Terrill, Jessica R; Radley-Crabb, Hannah G; Grounds, Miranda D; Arthur, Peter G

    2012-05-01

    Oxidative stress is implicated as a factor that increases necrosis of skeletal muscles in Duchenne Muscular Dystrophy (DMD) and the dystrophic mdx mouse. Consequently, drugs that minimize oxidative stress are potential treatments for muscular dystrophy. This study examined the in vivo benefits to mdx mice of an antioxidant treatment with the cysteine precursor N-acetylcysteine (NAC), administered in drinking water. NAC was completely effective in preventing treadmill exercise-induced myofibre necrosis (assessed histologically) and the increased blood creatine kinase levels (a measure of sarcolemma leakiness) following exercise were significantly lower in the NAC treated mice. While NAC had no effect on malondialdehyde level or protein carbonylation (two indicators of irreversible oxidative damage), treatment with NAC for one week significantly decreased the oxidation of glutathione and protein thiols, and enhanced muscle protein thiol content. These data provide in vivo evidence for protective benefits of NAC treatment on dystropathology, potentially via protein thiol modifications. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Beneficial effects of high dose taurine treatment in juvenile dystrophic mdx mice are offset by growth restriction.

    Science.gov (United States)

    Terrill, Jessica R; Pinniger, Gavin J; Nair, Keshav V; Grounds, Miranda D; Arthur, Peter G

    2017-01-01

    Duchenne Muscular Dystrophy (DMD) is a fatal muscle wasting disease manifested in young boys, for which there is no current cure. We have shown that the amino acid taurine is safe and effective at preventing dystropathology in the mdx mouse model for DMD. This study aimed to establish if treating growing mdx mice with a higher dose of taurine was more effective at improving strength and reducing inflammation and oxidative stress. Mice were treated with a dose of taurine estimated to be 16 g/kg/day, in drinking water from 1-6 weeks of age, after which in vivo and ex vivo muscle strength was assessed, as were measures of inflammation, oxidative stress and taurine metabolism. While the dose did decrease inflammation and protein oxidation in dystrophic muscles, there was no improvement in muscle strength (in contrast with benefits observed with the lower dose) and growth of the young mice was significantly restricted. We present novel data that a high taurine dose increases the cysteine content of both mdx liver and plasma, a possible result of down regulation of the taurine synthesis pathway in the liver (which functions to dispose of excess cysteine, which is toxic). These data caution that a high dose of taurine can have adverse effects and may be less efficacious than lower taurine doses. Therefore, monitoring of taurine dosage needs to be considered in future pre-clinical trials, in anticipation of using taurine as a clinical therapy for growing DMD boys (and other conditions).

  17. Beneficial effects of high dose taurine treatment in juvenile dystrophic mdx mice are offset by growth restriction.

    Directory of Open Access Journals (Sweden)

    Jessica R Terrill

    Full Text Available Duchenne Muscular Dystrophy (DMD is a fatal muscle wasting disease manifested in young boys, for which there is no current cure. We have shown that the amino acid taurine is safe and effective at preventing dystropathology in the mdx mouse model for DMD. This study aimed to establish if treating growing mdx mice with a higher dose of taurine was more effective at improving strength and reducing inflammation and oxidative stress. Mice were treated with a dose of taurine estimated to be 16 g/kg/day, in drinking water from 1-6 weeks of age, after which in vivo and ex vivo muscle strength was assessed, as were measures of inflammation, oxidative stress and taurine metabolism. While the dose did decrease inflammation and protein oxidation in dystrophic muscles, there was no improvement in muscle strength (in contrast with benefits observed with the lower dose and growth of the young mice was significantly restricted. We present novel data that a high taurine dose increases the cysteine content of both mdx liver and plasma, a possible result of down regulation of the taurine synthesis pathway in the liver (which functions to dispose of excess cysteine, which is toxic. These data caution that a high dose of taurine can have adverse effects and may be less efficacious than lower taurine doses. Therefore, monitoring of taurine dosage needs to be considered in future pre-clinical trials, in anticipation of using taurine as a clinical therapy for growing DMD boys (and other conditions.

  18. Chronic Dosing with Membrane Sealant Poloxamer 188 NF Improves Respiratory Dysfunction in Dystrophic Mdx and Mdx/Utrophin-/- Mice.

    Directory of Open Access Journals (Sweden)

    Bruce E Markham

    Full Text Available Poloxamer 188 NF (national formulary (NF grade of P-188 improves cardiac muscle function in the mdx mouse and golden retriever muscular dystrophy models. However in vivo effects on skeletal muscle have not been reported. We postulated that P-188 NF might protect diaphragm muscle membranes from contraction-induced injury in mdx and mdx/utrophin-/- (dko muscular dystrophy models. In the first study 7-month old mdx mice were treated for 22 weeks with subcutaneous (s.c. injections of saline or P-188 NF at 3 mg/Kg. In the second, dkos were treated with saline or P-188 NF (1 mg/Kg for 8 weeks beginning at age 3 weeks. Prednisone was the positive control in both studies. Respiratory function was monitored using unrestrained whole body plethysmography. P-188 NF treatment affected several respiratory parameters including tidal volume/BW and minute volume/BW in mdx mice. In the more severe dko model, P-188 NF (1 mg/Kg significantly slowed the decline in multiple respiratory parameters compared with saline-treated dko mice. Prednisone's effects were similar to those seen with P-188 NF. Diaphragms from P-188 NF or prednisone treated mdx and dko mice showed signs of muscle fiber protection including less centralized nuclei, less variation in fiber size, greater fiber density, and exhibited a decreased amount of collagen deposition. P-188 NF at 3 mg/Kg s.c. also improved parameters of systolic and diastolic function in mdx mouse hearts. These results suggest that P-188 NF may be useful in treating respiratory and cardiac dysfunction, the leading causes of death in Duchenne muscular dystrophy patients.

  19. Increased sphingosine-1-phosphate improves muscle regeneration in acutely injured mdx mice

    Science.gov (United States)

    2013-01-01

    Background Presently, there is no effective treatment for the lethal muscle wasting disease Duchenne muscular dystrophy (DMD). Here we show that increased sphingosine-1-phoshate (S1P) through direct injection or via the administration of the small molecule 2-acetyl-4(5)-tetrahydroxybutyl imidazole (THI), an S1P lyase inhibitor, has beneficial effects in acutely injured dystrophic muscles of mdx mice. Methods We treated mdx mice with and without acute injury and characterized the histopathological and functional effects of increasing S1P levels. We also tested exogenous and direct administration of S1P on mdx muscles to examine the molecular pathways under which S1P promotes regeneration in dystrophic muscles. Results Short-term treatment with THI significantly increased muscle fiber size and extensor digitorum longus (EDL) muscle specific force in acutely injured mdx limb muscles. In addition, the accumulation of fibrosis and fat deposition, hallmarks of DMD pathology and impaired muscle regeneration, were lower in the injured muscles of THI-treated mdx mice. Furthermore, increased muscle force was observed in uninjured EDL muscles with a longer-term treatment of THI. Such regenerative effects were linked to the response of myogenic cells, since intramuscular injection of S1P increased the number of Myf5nlacz/+ positive myogenic cells and newly regenerated myofibers in injured mdx muscles. Intramuscular injection of biotinylated-S1P localized to muscle fibers, including newly regenerated fibers, which also stained positive for S1P receptor 1 (S1PR1). Importantly, plasma membrane and perinuclear localization of phosphorylated S1PR1 was observed in regenerating muscle fibers of mdx muscles. Intramuscular increases of S1P levels, S1PR1 and phosphorylated ribosomal protein S6 (P-rpS6), and elevated EDL muscle specific force, suggest S1P promoted the upregulation of anabolic pathways that mediate skeletal muscle mass and function. Conclusions These data show that S1P is

  20. Loss of nNOS inhibits compensatory muscle hypertrophy and exacerbates inflammation and eccentric contraction-induced damage in mdx mice

    Science.gov (United States)

    Froehner, Stanley C.; Reed, Sarah M.; Anderson, Kendra N.; Huang, Paul L.; Percival, Justin M.

    2015-01-01

    Approaches targeting nitric oxide (NO) signaling show promise as therapies for Duchenne and Becker muscular dystrophies. However, the mechanisms by which NO benefits dystrophin-deficient muscle remain unclear, but may involve nNOSβ, a newly discovered enzymatic source of NO in skeletal muscle. Here we investigate the impact of dystrophin deficiency on nNOSβ and use mdx mice engineered to lack nNOSμ and nNOSβ to discern how the loss of nNOS impacts dystrophic skeletal muscle pathology. In mdx muscle, nNOSβ was mislocalized and its association with the Golgi complex was reduced. nNOS depletion from mdx mice prevented compensatory skeletal muscle cell hypertrophy, decreased myofiber central nucleation and increased focal macrophage cell infiltration, indicating exacerbated dystrophic muscle damage. Reductions in muscle integrity in nNOS-null mdx mice were accompanied by decreases in specific force and increased susceptibility to eccentric contraction-induced muscle damage compared with mdx controls. Unexpectedly, muscle fatigue was unaffected by nNOS depletion, revealing a novel latent compensatory mechanism for the loss of nNOS in mdx mice. Together with previous studies, these data suggest that localization of both nNOSμ and nNOSβ is disrupted by dystrophin deficiency. They also indicate that nNOS has a more complex role as a modifier of dystrophic pathology and broader therapeutic potential than previously recognized. Importantly, these findings also suggest nNOSβ as a new drug target and provide a new conceptual framework for understanding nNOS signaling and the benefits of NO therapies in dystrophinopathies. PMID:25214536

  1. Elements determination of clinical relevance in biological tissues Dmd{sup mdx}/J dystrophic mice strains investigated by NAA; Determinacao de elementos de relevancia clinica em tecidos biologicos de camundongos distroficos Dmd{sup mdx}/J por AAN

    Energy Technology Data Exchange (ETDEWEB)

    Metairon, Sabrina

    2012-07-01

    In this work the determination of chemistry elements in biological tissues (whole blood, bones and organs) of dystrophic mice, used as animal model of Duchenne Muscular Dystrophy (DMD), was performed using analytical nuclear technique. The aim of this work was to determine reference values of elements of clinical (Ca, Cl, K, Mg, Na) and nutritional (Br and S) relevance in whole blood, tibia, quadriceps and hearts from Dmdmdx/J (10 males and 10 females) dystrophic mice and C57BL/6J (10 males) control group mice, using Neutron Activation Analysis technique (NAA). To show in more details the alterations that this disease may cause in these biological tissues, correlations matrixes of the DMD{sup mdx}/J mouse strain were generated and compared with C57BL/6J control group. For this study 119 samples of biological tissue were irradiated in the IEA-R1 nuclear reactor at IPEN (Sao Paulo, Brazil). The concentrations of these elements in biological tissues of Dmd{sup mdx}/J and C57B/6J mice are the first indicative interval for reference values. Moreover, the alteration in some correlation coefficients data among the elements in the health status and in the diseased status indicates a connection between these elements in whole blood, tibia, quadriceps and heart. These results may help the researchers to evaluate the efficiency of new treatments and to compare the advantages of different treatment approaches before performing tests in patients with muscular dystrophy. (author)

  2. Gentamicin treatment in exercised mdx mice: Identification of dystrophin-sensitive pathways and evaluation of efficacy in work-loaded dystrophic muscle.

    Science.gov (United States)

    De Luca, Annamaria; Nico, Beatrice; Rolland, Jean-François; Cozzoli, Anna; Burdi, Rosa; Mangieri, Domenica; Giannuzzi, Viviana; Liantonio, Antonella; Cippone, Valentina; De Bellis, Michela; Nicchia, Grazia Paola; Camerino, Giulia Maria; Frigeri, Antonio; Svelto, Maria; Camerino, Diana Conte

    2008-11-01

    Aminoglycosides force read through of premature stop codon mutations and introduce new mutation-specific gene-corrective strategies in Duchenne muscular dystrophy. A chronic treatment with gentamicin (32 mg/kg/daily i.p., 8-12 weeks) was performed in exercised mdx mice with the dual aim to clarify the dependence on dystrophin of the functional, biochemical and histological alterations present in dystrophic muscle and to verify the long term efficiency of small molecule gene-corrective strategies in work-loaded dystrophic muscle. The treatment counteracted the exercise-induced impairment of in vivo forelimb strength after 6-8 weeks. We observed an increase in dystrophin expression level in all the fibers, although lower than that observed in normal fibers, and found a concomitant recovery of aquaporin-4 at sarcolemma. A significant reduction in centronucleated fibers, in the area of necrosis and in the percentage of nuclear factor-kB-positive nuclei was observed in gastrocnemious muscle of treated animals. Plasma creatine kinase was reduced by 70%. Ex vivo, gentamicin restored membrane ionic conductance in mdx diaphragm and limb muscle fibers. No effects were observed on the altered calcium homeostasis and sarcolemmal calcium permeability, detected by electrophysiological and microspectrofluorimetric approaches. Thus, the maintenance of a partial level of dystrophin is sufficient to reinforce sarcolemmal stability, reducing leakiness, inflammation and fiber damage, while correction of altered calcium homeostasis needs greater expression of dystrophin or direct interventions on the channels involved.

  3. The chondrogenic response to exercise in the proximal femur of normal and mdx mice

    Directory of Open Access Journals (Sweden)

    Nye David J

    2010-09-01

    Full Text Available Abstract Background Submaximal exercise is used in the management of muscular dystrophy. The effects of mechanical stimulation on skeletal development are well understood, although its effects on cartilage growth have yet to be investigated in the dystrophic condition. The objective of this study was to investigate the chondrogenic response to voluntary exercise in dystrophin-deficient mice. Methods Control and dystrophin-deficient (mdx mice were divided into sedentary and exercise-treated groups and tested for chondral histomorphometric differences at the proximal femur. Results Control mice ran 7 km/week further than mdx mice on average, but this difference was not statistically significant (P > 0.05. However, exercised control mice exhibited significantly enlarged femur head diameter, articular cartilage thickness, articular cartilage tissue area, and area of calcified cartilage relative to sedentary controls and exercised mdx mice (P Conclusions Mdx mice exhibit a reduced chondrogenic response to increased mechanical stimulation relative to controls. However, no significant reduction in articular dimensions was found, indicating loss of chondral tissue may not be a clinical concern with dystrophinopathy.

  4. A Reduction in Selenoprotein S Amplifies the Inflammatory Profile of Fast-Twitch Skeletal Muscle in the mdx Dystrophic Mouse.

    Science.gov (United States)

    Wright, Craig Robert; Allsopp, Giselle Larissa; Addinsall, Alex Bernard; McRae, Natasha Lee; Andrikopoulos, Sofianos; Stupka, Nicole

    2017-01-01

    Excessive inflammation is a hallmark of muscle myopathies, including Duchenne muscular dystrophy (DMD). There is interest in characterising novel genes that regulate inflammation due to their potential to modify disease progression. Gene polymorphisms in Selenoprotein S ( Seps1 ) are associated with elevated proinflammatory cytokines, and in vitro SEPS1 is protective against inflammatory stress. Given that SEPS1 is highly expressed in skeletal muscle, we investigated whether the genetic reduction of Seps1 exacerbated inflammation in the mdx mouse. F1 male mdx mice with a heterozygous Seps1 deletion ( mdx : Seps1 -/+ ) were generated. The mdx:Seps1 -/+ mice had a 50% reduction in SEPS1 protein expression in hindlimb muscles. In the extensor digitorum longus (EDL) muscles, mRNA expression of monocyte chemoattractant protein 1 ( Mcp-1 ) ( P = 0.034), macrophage marker F4/80 ( P = 0.030), and transforming growth factor-β1 ( Tgf-β1 ) ( P = 0.056) were increased in mdx:Seps1 -/+ mice. This was associated with a reduction in muscle fibre size; however, ex vivo EDL muscle strength and endurance were unaltered. In dystrophic slow twitch soleus muscles, SEPS1 reduction had no effect on the inflammatory profile nor function. In conclusion, the genetic reduction of Seps1 appears to specifically exacerbate the inflammatory profile of fast-twitch muscle fibres, which are typically more vulnerable to degeneration in dystrophy.

  5. The proton pump inhibitor lansoprazole improves the skeletal phenotype in dystrophin deficient mdx mice.

    Directory of Open Access Journals (Sweden)

    Arpana Sali

    Full Text Available In Duchenne muscular dystrophy (DMD, loss of the membrane stabilizing protein dystrophin results in myofiber damage. Microinjury to dystrophic myofibers also causes secondary imbalances in sarcolemmic ion permeability and resting membrane potential, which modifies excitation-contraction coupling and increases proinflammatory/apoptotic signaling cascades. Although glucocorticoids remain the standard of care for the treatment of DMD, there is a need to investigate the efficacy of other pharmacological agents targeting the involvement of imbalances in ion flux on dystrophic pathology.We designed a preclinical trial to investigate the effects of lansoprazole (LANZO administration, a proton pump inhibitor, on the dystrophic muscle phenotype in dystrophin deficient (mdx mice. Eight to ten week-old female mice were assigned to one of four treatment groups (n = 12 per group: (1 vehicle control; (2 5 mg/kg/day LANZO; (3 5 mg/kg/day prednisolone; and (4 combined treatment of 5 mg/kg/day prednisolone (PRED and 5 mg/kg/day LANZO. Treatment was administered orally 5 d/wk for 3 months. At the end of the study, behavioral (Digiscan and functional outcomes (grip strength and Rotarod were assessed prior to sacrifice. After sacrifice, body, tissue and organ masses, muscle histology, in vitro muscle force, and creatine kinase levels were measured. Mice in the combined treatment groups displayed significant reductions in the number of degenerating muscle fibers and number of inflammatory foci per muscle field relative to vehicle control. Additionally, mice in the combined treatment group displayed less of a decline in normalized forelimb and hindlimb grip strength and declines in in vitro EDL force after repeated eccentric contractions.Together our findings suggest that combined treatment of LANZO and prednisolone attenuates some components of dystrophic pathology in mdx mice. Our findings warrant future investigation of the clinical efficacy of LANZO and

  6. Isolation and characterization of neural stem cells from dystrophic mdx mouse

    International Nuclear Information System (INIS)

    Annese, Tiziana; Corsi, Patrizia; Ruggieri, Simona; Tamma, Roberto; Marinaccio, Christian; Picocci, Sabrina; Errede, Mariella; Specchia, Giorgina; De Luca, Annamaria; Frassanito, Maria Antonia; Desantis, Vanessa; Vacca, Angelo; Ribatti, Domenico; Nico, Beatrice

    2016-01-01

    The blood-brain barrier (BBB) is altered in mdx mouse, an animal model to study Duchenne muscular dystrophy (DMD). Our previous work demonstrated that perivascular glial endfeet control the selective exchanges between blood and neuropil as well as the BBB development and integrity; the alterations of dystrophin and dystrophin-associated protein complex (DAPs) in the glial cells of mdx mouse, parallel damages of the BBB and increase in vascular permeability. The aim of this study was to improve our knowledge about brain cellular components in the mdx mouse through the isolation, for the first time, of the adult neural stem cells (ANSCs). We characterized them by FACS, electron microscopy, confocal immunofluorescence microscopy, Real Time-PCR and western blotting, and we studied the expression of the DAPs aquaporin-4 (AQP4), potassium channel Kir4.1, α- and β-dystroglycan (αDG, βDG), α-syntrophin (αSyn), and short dystrophin isoform Dp71 proteins. The results showed that the mdx ANSCs expressed CD133 and Nestin receptor as the control ones, but showed a reduction in Notch receptor and altered cell proliferation with an increment in the apoptotic nuclei. Ultrastructurally, they appeared 50% size reduced compared to control ones, with a few cytoplasmic organelles. Moreover, the mdx ANSCs are devoid in full length dystrophin 427, and they expressed post-transcriptional reduction in the Dp71 in parallel with the ubiquitin proteasome activation, and decrement of DAPs proteins which appeared diffused in the cytoplasm and not polarized on the stem cells plasmamembrane, as prevalently observed in the controls. Overall, these results indicate that structural and molecular alterations affect the neural stem cells in the dystrophic brain, whose increased apoptosis and reduced Dp71 and DAPs proteins expression, together with loss in Dp427 dystrophin, could be responsible of the altered mdx glial maintenance and differentiation and consequent failure in the vessels barrier

  7. Isolation and characterization of neural stem cells from dystrophic mdx mouse

    Energy Technology Data Exchange (ETDEWEB)

    Annese, Tiziana [Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy); Corsi, Patrizia [Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Physiology, University of Bari Medical School, Bari (Italy); Ruggieri, Simona; Tamma, Roberto; Marinaccio, Christian [Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy); Picocci, Sabrina [Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Physiology, University of Bari Medical School, Bari (Italy); Errede, Mariella [Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy); Specchia, Giorgina [Department of Emergency and Transplantation, Section of Hematology, University of Bari Medical School, Bari (Italy); De Luca, Annamaria [Department of Bioscience, Biotechnology and Pharmacological Sciences, Section of Pharmacology, University of Bari (Italy); Frassanito, Maria Antonia; Desantis, Vanessa; Vacca, Angelo [Department of Internal Medicine and Oncology, University of Bari Medical School, Bari (Italy); Ribatti, Domenico, E-mail: domenico.ribatti@uniba.it [Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy); National Cancer Institute “Giovanni Paolo II”, Bari (Italy); Nico, Beatrice, E-mail: beatrice.nico@uniba.it [Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy)

    2016-05-01

    The blood-brain barrier (BBB) is altered in mdx mouse, an animal model to study Duchenne muscular dystrophy (DMD). Our previous work demonstrated that perivascular glial endfeet control the selective exchanges between blood and neuropil as well as the BBB development and integrity; the alterations of dystrophin and dystrophin-associated protein complex (DAPs) in the glial cells of mdx mouse, parallel damages of the BBB and increase in vascular permeability. The aim of this study was to improve our knowledge about brain cellular components in the mdx mouse through the isolation, for the first time, of the adult neural stem cells (ANSCs). We characterized them by FACS, electron microscopy, confocal immunofluorescence microscopy, Real Time-PCR and western blotting, and we studied the expression of the DAPs aquaporin-4 (AQP4), potassium channel Kir4.1, α- and β-dystroglycan (αDG, βDG), α-syntrophin (αSyn), and short dystrophin isoform Dp71 proteins. The results showed that the mdx ANSCs expressed CD133 and Nestin receptor as the control ones, but showed a reduction in Notch receptor and altered cell proliferation with an increment in the apoptotic nuclei. Ultrastructurally, they appeared 50% size reduced compared to control ones, with a few cytoplasmic organelles. Moreover, the mdx ANSCs are devoid in full length dystrophin 427, and they expressed post-transcriptional reduction in the Dp71 in parallel with the ubiquitin proteasome activation, and decrement of DAPs proteins which appeared diffused in the cytoplasm and not polarized on the stem cells plasmamembrane, as prevalently observed in the controls. Overall, these results indicate that structural and molecular alterations affect the neural stem cells in the dystrophic brain, whose increased apoptosis and reduced Dp71 and DAPs proteins expression, together with loss in Dp427 dystrophin, could be responsible of the altered mdx glial maintenance and differentiation and consequent failure in the vessels barrier

  8. Enhancement of Muscle T Regulatory Cells and Improvement of Muscular Dystrophic Process in mdx Mice by Blockade of Extracellular ATP/P2X Axis.

    Science.gov (United States)

    Gazzerro, Elisabetta; Baldassari, Simona; Assereto, Stefania; Fruscione, Floriana; Pistorio, Angela; Panicucci, Chiara; Volpi, Stefano; Perruzza, Lisa; Fiorillo, Chiara; Minetti, Carlo; Traggiai, Elisabetta; Grassi, Fabio; Bruno, Claudio

    2015-12-01

    Infiltration of immune cells and chronic inflammation substantially affect skeletal and cardiac muscle degeneration in Duchenne muscular dystrophy. In the immune system, extracellular adenosine triphosphate (ATP) released by dying cells is sensed as a danger associated molecular pattern through P2 purinergic receptors. Specifically, the P2X7 subtype has a prominent role in regulating immune system physiology and contributes to inflammasome activation also in muscle cells. Here, we show that in vivo blockade of the extracellular ATP/P2X purinergic signaling pathway by periodate-oxidized ATP delayed the progression of the dystrophic phenotype and dampened the local inflammatory response in mdx mice, a spontaneous mouse model of dystrophin deficiency. Reduced infiltration of leukocytes and macrophages and decreased expression of IL-6 were revealed in the muscles of periodate-oxidized ATP-treated mdx mice. Concomitantly, an increase in Foxp3(+) immunosuppressive regulatory T cells was observed and correlated with enhanced myofiber regeneration. Moreover, we detected reduced concentrations of profibrotic cytokines, including transforming growth factor-β and connective tissue growth factor, in muscles of periodate-oxidized ATP-treated mdx mice. The improvement of inflammatory features was associated with increased strength and reduced necrosis, thus suggesting that pharmacologic purinergic antagonism altering the adaptive immune component in the muscle infiltrates might represent a promising therapeutic approach in Duchenne muscular dystrophy. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. A Reduction in Selenoprotein S Amplifies the Inflammatory Profile of Fast-Twitch Skeletal Muscle in the mdx Dystrophic Mouse

    Directory of Open Access Journals (Sweden)

    Craig Robert Wright

    2017-01-01

    Full Text Available Excessive inflammation is a hallmark of muscle myopathies, including Duchenne muscular dystrophy (DMD. There is interest in characterising novel genes that regulate inflammation due to their potential to modify disease progression. Gene polymorphisms in Selenoprotein S (Seps1 are associated with elevated proinflammatory cytokines, and in vitro SEPS1 is protective against inflammatory stress. Given that SEPS1 is highly expressed in skeletal muscle, we investigated whether the genetic reduction of Seps1 exacerbated inflammation in the mdx mouse. F1 male mdx mice with a heterozygous Seps1 deletion (mdx:Seps1−/+ were generated. The mdx:Seps1−/+ mice had a 50% reduction in SEPS1 protein expression in hindlimb muscles. In the extensor digitorum longus (EDL muscles, mRNA expression of monocyte chemoattractant protein 1 (Mcp-1 (P=0.034, macrophage marker F4/80 (P=0.030, and transforming growth factor-β1 (Tgf-β1 (P=0.056 were increased in mdx:Seps1−/+ mice. This was associated with a reduction in muscle fibre size; however, ex vivo EDL muscle strength and endurance were unaltered. In dystrophic slow twitch soleus muscles, SEPS1 reduction had no effect on the inflammatory profile nor function. In conclusion, the genetic reduction of Seps1 appears to specifically exacerbate the inflammatory profile of fast-twitch muscle fibres, which are typically more vulnerable to degeneration in dystrophy.

  10. Long-Term Quercetin Dietary Enrichment Partially Protects Dystrophic Skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Hannah R Spaulding

    Full Text Available Duchenne muscular dystrophy (DMD results from a genetic lesion in the dystrophin gene and leads to progressive muscle damage. PGC-1α pathway activation improves muscle function and decreases histopathological injury. We hypothesized that mild disease found in the limb muscles of mdx mice may be responsive to quercetin-mediated protection of dystrophic muscle via PGC-1α pathway activation. To test this hypothesis muscle function was measured in the soleus and EDL from 14 month old C57, mdx, and mdx mice treated with quercetin (mdxQ; 0.2% dietary enrichment for 12 months. Quercetin reversed 50% of disease-related losses in specific tension and partially preserved fatigue resistance in the soleus. Specific tension and resistance to contraction-induced injury in the EDL were not protected by quercetin. Given some functional gain in the soleus it was probed with histological and biochemical approaches, however, in dystrophic muscle histopathological outcomes were not improved by quercetin and suppressed PGC-1α pathway activation was not increased. Similar to results in the diaphragm from these mice, these data suggest that the benefits conferred to dystrophic muscle following 12 months of quercetin enrichment were underwhelming. Spontaneous activity at the end of the treatment period was greater in mdxQ compared to mdx indicating that quercetin fed mice were more active in addition to engaging in more vigorous activity. Hence, modest preservation of muscle function (specific tension and elevated spontaneous physical activity largely in the absence of tissue damage in mdxQ suggests dietary quercetin may mediate protection.

  11. Poly(ester amine Composed of Polyethylenimine and Pluronic Enhance Delivery of Antisense Oligonucleotides In Vitro and in Dystrophic mdx Mice

    Directory of Open Access Journals (Sweden)

    Mingxing Wang

    2016-01-01

    Full Text Available A series of poly(esteramines (PEAs constructed from low molecular weight polyethyleneimine (LPEI and Pluronic were evaluated for the delivery of antisense oligonuclotides (AOs, 2′-O-methyl phosphorothioate RNA (2′-OMePS and phosphorodiamidate morpholino oligomer (PMO in cell culture and dystrophic mdx mice. Improved exon-skipping efficiency of both 2′-OMePS and PMO was observed in the C2C12E50 cell line with all PEA polymers compared with PEI 25k or LF-2k. The degree of efficiency was found in the order of PEA 01, PEA 04 > PEA 05 > others. The in vivo study in mdx mice demonstrated enhanced exon-skipping of 2′-OMePS with the order of PEA 06 > PEA 04, PEA 07 > PEA 03 > PEA 01 > others, and much higher than PEI 25k formulated 2′-OMePS. Exon-skipping efficiency of PMO in formulation with the PEAs were significantly enhanced in the order of PEA 02 > PEA 10 > PEA 01, PEA 03 > PEA 05, PEA 07, PEA 08 > others, with PEA 02 reaching fourfold of Endo-porter formulated PMO. PEAs improve PMO delivery more effectively than 2′-OMePS delivery in vivo, and the systemic delivery evaluation further highlight the efficiency of PEA for PMO delivery in all skeletal muscle. The results suggest that the flexibility of PEA polymers could be explored for delivery of different AO chemistries, especially for antisense therapy.

  12. AAV-based shRNA silencing of NF-κB ameliorates muscle pathologies in mdx mice.

    Science.gov (United States)

    Yang, Q; Tang, Y; Imbrogno, K; Lu, A; Proto, J D; Chen, A; Guo, F; Fu, F H; Huard, J; Wang, B

    2012-12-01

    Chronic inflammation, promoted by an upregulated NF-kappa B (NF-κB) pathway, has a key role in Duchenne muscular dystrophy (DMD) patients' pathogenesis. Blocking the NF-κB pathway has been shown to be a viable approach to diminish chronic inflammation and necrosis in the dystrophin-defective mdx mouse, a murine DMD model. In this study, we used the recombinant adeno-associated virus serotype 9 (AAV9) carrying an short hairpin RNA (shRNA) specifically targeting the messenger RNA of NF-κB/p65 (p65-shRNA), the major subunit of NF-κB associated with chronic inflammation in mdx mice. We examined whether i.m. AAV9-mediated delivery of p65-shRNA could decrease NF-κB activation, allowing for amelioration of muscle pathologies in 1- and 4-month-old mdx mice. At 1 month after treatment, NF-κB/p65 levels were significantly decreased by AAV gene transfer of p65-shRNA in the two ages of treatment groups, with necrosis significantly decreased compared with controls. Quantitative analysis revealed that central nucleation (CN) of the myofibers of p65-shRNA-treated 1-month-old mdx muscles was reduced from 67 to 34%, but the level of CN was not significantly decreased in treated 4-month-old mdx mice. Moreover, delivery of the p65-shRNA enhanced the capacity of myofiber regeneration in old mdx mice treated at 4 months of age when the dystrophic myofibers were most exhausted; however, such p65 silencing diminished the myofiber regeneration in young mdx mice treated at 1 month of age. Taken together, these findings demonstrate that the AAV-mediated delivery of p65-shRNA has the capacity to ameliorate muscle pathologies in mdx mice by selectively reducing NF-κB/p65 activity.

  13. Influence of Ovarian Hormones on Strength Loss in Healthy and Dystrophic Female Mice

    Science.gov (United States)

    Kosir, Allison M.; Mader, Tara L.; Greising, Angela G.; Novotny, Susan A.; Baltgalvis, Kristen A.; Lowe, Dawn A.

    2014-01-01

    Purpose The primary objective of this study was to determine if strength loss and recovery following eccentric contractions is impaired in healthy and dystrophic female mice with low levels of ovarian hormones. Methods Female C57BL/6 (wildtype) or mdx mice were randomly assigned to ovarian-intact (Sham) and ovariectomized (Ovx) groups. Anterior crural muscles were tested for susceptibility to injury from 150 or 50 eccentric contractions in wildtype and mdx mice, respectively. An additional experiment challenged mdx mice with a 2-wk treadmill running protocol followed by an eccentric contraction injury to posterior crural muscles. Functional recovery from injury was evaluated in wildtype mice by measuring isometric torque 3, 7, 14, or 21 days following injury. Results Ovarian hormone deficiency in wildtype mice did not impact susceptibility to injury as the ~50% isometric torque loss following eccentric contractions did not differ between Sham and Ovx mice (p=0.121). Similarly in mdx mice, hormone deficiency did not affect percent of pre injury isometric torque lost by anterior crural muscles following eccentric contractions (p=0.952), but the percent of pre injury torque in posterior crural muscles was lower in Ovx compared to Sham mice (p=0.014). Recovery from injury in wildtype mice was affected by hormone deficiency. Sham mice recovered pre injury isometric strength by 14 days (96 ± 2%) while Ovx mice maintained deficits at 14 and 21 days post injury (80 ± 3% and 84 ± 2%; phormone status did not impact the vulnerability of skeletal muscle to strength loss following eccentric contractions. However, ovarian hormone deficiency did impair the recovery of muscle strength in female mice. PMID:25255128

  14. Reduced resting potentials in dystrophic (mdx) muscle fibers are secondary to NF-κB-dependent negative modulation of ouabain sensitive Na+-K+ pump activity.

    Science.gov (United States)

    Miles, M T; Cottey, E; Cottey, A; Stefanski, C; Carlson, C G

    2011-04-15

    To examine potential mechanisms for the reduced resting membrane potentials (RPs) of mature dystrophic (mdx) muscle fibers, the Na(+)-K(+) pump inhibitor ouabain was added to freshly isolated nondystrophic and mdx fibers. Ouabain produced a 71% smaller depolarization in mdx fibers than in nondystrophic fibers, increased the [Na(+)](i) in nondystrophic fibers by 40%, but had no significant effect on the [Na(+)](i) of mdx fibers, which was approximately double that observed in untreated nondystrophic fibers. Western blots indicated no difference in total and phosphorylated Na(+)-K(+) ATPase catalytic α1 subunit between nondystrophic and mdx muscle. Examination of the effects of the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) indicated that direct application of the drug slowly hyperpolarized mdx fibers (7 mV in 90 min) but had no effect on nondystrophic fibers. Pretreatment with ouabain abolished this hyperpolarization, and pretreatment with PDTC restored ouabain-induced depolarization and reduced [Na(+)](i). Administration of an NF-κB inhibitor that utilizes a different mechanism for reducing nuclear NF-κB activation, ursodeoxycholic acid (UDCA), also hyperpolarized mdx fibers. These results suggest that in situ Na(+)-K(+) pump activity is depressed in mature dystrophic fibers by NF-κB dependent modulators, and that this reduced pump activity contributes to the weakness characteristic of dystrophic muscle. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Nifedipine treatment reduces resting calcium concentration, oxidative and apoptotic gene expression, and improves muscle function in dystrophic mdx mice.

    Directory of Open Access Journals (Sweden)

    Francisco Altamirano

    Full Text Available Duchenne Muscular Dystrophy (DMD is a recessive X-linked genetic disease, caused by mutations in the gene encoding dystrophin. DMD is characterized in humans and in mdx mice by a severe and progressive destruction of muscle fibers, inflammation, oxidative/nitrosative stress, and cell death. In mdx muscle fibers, we have shown that basal ATP release is increased and that extracellular ATP stimulation is pro-apoptotic. In normal fibers, depolarization-induced ATP release is blocked by nifedipine, leading us to study the potential therapeutic effect of nifedipine in mdx muscles and its relation with extracellular ATP signaling. Acute exposure to nifedipine (10 µM decreased [Ca(2+]r, NF-κB activity and iNOS expression in mdx myotubes. In addition, 6-week-old mdx mice were treated with daily intraperitoneal injections of nifedipine, 1 mg/Kg for 1 week. This treatment lowered the [Ca(2+]r measured in vivo in the mdx vastus lateralis. We demonstrated that extracellular ATP levels were higher in adult mdx flexor digitorum brevis (FDB fibers and can be significantly reduced after 1 week of treatment with nifedipine. Interestingly, acute treatment of mdx FDB fibers with apyrase, an enzyme that completely degrades extracellular ATP to AMP, reduced [Ca(2+]r to a similar extent as was seen in FDB fibers after 1-week of nifedipine treatment. Moreover, we demonstrated that nifedipine treatment reduced mRNA levels of pro-oxidative/nitrosative (iNOS and gp91(phox/p47(phox NOX2 subunits and pro-apoptotic (Bax genes in mdx diaphragm muscles and lowered serum creatine kinase (CK levels. In addition, nifedipine treatment increased muscle strength assessed by the inverted grip-hanging test and exercise tolerance measured with forced swimming test in mdx mice. We hypothesize that nifedipine reduces basal ATP release, thereby decreasing purinergic receptor activation, which in turn reduces [Ca(2+]r in mdx skeletal muscle cells. The results in this work open new

  16. Expression patterns of regulatory RNAs, including lncRNAs and tRNAs, during postnatal growth of normal and dystrophic (mdx) mouse muscles, and their response to taurine treatment.

    Science.gov (United States)

    Butchart, Lauren C; Terrill, Jessica R; Rossetti, Giulia; White, Robert; Filipovska, Aleksandra; Grounds, Miranda D

    2018-06-01

    Post-natal skeletal muscle growth in mice is very rapid and involves complex changes in many cells types over the first 6 weeks of life. The acute onset of dystropathology also occurs around 3 weeks of age in the mdx mouse model of the human disease Duchenne Muscular Dystrophy (DMD). This study investigated (i) alterations in expression patterns of regulatory non-coding RNAs (ncRNAs) in vivo, including miRNAs, lncRNAs and tRNAs, during early growth of skeletal muscles in normal control C57Bl/10Scsn (C57) compared with dystrophic mdx mice from 2 to 6 weeks of postnatal age, and revealed inherent differences in vivo for levels of 3 ncRNAs between C57 and mdx muscles before the onset of dystropathology. Since the amino acid taurine has many benefits and reduces disease severity in mdx mice, this study also (ii) determined the impact of taurine treatment on these expression patterns in mdx muscles at the onset of dystropathology (3 weeks) and after several bouts of myonecrosis and regeneration (6 weeks). Taurine treatment of mdx mice only altered ncRNA levels when administered from 18 days to 6 weeks of age, but a deficiency in tRNA levels was rectified earlier in mdx skeletal muscles treated from 14 days to 3 weeks. Myogenesis in tissue culture was also used to (iii) compare ncRNA expression patterns for both strains, and (iv) the response to taurine treatment. These analyses revealed intrinsic differences in ncRNA expression patterns during myogenesis between strains, as well as increased sensitivity of mdx ncRNA levels to taurine treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Voluntary wheel running in dystrophin-deficient (mdx) mice: Relationships between exercise parameters and exacerbation of the dystrophic phenotype

    OpenAIRE

    Smythe, Gayle M; White, Jason D

    2012-01-01

    Voluntary wheel running can potentially be used to exacerbate the disease phenotype in dystrophin-deficient mdx mice. While it has been established that voluntary wheel running is highly variable between individuals, the key parameters of wheel running that impact the most on muscle pathology have not been examined in detail. We conducted a 2-week test of voluntary wheel running by mdx mice and the impact of wheel running on disease pathology. There was significant individual variation in the...

  18. Correlation analysis of inorganic elements in biological tissue if DMD{sup mdx}/J mice using INAA

    Energy Technology Data Exchange (ETDEWEB)

    Metairon, Sabrina; Zamboni, Cibele B.; Suzuki, Miriam F., E-mail: metairon@usp.b, E-mail: czamboni@ipen.b, E-mail: mfsuzuki@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Bueno Junior, Carlos R. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Biociencias. Centro de Estudos do Genoma Humano; Sant' Anna, Osvaldo A., E-mail: gbrazil@usp.b [Instituto Butantan, Sao Paulo, SP (Brazil)

    2011-07-01

    Instrumental neutron activation analysis technique (INAA) has been used to determine Br, Ca, Cl, K, Mg, Na and S concentrations in bone and other organs samples from DMD{sup mdx}/J dystrophic mice as well as C57BL/6J control group mice. The DMD{sup mdx}/J mouse strain is relevant as an experimental model for Duchenne Muscular Dystrophy (DMD), which is the most severe and prevalent type of muscular dystrophy. Muscle weakness, premature death and instability of the membrane that involves the muscle fibers - causing functional/structural abnormalities and cell death - are main characteristics of this genetic disease. To show in more details the alterations that this disease may cause in bones (tibiae) and organs (quadriceps and heart), correlations matrixes were generated for both strains permitting a comparison between these groups. A significant change was observed in the analysis of the heart of dystrophic mice suggesting that this dysfunction affects severely the heart muscle. The results emphasize physiologic differences for Na, Ca and Mg and suggest that Br and S results are altered, emphasizing a constant monitoring needs. Other than that, these results may help the researchers to evaluate the efficiency of new treatments and to compare the advantages of different treatment approaches before performing tests in patients with muscular dystrophy. (author)

  19. ACE2 is augmented in dystrophic skeletal muscle and plays a role in decreasing associated fibrosis.

    Directory of Open Access Journals (Sweden)

    Cecilia Riquelme

    Full Text Available Duchenne muscular dystrophy (DMD is the most common inherited neuromuscular disease and is characterized by absence of the cytoskeletal protein dystrophin, muscle wasting, and fibrosis. We previously demonstrated that systemic infusion or oral administration of angiotensin-(1-7 (Ang-(1-7, a peptide with opposing effects to angiotensin II, normalized skeletal muscle architecture, decreased local fibrosis, and improved muscle function in mdx mice, a dystrophic model for DMD. In this study, we investigated the presence, activity, and localization of ACE2, the enzyme responsible for Ang-(1-7 production, in wild type (wt and mdx skeletal muscle and in a model of induced chronic damage in wt mice. All dystrophic muscles studied showed higher ACE2 activity than wt muscle. Immunolocalization studies indicated that ACE2 was localized mainly at the sarcolemma and, to a lesser extent, associated with interstitial cells. Similar results were observed in the model of chronic damage in the tibialis anterior (TA muscle. Furthermore, we evaluated the effect of ACE2 overexpression in mdx TA muscle using an adenovirus containing human ACE2 sequence and showed that expression of ACE2 reduced the fibrosis associated with TA dystrophic muscles. Moreover, we observed fewer inflammatory cells infiltrating the mdx muscle. Finally, mdx gastrocnemius muscles from mice infused with Ang-(1-7, which decreases fibrosis, contain less ACE2 associated with the muscle. This is the first evidence supporting ACE2 as an important therapeutic target to improve the dystrophic skeletal muscle phenotype.

  20. Influence of Botulinumtoxin A on the Expression of Adult MyHC Isoforms in the Masticatory Muscles in Dystrophin-Deficient Mice (Mdx-Mice

    Directory of Open Access Journals (Sweden)

    Ute Ulrike Botzenhart

    2016-01-01

    Full Text Available The most widespread animal model to investigate Duchenne muscular dystrophy is the mdx-mouse. In contrast to humans, phases of muscle degeneration are replaced by regeneration processes; hence there is only a restricted time slot for research. The aim of the study was to investigate if an intramuscular injection of BTX-A is able to break down muscle regeneration and has direct implications on the gene expression of myosin heavy chains in the corresponding treated and untreated muscles. Therefore, paralysis of the right masseter muscle was induced in adult healthy and dystrophic mice by a specific intramuscular injection of BTX-A. After 21 days the mRNA expression and protein content of MyHC isoforms of the right and left masseter, temporal, and the tongue muscle were determined using quantitative RT-PCR and Western blot technique. MyHC-IIa and MyHC-I-mRNA expression significantly increased in the paralyzed masseter muscle of control-mice, whereas MyHC-IIb and MyHC-IIx/d-mRNA were decreased. In dystrophic muscles no effect of BTX-A could be detected at the level of MyHC. This study suggests that BTX-A injection is a suitable method to simulate DMD-pathogenesis in healthy mice but further investigations are necessary to fully analyse the BTX-A effect and to generate sustained muscular atrophy in mdx-mice.

  1. Andrographolide attenuates skeletal muscle dystrophy in mdx mice and increases efficiency of cell therapy by reducing fibrosis.

    Science.gov (United States)

    Cabrera, Daniel; Gutiérrez, Jaime; Cabello-Verrugio, Claudio; Morales, Maria Gabriela; Mezzano, Sergio; Fadic, Ricardo; Casar, Juan Carlos; Hancke, Juan L; Brandan, Enrique

    2014-01-01

    Duchenne muscular dystrophy (DMD) is characterized by the absence of the cytoskeletal protein dystrophin, muscle wasting, increased transforming growth factor type beta (TGF-β) signaling, and fibrosis. At the present time, the only clinically validated treatments for DMD are glucocorticoids. These drugs prolong muscle strength and ambulation of patients for a short term only and have severe adverse effects. Andrographolide, a bicyclic diterpenoid lactone, has traditionally been used for the treatment of colds, fever, laryngitis, and other infections with no or minimal side effects. We determined whether andrographolide treatment of mdx mice, an animal model for DMD, affects muscle damage, physiology, fibrosis, and efficiency of cell therapy. mdx mice were treated with andrographolide for three months and skeletal muscle histology, creatine kinase activity, and permeability of muscle fibers were evaluated. Fibrosis and TGF-β signaling were evaluated by indirect immunofluorescence and Western blot analyses. Muscle strength was determined in isolated skeletal muscles and by a running test. Efficiency of cell therapy was determined by grafting isolated skeletal muscle satellite cells onto the tibialis anterior of mdx mice. mdx mice treated with andrographolide exhibited less severe muscular dystrophy than untreated dystrophic mice. They performed better in an exercise endurance test and had improved muscle strength in isolated muscles, reduced skeletal muscle impairment, diminished fibrosis and a significant reduction in TGF-β signaling. Moreover, andrographolide treatment of mdx mice improved grafting efficiency upon intramuscular injection of dystrophin-positive satellite cells. These results suggest that andrographolide could be used to improve quality of life in individuals with DMD.

  2. The effect of taurine and β-alanine supplementation on taurine transporter protein and fatigue resistance in skeletal muscle from mdx mice.

    Science.gov (United States)

    Horvath, Deanna M; Murphy, Robyn M; Mollica, Janelle P; Hayes, Alan; Goodman, Craig A

    2016-11-01

    This study investigated the effect of taurine and β-alanine supplementation on muscle function and muscle taurine transporter (TauT) protein expression in mdx mice. Wild-type (WT) and mdx mice (5 months) were supplemented with taurine or β-alanine for 4 weeks, after which in vitro contractile properties, fatigue resistance and force recovery, and the expression of the TauT protein and proteins involved in excitation-contraction (E-C) coupling were examined in fast-twitch muscle. There was no difference in basal TauT protein expression or basal taurine content between mdx than WT muscle. Supplementation with taurine and β-alanine increased and reduced taurine content, respectively, in muscle from WT and mdx mice but had no effect of TauT protein. Taurine supplementation reduced body and muscle mass, and enhanced fatigue resistance and force recovery in mdx muscle. β-Alanine supplementation enhanced fatigue resistance in WT and mdx muscle. There was no difference in the basal expression of key E-C coupling proteins [ryanodine receptor 1 (RyR1), dihydropyridine receptor (DHPR), sarco(endo)plasmic reticulum Ca 2+ -ATPase 1 (SERCA1) or calsequestrin 1 (CSQ1)] between WT and mdx mice, and the expression of these proteins was not altered by taurine or β-alanine supplementation. These findings suggest that TauT protein expression is relatively insensitive to changes in muscle taurine content in WT and mdx mice, and that taurine and β-alanine supplementation may be viable therapeutic strategies to improve fatigue resistance of dystrophic skeletal muscle.

  3. Elements determination of clinical relevance in biological tissues Dmdmdx/J dystrophic mice strains investigated by NAA

    International Nuclear Information System (INIS)

    Metairon, Sabrina

    2012-01-01

    In this work the determination of chemistry elements in biological tissues (whole blood, bones and organs) of dystrophic mice, used as animal model of Duchenne Muscular Dystrophy (DMD), was performed using analytical nuclear technique. The aim of this work was to determine reference values of elements of clinical (Ca, Cl, K, Mg, Na) and nutritional (Br and S) relevance in whole blood, tibia, quadriceps and hearts from Dmdmdx/J (10 males and 10 females) dystrophic mice and C57BL/6J (10 males) control group mice, using Neutron Activation Analysis technique (NAA). To show in more details the alterations that this disease may cause in these biological tissues, correlations matrixes of the DMD mdx /J mouse strain were generated and compared with C57BL/6J control group. For this study 119 samples of biological tissue were irradiated in the IEA-R1 nuclear reactor at IPEN (Sao Paulo, Brazil). The concentrations of these elements in biological tissues of Dmd mdx /J and C57B/6J mice are the first indicative interval for reference values. Moreover, the alteration in some correlation coefficients data among the elements in the health status and in the diseased status indicates a connection between these elements in whole blood, tibia, quadriceps and heart. These results may help the researchers to evaluate the efficiency of new treatments and to compare the advantages of different treatment approaches before performing tests in patients with muscular dystrophy. (author)

  4. Treatment with the cysteine precursor l-2-oxothiazolidine-4-carboxylate (OTC) implicates taurine deficiency in severity of dystropathology in mdx mice.

    Science.gov (United States)

    Terrill, Jessica R; Boyatzis, Amber; Grounds, Miranda D; Arthur, Peter G

    2013-09-01

    Oxidative stress has been implicated in the pathology of the lethal skeletal muscle disease Duchenne muscular dystrophy (DMD), and various antioxidants have been investigated as a potential therapy. Recently, treatment of the mdx mouse model for DMD with the antioxidant and cysteine and glutathione (GSH) precursor n-acetylcysteine (NAC) was shown to decrease protein thiol oxidation and improve muscle pathology and ex vivo muscle strength. This study further investigates the mechanism for the benefits of NAC on dystrophic muscle by administering l-2-oxothiazolidine-4-carboxylate (OTC) which also upregulates intracellular cysteine and GSH, but does not directly function as an antioxidant. We observed that OTC, like NAC, decreases protein thiol oxidation, decreases pathology and increases strength, suggesting that the both NAC and OTC function via increasing cysteine and GSH content of dystrophic muscle. We demonstrate that mdx muscle is not deficient in either cysteine or GSH and that these are not increased by OTC treatment. However, we show that dystrophic muscle of 12 week old mdx mice is deficient in taurine, a by-product of disposal of excess cysteine, a deficiency that is ameliorated by OTC treatment. These data suggest that in dystrophic muscles, apart from the strong association of increased oxidative stress and protein thiol oxidation with dystropathology, another major issue is an insufficiency in taurine that can be corrected by increasing the availability of cysteine. This study provides new insight into the molecular mechanism underlying the benefits of NAC in muscular dystrophy and supports the use of OTC as an alternative drug for potential clinical applications to DMD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse

    International Nuclear Information System (INIS)

    Morgan, J.E.; Hoffman, E.P.; Partridge, T.A.

    1990-01-01

    Dystrophin deficiency in skeletal muscle of the x-linked dystrophic (mdx) mouse can be partially remedied by implantation of normal muscle precursor cells (mpc). However, it is difficult to determine whether this biochemical rescue results in any improvement in the structure or function of the treated muscle, because the vigorous regeneration of mdx muscle more than compensates for the degeneration. By using x-ray irradiation to prevent mpc proliferation, it is possible to study loss of mdx muscle fibers without the complicating effect of simultaneous fiber regeneration. Thus, improvements in fiber survival resulting from any potential therapy can be detected easily. Here, we have implanted normal mpc, obtained from newborn mice, into such preirradiated mdx muscles, finding that it is far more extensively permeated and replaced by implanted mpc than is nonirradiated mdx muscle; this is evident both from analysis of glucose-6-phosphate isomerase isoenzyme markers and from immunoblots and immunostaining of dystrophin in the treated muscles. Incorporation of normal mpc markedly reduces the loss of muscle fibers and the deterioration of muscle structure which otherwise occurs in irradiated mdx muscles. Surprisingly, the regenerated fibers are largely peripherally nucleated, whereas regenerated mouse skeletal muscle fibers are normally centrally nucleated. We attribute this regeneration of apparently normal muscle to the tendency of newborn mouse mpc to recapitulate their neonatal ontogeny, even when grafted into 3-wk-old degenerating muscle

  6. Dystropathology Increases Energy Expenditure and Protein Turnover in the Mdx Mouse Model of Duchenne Muscular Dystrophy

    Science.gov (United States)

    Radley-Crabb, Hannah G.; Marini, Juan C.; Sosa, Horacio A.; Castillo, Liliana I.; Grounds, Miranda D.; Fiorotto, Marta L.

    2014-01-01

    The skeletal muscles in Duchenne muscular dystrophy and the mdx mouse model lack functional dystrophin and undergo repeated bouts of necrosis, regeneration, and growth. These processes have a high metabolic cost. However, the consequences for whole body energy and protein metabolism, and on the dietary requirements for these macronutrients at different stages of the disease, are not well-understood. This study used juvenile (4- to 5- wk-old) and adult (12- to 14-wk-old) male dystrophic C57BL/10ScSn-mdx/J and age-matched C57BL/10ScSn/J control male mice to measure total and resting energy expenditure, food intake, spontaneous activity, body composition, whole body protein turnover, and muscle protein synthesis rates. In juvenile mdx mice that have extensive muscle damage, energy expenditure, muscle protein synthesis, and whole body protein turnover rates were higher than in age-matched controls. Adaptations in food intake and decreased activity were insufficient to meet the increased energy and protein needs of juvenile mdx mice and resulted in stunted growth. In (non-growing) adult mdx mice with less severe dystropathology, energy expenditure, muscle protein synthesis, and whole body protein turnover rates were also higher than in age-matched controls. Food intake was sufficient to meet their protein and energy needs, but insufficient to result in fat deposition. These data show that dystropathology impacts the protein and energy needs of mdx mice and that tailored dietary interventions are necessary to redress this imbalance. If not met, the resultant imbalance blunts growth, and may limit the benefits of therapies designed to protect and repair dystrophic muscles. PMID:24586653

  7. Caspase-12 ablation preserves muscle function in the mdx mouse

    Science.gov (United States)

    Moorwood, Catherine; Barton, Elisabeth R.

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a devastating muscle wasting disease caused by mutations in dystrophin. Several downstream consequences of dystrophin deficiency are triggers of endoplasmic reticulum (ER) stress, including loss of calcium homeostasis, hypoxia and oxidative stress. During ER stress, misfolded proteins accumulate in the ER lumen and the unfolded protein response (UPR) is triggered, leading to adaptation or apoptosis. We hypothesized that ER stress is heightened in dystrophic muscles and contributes to the pathology of DMD. We observed increases in the ER stress markers BiP and cleaved caspase-4 in DMD patient biopsies, compared with controls, and an increase in multiple UPR pathways in muscles of the dystrophin-deficient mdx mouse. We then crossed mdx mice with mice null for caspase-12, the murine equivalent of human caspase-4, which are resistant to ER stress. We found that deleting caspase-12 preserved mdx muscle function, resulting in a 75% recovery of both specific force generation and resistance to eccentric contractions. The compensatory hypertrophy normally found in mdx muscles was normalized in the absence of caspase-12; this was found to be due to decreased fibre sizes, and not to a fibre type shift or a decrease in fibrosis. Fibre central nucleation was not significantly altered in the absence of caspase-12, but muscle fibre degeneration found in the mdx mouse was reduced almost to wild-type levels. In conclusion, we have identified heightened ER stress and abnormal UPR signalling as novel contributors to the dystrophic phenotype. Caspase-4 is therefore a potential therapeutic target for DMD. PMID:24879640

  8. Treatment with rGDF11 does not improve the dystrophic muscle pathology of mdx mice.

    Science.gov (United States)

    Rinaldi, Fabrizio; Zhang, Yu; Mondragon-Gonzalez, Ricardo; Harvey, Jeffrey; Perlingeiro, Rita C R

    2016-01-01

    Duchenne muscular dystrophy (DMD) is an inherited lethal muscle wasting disease characterized by cycles of degeneration and regeneration, with no effective therapy. Growth differentiation factor 11 (GDF11), a member of the TGF-β superfamily and myostatin homologous, has been reported to have the capacity to reverse age-related skeletal muscle loss. These initial findings led us to investigate the ability of GDF11 to promote regeneration in the context of muscular dystrophy and determine whether it could be a candidate to slow down or reverse the disease progression in DMD. Here, we delivered recombinant GDF11 (rGDF11) to dystrophin-deficient mice using the intra-peritoneal route for 30 days and evaluated histology and function in both steady-state and cardiotoxin-injured muscles. Our data confirmed that treatment with rGDF11 resulted in elevated levels of this factor in the circulation. However, this had no effect on muscle contractility nor on muscle histology. Moreover, no difference was found in the number of regenerating myofibers displaying centrally located nuclei. On the other hand, we did observe increased collagen content, which denotes fibrosis, in the muscles of rGDF11-treated dystrophic mice. Taken together, our findings indicate no beneficial effect of treating dystrophic mice with rGDF11 and raise caution to a potential harmful effect, as shown by the pro-fibrotic outcome.

  9. Exercise restores decreased physical activity levels and increases markers of autophagy and oxidative capacity in myostatin/activin-blocked mdx mice.

    Science.gov (United States)

    Hulmi, Juha J; Oliveira, Bernardo M; Silvennoinen, Mika; Hoogaars, Willem M H; Pasternack, Arja; Kainulainen, Heikki; Ritvos, Olli

    2013-07-15

    The importance of adequate levels of muscle size and function and physical activity is widely recognized. Myostatin/activin blocking increases skeletal muscle mass but may decrease muscle oxidative capacity and can thus be hypothesized to affect voluntary physical activity. Soluble activin receptor IIB (sActRIIB-Fc) was produced to block myostatin/activins. Modestly dystrophic mdx mice were injected with sActRIIB-Fc or PBS with or without voluntary wheel running exercise for 7 wk. Healthy mice served as controls. Running for 7 wk attenuated the sActRIIB-Fc-induced increase in body mass by decreasing fat mass. Running also enhanced/restored the markers of muscle oxidative capacity and autophagy in mdx mice to or above the levels of healthy mice. Voluntary running activity was decreased by sActRIIB-Fc during the first 3-4 wk correlating with increased body mass. Home cage physical activity of mice, quantified from the force plate signal, was decreased by sActRIIB-Fc the whole 7-wk treatment in sedentary mice. To understand what happens during the first weeks after sActRIIB-Fc administration, when mice are less active, healthy mice were injected with sActRIIB-Fc or PBS for 2 wk. During the sActRIIB-Fc-induced rapid 2-wk muscle growth period, oxidative capacity and autophagy were reduced, which may possibly explain the decreased running activity. These results show that increased muscle size and decreased markers of oxidative capacity and autophagy during the first weeks of myostatin/activin blocking are associated with decreased voluntary activity levels. Voluntary exercise in dystrophic mice enhances the markers of oxidative capacity and autophagy to or above the levels of healthy mice.

  10. Calpain-mediated proteolysis of tropomodulin isoforms leads to thin filament elongation in dystrophic skeletal muscle.

    Science.gov (United States)

    Gokhin, David S; Tierney, Matthew T; Sui, Zhenhua; Sacco, Alessandra; Fowler, Velia M

    2014-03-01

    Duchenne muscular dystrophy (DMD) induces sarcolemmal mechanical instability and rupture, hyperactivity of intracellular calpains, and proteolytic breakdown of muscle structural proteins. Here we identify the two sarcomeric tropomodulin (Tmod) isoforms, Tmod1 and Tmod4, as novel proteolytic targets of m-calpain, with Tmod1 exhibiting ∼10-fold greater sensitivity to calpain-mediated cleavage than Tmod4 in situ. In mdx mice, increased m-calpain levels in dystrophic soleus muscle are associated with loss of Tmod1 from the thin filament pointed ends, resulting in ∼11% increase in thin filament lengths. In mdx/mTR mice, a more severe model of DMD, Tmod1 disappears from the thin filament pointed ends in both tibialis anterior (TA) and soleus muscles, whereas Tmod4 additionally disappears from soleus muscle, resulting in thin filament length increases of ∼10 and ∼12% in TA and soleus muscles, respectively. In both mdx and mdx/mTR mice, both TA and soleus muscles exhibit normal localization of α-actinin, the nebulin M1M2M3 domain, Tmod3, and cytoplasmic γ-actin, indicating that m-calpain does not cause wholesale proteolysis of other sarcomeric and actin cytoskeletal proteins in dystrophic skeletal muscle. These results implicate Tmod proteolysis and resultant thin filament length misspecification as novel mechanisms that may contribute to DMD pathology, affecting muscles in a use- and disease severity-dependent manner.

  11. Voluntary wheel running in dystrophin-deficient (mdx) mice: Relationships between exercise parameters and exacerbation of the dystrophic phenotype.

    Science.gov (United States)

    Smythe, Gayle M; White, Jason D

    2011-12-18

    Voluntary wheel running can potentially be used to exacerbate the disease phenotype in dystrophin-deficient mdx mice. While it has been established that voluntary wheel running is highly variable between individuals, the key parameters of wheel running that impact the most on muscle pathology have not been examined in detail. We conducted a 2-week test of voluntary wheel running by mdx mice and the impact of wheel running on disease pathology. There was significant individual variation in the average daily distance (ranging from 0.003 ± 0.005 km to 4.48 ± 0.96 km), culminating in a wide range (0.040 km to 67.24 km) of total cumulative distances run by individuals. There was also variation in the number and length of run/rest cycles per night, and the average running rate. Correlation analyses demonstrated that in the quadriceps muscle, a low number of high distance run/rest cycles was the most consistent indicator for increased tissue damage. The amount of rest time between running bouts was a key factor associated with gastrocnemius damage. These data emphasize the need for detailed analysis of individual running performance, consideration of the length of wheel exposure time, and the selection of appropriate muscle groups for analysis, when applying the use of voluntary wheel running to disease exacerbation and/or pre-clinical testing of the efficacy of therapeutic agents in the mdx mouse.

  12. Pre-clinical evaluation of N-acetylcysteine reveals side effects in the mdx mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Pinniger, Gavin J; Terrill, Jessica R; Assan, Evanna B; Grounds, Miranda D; Arthur, Peter G

    2017-12-01

    Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease associated with increased inflammation and oxidative stress. The antioxidant N-acetylcysteine (NAC) has been proposed as a therapeutic intervention for DMD boys, but potential adverse effects of NAC have not been widely investigated. We used young (6 weeks old) growing mdx mice to investigate the capacity of NAC supplementation (2% in drinking water for 6 weeks) to improve dystrophic muscle function and to explore broader systemic effects of NAC treatment. NAC treatment improved normalised measures of muscle function, and decreased inflammation and oxidative stress, but significantly reduced body weight gain, muscle weight and liver weight. Unexpected significant adverse effects of NAC on body and muscle weights indicate that interpretation of muscle function based on normalised force measures should be made with caution and careful consideration is needed when proposing the use of NAC as a therapeutic treatment for young DMD boys. Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle wasting disease characterised by severe muscle weakness, necrosis, inflammation and oxidative stress. The antioxidant N-acetylcysteine (NAC) has been proposed as a potential therapeutic intervention for DMD boys. We investigated the capacity of NAC to improve dystrophic muscle function in the mdx mouse model of DMD. Young (6 weeks old) mdx and non-dystrophic C57 mice receiving 2% NAC in drinking water for 6 weeks were compared with untreated mice. Grip strength and body weight were measured weekly, before the 12 week old mice were anaesthetised and extensor digitorum longus (EDL) muscles were excised for functional analysis and tissues were sampled for biochemical analyses. Compared to untreated mice, the mean (SD) normalised grip strength was significantly greater in NAC-treated mdx [3.13 (0.58) vs 4.87 (0.78) g body weight (bw) -1 ; P muscles [9.80 (2.27) vs 13.07 (3.37) N cm -2 ; P = 0

  13. Isobaric Tagging-Based Quantification for Proteomic Analysis: A Comparative Study of Spared and Affected Muscles from mdx Mice at the Early Phase of Dystrophy.

    Directory of Open Access Journals (Sweden)

    Cintia Yuri Matsumura

    Full Text Available Duchenne muscular dystrophy (DMD is the most common childhood myopathy, characterized by muscle loss and cardiorespiratory failure. While the genetic basis of DMD is well established, secondary mechanisms associated with dystrophic pathophysiology are not fully clarified yet. In order to obtain new insights into the molecular mechanisms of muscle dystrophy during earlier stages of the disease, we performed a comparative proteomic profile of the spared extraocular muscles (EOM vs. affected diaphragm from the mdx mice, using a label based shotgun proteomic approach. Out of the 857 identified proteins, 42 to 62 proteins had differential abundance of peptide ions. The calcium-handling proteins sarcalumenin and calsequestrin-1 were increased in control EOM compared with control DIA, reinforcing the view that constitutional properties of EOM are important for their protection against myonecrosis. The finding that galectin-1 (muscle regeneration, annexin A1 (anti-inflammatory and HSP 47 (fibrosis were increased in dystrophic diaphragm provides novel insights into the mechanisms through which mdx affected muscles are able to counteract dystrophy, during the early stage of the disease. Overall, the shotgun technique proved to be suitable to perform quantitative comparisons between distinct dystrophic muscles and allowed the suggestion of new potential biomarkers and drug targets for dystrophinopaties.

  14. Myogenin regulates exercise capacity but is dispensable for skeletal muscle regeneration in adult mdx mice.

    Directory of Open Access Journals (Sweden)

    Eric Meadows

    Full Text Available Duchenne muscular dystrophy (DMD is the most prevalent inherited childhood muscle disorder in humans. mdx mice exhibit a similar pathophysiology to the human disorder allowing for an in-depth investigation of DMD. Myogenin, a myogenic regulatory factor, is best known for its role in embryonic myogenesis, but its role in adult muscle maintenance and regeneration is still poorly understood. Here, we generated an mdx:Myog(flox/flox mouse harboring a tamoxifen-inducible Cre recombinase transgene, which was used to conditionally delete Myog during adult life. After tamoxifen treatment, three groups of mice were created to study the effects of Myog deletion: mdx:Myog(flox/flox mice (mdx, Myog(flox/flox mice (wild-type, and mdx:Myog(floxΔ/floxΔ:Cre-ER mice (mdx:Myog-deleted. mdx:Myog-deleted mice exhibited no adverse phenotype and behaved normally. When run to exhaustion, mdx:Myog-deleted mice demonstrated an enhanced capacity for exercise compared to mdx mice, running nearly as far as wild-type mice. Moreover, these mice showed the same signature characteristics of muscle regeneration as mdx mice. Unexpectedly, we found that myogenin was dispensable for muscle regeneration. Factors associated with muscle fatigue, metabolism, and proteolysis were significantly altered in mdx:Myog-deleted mice, and this might contribute to their increased exercise capacity. Our results reveal novel functions for myogenin in adult muscle and suggest that reducing Myog expression in other muscle disease models may partially restore muscle function.

  15. Orai1 mediates exacerbated Ca(2+ entry in dystrophic skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhao

    Full Text Available There is substantial evidence indicating that disruption of Ca(2+ homeostasis and activation of cytosolic proteases play a key role in the pathogenesis and progression of Duchenne Muscular Dystrophy (DMD. However, the exact nature of the Ca(2+ deregulation and the Ca(2+ signaling pathways that are altered in dystrophic muscles have not yet been resolved. Here we examined the contribution of the store-operated Ca(2+ entry (SOCE for the pathogenesis of DMD. RT-PCR and Western blot found that the expression level of Orai1, the pore-forming unit of SOCE, was significantly elevated in the dystrophic muscles, while parallel increases in SOCE activity and SR Ca(2+ storage were detected in adult mdx muscles using Fura-2 fluorescence measurements. High-efficient shRNA probes against Orai1 were delivered into the flexor digitorum brevis muscle in live mice and knockdown of Orai1 eliminated the differences in SOCE activity and SR Ca(2+ storage between the mdx and wild type muscle fibers. SOCE activity was repressed by intraperitoneal injection of BTP-2, an Orai1 inhibitor, and cytosolic calpain1 activity in single muscle fibers was measured by a membrane-permeable calpain substrate. We found that BTP-2 injection for 2 weeks significantly reduced the cytosolic calpain1 activity in mdx muscle fibers. Additionally, ultrastructural changes were observed by EM as an increase in the number of triad junctions was identified in dystrophic muscles. Compensatory changes in protein levels of SERCA1, TRP and NCX3 appeared in the mdx muscles, suggesting that comprehensive adaptations occur following altered Ca(2+ homeostasis in mdx muscles. Our data indicates that upregulation of the Orai1-mediated SOCE pathway and an overloaded SR Ca(2+ store contributes to the disrupted Ca(2+ homeostasis in mdx muscles and is linked to elevated proteolytic activity, suggesting that targeting Orai1 activity may be a promising therapeutic approach for the prevention and treatment of

  16. EPA protects against muscle damage in the mdx mouse model of Duchenne muscular dystrophy by promoting a shift from the M1 to M2 macrophage phenotype.

    Science.gov (United States)

    Carvalho, Samara Camaçari de; Apolinário, Leticia Montanholi; Matheus, Selma Maria Michelin; Santo Neto, Humberto; Marques, Maria Julia

    2013-11-15

    In dystrophic mdx mice and in Duchenne muscular dystrophy, inflammation contributes to myonecrosis. Previously, we demonstrated that eicosapentaenoic acid (EPA) decreased inflammation and necrosis in dystrophic muscle. In the present study, we examined the effects of EPA and the corticoid deflazacort (DFZ) as modulators of M1 (iNOS-expressing cells) and M2 (CD206-expressing cells) macrophages. Mdx mice (14 days old) received EPA or DFZ for 16 days. The diaphragm, biceps brachii and quadriceps muscles were studied. Immunofluorescence, immunoblotting and ELISA assays showed that EPA increased interleucin-10, reduced interferon-γ and was more effective than DFZ in promoting a shift from M1 to M2. © 2013.

  17. Poloxamer [corrected] 188 has a deleterious effect on dystrophic skeletal muscle function.

    Directory of Open Access Journals (Sweden)

    Rebecca L Terry

    Full Text Available Duchenne muscular dystrophy (DMD is an X-linked, fatal muscle wasting disease for which there is currently no cure and limited palliative treatments. Poloxomer 188 (P188 is a tri-block copolymer that has been proposed as a potential treatment for cardiomyopathy in DMD patients. Despite the reported beneficial effects of P188 on dystrophic cardiac muscle function, the effects of P188 on dystrophic skeletal muscle function are relatively unknown. Mdx mice were injected intraperitoneally with 460 mg/kg or 30 mg/kg P188 dissolved in saline, or saline alone (control. The effect of single-dose and 2-week daily treatment was assessed using a muscle function test on the Tibialis Anterior (TA muscle in situ in anaesthetised mice. The test comprises a warm up, measurement of the force-frequency relationship and a series of eccentric contractions with a 10% stretch that have previously been shown to cause a drop in maximum force in mdx mice. After 2 weeks of P188 treatment at either 30 or 460 mg/kg/day the drop in maximum force produced following eccentric contractions was significantly greater than that seen in saline treated control mice (P = 0.0001. Two week P188 treatment at either dose did not significantly change the force-frequency relationship or maximum isometric specific force produced by the TA muscle. In conclusion P188 treatment increases susceptibility to contraction-induced injury following eccentric contractions in dystrophic skeletal muscle and hence its suitability as a potential therapeutic for DMD should be reconsidered.

  18. Klotho gene silencing promotes pathology in the mdx mouse model of Duchenne muscular dystrophy

    Science.gov (United States)

    Wehling-Henricks, Michelle; Li, Zhenzhi; Lindsey, Catherine; Wang, Ying; Welc, Steven S.; Ramos, Julian N.; Khanlou, Négar; Kuro-o, Makoto; Tidball, James G.

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a lethal muscle disease involving progressive loss of muscle regenerative capacity and increased fibrosis. We tested whether epigenetic silencing of the klotho gene occurs in the mdx mouse model of DMD and whether klotho silencing is an important feature of the disease. Our findings show that klotho undergoes muscle-specific silencing at the acute onset of mdx pathology. Klotho experiences increased methylation of CpG sites in its promoter region, which is associated with gene silencing, and increases in a repressive histone mark, H3K9me2. Expression of a klotho transgene in mdx mice restored their longevity, reduced muscle wasting, improved function and greatly increased the pool of muscle-resident stem cells required for regeneration. Reductions of fibrosis in late, progressive stages of the mdx pathology achieved by transgene expression were paralleled by reduced expression of Wnt target genes (axin-2), transforming growth factor-beta (TGF-β1) and collagens types 1 and 3, indicating that Klotho inhibition of the profibrotic Wnt/TGFβ axis underlies its anti-fibrotic effect in aging, dystrophic muscle. Thus, epigenetic silencing of klotho during muscular dystrophy contributes substantially to lost regenerative capacity and increased fibrosis of dystrophic muscle during late progressive stages of the disease. PMID:27154199

  19. Comparative study of inorganic elements determined in whole blood from Dmd(mdx)/J mice strain by EDXRF and NAA analytical techniques.

    Science.gov (United States)

    Redígolo, M M; Sato, I M; Metairon, S; Zamboni, C B

    2016-04-01

    Several diseases can be diagnosed observing the variation of specific elements concentration in body fluids. In this study the concentration of inorganic elements in blood samples of dystrophic (Dmd(mdx)/J) and C57BL/6J (control group) mice strain were determined. The results obtained from Energy Dispersive X-ray Fluorescence (EDXRF) were compared with Neutron Activation Analysis (NAA) technique. Both analytical techniques showed to be appropriate and complementary offering a new contribution for veterinary medicine as well as detailed knowledge of this pathology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Long-term Exon Skipping Studies With 2′-O-Methyl Phosphorothioate Antisense Oligonucleotides in Dystrophic Mouse Models

    Directory of Open Access Journals (Sweden)

    Christa L Tanganyika-de Winter

    2012-01-01

    Full Text Available Antisense-mediated exon skipping for Duchenne muscular dystrophy (DMD is currently tested in phase 3 clinical trials. The aim of this approach is to modulate splicing by skipping a specific exon to reframe disrupted dystrophin transcripts, allowing the synthesis of a partly functional dystrophin protein. Studies in animal models allow detailed analysis of the pharmacokinetic and pharmacodynamic profile of antisense oligonucleotides (AONs. Here, we tested the safety and efficacy of subcutaneously administered 2′-O-methyl phosphorothioate AON at 200 mg/kg/week for up to 6 months in mouse models with varying levels of disease severity: mdx mice (mild phenotype and mdx mice with one utrophin allele (mdx/utrn+/−; more severe phenotype. Long-term treatment was well tolerated and exon skipping and dystrophin restoration confirmed for all animals. Notably, in the more severely affected mdx/utrn+/− mice the therapeutic effect was larger: creatine kinase (CK levels were more decreased and rotarod running time was more increased. This suggests that the mdx/utrn+/− model may be a more suitable model to test potential therapies than the regular mdx mouse. Our results also indicate that long-term subcutaneous treatment in dystrophic mouse models with these AONs is safe and beneficial.

  1. Taurine deficiency, synthesis and transport in the mdx mouse model for Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Terrill, Jessica R; Grounds, Miranda D; Arthur, Peter G

    2015-09-01

    The amino acid taurine is essential for the function of skeletal muscle and administration is proposed as a treatment for Duchenne Muscular Dystrophy (DMD). Taurine homeostasis is dependent on multiple processes including absorption of taurine from food, endogenous synthesis from cysteine and reabsorption in the kidney. This study investigates the cause of reported taurine deficiency in the dystrophic mdx mouse model of DMD. Levels of metabolites (taurine, cysteine, cysteine sulfinate and hypotaurine) and proteins (taurine transporter [TauT], cysteine deoxygenase and cysteine sulfinate dehydrogenase) were quantified in juvenile control C57 and dystrophic mdx mice aged 18 days, 4 and 6 weeks. In C57 mice, taurine content was much higher in both liver and plasma at 18 days, and both cysteine and cysteine deoxygenase were increased. As taurine levels decreased in maturing C57 mice, there was increased transport (reabsorption) of taurine in the kidney and muscle. In mdx mice, taurine and cysteine levels were much lower in liver and plasma at 18 days, and in muscle cysteine was low at 18 days, whereas taurine was lower at 4: these changes were associated with perturbations in taurine transport in liver, kidney and muscle and altered metabolism in liver and kidney. These data suggest that the maintenance of adequate body taurine relies on sufficient dietary intake of taurine and cysteine availability and metabolism, as well as retention of taurine by the kidney. This research indicates dystrophin deficiency not only perturbs taurine metabolism in the muscle but also affects taurine metabolism in the liver and kidney, and supports targeting cysteine and taurine deficiency as a potential therapy for DMD. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  2. Long-term rescue of dystrophin expression and improvement in muscle pathology and function in dystrophic mdx mice by peptide-conjugated morpholino.

    Science.gov (United States)

    Wu, Bo; Lu, Peijuan; Cloer, Caryn; Shaban, Mona; Grewal, Snimar; Milazi, Stephanie; Shah, Sapana N; Moulton, Hong M; Lu, Qi Long

    2012-08-01

    Exon skipping is capable of correcting frameshift and nonsense mutations in Duchenne muscular dystrophy. Phase 2 clinical trials in the United Kingdom and the Netherlands have reported induction of dystrophin expression in muscle of Duchenne muscular dystrophy patients by systemic administration of both phosphorodiamidate morpholino oligomers (PMO) and 2'-O-methyl phosphorothioate. Peptide-conjugated phosphorodiamidate morpholino offers significantly higher efficiency than phosphorodiamidate morpholino, with the ability to induce near-normal levels of dystrophin, and restores function in both skeletal and cardiac muscle. We examined 1-year systemic efficacy of peptide-conjugated phosphorodiamidate morpholino targeting exon 23 in dystrophic mdx mice. The LD(50) of peptide-conjugated phosphorodiamidate morpholino was determined to be approximately 85 mg/kg. The half-life of dystrophin expression was approximately 2 months in skeletal muscle, but shorter in cardiac muscle. Biweekly injection of 6 mg/kg peptide-conjugated phosphorodiamidate morpholino produced >20% dystrophin expression in all skeletal muscles and ≤5% in cardiac muscle, with improvement in muscle function and pathology and reduction in levels of serum creatine kinase. Monthly injections of 30 mg/kg peptide-conjugated phosphorodiamidate morpholino restored dystrophin to >50% normal levels in skeletal muscle, and 15% in cardiac muscle. This was associated with greatly reduced serum creatine kinase levels, near-normal histology, and functional improvement of skeletal muscle. Our results demonstrate for the first time that regular 1-year administration of peptide-conjugated phosphorodiamidate morpholino can be safely applied to achieve significant therapeutic effects in an animal model. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. SERCA2a gene transfer improves electrocardiographic performance in aged mdx mice

    Directory of Open Access Journals (Sweden)

    Hajjar Roger

    2011-08-01

    Full Text Available Abstract Background Cardiomyocyte calcium overloading has been implicated in the pathogenesis of Duchenne muscular dystrophy (DMD heart disease. The cardiac isoform of sarcoplasmic reticulum calcium ATPase (SERCA2a plays a major role in removing cytosolic calcium during heart muscle relaxation. Here, we tested the hypothesis that SERCA2a over-expression may mitigate electrocardiography (ECG abnormalities in old female mdx mice, a murine model of DMD cardiomyopathy. Methods 1 × 1012 viral genome particles/mouse of adeno-associated virus serotype-9 (AAV-9 SERCA2a vector was delivered to 12-m-old female mdx mice (N = 5 via a single bolus tail vein injection. AAV transduction and the ECG profile were examined eight months later. Results The vector genome was detected in the hearts of all AAV-injected mdx mice. Immunofluorescence staining and western blot confirmed SERCA2a over-expression in the mdx heart. Untreated mdx mice showed characteristic tachycardia, PR interval reduction and QT interval prolongation. AAV-9 SERCA2a treatment corrected these ECG abnormalities. Conclusions Our results suggest that AAV SERCA2a therapy may hold great promise in treating dystrophin-deficient heart disease.

  4. Sarcoplasmic reticulum function in slow- and fast-twitch skeletal muscles from mdx mice.

    Science.gov (United States)

    Divet, Alexandra; Huchet-Cadiou, Corinne

    2002-08-01

    The aim of the present study was to establish whether alterations in sarcoplasmic reticulum function are involved in the abnormal Ca(2+) homeostasis of skeletal muscle in mice with muscular dystrophy ( mdx). The properties of the sarcoplasmic reticulum and contractile proteins of fast- and slow-twitch muscles were therefore investigated in chemically skinned fibres isolated from the extensor digitorum longus (EDL) and soleus muscles of normal (C57BL/10) and mdx mice at 4 and 11 weeks of development. Sarcoplasmic reticulum Ca(2+) uptake, estimated by the Ca(2+) release following exposure to caffeine, was significantly slower in mdx mice, while the maximal Ca(2+) quantity did not differ in either type of skeletal muscle at either stage of development. In 4-week-old mice spontaneous sarcoplasmic reticulum Ca(2+) leakage was observed in EDL and soleus fibres and this was more pronounced in mdx mice. In addition, the maximal Ca(2+)-activated tension was smaller in mdx than in normal fibres, while the Ca(2+) sensitivity of the contractile apparatus was not significantly different. These results indicate that mdx hindlimb muscles are affected differently by the disease process and suggest that a reduced ability of the Ca(2+)-ATPase to load Ca(2+) and a leaky sarcoplasmic reticulum membrane may be involved in the altered intracellular Ca(2+) homeostasis.

  5. Age-dependent changes in diastolic Ca2+ and Na+ concentrations in dystrophic cardiomyopathy: Role of Ca2+ entry and IP3

    International Nuclear Information System (INIS)

    Mijares, Alfredo; Altamirano, Francisco; Kolster, Juan; Adams, José A.; López, José R.

    2014-01-01

    Highlights: • Age-dependent increase in [Ca 2+ ] d and [Na + ] d in mdx cardiomyocytes. • Gadolinium significantly reduced both [Ca 2+ ] d and [Na + ] d at all ages. • IP 3 -pathway inhibition reduced cations concentrations in dystrophic cardiomyocytes. - Abstract: Duchenne muscular dystrophy (DMD) is a lethal X-inherited disease caused by dystrophin deficiency. Besides the relatively well characterized skeletal muscle degenerative processes, DMD is also associated with a dilated cardiomyopathy that leads to progressive heart failure at the end of the second decade. The aim of the present study was to characterize the diastolic Ca 2+ concentration ([Ca 2+ ] d ) and diastolic Na + concentration ([Na + ] d ) abnormalities in cardiomyocytes isolated from 3-, 6-, 9-, and 12-month old mdx mice using ion-selective microelectrodes. In addition, the contributions of gadolinium (Gd 3+ )-sensitive Ca 2+ entry and inositol triphosphate (IP 3 ) signaling pathways in abnormal [Ca 2+ ] d and [Na + ] d were investigated. Our results showed an age-dependent increase in both [Ca 2+ ] d and [Na + ] d in dystrophic cardiomyocytes compared to those isolated from age-matched wt mice. Gd 3+ treatment significantly reduced both [Ca 2+ ] d and [Na + ] d at all ages. In addition, blockade of the IP 3 -pathway with either U-73122 or xestospongin C significantly reduced ion concentrations in dystrophic cardiomyocytes. Co-treatment with U-73122 and Gd 3+ normalized both [Ca 2+ ] d and [Na + ] d at all ages in dystrophic cardiomyocytes. These data showed that loss of dystrophin in mdx cardiomyocytes produced an age-dependent intracellular Ca 2+ and Na + overload mediated at least in part by enhanced Ca 2+ entry through Gd 3+ sensitive transient receptor potential channels (TRPC), and by IP 3 receptors

  6. Serum cholinesterases are differentially regulated in normal and dystrophin-deficient mutant mice

    Directory of Open Access Journals (Sweden)

    Andrea R. Durrant

    2012-06-01

    Full Text Available The cholinesterases, acetylcholinesterase and butyrylcholinesterase (pseudocholinesterase, are abundant in the nervous system and in other tissues. The role of acetylcholinesterase in terminating transmitter action in the peripheral and central nervous system is well understood. However, both knowledge of the function(s of the cholinesterases in serum, and of their metabolic and endocrine regulation under normal and pathological conditions, is limited. This study investigates acetylcholinesterase and butyrylcholinesterase in sera of dystrophin-deficient mdx mutant mice, an animal model for the human Duchenne muscular dystrophy and in control healthy mice. The data show systematic and differential variations in the concentrations of both enzymes in the sera, and specific changes dictated by alteration of hormonal balance in both healthy and dystrophic mice. While acetylcholinesterase in mdx-sera is elevated, butyrylcholinesterase is markedly diminished, resulting in an overall cholinesterase decrease compared to sera of healthy controls. The androgen testosterone (T is a negative modulator of butyrylcholinesterase, but not of acetylcholinesterase, in male mouse sera. T-removal elevated both butyrylcholinesterase activity and the butyrylcholinesterase/acetylcholinesterase ratio in mdx male sera to values resembling those in healthy control male mice. Mechanisms of regulation of the circulating cholinesterases and their impairment in the dystrophic mice are suggested, and clinical implications for diagnosis and treatment are considered.

  7. Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers.

    Science.gov (United States)

    Miyazaki, Daigo; Nakamura, Akinori; Fukushima, Kazuhiro; Yoshida, Kunihiro; Takeda, Shin'ichi; Ikeda, Shu-ichi

    2011-05-01

    Matrix metalloproteases (MMPs) are a family of endopeptidases classified into subgroups based on substrate preference in normal physiological processes such as embryonic development and tissue remodeling, as well as in various disease processes via degradation of extracellular matrix components. Among the MMPs, MMP-9 and MMP-2 have been reported to be up-regulated in skeletal muscles in the lethal X-linked muscle disorder Duchenne muscular dystrophy (DMD), which is caused by loss of dystrophin. A recent study showed that deletion of the MMP9 gene in mdx, a mouse model for DMD, improved skeletal muscle pathology and function; however, the role of MMP-2 in the dystrophin-deficient muscle is not well known. In this study, we aimed at verifying the role of MMP-2 in the dystrophin-deficient muscle by using mdx mice with genetic ablation of MMP-2 (mdx/MMP-2(-/-)). We found impairment of regenerated muscle fiber growth with reduction of angiogenesis in mdx/MMP-2(-/-) mice at 3 months of age. Expression of vascular endothelial growth factor-A (VEGF-A), an important angiogenesis-related factor, decreased in mdx/MMP-2(-/-) mice at 3 months of age. MMP-2 had not a critical role in the degradation of dystrophin-glycoprotein complex (DGC) components such as β-dystroglycan and β-sarcoglycan in the regeneration process of the dystrophic muscle. Accordingly, MMP-2 may be essential for growth of regenerated muscle fibers through VEGF-associated angiogenesis in the dystrophin-deficient skeletal muscle.

  8. Gene expression in mdx mouse muscle in relation to age and exercise: aberrant mechanical-metabolic coupling and implications for pre-clinical studies in Duchenne muscular dystrophy.

    Science.gov (United States)

    Camerino, Giulia Maria; Cannone, Maria; Giustino, Arcangela; Massari, Ada Maria; Capogrosso, Roberta Francesca; Cozzoli, Anna; De Luca, Annamaria

    2014-11-01

    Weakness and fatigability are typical features of Duchenne muscular dystrophy patients and are aggravated in dystrophic mdx mice by chronic treadmill exercise. Mechanical activity modulates gene expression and muscle plasticity. Here, we investigated the outcome of 4 (T4, 8 weeks of age) and 12 (T12, 16 weeks of age) weeks of either exercise or cage-based activity on a large set of genes in the gastrocnemius muscle of mdx and wild-type (WT) mice using quantitative real-time PCR. Basal expression of the exercise-sensitive genes peroxisome-proliferator receptor γ coactivator 1α (Pgc-1α) and Sirtuin1 (Sirt1) was higher in mdx versus WT mice at both ages. Exercise increased Pgc-1α expression in WT mice; Pgc-1α was downregulated by T12 exercise in mdx muscles, along with Sirt1, Pparγ and the autophagy marker Bnip3. Sixteen weeks old mdx mice showed a basal overexpression of the slow Mhc1 isoform and Serca2; T12 exercise fully contrasted this basal adaptation as well as the high expression of follistatin and myogenin. Conversely, T12 exercise was ineffective in WT mice. Damage-related genes such as gp91-phox (NADPH-oxidase2), Tgfβ, Tnfα and c-Src tyrosine kinase were overexpressed in mdx muscles and not affected by exercise. Likewise, the anti-inflammatory adiponectin was lower in T12-exercised mdx muscles. Chronic exercise with minor adaptive effects in WT muscles leads to maladaptation in mdx muscles with a disequilibrium between protective and damaging signals. Increased understanding of the pathways involved in the altered mechanical-metabolic coupling may help guide appropriate physical therapies while better addressing pharmacological interventions in translational research. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Prophylactic pamidronate partially protects from glucocorticoid-induced bone loss in the mdx mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Yoon, Sung-Hee; Chen, Jinghan; Grynpas, Marc D; Mitchell, Jane

    2016-09-01

    Glucocorticoids are extensively used to treat patients with Duchenne muscular dystrophy because of their ability to delay muscle damage, prolong ambulation and extend life. However, use of glucocorticoids significantly increases bone loss, fragility and fractures. To determine if antiresorptive bisphosphonates could prevent the effects of glucocorticoids on bone quality, we used dystrophic mdx mice treated with the glucocorticoid prednisone during 8weeks of rapid bone growth from 5 to 13weeks of age and treated some mice with the bisphosphonate pamidronate during the first two weeks of prednisone administration. Prednisone reduced long bone growth, decreased cortical bone thickness and area and decreased the strength of the femurs. Pamidronate treatment protected mice from cortical bone loss but did not increase bone strength. The combination of prednisone and pamidronate inhibited remodeling of metaphyseal trabecular bone with large numbers of trabeculae containing remnants of calcified cartilage. Prednisone improved muscle strength in the mdx mice and decreased serum creatine kinase with evidence of improved muscle histology and these effects were maintained in mice treated with pamidronate. Copyright © 2016. Published by Elsevier Inc.

  10. Analyses of the differentiation potential of satellite cells from myoD-/-, mdx, and PMP22 C22 mice

    Directory of Open Access Journals (Sweden)

    Huxley Clare

    2005-03-01

    Full Text Available Abstract Background Sporadic and sometimes contradictory studies have indicated changes in satellite cell behaviour associated with the progressive nature of human Duchenne muscular dystrophy (DMD. Satellite cell proliferation and number are reportedly altered in DMD and the mdx mouse model. We recently found that satellite cells in MSVski transgenic mice, a muscle hypertrophy model showing progressive muscle degeneration, display a severe ageing-related differentiation defect in vitro. We tested the hypothesis that similar changes contribute to the gradual loss of muscle function with age in mdx and PMP22 mice, a model of human motor and sensory neuropathy type 1A (HMSN1A. Methods Single extensor digitorum longus muscle fibres were cultured from mdx and PMP22 mice and age- and genetic background-matched controls. Mice at several ages were compared with regard to the differentiation of satellite cells, assayed as the proportion of desmin-expressing cells that accumulated sarcomeric myosin heavy chain. Results Satellite cells of 2 month, 6 month, and 12 month old mdx mice were capable of differentiating to a similar extent to age-matched wild type control animals in an in vitro proliferation/differentiation model. Strikingly, differentiation efficiency in individual 6 month and 12 month old mdx animals varies to a much higher extent than in age-matched controls, younger mdx animals, or PMP22 mice. In contrast, differentiation of myoblasts from all myoD null mice assayed was severely impaired in this assay system. The defect in satellite cell differentiation that occurs in some mdx animals arises from a delay in differentiation that is not overcome by IGF-1 treatment at any phase of cultivation. Conclusion Overall, a defect in satellite cell differentiation above that arising through normal ageing does not occur in mdx or PMP22 mouse models of human disease. Nonetheless, the impaired differentiation of satellite cells from some mdx animals

  11. Arginine metabolism by macrophages promotes cardiac and muscle fibrosis in mdx muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Michelle Wehling-Henricks

    2010-05-01

    Full Text Available Duchenne muscular dystrophy (DMD is the most common, lethal disease of childhood. One of 3500 new-born males suffers from this universally-lethal disease. Other than the use of corticosteroids, little is available to affect the relentless progress of the disease, leading many families to use dietary supplements in hopes of reducing the progression or severity of muscle wasting. Arginine is commonly used as a dietary supplement and its use has been reported to have beneficial effects following short-term administration to mdx mice, a genetic model of DMD. However, the long-term effects of arginine supplementation are unknown. This lack of knowledge about the long-term effects of increased arginine metabolism is important because elevated arginine metabolism can increase tissue fibrosis, and increased fibrosis of skeletal muscles and the heart is an important and potentially life-threatening feature of DMD.We use both genetic and nutritional manipulations to test whether changes in arginase metabolism promote fibrosis and increase pathology in mdx mice. Our findings show that fibrotic lesions in mdx muscle are enriched with arginase-2-expressing macrophages and that muscle macrophages stimulated with cytokines that activate the M2 phenotype show elevated arginase activity and expression. We generated a line of arginase-2-null mutant mdx mice and found that the mutation reduced fibrosis in muscles of 18-month-old mdx mice, and reduced kyphosis that is attributable to muscle fibrosis. We also observed that dietary supplementation with arginine for 17-months increased mdx muscle fibrosis. In contrast, arginine-2 mutation did not reduce cardiac fibrosis or affect cardiac function assessed by echocardiography, although 17-months of dietary supplementation with arginine increased cardiac fibrosis. Long-term arginine treatments did not decrease matrix metalloproteinase-2 or -9 or increase the expression of utrophin, which have been reported as beneficial

  12. Electrical stimuli are anti-apoptotic in skeletal muscle via extracellular ATP. Alteration of this signal in Mdx mice is a likely cause of dystrophy.

    Science.gov (United States)

    Valladares, Denisse; Almarza, Gonzalo; Contreras, Ariel; Pavez, Mario; Buvinic, Sonja; Jaimovich, Enrique; Casas, Mariana

    2013-01-01

    ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies.

  13. Age-dependent changes in diastolic Ca{sup 2+} and Na{sup +} concentrations in dystrophic cardiomyopathy: Role of Ca{sup 2+} entry and IP{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mijares, Alfredo [Instituto Venezolano de Investigaciones Científicas, Centro de Biofísica y Bioquímica, Caracas (Venezuela, Bolivarian Republic of); Altamirano, Francisco [Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616 (United States); Kolster, Juan [Centro de Investigaciones Biomédicas, México D.F. (Mexico); Adams, José A. [Division of Neonatology, Mount Sinai Medical Center, Miami, FL 33140 (United States); López, José R., E-mail: jrlopez@ucdavis.edu [Instituto Venezolano de Investigaciones Científicas, Centro de Biofísica y Bioquímica, Caracas (Venezuela, Bolivarian Republic of); Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616 (United States)

    2014-10-03

    Highlights: • Age-dependent increase in [Ca{sup 2+}]{sub d} and [Na{sup +}]{sub d} in mdx cardiomyocytes. • Gadolinium significantly reduced both [Ca{sup 2+}]{sub d} and [Na{sup +}]{sub d} at all ages. • IP{sub 3}-pathway inhibition reduced cations concentrations in dystrophic cardiomyocytes. - Abstract: Duchenne muscular dystrophy (DMD) is a lethal X-inherited disease caused by dystrophin deficiency. Besides the relatively well characterized skeletal muscle degenerative processes, DMD is also associated with a dilated cardiomyopathy that leads to progressive heart failure at the end of the second decade. The aim of the present study was to characterize the diastolic Ca{sup 2+} concentration ([Ca{sup 2+}]{sub d}) and diastolic Na{sup +} concentration ([Na{sup +}]{sub d}) abnormalities in cardiomyocytes isolated from 3-, 6-, 9-, and 12-month old mdx mice using ion-selective microelectrodes. In addition, the contributions of gadolinium (Gd{sup 3+})-sensitive Ca{sup 2+} entry and inositol triphosphate (IP{sub 3}) signaling pathways in abnormal [Ca{sup 2+}]{sub d} and [Na{sup +}]{sub d} were investigated. Our results showed an age-dependent increase in both [Ca{sup 2+}]{sub d} and [Na{sup +}]{sub d} in dystrophic cardiomyocytes compared to those isolated from age-matched wt mice. Gd{sup 3+} treatment significantly reduced both [Ca{sup 2+}]{sub d} and [Na{sup +}]{sub d} at all ages. In addition, blockade of the IP{sub 3}-pathway with either U-73122 or xestospongin C significantly reduced ion concentrations in dystrophic cardiomyocytes. Co-treatment with U-73122 and Gd{sup 3+} normalized both [Ca{sup 2+}]{sub d} and [Na{sup +}]{sub d} at all ages in dystrophic cardiomyocytes. These data showed that loss of dystrophin in mdx cardiomyocytes produced an age-dependent intracellular Ca{sup 2+} and Na{sup +} overload mediated at least in part by enhanced Ca{sup 2+} entry through Gd{sup 3+} sensitive transient receptor potential channels (TRPC), and by IP{sub 3} receptors.

  14. Electroporation Enhanced Effect of Dystrophin Splice Switching PNA Oligomers in Normal and Dystrophic Muscle

    Directory of Open Access Journals (Sweden)

    Camilla Brolin

    2015-01-01

    Full Text Available Peptide nucleic acid (PNA is a synthetic DNA mimic that has shown potential for discovery of novel splice switching antisense drugs. However, in vivo cellular delivery has been a limiting factor for development, and only few successful studies have been reported. As a possible modality for improvement of in vivo cellular availability, we have investigated the effect of electrotransfer upon intramuscular (i.m. PNA administration in vivo. Antisense PNA targeting exon 23 of the murine dystrophin gene was administered by i.m. injection to the tibialis anterior (TA muscle of normal NMRI and dystrophic mdx mice with or without electroporation. At low, single PNA doses (1.5, 3, or 10 µg/TA, electroporation augmented the antisense exon skipping induced by an unmodified PNA by twofold to fourfold in healthy mouse muscle with optimized electric parameters, measured after 7 days. The PNA splice switching was detected at the RNA level up to 4 weeks after a single-dose treatment. In dystrophic muscles of the MDX mouse, electroporation increased the number of dystrophin-positive fibers about 2.5-fold at 2 weeks after a single PNA administration compared to injection only. In conclusion, we find that electroporation can enhance PNA antisense effects in muscle tissue.

  15. Long-term administration of the TNF blocking drug Remicade (cV1q) to mdx mice reduces skeletal and cardiac muscle fibrosis, but negatively impacts cardiac function

    Science.gov (United States)

    Ermolova, N.E.; Martinez, L.; Vetrone, S.A.; Jordan, M. C.; Roos, K. .P.; Sweeney, H.L.; Spencer, M.J.

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a degenerative skeletal muscle disease caused by mutations in the gene encoding dystrophin (DYS). Tumor necrosis factor (TNF) has been implicated in the pathogenesis of DMD since short-term treatment of mdx mice with TNF blocking drugs proved beneficial; however, it is not clear whether long-term treatment will also improve long-term outcomes of fibrosis and cardiac health. In this investigation, short and long-term dosing studies were carried out using the TNF blocking drug Remicade and a variety of outcome measures were assessed. Here we show no demonstrable benefit to muscle strength or morphology with 10mg/kg or 20 mg/kg Remicade; however, 3mg/kg produced positive strength benefits. Remicade treatment correlated with reductions in myostatin mRNA in the heart, and concomitant reductions in cardiac and skeletal fibrosis. Surprisingly, although Remicade treated mdx hearts were less fibrotic, reductions in LV mass and ejection fraction were also observed, and these changes coincided with reductions in AKT phosphorylation on threonine 308. Thus, TNF blockade benefits mdx skeletal muscle strength and fibrosis, but negatively impacts AKT activation, leading to deleterious changes to dystrophic heart function. These studies uncover a previously unknown relationship between TNF blockade and alteration of muscle growth signaling pathways. PMID:24844454

  16. Elemental analysis of biological tissues of Dmdmdx/J and C57BL/6J mice strains investigated by neutron activation analysis

    International Nuclear Information System (INIS)

    Sabrina Metairon; Zamboni, C.B.; Suzuki, M.F.; Bueno Junior, C.R.; Sant'Anna, O.A.

    2013-01-01

    In order to understand in more details the alterations that Duchenne muscular dystrophy disease may cause in biological tissues (blood, tibia, quadriceps and heart), correlations matrixes of the Dmd mdx /J dystrophic mice as well as C57BL/6J (control group) were generated. These mice were obtained from Jackson Laboratory (Maine, USA) and bred at IPEN (Dmd mdx /J), and at Centro de Estudos do Genoma Humano (C57BL/6J), both research centers at Sao Paulo city. Elements of clinical and nutritional relevance (Br, Ca, Cl, K, Mg, Na and S) were investigated by neutron activation analysis. These measurements were performed using the nuclear reactor IEA-R1 (3.5-4.5 MW, pool type) at IPEN. Comparisons between concentrations and correlations in these biological tissues, of these strains, showed that a Ca and Mg in blood are altered for the dystrophic mice. A significant change in the heart of dystrophic mice was also observed suggesting that a constant monitoring is required. Moreover, these results may help the researchers to evaluate the efficiency of new treatments and to compare the advantages of different treatment approaches before performing tests in patients with muscular dystrophy. (author)

  17. IGF-I treatment improves the functional properties of fast- and slow-twitch skeletal muscles from dystrophic mice.

    Science.gov (United States)

    Lynch, G S; Cuffe, S A; Plant, D R; Gregorevic, P

    2001-04-01

    Although insulin-like growth factor-I (IGF-I) has been proposed for use by patients suffering from muscle wasting conditions, few studies have investigated the functional properties of dystrophic skeletal muscle following IGF-I treatment. 129P1 ReJ-Lama2(dy) (129 ReJ dy/dy) dystrophic mice suffer from a deficiency in the structural protein, laminin, and exhibit severe muscle wasting and weakness. We tested the hypothesis that 4 weeks of IGF-I treatment ( approximately 2 mg/kg body mass, 50 g/h via mini-osmotic pump, subcutaneously) would increase the mass and force producing capacity of skeletal muscles from dystrophic mice. IGF-I treatment increased the mass of the extensor digitorum longus (EDL) and soleus muscles of dystrophic mice by 20 and 29%, respectively, compared with untreated dystrophic mice (administered saline-vehicle only). Absolute maximum force (P(o)) of the EDL and soleus muscle was increased by 40 and 32%, respectively, following IGF-I treatment. Specific P(o) (sP(o)) was increased by 23% in the EDL muscles of treated compared with untreated mice, but in the soleus muscle sP(o) was unchanged. IGF-I treatment increased the proportion of type IIB and type IIA fibres and decreased the proportion of type I fibres in the EDL muscles of dystrophic mice. In the soleus muscles of dystrophic mice, IGF-I treatment increased the proportion of type IIA fibres and decreased the proportion of type I fibres. Average fibre cross-sectional area was increased in the EDL and soleus muscles of treated compared with untreated mice. We conclude that IGF-I treatment ameliorates muscle wasting and improves the functional properties of skeletal muscles of dystrophic mice. The findings have important implications for the role of IGF-I in ameliorating muscle wasting associated with the muscular dystrophies.

  18. Plantarflexion Contracture in the mdx Mouse

    Science.gov (United States)

    Garlich, Michael W.; Baltgalvis, Kristen A.; Call, Jarrod A.; Dorsey, Lisa L.; Lowe, Dawn A.

    2012-01-01

    Objective Contractures are a major clinical issue for patients with muscular dystrophies. However, it is unknown whether contractures are present in the widely used mdx mouse model of Duchenne muscular dystrophy. Therefore, the objectives of this study were to develop methods to measure muscle contractures in mice, to determine whether plantarflexion contractures are present in mdx mice, and to analyze the composition of the major muscles involved. Design Hindlimbs of eight wild type and six mdx mice were assessed every 2 wks during the course of a 12-wk study. Assessments included range of motion and in vivo torques about the ankle. At the end of the study, mice were euthanized, and muscles were analyzed for composition. Results The mdx mice had ~10 degrees less dorsiflexion, increased passive torque moving the ankle into dorsiflexion, and an increased passive-to-active torque ratio relative to wild type mice. Gastrocnemius muscle composition alterations included increased wet mass, decreased protein content, and increased collagen. Conclusions The results indicate that mdx mice have plantarflexion contractures similar to those seen in children with Duchenne muscular dystrophy. In future studies, these measures can be used to assess strategies to slow the progression of contractures that occur with muscular dystrophies. PMID:21403594

  19. A Mathematical Model of Skeletal Muscle Disease and Immune Response in the mdx Mouse

    Directory of Open Access Journals (Sweden)

    Abdul Salam Jarrah

    2014-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is a genetic disease that results in the death of affected boys by early adulthood. The genetic defect responsible for DMD has been known for over 25 years, yet at present there is neither cure nor effective treatment for DMD. During early disease onset, the mdx mouse has been validated as an animal model for DMD and use of this model has led to valuable but incomplete insights into the disease process. For example, immune cells are thought to be responsible for a significant portion of muscle cell death in the mdx mouse; however, the role and time course of the immune response in the dystrophic process have not been well described. In this paper we constructed a simple mathematical model to investigate the role of the immune response in muscle degeneration and subsequent regeneration in the mdx mouse model of Duchenne muscular dystrophy. Our model suggests that the immune response contributes substantially to the muscle degeneration and regeneration processes. Furthermore, the analysis of the model predicts that the immune system response oscillates throughout the life of the mice, and the damaged fibers are never completely cleared.

  20. PITX2 Enhances the Regenerative Potential of Dystrophic Skeletal Muscle Stem Cells.

    Science.gov (United States)

    Vallejo, Daniel; Hernández-Torres, Francisco; Lozano-Velasco, Estefanía; Rodriguez-Outeiriño, Lara; Carvajal, Alejandra; Creus, Carlota; Franco, Diego; Aránega, Amelia Eva

    2018-04-10

    Duchenne muscular dystrophy (DMD), one of the most lethal genetic disorders, involves progressive muscle degeneration resulting from the absence of DYSTROPHIN. Lack of DYSTROPHIN expression in DMD has critical consequences in muscle satellite stem cells including a reduced capacity to generate myogenic precursors. Here, we demonstrate that the c-isoform of PITX2 transcription factor modifies the myogenic potential of dystrophic-deficient satellite cells. We further show that PITX2c enhances the regenerative capability of mouse DYSTROPHIN-deficient satellite cells by increasing cell proliferation and the number of myogenic committed cells, but importantly also increasing dystrophin-positive (revertant) myofibers by regulating miR-31. These PITX2-mediated effects finally lead to improved muscle function in dystrophic (DMD/mdx) mice. Our studies reveal a critical role for PITX2 in skeletal muscle repair and may help to develop therapeutic strategies for muscular disorders. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Defects in mitochondrial ATP synthesis in dystrophin-deficient mdx skeletal muscles may be caused by complex I insufficiency.

    Directory of Open Access Journals (Sweden)

    Emma Rybalka

    Full Text Available Duchenne Muscular Dystrophy is a chronic, progressive and ultimately fatal skeletal muscle wasting disease characterised by sarcolemmal fragility and intracellular Ca2+ dysregulation secondary to the absence of dystrophin. Mounting literature also suggests that the dysfunction of key energy systems within the muscle may contribute to pathological muscle wasting by reducing ATP availability to Ca2+ regulation and fibre regeneration. No study to date has biochemically quantified and contrasted mitochondrial ATP production capacity by dystrophic mitochondria isolated from their pathophysiological environment such to determine whether mitochondria are indeed capable of meeting this heightened cellular ATP demand, or examined the effects of an increasing extramitochondrial Ca2+ environment. Using isolated mitochondria from the diaphragm and tibialis anterior of 12 week-old dystrophin-deficient mdx and healthy control mice (C57BL10/ScSn we have demonstrated severely depressed Complex I-mediated mitochondrial ATP production rate in mdx mitochondria that occurs irrespective of the macronutrient-derivative substrate combination fed into the Kreb's cycle, and, which is partially, but significantly, ameliorated by inhibition of Complex I with rotenone and stimulation of Complex II-mediated ATP-production with succinate. There was no difference in the MAPR response of mdx mitochondria to increasing extramitochondrial Ca2+ load in comparison to controls, and 400 nM extramitochondrial Ca2+ was generally shown to be inhibitory to MAPR in both groups. Our data suggests that DMD pathology is exacerbated by a Complex I deficiency, which may contribute in part to the severe reductions in ATP production previously observed in dystrophic skeletal muscle.

  2. Lack of the serum- and glucocorticoid-inducible kinase SGK1 improves muscle force characteristics and attenuates fibrosis in dystrophic mdx mouse muscle

    DEFF Research Database (Denmark)

    Steinberger, Martin; Föller, Michael; Vogelgesang, Silke

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a human genetic disease characterized by fibrosis and severe muscle weakness. Currently, there is no effective treatment available to prevent progressive fibrosis in skeletal muscles. The serum- and glucocorticoid-inducible kinase SGK1 regulates a variety...... of physiological functions and participates in fibrosis stimulation. Here, we investigated whether SGK1 influences structure, function and/or fibrosis of the muscles from the mdx mouse, an animal model for DMD. As expected, mdx muscles showed the typical pathological features of muscular dystrophy including fiber...... size variations, central nuclei of muscle fibers, fibrosis in the diaphragm, and force reduction by 30–50 %. Muscles from sgk1 -/- mice were histologically overall intact and specific force was only slightly reduced compared to wild-type muscles. Surprisingly, soleus and diaphragm muscles of mdx/sgk1...

  3. Delivery of AAV2/9-microdystrophin genes incorporating helix 1 of the coiled-coil motif in the C-terminal domain of dystrophin improves muscle pathology and restores the level of α1-syntrophin and α-dystrobrevin in skeletal muscles of mdx mice.

    Science.gov (United States)

    Koo, Taeyoung; Malerba, Alberto; Athanasopoulos, Takis; Trollet, Capucine; Boldrin, Luisa; Ferry, Arnaud; Popplewell, Linda; Foster, Helen; Foster, Keith; Dickson, George

    2011-11-01

    Duchenne muscular dystrophy is a severe X-linked inherited muscle wasting disorder caused by mutations in the dystrophin gene. Adeno-associated virus (AAV) vectors have been extensively used to deliver genes efficiently for dystrophin expression in skeletal muscles. To overcome limited packaging capacity of AAV vectors (pathology of dystrophic mdx mice. However, the CT domain of dystrophin is thought to recruit part of the dystrophin-associated protein complex, which acts as a mediator of signaling between extracellular matrix and cytoskeleton in muscle fibers. In this study, we extended the ΔR4-23/ΔCT microdystrophin by incorporating helix 1 of the coiled-coil motif in the CT domain of dystrophin (MD2), which contains the α1-syntrophin and α-dystrobrevin binding sites. Intramuscular injection of AAV2/9 expressing CT domain-extended microdystrophin showed efficient dystrophin expression in tibialis anterior muscles of mdx mice. The presence of the CT domain of dystrophin in MD2 increased the recruitment of α1-syntrophin and α-dystrobrevin at the sarcolemma and significantly improved the muscle resistance to lengthening contraction-induced muscle damage in the mdx mice compared with MD1. These results suggest that the incorporation of helix 1 of the coiled-coil motif in the CT domain of dystrophin to the microdystrophins will substantially improve their efficiency in restoring muscle function in patients with Duchenne muscular dystrophy.

  4. Effect of voluntary physical activity initiated at age 7 months on skeletal hindlimb and cardiac muscle function in mdx mice of both genders.

    Science.gov (United States)

    Ferry, Arnaud; Benchaouir, Rachid; Joanne, Pierre; Peat, Rachel A; Mougenot, Nathalie; Agbulut, Onnik; Butler-Browne, Gillian

    2015-11-01

    The effects of voluntary activity initiated in adult mdx (C57BL/10ScSc-DMD(mdx) /J) mice on skeletal and cardiac muscle function have not been studied extensively. We studied the effects of 3 months of voluntary wheel running initiated at age 7 months on hindlimb muscle weakness, increased susceptibility to muscle contraction-induced injury, and left ventricular function in mdx mice. We found that voluntary wheel running did not worsen the deficit in force-generating capacity and the force drop after lengthening contractions in either mdx mouse gender. It increased the absolute maximal force of skeletal muscle in female mdx mice. Moreover, it did not affect left ventricular function, structural heart dimensions, cardiac gene expression of inflammation, fibrosis, or remodeling markers. These results indicate that voluntary activity initiated at age 7 months had no detrimental effects on skeletal or cardiac muscles in either mdx mouse gender. © 2015 Wiley Periodicals, Inc.

  5. Sensorimotor control of breathing in the mdx mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Burns, David P; Roy, Arijit; Lucking, Eric F; McDonald, Fiona B; Gray, Sam; Wilson, Richard J; Edge, Deirdre; O'Halloran, Ken D

    2017-11-01

    Respiratory failure is a leading cause of mortality in Duchenne muscular dystrophy (DMD), but little is known about the control of breathing in DMD and animal models. We show that young (8 weeks of age) mdx mice hypoventilate during basal breathing due to reduced tidal volume. Basal CO 2 production is equivalent in wild-type and mdx mice. We show that carotid bodies from mdx mice have blunted responses to hyperoxia, revealing hypoactivity in normoxia. However, carotid body, ventilatory and metabolic responses to hypoxia are equivalent in wild-type and mdx mice. Our study revealed profound muscle weakness and muscle fibre remodelling in young mdx diaphragm, suggesting severe mechanical disadvantage in mdx mice at an early age. Our novel finding of potentiated neural motor drive to breathe in mdx mice during maximal chemoactivation suggests compensatory neuroplasticity enhancing respiratory motor output to the diaphragm and probably other accessory muscles. Patients with Duchenne muscular dystrophy (DMD) hypoventilate with consequential arterial blood gas derangement relevant to disease progression. Whereas deficits in DMD diaphragm are recognized, there is a paucity of knowledge in respect of the neural control of breathing in dystrophinopathies. We sought to perform an analysis of respiratory control in a model of DMD, the mdx mouse. In 8-week-old male wild-type and mdx mice, ventilation and metabolism, carotid body afferent activity, diaphragm muscle force-generating capacity, and muscle fibre size, distribution and centronucleation were determined. Diaphragm EMG activity and responsiveness to chemostimulation was determined. During normoxia, mdx mice hypoventilated, owing to a reduction in tidal volume. Basal CO 2 production was not different between wild-type and mdx mice. Carotid sinus nerve responses to hyperoxia were blunted in mdx, suggesting hypoactivity. However, carotid body, ventilatory and metabolic responses to hypoxia were equivalent in wild-type and

  6. Functional improvement of dystrophic muscle by repression of utrophin: let-7c interaction.

    Directory of Open Access Journals (Sweden)

    Manoj K Mishra

    Full Text Available Duchenne muscular dystrophy (DMD is a fatal genetic disease caused by an absence of the 427kD muscle-specific dystrophin isoform. Utrophin is the autosomal homolog of dystrophin and when overexpressed, can compensate for the absence of dystrophin and rescue the dystrophic phenotype of the mdx mouse model of DMD. Utrophin is subject to miRNA mediated repression by several miRNAs including let-7c. Inhibition of utrophin: let-7c interaction is predicted to 'repress the repression' and increase utrophin expression. We developed and tested the ability of an oligonucleotide, composed of 2'-O-methyl modified bases on a phosphorothioate backbone, to anneal to the utrophin 3'UTR and prevent let-7c miRNA binding, thereby upregulating utrophin expression and improving the dystrophic phenotype in vivo. Suppression of utrophin: let-7c interaction using bi-weekly intraperitoneal injections of let7 site blocking oligonucleotides (SBOs for 1 month in the mdx mouse model for DMD, led to increased utrophin expression along with improved muscle histology, decreased fibrosis and increased specific force. The functional improvement of dystrophic muscle achieved using let7-SBOs suggests a novel utrophin upregulation-based therapeutic strategy for DMD.

  7. Loss of cIAP1 attenuates soleus muscle pathology and improves diaphragm function in mdx mice

    Science.gov (United States)

    Enwere, Emeka K.; Boudreault, Louise; Holbrook, Janelle; Timusk, Kristen; Earl, Nathalie; LaCasse, Eric; Renaud, Jean-Marc; Korneluk, Robert G.

    2013-01-01

    The cellular inhibitor of apoptosis 1 (cIAP1) protein is an essential regulator of canonical and noncanonical nuclear factor κB (NF-κB) signaling pathways. NF-κB signaling is known to play important roles in myogenesis and degenerative muscle disorders such as Duchenne muscular dystrophy (DMD), but the involvement of cIAP1 in muscle disease has not been studied directly. Here, we asked whether the loss of cIAP1 would influence the pathology of skeletal muscle in the mdx mouse model of DMD. Double-mutant cIAP1−/−;mdx mice exhibited reduced muscle damage and decreased fiber centronucleation in the soleus, compared with single-mutant cIAP1+/+;mdx mice. This improvement in pathology was associated with a reduction in muscle infiltration by macrophages and diminished expression of inflammatory cytokines such as IL-6 and tumor necrosis factor-α. Furthermore, the cIAP1−/−;mdx mice exhibited reduced serum creatine kinase, and improved exercise endurance associated with improved exercise resilience by the diaphragm. Mechanistically, the loss of cIAP1 was sufficient to drive constitutive activation of the noncanonical NF-κB pathway, which led to increased myoblast fusion in vitro and in vivo. Collectively, these results show that the loss of cIAP1 protects skeletal muscle from the degenerative pathology resulting from systemic loss of dystrophin. PMID:23184147

  8. Immunoproteasome in animal models of Duchenne muscular dystrophy.

    Science.gov (United States)

    Chen, Chiao-Nan Joyce; Graber, Ted G; Bratten, Wendy M; Ferrington, Deborah A; Thompson, LaDora V

    2014-04-01

    Increased proteasome activity has been implicated in the atrophy and deterioration associated with dystrophic muscles of Duchenne muscular dystrophy (DMD). While proteasome inhibitors show promise in the attenuation of muscle degeneration, proteasome inhibition-induced toxicity was a major drawback of this therapeutic strategy. Inhibitors that selectively target the proteasome subtype that is responsible for the loss in muscle mass and quality would reduce side effects and be less toxic. This study examined proteasome activity and subtype populations, along with muscle function, morphology and damage in wild-type (WT) mice and two murine models of DMD, dystrophin-deficient (MDX) and dystrophin- and utrophin-double-knockout (DKO) mice. We found that immunoproteasome content was increased in dystrophic muscles while the total proteasome content was unchanged among the three genotypes of mice. Proteasome proteolytic activity was elevated in dystrophic muscles, especially in DKO mice. These mice also exhibited more severe muscle atrophy than either WT or MDX mice. Muscle damage and regeneration, characterized by the activity of muscle creatine kinase in the blood and the percentage of central nuclei were equally increased in dystrophic mice. Accordingly, the overall muscle function was similarly reduced in both dystrophic mice compared with WT. These data demonstrated that there was transformation of standard proteasomes to immunoproteasomes in dystrophic muscles. In addition, DKO that showed greatest increase in proteasome activities also demonstrated more severe atrophy compared with MDX and WT. These results suggest a putative role for the immunoproteasome in muscle deterioration associated with DMD and provide a potential target for therapeutic intervention.

  9. Long-Term Efficacy of Systemic Multiexon Skipping Targeting Dystrophin Exons 45–55 With a Cocktail of Vivo-Morpholinos in Mdx52 Mice

    Directory of Open Access Journals (Sweden)

    Yusuke Echigoya

    2015-01-01

    Full Text Available Antisense-mediated exon skipping, which can restore the reading frame, is a most promising therapeutic approach for Duchenne muscular dystrophy. Remaining challenges include the limited applicability to patients and unclear function of truncated dystrophin proteins. Multiexon skipping targeting exons 45–55 at the mutation hotspot of the dystrophin gene could overcome both of these challenges. Previously, we described the feasibility of exons 45–55 skipping with a cocktail of Vivo-Morpholinos in vivo; however, the long-term efficacy and safety of Vivo-Morpholinos remains to be determined. In this study, we examined the efficacy and toxicity of exons 45–55 skipping by intravenous injections of 6 mg/kg 10-Vivo-Morpholino cocktail (0.6 mg/kg each vPMO every 2 weeks for 18 weeks to dystrophic exon-52 knockout (mdx52 mice. Systemic skipping of the entire exons 45–55 region was induced, and the Western blot analysis exhibited the restoration of 5–27% of normal levels of dystrophin protein in skeletal muscles, accompanied by improvements in histopathology and muscle strength. No obvious immune response and renal and hepatic toxicity were detected at the end-point of the treatment. We demonstrate our new regimen with the 10-Vivo-Morpholino cocktail is effective and safe for long-term repeated systemic administration in the dystrophic mouse model.

  10. Muscle ERRγ mitigates Duchenne muscular dystrophy via metabolic and angiogenic reprogramming.

    Science.gov (United States)

    Matsakas, Antonios; Yadav, Vikas; Lorca, Sabina; Narkar, Vihang

    2013-10-01

    Treatment of Duchenne muscular dystrophy (DMD) by replacing mutant dystrophin or restoring dystrophin-associated glycoprotein complex (DAG) has been clinically challenging. Instead, identifying and targeting muscle pathways deregulated in DMD will provide new therapeutic avenues. We report that the expression of nuclear receptor estrogen-related receptor-γ (ERRγ), and its metabolic and angiogenic targets are down-regulated (50-85%) in skeletal muscles of mdx mice (DMD model) vs. wild-type mice. Corelatively, oxidative myofibers, muscle vasculature, and exercise tolerance (33%) are decreased in mdx vs. wild-type mice. Overexpressing ERRγ selectively in the dystrophic muscles of the mdx mice restored metabolic and angiogenic gene expression compared with control mdx mice. Further, ERRγ enhanced muscle oxidative myofibers, vasculature, and blood flow (by 33-66%) and improved exercise tolerance (by 75%) in the dystrophic mice. Restoring muscle ERRγ pathway ameliorated muscle damage and also prevented DMD hallmarks of postexercise muscle damage, hypoxia, and fatigue in mdx mice. Notably, ERRγ did not restore sarcolemmal DAG complex, which is thus dispensable for antidystrophic effects of ERRγ. In summary, ERRγ-dependent metabolic and angiogenic gene program is defective in DMD, and we demonstrate that its restoration is a potential strategy for treating muscular dystrophy.

  11. Correlation analysis of inorganic elements in biological tissue if DMDmdx/J mice using INAA

    International Nuclear Information System (INIS)

    Metairon, Sabrina; Zamboni, Cibele B.; Suzuki, Miriam F.; Bueno Junior, Carlos R.

    2011-01-01

    Instrumental neutron activation analysis technique (INAA) has been used to determine Br, Ca, Cl, K, Mg, Na and S concentrations in bone and other organs samples from DMD mdx /J dystrophic mice as well as C57BL/6J control group mice. The DMD mdx /J mouse strain is relevant as an experimental model for Duchenne Muscular Dystrophy (DMD), which is the most severe and prevalent type of muscular dystrophy. Muscle weakness, premature death and instability of the membrane that involves the muscle fibers - causing functional/structural abnormalities and cell death - are main characteristics of this genetic disease. To show in more details the alterations that this disease may cause in bones (tibiae) and organs (quadriceps and heart), correlations matrixes were generated for both strains permitting a comparison between these groups. A significant change was observed in the analysis of the heart of dystrophic mice suggesting that this dysfunction affects severely the heart muscle. The results emphasize physiologic differences for Na, Ca and Mg and suggest that Br and S results are altered, emphasizing a constant monitoring needs. Other than that, these results may help the researchers to evaluate the efficiency of new treatments and to compare the advantages of different treatment approaches before performing tests in patients with muscular dystrophy. (author)

  12. Deletion of Galgt2 (B4Galnt2) reduces muscle growth in response to acute injury and increases muscle inflammation and pathology in dystrophin-deficient mice.

    Science.gov (United States)

    Xu, Rui; Singhal, Neha; Serinagaoglu, Yelda; Chandrasekharan, Kumaran; Joshi, Mandar; Bauer, John A; Janssen, Paulus M L; Martin, Paul T

    2015-10-01

    Transgenic overexpression of Galgt2 (official name B4Galnt2) in skeletal muscle stimulates the glycosylation of α dystroglycan (αDG) and the up-regulation of laminin α2 and dystrophin surrogates known to inhibit muscle pathology in mouse models of congenital muscular dystrophy 1A and Duchenne muscular dystrophy. Skeletal muscle Galgt2 gene expression is also normally increased in the mdx mouse model of Duchenne muscular dystrophy compared with the wild-type mice. To assess whether this increased endogenous Galgt2 expression could affect disease, we quantified muscular dystrophy measures in mdx mice deleted for Galgt2 (Galgt2(-/-)mdx). Galgt2(-/-) mdx mice had increased heart and skeletal muscle pathology and inflammation, and also worsened cardiac function, relative to age-matched mdx mice. Deletion of Galgt2 in wild-type mice also slowed skeletal muscle growth in response to acute muscle injury. In each instance where Galgt2 expression was elevated (developing muscle, regenerating muscle, and dystrophic muscle), Galgt2-dependent glycosylation of αDG was also increased. Overexpression of Galgt2 failed to inhibit skeletal muscle pathology in dystroglycan-deficient muscles, in contrast to previous studies in dystrophin-deficient mdx muscles. This study demonstrates that Galgt2 gene expression and glycosylation of αDG are dynamically regulated in muscle and that endogenous Galgt2 gene expression can ameliorate the extent of muscle pathology, inflammation, and dysfunction in mdx mice. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Eosinophilia of dystrophin-deficient muscle is promoted by perforin-mediated cytotoxicity by T cell effectors

    Science.gov (United States)

    Cai, B.; Spencer, M. J.; Nakamura, G.; Tseng-Ong, L.; Tidball, J. G.

    2000-01-01

    Previous investigations have shown that cytotoxic T lymphocytes (CTLs) contribute to muscle pathology in the dystrophin-null mutant mouse (mdx) model of Duchenne muscular dystrophy through perforin-dependent and perforin-independent mechanisms. We have assessed whether the CTL-mediated pathology includes the promotion of eosinophilia in dystrophic muscle, and thereby provides a secondary mechanism through which CTLs contribute to muscular dystrophy. Quantitative immunohistochemistry confirmed that eosinophilia is a component of the mdx dystrophy. In addition, electron microscopic observations show that eosinophils traverse the basement membrane of mdx muscle fibers and display sites of close apposition of eosinophil and muscle membranes. The close membrane apposition is characterized by impingement of eosinophilic rods of major basic protein into the muscle cell membrane. Transfer of mdx splenocytes and mdx muscle extracts to irradiated C57 mice by intraperitoneal injection resulted in muscle eosinophilia in the recipient mice. Double-mutant mice lacking dystrophin and perforin showed less eosinophilia than was displayed by mdx mice that expressed perforin. Finally, administration of prednisolone, which has been shown previously to reduce the concentration of CTLs in dystrophic muscle, produced a significant reduction in eosinophilia. These findings indicate that eosinophilia is a component of the mdx pathology that is promoted by perforin-dependent cytotoxicity of effector T cells. However, some eosinophilia of mdx muscle is independent of perforin-mediated processes.

  14. Adaptive Immune Response Impairs the Efficacy of Autologous Transplantation of Engineered Stem Cells in Dystrophic Dogs

    Science.gov (United States)

    Sitzia, Clementina; Farini, Andrea; Jardim, Luciana; Razini, Paola; Belicchi, Marzia; Cassinelli, Letizia; Villa, Chiara; Erratico, Silvia; Parolini, Daniele; Bella, Pamela; da Silva Bizario, Joao Carlos; Garcia, Luis; Dias-Baruffi, Marcelo; Meregalli, Mirella; Torrente, Yvan

    2016-01-01

    Duchenne muscular dystrophy is the most common genetic muscular dystrophy. It is caused by mutations in the dystrophin gene, leading to absence of muscular dystrophin and to progressive degeneration of skeletal muscle. We have demonstrated that the exon skipping method safely and efficiently brings to the expression of a functional dystrophin in dystrophic CD133+ cells injected scid/mdx mice. Golden Retriever muscular dystrophic (GRMD) dogs represent the best preclinical model of Duchenne muscular dystrophy, mimicking the human pathology in genotypic and phenotypic aspects. Here, we assess the capacity of intra-arterial delivered autologous engineered canine CD133+ cells of restoring dystrophin expression in Golden Retriever muscular dystrophy. This is the first demonstration of five-year follow up study, showing initial clinical amelioration followed by stabilization in mild and severe affected Golden Retriever muscular dystrophy dogs. The occurrence of T-cell response in three Golden Retriever muscular dystrophy dogs, consistent with a memory response boosted by the exon skipped-dystrophin protein, suggests an adaptive immune response against dystrophin. PMID:27506452

  15. Functional and molecular effects of arginine butyrate and prednisone on muscle and heart in the mdx mouse model of Duchenne Muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Alfredo D Guerron

    2010-06-01

    Full Text Available The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin.In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy.These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity.

  16. Functional and molecular effects of arginine butyrate and prednisone on muscle and heart in the mdx mouse model of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Guerron, Alfredo D; Rawat, Rashmi; Sali, Arpana; Spurney, Christopher F; Pistilli, Emidio; Cha, Hee-Jae; Pandey, Gouri S; Gernapudi, Ramkishore; Francia, Dwight; Farajian, Viken; Escolar, Diana M; Bossi, Laura; Becker, Magali; Zerr, Patricia; de la Porte, Sabine; Gordish-Dressman, Heather; Partridge, Terence; Hoffman, Eric P; Nagaraju, Kanneboyina

    2010-06-21

    The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity.

  17. Antisense pre-treatment increases gene therapy efficacy in dystrophic muscles.

    Science.gov (United States)

    Peccate, Cécile; Mollard, Amédée; Le Hir, Maëva; Julien, Laura; McClorey, Graham; Jarmin, Susan; Le Heron, Anita; Dickson, George; Benkhelifa-Ziyyat, Sofia; Piétri-Rouxel, France; Wood, Matthew J; Voit, Thomas; Lorain, Stéphanie

    2016-08-15

    In preclinical models for Duchenne muscular dystrophy, dystrophin restoration during adeno-associated virus (AAV)-U7-mediated exon-skipping therapy was shown to decrease drastically after six months in treated muscles. This decline in efficacy is strongly correlated with the loss of the therapeutic AAV genomes, probably due to alterations of the dystrophic myofiber membranes. To improve the membrane integrity of the dystrophic myofibers at the time of AAV-U7 injection, mdx muscles were pre-treated with a single dose of the peptide-phosphorodiamidate morpholino (PPMO) antisense oligonucleotides that induced temporary dystrophin expression at the sarcolemma. The PPMO pre-treatment allowed efficient maintenance of AAV genomes in mdx muscles and enhanced the AAV-U7 therapy effect with a ten-fold increase of the protein level after 6 months. PPMO pre-treatment was also beneficial to AAV-mediated gene therapy with transfer of micro-dystrophin cDNA into muscles. Therefore, avoiding vector genome loss after AAV injection by PPMO pre-treatment would allow efficient long-term restoration of dystrophin and the use of lower and thus safer vector doses for Duchenne patients. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. An herbal medicine, Go-sha-jinki-gan (GJG, increases muscle weight in severe muscle dystrophy model mice

    Directory of Open Access Journals (Sweden)

    Yusei Takemoto

    2017-12-01

    Full Text Available Go-sha-jinki-gan (GJG, a traditional Japanese herbal medicine has a clinical implication to alleviate age-related symptoms, especially in some motor disorders. However, the scientific evidence is limited, and there is a possibility to expand the medical application range of GJG. Using senescence-accelerated mice, our group showed that GJG exerted an effect to prevent sarcopenia, the aged-related loss of skeletal muscle. Because muscular dystrophy is characterized by a progressive loss of skeletal muscle, we examined the effects of GJG on a mouse model of muscular dystrophy. Using a newly established mouse model for Duchenne muscular dystrophy (DMD, DBA/2-mdx, we showed that GJG significantly increased the body and skeletal muscle weights in comparison to the control DBA/2-mdx mice, regardless of gender. The increased skeletal muscle mass resulted from an increment in the myofiber size, but not from the myofiber number. Both the skeletal muscle regenerative ability and the accumulation of fibrosis (the dystrophic pathology in GJG-fed DBA/2-mdx mice were comparable to those in control DBA/2-mdx mice, suggesting that the cellular target of GJG is myofibers, with no contribution from the muscle satellite cells neither in an direct nor in an indirect manner. Taken together, GJG increased the skeletal muscle mass in a mouse model of muscular dystrophy, in addition to our previously tested sarcopenia mouse model.

  19. Skull development in the muscular dystrophic mouse

    DEFF Research Database (Denmark)

    Vilmann, H; Kirkeby, S; Moss, M L

    1989-01-01

    Roentgencephalometric tracings of skulls of 7-week-old normal and muscular dystrophic mice were compared. A marked size reduction of the dystrophic skulls relative to the normal ones was observed. However, the visceral parts of the dystrophic skull were more reduced in size than the neural parts....

  20. A new therapeutic effect of simvastatin revealed by functional improvement in muscular dystrophy.

    Science.gov (United States)

    Whitehead, Nicholas P; Kim, Min Jeong; Bible, Kenneth L; Adams, Marvin E; Froehner, Stanley C

    2015-10-13

    Duchenne muscular dystrophy (DMD) is a lethal, degenerative muscle disease with no effective treatment. DMD muscle pathogenesis is characterized by chronic inflammation, oxidative stress, and fibrosis. Statins, cholesterol-lowering drugs, inhibit these deleterious processes in ischemic diseases affecting skeletal muscle, and therefore have potential to improve DMD. However, statins have not been considered for DMD, or other muscular dystrophies, principally because skeletal-muscle-related symptoms are rare, but widely publicized, side effects of these drugs. Here we show positive effects of statins in dystrophic skeletal muscle. Simvastatin dramatically reduced damage and enhanced muscle function in dystrophic (mdx) mice. Long-term simvastatin treatment vastly improved overall muscle health in mdx mice, reducing plasma creatine kinase activity, an established measure of muscle damage, to near-normal levels. This reduction was accompanied by reduced inflammation, more oxidative muscle fibers, and improved strength of the weak diaphragm muscle. Shorter-term treatment protected against muscle fatigue and increased mdx hindlimb muscle force by 40%, a value comparable to current dystrophin gene-based therapies. Increased force correlated with reduced NADPH Oxidase 2 protein expression, the major source of oxidative stress in dystrophic muscle. Finally, in old mdx mice with severe muscle degeneration, simvastatin enhanced diaphragm force and halved fibrosis, a major cause of functional decline in DMD. These improvements were accompanied by autophagy activation, a recent therapeutic target for DMD, and less oxidative stress. Together, our findings highlight that simvastatin substantially improves the overall health and function of dystrophic skeletal muscles and may provide an unexpected, novel therapy for DMD and related neuromuscular diseases.

  1. Characterization and Functional Analysis of Extracellular Vesicles and Muscle-Abundant miRNAs (miR-1, miR-133a, and miR-206 in C2C12 Myocytes and mdx Mice.

    Directory of Open Access Journals (Sweden)

    Yasunari Matsuzaka

    Full Text Available Duchenne muscular dystrophy (DMD is a progressive neuromuscular disorder. Here, we show that the CD63 antigen, which is located on the surface of extracellular vesicles (EVs, is associated with increased levels of muscle-abundant miRNAs, namely myomiRs miR-1, miR-133a, and miR-206, in the sera of DMD patients and mdx mice. Furthermore, the release of EVs from the murine myoblast C2C12 cell line was found to be modulated by intracellular ceramide levels in a Ca2+-dependent manner. Next, to investigate the effects of EVs on cell survival, C2C12 myoblasts and myotubes were cultured with EVs from the sera of mdx mice or C2C12 cells overexpressing myomiRs in presence of cellular stresses. Both the exposure of C2C12 myoblasts and myotubes to EVs from the serum of mdx mice, and the overexpression of miR-133a in C2C12 cells in presence of cellular stress resulted in a significant decrease in cell death. Finally, to assess whether miRNAs regulate skeletal muscle regeneration in vivo, we intraperitoneally injected GW4869 (an inhibitor of exosome secretion into mdx mice for 5 and 10 days. Levels of miRNAs and creatine kinase in the serum of GW4869-treated mdx mice were significantly downregulated compared with those of controls. The tibialis anterior muscles of the GW4869-treated mdx mice showed a robust decrease in Evans blue dye uptake. Collectively, these results indicate that EVs and myomiRs might protect the skeletal muscle of mdx mice from degeneration.

  2. Myostatin genetic inactivation inhibits myogenesis by muscle-derived stem cells in vitro but not when implanted in the mdx mouse muscle

    Science.gov (United States)

    2013-01-01

    Introduction Stimulating the commitment of implanted dystrophin+ muscle-derived stem cells (MDSCs) into myogenic, as opposed to lipofibrogenic lineages, is a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). Methods To examine whether counteracting myostatin, a negative regulator of muscle mass and a pro-lipofibrotic factor, would help this process, we compared the in vitro myogenic and fibrogenic capacity of MDSCs from wild-type (WT) and myostatin knockout (Mst KO) mice under various modulators, the expression of key stem cell and myogenic genes, and the capacity of these MDSCs to repair the injured gastrocnemius in aged dystrophic mdx mice with exacerbated lipofibrosis. Results Surprisingly, the potent in vitro myotube formation by WT MDSCs was refractory to modulators of myostatin expression or activity, and the Mst KO MDSCs failed to form myotubes under various conditions, despite both MDSC expressing Oct 4 and various stem cell genes and differentiating into nonmyogenic lineages. The genetic inactivation of myostatin in MDSCs was associated with silencing of critical genes for early myogenesis (Actc1, Acta1, and MyoD). WT MDSCs implanted into the injured gastrocnemius of aged mdx mice significantly improved myofiber repair and reduced fat deposition and, to a lesser extent, fibrosis. In contrast to their in vitro behavior, Mst KO MDSCs in vivo also significantly improved myofiber repair, but had few effects on lipofibrotic degeneration. Conclusions Although WT MDSCs are very myogenic in culture and stimulate muscle repair after injury in the aged mdx mouse, myostatin genetic inactivation blocks myotube formation in vitro, but the myogenic capacity is recovered in vivo under the influence of the myostatin+ host-tissue environment, presumably by reactivation of key genes originally silenced in the Mst KO MDSCs. PMID:23295128

  3. Generation of skeletal muscle from transplanted embryonic stem cells in dystrophic mice

    International Nuclear Information System (INIS)

    Bhagavati, Satyakam; Xu Weimin

    2005-01-01

    Embryonic stem (ES) cells have great therapeutic potential because of their capacity to proliferate extensively and to form any fully differentiated cell of the body, including skeletal muscle cells. Successful generation of skeletal muscle in vivo, however, requires selective induction of the skeletal muscle lineage in cultures of ES cells and following transplantation, integration of appropriately differentiated skeletal muscle cells with recipient muscle. Duchenne muscular dystrophy (DMD), a severe progressive muscle wasting disease due to a mutation in the dystrophin gene and the mdx mouse, an animal model for DMD, are characterized by the absence of the muscle membrane associated protein, dystrophin. Here, we show that co-culturing mouse ES cells with a preparation from mouse muscle enriched for myogenic stem and precursor cells, followed by injection into mdx mice, results occasionally in the formation of normal, vascularized skeletal muscle derived from the transplanted ES cells. Study of this phenomenon should provide valuable insights into skeletal muscle development in vivo from transplanted ES cells

  4. Grafting of a Single Donor Myofibre Promotes Hypertrophy in Dystrophic Mouse Muscle

    Science.gov (United States)

    Boldrin, Luisa; Morgan, Jennifer E.

    2013-01-01

    Skeletal muscle has a remarkable capability of regeneration following injury. Satellite cells, the principal muscle stem cells, are responsible for this process. However, this regenerative capacity is reduced in muscular dystrophies or in old age: in both these situations, there is a net loss of muscle fibres. Promoting skeletal muscle muscle hypertrophy could therefore have potential applications for treating muscular dystrophies or sarcopenia. Here, we observed that muscles of dystrophic mdx nude host mice that had been acutely injured by myotoxin and grafted with a single myofibre derived from a normal donor mouse exhibited increased muscle area. Transplantation experiments revealed that the hypertrophic effect is mediated by the grafted fibre and does not require either an imposed injury to the host muscle, or the contribution of donor cells to the host muscle. These results suggest the presence of a crucial cross-talk between the donor fibre and the host muscle environment. PMID:23349935

  5. Neopterin/7,8-dihydroneopterin is elevated in Duchenne muscular dystrophy patients and protects mdx skeletal muscle function.

    Science.gov (United States)

    Lindsay, Angus; Schmiechen, Alexandra; Chamberlain, Christopher M; Ervasti, James M; Lowe, Dawn A

    2018-05-23

    Macrophage infiltration is a hallmark of dystrophin-deficient muscle. We tested the hypothesis that Duchenne muscular dystrophy (DMD) patients would have elevated levels of the macrophage synthesized pterins, neopterin and 7,8-dihydroneopterin compared to unaffected age-matched controls. Urinary neopterin/creatinine and 7,8-dihydroneopterin/creatinine were elevated in DMD patients and 7,8-dihydroneopterin/creatinine was associated with patient age and ambulation. 7,8-dihydroneopterin correction with specific gravity was also elevated in DMD patients. Because 7,8-dihydroneopterin is an antioxidant, we then identified a potential role for 7,8-dihydroneopterin in disease pathology. We assessed whether 7,8-dihydroneopterin could 1) protect against isometric force loss in wildtype skeletal muscle exposed to various pro-oxidants, and 2) protect wildtype and mdx muscle from eccentric contraction-induced force drop which has an oxidative component. Force drop was elicited in isolated Extensor Digitorum Longus (EDL) muscles by 10 eccentric contractions and recovery of force following the contractions was measured in the presence of exogenous 7,8-dihydroneopterin. 7,8-dihydroneopterin attenuated isometric force loss by wildtype EDL muscles when challenged by H 2 O 2 and HOCl, but exacerbated force loss when challenged by SIN-1 (NO · , O 2 · , ONOO - ). 7,8-dihydroneopterin attenuated eccentric contraction-induced force drop in mdx muscle. Isometric force by EDL muscles of mdx mice also recovered to a greater degree following eccentric contractions in the presence of 7,8-dihydroneopterin. The results corroborate macrophage activation in DMD patients, provide a potential protective role for 7,8-dihydroneopterin in the susceptibility of dystrophic muscle to eccentric contractions and indicate oxidative stress contributes to eccentric contraction-induced force drop in mdx skeletal muscle. This article is protected by copyright. All rights reserved. This article is protected by

  6. Increased plasma lipid levels exacerbate muscle pathology in the mdx mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Milad, Nadia; White, Zoe; Tehrani, Arash Y; Sellers, Stephanie; Rossi, Fabio M V; Bernatchez, Pascal

    2017-09-12

    Duchenne muscular dystrophy (DMD) is caused by loss of dystrophin expression and leads to severe ambulatory and cardiac function decline. However, the dystrophin-deficient mdx murine model of DMD only develops a very mild form of the disease. Our group and others have shown vascular abnormalities in animal models of MD, a likely consequence of the fact that blood vessels express the same dystrophin-associated glycoprotein complex (DGC) proteins as skeletal muscles. To test the blood vessel contribution to muscle damage in DMD, mdx 4cv mice were given elevated lipid levels via apolipoprotein E (ApoE) gene knockout combined with normal chow or lipid-rich Western diets. Ambulatory function and heart function (via echocardiogram) were assessed at 4 and 7 months of age. After sacrifice, muscle histology and aortic staining were used to assess muscle pathology and atherosclerosis development, respectively. Plasma levels of total cholesterol, high-density lipoprotein (HDL), triglycerides, and creatine kinase (CK) were also measured. Although there was an increase in left ventricular heart volume in mdx-ApoE mice compared to that in mdx mice, parameters of heart function were not affected. Compared with wild-type and ApoE-null, only mdx-ApoE KO mice showed significant ambulatory dysfunction. Despite no significant difference in plasma CK, histological analyses revealed that elevated plasma lipids in chow- and Western diet-fed mdx-ApoE mice was associated with severe exacerbation of muscle pathology compared to mdx mice: significant increase in myofiber damage and fibrofatty replacement in the gastrocnemius and triceps brachii muscles, more reminiscent of human DMD pathology. Finally, although both ApoE and mdx-ApoE groups displayed increased plasma lipids, mdx-ApoE exhibited atherosclerotic plaque deposition equal to or less than that of ApoE mice. Since others have shown that lipid abnormalities correlate with DMD severity, our data suggest that plasma lipids could be

  7. Distal mdx muscle groups exhibiting up-regulation of utrophin and rescue of dystrophin-associated glycoproteins exemplify a protected phenotype in muscular dystrophy

    Science.gov (United States)

    Dowling, Paul; Culligan, Kevin; Ohlendieck, Kay

    2002-02-01

    Unique unaffected skeletal muscle fibres, unlike necrotic torso and limb muscles, may pave the way for a more detailed understanding of the molecular pathogenesis of inherited neuromuscular disorders and help to develop new treatment strategies for muscular dystrophies. The sparing of extraocular muscle in Duchenne muscular dystrophy is mostly attributed to the special protective properties of extremely fast-twitching small-diameter fibres, but here we show that distal muscles also represent a particular phenotype that is more resistant to necrosis. Immunoblot analysis of membranes isolated from the well established dystrophic animal model mdx shows that, in contrast to dystrophic limb muscles, the toe musculature exhibits an up-regulation of the autosomal dystrophin homologue utrophin and a concomitant rescue of dystrophin-associated glycoproteins. Thus distal mdx muscle groups provide a cellular system that naturally avoids myofibre degeneration which might be useful in the search for naturally occurring compensatory mechanisms in inherited skeletal muscle diseases.

  8. Ventilatory chemosensory drive is blunted in the mdx mouse model of Duchenne Muscular Dystrophy (DMD.

    Directory of Open Access Journals (Sweden)

    Matias Mosqueira

    Full Text Available Duchenne Muscular Dystrophy (DMD is caused by mutations in the DMD gene resulting in an absence of dystrophin in neurons and muscle. Respiratory failure is the most common cause of mortality and previous studies have largely concentrated on diaphragmatic muscle necrosis and respiratory failure component. Here, we investigated the integrity of respiratory control mechanisms in the mdx mouse model of DMD. Whole body plethysmograph in parallel with phrenic nerve activity recordings revealed a lower respiratory rate and minute ventilation during normoxia and a blunting of the hypoxic ventilatory reflex in response to mild levels of hypoxia together with a poor performance on a hypoxic stress test in mdx mice. Arterial blood gas analysis revealed low PaO2 and pH and high PaCO2 in mdx mice. To investigate chemosensory respiratory drive, we analyzed the carotid body by molecular and functional means. Dystrophin mRNA and protein was expressed in normal mice carotid bodies however, they are absent in mdx mice. Functional analysis revealed abnormalities in Dejours test and the early component of the hypercapnic ventilatory reflex in mdx mice. Together, these results demonstrate a malfunction in the peripheral chemosensory drive that would be predicted to contribute to the respiratory failure in mdx mice. These data suggest that investigating and monitoring peripheral chemosensory drive function may be useful for improving the management of DMD patients with respiratory failure.

  9. Mechanisms Inducing Low Bone Density in Duchenne Muscular Dystrophy in Mice and Humans

    Science.gov (United States)

    Rufo, Anna; Del Fattore, Andrea; Capulli, Mattia; Carvello, Francesco; De Pasquale, Loredana; Ferrari, Serge; Pierroz, Dominique; Morandi, Lucia; De Simone, Michele; Rucci, Nadia; Bertini, Enrico; Bianchi, Maria Luisa; De Benedetti, Fabrizio; Teti, Anna

    2011-01-01

    Patients affected by Duchenne muscular dystrophy (DMD) and dystrophic MDX mice were investigated in this study for their bone phenotype and systemic regulators of bone turnover. Micro–computed tomographic (µCT) and histomorphometric analyses showed reduced bone mass and higher osteoclast and bone resorption parameters in MDX mice compared with wild-type mice, whereas osteoblast parameters and mineral apposition rate were lower. In a panel of circulating pro-osteoclastogenic cytokines evaluated in the MDX sera, interleukin 6 (IL-6) was increased compared with wild-type mice. Likewise, DMD patients showed low bone mineral density (BMD) Z-scores and high bone-resorption marker and serum IL-6. Human primary osteoblasts from healthy donors incubated with 10% sera from DMD patients showed decreased nodule mineralization. Many osteogenic genes were downregulated in these cultures, including osterix and osteocalcin, by a mechanism blunted by an IL-6-neutralizing antibody. In contrast, the mRNAs of osteoclastogenic cytokines IL6, IL11, inhibin-βA, and TGFβ2 were increased, although only IL-6 was found to be high in the circulation. Consistently, enhancement of osteoclastogenesis was noted in cultures of circulating mononuclear precursors from DMD patients or from healthy donors cultured in the presence of DMD sera or IL-6. Circulating IL-6 also played a dominant role in osteoclast formation because ex vivo wild-type calvarial bones cultured with 10% sera of MDX mice showed increase osteoclast and bone-resorption parameters that were dampen by treatment with an IL-6 antibody. These results point to IL-6 as an important mediator of bone loss in DMD and suggest that targeted anti-IL-6 therapy may have a positive impact on the bone phenotype in these patients. © 2011 American Society for Bone and Mineral Research PMID:21509823

  10. Amitriptyline is efficacious in ameliorating muscle inflammation and depressive symptoms in the mdx mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Manning, Jennifer; Kulbida, Rebecca; Rai, Prerana; Jensen, Lindsay; Bouma, Judith; Singh, Sanjay P; O'Malley, Dervla; Yilmazer-Hanke, Deniz

    2014-10-01

    Mutations in the structural protein dystrophin underlie muscular dystrophies characterized by progressive deterioration of muscle function. Dystrophin-deficient mdx mice are considered a model for Duchenne muscular dystrophy (DMD). Individuals with DMD are also susceptible to mood disorders, such as depression and anxiety. Therefore, the study objectives were to investigate the effects of the tricyclic antidepressant amitriptyline on mood, learning, central cytokine expression and skeletal muscle inflammation in mdx mice. Amitriptyline-induced effects (10 mg kg(-1) daily s.c. injections, 25 days) on the behaviour of mdx mice were investigated using the open field arena and tail suspension tests. The effects of chronic amitriptyline treatment on inflammatory markers were studied in the muscle and plasma of mdx mice, and mood-associated monoamine and cytokine concentrations were measured in the amygdala, hippocampus, prefrontal cortex, striatum, hypothalamus and midbrain. The mdx mice exhibited increased levels of anxiety and depressive-like behaviour compared with wild-type mice. Amitriptyline treatment had anxiolytic and antidepressant effects in mdx mice associated with elevations in serotonin levels in the amygdala and hippocampus. Inflammation in mdx skeletal muscle tissue was also reduced following amitriptyline treatment as indicated by decreased immune cell infiltration of muscle and lower levels of the pro-inflammatory cytokines tumour necrosis factor-α and interleukin-6 in the forelimb flexors. Interleukin-6 mRNA expression was remarkably reduced in the amygdala of mdx mice by chronic amitriptyline treatment. Positive effects of amitriptyline on mood, in addition to its anti-inflammatory effects in skeletal muscle, may make it an attractive therapeutic option for individuals with DMD. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  11. Revertant fibers in the mdx murine model of Duchenne muscular dystrophy: an age- and muscle-related reappraisal.

    Directory of Open Access Journals (Sweden)

    Sarah R Pigozzo

    Full Text Available Muscles in Duchenne dystrophy patients are characterized by the absence of dystrophin, yet transverse sections show a small percentage of fibers (termed "revertant fibers" positive for dystrophin expression. This phenomenon, whose biological bases have not been fully elucidated, is present also in the murine and canine models of DMD and can confound the evaluation of therapeutic approaches. We analyzed 11 different muscles in a cohort of 40 mdx mice, the most commonly model used in pre-clinical studies, belonging to four age groups; such number of animals allowed us to perform solid ANOVA statistical analysis. We assessed the average number of dystrophin-positive fibers, both absolute and normalized for muscle size, and the correlation between their formation and the ageing process. Our results indicate that various muscles develop different numbers of revertant fibers, with different time trends; besides, they suggest that the biological mechanism(s behind dystrophin re-expression might not be limited to the early development phases but could actually continue during adulthood. Importantly, such finding was seen also in cardiac muscle, a fact that does not fit into the current hypothesis of the clonal origin of "revertant" myonuclei from satellite cells. This work represents the largest, statistically significant analysis of revertant fibers in mdx mice so far, which can now be used as a reference point for improving the evaluation of therapeutic approaches for DMD. At the same time, it provides new clues about the formation of revertant fibers/cardiomyocytes in dystrophic skeletal and cardiac muscle.

  12. Evaluation of the behavioral characteristics of the mdx mouse model of duchenne muscular dystrophy through operant conditioning procedures.

    Science.gov (United States)

    Lewon, Matthew; Peters, Christina M; Van Ry, Pam M; Burkin, Dean J; Hunter, Kenneth W; Hayes, Linda J

    2017-09-01

    The mdx mouse is an important nonhuman model for Duchenne muscular dystrophy (DMD) research. Characterizing the behavioral traits of the strain relative to congenic wild-type (WT) mice may enhance our understanding of the cognitive deficits observed in some humans with DMD and contribute to treatment development and evaluation. In this paper we report the results of a number of experiments comparing the behavior of mdx to WT mice in operant conditioning procedures designed to assess learning and memory. We found that mdx outperformed WT in all learning and memory tasks involving food reinforcement, and this appeared to be related to the differential effects of the food deprivation motivating operation on mdx mice. Conversely, WT outperformed mdx in an escape/avoidance learning task. These results suggest motivational differences between the strains and demonstrate the potential utility of operant conditioning procedures in the assessment of the behavioral characteristics of the mdx mouse. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Abnormal GABAA-mediated metabolic response in the MDX mouse - an explanation for the mental deficit in Duchenne muscular dystrophy?

    International Nuclear Information System (INIS)

    Rae, C.; Bubb, W.A.; Maitland, A.; Head, S.I.

    2001-01-01

    Full text: Duchenne muscular dystrophy is an X-linked disorder associated with lack of the 728 kDa protein dystrophin. In addition to the well-known muscle wasting, sufferers also experience a 15 point downshift in IQ. Recently reduced clustering of GABA A receptors in cerebellar Purkinje and hippocampal CA1 neurons has been shown in the murine homologue of DMD, the mdx mouse. In this work, the functional efficacy of GABA A receptors in mdx mice (C57B1/10Sc-Sn-mdx) and control was tested by examining the metabolism of [1- 13 C]D-glucose under both normoxic and hypoxic conditions and also by examining the metabolic response to the GABA A agonist muscimol (5-aminomethyl-3-hydroxyisoxazole). Although total measured [ 13 C] was identical in mdx cf. control mice, the fractional enrichment of all metabolites was increased in mdx mice, suggesting decreased inhibitory input in these animals. Further, although flux into metabolites from [1- 13 C]D-glucose decreased as expected in control mice in the presence of muscimol, the GABA a agonist had weaker effect in mdx mice, consistent with weaker GABA A activation. Finally, the response of mdx mouse brain tissue slices to mild hypoxia (partially mediated by GABA A ) was altered cf. control mice, with increased production of lactate and decreased flux into Krebs cycle intermediates. These data are consistent with a functional lesion of a subset of GABA A receptors in DMD

  14. Functional rescue of dystrophin-deficient mdx mice by a chimeric peptide-PMO.

    Science.gov (United States)

    Yin, Haifang; Moulton, Hong M; Betts, Corinne; Merritt, Thomas; Seow, Yiqi; Ashraf, Shirin; Wang, Qingsong; Boutilier, Jordan; Wood, Matthew Ja

    2010-10-01

    Splice modulation using antisense oligonucleotides (AOs) has been shown to yield targeted exon exclusion to restore the open reading frame and generate truncated but partially functional dystrophin protein. This has been successfully demonstrated in dystrophin-deficient mdx mice and in Duchenne muscular dystrophy (DMD) patients. However, DMD is a systemic disease; successful therapeutic exploitation of this approach will therefore depend on effective systemic delivery of AOs to all affected tissues. We have previously shown the potential of a muscle-specific/arginine-rich chimeric peptide-phosphorodiamidate morpholino (PMO) conjugate, but its long-term activity, optimized dosing regimen, capacity for functional correction and safety profile remain to be established. Here, we report the results of this chimeric peptide-PMO conjugate in the mdx mouse using low doses (3 and 6 mg/kg) administered via a 6 biweekly systemic intravenous injection protocol. We show 100% dystrophin-positive fibers and near complete correction of the dystrophin transcript defect in all peripheral muscle groups, with restoration of 50% dystrophin protein over 12 weeks, leading to correction of the DMD pathological phenotype and restoration of muscle function in the absence of detectable toxicity or immune response. Chimeric muscle-specific/cell-penetrating peptides therefore represent highly promising agents for systemic delivery of splice-correcting PMO oligomers for DMD therapy.

  15. Macrophages and mast cells in dystrophic masseter muscle: a light and electron microscopic study

    DEFF Research Database (Denmark)

    Kirkeby, S; Mikkelsen, H

    1988-01-01

    Macrophages and mast cells in masseter muscle from normal and dystrophic mice were studied by light and electron microscopy. Acid phosphatase activity and FITC-dextran were used to identify and describe macrophages. Toluidine blue was used as a marker for mast cells. In dystrophic muscle, the num......Macrophages and mast cells in masseter muscle from normal and dystrophic mice were studied by light and electron microscopy. Acid phosphatase activity and FITC-dextran were used to identify and describe macrophages. Toluidine blue was used as a marker for mast cells. In dystrophic muscle...

  16. IL-6 signaling blockade increases inflammation but does not affect muscle function in the mdx mouse

    Directory of Open Access Journals (Sweden)

    Kostek Matthew C

    2012-06-01

    Full Text Available Abstract Background IL-6 is a pleiotropic cytokine that modulates inflammatory responses and plays critical roles in muscle maintenance and remodeling. In the mouse model (mdx of Duchenne Muscular Dystrophy, IL-6 and muscle inflammation are elevated, which is believed to contribute to the chronic inflammation and failure of muscle regeneration in DMD. The purpose of the current study was to examine the effect of blocking IL-6 signaling on the muscle phenotype including muscle weakness and pathology in the mdx mouse. Methods A monoclonal antibody against the IL-6 receptor (IL-6r mAb that blocks local and systemic IL-6 signaling was administered to mdx and BL-10 mice for 5 weeks and muscle function, histology, and inflammation were examined. Results IL-6r mAb treatment increased mdx muscle inflammation including total inflammation score and ICAM-1 positive lumens in muscles. There was no significant improvement in muscle strength nor muscle pathology due to IL-6r mAb treatment in mdx mice. Conclusions These results showed that instead of reducing inflammation, IL-6 signaling blockade for 5 weeks caused an increase in muscle inflammation, with no significant change in indices related to muscle regeneration and muscle function. The results suggest a potential anti-inflammatory instead of the original hypothesized pro-inflammatory role of IL-6 signaling in the mdx mice.

  17. High levels of sarcospan are well tolerated and act as a sarcolemmal stabilizer to address skeletal muscle and pulmonary dysfunction in DMD

    Science.gov (United States)

    Gibbs, Elizabeth M.; Marshall, Jamie L.; Ma, Eva; Nguyen, Thien M.; Hong, Grace; Lam, Jessica S.; Spencer, Melissa J.

    2016-01-01

    Abstract Duchenne muscular dystrophy (DMD) is a genetic disorder that causes progressive muscle weakness, ultimately leading to early mortality in affected teenagers and young adults. Previous work from our lab has shown that a small transmembrane protein called sarcospan (SSPN) can enhance the recruitment of adhesion complex proteins to the cell surface. When human SSPN is expressed at three-fold levels in mdx mice, this increase in adhesion complex abundance improves muscle membrane stability, preventing many of the histopathological changes associated with DMD. However, expressing higher levels of human SSPN (ten-fold transgenic expression) causes a severe degenerative muscle phenotype in wild-type mice. Since SSPN-mediated stabilization of the sarcolemma represents a promising therapeutic strategy in DMD, it is important to determine whether SSPN can be introduced at high levels without toxicity. Here, we show that mouse SSPN (mSSPN) can be overexpressed at 30-fold levels in wild-type mice with no deleterious effects. In mdx mice, mSSPN overexpression improves dystrophic pathology and sarcolemmal stability. We show that these mice exhibit increased resistance to eccentric contraction-induced damage and reduced fatigue following exercise. mSSPN overexpression improved pulmonary function and reduced dystrophic histopathology in the diaphragm. Together, these results demonstrate that SSPN overexpression is well tolerated in mdx mice and improves sarcolemma defects that underlie skeletal muscle and pulmonary dysfunction in DMD. PMID:27798107

  18. Skeletal muscle fibrosis in the mdx/utrn+/- mouse validates its suitability as a murine model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Gutpell, Kelly M; Hrinivich, William T; Hoffman, Lisa M

    2015-01-01

    Various therapeutic approaches have been studied for the treatment of Duchenne muscular dystrophy (DMD), but none of these approaches have led to significant long-term effects in patients. One reason for this observed inefficacy may be the use of inappropriate animal models for the testing of therapeutic agents. The mdx mouse is the most widely used murine model of DMD, yet it does not model the fibrotic progression observed in patients. Other murine models of DMD are available that lack one or both alleles of utrophin, a functional analog of dystrophin. The aim of this study was to compare fibrosis and myofiber damage in the mdx, mdx/utrn+/- and double knockout (dko) mouse models. We used Masson's trichrome stain and percentage of centrally-nucleated myofibers as indicators of fibrosis and myofiber regeneration, respectively, to assess disease progression in diaphragm and gastrocnemius muscles harvested from young and aged wild-type, mdx, mdx/utrn+/- and dko mice. Our results indicated that eight week-old gastrocnemius muscles of both mdx/utrn+/- and dko hind limb developed fibrosis whereas age-matched mdx gastrocnemius muscle did not (p = 0.002). The amount of collagen found in the mdx/utrn+/- diaphragm was significantly higher than that found in the corresponding diaphragm muscles of wild-type animals, but not of mdx animals (p = 0.0003). Aged mdx/utrn+/- mice developed fibrosis in both diaphragm and gastrocnemius muscles compared to wild-type controls (p = 0.003). Mdx diaphragm was fibrotic in aged mice as well (p = 0.0235), whereas the gastrocnemius muscle in these animals was not fibrotic. We did not measure a significant difference in collagen staining between wild-type and mdx gastrocnemius muscles. The results of this study support previous reports that the moderately-affected mdx/utrn+/- mouse is a better model of DMD, and we show here that this difference is apparent by 2 months of age.

  19. Restoration of pharyngeal dilator muscle force in dystrophin-deficient (mdx) mice following co-treatment with neutralizing interleukin-6 receptor antibodies and urocortin 2.

    Science.gov (United States)

    Burns, David P; Rowland, Jane; Canavan, Leonie; Murphy, Kevin H; Brannock, Molly; O'Malley, Dervla; O'Halloran, Ken D; Edge, Deirdre

    2017-09-01

    What is the central question of this study? We previously reported impaired upper airway dilator muscle function in the mdx mouse model of Duchenne muscular dystrophy (DMD). Our aim was to assess the effect of blocking interleukin-6 receptor signalling and stimulating corticotrophin-releasing factor receptor 2 signalling on mdx sternohyoid muscle structure and function. What is the main finding and its importance? The interventional treatment had a positive inotropic effect on sternohyoid muscle force, restoring mechanical work and power to wild-type values, reduced myofibre central nucleation and preserved the myosin heavy chain type IIb fibre complement of mdx sternohyoid muscle. These data might have implications for development of pharmacotherapies for DMD with relevance to respiratory muscle performance. The mdx mouse model of Duchenne muscular dystrophy shows evidence of impaired pharyngeal dilator muscle function. We hypothesized that inflammatory and stress-related factors are implicated in airway dilator muscle dysfunction. Six-week-old mdx (n = 26) and wild-type (WT; n = 26) mice received either saline (0.9% w/v) or a co-administration of neutralizing interleukin-6 receptor antibodies (0.2 mg kg -1 ) and corticotrophin-releasing factor receptor 2 agonist (urocortin 2; 30 μg kg -1 ) over 2 weeks. Sternohyoid muscle isometric and isotonic contractile function was examined ex vivo. Muscle fibre centronucleation and muscle cellular infiltration, collagen content, fibre-type distribution and fibre cross-sectional area were determined by histology and immunofluorescence. Muscle chemokine content was examined by use of a multiplex assay. Sternohyoid peak specific force at 100 Hz was significantly reduced in mdx compared with WT. Drug treatment completely restored force in mdx sternohyoid to WT levels. The percentage of centrally nucleated muscle fibres was significantly increased in mdx, and this was partly ameliorated after drug treatment. The areal

  20. Protein-Anchoring Therapy of Biglycan for Mdx Mouse Model of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Ito, Mikako; Ehara, Yuka; Li, Jin; Inada, Kosuke; Ohno, Kinji

    2017-05-01

    Duchenne muscular dystrophy (DMD) is a devastating muscle disease caused by loss-of-function mutations in DMD encoding dystrophin. No rational therapy is currently available. Utrophin is a paralog of dystrophin and is highly expressed at the neuromuscular junction. In mdx mice, utrophin is naturally upregulated throughout the muscle fibers, which mitigates muscular dystrophy. Protein-anchoring therapy was previously reported, in which a recombinant extracellular matrix (ECM) protein is delivered to and anchored to a specific target using its proprietary binding domains. Being prompted by a report that intramuscular and intraperitoneal injection of an ECM protein, biglycan, upregulates expression of utrophin and ameliorates muscle pathology in mdx mice, protein-anchoring therapy was applied to mdx mice. Recombinant adeno-associated virus serotype 8 (rAAV8) carrying hBGN encoding human biglycan was intravenously injected into 5-week-old mdx mice. The rAAV8-hBGN treatment improved motor deficits and decreased plasma creatine kinase activities. In muscle sections of treated mice, the number of central myonuclei and the distribution of myofiber sizes were improved. The treated mice increased gene expressions of utrophin and β1-syntrophin, as well as protein expressions of biglycan, utrophin, γ-sarcoglycan, dystrobrevin, and α1-syntrophin. The expression of hBGN in the skeletal muscle of the treated mice was 1.34-fold higher than that of the native mouse Bgn (mBgn). The low transduction efficiency and improved motor functions suggest that biglycan expressed in a small number of muscle fibers was likely to have been secreted and anchored to the cell surface throughout the whole muscular fibers. It is proposed that the protein-anchoring strategy can be applied not only to deficiency of an ECM protein as previously reported, but also to augmentation of a naturally induced ECM protein.

  1. Cell surface and gene expression regulation molecules in dystrophinopathy: mdx vs. Duchenne

    Directory of Open Access Journals (Sweden)

    RICARDO FADIC

    2005-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is secondary to loss-of-function mutations in the dystrophin gene. The causes underlying the progression of DMD, differential muscle involvement, and the discrepancies in phenotypes among species with the same genetic defect are not understood. The mdx mouse, an animal model with dystrophin mutation, has a milder phenotype. This article reviews the available information on expression of signaling-related molecules in DMD and mdx. Extracellular matrix proteoglycans, growth factors, integrins, caveolin-3, and neuronal nitric oxide synthase expression do not show significant differences. Calcineurin is inconsistently activated in mdx, which is associated with lack of cardiomyopathy, compared to the permanent calcineurin activation in mdx/utrophin null mice that have a DMD-like cardiomyopathy. Levels of focal adhesion kinase (FAK and extracellular regulated kinases (ERKs differ among mdx and DMD. Further work is needed to identify the point of discrepancy in these signaling molecules' pathways in dystrophynopathies.

  2. Persistent Dystrophin Protein Restoration 90 Days after a Course of Intraperitoneally Administered Naked 2′OMePS AON and ZM2 NP-AON Complexes in mdx Mice

    Directory of Open Access Journals (Sweden)

    Elena Bassi

    2012-01-01

    Full Text Available In Duchenne muscular dystrophy, the exon-skipping approach has obtained proof of concept in animal models, myogenic cell cultures, and following local and systemic administration in Duchenne patients. Indeed, we have previously demonstrated that low doses (7.5 mg/Kg/week of 2′-O-methyl-phosphorothioate antisense oligoribonucleotides (AONs adsorbed onto ZM2 nanoparticles provoke widespread dystrophin restoration 7 days after intraperitoneal treatment in mdx mice. In this study, we went on to test whether this dystrophin restoration was still measurable 90 days from the end of the same treatment. Interestingly, we found that both western blot and immunohistochemical analysis (up to 7% positive fibres were still able to detect dystrophin protein in the skeletal muscles of ZM2-AON-treated mice at this time, and the level of exon-23 skipping could still be assessed by RT real-time PCR (up to 10% of skipping percentage. In contrast, the protein was undetectable by western blot analysis in the skeletal muscles of mdx mice treated with an identical dose of naked AON, and the percentage of dystrophin-positive fibres and exon-23 skipping were reminiscent of those of untreated mdx mice. Our data therefore demonstrate the long-term residual efficacy of this systemic low-dose treatment and confirm the protective effect nanoparticles exert on AON molecules.

  3. Superpulsed low-level laser therapy protects skeletal muscle of mdx mice against damage, inflammation and morphological changes delaying dystrophy progression.

    Science.gov (United States)

    Leal-Junior, Ernesto Cesar Pinto; de Almeida, Patrícia; Tomazoni, Shaiane Silva; de Carvalho, Paulo de Tarso Camillo; Lopes-Martins, Rodrigo Álvaro Brandão; Frigo, Lucio; Joensen, Jon; Johnson, Mark I; Bjordal, Jan Magnus

    2014-01-01

    To evaluate the effects of preventive treatment with low-level laser therapy (LLLT) on progression of dystrophy in mdx mice. Ten animals were randomly divided into 2 experimental groups treated with superpulsed LLLT (904 nm, 15 mW, 700 Hz, 1 J) or placebo-LLLT at one point overlying the tibialis anterior muscle (bilaterally) 5 times per week for 14 weeks (from 6th to 20th week of age). Morphological changes, creatine kinase (CK) activity and mRNA gene expression were assessed in animals at 20th week of age. Animals treated with LLLT showed very few morphological changes in skeletal muscle, with less atrophy and fibrosis than animals treated with placebo-LLLT. CK was significantly lower (p=0.0203) in animals treated with LLLT (864.70 U.l-1, SEM 226.10) than placebo (1708.00 U.l-1, SEM 184.60). mRNA gene expression of inflammatory markers was significantly decreased by treatment with LLLT (pmuscle damage and inflammation in mdx mice. This indicates that LLLT has potential to decrease progression of Duchenne muscular dystrophy.

  4. Transgenic overexpression of ADAM12 suppresses muscle regeneration and aggravates dystrophy in aged mdx mice

    DEFF Research Database (Denmark)

    Jørgensen, Louise Helskov; Jensen, Charlotte Harken; Wewer, Ulla M

    2007-01-01

    mice (ADAM12(+)) after a knife cut lesion and observed that the regeneration process was significantly impaired. ADAM12 seemed to inhibit the satellite cell response and delay myoblast differentiation. These results discourage long-term therapeutic use of ADAM12. They also point to impaired...... effect of ADAM12 was suggested to be mediated via a membrane-stabilizing up-regulation of utrophin, alpha7B integrin, and dystroglycans. Ectopic ADAM12 expression in normal mouse skeletal muscle also improved regeneration after freeze injury, presumably by the same mechanism. Hence, it was suggested...... overexpressing ADAM12 (ADAM12(+)/mdx mice), even though their utrophin levels were mildly elevated compared with age-matched controls. Thus, membrane stabilization was not sufficient to provide protection during prolonged disease. Consequently, we reinvestigated skeletal muscle regeneration in ADAM12 transgenic...

  5. Major alteration of the pathological phenotype in gamma irradiated mdx soleus muscles

    Energy Technology Data Exchange (ETDEWEB)

    Weller, B.; Karpati, G.; Lehnert, S.; Carpenter, S. (Montreal Neurological Institute, McGill University, Quebec (Canada))

    1991-07-01

    Two thousand rads of gamma irradiation delivered to the lower legs of ten day old normal and x-chromosome linked muscular dystrophy (mdx) mice caused significant inhibition of tibial bone and soleus muscle fiber growth. In the irradiated mdx solei, there was a major loss of muscle fibers, lack of central nucleation, and some endomysial fibrosis. These features were caused by a failure of regeneration of muscle fibers due to impaired proliferative capacity of satellite cells. Gamma irradiation transforms the late pathological phenotype of mdx muscles, so that in one major aspect (muscle fiber loss) they resemble muscles in Duchenne muscular dystrophy. However, extensive endomysial fibrosis which is another characteristic feature of Duchenne muscular dystrophy did not develop. This experimental model could be useful for the functional investigation of possible beneficial effects of therapeutic interventions in mdx dystrophy.

  6. Major alteration of the pathological phenotype in gamma irradiated mdx soleus muscles

    International Nuclear Information System (INIS)

    Weller, B.; Karpati, G.; Lehnert, S.; Carpenter, S.

    1991-01-01

    Two thousand rads of gamma irradiation delivered to the lower legs of ten day old normal and x-chromosome linked muscular dystrophy (mdx) mice caused significant inhibition of tibial bone and soleus muscle fiber growth. In the irradiated mdx solei, there was a major loss of muscle fibers, lack of central nucleation, and some endomysial fibrosis. These features were caused by a failure of regeneration of muscle fibers due to impaired proliferative capacity of satellite cells. Gamma irradiation transforms the late pathological phenotype of mdx muscles, so that in one major aspect (muscle fiber loss) they resemble muscles in Duchenne muscular dystrophy. However, extensive endomysial fibrosis which is another characteristic feature of Duchenne muscular dystrophy did not develop. This experimental model could be useful for the functional investigation of possible beneficial effects of therapeutic interventions in mdx dystrophy

  7. Phosphodiesterase 4 inhibitor and phosphodiesterase 5 inhibitor combination therapy has antifibrotic and anti-inflammatory effects in mdx mice with Duchenne muscular dystrophy.

    Science.gov (United States)

    Nio, Yasunori; Tanaka, Masayuki; Hirozane, Yoshihiko; Muraki, Yo; Okawara, Mitsugi; Hazama, Masatoshi; Matsuo, Takanori

    2017-12-01

    Duchenne muscular dystrophy (DMD) is the most common inherited muscular dystrophy. Patients experience DMD in their 20s from cardiac or respiratory failure related to progressive muscle wasting. Currently, the only treatments for the symptoms of DMD are available. Muscle fibrosis, a DMD feature, leads to reduced muscle function and muscle mass, and hampers pharmaceutical therapeutic efficacy. Although antifibrotic agents may be useful, none is currently approved. Phosphodiesterase 4 (PDE4) inhibitors have exhibited antifibrotic effects in human and animal models. In this study, we showed beneficial effects of the PDE4 inhibitor piclamilast in the DMD mdx mouse. Piclamilast reduced the mRNA level of profibrotic genes, including collagen 1A1, in the gastrocnemius and diaphragm, in the mdx mouse, and significantly reduced the Sirius red staining area. The PDE5 inhibitors sildenafil and tadalafil ameliorated functional muscle ischemia in boys with DMD, and sildenafil reversed cardiac dysfunction in the mdx mouse. Single-treatment piclamilast or sildenafil showed similar antifibrotic effects on the gastrocnemius; combination therapy showed a potent antifibrotic effect, and piclamilast and combination therapy increased peroxisome proliferator-activated receptor γ coactivator-1α mRNA in mouse gastrocnemius. In summary, we confirmed that piclamilast has significant antifibrotic effects in mdx mouse muscle and is a potential treatment for muscle fibrosis in DMD.-Nio, Y., Tanaka, M., Hirozane, Y., Muraki, Y., Okawara, M., Hazama, M., Matsuo, T. Phosphodiesterase 4 inhibitor and phosphodiesterase 5 inhibitor combination therapy has antifibrotic and anti-inflammatory effects in mdx mice with Duchenne muscular dystrophy. © FASEB.

  8. PKC theta ablation improves healing in a mouse model of muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Luca Madaro

    Full Text Available Inflammation is a key pathological characteristic of dystrophic muscle lesion formation, limiting muscle regeneration and resulting in fibrotic and fatty tissue replacement of muscle, which exacerbates the wasting process in dystrophic muscles. Limiting immune response is thus one of the therapeutic options to improve healing, as well as to improve the efficacy of gene- or cell-mediated strategies to restore dystrophin expression. Protein kinase C θ (PKCθ is a member of the PKCs family highly expressed in both immune cells and skeletal muscle; given its crucial role in adaptive, but also innate, immunity, it is being proposed as a valuable pharmacological target for immune disorders. In our study we asked whether targeting PKCθ could represent a valuable approach to efficiently prevent inflammatory response and disease progression in a mouse model of muscular dystrophy. We generated the bi-genetic mouse model mdx/θ(-/-, where PKCθ expression is lacking in mdx mice, the mouse model of Duchenne muscular dystrophy. We found that muscle wasting in mdx/θ(-/- mice was greatly prevented, while muscle regeneration, maintenance and performance was significantly improved, as compared to mdx mice. This phenotype was associated to reduction in inflammatory infiltrate, pro-inflammatory gene expression and pro-fibrotic markers activity, as compared to mdx mice. Moreover, BM transplantation experiments demonstrated that the phenotype observed was primarily dependent on lack of PKCθ expression in hematopoietic cells.These results demonstrate a hitherto unrecognized role of immune-cell intrinsic PKCθ activity in the development of DMD. Although the immune cell population(s involved remain unidentified, our findings reveal that PKCθ can be proposed as a new pharmacological target to counteract the disease, as well as to improve the efficacy of gene- or cell- therapy approaches.

  9. X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD

    International Nuclear Information System (INIS)

    Wakeford, S.; Watt, D.J.; Partridge, T.A.

    1991-01-01

    The mdx mouse, although a genetic and biochemical homologue of human Duchenne muscular dystrophy (DMD), presents a comparatively mild histopathological and clinical phenotype. These differences are partially attributable to the greater efficacy of regeneration in the mdx mouse than in DMD muscle. To lessen this disparity, we have used a single dose of X-irradiation (16 Gy) to inhibit regeneration in one leg of mdx mice. The result is an almost complete block of muscle fiber regeneration leading to progressive loss of muscle fibers and their replacement by loose connective tissue. Surviving fibers are mainly peripherally nucleated and, surprisingly, of large diameter. Thus, X-irradiation converts mdx muscle to a model system in which the degenerative process can be studied in isolation from the complicating effect of myofiber regeneration. This system should be of use for testing methods of alleviating the myofiber degeneration which is common to mdx and DMD

  10. X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD

    Energy Technology Data Exchange (ETDEWEB)

    Wakeford, S.; Watt, D.J.; Partridge, T.A. (Charing Cross and Westminster Medical School, London (England))

    1991-01-01

    The mdx mouse, although a genetic and biochemical homologue of human Duchenne muscular dystrophy (DMD), presents a comparatively mild histopathological and clinical phenotype. These differences are partially attributable to the greater efficacy of regeneration in the mdx mouse than in DMD muscle. To lessen this disparity, we have used a single dose of X-irradiation (16 Gy) to inhibit regeneration in one leg of mdx mice. The result is an almost complete block of muscle fiber regeneration leading to progressive loss of muscle fibers and their replacement by loose connective tissue. Surviving fibers are mainly peripherally nucleated and, surprisingly, of large diameter. Thus, X-irradiation converts mdx muscle to a model system in which the degenerative process can be studied in isolation from the complicating effect of myofiber regeneration. This system should be of use for testing methods of alleviating the myofiber degeneration which is common to mdx and DMD.

  11. Enhancing Endogenous Nitric Oxide by Whole Body Periodic Acceleration Elicits Neuroprotective Effects in Dystrophic Neurons.

    Science.gov (United States)

    Lopez, Jose R; Uryash, A; Kolster, J; Estève, E; Zhang, R; Adams, J A

    2018-03-26

    We have previously shown that inadequate dystrophin in cortical neurons in mdx mice is associated with age-dependent dyshomeostasis of resting intracellular Ca 2+ ([Ca 2+ ] i ) and Na + ([Na + ] i ), elevated reactive oxygen species (ROS) production, increase in neuronal damage and cognitive deficit. In this study, we assessed the potential therapeutic properties of the whole body periodic acceleration (pGz) to ameliorate the pathology observed in cortical neurons from the mdx mouse. pGz adds small pulses to the circulation, thereby increasing pulsatile shear stress to the vascular endothelium, which in turn increases production of nitric oxide (NO). We found [Ca 2+ ] i and [Na + ] i overload along with reactive oxygen species (ROS) overproduction in mdx neurons and cognitive dysfunction. mdx neurons showed increased activity of superoxide dismutase, glutathione peroxidase, malondialdehyde, and calpain as well as decreased cell viability. mdx neurons were more susceptible to hypoxia-reoxygenation injury than WT. pGz ameliorated the [Ca 2+ ] i , and [Na + ] i elevation and ROS overproduction and further increased the activities of superoxide dismutase, glutathione peroxidase and reduced the malondialdehyde and calpains. pGz diminished cell damage and elevated [Ca 2+ ] i during hypoxia-reoxygenation and improved cognitive function in mdx mice. Moreover, pGz upregulated the expression of utrophin, dystroglycan-β and CAPON, constitutive nitric oxide synthases, prosaposin, brain-derived neurotrophic, and glial cell line-derived neurotrophic factors. The present study demonstrated that pGz is an effective therapeutic approach to improve mdx neurons function, including cognitive functions.

  12. Engraftment potential of dermal fibroblasts following in vivo myogenic conversion in immunocompetent dystrophic skeletal muscle

    Directory of Open Access Journals (Sweden)

    Lindsey A Muir

    2014-01-01

    Full Text Available Autologous dermal fibroblasts (dFbs are promising candidates for enhancing muscle regeneration in Duchenne muscular dystrophy (DMD due to their ease of isolation, immunological compatibility, and greater proliferative potential than DMD satellite cells. We previously showed that mouse fibroblasts, after MyoD-mediated myogenic reprogramming in vivo, engraft in skeletal muscle and supply dystrophin. Assessing the therapeutic utility of this system requires optimization of conversion and transplantation conditions and quantitation of engraftment so that these parameters can be correlated with possible functional improvements. Here, we derived dFbs from transgenic mice carrying mini-dystrophin, transduced them by lentivirus carrying tamoxifen-inducible MyoD, and characterized their myogenic and engraftment potential. After cell transplantation into the muscles of immunocompetent dystrophic mdx4cv mice, tamoxifen treatment drove myogenic conversion and fusion into myofibers that expressed high levels of mini-dystrophin. Injecting 50,000 cells/µl (1 × 106 total cells resulted in a peak of ∼600 mini-dystrophin positive myofibers in tibialis anterior muscle single cross-sections. However, extensor digitorum longus muscles with up to 30% regional engraftment showed no functional improvements; similar limitations were obtained with whole muscle mononuclear cells. Despite the current lack of physiological improvement, this study suggests a viable initial strategy for using a patient-accessible dermal cell population to enhance skeletal muscle regeneration in DMD.

  13. Novel and optimized strategies for inducing fibrosis in vivo: focus on Duchenne Muscular Dystrophy

    Science.gov (United States)

    2014-01-01

    Background Fibrosis, an excessive collagen accumulation, results in scar formation, impairing function of vital organs and tissues. Fibrosis is a hallmark of muscular dystrophies, including the lethal Duchenne muscular dystrophy (DMD), which remains incurable. Substitution of muscle by fibrotic tissue also complicates gene/cell therapies for DMD. Yet, no optimal models to study muscle fibrosis are available. In the widely used mdx mouse model for DMD, extensive fibrosis develops in the diaphragm only at advanced adulthood, and at about two years of age in the ‘easy-to-access’ limb muscles, thus precluding fibrosis research and the testing of novel therapies. Methods We developed distinct experimental strategies, ranging from chronic exercise to increasing muscle damage on limb muscles of young mdx mice, by myotoxin injection, surgically induced trauma (laceration or denervation) or intramuscular delivery of profibrotic growth factors (such as TGFβ). We also extended these approaches to muscle of normal non-dystrophic mice. Results These strategies resulted in advanced and enhanced muscle fibrosis in young mdx mice, which persisted over time, and correlated with reduced muscle force, thus mimicking the severe DMD phenotype. Furthermore, increased fibrosis was also obtained by combining these procedures in muscles of normal mice, mirroring aberrant repair after severe trauma. Conclusions We have developed new and improved experimental strategies to accelerate and enhance muscle fibrosis in vivo. These strategies will allow rapidly assessing fibrosis in the easily accessible limb muscles of young mdx mice, without necessarily having to use old animals. The extension of these fibrogenic regimes to the muscle of non-dystrophic wild-type mice will allow fibrosis assessment in a wide array of pre-existing transgenic mouse lines, which in turn will facilitate understanding the mechanisms of fibrogenesis. These strategies should improve our ability to combat fibrosis

  14. Elemental analysis of biological tissues of animal models in muscular dystrophies investigation

    International Nuclear Information System (INIS)

    Sabrina Metairon; Zamboni, C.B.; Suzuki, M.F.; Bueno, Jr.C.R.; Sant'Anna, O.A.

    2012-01-01

    Element concentrations in biological tissues of Dmd mdx /J and C57BL/6 J mice strains were determined using the neutron activation analysis technique. Samples of whole blood, bones and organs (heart and muscle) of these strains were irradiated in the IEA-R1 nuclear reactor at IPEN-CNEN/SP (Brazil). To perform this investigation biological samples of two-month-old adult females (n = 10) and males (n = 9) for Dmd mdx /J (dystrophic mice), and males (n 12) for C57BL/6 J (control group), originally obtained from the Jackson Laboratory (Maine, USA) and further inbred at IPEN-CNEN/SP (Sao Paulo, Brazil), were used. A significant change was observed in the analysis of the heart of dystrophic mice suggesting that this dysfunction affects severely the heart muscle. These data may, in the future, contribute to the healthcare area, in veterinary medicine and in the pharmaceutical industry allowing the evaluation of the best procedures in diagnosis, treatment and investigations of neuromuscular diseases (muscular dystrophy) of patients through the use of animal models. (author)

  15. Current Translational Research and Murine Models For Duchenne Muscular Dystrophy

    Science.gov (United States)

    Rodrigues, Merryl; Echigoya, Yusuke; Fukada, So-ichiro; Yokota, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscle degeneration. Mutations in the DMD gene result in the absence of dystrophin, a protein required for muscle strength and stability. Currently, there is no cure for DMD. Since murine models are relatively easy to genetically manipulate, cost effective, and easily reproducible due to their short generation time, they have helped to elucidate the pathobiology of dystrophin deficiency and to assess therapies for treating DMD. Recently, several murine models have been developed by our group and others to be more representative of the human DMD mutation types and phenotypes. For instance, mdx mice on a DBA/2 genetic background, developed by Fukada et al., have lower regenerative capacity and exhibit very severe phenotype. Cmah-deficient mdx mice display an accelerated disease onset and severe cardiac phenotype due to differences in glycosylation between humans and mice. Other novel murine models include mdx52, which harbors a deletion mutation in exon 52, a hot spot region in humans, and dystrophin/utrophin double-deficient (dko), which displays a severe dystrophic phenotype due the absence of utrophin, a dystrophin homolog. This paper reviews the pathological manifestations and recent therapeutic developments in murine models of DMD such as standard mdx (C57BL/10), mdx on C57BL/6 background (C57BL/6-mdx), mdx52, dystrophin/utrophin double-deficient (dko), mdxβgeo, Dmd-null, humanized DMD (hDMD), mdx on DBA/2 background (DBA/2-mdx), Cmah-mdx, and mdx/mTRKO murine models. PMID:27854202

  16. Metabolic remodeling agents show beneficial effects in the dystrophin-deficient mdx mouse model

    Directory of Open Access Journals (Sweden)

    Jahnke Vanessa E

    2012-08-01

    Full Text Available Abstract Background Duchenne muscular dystrophy is a genetic disease involving a severe muscle wasting that is characterized by cycles of muscle degeneration/regeneration and culminates in early death in affected boys. Mitochondria are presumed to be involved in the regulation of myoblast proliferation/differentiation; enhancing mitochondrial activity with exercise mimetics (AMPK and PPAR-delta agonists increases muscle function and inhibits muscle wasting in healthy mice. We therefore asked whether metabolic remodeling agents that increase mitochondrial activity would improve muscle function in mdx mice. Methods Twelve-week-old mdx mice were treated with two different metabolic remodeling agents (GW501516 and AICAR, separately or in combination, for 4 weeks. Extensive systematic behavioral, functional, histological, biochemical, and molecular tests were conducted to assess the drug(s' effects. Results We found a gain in body and muscle weight in all treated mice. Histologic examination showed a decrease in muscle inflammation and in the number of fibers with central nuclei and an increase in fibers with peripheral nuclei, with significantly fewer activated satellite cells and regenerating fibers. Together with an inhibition of FoXO1 signaling, these results indicated that the treatments reduced ongoing muscle damage. Conclusions The three treatments produced significant improvements in disease phenotype, including an increase in overall behavioral activity and significant gains in forelimb and hind limb strength. Our findings suggest that triggering mitochondrial activity with exercise mimetics improves muscle function in dystrophin-deficient mdx mice.

  17. Enhancing translation: guidelines for standard pre-clinical experiments in mdx mice.

    Science.gov (United States)

    Willmann, Raffaella; De Luca, Annamaria; Benatar, Michael; Grounds, Miranda; Dubach, Judith; Raymackers, Jean-Marc; Nagaraju, Kanneboyina

    2012-01-01

    Duchenne Muscular Dystrophy is an X-linked disorder that affects boys and leads to muscle wasting and death due to cardiac involvement and respiratory complications. The cause is the absence of dystrophin, a large structural protein indispensable for muscle cell function and viability. The mdx mouse has become the standard animal model for pre-clinical evaluation of potential therapeutic treatments. Recent years have seen a rapid increase in the number of experimental compounds being evaluated in the mdx mouse. There is, however, much variability in the design of these pre-clinical experimental studies. This has made it difficult to interpret and compare published data from different laboratories and to evaluate the potential of a treatment for application to patients. The authors therefore propose the introduction of a standard study design for the mdx mouse model. Several aspects, including animal care, sampling times and choice of tissues, as well as recommended endpoints and methodologies are addressed and, for each aspect, a standard procedure is proposed. Testing of all new molecules/drugs using a widely accepted and agreed upon standard experimental protocol would greatly improve the power of pre-clinical experimentations and help identifying promising therapies for the translation into clinical trials for boys with Duchenne Muscular Dystrophy. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Marginal level dystrophin expression improves clinical outcome in a strain of dystrophin/utrophin double knockout mice.

    Directory of Open Access Journals (Sweden)

    Dejia Li

    2010-12-01

    Full Text Available Inactivation of all utrophin isoforms in dystrophin-deficient mdx mice results in a strain of utrophin knockout mdx (uko/mdx mice. Uko/mdx mice display severe clinical symptoms and die prematurely as in Duchenne muscular dystrophy (DMD patients. Here we tested the hypothesis that marginal level dystrophin expression may improve the clinical outcome of uko/mdx mice. It is well established that mdx3cv (3cv mice express a near-full length dystrophin protein at ∼5% of the normal level. We crossed utrophin-null mutation to the 3cv background. The resulting uko/3cv mice expressed the same level of dystrophin as 3cv mice but utrophin expression was completely eliminated. Surprisingly, uko/3cv mice showed a much milder phenotype. Compared to uko/mdx mice, uko/3cv mice had significantly higher body weight and stronger specific muscle force. Most importantly, uko/3cv outlived uko/mdx mice by several folds. Our results suggest that a threshold level dystrophin expression may provide vital clinical support in a severely affected DMD mouse model. This finding may hold clinical implications in developing novel DMD therapies.

  19. Genetic deletion of muscle RANK or selective inhibition of RANKL is not as effective as full-length OPG-fc in mitigating muscular dystrophy.

    Science.gov (United States)

    Dufresne, Sébastien S; Boulanger-Piette, Antoine; Bossé, Sabrina; Argaw, Anteneh; Hamoudi, Dounia; Marcadet, Laetitia; Gamu, Daniel; Fajardo, Val A; Yagita, Hideo; Penninger, Josef M; Russell Tupling, A; Frenette, Jérôme

    2018-04-24

    Although there is a strong association between osteoporosis and skeletal muscle atrophy/dysfunction, the functional relevance of a particular biological pathway that regulates synchronously bone and skeletal muscle physiopathology is still elusive. Receptor-activator of nuclear factor κB (RANK), its ligand RANKL and the soluble decoy receptor osteoprotegerin (OPG) are the key regulators of osteoclast differentiation and bone remodelling. We thus hypothesized that RANK/RANKL/OPG, which is a key pathway for bone regulation, is involved in Duchenne muscular dystrophy (DMD) physiopathology. Our results show that muscle-specific RANK deletion (mdx-RANK mko ) in dystrophin deficient mdx mice improves significantly specific force [54% gain in force] of EDL muscles with no protective effect against eccentric contraction-induced muscle dysfunction. In contrast, full-length OPG-Fc injections restore the force of dystrophic EDL muscles [162% gain in force], protect against eccentric contraction-induced muscle dysfunction ex vivo and significantly improve functional performance on downhill treadmill and post-exercise physical activity. Since OPG serves a soluble receptor for RANKL and as a decoy receptor for TRAIL, mdx mice were injected with anti-RANKL and anti-TRAIL antibodies to decipher the dual function of OPG. Injections of anti-RANKL and/or anti-TRAIL increase significantly the force of dystrophic EDL muscle [45% and 17% gains in force, respectively]. In agreement, truncated OPG-Fc that contains only RANKL domains produces similar gains, in terms of force production, than anti-RANKL treatments. To corroborate that full-length OPG-Fc also acts independently of RANK/RANKL pathway, dystrophin/RANK double-deficient mice were treated with full-length OPG-Fc for 10 days. Dystrophic EDL muscles exhibited a significant gain in force relative to untreated dystrophin/RANK double-deficient mice, indicating that the effect of full-length OPG-Fc is in part independent of the RANKL

  20. MDX with SSAS 2012 cookbook

    CERN Document Server

    Li, Sherry

    2013-01-01

    This book is written in a recipe-based style packed full of practical tips and techniques to help you analyse multidimensional data stored in SSAS 2012 cubes. If you need to master MDX queries in SSAS, then this book is for you!If you are a Microsoft SQL Server Analysis Services developer and want to improve your solutions using MDX, then this book is for you. This book is also an essential resource for report developers who need to access the multidimensional cubes through the MDX language. The book assumes you have some basic working knowledge of MDX and a basic understanding of dimensional

  1. Individual and combinatory effects of voluntary wheel running and sActRIIB-Fc administration on redox-balance in mdx mice

    OpenAIRE

    Hentilä, Jaakko

    2015-01-01

    Duchenne’s muscular dystrophy (DMD) is X-chromosome linked muscle wasting dis-ease. It is caused by a mutation in the gene coding protein called dystrophin leading to premature death and significantly impairing the quality of life of DMD patients. Oxida-tive stress is a contributing factor in the pathology of DMD. Light intensity exercise and interventions that promote sirtuin (SIRT) 1 activity have been shown to be antioxidant for mdx mice and to ameliorate the symptoms of DMD. Also blocking...

  2. A mouse anti-myostatin antibody increases muscle mass and improves muscle strength and contractility in the mdx mouse model of Duchenne muscular dystrophy and its humanized equivalent, domagrozumab (PF-06252616), increases muscle volume in cynomolgus monkeys.

    Science.gov (United States)

    St Andre, Michael; Johnson, Mark; Bansal, Prashant N; Wellen, Jeremy; Robertson, Andrew; Opsahl, Alan; Burch, Peter M; Bialek, Peter; Morris, Carl; Owens, Jane

    2017-11-09

    The treatments currently approved for Duchenne muscular dystrophy (DMD), a progressive skeletal muscle wasting disease, address the needs of only a small proportion of patients resulting in an urgent need for therapies that benefit all patients regardless of the underlying mutation. Myostatin is a member of the transforming growth factor-β (TGF-β) family of ligands and is a negative regulator of skeletal muscle mass. Loss of myostatin has been shown to increase muscle mass and improve muscle function in both normal and dystrophic mice. Therefore, myostatin blockade via a specific antibody could ameliorate the muscle weakness in DMD patients by increasing skeletal muscle mass and function, thereby reducing patients' functional decline. A murine anti-myostatin antibody, mRK35, and its humanized analog, domagrozumab, were developed and their ability to inhibit several TGB-β ligands was measured using a cell-based Smad-activity reporter system. Normal and mdx mice were treated with mRK35 to examine the antibody's effect on body weight, lean mass, muscle weights, grip strength, ex vivo force production, and fiber size. The humanized analog (domagrozumab) was tested in non-human primates (NHPs) for changes in skeletal muscle mass and volume as well as target engagement via modulation of circulating myostatin. Both the murine and human antibodies are specific and potent inhibitors of myostatin and GDF11. mRK35 is able to increase body weight, lean mass, and muscle weights in normal mice. In mdx mice, mRK35 significantly increased body weight, muscle weights, grip strength, and ex vivo force production in the extensor digitorum longus (EDL) muscle. Further, tibialis anterior (TA) fiber size was significantly increased. NHPs treated with domagrozumab demonstrated a dose-dependent increase in lean mass and muscle volume and exhibited increased circulating levels of myostatin demonstrating target engagement. We demonstrated that the potent anti-myostatin antibody mRK35 and

  3. Histomorphometrical analysis of the influence of soft diet on masticatory muscle development in the muscular dystrophic mouse

    DEFF Research Database (Denmark)

    Vilmann, H; Kirkeby, S; Kronborg, D

    1990-01-01

    The known difference in the severity of dystrophy between the masseter and the digastric muscle of the mouse (dy/dy C57BL/J6) may be attributed to the differences in muscle work load. This possibility was tested by subjecting 3-week-old mice (normal and dystrophic) to a soft diet for 4 weeks....... Microscopic examination of haematoxylin-eosin stained sections of these muscles showed that the fibre size dispersion (a measure of disease severity) decreased slightly but significantly in the masseters of mice on a soft diet. It was thus possible to improve the condition of dystrophic masticatory muscles...... by changing their function. Body weight curves measured during the experimental period suggest that the dystrophic mice may have been under weight because of malnutrition due to lack of sufficient masticatory power....

  4. Importância do camundongo mdx na fisiopatologia da distrofia muscular de Duchenne The importance of mdx mouse in the pathophysiology of Duchenne's muscular distrophy

    Directory of Open Access Journals (Sweden)

    Sandra Lopes Seixas

    1997-09-01

    Full Text Available O camundongo mdx desenvolve distrofia muscular recessiva ligada ao cromossoma X (locus Xp21.1 e não expressa distrofina. Embora não apresente intensa fibrose do tecido muscular e acúmulo de tecido adiposo, é considerado o modelo animal mais adequado da distrofia muscular de Duchenne. As alterações estruturais no tecido muscular associadas à mionecrose e presença do infiltrado inflamatório com predomínio de linfócitos e monócitos/macrófagos sugerem uma participação do sistema imunológico nesta miopatia. Além disso a modulação na expressão dos componentes da matriz extracelular no microambiente muscular nas várias fases da doença (início, mionecrose, regeneração indicam um papel importante do conjuntivo no direcionamento das células inflamatórias para o foco da lesão muscular. O camundongo mdx coloca-se como um excelente modelo para o estudo dos mecanismos patogenéticos da mionecrose e regeneração na distrofia muscular de Duchenne, possibilitando inclusive o desenvolvimento de estratégias terapêuticas mais adequadas.The mdx mouse develop an X-linked recessive muscular dystrophy (locus Xp21.1 and lack dystrophin expression. Despite showing less intense myofibrosis and scarce deposition of fatty tissue, mdx mice are considered an adequate animal model for studies on the pathogenesis of Duchenne-type muscular dystrophy. Marked histological alterations in the muscular tissues associated to myonecrosis and inflammatory mononuclear cell infiltrate (lymphocytes, monocytes/macrophages suggest a participation of the immune system in this myopathy. Modulation of the extracellular matrix (ECM components in the muscular tissue during all phases (onset, myonecrosis and regeneration of disease, indicate an important role for the ECM driving inflammatory cells to the foci of lesion. Therefore mdx mice should be regarded as an important tool for studies on pathogenetic mechanisms of Duchenne-type muscular dystrophy. Such

  5. Molecular mechanism of sphingosine-1-phosphate action in Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Diem-Hang Nguyen-Tran

    2014-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is a lethal muscle-wasting disease. Studies in Drosophila showed that genetic increase of the levels of the bioactive sphingolipid sphingosine-1-phosphate (S1P or delivery of 2-acetyl-5-tetrahydroxybutyl imidazole (THI, an S1P lyase inhibitor, suppresses dystrophic muscle degeneration. In the dystrophic mouse (mdx, upregulation of S1P by THI increases regeneration and muscle force. S1P can act as a ligand for S1P receptors and as a histone deacetylase (HDAC inhibitor. Because Drosophila has no identified S1P receptors and DMD correlates with increased HDAC2 levels, we tested whether S1P action in muscle involves HDAC inhibition. Here we show that beneficial effects of THI treatment in mdx mice correlate with significantly increased nuclear S1P, decreased HDAC activity and increased acetylation of specific histone residues. Importantly, the HDAC2 target microRNA genes miR-29 and miR-1 are significantly upregulated, correlating with the downregulation of the miR-29 target Col1a1 in the diaphragm of THI-treated mdx mice. Further gene expression analysis revealed a significant THI-dependent decrease in inflammatory genes and increase in metabolic genes. Accordingly, S1P levels and functional mitochondrial activity are increased after THI treatment of differentiating C2C12 cells. S1P increases the capacity of the muscle cell to use fatty acids as an energy source, suggesting that THI treatment could be beneficial for the maintenance of energy metabolism in mdx muscles.

  6. Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway.

    Directory of Open Access Journals (Sweden)

    Kenneth C Loh

    Full Text Available Sphingosine-1-phosphate (S1P activates a widely expressed family of G protein-coupled receptors, serves as a muscle trophic factor and activates muscle stem cells called satellite cells (SCs through unknown mechanisms. Here we show that muscle injury induces dynamic changes in S1P signaling and metabolism in vivo. These changes include early and profound induction of the gene encoding the S1P biosynthetic enzyme SphK1, followed by induction of the catabolic enzyme sphingosine phosphate lyase (SPL 3 days later. These changes correlate with a transient increase in circulating S1P levels after muscle injury. We show a specific requirement for SphK1 to support efficient muscle regeneration and SC proliferation and differentiation. Mdx mice, which serve as a model for muscular dystrophy (MD, were found to be S1P-deficient and exhibited muscle SPL upregulation, suggesting that S1P catabolism is enhanced in dystrophic muscle. Pharmacological SPL inhibition increased muscle S1P levels, improved mdx muscle regeneration and enhanced SC proliferation via S1P receptor 2 (S1PR2-dependent inhibition of Rac1, thereby activating Signal Transducer and Activator of Transcription 3 (STAT3, a central player in inflammatory signaling. STAT3 activation resulted in p21 and p27 downregulation in a S1PR2-dependent fashion in myoblasts. Our findings suggest that S1P promotes SC progression through the cell cycle by repression of cell cycle inhibitors via S1PR2/STAT3-dependent signaling and that SPL inhibition may provide a therapeutic strategy for MD.

  7. Black bear parathyroid hormone has greater anabolic effects on trabecular bone in dystrophin-deficient mice than in wild type mice.

    Science.gov (United States)

    Gray, Sarah K; McGee-Lawrence, Meghan E; Sanders, Jennifer L; Condon, Keith W; Tsai, Chung-Jui; Donahue, Seth W

    2012-09-01

    Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease that has deleterious consequences in muscle and bone, leading to decreased mobility, progressive osteoporosis, and premature death. Patients with DMD experience a higher-than-average fracture rate, particularly in the proximal and distal femur and proximal tibia. The dystrophin-deficient mdx mouse is a model of DMD that demonstrates muscle degeneration and fibrosis and osteoporosis. Parathyroid hormone, an effective anabolic agent for post-menopausal and glucocorticoid-induced osteoporosis, has not been explored for DMD. Black bear parathyroid hormone (bbPTH) has been implicated in the maintenance of bone properties during extended periods of disuse (hibernation). We cloned bbPTH and found 9 amino acid residue differences from human PTH. Apoptosis was mitigated and cAMP was activated by bbPTH in osteoblast cultures. We administered 28nmol/kg of bbPTH 1-84 to 4-week old male mdx and wild type mice via daily (5×/week) subcutaneous injection for 6 weeks. Vehicle-treated mdx mice had 44% lower trabecular bone volume fraction than wild type mice. No changes were found in femoral cortical bone geometry or mechanical properties with bbPTH treatment in wild type mice, and only medio-lateral moment of inertia changed with bbPTH treatment in mdx femurs. However, μCT analyses of the trabecular regions of the distal femur and proximal tibia showed marked increases in bone volume fraction with bbPTH treatment, with a greater anabolic response (7-fold increase) in mdx mice than wild type mice (2-fold increase). Trabecular number increased in mdx long bone, but not wild type bone. Additionally, greater osteoblast area and decreased osteoclast area were observed with bbPTH treatment in mdx mice. The heightened response to PTH in mdx bone compared to wild type suggests a link between dystrophin deficiency, altered calcium signaling, and bone. These findings support further investigation of PTH as an anabolic

  8. Simultaneous Pathoproteomic Evaluation of the Dystrophin-Glycoprotein Complex and Secondary Changes in the mdx-4cv Mouse Model of Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Sandra Murphy

    2015-06-01

    Full Text Available In skeletal muscle, the dystrophin-glycoprotein complex forms a membrane-associated assembly of relatively low abundance, making its detailed proteomic characterization in normal versus dystrophic tissues technically challenging. To overcome this analytical problem, we have enriched the muscle membrane fraction by a minimal differential centrifugation step followed by the comprehensive label-free mass spectrometric analysis of microsomal membrane preparations. This organelle proteomic approach successfully identified dystrophin and its binding partners in normal versus dystrophic hind limb muscles. The introduction of a simple pre-fractionation step enabled the simultaneous proteomic comparison of the reduction in the dystrophin-glycoprotein complex and secondary changes in the mdx-4cv mouse model of dystrophinopathy in a single analytical run. The proteomic screening of the microsomal fraction from dystrophic hind limb muscle identified the full-length dystrophin isoform Dp427 as the most drastically reduced protein in dystrophinopathy, demonstrating the remarkable analytical power of comparative muscle proteomics. Secondary pathoproteomic expression patterns were established for 281 proteins, including dystrophin-associated proteins and components involved in metabolism, signalling, contraction, ion-regulation, protein folding, the extracellular matrix and the cytoskeleton. Key findings were verified by immunoblotting. Increased levels of the sarcolemmal Na+/K+-ATPase in dystrophic leg muscles were also confirmed by immunofluorescence microscopy. Thus, the reduction of sample complexity in organelle-focused proteomics can be advantageous for the profiling of supramolecular protein complexes in highly intricate systems, such as skeletal muscle tissue.

  9. Early Detection of Myocardial Bioenergetic Deficits: A 9.4 Tesla Complete Non Invasive 31P MR Spectroscopy Study in Mice with Muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Weina Cui

    Full Text Available Duchenne muscular dystrophy (DMD is the most common fatal form of muscular dystrophy characterized by striated muscle wasting and dysfunction. Patients with DMD have a very high incidence of heart failure, which is increasingly the cause of death in DMD patients. We hypothesize that in the in vivo system, the dystrophic cardiac muscle displays bioenergetic deficits prior to any functional or structural deficits. To address this we developed a complete non invasive 31P magnetic resonance spectroscopy (31P MRS approach to measure myocardial bioenergetics in the heart in vivo.Six control and nine mdx mice at 5 months of age were used for the study. A standard 3D -Image Selected In vivo Spectroscopy (3D-ISIS sequence was used to provide complete gradient controlled three-dimensional localization for heart 31P MRS. These studies demonstrated dystrophic hearts have a significant reduction in PCr/ATP ratio compare to normal (1.59±0.13 vs 2.37±0.25, p<0.05.Our present study provides the direct evidence of significant cardiac bioenergetic deficits in the in vivo dystrophic mouse. These data suggest that energetic defects precede the development of significant hemodynamic or structural changes. The methods provide a clinically relevant approach to use myocardial energetics as an early marker of disease in the dystrophic heart. The new method in detecting the in vivo bioenergetics abnormality as an early non-invasive marker of emerging dystrophic cardiomyopathy is critical in management of patients with DMD, and optimized therapies aimed at slowing or reversing the cardiomyopathy.

  10. Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy

    Science.gov (United States)

    Villalta, S. Armando; Rosenthal, Wendy; Martinez, Leonel; Kaur, Amanjot; Sparwasser, Tim; Tidball, James G.; Margeta, Marta; Spencer, Melissa J.; Bluestone, Jeffrey A.

    2016-01-01

    We examined the hypothesis that regulatory T cells (Tregs) modulate muscle injury and inflammation in the mdx mouse model of Duchenne muscular dystrophy (DMD). Although Tregs were largely absent in the muscle of wildtype mice and normal human muscle, they were present in necrotic lesions, displayed an activated phenotype and showed increased expression of interleukin (IL)-10 in dystrophic muscle from mdx mice. Depletion of Tregs exacerbated muscle injury and the severity of muscle inflammation, which was characterized by an enhanced interferon-gamma (IFNγ) response and activation of M1 macrophages. To test the therapeutic value of targeting Tregs in muscular dystrophy, we treated mdx mice with IL-2/anti-IL-2 complexes (IL-2c), and found that Tregs and IL-10 concentrations were increased in muscle, resulting in reduced expression of cyclooygenase-2 and decreased myofiber injury. These findings suggest that Tregs modulate the progression of muscular dystrophy by suppressing type 1 inflammation in muscle associated with muscle fiber injury, and highlight the potential of Treg-modulating agents as therapeutics for DMD. PMID:25320234

  11. Dystrophin-deficient dogs with reduced myostatin have unequal muscle growth and greater joint contractures.

    Science.gov (United States)

    Kornegay, Joe N; Bogan, Daniel J; Bogan, Janet R; Dow, Jennifer L; Wang, Jiahui; Fan, Zheng; Liu, Naili; Warsing, Leigh C; Grange, Robert W; Ahn, Mihye; Balog-Alvarez, Cynthia J; Cotten, Steven W; Willis, Monte S; Brinkmeyer-Langford, Candice; Zhu, Hongtu; Palandra, Joe; Morris, Carl A; Styner, Martin A; Wagner, Kathryn R

    2016-01-01

    Myostatin (Mstn) is a negative regulator of muscle growth whose inhibition promotes muscle growth and regeneration. Dystrophin-deficient mdx mice in which myostatin is knocked out or inhibited postnatally have a less severe phenotype with greater total mass and strength and less fibrosis and fatty replacement of muscles than mdx mice with wild-type myostatin expression. Dogs with golden retriever muscular dystrophy (GRMD) have previously been noted to have increased muscle mass and reduced fibrosis after systemic postnatal myostatin inhibition. Based partly on these results, myostatin inhibitors are in development for use in human muscular dystrophies. However, persisting concerns regarding the effects of long-term and profound myostatin inhibition will not be easily or imminently answered in clinical trials. To address these concerns, we developed a canine (GRippet) model by crossbreeding dystrophin-deficient GRMD dogs with Mstn-heterozygous (Mstn (+/-)) whippets. A total of four GRippets (dystrophic and Mstn (+/-)), three GRMD (dystrophic and Mstn wild-type) dogs, and three non-dystrophic controls from two litters were evaluated. Myostatin messenger ribonucleic acid (mRNA) and protein levels were downregulated in both GRMD and GRippet dogs. GRippets had more severe postural changes and larger (more restricted) maximal joint flexion angles, apparently due to further exaggeration of disproportionate effects on muscle size. Flexors such as the cranial sartorius were more hypertrophied on magnetic resonance imaging (MRI) in the GRippets, while extensors, including the quadriceps femoris, underwent greater atrophy. Myostatin protein levels negatively correlated with relative cranial sartorius muscle cross-sectional area on MRI, supporting a role in disproportionate muscle size. Activin receptor type IIB (ActRIIB) expression was higher in dystrophic versus control dogs, consistent with physiologic feedback between myostatin and ActRIIB. However, there was no

  12. Hsp72 preserves muscle function and slows progression of severe muscular dystrophy.

    Science.gov (United States)

    Gehrig, Stefan M; van der Poel, Chris; Sayer, Timothy A; Schertzer, Jonathan D; Henstridge, Darren C; Church, Jarrod E; Lamon, Severine; Russell, Aaron P; Davies, Kay E; Febbraio, Mark A; Lynch, Gordon S

    2012-04-04

    Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting disorder caused by mutations in the dystrophin gene that result in the absence of the membrane-stabilizing protein dystrophin. Dystrophin-deficient muscle fibres are fragile and susceptible to an influx of Ca(2+), which activates inflammatory and muscle degenerative pathways. At present there is no cure for DMD, and existing therapies are ineffective. Here we show that increasing the expression of intramuscular heat shock protein 72 (Hsp72) preserves muscle strength and ameliorates the dystrophic pathology in two mouse models of muscular dystrophy. Treatment with BGP-15 (a pharmacological inducer of Hsp72 currently in clinical trials for diabetes) improved muscle architecture, strength and contractile function in severely affected diaphragm muscles in mdx dystrophic mice. In dko mice, a phenocopy of DMD that results in severe spinal curvature (kyphosis), muscle weakness and premature death, BGP-15 decreased kyphosis, improved the dystrophic pathophysiology in limb and diaphragm muscles and extended lifespan. We found that the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA, the main protein responsible for the removal of intracellular Ca(2+)) is dysfunctional in severely affected muscles of mdx and dko mice, and that Hsp72 interacts with SERCA to preserve its function under conditions of stress, ultimately contributing to the decreased muscle degeneration seen with Hsp72 upregulation. Treatment with BGP-15 similarly increased SERCA activity in dystrophic skeletal muscles. Our results provide evidence that increasing the expression of Hsp72 in muscle (through the administration of BGP-15) has significant therapeutic potential for DMD and related conditions, either as a self-contained therapy or as an adjuvant with other potential treatments, including gene, cell and pharmacological therapies.

  13. Comparative proteomic profiling of soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscles from the mdx mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Carberry, Steven; Brinkmeier, Heinrich; Zhang, Yaxin; Winkler, Claudia K; Ohlendieck, Kay

    2013-09-01

    Duchenne muscular dystrophy is due to genetic abnormalities in the dystrophin gene and represents one of the most frequent genetic childhood diseases. In the X-linked muscular dystrophy (mdx) mouse model of dystrophinopathy, different subtypes of skeletal muscles are affected to a varying degree albeit the same single base substitution within exon 23 of the dystrophin gene. Thus, to determine potential muscle subtype-specific differences in secondary alterations due to a deficiency in dystrophin, in this study, we carried out a comparative histological and proteomic survey of mdx muscles. We intentionally included the skeletal muscles that are often used for studying the pathomechanism of muscular dystrophy. Histological examinations revealed a significantly higher degree of central nucleation in the soleus and extensor digitorum longus muscles compared with the flexor digitorum brevis and interosseus muscles. Muscular hypertrophy of 20-25% was likewise only observed in the soleus and extensor digitorum longus muscles from mdx mice, but not in the flexor digitorum brevis and interosseus muscles. For proteomic analysis, muscle protein extracts were separated by fluorescence two-dimensional (2D) gel electrophoresis. Proteins with a significant change in their expression were identified by mass spectrometry. Proteomic profiling established an altered abundance of 24, 17, 19 and 5 protein species in the dystrophin-deficient soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscle, respectively. The key proteomic findings were verified by immunoblot analysis. The identified proteins are involved in the contraction-relaxation cycle, metabolite transport, muscle metabolism and the cellular stress response. Thus, histological and proteomic profiling of muscle subtypes from mdx mice indicated that distinct skeletal muscles are differentially affected by the loss of the membrane cytoskeletal protein, dystrophin. Varying degrees of perturbed protein

  14. Validation of ultrasonography for non-invasive assessment of diaphragm function in muscular dystrophy.

    Science.gov (United States)

    Whitehead, Nicholas P; Bible, Kenneth L; Kim, Min Jeong; Odom, Guy L; Adams, Marvin E; Froehner, Stanley C

    2016-12-15

    strongly with ex vivo specific force. We then investigated the time course of diaphragm amplitude changes following administration of an adeno-associated viral vector expressing Flag-micro-dystrophin (AAV-μDys) to young adult mdx mice. Diaphragm amplitude peaked 4 weeks after AAV-μDys administration, and was 26% greater than control mdx mice at this time. This value decreased slightly to 21% above mdx controls after 12 weeks of treatment. Importantly, diaphragm amplitude again correlated strongly with ex vivo specific force. Also, diaphragm amplitude and specific force negatively correlated with fibrosis levels in the muscle. Together, our results validate diaphragm ultrasonography as a reliable technique for assessing time-dependent changes in dystrophic diaphragm function in vivo, and for evaluating potential therapies for DMD. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  15. Electroporation Enhanced Effect of Dystrophin Splice Switching PNA Oligomers in Normal and Dystrophic Muscle

    DEFF Research Database (Denmark)

    Hjortkjær, Camilla Brolin; Shiraishi, Takehiko; Hojman, Pernille

    2015-01-01

    for improvement of in vivo cellular availability, we have investigated the effect of electrotransfer upon intramuscular (i.m.) PNA administration in vivo. Antisense PNA targeting exon 23 of the murine dystrophin gene was administered by i.m. injection to the tibialis anterior (TA) muscle of normal NMRI......Peptide nucleic acid (PNA) is a synthetic DNA mimic that has shown potential for discovery of novel splice switching antisense drugs. However, in vivo cellular delivery has been a limiting factor for development, and only few successful studies have been reported. As a possible modality...... switching was detected at the RNA level up to 4 weeks after a single-dose treatment. In dystrophic muscles of the MDX mouse, electroporation increased the number of dystrophin-positive fibers about 2.5-fold at 2 weeks after a single PNA administration compared to injection only. In conclusion, we find...

  16. A dystrophic Duchenne mouse model for testing human antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Marcel Veltrop

    Full Text Available Duchenne muscular dystrophy (DMD is a severe muscle-wasting disease generally caused by reading frame disrupting mutations in the DMD gene resulting in loss of functional dystrophin protein. The reading frame can be restored by antisense oligonucleotide (AON-mediated exon skipping, allowing production of internally deleted, but partially functional dystrophin proteins as found in the less severe Becker muscular dystrophy. Due to genetic variation between species, mouse models with mutations in the murine genes are of limited use to test and further optimize human specific AONs in vivo. To address this we have generated the del52hDMD/mdx mouse. This model carries both murine and human DMD genes. However, mouse dystrophin expression is abolished due to a stop mutation in exon 23, while the expression of human dystrophin is abolished due to a deletion of exon 52. The del52hDMD/mdx model, like mdx, shows signs of muscle dystrophy on a histological level and phenotypically mild functional impairment. Local administration of human specific vivo morpholinos induces exon skipping and dystrophin restoration in these mice. Depending on the number of mismatches, occasional skipping of the murine Dmd gene, albeit at low levels, could be observed. Unlike previous models, the del52hDMD/mdx model enables the in vivo analysis of human specific AONs targeting exon 51 or exon 53 on RNA and protein level and muscle quality and function. Therefore, it will be a valuable tool for optimizing human specific AONs and genome editing approaches for DMD.

  17. Targeting early PKCθ-dependent T-cell infiltration of dystrophic muscle reduces disease severity in a mouse model of muscular dystrophy.

    Science.gov (United States)

    Lozanoska-Ochser, Biliana; Benedetti, Anna; Rizzo, Giuseppe; Marrocco, Valeria; Di Maggio, Rosanna; Fiore, Piera; Bouche, Marina

    2018-03-01

    Chronic muscle inflammation is a critical feature of Duchenne muscular dystrophy and contributes to muscle fibre injury and disease progression. Although previous studies have implicated T cells in the development of muscle fibrosis, little is known about their role during the early stages of muscular dystrophy. Here, we show that T cells are among the first cells to infiltrate mdx mouse dystrophic muscle, prior to the onset of necrosis, suggesting an important role in early disease pathogenesis. Based on our comprehensive analysis of the kinetics of the immune response, we further identify the early pre-necrotic stage of muscular dystrophy as the relevant time frame for T-cell-based interventions. We focused on protein kinase C θ (PKCθ, encoded by Prkcq), a critical regulator of effector T-cell activation, as a potential target to inhibit T-cell activity in dystrophic muscle. Lack of PKCθ not only reduced the frequency and number of infiltrating T cells but also led to quantitative and qualitative changes in the innate immune cell infiltrate in mdx/Prkcq -/- muscle. These changes were due to the inhibition of T cells, since PKCθ was necessary for T-cell but not for myeloid cell infiltration of acutely injured muscle. Targeting T cells with a PKCθ inhibitor early in the disease process markedly diminished the size of the inflammatory cell infiltrate and resulted in reduced muscle damage. Moreover, diaphragm necrosis and fibrosis were also reduced following treatment. Overall, our findings identify the early T-cell infiltrate as a therapeutic target and highlight the potential of PKCθ inhibition as a therapeutic approach to muscular dystrophy. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  18. Long-Term Blocking of Calcium Channels in mdx Mice Results in Differential Effects on Heart and Skeletal Muscle

    DEFF Research Database (Denmark)

    Jørgensen, Louise Helskov; Blain, Alison; Greally, Elizabeth

    2011-01-01

    in older mice. However, streptomycin treatment did not show positive effects in diaphragm or heart muscle, and heart pathology was worsened. Thus, blocking calcium channels even before disease onset does not prevent dystrophy, making this an unlikely treatment for DMD. These findings highlight......The disease mechanisms underlying dystrophin-deficient muscular dystrophy are complex, involving not only muscle membrane fragility, but also dysregulated calcium homeostasis. Specifically, it has been proposed that calcium channels directly initiate a cascade of pathological events by allowing...... calcium ions to enter the cell. The objective of this study was to investigate the effect of chronically blocking calcium channels with the aminoglycoside antibiotic streptomycin from onset of disease in the mdx mouse model of Duchenne muscular dystrophy (DMD). Treatment in utero onwards delayed onset...

  19. Sodium Iodide Symporter PET and BLI Noninvasively Reveal Mesoangioblast Survival in Dystrophic Mice

    Directory of Open Access Journals (Sweden)

    Bryan Holvoet

    2015-12-01

    Full Text Available Muscular dystrophies are a heterogeneous group of myopathies, characterized by muscle weakness and degeneration, without curative treatment. Mesoangioblasts (MABs have been proposed as a potential regenerative therapy. To improve our understanding of the in vivo behavior of MABs and the effect of different immunosuppressive therapies, like cyclosporine A or co-stimulation-adhesion blockade therapy, on cell survival noninvasive cell monitoring is required. Therefore, cells were transduced with a lentiviral vector encoding firefly luciferase (Fluc and the human sodium iodide transporter (hNIS to allow cell monitoring via bioluminescence imaging (BLI and small-animal positron emission tomography (PET. Non-H2 matched mMABs were injected in the femoral artery of dystrophic mice and were clearly visible via small-animal PET and BLI. Based on noninvasive imaging data, we were able to show that co-stim was clearly superior to CsA in reducing cell rejection and this was mediated via a reduction in cytotoxic T cells and upregulation of regulatory T cells.

  20. Renin-angiotensin-aldosterone system inhibitors improve membrane stability and change gene-expression profiles in dystrophic skeletal muscles.

    Science.gov (United States)

    Chadwick, Jessica A; Bhattacharya, Sayak; Lowe, Jeovanna; Weisleder, Noah; Rafael-Fortney, Jill A

    2017-02-01

    Angiotensin-converting enzyme inhibitors (ACEi) and mineralocorticoid receptor (MR) antagonists are FDA-approved drugs that inhibit the renin-angiotensin-aldosterone system (RAAS) and are used to treat heart failure. Combined treatment with the ACEi lisinopril and the nonspecific MR antagonist spironolactone surprisingly improves skeletal muscle, in addition to heart function and pathology in a Duchenne muscular dystrophy (DMD) mouse model. We recently demonstrated that MR is present in all limb and respiratory muscles and functions as a steroid hormone receptor in differentiated normal human skeletal muscle fibers. The goals of the current study were to begin to define cellular and molecular mechanisms mediating the skeletal muscle efficacy of RAAS inhibitor treatment. We also compared molecular changes resulting from RAAS inhibition with those resulting from the current DMD standard-of-care glucocorticoid treatment. Direct assessment of muscle membrane integrity demonstrated improvement in dystrophic mice treated with lisinopril and spironolactone compared with untreated mice. Short-term treatments of dystrophic mice with specific and nonspecific MR antagonists combined with lisinopril led to overlapping gene-expression profiles with beneficial regulation of metabolic processes and decreased inflammatory gene expression. Glucocorticoids increased apoptotic, proteolytic, and chemokine gene expression that was not changed by RAAS inhibitors in dystrophic mice. Microarray data identified potential genes that may underlie RAAS inhibitor treatment efficacy and the side effects of glucocorticoids. Direct effects of RAAS inhibitors on membrane integrity also contribute to improved pathology of dystrophic muscles. Together, these data will inform clinical development of MR antagonists for treating skeletal muscles in DMD. Copyright © 2017 the American Physiological Society.

  1. Improvement of Endurance of DMD Animal Model Using Natural Polyphenols

    Directory of Open Access Journals (Sweden)

    Clementina Sitzia

    2015-01-01

    Full Text Available Duchenne muscular dystrophy (DMD, the most common form of muscular dystrophy, is characterized by muscular wasting caused by dystrophin deficiency that ultimately ends in force reduction and premature death. In addition to primary genetic defect, several mechanisms contribute to DMD pathogenesis. Recently, antioxidant supplementation was shown to be effective in the treatment of multiple diseases including muscular dystrophy. Different mechanisms were hypothesized such as reduced hydroxyl radicals, nuclear factor-κB deactivation, and NO protection from inactivation. Following these promising evidences, we investigated the effect of the administration of a mix of dietary natural polyphenols (ProAbe on dystrophic mdx mice in terms of muscular architecture and functionality. We observed a reduction of muscle fibrosis deposition and myofiber necrosis together with an amelioration of vascularization. More importantly, the recovery of the morphological features of dystrophic muscle leads to an improvement of the endurance of treated dystrophic mice. Our data confirmed that ProAbe-based diet may represent a strategy to coadjuvate the treatment of DMD.

  2. Non-specific esterases and esterproteases in masticatory muscles from the muscular dystrophic mouse

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Vilmann, H

    1989-01-01

    With the aid of histochemical and electrophoretic techniques activities for esterase and esterprotease were investigated in the digastric and masseter muscles from normal and dystrophic mice. The substrates used were alpha-naphthyl acetate and N-acetyl-L-alanine alpha-naphthyl ester. According...

  3. Morpholino oligomer-mediated exon skipping averts the onset of dystrophic pathology in the mdx mouse.

    Science.gov (United States)

    Fletcher, Sue; Honeyman, Kaite; Fall, Abbie M; Harding, Penny L; Johnsen, Russell D; Steinhaus, Joshua P; Moulton, Hong M; Iversen, Patrick L; Wilton, Stephen D

    2007-09-01

    Duchenne and Becker muscular dystrophies are allelic disorders arising from mutations in the dystrophin gene. Duchenne muscular dystrophy is characterized by an absence of functional protein, whereas Becker muscular dystrophy, commonly caused by in-frame deletions, shows synthesis of partially functional protein. Anti-sense oligonucleotides can induce specific exon removal during processing of the dystrophin primary transcript, while maintaining or restoring the reading frame, and thereby overcome protein-truncating mutations. The mdx mouse has a non-sense mutation in exon 23 of the dystrophin gene that precludes functional dystrophin production, and this model has been used in the development of treatment strategies for dystrophinopathies. A phosphorodiamidate morpholino oligomer (PMO) has previously been shown to exclude exon 23 from the dystrophin gene transcript and induce dystrophin expression in the mdxmouse, in vivo and in vitro. In this report, a cell-penetrating peptide (CPP)-conjugated oligomer targeted to the mouse dystrophin exon 23 donor splice site was administered to mdxmice by intraperitoneal injection. We demonstrate dystrophin expression and near-normal muscle architecture in all muscles examined, except for cardiac muscle. The CPP greatly enhanced uptake of the PMO, resulting in widespread dystrophin expression.

  4. Microsoft® SQL Server® 2008 MDX Step by Step

    CERN Document Server

    Smith, Bryan; Consulting, Hitachi

    2009-01-01

    Teach yourself the Multidimensional Expressions (MDX) query language-one step at a time. With this practical, learn-by-doing tutorial, you'll build the core techniques for using MDX with Analysis Services to deliver high-performance business intelligence solutions. Discover how to: Construct and execute MDX queriesWork with tuples, sets, and expressionsBuild complex sets to retrieve the exact data users needPerform aggregation functions and navigate data hierarchiesAssemble time-based business metricsCustomize an Analysis Services cube through the MDX scriptImplement dynamic security to cont

  5. PAI-1–regulated miR-21 defines a novel age-associated fibrogenic pathway in muscular dystrophy

    Science.gov (United States)

    Ardite, Esther; Perdiguero, Eusebio; Vidal, Berta; Gutarra, Susana; Serrano, Antonio L.

    2012-01-01

    Disruption of skeletal muscle homeostasis by substitution with fibrotic tissue constitutes the principal cause of death in Duchenne muscular dystrophy (DMD) patients, yet the implicated fibrogenic mechanisms remain poorly understood. This study identifies the extracellular PAI-1/urokinase-type plasminogen activator (uPA) balance as an important regulator of microribonucleic acid (miR)–21 biogenesis, controlling age-associated muscle fibrosis and dystrophy progression. Genetic loss of PAI-1 in mdx dystrophic mice anticipated muscle fibrosis through these sequential mechanisms: the alteration of collagen metabolism by uPA-mediated proteolytic processing of transforming growth factor (TGF)–β in muscle fibroblasts and the activation of miR-21 expression, which inhibited phosphatase and tensin homologue and enhanced AKT signaling, thus endowing TGF-β with a remarkable cell proliferation–promoting potential. Age-associated fibrogenesis and muscle deterioration in mdx mice, as well as exacerbated dystrophy in young PAI-1−/− mdx mice, could be reversed by miR-21 or uPA-selective interference, whereas forced miR-21 overexpression aggravated disease severity. The PAI-1–miR-21 fibrogenic axis also appeared dysregulated in muscle of DMD patients, providing a basis for effectively targeting fibrosis and muscular dystrophies in currently untreatable individuals. PMID:22213800

  6. A new immuno- dystrophin-deficient model, the NSG-mdx4Cv mouse, provides evidence for functional improvement following allogeneic satellite cell transplantation

    Science.gov (United States)

    Arpke, Robert W.; Darabi, Radbod; Mader, Tara L.; Zhang, Yu; Toyama, Akira; Lonetree, Cara-lin; Nash, Nardina; Lowe, Dawn A.; Perlingeiro, Rita C.R.; Kyba, Michael

    2013-01-01

    Transplantation of a myogenic cell population into an immunodeficient recipient is an excellent way of assessing the in vivo muscle-generating capacity of that cell population. To facilitate both allogeneic and xenogeneic transplantations of muscle-forming cells in mice we have developed a novel immunodeficient muscular dystrophy model, the NSG-mdx4Cv mouse. The IL2Rg mutation, which is linked to the Dmd gene on the X chromosome, simultaneously depletes NK cells and suppresses thymic lymphomas, issues that limit the utility of the SCID/mdx model. The NSG-mdx4Cv mouse presents a muscular dystrophy of similar severity to the conventional mdx mouse. We show that this animal supports robust engraftment of both pig and dog muscle mononuclear cells. The question of whether satellite cells prospectively isolated by flow cytometry can confer a functional benefit upon transplantation has been controversial. Using allogeneic Pax7-ZsGreen donors and NSG-mdx4Cv recipients, we demonstrate definitively that as few as 900 FACS-isolated satellite cells can provide functional regeneration in vivo, in the form of an increased mean maximal force-generation capacity in cell-transplanted muscles, compared to a sham-injected control group. These studies highlight the potency of satellite cells to improve muscle function, and the utility of the NSG-mdx4Cv model for studies on muscle regeneration and Duchenne muscular dystrophy therapy. PMID:23606600

  7. Expression of the Murine Duchenne Muscular Dystrophy Gene in Muscle and Brain

    Science.gov (United States)

    Chamberlain, Jeffrey S.; Pearlman, Joel A.; Muzny, Donna M.; Gibbs, Richard A.; Ranier, Joel E.; Reeves, Alice A.; Caskey, C. Thomas

    1988-03-01

    Complementary DNA clones were isolated that represent the 5' terminal 2.5 kilobases of the murine Duchenne muscular dystrophy (Dmd) messenger RNA (mRNA). Mouse Dmd mRNA was detectable in skeletal and cardiac muscle and at a level approximately 90 percent lower in brain. Dmd mRNA is also present, but at much lower than normal levels, in both the muscle and brain of three different strains of dystrophic mdx mice. The identification of Dmd mRNA in brain raises the possibility of a relation between human Duchenne muscular dystrophy (DMD) gene expression and the mental retardation found in some DMD males. These results also provide evidence that the mdx mutations are allelic variants of mouse Dmd gene mutations.

  8. The use of urinary and kidney SILAM proteomics to monitor kidney response to high dose morpholino oligonucleotides in the mdx mouse

    Directory of Open Access Journals (Sweden)

    Aiping Zhang

    2015-01-01

    Full Text Available Phosphorodiamidate morpholino oligonucleotides (PMO are used as a promising exon-skipping gene therapy for Duchenne muscular dystrophy (DMD. One potential complication of high dose PMO therapy is its transient accumulation in the kidneys. Therefore new urinary biomarkers are needed to monitor this treatment. Here, we carried out a pilot proteomic profiling study using stable isotope labeling in mammals (SILAM strategy to identify new biomarkers to monitor the effect of PMO on the kidneys of the dystrophin deficient mouse model for DMD (mdx-23. We first assessed the baseline renal status of the mdx-23 mouse compared to the wild type (C57BL10 mouse, and then followed the renal outcome of mdx-23 mouse treated with a single high dose intravenous PMO injection (800 mg/kg. Surprisingly, untreated mdx-23 mice showed evidence of renal injury at baseline, which was manifested by albuminuria, increased urine output, and changes in established urinary biomarker of acute kidney injury (AKI. The PMO treatment induced further transient renal injury, which peaked at 7 days, and returned to almost the baseline status at 30 days post-treatment. In the kidney, the SILAM approach followed by western blot validation identified changes in Meprin A subunit alpha at day 2, then returned to normal levels at days 7 and 30 after PMO injection. In the urine, SILAM approach identified an increase in Clusterin and γ-glutamyl transpeptidase 1 as potential candidates to monitor the transient renal accumulation of PMO. These results, which were confirmed by Western blots or ELISA, demonstrate the value of the SILAM approach to identify new candidate biomarkers of renal injury in mdx-23 mice treated with high dose PMO.

  9. Concurrent Label-Free Mass Spectrometric Analysis of Dystrophin Isoform Dp427 and the Myofibrosis Marker Collagen in Crude Extracts from mdx-4cv Skeletal Muscles

    Science.gov (United States)

    Murphy, Sandra; Zweyer, Margit; Mundegar, Rustam R.; Henry, Michael; Meleady, Paula; Swandulla, Dieter; Ohlendieck, Kay

    2015-01-01

    The full-length dystrophin protein isoform of 427 kDa (Dp427), the absence of which represents the principal abnormality in X-linked muscular dystrophy, is difficult to identify and characterize by routine proteomic screening approaches of crude tissue extracts. This is probably related to its large molecular size, its close association with the sarcolemmal membrane, and its existence within a heterogeneous glycoprotein complex. Here, we used a careful extraction procedure to isolate the total protein repertoire from normal versus dystrophic mdx-4cv skeletal muscles, in conjunction with label-free mass spectrometry, and successfully identified Dp427 by proteomic means. In contrast to a considerable number of previous comparative studies of the total skeletal muscle proteome, using whole tissue proteomics we show here for the first time that the reduced expression of this membrane cytoskeletal protein is the most significant alteration in dystrophinopathy. This agrees with the pathobiochemical concept that the almost complete absence of dystrophin is the main defect in Duchenne muscular dystrophy and that the mdx-4cv mouse model of dystrophinopathy exhibits only very few revertant fibers. Significant increases in collagens and associated fibrotic marker proteins, such as fibronectin, biglycan, asporin, decorin, prolargin, mimecan, and lumican were identified in dystrophin-deficient muscles. The up-regulation of collagen in mdx-4cv muscles was confirmed by immunofluorescence microscopy and immunoblotting. Thus, this is the first mass spectrometric study of crude tissue extracts that puts the proteomic identification of dystrophin in its proper pathophysiological context. PMID:28248273

  10. Systemic dystrophic alterations of skeleton

    International Nuclear Information System (INIS)

    Zedgenidze, G.A.; Kishkovskij, A.N.; Elashov, Yu.G.

    1984-01-01

    A roentgenologic picture of dystrophic alterations of bones following hard, acute and chronic infections diseases, distinct disorders of vitanium balance, diseases of endocrine system, disorder of metabolism and diet, long-term exogenous intoxications including medicinal is given. Distinct dystrophic disorders are characterized both by quantitative and qualitative deviations in physiological change of bones

  11. ADAM12 alleviates the skeletal muscle pathology in mdx dystrophic mice

    DEFF Research Database (Denmark)

    Kronqvist, Pauliina; Kawaguchi, Nobuko; Albrechtsen, Reidar

    2002-01-01

    Muscular dystrophy is characterized by muscle degeneration and insufficient regeneration and replacement of muscle fibers by connective tissue. New therapeutic strategies directed toward various forms of muscular dystrophy are needed to preserve muscle mass and promote regeneration. In this study...

  12. Fetal microchimeric cells in a fetus-treats-its-mother paradigm do not contribute to dystrophin production in serially parous mdx females.

    Science.gov (United States)

    Seppanen, Elke Jane; Hodgson, Samantha Susan; Khosrotehrani, Kiarash; Bou-Gharios, George; Fisk, Nicholas M

    2012-10-10

    Throughout every pregnancy, genetically distinct fetal microchimeric stem/progenitor cells (FMCs) engraft in the mother, persist long after delivery, and may home to damaged maternal tissues. Phenotypically normal fetal lymphoid progenitors have been described to develop in immunodeficient mothers in a fetus-treats-its-mother paradigm. Since stem cells contribute to muscle repair, we assessed this paradigm in the mdx mouse model of Duchenne muscular dystrophy. mdx females were bred serially to either ROSAeGFP males or mdx males to obtain postpartum microchimeras that received either wild-type FMCs or dystrophin-deficient FMCs through serial gestations. To enhance regeneration, notexin was injected into the tibialis anterior of postpartum mice. FMCs were detected by qPCR at a higher frequency in injected compared to noninjected side muscle (P=0.02). However, the number of dystrophin-positive fibers was similar in mothers delivering wild-type compared to mdx pups. In addition, there was no correlation between FMC detection and percentage dystrophin, and no GFP+ve FMCs were identified that expressed dystrophin. In 10/11 animals, GFP+ve FMCs were detected by immunohistochemistry, of which 60% expressed CD45 with 96% outside the basal lamina defining myofiber contours. Finally we confirmed lack of FMC contribution to statellite cells in postpartum mdx females mated with Myf5-LacZ males. We conclude that the FMC contribution to regenerating muscles is insufficient to have a functional impact.

  13. Recessive Dystrophic Epidermolysis Bullosa and Pregnancy.

    Science.gov (United States)

    Boria, F; Maseda, R; Martín-Cameán, M; De la Calle, M; de Lucas, R

    2017-12-01

    Dystrophic epidermolysis bullosa is a rare inherited disease caused by mutations in the COL7A1 gene. Its recessive variant (recessive dystrophic epidermolysis bullosa) is characterized by the absence or considerably reduced expression of type VII collagen, which leads to marked fragility of the skin and mucous membranes and subsequent blister formation, whether spontaneously or following minimal injury. There have been very few reports of this disease in pregnant women. We present 2 cases of pregnant women with recessive dystrophic epidermolysis bullosa managed in our High-Risk Pregnancy Unit at Hospital Universitario La Paz, Madrid, Spain. Both patients underwent full-term cesarean delivery, with no further complications for mother or child. Although recessive dystrophic epidermolysis bullosa increases the risk of maternal complications, a patient is not advised against pregnancy. With adequate monitoring, these patients can fulfil their desire to become mothers. Copyright © 2017 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. 100-fold but not 50-fold dystrophin overexpression aggravates electrocardiographic defects in the mdx model of Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Yongping Yue

    2016-01-01

    Full Text Available Dystrophin gene replacement holds the promise of treating Duchenne muscular dystrophy. Supraphysiological expression is a concern for all gene therapy studies. In the case of Duchenne muscular dystrophy, Chamberlain and colleagues found that 50-fold overexpression did not cause deleterious side effect in skeletal muscle. To determine whether excessive dystrophin expression in the heart is safe, we studied two lines of transgenic mdx mice that selectively expressed a therapeutic minidystrophin gene in the heart at 50-fold and 100-fold of the normal levels. In the line with 50-fold overexpression, minidystrophin showed sarcolemmal localization and electrocardiogram abnormalities were corrected. However, in the line with 100-fold overexpression, we not only detected sarcolemmal minidystrophin expression but also observed accumulation of minidystrophin vesicles in the sarcoplasm. Excessive minidystrophin expression did not correct tachycardia, a characteristic feature of Duchenne muscular dystrophy. Importantly, several electrocardiogram parameters (QT interval, QRS duration and the cardiomyopathy index became worse than that of mdx mice. Our data suggests that the mouse heart can tolerate 50-fold minidystrophin overexpression, but 100-fold overexpression leads to cardiac toxicity.

  15. The Dynamics of Compound, Transcript, and Protein Effects After Treatment With 2OMePS Antisense Oligonucleotides in mdx Mice

    Directory of Open Access Journals (Sweden)

    Ingrid E C Verhaart

    2014-01-01

    Full Text Available Antisense-mediated exon skipping is currently in clinical development for Duchenne muscular dystrophy (DMD to amend the consequences of the underlying genetic defect and restore dystrophin expression. Due to turnover of compound, transcript, and protein, chronic treatment with effector molecules (antisense oligonucleotides will be required. To investigate the dynamics and persistence of antisense 2′-O-methyl phosphorothioate oligonucleotides, exon skipping, and dystrophin expression after dosing was concluded, mdx mice were treated subcutaneously for 8 weeks with 100 mg/kg oligonucleotides twice weekly. Thereafter, mice were sacrificed at different time points after the final injection (36 hours–24 weeks. Oligonucleotide half-life was longer in heart (~65 days compared with that in skeletal muscle, liver, and kidney (~35 days. Exon skipping half-lives varied between 33 and 53 days, whereas dystrophin protein showed a long half-life (>100 days. Oligonucleotide and exon-skipping levels peaked in the first week and declined thereafter. By contrast, dystrophin expression peaked after 3–8 weeks and then slowly declined, remaining detectable after 24 weeks. Concordance between levels of oligonucleotides, exon skipping, and proteins was observed, except in heart, wherein high oligonucleotide levels but low exon skipping and dystrophin expression were seen. Overall, these results enhance our understanding of the pharmacokinetics and pharmacodynamics of 2′-O-methyl phosphorothioate oligos used for the treatment of DMD.

  16. Instant MDX queries for SQL Server 2012

    CERN Document Server

    Emond, Nicholas

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. This short, focused guide is a great way to get stated with writing MDX queries. New developers can use this book as a reference for how to use functions and the syntax of a query as well as how to use Calculated Members and Named Sets.This book is great for new developers who want to learn the MDX query language from scratch and install SQL Server 2012 with Analysis Services

  17. Dual AAV therapy ameliorates exercise-induced muscle injury and functional ischemia in murine models of Duchenne muscular dystrophy.

    Science.gov (United States)

    Zhang, Yadong; Yue, Yongping; Li, Liang; Hakim, Chady H; Zhang, Keqing; Thomas, Gail D; Duan, Dongsheng

    2013-09-15

    Neuronal nitric oxide synthase (nNOS) membrane delocalization contributes to the pathogenesis of Duchenne muscular dystrophy (DMD) by promoting functional muscle ischemia and exacerbating muscle injury during exercise. We have previously shown that supra-physiological expression of nNOS-binding mini-dystrophin restores normal blood flow regulation and prevents functional ischemia in transgenic mdx mice, a DMD model. A critical next issue is whether systemic dual adeno-associated virus (AAV) gene therapy can restore nNOS-binding mini-dystrophin expression and mitigate muscle activity-related functional ischemia and injury. Here, we performed systemic gene transfer in mdx and mdx4cv mice using a pair of dual AAV vectors that expressed a 6 kb nNOS-binding mini-dystrophin gene. Vectors were packaged in tyrosine mutant AAV-9 and co-injected (5 × 10(12) viral genome particles/vector/mouse) via the tail vein to 1-month-old dystrophin-null mice. Four months later, we observed 30-50% mini-dystrophin positive myofibers in limb muscles. Treatment ameliorated histopathology, increased muscle force and protected against eccentric contraction-induced injury. Importantly, dual AAV therapy successfully prevented chronic exercise-induced muscle force drop. Doppler hemodynamic assay further showed that therapy attenuated adrenergic vasoconstriction in contracting muscle. Our results suggest that partial transduction can still ameliorate nNOS delocalization-associated functional deficiency. Further evaluation of nNOS binding mini-dystrophin dual AAV vectors is warranted in dystrophic dogs and eventually in human patients.

  18. Increasing taurine intake and taurine synthesis improves skeletal muscle function in the mdx mouse model for Duchenne muscular dystrophy.

    Science.gov (United States)

    Terrill, Jessica R; Pinniger, Gavin J; Graves, Jamie A; Grounds, Miranda D; Arthur, Peter G

    2016-06-01

    Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease associated with increased inflammation, oxidative stress and myofibre necrosis. Cysteine precursor antioxidants such as N-acetyl cysteine (NAC) and l-2-oxothiazolidine-4-carboxylate (OTC) reduce dystropathology in the mdx mouse model for DMD, and we propose this is via increased synthesis of the amino acid taurine. We compared the capacity of OTC and taurine treatment to increase taurine content of mdx muscle, as well as effects on in vivo and ex vivo muscle function, inflammation and oxidative stress. Both treatments increased taurine in muscles, and improved many aspects of muscle function and reduced inflammation. Taurine treatment also reduced protein thiol oxidation and was overall more effective, as OTC treatment reduced body and muscle weight, suggesting some adverse effects of this drug. These data suggest that increasing dietary taurine is a better candidate for a therapeutic intervention for DMD. Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease for which there is no widely available cure. Whilst the mechanism of loss of muscle function in DMD and the mdx mouse model are not fully understood, disruptions in intracellular calcium homeostasis, inflammation and oxidative stress are implicated. We have shown that protein thiol oxidation is increased in mdx muscle, and that the indirect thiol antioxidant l-2-oxothiazolidine-4-carboxylate (OTC), which increases cysteine availability, decreases pathology and increases in vivo strength. We propose that the protective effects of OTC are a consequence of conversion of cysteine to taurine, which has itself been shown to be beneficial to mdx pathology. This study compares the efficacy of taurine with OTC in decreasing dystropathology in mdx mice by measuring in vivo and ex vivo contractile function and measurements of inflammation and protein thiol oxidation. Increasing the taurine content of mdx muscle improved both in vivo and ex

  19. Application of Fluorescence Two-Dimensional Difference In-Gel Electrophoresis as a Proteomic Biomarker Discovery Tool in Muscular Dystrophy Research

    Science.gov (United States)

    Carberry, Steven; Zweyer, Margit; Swandulla, Dieter; Ohlendieck, Kay

    2013-01-01

    In this article, we illustrate the application of difference in-gel electrophoresis for the proteomic analysis of dystrophic skeletal muscle. The mdx diaphragm was used as a tissue model of dystrophinopathy. Two-dimensional gel electrophoresis is a widely employed protein separation method in proteomic investigations. Although two-dimensional gels usually underestimate the cellular presence of very high molecular mass proteins, integral membrane proteins and low copy number proteins, this method is extremely powerful in the comprehensive analysis of contractile proteins, metabolic enzymes, structural proteins and molecular chaperones. This gives rise to two-dimensional gel electrophoretic separation as the method of choice for studying contractile tissues in health and disease. For comparative studies, fluorescence difference in-gel electrophoresis has been shown to provide an excellent biomarker discovery tool. Since aged diaphragm fibres from the mdx mouse model of Duchenne muscular dystrophy closely resemble the human pathology, we have carried out a mass spectrometry-based comparison of the naturally aged diaphragm versus the senescent dystrophic diaphragm. The proteomic comparison of wild type versus mdx diaphragm resulted in the identification of 84 altered protein species. Novel molecular insights into dystrophic changes suggest increased cellular stress, impaired calcium buffering, cytostructural alterations and disturbances of mitochondrial metabolism in dystrophin-deficient muscle tissue. PMID:24833232

  20. Optimization of Peptide Nucleic Acid Antisense Oligonucleotides for Local and Systemic Dystrophin Splice Correction in the mdx Mouse

    Science.gov (United States)

    Yin, HaiFang; Betts, Corinne; Saleh, Amer F; Ivanova, Gabriela D; Lee, Hyunil; Seow, Yiqi; Kim, Dalsoo; Gait, Michael J; Wood, Matthew JA

    2010-01-01

    Antisense oligonucleotides (AOs) have the capacity to alter the processing of pre-mRNA transcripts in order to correct the function of aberrant disease-related genes. Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle degenerative disease that arises from mutations in the DMD gene leading to an absence of dystrophin protein. AOs have been shown to restore the expression of functional dystrophin via splice correction by intramuscular and systemic delivery in animal models of DMD and in DMD patients via intramuscular administration. Major challenges in developing this splice correction therapy are to optimize AO chemistry and to develop more effective systemic AO delivery. Peptide nucleic acid (PNA) AOs are an alternative AO chemistry with favorable in vivo biochemical properties and splice correcting abilities. Here, we show long-term splice correction of the DMD gene in mdx mice following intramuscular PNA delivery and effective splice correction in aged mdx mice. Further, we report detailed optimization of systemic PNA delivery dose regimens and PNA AO lengths to yield splice correction, with 25-mer PNA AOs providing the greatest splice correcting efficacy, restoring dystrophin protein in multiple peripheral muscle groups. PNA AOs therefore provide an attractive candidate AO chemistry for DMD exon skipping therapy. PMID:20068555

  1. Evaluation of Electrical Impedance as a Biomarker of Myostatin Inhibition in Wild Type and Muscular Dystrophy Mice.

    Directory of Open Access Journals (Sweden)

    Benjamin Sanchez

    Full Text Available Non-invasive and effort independent biomarkers are needed to better assess the effects of drug therapy on healthy muscle and that affected by muscular dystrophy (mdx. Here we evaluated the use of multi-frequency electrical impedance for this purpose with comparison to force and histological parameters.Eight wild-type (wt and 10 mdx mice were treated weekly with RAP-031 activin type IIB receptor at a dose of 10 mg kg-1 twice weekly for 16 weeks; the investigators were blinded to treatment and disease status. At the completion of treatment, impedance measurements, in situ force measurements, and histology analyses were performed.As compared to untreated animals, RAP-031 wt and mdx treated mice had greater body mass (18% and 17%, p 70 Hz, but not in the mdx animals. In contrast, maximum force normalized by muscle mass was unchanged in the wt animals and lower in the mdx animals by 21% (p < 0.01. Similarly, myofiber size was only non-significantly higher in treated versus untreated animals (8% p = 0.44 and 12% p = 0.31 for wt and mdx animals, respectively.Our findings demonstrate electrical impedance of muscle reproduce the functional and histological changes associated with myostatin pathway inhibition and do not reflect differences in muscle size or volume. This technique deserves further study in both animal and human therapeutic trials.

  2. Degenerative-dystrophic diseases

    International Nuclear Information System (INIS)

    Vinner, M.G.

    1983-01-01

    Differential diagnosis of degenerative-dystrophic diseases of lungs, such a s acquired emphysema and progressing dystrophy of lungs, has been elucidated. I t is shown, that roentgenofunctional tests are of a great diagnostic value. Roe ntgenologic and bronchographic rictures of different forms of emphysema and dystrophy of lungs are described

  3. Changes in calsequestrin, TNF-α, TGF-β and MyoD levels during the progression of skeletal muscle dystrophy in mdx mice: a comparative analysis of the quadriceps, diaphragm and intrinsic laryngeal muscles.

    Science.gov (United States)

    Barros Maranhão, Juliana; de Oliveira Moreira, Drielen; Maurício, Adriana Fogagnolo; de Carvalho, Samara Camaçari; Ferretti, Renato; Pereira, Juliano Alves; Santo Neto, Humberto; Marques, Maria Julia

    2015-10-01

    In Duchenne muscular dystrophy (DMD), the search for new biomarkers to follow the evolution of the disease is of fundamental importance in the light of the evolving gene and pharmacological therapies. In addition to the lack of dystrophin, secondary events including changes in calcium levels, inflammation and fibrosis greatly contribute to DMD progression and the molecules involved in these events may represent potential biomarkers. In this study, we performed a comparative evaluation of the progression of dystrophy within muscles that are differently affected by dystrophy (diaphragm; DIA and quadriceps; QDR) or spared (intrinsic laryngeal muscles) using the mdx mice model of DMD. We assessed muscle levels of calsequestrin (calcium-related protein), tumour necrosis factor (TNF-α; pro-inflammatory cytokine), tumour growth factor (TGF-β; pro-fibrotic factor) and MyoD (muscle proliferation) vs. histopathology at early (1 and 4 months of age) and late (9 months of age) stages of dystrophy. Fibrosis was the primary feature in the DIA of mdx mice (9 months: 32% fibrosis), which was greater than in the QDR (9 months: 0.6% fibrosis). Muscle regeneration was the primary feature in the QDR (9 months: 90% of centrally nucleated fibres areas vs. 33% in the DIA). The QDR expressed higher levels of calsequestrin than the DIA. Laryngeal muscles showed normal levels of TNF-α, TGF-β and MyoD. A positive correlation between histopathology and cytokine levels was observed only in the diaphragm, suggesting that TNF-α and TGF-β serve as markers of dystrophy primarily for the diaphragm. © 2015 The Authors. International Journal of Experimental Pathology © 2015 International Journal of Experimental Pathology.

  4. Nanopolymers improve delivery of exon skipping oligonucleotides and concomitant dystrophin expression in skeletal muscle of mdx mice

    Directory of Open Access Journals (Sweden)

    Sirsi Shashank R

    2008-04-01

    Full Text Available Abstract Background Exon skipping oligonucleotides (ESOs of 2'O-Methyl (2'OMe and morpholino chemistry have been shown to restore dystrophin expression in muscle fibers from the mdx mouse, and are currently being tested in phase I clinical trials for Duchenne Muscular Dystrophy (DMD. However, ESOs remain limited in their effectiveness because of an inadequate delivery profile. Synthetic cationic copolymers of poly(ethylene imine (PEI and poly(ethylene glycol (PEG are regarded as effective agents for enhanced delivery of nucleic acids in various applications. Results We examined whether PEG-PEI copolymers can facilitate ESO-mediated dystrophin expression after intramuscular injections into tibialis anterior (TA muscles of mdx mice. We utilized a set of PEG-PEI copolymers containing 2 kDa PEI and either 550 Da or 5 kDa PEG, both of which bind 2'OMe ESOs with high affinity and form stable nanoparticulates with a relatively low surface charge. Three weekly intramuscular injections of 5 μg of ESO complexed with PEI2K-PEG550 copolymers resulted in about 500 dystrophin-positive fibers and about 12% of normal levels of dystrophin expression at 3 weeks after the initial injection, which is significantly greater than for injections of ESO alone, which are known to be almost completely ineffective. In an effort to enhance biocompatibility and cellular uptake, the PEI2K-PEG550 and PEI2K-PEG5K copolymers were functionalized by covalent conjugation with nanogold (NG or adsorbtion of colloidal gold (CG, respectively. Surprisingly, using the same injection and dosing regimen, we found no significant difference in dystrophin expression by Western blot between the NG-PEI2K-PEG550, CG-PEI2K-PEG5K, and non-functionalized PEI2K-PEG550 copolymers. Dose-response experiments using the CG-PEI2K-PEG5K copolymer with total ESO ranging from 3–60 μg yielded a maximum of about 15% dystrophin expression. Further improvements in dystrophin expression up to 20% of normal

  5. Targeting artificial transcription factors to the utrophin A promoter: effects on dystrophic pathology and muscle function.

    Science.gov (United States)

    Lu, Yifan; Tian, Chai; Danialou, Gawiyou; Gilbert, Rénald; Petrof, Basil J; Karpati, George; Nalbantoglu, Josephine

    2008-12-12

    Duchenne muscular dystrophy is caused by a genetic defect in the dystrophin gene. The absence of dystrophin results in muscle fiber necrosis and regeneration, leading to progressive muscle fiber loss. Utrophin is a close analogue of dystrophin. A substantial, ectopic expression of utrophin in the extrasynaptic sarcolemma of dystrophin-deficient muscle fibers can prevent deleterious effects of dystrophin deficiency. An alternative approach for the extrasynaptic up-regulation of utrophin involves the augmentation of utrophin transcription via the endogenous utrophin A promoter using custom-designed transcriptional activator proteins with zinc finger (ZFP) motifs. We tested a panel of custom-designed ZFP for their ability to activate the utrophin A promoter. Expression of one such ZFP efficiently increased, in a time-dependent manner, utrophin transcript and protein levels both in vitro and in vivo. In dystrophic mouse (mdx) muscles, administration of adenoviral vectors expressing this ZFP led to significant enhancement of muscle function with decreased necrosis, restoration of the dystrophin-associated proteins, and improved resistance to eccentric contractions. These studies provide evidence that specifically designed ZFPs can act as strong transcriptional activators of the utrophin A promoter. These may thus serve as attractive therapeutic agents for dystrophin deficiency states such as Duchenne muscular dystrophy.

  6. Differential requirement for utrophin in the induced pluripotent stem cell correction of muscle versus fat in muscular dystrophy mice.

    Directory of Open Access Journals (Sweden)

    Amanda J Beck

    Full Text Available Duchenne muscular dystrophy (DMD is an incurable degenerative muscle disorder. We injected WT mouse induced pluripotent stem cells (iPSCs into mdx and mdx∶utrophin mutant blastocysts, which are predisposed to develop DMD with an increasing degree of severity (mdx <<< mdx∶utrophin. In mdx chimeras, iPSC-dystrophin was supplied to the muscle sarcolemma to effect corrections at morphological and functional levels. Dystrobrevin was observed in dystrophin-positive and, at a lesser extent, utrophin-positive areas. In the mdx∶utrophin mutant chimeras, although iPSC-dystrophin was also supplied to the muscle sarcolemma, mice still displayed poor skeletal muscle histopathology, and negligible levels of dystrobrevin in dystrophin- and utrophin-negative areas. Not only dystrophin-expressing tissues are affected by iPSCs. Mdx and mdx∶utrophin mice have reduced fat/body weight ratio, but iPSC injection normalized this parameter in both mdx and mdx∶utrophin chimeras, despite the fact that utrophin was compromised in the mdx∶utrophin chimeric fat. The results suggest that the presence of utrophin is required for the iPSC-corrections in skeletal muscle. Furthermore, the results highlight a potential (utrophin-independent non-cell autonomous role for iPSC-dystrophin in the corrections of non-muscle tissue like fat, which is intimately related to the muscle.

  7. Whole body periodic acceleration is an effective therapy to ameliorate muscular dystrophy in mdx mice.

    Science.gov (United States)

    Altamirano, Francisco; Perez, Claudio F; Liu, Min; Widrick, Jeffrey; Barton, Elisabeth R; Allen, Paul D; Adams, Jose A; Lopez, Jose R

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a genetic disorder caused by the absence of dystrophin in both skeletal and cardiac muscles. This leads to severe muscle degeneration, and dilated cardiomyopathy that produces patient death, which in most cases occurs before the end of the second decade. Several lines of evidence have shown that modulators of nitric oxide (NO) pathway can improve skeletal muscle and cardiac function in the mdx mouse, a mouse model for DMD. Whole body periodic acceleration (pGz) is produced by applying sinusoidal motion to supine humans and in standing conscious rodents in a headward-footward direction using a motion platform. It adds small pulses as a function of movement frequency to the circulation thereby increasing pulsatile shear stress to the vascular endothelium, which in turn increases production of NO. In this study, we examined the potential therapeutic properties of pGz for the treatment of skeletal muscle pathology observed in the mdx mouse. We found that pGz (480 cpm, 8 days, 1 hr per day) decreased intracellular Ca(2+) and Na(+) overload, diminished serum levels of creatine kinase (CK) and reduced intracellular accumulation of Evans Blue. Furthermore, pGz increased muscle force generation and expression of both utrophin and the carboxy-terminal PDZ ligand of nNOS (CAPON). Likewise, pGz (120 cpm, 12 h) applied in vitro to skeletal muscle myotubes reduced Ca(2+) and Na(+) overload, diminished abnormal sarcolemmal Ca(2+) entry and increased phosphorylation of endothelial NOS. Overall, this study provides new insights into the potential therapeutic efficacy of pGz as a non-invasive and non-pharmacological approach for the treatment of DMD patients through activation of the NO pathway.

  8. Recognition of mannose 6-phosphate ligands by dystrophic rat retinal pigment epithelium

    International Nuclear Information System (INIS)

    Tarnowski, B.; Shepherd, V.; McLaughlin, B.

    1986-01-01

    Retinal pigment epithelium (RPE) phagocytize discarded rod outer segments (ROS) during normal eye function. In the dystrophic rat, an animal model for retinitis pigmentosa in humans, ROS phagocytosis is defective. Dystrophic RPE can phagocytize particles other than ROS, suggesting that the defect may be in the RPE phagocytic recognition. They are currently investigating the recognition markers on RPE in dystrophic rats. In studies using ligand-coated latex beads, no uptake of mannose-coated beads was found in dystrophic rat RPE. They found that dystrophic RPE could specifically phagocytize phosphomannan-coated beads. Studies were begun to examine the presence and function of a phosphomannan receptor (PMR) on dystrophic RPE. α-Mannosidase, isolated from D. discoideum has been shown to be an efficient ligand for the PMR in fibroblasts and macrophages. It is also recognized by the macrophage mannose receptor. Dystrophic rat RPE and retina explants were placed in culture dishes (5-7/well). 125 I-Labelled α-mannosidase was added to each well in the presence or absence of 10 mM mannose 6-phosphate (M6P) or yeast mannan (lmg/ml). Explants were incubated at 37 0 for 2 hr., washed and bound 125 I-mannosidase quantitated. Approximately 2-3% of total counts added were bound to the RPE via a M6P-inhibitable recognition process. The binding to RPE was not blocked by mannan. No mannan or M6P-specific binding was found in retina explants. These results support the findings of specific uptake of phosphomannan-coated beads and demonstrate the presence of a specific PMR on dystrophic RPE phagocytic membranes

  9. Dystrophin is required for the normal function of the cardio-protective K(ATP channel in cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Laura Graciotti

    Full Text Available Duchenne and Becker muscular dystrophy patients often develop a cardiomyopathy for which the pathogenesis is still unknown. We have employed the murine animal model of Duchenne muscular dystrophy (mdx, which develops a cardiomyopathy that includes some characteristics of the human disease, to study the molecular basis of this pathology. Here we show that the mdx mouse heart has defects consistent with alteration in compounds that regulate energy homeostasis including a marked decrease in creatine-phosphate (PC. In addition, the mdx heart is more susceptible to anoxia than controls. Since the cardio-protective ATP sensitive potassium channel (K(ATP complex and PC have been shown to interact we investigated whether deficits in PC levels correlate with other molecular events including K(ATP ion channel complex presence, its functionality and interaction with dystrophin. We found that this channel complex is present in the dystrophic cardiac cell membrane but its ability to sense a drop in the intracellular ATP concentration and consequently open is compromised by the absence of dystrophin. We further demonstrate that the creatine kinase muscle isoform (CKm is displaced from the plasma membrane of the mdx cardiac cells. Considering that CKm is a determinant of K(ATP channel complex function we hypothesize that dystrophin acts as a scaffolding protein organizing the K(ATP channel complex and the enzymes necessary for its correct functioning. Therefore, the lack of proper functioning of the cardio-protective K(ATP system in the mdx cardiomyocytes may be part of the mechanism contributing to development of cardiac disease in dystrophic patients.

  10. The antimyotonic effect of lamotrigine in non-dystrophic myotonias

    DEFF Research Database (Denmark)

    Andersen, Grete; Hedermann, Gitte; Witting, Nanna

    2017-01-01

    ). Lamotrigine effectively reduced myotonia, emphasized by consistency between effects on patient-related outcomes and objective outcomes. The frequency of side effects was acceptable. Considering this and the high availability and low cost of the drug, we suggest that lamotrigine should be used as the first......Mexiletine is the only drug with proven effect for treatment of non-dystrophic myotonia, but mexiletine is expensive, has limited availability and several side effects. There is therefore a need to identify other pharmacological compounds that can alleviate myotonia in non-dystrophic myotonias....... Like mexiletine, lamotrigine is a sodium channel blocker, but unlike mexiletine, lamotrigine is available, inexpensive, and well tolerated. We investigated the potential of using lamotrigine for treatment of myotonia in patients with non-dystrophic myotonias. In this, randomized double-blind, placebo...

  11. Collagen VII deficient mice show morphologic and histologic corneal changes that phenotypically mimic human dystrophic epidermolysis bullosa of the eye.

    Science.gov (United States)

    Chen, Vicki M; Shelke, Rajani; Nyström, Alexander; Laver, Nora; Sampson, James F; Zhiyi, Cao; Bhat, Najma; Panjwani, Noorjahan

    2018-06-16

    Absence of collagen VII causes blistering of the skin, eyes and many other tissues. This disease is termed dystrophic epidermolysis bullosa (DEB). Corneal fibrosis occurs in up to 41% and vision loss in up to 64% of patients. Standard treatments are supportive and there is no cure. The immune-histologic and morphologic changes in the corneas of the mouse model for this disease have not been described in the literature. Our purpose is to characterize the eyes of these mice to determine if this is an appropriate model for study of human therapeutics. Western blot analysis (WB) and immunohistochemistry (IHC) were performed to assess the relative collagen VII protein levels and its location within the cornea. Additional IHC for inflammatory and fibrotic biomarkers alpha-smooth muscle actin (α-SMA), transforming growth factor-beta (TGF-β), connective tissue growth factor (CTGF), proteinase 3, tenascin C and collagen III were performed. Clinical photographs documenting opacification of the corneas of animals of differing ages were assessed and scored independently by 2 examiners. Histology was then used to investigate morphologic changes. IHC and WB confirmed that these mice are deficient in collagen VII production at the level of the basement membrane when compared with wild-types. IHC showed anomalous deposition of collagen III throughout the stroma. Of the 5 biomarkers tested, TGF-β showed the strongest and most consistently staining. Photographs documented corneal opacities only in mice older than 10 weeks, opacities were not seen in younger animals. Histology showed multiple abnormalities, including epithelial hyperplasia, ulceration, fibrosis, edema, dysplasia, neovascularization and bullae formation. The collagen VII hypomorphic mouse shows reduced collagen VII production at the level of the corneal basement membrane. Corneal changes are similar to pathology seen in humans with this disease. The presence of anomalous stromal collagen III and TGF-β appear to be

  12. Genetics Home Reference: dystrophic epidermolysis bullosa

    Science.gov (United States)

    ... fragile and to blister easily. Blisters and skin erosions form in response to minor injury or friction, such as ... M, Favia G, Serpico R. Oro-dental manifestations in Hallopeau-Siemens-type recessive dystrophic epidermolysis ...

  13. Dystrophic epidermolysis bullosa in a child

    Directory of Open Access Journals (Sweden)

    Uma Eswara

    2012-01-01

    Full Text Available Epidermolysis Bullosa (EB is a form of severe skin adhesion defect due to the disruption of the dermal- epidermal junction. It is classified into simplex and dystrophic forms depending on the level at which the junction is compromised. Repeated ulcerations and bullae formation in the mouth lead to scarring that brings about various changes in the oral cavity. These include loss of sulcular depth, ankyloglossia, limited mouth opening and other dentoalveolar changes. At present while there is no cure for EB, the therapeutic approaches are essentially aimed at controlling the infections and maintaining an acceptable quality of life. Dental management should aim at maintaining a functional dentition that would help in mastication and favour nutrition. Oral manifestations and dental management in a child diagnosed with dystrophic EB since birth are presented here.

  14. Uma análise comparativa de funções MDX nos servidores Analysis Services e Mondrian

    OpenAIRE

    ALBUQUERQUE, Erivam Anselmo de

    2013-01-01

    A MultiDimensional eXpression (MDX) é uma linguagem de consulta para processamento analítico de dados ou On-line Analytical Processing (OLAP). Apesar de esta linguagem ser usada pela maioria dos servidores OLAP, esta não é um padrão de direito. Portanto, tem-se pouca (ou nenhuma) garantia de que as funções MDX usadas por um servidor OLAP também possam ser usadas em outros servidores. Neste contexto, de forma a comparar as funções MDX de um servidor OLAP de código aberto e outro de código fech...

  15. Pulmonary dystrophic Calcinosis associated to systemic sclerosis: Report of the first case in Colombia

    International Nuclear Information System (INIS)

    Mendez Patarroyo, Paul; Rojas, Adriana; Restrepo Suarez, Jose Felix; Iglesias Gamarra, Antonio

    2002-01-01

    The association of pulmonary calcinosis with systemic sclerosis has not been described in the medical literature. There are two type of lung calcification: dystrophic and metastatic; in the collagen vascular diseases the most frequent is the dystrophic calcinosis, seen mainly in dermatomyositis and scleroderma. We describe the first case of dystrophic calcinosis associated with systemic sclerosis

  16. Evaluation of skeletal and cardiac muscle function after chronic administration of thymosin beta-4 in the dystrophin deficient mouse.

    Directory of Open Access Journals (Sweden)

    Christopher F Spurney

    2010-01-01

    Full Text Available Thymosin beta-4 (Tbeta4 is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. We studied the effects of chronic administration of Tbeta4 on the skeletal and cardiac muscle of dystrophin deficient mdx mice, the mouse model of Duchenne muscular dystrophy. Female wild type (C57BL10/ScSnJ and mdx mice, 8-10 weeks old, were treated with 150 microg of Tbeta4 twice a week for 6 months. To promote muscle pathology, mice were exercised for 30 minutes twice a week. Skeletal and cardiac muscle function were assessed via grip strength and high frequency echocardiography. Localization of Tbeta4 and amount of fibrosis were quantified using immunohistochemistry and Gomori's tri-chrome staining, respectively. Mdx mice treated with Tbeta4 showed a significant increase in skeletal muscle regenerating fibers compared to untreated mdx mice. Tbeta4 stained exclusively in the regenerating fibers of mdx mice. Although untreated mdx mice had significantly decreased skeletal muscle strength compared to untreated wild type, there were no significant improvements in mdx mice after treatment. Systolic cardiac function, measured as percent shortening fraction, was decreased in untreated mdx mice compared to untreated wild type and there was no significant difference after treatment in mdx mice. Skeletal and cardiac muscle fibrosis were also significantly increased in untreated mdx mice compared to wild type, but there was no significant improvement in treated mdx mice. In exercised dystrophin deficient mice, chronic administration of Tbeta4 increased the number of regenerating fibers in skeletal muscle and could have a potential role in treatment of skeletal muscle disease in Duchenne muscular dystrophy.

  17. Galectin-1 Protein Therapy Prevents Pathology and Improves Muscle Function in the mdx Mouse Model of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Van Ry, Pam M; Wuebbles, Ryan D; Key, Megan; Burkin, Dean J

    2015-08-01

    Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disease caused by mutations in the dystrophin gene, leading to the loss of a critical component of the sarcolemmal dystrophin glycoprotein complex. Galectin-1 is a small 14 kDa protein normally found in skeletal muscle and has been shown to be a modifier of immune response, muscle repair, and apoptosis. Galectin-1 levels are elevated in the muscle of mouse and dog models of DMD. Together, these findings led us to hypothesize that Galectin-1 may serve as a modifier of disease progression in DMD. To test this hypothesis, recombinant mouse Galectin-1 was produced and used to treat myogenic cells and the mdx mouse model of DMD. Here we show that intramuscular and intraperitoneal injections of Galectin-1 into mdx mice prevented pathology and improved muscle function in skeletal muscle. These improvements were a result of enhanced sarcolemmal stability mediated by elevated utrophin and α7β1 integrin protein levels. Together our results demonstrate for the first time that Galectin-1 may serve as an exciting new protein therapeutic for the treatment of DMD.

  18. Osteopontin ablation ameliorates muscular dystrophy by shifting macrophages to a pro-regenerative phenotype

    Science.gov (United States)

    Capote, Joana; Martinez, Leonel; Vetrone, Sylvia; Barton, Elisabeth R.; Sweeney, H. Lee; Miceli, M. Carrie

    2016-01-01

    In the degenerative disease Duchenne muscular dystrophy, inflammatory cells enter muscles in response to repetitive muscle damage. Immune factors are required for muscle regeneration, but chronic inflammation creates a profibrotic milieu that exacerbates disease progression. Osteopontin (OPN) is an immunomodulator highly expressed in dystrophic muscles. Ablation of OPN correlates with reduced fibrosis and improved muscle strength as well as reduced natural killer T (NKT) cell counts. Here, we demonstrate that the improved dystrophic phenotype observed with OPN ablation does not result from reductions in NKT cells. OPN ablation skews macrophage polarization toward a pro-regenerative phenotype by reducing M1 and M2a and increasing M2c subsets. These changes are associated with increased expression of pro-regenerative factors insulin-like growth factor 1, leukemia inhibitory factor, and urokinase-type plasminogen activator. Furthermore, altered macrophage polarization correlated with increases in muscle weight and muscle fiber diameter, resulting in long-term improvements in muscle strength and function in mdx mice. These findings suggest that OPN ablation promotes muscle repair via macrophage secretion of pro-myogenic growth factors. PMID:27091452

  19. Antibody dependent cellular phagocytosis (ADCP) and antibody dependent cellular cytotoxicity (ADCC) of breast cancer cells mediated by bispecific antibody, MDX-210.

    Science.gov (United States)

    Watanabe, M; Wallace, P K; Keler, T; Deo, Y M; Akewanlop, C; Hayes, D F

    1999-02-01

    MDX-210 is a bispecific antibody (BsAb) with specificity for both the proto-oncogene product of HER-2/neu (c-erbB-2) and FcgammaRI (CD64). HER-2/neu is overexpressed in malignant tissue of approximately 30% of patients with breast cancer, and FcgammaRI is expressed on human monocytes, macrophages, and IFN-gamma activated granulocytes. We investigated phagocytosis and cytolysis of cultured human breast cancer cells by human monocyte-derived macrophages (MDM) mediated by BsAb MDX-210, its partially humanized derivative (MDX-H210), and its parent MoAb 520C9 (anti-HER-2/neu) under various conditions. Purified monocytes were cultured with GM-CSF, M-CSF, or no cytokine for five or six days. Antibody dependent cellular phagocytosis (ADCP) and cytolysis (ADCC) assays were performed with the MDM and HER-2/neu positive target cells (SK-BR-3). ADCP was measured by two-color fluorescence flow cytometry using PKH2 (green fluorescent dye) and phycoerythrin-conjugated (red) monoclonal antibodies (MoAb) against human CD14 and CD11b. ADCC was measured with a non-radioactive LDH detection kit. Both BsAb MDX-210 (via FcgammaRI) and MoAb 520C9 (mouse IgG1, via FcgammaRII) mediated similar levels of ADCP and ADCC. ADCP mediated by BsAb MDX-H210 was identical to that mediated by BsAb MDX-210. Confocal microscopy demonstrated that dual-labeled cells represented true phagocytosis. Both ADCP and ADCC were higher when MDM were pre-incubated with GM-CSF than when incubated with M-CSF. BsAb MDX-210 is as active in vitro as the parent MoAb 520C9 in inducing both phagocytosis and cytolysis of MDM. MDX-210 and its partially humanized derivative, MDX-H210, mediated similar levels of ADCP. GM-CSF appears to superior to M-CSF in inducing MDM-mediated ADCC and ADCP. These studies support the ongoing clinical investigations of BsAb MDX-210 and its partially humanized derivative.

  20. The dietary polysaccharide maltodextrin promotes Salmonella survival and mucosal colonization in mice.

    Directory of Open Access Journals (Sweden)

    Kourtney P Nickerson

    Full Text Available In the latter half of the 20th century, societal and technological changes led to a shift in the composition of the American diet to include a greater proportion of processed, pre-packaged foods high in fat and carbohydrates, and low in dietary fiber (a "Western diet". Over the same time period, there have been parallel increases in Salmonella gastroenteritis cases and a broad range of chronic inflammatory diseases associated with intestinal dysbiosis. Several polysaccharide food additives are linked to bacterially-driven intestinal inflammation and may contribute to the pathogenic effects of a Western diet. Therefore, we examined the effect of a ubiquitous polysaccharide food additive, maltodextrin (MDX, on clearance of the enteric pathogen Salmonella using both in vitro and in vivo infection models. When examined in vitro, murine bone marrow-derived macrophages exposed to MDX had altered vesicular trafficking, suppressed NAPDH oxidase expression, and reduced recruitment of NADPH oxidase to Salmonella-containing vesicles, which resulted in persistence of Salmonella in enlarged Rab7+ late endosomal vesicles. In vivo, mice consuming MDX-supplemented water had a breakdown of the anti-microbial mucous layer separating gut bacteria from the intestinal epithelium surface. Additionally, oral infection of these mice with Salmonella resulted in increased cecal bacterial loads and enrichment of lamina propria cells harboring large Rab7+ vesicles. These findings indicate that consumption of processed foods containing the polysaccharide MDX contributes to suppression of intestinal anti-microbial defense mechanisms and may be an environmental priming factor for the development of chronic inflammatory disease.

  1. Tissue distribution of the dystrophin-related gene product and expression in the mdx and dy mouse

    Energy Technology Data Exchange (ETDEWEB)

    Love, D.R.; Marsden, R.F.; Bloomfield, J.F.; Davies, K.E. (John Radcliffe Hospital, Oxford (England)); Morris, G.E.; Ellis, J.M. (North East Wales Inst., Deeside, Wales (England)); Fairbrother, U.; Edwards, Y.H. (Univ. College London (England)); Slater, C.P. (Newcastle General Hospital, Newcastle-upon-Tyne (England)); Parry, D.J. (Univ. of Ottawa, Ontario (Canada))

    1991-04-15

    The authors have previously reported a dystrophin-related locus (DMDL for Duchenne muscular dystrophy-like) on human chromosome 6 that maps close to the dy mutation on mouse chromosome 10. Here they show that this gene is expressed in a wide range of tissues at varying levels. The transcript is particularly abundant in several human fetal tissues, including heart, placenta, and intestine. Studies with antisera raised against a DMDL fusion protein identify a 400,000 M{sub r} protein in all mouse tissues tested, including those of mdx and dy mice. Unlike the dystrophin gene, the DMDL gene transcript is not differentially spliced at the 3{prime} end in either fetal muscle or brain.

  2. Three familial cases of Pasini variant of dominant dystrophic epidermolysis

    Directory of Open Access Journals (Sweden)

    Seirafi H

    1999-07-01

    Full Text Available Epidermolysis bullosa (EB is the term applied to a group of disorders whose common primary feature is the formation of blisters following trivial trauma. Hereditary EB comprises 3 major classes: simplex, junctional and dystrophic, and includes more than 23 phenotypes. The albopapuloid pasini variant of dominant dystrophic EB is characterized by a distinctive clinical appearance. In this article, we report this disease in three members of a family (father and two sons.

  3. Formulation of polylactide-co-glycolic acid nanospheres for encapsulation and sustained release of poly(ethylene imine-poly(ethylene glycol copolymers complexed to oligonucleotides

    Directory of Open Access Journals (Sweden)

    Wheatley Margaret A

    2009-04-01

    Full Text Available Abstract Antisense oligonucleotides (AOs have been shown to induce dystrophin expression in muscles cells of patients with Duchenne Muscular Dystrophy (DMD and in the mdx mouse, the murine model of DMD. However, ineffective delivery of AOs limits their therapeutic potential. Copolymers of cationic poly(ethylene imine (PEI and non-ionic poly(ethylene glycol (PEG form stable nanoparticles when complexed with AOs, but the positive surface charge on the resultant PEG-PEI-AO nanoparticles limits their biodistribution. We adapted a modified double emulsion procedure for encapsulating PEG-PEI-AO polyplexes into degradable polylactide-co-glycolic acid (PLGA nanospheres. Formulation parameters were varied including PLGA molecular weight, ester end-capping, and sonication energy/volume. Our results showed successful encapsulation of PEG-PEI-AO within PLGA nanospheres with average diameters ranging from 215 to 240 nm. Encapsulation efficiency ranged from 60 to 100%, and zeta potential measurements confirmed shielding of the PEG-PEI-AO cationic charge. Kinetic measurements of 17 kDa PLGA showed a rapid burst release of about 20% of the PEG-PEI-AO, followed by sustained release of up to 65% over three weeks. To evaluate functionality, PEG-PEI-AO polyplexes were loaded into PLGA nanospheres using an AO that is known to induce dystrophin expression in dystrophic mdx mice. Intramuscular injections of this compound into mdx mice resulted in over 300 dystrophin-positive muscle fibers distributed throughout the muscle cross-sections, approximately 3.4 times greater than for injections of AO alone. We conclude that PLGA nanospheres are effective compounds for the sustained release of PEG-PEI-AO polyplexes in skeletal muscle and concomitant expression of dystrophin, and may have translational potential in treating DMD.

  4. Pharmacological Inhibition of PKCθ Counteracts Muscle Disease in a Mouse Model of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Marrocco, V; Fiore, P; Benedetti, A; Pisu, S; Rizzuto, E; Musarò, A; Madaro, L; Lozanoska-Ochser, B; Bouché, M

    2017-02-01

    Inflammation plays a considerable role in the progression of Duchenne Muscular Dystrophy (DMD), a severe muscle disease caused by a mutation in the dystrophin gene. We previously showed that genetic ablation of Protein Kinase C θ (PKCθ) in mdx, the mouse model of DMD, improves muscle healing and regeneration, preventing massive inflammation. To establish whether pharmacological targeting of PKCθ in DMD can be proposed as a therapeutic option, in this study we treated young mdx mice with the PKCθ inhibitor Compound 20 (C20). We show that C20 treatment led to a significant reduction in muscle damage associated with reduced immune cells infiltration, reduced inflammatory pathways activation, and maintained muscle regeneration. Importantly, C20 treatment is efficient in recovering muscle performance in mdx mice, by preserving muscle integrity. Together, these results provide proof of principle that pharmacological inhibition of PKCθ in DMD can be considered an attractive strategy to modulate immune response and prevent the progression of the disease. Duchenne muscular dystrophy (DMD) is a severe muscle disease affecting 1:3500 male births. DMD is caused by a mutation in dystrophin gene, coding for a protein required for skeletal and cardiac muscle integrity. Lack of a functional dystrophin is primarily responsible for the muscle eccentric contraction-induced muscle damage, observed in dystrophic muscle. However, inflammation plays a considerable role in the progression of DMD. Glucocorticoids, which have anti-inflammatory properties, are being used to treat DMD with some success; however, long term treatment with these drugs induces muscle atrophy and wasting, outweighing their benefit. The identification of specific targets for anti-inflammatory therapies is one of the ongoing therapeutic options. Although blunting inflammation would not be a "cure" for the disease, the emerging clue is that multiple strategies, addressing different aspects of the pathology

  5. Human dental pulp pluripotent-like stem cells promote wound healing and muscle regeneration.

    Science.gov (United States)

    Martínez-Sarrà, Ester; Montori, Sheyla; Gil-Recio, Carlos; Núñez-Toldrà, Raquel; Costamagna, Domiziana; Rotini, Alessio; Atari, Maher; Luttun, Aernout; Sampaolesi, Maurilio

    2017-07-27

    Dental pulp represents an easily accessible autologous source of adult stem cells. A subset of these cells, named dental pulp pluripotent-like stem cells (DPPSC), shows high plasticity and can undergo multiple population doublings, making DPPSC an appealing tool for tissue repair or maintenance. DPPSC were harvested from the dental pulp of third molars extracted from young patients. Growth factors released by DPPSC were analysed using antibody arrays. Cells were cultured in specific differentiation media and their endothelial, smooth and skeletal muscle differentiation potential was evaluated. The therapeutic potential of DPPSC was tested in a wound healing mouse model and in two genetic mouse models of muscular dystrophy (Scid/mdx and Sgcb-null Rag2-null γc-null). DPPSC secreted several growth factors involved in angiogenesis and extracellular matrix deposition and improved vascularisation in all three murine models. Moreover, DPPSC stimulated re-epithelialisation and ameliorated collagen deposition and organisation in healing wounds. In dystrophic mice, DPPSC engrafted in the skeletal muscle of both dystrophic murine models and showed integration in muscular fibres and vessels. In addition, DPPSC treatment resulted in reduced fibrosis and collagen content, larger cross-sectional area of type II fast-glycolytic fibres and infiltration of higher numbers of proangiogenic CD206 + macrophages. Overall, DPPSC represent a potential source of stem cells to enhance the wound healing process and slow down dystrophic muscle degeneration.

  6. The accumulation of 134Cs in heart and skeletal muscle of healthy and dystrophic hamsters

    International Nuclear Information System (INIS)

    Szentkuti, L.; Breitrueck, H.; Giese, W.

    1976-01-01

    he accumulation of cesium-134 in heart and skeletal muscle of healthy and dystrophic hamsters was compared. It was lower in dystrophic hamsters than in normal ones after only a single dose of cesium-134. The 134 Cs-concentrations of heart and 'red' skeletal muscle were different between normal and dystrophic hamsters. When the isotope had equilibrated in the animals differences in 134 Cs-accumulation in muscle tissue between normal and dystrophic hamsters were even more obvious. The faster elimination of cesium-134 from the body as affected by muscular dystrophy was due to a reduction of 134 Cs-accumulation in muscle tissue. The reduced ability of damaged muscles to accumulate Cs-ions offers the possibility to use Cs-isotopes in diagnosis of skeletal muscle dystrophy. (author)

  7. Functional substitution by TAT-utrophin in dystrophin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kevin J Sonnemann

    2009-05-01

    Full Text Available The loss of dystrophin compromises muscle cell membrane stability and causes Duchenne muscular dystrophy and/or various forms of cardiomyopathy. Increased expression of the dystrophin homolog utrophin by gene delivery or pharmacologic up-regulation has been demonstrated to restore membrane integrity and improve the phenotype in the dystrophin-deficient mdx mouse. However, the lack of a viable therapy in humans predicates the need to explore alternative methods to combat dystrophin deficiency. We investigated whether systemic administration of recombinant full-length utrophin (Utr or DeltaR4-21 "micro" utrophin (muUtr protein modified with the cell-penetrating TAT protein transduction domain could attenuate the phenotype of mdx mice.Recombinant TAT-Utr and TAT-muUtr proteins were expressed using the baculovirus system and purified using FLAG-affinity chromatography. Age-matched mdx mice received six twice-weekly intraperitoneal injections of either recombinant protein or PBS. Three days after the final injection, mice were analyzed for several phenotypic parameters of dystrophin deficiency. Injected TAT-muUtr transduced all tissues examined, integrated with members of the dystrophin complex, reduced serum levels of creatine kinase (11,290+/-920 U versus 5,950+/-1,120 U; PBS versus TAT, the prevalence of muscle degeneration/regeneration (54%+/-5% versus 37%+/-4% of centrally nucleated fibers; PBS versus TAT, the susceptibility to eccentric contraction-induced force drop (72%+/-5% versus 40%+/-8% drop; PBS versus TAT, and increased specific force production (9.7+/-1.1 N/cm(2 versus 12.8+/-0.9 N/cm(2; PBS versus TAT.These results are, to our knowledge, the first to establish the efficacy and feasibility of TAT-utrophin-based constructs as a novel direct protein-replacement therapy for the treatment of skeletal and cardiac muscle diseases caused by loss of dystrophin.

  8. Dystrophic Cardiomyopathy: Complex Pathobiological Processes to Generate Clinical Phenotype

    Directory of Open Access Journals (Sweden)

    Takeshi Tsuda

    2017-09-01

    Full Text Available Duchenne muscular dystrophy (DMD, Becker muscular dystrophy (BMD, and X-linked dilated cardiomyopathy (XL-DCM consist of a unique clinical entity, the dystrophinopathies, which are due to variable mutations in the dystrophin gene. Dilated cardiomyopathy (DCM is a common complication of dystrophinopathies, but the onset, progression, and severity of heart disease differ among these subgroups. Extensive molecular genetic studies have been conducted to assess genotype-phenotype correlation in DMD, BMD, and XL-DCM to understand the underlying mechanisms of these diseases, but the results are not always conclusive, suggesting the involvement of complex multi-layers of pathological processes that generate the final clinical phenotype. Dystrophin protein is a part of dystrophin-glycoprotein complex (DGC that is localized in skeletal muscles, myocardium, smooth muscles, and neuronal tissues. Diversity of cardiac phenotype in dystrophinopathies suggests multiple layers of pathogenetic mechanisms in forming dystrophic cardiomyopathy. In this review article, we review the complex molecular interactions involving the pathogenesis of dystrophic cardiomyopathy, including primary gene mutations and loss of structural integrity, secondary cellular responses, and certain epigenetic and other factors that modulate gene expressions. Involvement of epigenetic gene regulation appears to lead to specific cardiac phenotypes in dystrophic hearts.

  9. Loss of calretinin immunoreactive fibers in subcortical visual recipient structures of the RCS dystrophic rat.

    Science.gov (United States)

    Vugler, Anthony A; Coffey, Peter J

    2003-11-01

    The retinae of dystrophic Royal College of Surgeons (RCS) rats exhibit progressive photoreceptor degeneration accompanied by pathology of ganglion cells. To date, little work has examined the consequences of retinal degeneration for central visual structures in dystrophic rats. Here, we use immunohistochemistry for calretinin (CR) to label retinal afferents in the superior colliculus (SC), lateral geniculate nucleus, and olivary pretectal nucleus of RCS rats aged between 2 and 26 months of age. Early indications of fiber loss in the medial dystrophic SC were apparent between 9 and 13 months. Quantitative methods reveal a significant reduction in the level of CR immunoreactivity in visual layers of the medial dystrophic SC at 13 months (P animals aged 19-26 months the loss of CR fibers in SC was dramatic, with well-defined patches of fiber degeneration predominating in medial aspects of the structure. This fiber degeneration in SC was accompanied by increased detection of cells immunoreactive for CR. In several animals, regions of fiber loss were also found to contain strongly parvalbumin-immunoreactive cells. Loss of CR fibers was also observed in the lateral geniculate nucleus and olivary pretectal nucleus. Patterns of fiber loss in the dystrophic SC compliment reports of ganglion cell degeneration in these animals and the response of collicular neurons to degeneration is discussed in terms of plasticity of the dystrophic visual system and properties of calcium binding proteins.

  10. Natural Gene Therapy in Dystrophic Epidermolysis Bullosa

    NARCIS (Netherlands)

    van den Akker, Peter C.; Nijenhuis, Albertine; Hofstra, Robert M. W.; Jonkman, Marcel F.; Pasmooij, Anna M. G.; Meijer, G.

    Background: Dystrophic epidermolysis bullosa is a genetic blistering disorder caused by mutations in the type VII collagen gene, COL7A1. In revertant mosaicism, germline mutations are corrected by somatic events resulting in a mosaic disease distribution. This "natural gene therapy" phenomenon long

  11. Sildenafil reduces respiratory muscle weakness and fibrosis in the mdx mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Percival, Justin M; Whitehead, Nicholas P; Adams, Marvin E; Adamo, Candace M; Beavo, Joseph A; Froehner, Stanley C

    2012-09-01

    Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy caused by mutations in the dystrophin gene. Loss of dystrophin initiates a progressive decline in skeletal muscle integrity and contractile capacity which weakens respiratory muscles including the diaphragm, culminating in respiratory failure, the leading cause of morbidity and mortality in DMD patients. At present, corticosteroid treatment is the primary pharmacological intervention in DMD, but has limited efficacy and adverse side effects. Thus, there is an urgent need for new safe, cost-effective, and rapidly implementable treatments that slow disease progression. One promising new approach is the amplification of nitric oxide-cyclic guanosine monophosphate (NO-cGMP) signalling pathways with phosphodiesterase 5 (PDE5) inhibitors. PDE5 inhibitors serve to amplify NO signalling that is attenuated in many neuromuscular diseases including DMD. We report here that a 14-week treatment of the mdx mouse model of DMD with the PDE5 inhibitor sildenafil (Viagra(®), Revatio(®)) significantly reduced mdx diaphragm muscle weakness without impacting fatigue resistance. In addition to enhancing respiratory muscle contractility, sildenafil also promoted normal extracellular matrix organization. PDE5 inhibition slowed the establishment of mdx diaphragm fibrosis and reduced matrix metalloproteinase-13 (MMP-13) expression. Sildenafil also normalized the expression of the pro-fibrotic (and pro-inflammatory) cytokine tumour necrosis factor α (TNFα). Sildenafil-treated mdx diaphragms accumulated significantly less Evans Blue tracer dye than untreated controls, which is also indicative of improved diaphragm muscle health. We conclude that sildenafil-mediated PDE5 inhibition significantly reduces diaphragm respiratory muscle dysfunction and pathology in the mdx mouse model of Duchenne muscular dystrophy. This study provides new insights into the therapeutic utility of targeting defects in NO

  12. Tetranectin is a novel marker for myogenesis during embryonic development, muscle regeneration, and muscle cell differentiation in vitro

    DEFF Research Database (Denmark)

    Wewer, U M; Iba, K; Durkin, M E

    1998-01-01

    differentiation in vitro. We find that tetranectin expression coincides with muscle differentiation and maturation in the second half of gestation and further that tetranectin is enriched at the myotendinous and myofascial junctions. The tetranectin immunostaining declines after birth and no immunostaining...... cells in dystrophic mdx mice. Murine C2C12 myogenic cells and pluripotent embryonic stem cells can undergo muscle cell differentiation in vitro. Tetranectin is not expressed in the undifferentiated myogenic cells, but during the progression of muscle differentiation, tetranectin mRNA is induced...... that in some tissues, such as the limbs, tetranectin may function locally, whereas in other tissues, such as the lung, tetranectin production may be destined for body fluids. In summary, these results suggest that tetranectin is a matricellular protein and plays a role in myogenesis....

  13. Radiologic manifestations of degenerative-dystrophic lesion of false joints of the limbs

    International Nuclear Information System (INIS)

    Novikov, V.P.

    1980-01-01

    There have been examined 752 patients with false joints and defects of articular ends of the long tubular bones. Various forms of degenerative-dystrophic lesion of the false joints and neoarthrosis which developed after resection of the articular end, as well as of other sections of bones and joints preconditioned by the long-term overload, have been studied in that group. Degenerative-dystrophic damage has been established to be one of the main causes of secondary sub-and decompensation that manifests by cystic transformation, aseptic necrosis and, in extremely rare cases, deforming arthrosis of the former lesion area. Similar alterations in the adjacent and distant overloaded sections of bones and joints are also thought to belong to causative factors. The importance of the timely multiple X-ray examination has been shown, particularly in detecting early manifestations of degenerative-dystrophic lesion in clinical and preclinical phases

  14. Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies.

    Science.gov (United States)

    Terrill, Jessica R; Radley-Crabb, Hannah G; Iwasaki, Tomohito; Lemckert, Frances A; Arthur, Peter G; Grounds, Miranda D

    2013-09-01

    The muscular dystrophies comprise more than 30 clinical disorders that are characterized by progressive skeletal muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for pathogenesis generally remains unknown. It is considered that disturbed levels of reactive oxygen species (ROS) contribute to the pathology of many muscular dystrophies. Reactive oxygen species and oxidative stress may cause cellular damage by directly and irreversibly damaging macromolecules such as proteins, membrane lipids and DNA; another major cellular consequence of reactive oxygen species is the reversible modification of protein thiol side chains that may affect many aspects of molecular function. Irreversible oxidative damage of protein and lipids has been widely studied in Duchenne muscular dystrophy, and we have recently identified increased protein thiol oxidation in dystrophic muscles of the mdx mouse model for Duchenne muscular dystrophy. This review evaluates the role of elevated oxidative stress in Duchenne muscular dystrophy and other forms of muscular dystrophies, and presents new data that show significantly increased protein thiol oxidation and high levels of lipofuscin (a measure of cumulative oxidative damage) in dysferlin-deficient muscles of A/J mice at various ages. The significance of this elevated oxidative stress and high levels of reversible thiol oxidation, but minimal myofibre necrosis, is discussed in the context of the disease mechanism for dysferlinopathies, and compared with the situation for dystrophin-deficient mdx mice. © 2013 The Authors Journal compilation © 2013 FEBS.

  15. Dystrophic Cutaneous Calcification and Metaplastic Bone Formation due to Long Term Bisphosphonate Use in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ali Murat Tatlı

    2013-01-01

    Full Text Available Bisphosphonates are widely used in the treatment of breast cancer with bone metastases. We report a case of a female with breast cancer presented with a rash around a previous mastectomy site and a discharge lesion on her right chest wall in August 2010. Biopsy of the lesion showed dystrophic calcification and metaplastic bone formation. The patient’s history revealed a long term use of zoledronic acid for the treatment of breast cancer with bone metastasis. We stopped the treatment since we believed that the cutaneous dystrophic calcification could be associated with her long term bisphosphonate therapy. Adverse cutaneous events with bisphosphonates are very rare, and dystrophic calcification has not been reported previously. The dystrophic calcification and metaplastic bone formation in this patient are thought to be due to long term bisphosphonate usage.

  16. ADAM12 overexpression does not improve outcome in mice with laminin alpha2-deficient muscular dystrophy

    DEFF Research Database (Denmark)

    Guo, Ling T; Shelton, G Diane; Wewer, Ulla M

    2005-01-01

    We have recently shown that overexpression of ADAM12 results in increased muscle regeneration and significantly reduced pathology in mdx, dystrophin deficient mice. In the present study, we tested the effect of overexpressing ADAM12 in dy(W) laminin-deficient mice. dy mice have a very severe...... clinical phenotype and would be expected to benefit greatly from enhanced regeneration. We found that dy(W) mice overexpressing ADAM12 indeed have increased muscle regeneration, as evidenced by increased numbers of muscle fibers expressing fetal myosin. However, overexpression of ADAM12 had no significant...

  17. Non-Pollen Palynomorphs Characteristic for the Dystrophic Stage of Humic Lakes in the Wigry National Park, Ne Poland

    Directory of Open Access Journals (Sweden)

    Fiłoc Magdalena

    2015-06-01

    Full Text Available The numerous dystrophic (humic lakes are a very important feature of Wigry National Park, NE Poland. As the most recent palaeoecological data indicate, at the beginning of its development (in the Late Glacial and Early and Middle Holocene these water bodies functioned as harmonious lakes, and their transformation into dystrophic lakes and the stabilization of the trophic state took place at the beginning of the Subboreal. Palynological analysis of sediments from two such lakes (Lake Ślepe and Lake Suchar II, with special emphasis on non-pollen palynomorphs (NPPs, was aimed at a detailed biological characterization of dystrophic lakes during their long-lasting existence. The obtained results allowed for the designation of organisms characteristic for dystrophic lakes, of which representatives appeared with the decreasing pH of the water and the formation of Sphagnum peat around lakes. These organisms were divided into four groups: algae, fungi, testate amoebas, and animals. Their representatives appear invarious developmental stages of dystrophic lakes.

  18. The HDAC Inhibitor TSA Ameliorates a Zebrafish Model of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Johnson, Nathan M; Farr, Gist H; Maves, Lisa

    2013-09-17

    Zebrafish are an excellent model for Duchenne muscular dystrophy. In particular, zebrafish provide a system for rapid, easy, and low-cost screening of small molecules that can ameliorate muscle damage in dystrophic larvae. Here we identify an optimal anti-sense morpholino cocktail that robustly knocks down zebrafish Dystrophin (dmd-MO). We use two approaches, muscle birefringence and muscle actin expression, to quantify muscle damage and show that the dmd-MO dystrophic phenotype closely resembles the zebrafish dmd mutant phenotype. We then show that the histone deacetylase (HDAC) inhibitor TSA, which has been shown to ameliorate the mdx mouse Duchenne model, can rescue muscle fiber damage in both dmd-MO and dmd mutant larvae. Our study identifies optimal morpholino and phenotypic scoring approaches for dystrophic zebrafish, further enhancing the zebrafish dmd model for rapid and cost-effective small molecule screening.

  19. Clinical map document based on XML (cMDX): document architecture with mapping feature for reporting and analysing prostate cancer in radical prostatectomy specimens.

    Science.gov (United States)

    Eminaga, Okyaz; Hinkelammert, Reemt; Semjonow, Axel; Neumann, Joerg; Abbas, Mahmoud; Koepke, Thomas; Bettendorf, Olaf; Eltze, Elke; Dugas, Martin

    2010-11-15

    The pathology report of radical prostatectomy specimens plays an important role in clinical decisions and the prognostic evaluation in Prostate Cancer (PCa). The anatomical schema is a helpful tool to document PCa extension for clinical and research purposes. To achieve electronic documentation and analysis, an appropriate documentation model for anatomical schemas is needed. For this purpose we developed cMDX. The document architecture of cMDX was designed according to Open Packaging Conventions by separating the whole data into template data and patient data. Analogue custom XML elements were considered to harmonize the graphical representation (e.g. tumour extension) with the textual data (e.g. histological patterns). The graphical documentation was based on the four-layer visualization model that forms the interaction between different custom XML elements. Sensible personal data were encrypted with a 256-bit cryptographic algorithm to avoid misuse. In order to assess the clinical value, we retrospectively analysed the tumour extension in 255 patients after radical prostatectomy. The pathology report with cMDX can represent pathological findings of the prostate in schematic styles. Such reports can be integrated into the hospital information system. "cMDX" documents can be converted into different data formats like text, graphics and PDF. Supplementary tools like cMDX Editor and an analyser tool were implemented. The graphical analysis of 255 prostatectomy specimens showed that PCa were mostly localized in the peripheral zone (Mean: 73% ± 25). 54% of PCa showed a multifocal growth pattern. cMDX can be used for routine histopathological reporting of radical prostatectomy specimens and provide data for scientific analysis.

  20. Clinical map document based on XML (cMDX: document architecture with mapping feature for reporting and analysing prostate cancer in radical prostatectomy specimens

    Directory of Open Access Journals (Sweden)

    Bettendorf Olaf

    2010-11-01

    Full Text Available Abstract Background The pathology report of radical prostatectomy specimens plays an important role in clinical decisions and the prognostic evaluation in Prostate Cancer (PCa. The anatomical schema is a helpful tool to document PCa extension for clinical and research purposes. To achieve electronic documentation and analysis, an appropriate documentation model for anatomical schemas is needed. For this purpose we developed cMDX. Methods The document architecture of cMDX was designed according to Open Packaging Conventions by separating the whole data into template data and patient data. Analogue custom XML elements were considered to harmonize the graphical representation (e.g. tumour extension with the textual data (e.g. histological patterns. The graphical documentation was based on the four-layer visualization model that forms the interaction between different custom XML elements. Sensible personal data were encrypted with a 256-bit cryptographic algorithm to avoid misuse. In order to assess the clinical value, we retrospectively analysed the tumour extension in 255 patients after radical prostatectomy. Results The pathology report with cMDX can represent pathological findings of the prostate in schematic styles. Such reports can be integrated into the hospital information system. "cMDX" documents can be converted into different data formats like text, graphics and PDF. Supplementary tools like cMDX Editor and an analyser tool were implemented. The graphical analysis of 255 prostatectomy specimens showed that PCa were mostly localized in the peripheral zone (Mean: 73% ± 25. 54% of PCa showed a multifocal growth pattern. Conclusions cMDX can be used for routine histopathological reporting of radical prostatectomy specimens and provide data for scientific analysis.

  1. Deficiency in Cardiac Dystrophin Affects the Abundance of the α-/β-Dystroglycan Complex

    Directory of Open Access Journals (Sweden)

    James Lohan

    2005-01-01

    Full Text Available Although Duchenne muscular dystrophy is primarily categorised as a skeletal muscle disease, deficiency in the membrane cytoskeletal protein dystrophin also affects the heart. The central transsarcolemmal linker between the actin membrane cytoskeleton and the extracellular matrix is represented by the dystrophin-associated dystroglycans. Chemical cross-linking analysis revealed no significant differences in the dimeric status of the α-/β-dystroglycan subcomplex in the dystrophic mdx heart as compared to normal cardiac tissue. In analogy to skeletal muscle fibres, heart muscle also exhibited a greatly reduced abundance of both dystroglycans in dystrophin-deficient cells. Immunoblotting demonstrated that the degree of reduction in α-dystroglycan is more pronounced in matured mdx skeletal muscle as contrasted to the mdx heart. The fact that the deficiency in dystrophin triggers a similar pathobiochemical response in both types of muscle suggests that the cardiomyopathic complications observed in x-linked muscular dystrophy might be initiated by the loss of the dystrophin-associated surface glycoprotein complex.

  2. Naturally Protected Muscle Phenotypes: Development of Novel Treatment Strategies for Duchenne Muscular Dystrophy

    OpenAIRE

    Dowling, Paul; Doran, Philip; Lohan, James; Culligan, Kevin; Ohlendieck, Kay

    2004-01-01

    Primary abnormalities in the dystrophin gene underlie x-linked muscular dystrophy. However, the absence of the dystrophin isoform Dp427 does not necessarily result in a severe dystrophic phenotype in all muscle groups. Distal mdx muscles, namely extraocular and toe fibres, appear to represent a protected phenotype in muscular dystrophy. Thus, a comparative analysis of affected versus naturally protected muscle cells should lead to a greater knowledge of the molecular pathogenes...

  3. Adipose-derived stem cells enhance myogenic differentiation in the mdx mouse model of muscular dystrophy via paracrine signaling

    Directory of Open Access Journals (Sweden)

    Ji-qing Cao

    2016-01-01

    Full Text Available Adipose-derived stem cells have been shown to promote peripheral nerve regeneration through the paracrine secretion of neurotrophic factors. However, it is unclear whether these cells can promote myogenic differentiation in muscular dystrophy. Adipose-derived stem cells (6 × 10 6 were injected into the gastrocnemius muscle of mdx mice at various sites. Dystrophin expression was found in the muscle fibers. Phosphorylation levels of Akt, mammalian target of rapamycin (mTOR, eIF-4E binding protein 1 and S6 kinase 1 were increased, and the Akt/mTOR pathway was activated. Simultaneously, myogenin levels were increased, whereas cleaved caspase 3 and vimentin levels were decreased. Necrosis and fibrosis were reduced in the muscle fibers. These findings suggest that adipose-derived stem cells promote the regeneration and survival of muscle cells by inhibiting apoptosis and fibrosis, thereby alleviating muscle damage in muscular dystrophy.

  4. Membrane-stabilizing copolymers confer marked protection to dystrophic skeletal muscle in vivo

    Directory of Open Access Journals (Sweden)

    Evelyne M Houang

    Full Text Available Duchenne muscular dystrophy (DMD is a fatal disease of striated muscle deterioration. A unique therapeutic approach for DMD is the use of synthetic membrane stabilizers to protect the fragile dystrophic sarcolemma against contraction-induced mechanical stress. Block copolymer-based membrane stabilizer poloxamer 188 (P188 has been shown to protect the dystrophic myocardium. In comparison, the ability of synthetic membrane stabilizers to protect fragile DMD skeletal muscles has been less clear. Because cardiac and skeletal muscles have distinct structural and functional features, including differences in the mechanism of activation, variance in sarcolemma phospholipid composition, and differences in the magnitude and types of forces generated, we speculated that optimized membrane stabilization could be inherently different. Our objective here is to use principles of pharmacodynamics to evaluate membrane stabilization therapy for DMD skeletal muscles. Results show a dramatic differential effect of membrane stabilization by optimization of pharmacodynamic-guided route of poloxamer delivery. Data show that subcutaneous P188 delivery, but not intravascular or intraperitoneal routes, conferred significant protection to dystrophic limb skeletal muscles undergoing mechanical stress in vivo. In addition, structure-function examination of synthetic membrane stabilizers further underscores the importance of copolymer composition, molecular weight, and dosage in optimization of poloxamer pharmacodynamics in vivo.

  5. Histomorphometrical aspects of the postnatal development of masticatory muscle in the muscular dystrophic mouse

    DEFF Research Database (Denmark)

    Vilmann, H; Kirkeby, S

    1991-01-01

    amount of connective tissue between the fibres. The histomorphometrical observations revealed an increase in mean size of the fibres with age, both in normal and dystrophic masticatory muscles. The fibre size variance which has been shown to be a reliable parameter for description of degree of affection...... criteria to separate dystrophic muscles from normal muscles at birth. From 2 weeks onwards marked differences between the affected and unaffected muscles appeared, as the affected fibres from this age are rounded with marked variations in size. Central nucleation is frequent and there is an increased...

  6. Compensation for dystrophin-deficiency: ADAM12 overexpression in skeletal muscle results in increased alpha 7 integrin, utrophin and associated glycoproteins

    DEFF Research Database (Denmark)

    Moghadaszadeh, Behzad; Albrechtsen, Reidar; Guo, Ling T

    2003-01-01

    Mouse models for genetic diseases are among the most powerful tools available for developing and testing new treatment strategies. ADAM12 is a disintegrin and metalloprotease, previously demonstrated to significantly alleviate the pathology of mdx mice, a model for Duchenne muscular dystrophy...... in humans. More specifically ADAM12 appeared to prevent muscle cell necrosis in the mdx mice as evidenced by morphological analysis and by the reduced levels of serum creatine kinase. In the present study we demonstrated that ADAM12 may compensate for the dystrophin deficiency in mdx mice by increasing...... the expression and redistribution of several components of the muscle cell-adhesion complexes. First, we analyzed transgenic mice that overexpress ADAM12 and found mild myopathic changes and accelerated regeneration following acute injury. We then analyzed changes in gene-expression profiles in mdx/ADAM12...

  7. Oxidized CaMKII (Ca2+/Calmodulin-Dependent Protein Kinase II) Is Essential for Ventricular Arrhythmia in a Mouse Model of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Wang, Qiongling; Quick, Ann P; Cao, Shuyi; Reynolds, Julia; Chiang, David Y; Beavers, David; Li, Na; Wang, Guoliang; Rodney, George G; Anderson, Mark E; Wehrens, Xander H T

    2018-04-01

    Duchenne muscular dystrophy patients are prone to ventricular arrhythmias, which may be caused by abnormal calcium (Ca 2+ ) homeostasis and elevated reactive oxygen species. CaMKII (Ca 2+ /calmodulin-dependent protein kinase II) is vital for normal Ca 2+ homeostasis, but excessive CaMKII activity contributes to abnormal Ca 2+ homeostasis and arrhythmias in cardiomyocytes. Reactive oxygen species induce CaMKII to become autonomously active. We hypothesized that genetic inhibition of CaMKII oxidation (ox-CaMKII) in a mouse model of Duchenne muscular dystrophy can alleviate abnormal Ca 2+ homeostasis, thus, preventing ventricular arrhythmia. The objective of this study was to test if selective loss of ox-CaMKII affects ventricular arrhythmias in the mdx mouse model of Duchenne muscular dystrophy. 5-(6)-Chloromethyl-2,7-dichlorodihydrofluorescein diacetate staining revealed increased reactive oxygen species production in ventricular myocytes isolated from mdx mice, which coincides with elevated ventricular ox-CaMKII demonstrated by Western blotting. Genetic inhibition of ox-CaMKII by knockin replacement of the regulatory domain methionines with valines (MM-VV [CaMKII M281/282V]) prevented ventricular tachycardia in mdx mice. Confocal calcium imaging of ventricular myocytes isolated from mdx :MM-VV mice revealed normalization of intracellular Ca 2+ release events compared with cardiomyocytes from mdx mice. Abnormal action potentials assessed by optical mapping in mdx mice were also alleviated by genetic inhibition of ox-CaMKII. Knockout of the NADPH oxidase regulatory subunit p47 phox normalized elevated ox-CaMKII, repaired intracellular Ca 2+ homeostasis, and rescued inducible ventricular arrhythmias in mdx mice. Inhibition of reactive oxygen species or ox-CaMKII protects against proarrhythmic intracellular Ca 2+ handling and prevents ventricular arrhythmia in a mouse model of Duchenne muscular dystrophy. © 2018 American Heart Association, Inc.

  8. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    International Nuclear Information System (INIS)

    Wu, Hsu-Pin; Hsu, Shu-Yuan; Wu, Wen-Ai; Hu, Ji-Wei; Ouyang, Pin

    2014-01-01

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB +/− mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity

  9. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hsu-Pin; Hsu, Shu-Yuan [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Wu, Wen-Ai; Hu, Ji-Wei [Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Ouyang, Pin, E-mail: ouyang@mail.cgu.edu.tw [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Taiwan (China)

    2014-01-03

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB{sup +/−} mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity.

  10. Divergent impact of Toll-like receptor 2 deficiency on repair mechanisms in healthy muscle versus Duchenne muscular dystrophy.

    Science.gov (United States)

    Mojumdar, Kamalika; Giordano, Christian; Lemaire, Christian; Liang, Feng; Divangahi, Maziar; Qureshi, Salman T; Petrof, Basil J

    2016-05-01

    Injury to skeletal muscle, whether acute or chronic, triggers macrophage-mediated innate immunity in a manner which can be either beneficial or harmful for subsequent repair. Endogenous ligands for Toll-like receptor 2 (TLR2) are released by damaged tissues and might play an important role in activating the innate immune system following muscle injury. To test this hypothesis, we compared macrophage behaviour and muscle repair mechanisms in mice lacking TLR2 under conditions of either acute (cardiotoxin-induced) or chronic (mdx mouse genetic model of Duchenne muscular dystrophy; DMD) muscle damage. In previously healthy muscle subjected to acute damage, TLR2 deficiency reduced macrophage numbers in the muscle post-injury but did not alter the expression pattern of the prototypical macrophage polarization markers iNOS and CD206. In addition, there was abnormal persistence of necrotic fibres and impaired regeneration in TLR2-/- muscles after acute injury. In contrast, TLR2 ablation in chronically diseased muscles of mdx mice not only resulted in significantly reduced macrophage numbers but additionally modified their phenotype by shifting from inflammatory (iNOS(pos) CD206(neg) ) to more anti-inflammatory (iNOS(neg) CD206(pos) ) characteristics. This decrease in macrophage-mediated inflammation was associated with ameliorated muscle histopathology and improved force-generating capacity of the dystrophic muscle. Our results suggest that the role of TLR2 in macrophage function and skeletal muscle repair depends greatly upon the muscle injury context, and raise the possibility that inhibition of TLR2 could serve as a useful therapeutic measure in DMD. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  11. Leg amputation and dystrophic epidermolysis bullosa: A case report with 15 years of follow-up.

    Science.gov (United States)

    Thevenon, André; Preud'homme, Marguerite; Patenotre, Philippe; Catteau, Benoit; Blanchard-Dauphin, Anne; Wieczorek, Valérie; Tiffreau, Vincent

    2016-10-12

    Dystrophic epidermolysis bullosa is a rare disease characterized by widespread blistering of the skin and mucous membranes, which may ultimately prompt limb amputation. In this context, the outcome of fitting a prosthesis to a chronically wounded stump is not well known. Our patient's experience (with 15 years of follow-up) should contribute to better knowledge of this topic. A 37-year-old man presented with severe dystrophic epidermolysis bullosa. Recurrent skin carcinoma had led to an amputation below the knee. Despite incessant development of blisters on the stump and the need for wound dressing and padding, the patient has been able to walk freely with a prosthesis and a cane. A large number of skin sarcomas were excised over the 15-year period of prosthesis use. Two falls have resulted in limb fractures. A new sarcoma on the stump marked the end of the use of the prosthesis. Despite the constant presence of wounds on the stump, amputees with dystrophic epidermolysis bullosa can successfully be fitted with a prosthesis.

  12. Multi-parametric MRI at 14T for muscular dystrophy mice treated with AAV vector-mediated gene therapy.

    Directory of Open Access Journals (Sweden)

    Joshua Park

    Full Text Available The objective of this study was to investigate the efficacy of using quantitative magnetic resonance imaging (MRI as a non-invasive tool for the monitoring of gene therapy for muscular dystrophy. The clinical investigations for this family of diseases often involve surgical biopsy which limits the amount of information that can be obtained due to the invasive nature of the procedure. Thus, other non-invasive tools may provide more opportunities for disease assessment and treatment responses. In order to explore this, dystrophic mdx4cv mice were systemically treated with a recombinant adeno-associated viral (AAV vector containing a codon-optimized micro-dystrophin gene. Multi-parametric MRI of T2, magnetization transfer, and diffusion effects alongside 3-D volume measurements were then utilized to monitor disease/treatment progression. Mice were imaged at 10 weeks of age for pre-treatment, then again post-treatment at 8, 16, and 24 week time points. The efficacy of treatment was assessed by physiological assays for improvements in function and quantification of expression. Tissues from the hindlimbs were collected for histological analysis after the final time point for comparison with MRI results. We found that introduction of the micro-dystrophin gene restored some aspects of normal muscle histology and pathology such as decreased necrosis and resistance to contraction-induced injury. T2 relaxation values showed percentage decreases across all muscle types measured (tibialis anterior, gastrocnemius, and soleus when treated groups were compared to untreated groups. Additionally, the differences between groups were statistically significant for the tibialis anterior as well. The diffusion measurements showed a wider range of percentage changes and less statistical significance while the magnetization transfer effect measurements showed minimal change. MR images displayed hyper-intense regions of muscle that correlated with muscle pathology in

  13. TGF-β1 activates the canonical NF-κB signaling to promote cell survival and proliferation in dystrophic muscle fibroblasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhen-Yu [Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong Province (China); Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, No.250 Changgang East Road, Guangzhou 510260, Guangdong Province (China); Zhong, Zhi-Gang; Qiu, Meng-Yao; Zhong, Yu-Hua [Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong Province (China); Zhang, Wei-Xi, E-mail: weixizhang@qq.com [Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong Province (China)

    2016-03-18

    Activated fibroblasts continue to proliferate at injury sites, leading to progressive muscular fibrosis in Duchenne muscular dystrophy (DMD). TGF-β1 is a dominant profibrotic mediator thought to play a critical role in muscle fibrosis; however, the implicated mechanisms are not fully understood. Here we showed that TGF-β1 increased the resistance to apoptosis and stimulated cell cycle progression in dystrophic muscle fibroblasts under serum deprivation conditions in vitro. TGF-β1 treatment activated the canonical NF-κB pathway; and we found that pharmacological inhibition of IKKβ with IMD-0354 and RelA gene knockdown with siRNA attenuated these effects of TGF-β1 on dystrophic muscle fibroblasts. Collectively, our data suggest that TGF-β1 prevents apoptosis and cell cycle arrest in dystrophic muscle fibroblasts through the canonical NF-κB signaling pathway. - Highlights: • TGF-β1 promotes survival and proliferation in dystrophic muscle fibroblasts. • TGF-β1 activated the canonical NF-κB pathway in dystrophic muscle fibroblasts. • Canonical NF-κB pathway mediates these effects of TGF-β1.

  14. TGF-β1 activates the canonical NF-κB signaling to promote cell survival and proliferation in dystrophic muscle fibroblasts in vitro

    International Nuclear Information System (INIS)

    Ma, Zhen-Yu; Zhong, Zhi-Gang; Qiu, Meng-Yao; Zhong, Yu-Hua; Zhang, Wei-Xi

    2016-01-01

    Activated fibroblasts continue to proliferate at injury sites, leading to progressive muscular fibrosis in Duchenne muscular dystrophy (DMD). TGF-β1 is a dominant profibrotic mediator thought to play a critical role in muscle fibrosis; however, the implicated mechanisms are not fully understood. Here we showed that TGF-β1 increased the resistance to apoptosis and stimulated cell cycle progression in dystrophic muscle fibroblasts under serum deprivation conditions in vitro. TGF-β1 treatment activated the canonical NF-κB pathway; and we found that pharmacological inhibition of IKKβ with IMD-0354 and RelA gene knockdown with siRNA attenuated these effects of TGF-β1 on dystrophic muscle fibroblasts. Collectively, our data suggest that TGF-β1 prevents apoptosis and cell cycle arrest in dystrophic muscle fibroblasts through the canonical NF-κB signaling pathway. - Highlights: • TGF-β1 promotes survival and proliferation in dystrophic muscle fibroblasts. • TGF-β1 activated the canonical NF-κB pathway in dystrophic muscle fibroblasts. • Canonical NF-κB pathway mediates these effects of TGF-β1.

  15. Increased Expression of Laminin Subunit Alpha 1 Chain by dCas9-VP160

    OpenAIRE

    Perrin, Arnaud; Rousseau, Jo?l; Tremblay, Jacques P.

    2016-01-01

    Laminin-111 protein complex links the extracellular matrix to integrin α7β1 in sarcolemma, thus replacing in dystrophic muscles links normally insured by the dystrophin complex. Laminin-111 injection in mdx mouse stabilized sarcolemma, restored serum creatine kinase to wild-type levels, and protected muscles from exercised-induced damages. These results suggested that increased laminin-111 is a potential therapy for DMD. Laminin subunit beta 1 and laminin subunit gamma 1 are expressed in adul...

  16. Translational Studies of GALGT2 Gene Therapy for Duchenne Muscular Dystrophy

    Science.gov (United States)

    2014-10-01

    myofibers has been demonstrated to protect both wild type and dystrophic muscles from injury and to inhibit the development of muscular dystrophy in...dose for functional muscle correction after rAAVrh74.MCK.GALGT2 treatment in mdx mouse muscle . The second thing we have learned is that the MHCK7...post- treatment showed very low levels of sustained muscle transduction, however, co-injection of rAAVrh74.MHCK7.GALGT2 with an equivalent dose of

  17. Resistance and resilience of ecosystem descriptors and properties to dystrophic events: a study case in a Mediterranean lagoon

    OpenAIRE

    Basset, Alberto; Barbone, Enrico; Rosati, Ilaria; Vignes, Fabio; Breber, Paolo; Specchiulli, Antonietta; D'Adamo, Raffaele; Renzi, Monia; Focardi, Silvano; Ungaro, Nicola; Pinna, Maurizio

    2013-01-01

    Mediterranean lagoons are naturally exposed, during the dry season, to dystrophic and hypoxic events determining dis-equilibrium conditions along temporal and spatial scales, which are linked to metabolism and life cycle of the biotic components. In summer 2008, Lesina lagoon (SE Italian coastline) was interested by a geographically localized dystrophic crisis which affected up to 8% of the total lagoon surface. Temporal dynamics of principal descriptors of abiotic (water, sediment) and bioti...

  18. RPE cell surface proteins in normal and dystrophic rats

    International Nuclear Information System (INIS)

    Clark, V.M.; Hall, M.O.

    1986-01-01

    Membrane-bound proteins in plasma membrane enriched fractions from cultured rat RPE were analyzed by two-dimensional gel electrophoresis. Membrane proteins were characterized on three increasingly specific levels. Total protein was visualized by silver staining. A maximum of 102 separate proteins were counted in silver-stained gels. Glycoproteins were labeled with 3H-glucosamine or 3H-fucose and detected by autoradiography. Thirty-eight fucose-labeled and 61-71 glucosamine-labeled proteins were identified. All of the fucose-labeled proteins were labeled with glucosamine-derived radioactivity. Proteins exposed at the cell surface were labeled by lactoperoxidase-catalyzed radioiodination prior to preparation of membranes for two-dimensional analysis. Forty separate 125I-labeled surface proteins were resolved by two-dimensional electrophoresis/autoradiography. Comparison with the glycoprotein map showed that a number of these surface labeled proteins were glycoproteins. Two-dimensional maps of total protein, fucose-labeled, and glucosamine-labeled glycoproteins, and 125I-labeled surface proteins of membranes from dystrophic (RCS rdy-p+) and normal (Long Evans or RCS rdy+p+) RPE were compared. No differences in the total protein or surface-labeled proteins were observed. However, the results suggest that a 183K glycoprotein is more heavily glycosylated with glucosamine and fucose in normal RPE membranes as compared to membranes from dystrophic RPE

  19. Genetic inhibition of PKA phosphorylation of RyR2 prevents dystrophic cardiomyopathy

    NARCIS (Netherlands)

    Sarma, Satyam; Li, Na; van Oort, Ralph J.; Reynolds, Corey; Skapura, Darlene G.; Wehrens, Xander H. T.

    2010-01-01

    Aberrant intracellular Ca(2+) regulation is believed to contribute to the development of cardiomyopathy in Duchenne muscular dystrophy. Here, we tested whether inhibition of protein kinase A (PKA) phosphorylation of ryanodine receptor type 2 (RyR2) prevents dystrophic cardiomyopathy by reducing SR

  20. Redefining the non-dystrophic myotonic syndromes. Phenotypic characterisation based on genetic testing.

    NARCIS (Netherlands)

    Trip, J.

    2010-01-01

    Chapter 1 gives a general introduction to non-dystrophic myotonic syndromes (NDMs). Chapter 2 comprises a systematic review about drug treatment for myotonia. Three small crossover studies evaluated myotonia in myotonic dystrophy. Unfortunately, for the treatment of myotonia in NDMs we were unable

  1. GLPG0492, a novel selective androgen receptor modulator, improves muscle performance in the exercised-mdx mouse model of muscular dystrophy.

    Science.gov (United States)

    Cozzoli, Anna; Capogrosso, Roberta Francesca; Sblendorio, Valeriana Teresa; Dinardo, Maria Maddalena; Jagerschmidt, Catherine; Namour, Florence; Camerino, Giulia Maria; De Luca, Annamaria

    2013-06-01

    Anabolic drugs may counteract muscle wasting and dysfunction in Duchenne muscular dystrophy (DMD); however, steroids have unwanted side effects. We focused on GLPG0492, a new non-steroidal selective androgen receptor modulator that is currently under development for musculo-skeletal diseases such as sarcopenia and cachexia. GLPG0492 was tested in the exercised mdx mouse model of DMD in a 4-week trial at a single high dose (30 mg/kg, 6 day/week s.c.), and the results were compared with those from the administration of α-methylprednisolone (PDN; 1 mg/kg, i.p.) and nandrolone (NAND, 5 mg/kg, s.c.). This assessment was followed by a 12-week dose-dependence study (0.3-30 mg/kg s.c.). The outcomes were evaluated in vivo and ex vivo on functional, histological and biochemical parameters. Similar to PDN and NAND, GLPG0492 significantly increased mouse strength. In acute exhaustion tests, a surrogate of the 6-min walking test used in DMD patients, GLPG0492 preserved running performance, whereas vehicle- or comparator-treated animals showed a significant increase in fatigue (30-50%). Ex vivo, all drugs resulted in a modest but significant increase of diaphragm force. In parallel, a decrease in the non-muscle area and markers of fibrosis was observed in GLPG0492- and NAND-treated mice. The drugs exerted minor effects on limb muscles; however, electrophysiological biomarkers were ameliorated in extensor digitorum longus muscle. The longer dose-dependence study confirmed the effect on mdx mouse strength and resistance to fatigue and demonstrated the efficacy of lower drug doses on in vivo and ex vivo functional parameters. These results support the interest of further studies of GLPG0492 as a potential treatment for DMD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. E2F transcription factor-1 deficiency reduces pathophysiology in the mouse model of Duchenne muscular dystrophy through increased muscle oxidative metabolism.

    Science.gov (United States)

    Blanchet, Emilie; Annicotte, Jean-Sébastien; Pradelli, Ludivine A; Hugon, Gérald; Matecki, Stéfan; Mornet, Dominique; Rivier, François; Fajas, Lluis

    2012-09-01

    E2F1 deletion leads to increased mitochondrial number and function, increased body temperature in response to cold and increased resistance to fatigue with exercise. Since E2f1-/- mice show increased muscle performance, we examined the effect of E2f1 genetic inactivation in the mdx background, a mouse model of Duchenne muscular dystrophy (DMD). E2f1-/-;mdx mice demonstrated a strong reduction of physiopathological signs of DMD, including preservation of muscle structure, decreased inflammatory profile, increased utrophin expression, resulting in better endurance and muscle contractile parameters, comparable to normal mdx mice. E2f1 deficiency in the mdx genetic background increased the oxidative metabolic gene program, mitochondrial activity and improved muscle functions. Interestingly, we observed increased E2F1 protein levels in DMD patients, suggesting that E2F1 might represent a promising target for the treatment of DMD.

  3. Dystropathology increases energy expenditure and protein turnover in the Mdx mouse model of Duchenne muscular dystrophy

    Science.gov (United States)

    The skeletal muscles in Duchenne muscular dystrophy and the mdx mouse model lack functional dystrophin and undergo repeated bouts of necrosis, regeneration, and growth. These processes have a high metabolic cost. However, the consequences for whole body energy and protein metabolism, and on the diet...

  4. Dystrophic Epidermolysis Bullosa in Pregnancy: A Case Report of the Autosomal Dominant Subtype and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Nicole Colgrove

    2014-01-01

    Full Text Available Epidermolysis bullosa (EB is a group of inherited blistering skin diseases that vary widely in their pathogenesis and severity. There are three main categories of EB: simplex, junctional, and dystrophic. This classification is based on the level of tissue separation within the basement membrane zone and this is attributed to abnormalities of individual or several anchoring proteins that form the interlocking network spanning from the epidermis to the dermis underneath. Dystrophic EB results from mutations in COL7A1 gene coding for type VII collagen leading to blister formation within the dermis. Diagnosis ultimately depends on the patient’s specific genetic mutation, but initial diagnosis can be made from careful examination and history taking. We present a pregnant patient known to have autosomal dominant dystrophic EB and discuss the obstetrical and neonatal outcome. The paper also reviews the current English literature on this rare skin disorder.

  5. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1.

    Directory of Open Access Journals (Sweden)

    Sandra J Feeney

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1.

  6. Treatment with soluble activin type IIB-receptor improves bone mass and strength in a mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Puolakkainen, Tero; Ma, Hongqian; Kainulainen, Heikki; Pasternack, Arja; Rantalainen, Timo; Ritvos, Olli; Heikinheimo, Kristiina; Hulmi, Juha J; Kiviranta, Riku

    2017-01-19

    Inhibition of activin/myostatin pathway has emerged as a novel approach to increase muscle mass and bone strength. Duchenne muscular dystrophy (DMD) is a neuromuscular disorder that leads to progressive muscle degeneration and also high incidence of fractures. The aim of our study was to test whether inhibition of activin receptor IIB ligands with or without exercise could improve bone strength in the mdx mouse model for DMD. Thirty-two mdx mice were divided to running and non-running groups and to receive either PBS control or soluble activin type IIB-receptor (ActRIIB-Fc) once weekly for 7 weeks. Treatment of mdx mice with ActRIIB-Fc resulted in significantly increased body and muscle weights in both sedentary and exercising mice. Femoral μCT analysis showed increased bone volume and trabecular number (BV/TV +80%, Tb.N +70%, P treatment of mdx mice with the soluble ActRIIB-Fc results in a robust increase in bone mass, without any additive effect by voluntary running. Thus ActRIIB-Fc could be an attractive option in the treatment of musculoskeletal disorders.

  7. Muscle hypertrophy induced by myostatin inhibition accelerates degeneration in dysferlinopathy.

    Science.gov (United States)

    Lee, Yun-Sil; Lehar, Adam; Sebald, Suzanne; Liu, Min; Swaggart, Kayleigh A; Talbot, C Conover; Pytel, Peter; Barton, Elisabeth R; McNally, Elizabeth M; Lee, Se-Jin

    2015-10-15

    Myostatin is a secreted signaling molecule that normally acts to limit muscle growth. As a result, there is extensive effort directed at developing drugs capable of targeting myostatin to treat patients with muscle loss. One potential concern with this therapeutic approach in patients with muscle degenerative diseases like muscular dystrophy is that inducing hypertrophy may increase stress on dystrophic fibers, thereby accelerating disease progression. To investigate this possibility, we examined the effect of blocking the myostatin pathway in dysferlin-deficient (Dysf(-/-)) mice, in which membrane repair is compromised, either by transgenic expression of follistatin in skeletal muscle or by systemic administration of the soluble form of the activin type IIB receptor (ACVR2B/Fc). Here, we show that myostatin inhibition by follistatin transgene expression in Dysf(-/-) mice results in early improvement in histopathology but ultimately exacerbates muscle degeneration; this effect was not observed in dystrophin-deficient (mdx) mice, suggesting that accelerated degeneration induced by follistatin transgene expression is specific to mice lacking dysferlin. Dysf(-/-) mice injected with ACVR2B/Fc showed significant increases in muscle mass and amelioration of fibrotic changes normally seen in 8-month-old Dysf(-/-) mice. Despite these potentially beneficial effects, ACVR2B/Fc treatment caused increases in serum CK levels in some Dysf(-/-) mice, indicating possible muscle damage induced by hypertrophy. These findings suggest that depending on the disease context, inducing muscle hypertrophy by myostatin blockade may have detrimental effects, which need to be weighed against the potential gains in muscle growth and decreased fibrosis. © The Author 2015. Published by Oxford University Press.

  8. Skeletal muscle secretome in Duchenne muscular dystrophy: a pivotal anti-inflammatory role of adiponectin.

    Science.gov (United States)

    Lecompte, S; Abou-Samra, M; Boursereau, R; Noel, L; Brichard, S M

    2017-07-01

    Persistent inflammation exacerbates the progression of Duchenne muscular dystrophy (DMD). The hormone, adiponectin (ApN), which is decreased in the metabolic syndrome, exhibits anti-inflammatory properties on skeletal muscle and alleviates the dystrophic phenotype of mdx mice. Here, we investigate whether ApN retains its anti-inflammatory action in myotubes obtained from DMD patients. We unravel the underlying mechanisms by studying the secretome and the early events of ApN. Primary cultures of myotubes from DMD and control patients were treated or not by ApN after an inflammatory challenge. Myokines secreted in medium were identified by cytokine antibody-arrays and ELISAs. The early events of ApN signaling were assessed by abrogating selected genes. ApN retained its anti-inflammatory properties in both dystrophic and control myotubes. Profiling of secretory products revealed that ApN downregulated the secretion of two pro-inflammatory factors (TNFα and IL-17A), one soluble receptor (sTNFRII), and one chemokine (CCL28) in DMD myotubes, while upregulating IL-6 that exerts some anti-inflammatory effects. These changes were explained by pretranslational mechanisms. Earlier events of the ApN cascade involved AdipoR1, the main receptor for muscle, and the AMPK-SIRT1-PGC-1α axis leading, besides alteration of the myokine profile, to the upregulation of utrophin A (a dystrophin analog). ApN retains its beneficial properties in dystrophic muscles by activating the AdipoR1-AMPK-SIRT1-PGC-1α pathway, thereby inducing a shift in the secretion of downstream myokines toward a less inflammatory profile while upregulating utrophin. ApN, the early events of the cascade and downstream myokines may be therapeutic targets for the management of DMD.

  9. Low-dose radiation effects on the evolution of chronic dystrophical processes in cornea and clouding of crystalline lens

    International Nuclear Information System (INIS)

    Gajdaj, Yu.V.; Gajdaj, V.M.

    1993-01-01

    Low-dose radiation effects on the course of chronic dystrophical processes in cornea and the dynamics of crystalline lens clouding of involution age genesis are investigated in the patients participated in Chernobyl accident response. Examples of the concrete pathological cases are considered. It was stated that the above dose effects led to exacerbation of the chronic slack dystrophical processes in cornea and intensification of the development of cornea primary dystrophy. In a number of cases the intensification of development of crystalline lens clouding takes place resulted in the cataract for 2-3 years

  10. α-smooth muscle actin is not a marker of fibrogenic cell activity in skeletal muscle fibrosis.

    Directory of Open Access Journals (Sweden)

    Wanming Zhao

    Full Text Available α-Smooth muscle actin (α-SMA is used as a marker for a subset of activated fibrogenic cells, myofibroblasts, which are regarded as important effector cells of tissue fibrogenesis. We address whether α-SMA-expressing myofibroblasts are detectable in fibrotic muscles of mdx5cv mice, a mouse model for Duchenne muscular dystrophy (DMD, and whether the α-SMA expression correlates with the fibrogenic function of intramuscular fibrogenic cells. α-SMA immunostaining signal was not detected in collagen I (GFP-expressing cells in fibrotic muscles of ColI-GFP/mdx5cv mice, but it was readily detected in smooth muscle cells lining intramuscular blood vessel walls. α-SMA expression was detected by quantitative RT-PCR and Western blot in fibrogenic cells sorted from diaphragm and quadriceps muscles of the ColI-GFP/mdx5cv mice. Consistent with the more severe fibrosis in the ColI-GFP/mdx5cv diaphragm, the fibrogenic cells in the diaphragm exerted a stronger fibrogenic function than the fibrogenic cells in the quadriceps as gauged by their extracellular matrix gene expression. However, both gene and protein expression of α-SMA was lower in the diaphragm fibrogenic cells than in the quadriceps fibrogenic cells in the ColI-GFP/mdx5cv mice. We conclude that myofibroblasts are present in fibrotic skeletal muscles, but their expression of α-SMA is not detectable by immunostaining. The level of α-SMA expression by intramuscular fibrogenic cells does not correlate positively with the level of collagen gene expression or the severity of skeletal muscle fibrosis in the mdx5cv mice. α-SMA is not a functional marker of fibrogenic cells in skeletal muscle fibrosis associated with muscular dystrophy.

  11. Evidence of Tau Hyperphosphorylation and Dystrophic Microglia in the Common Marmoset.

    Science.gov (United States)

    Rodriguez-Callejas, Juan D; Fuchs, Eberhard; Perez-Cruz, Claudia

    2016-01-01

    Common marmosets ( Callithrix jacchus ) have recently gained popularity in biomedical research as models of aging research. Basically, they confer advantages from other non-human primates due to their shorter lifespan with onset of appearance of aging at 8 years. Old marmosets present some markers linked to neurodegeneration in the brain such as amyloid beta (Aβ) 1-42 and Aβ 1-40 . However, there are no studies exploring other cellular markers associated with neurodegenerative diseases in this non-human primate. Using immunohistochemistry, we analyzed brains of male adolescent, adult, old, and aged marmosets. We observed accumulation of Aβ 1-40 and Aβ 1-42 in the cortex of aged subjects. Tau hyperphosphorylation was already detected in the brain of adolescent animals and increased with aging in a more fibrillary form. Microglia activation was also observed in the aging process, while a dystrophic phenotype accumulates in aged subjects. Interestingly, dystrophic microglia contained hyperphosphorylated tau, but active microglia did not. These results support previous findings regarding microglia dysfunctionality in aging and neurodegenerative diseases as Alzheimer's disease. Further studies should explore the functional consequences of these findings to position this non-human primate as animal model of aging and neurodegeneration.

  12. Biodistribution studies of {sup 99m}Tc-labeled myoblasts in a murine model of muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, F.R. E-mail: colombof@policlinico.mi.it; Torrente, Y.; Casati, R.; Benti, R.; Corti, S.; Salani, S.; D' Angelo, M.G.; DeLiso, A.; Scarlato, G.; Bresolin, N.; Gerundini, P

    2001-11-01

    The purpose of this study was twofold: first, to evaluate the myoblast labeling of various {sup 99m}Tc complexes and to select the complex that best accomplishes this labeling, and second to evaluate the biodistribution of myoblasts labeled with this complex using mice with MDX muscular dystrophy (the murine homologue of Duchenne's muscular dystrophy). The following ligands were used to prepare the corresponding {sup 99m}Tc complexes: hexakis-methoxy-isobutyl-isonitrile (MIBI), bis(2-ethoxyethyl)diphosphinoethane (Tf), (RR,SS)-4,8-diaza-3,6,6,9-tetramethyl-undecane-2,10-dione-bisoxime (HM-PAO), bis(N-ethyl)dithiocarbamate (NEt), and bis(N-ethoxy, N-ethyl)dithiocarbamate (NOEt). One million murine myoblasts were incubated for 30-60 minutes with 5 mCi of each of the 99mTc complexes prepared from the above ligands. Viability was assessed by microscopic counting after trypan blue staining, and the radioactivity absorbed in the cells was measured after centrifugation. The compound with the highest uptake in cellular pellets was [{sup 99m}Tc]N-NOEt. The biodistribution of myoblasts labeled with this complex was evaluated after intraaortic injection in dystrophic mice. Such an approach has the potential of effecting widespread gene transfer through the bloodstream to muscles lacking dystrophin.

  13. Biodistribution studies of 99mTc-labeled myoblasts in a murine model of muscular dystrophy

    International Nuclear Information System (INIS)

    Colombo, F.R.; Torrente, Y.; Casati, R.; Benti, R.; Corti, S.; Salani, S.; D'Angelo, M.G.; DeLiso, A.; Scarlato, G.; Bresolin, N.; Gerundini, P.

    2001-01-01

    The purpose of this study was twofold: first, to evaluate the myoblast labeling of various 99m Tc complexes and to select the complex that best accomplishes this labeling, and second to evaluate the biodistribution of myoblasts labeled with this complex using mice with MDX muscular dystrophy (the murine homologue of Duchenne's muscular dystrophy). The following ligands were used to prepare the corresponding 99m Tc complexes: hexakis-methoxy-isobutyl-isonitrile (MIBI), bis(2-ethoxyethyl)diphosphinoethane (Tf), (RR,SS)-4,8-diaza-3,6,6,9-tetramethyl-undecane-2,10-dione-bisoxime (HM-PAO), bis(N-ethyl)dithiocarbamate (NEt), and bis(N-ethoxy, N-ethyl)dithiocarbamate (NOEt). One million murine myoblasts were incubated for 30-60 minutes with 5 mCi of each of the 99mTc complexes prepared from the above ligands. Viability was assessed by microscopic counting after trypan blue staining, and the radioactivity absorbed in the cells was measured after centrifugation. The compound with the highest uptake in cellular pellets was [ 99m Tc]N-NOEt. The biodistribution of myoblasts labeled with this complex was evaluated after intraaortic injection in dystrophic mice. Such an approach has the potential of effecting widespread gene transfer through the bloodstream to muscles lacking dystrophin

  14. Dystrophic microglia in the aging human brain.

    Science.gov (United States)

    Streit, Wolfgang J; Sammons, Nicole W; Kuhns, Amanda J; Sparks, D Larry

    2004-01-15

    We have studied microglial morphology in the human cerebral cortex of two nondemented subjects using high-resolution LN-3 immunohistochemistry. Several abnormalities in microglial cytoplasmic structure, including deramification, spheroid formation, gnarling, and fragmentation of processes, were identified. These changes were determined to be different from the morphological changes that occur during microglial activation and they were designated collectively as microglial dystrophy. Quantitative evaluation of dystrophic changes in microglia revealed that these were much more prevalent in the older subject (68-year-old) than in the younger one (38-year-old). Thus, we conclude that microglial dystrophy is a sign of microglial cell senescence. We hypothesize that microglial senescence could be important for understanding age-related declines in cognitive function. Copyright 2003 Wiley-Liss, Inc.

  15. Neuronal nitric oxide synthase-rescue of dystrophin/utrophin double knockout mice does not require nNOS localization to the cell membrane.

    Directory of Open Access Journals (Sweden)

    Michelle Wehling-Henricks

    Full Text Available Survival of dystrophin/utrophin double-knockout (dko mice was increased by muscle-specific expression of a neuronal nitric oxide synthase (nNOS transgene. Dko mice expressing the transgene (nNOS TG+/dko experienced delayed onset of mortality and increased life-span. The nNOS TG+/dko mice demonstrated a significant decrease in the concentration of CD163+, M2c macrophages that can express arginase and promote fibrosis. The decrease in M2c macrophages was associated with a significant reduction in fibrosis of heart, diaphragm and hindlimb muscles of nNOS TG+/dko mice. The nNOS transgene had no effect on the concentration of cytolytic, CD68+, M1 macrophages. Accordingly, we did not observe any change in the extent of muscle fiber lysis in the nNOS TG+/dko mice. These findings show that nNOS/NO (nitric oxide-mediated decreases in M2c macrophages lead to a reduction in the muscle fibrosis that is associated with increased mortality in mice lacking dystrophin and utrophin. Interestingly, the dramatic and beneficial effects of the nNOS transgene were not attributable to localization of nNOS protein at the cell membrane. We did not detect any nNOS protein at the sarcolemma in nNOS TG+/dko muscles. This important observation shows that sarcolemmal localization is not necessary for nNOS to have beneficial effects in dystrophic tissue and the presence of nNOS in the cytosol of dystrophic muscle fibers can ameliorate the pathology and most importantly, significantly increase life-span.

  16. Homeostatic Plasticity Mediated by Rod-Cone Gap Junction Coupling in Retinal Degenerative Dystrophic RCS Rats

    Science.gov (United States)

    Hou, Baoke; Fu, Yan; Weng, Chuanhuang; Liu, Weiping; Zhao, Congjian; Yin, Zheng Qin

    2017-01-01

    Rod-cone gap junctions open at night to allow rod signals to pass to cones and activate the cone-bipolar pathway. This enhances the ability to detect large, dim objects at night. This electrical synaptic switch is governed by the circadian clock and represents a novel form of homeostatic plasticity that regulates retinal excitability according to network activity. We used tracer labeling and ERG recording in the retinae of control and retinal degenerative dystrophic RCS rats. We found that in the control animals, rod-cone gap junction coupling was regulated by the circadian clock via the modulation of the phosphorylation of the melatonin synthetic enzyme arylalkylamine N-acetyltransferase (AANAT). However, in dystrophic RCS rats, AANAT was constitutively phosphorylated, causing rod-cone gap junctions to remain open. A further b/a-wave ratio analysis revealed that dystrophic RCS rats had stronger synaptic strength between photoreceptors and bipolar cells, possibly because rod-cone gap junctions remained open. This was despite the fact that a decrease was observed in the amplitude of both a- and b-waves as a result of the progressive loss of rods during early degenerative stages. These results suggest that electric synaptic strength is increased during the day to allow cone signals to pass to the remaining rods and to be propagated to rod bipolar cells, thereby partially compensating for the weak visual input caused by the loss of rods. PMID:28473754

  17. Novel lncRNAs in myogenesis: a miR-31 overlapping transcript controls myoblast differentiation.

    KAUST Repository

    Ballarino, Monica; Cazzella, Valentina; D'Andrea, Daniel; Grassi, Luigi; Bisceglie, Lavinia; Cipriano, Andrea; Santini, Tiziana; Pinnarò , Chiara; Morlando, Mariangela; Tramontano, Anna; Bozzoni, Irene

    2014-01-01

    Transcriptome analysis allowed the identification of new long noncoding RNAs differentially expressed during murine myoblast differentiation. These transcripts were classified on the basis of their expression under proliferating versus differentiated conditions, muscle-restricted activation, and subcellular localization. Several species displayed preferential expression in dystrophic (mdx) versus wild-type muscles, indicating their possible link with regenerative processes. One of the identified transcripts, lnc-31, even if originating from the same nuclear precursor of miR-31, is produced by a pathway mutually exclusive. We show that lnc-31 and its human homologue hsa-lnc-31 are expressed in proliferating myoblasts, where they counteract differentiation. In line with this, both species are more abundant in mdx muscles and in human Duchenne muscular dystrophy (DMD) myoblasts, than in their normal counterparts. Altogether, these data suggest a crucial role for lnc-31 in controlling the differentiation commitment of precursor myoblasts and indicate that its function is maintained in evolution despite the poor sequence conservation with the human counterpart.

  18. Novel lncRNAs in myogenesis: a miR-31 overlapping transcript controls myoblast differentiation.

    KAUST Repository

    Ballarino, Monica

    2014-12-15

    Transcriptome analysis allowed the identification of new long noncoding RNAs differentially expressed during murine myoblast differentiation. These transcripts were classified on the basis of their expression under proliferating versus differentiated conditions, muscle-restricted activation, and subcellular localization. Several species displayed preferential expression in dystrophic (mdx) versus wild-type muscles, indicating their possible link with regenerative processes. One of the identified transcripts, lnc-31, even if originating from the same nuclear precursor of miR-31, is produced by a pathway mutually exclusive. We show that lnc-31 and its human homologue hsa-lnc-31 are expressed in proliferating myoblasts, where they counteract differentiation. In line with this, both species are more abundant in mdx muscles and in human Duchenne muscular dystrophy (DMD) myoblasts, than in their normal counterparts. Altogether, these data suggest a crucial role for lnc-31 in controlling the differentiation commitment of precursor myoblasts and indicate that its function is maintained in evolution despite the poor sequence conservation with the human counterpart.

  19. The importance of mdx mouse in the pathophysiology of Duchenne's muscular distrophy

    OpenAIRE

    Seixas, Sandra Lopes; Lagrota-Cândido, Jussara; Savino, Wilson; Quirico-Santos, Thereza

    1997-01-01

    O camundongo mdx desenvolve distrofia muscular recessiva ligada ao cromossoma X (locus Xp21.1) e não expressa distrofina. Embora não apresente intensa fibrose do tecido muscular e acúmulo de tecido adiposo, é considerado o modelo animal mais adequado da distrofia muscular de Duchenne. As alterações estruturais no tecido muscular associadas à mionecrose e presença do infiltrado inflamatório com predomínio de linfócitos e monócitos/macrófagos sugerem uma participação do sistema imunológico nest...

  20. Recombinase-mediated reprogramming and dystrophin gene addition in mdx mouse induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Chunli Zhao

    Full Text Available A cell therapy strategy utilizing genetically-corrected induced pluripotent stem cells (iPSC may be an attractive approach for genetic disorders such as muscular dystrophies. Methods for genetic engineering of iPSC that emphasize precision and minimize random integration would be beneficial. We demonstrate here an approach in the mdx mouse model of Duchenne muscular dystrophy that focuses on the use of site-specific recombinases to achieve genetic engineering. We employed non-viral, plasmid-mediated methods to reprogram mdx fibroblasts, using phiC31 integrase to insert a single copy of the reprogramming genes at a safe location in the genome. We next used Bxb1 integrase to add the therapeutic full-length dystrophin cDNA to the iPSC in a site-specific manner. Unwanted DNA sequences, including the reprogramming genes, were then precisely deleted with Cre resolvase. Pluripotency of the iPSC was analyzed before and after gene addition, and ability of the genetically corrected iPSC to differentiate into myogenic precursors was evaluated by morphology, immunohistochemistry, qRT-PCR, FACS analysis, and intramuscular engraftment. These data demonstrate a non-viral, reprogramming-plus-gene addition genetic engineering strategy utilizing site-specific recombinases that can be applied easily to mouse cells. This work introduces a significant level of precision in the genetic engineering of iPSC that can be built upon in future studies.

  1. Utrophin Compensates dystrophin Loss during Mouse Spermatogenesis

    OpenAIRE

    Chen, Hung-Chih; Chin, Yu-Feng; Lundy, David J.; Liang, Chung-Tiang; Chi, Ya-Hui; Kuo, Paolin; Hsieh, Patrick C. H.

    2017-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder resulting from mutations in the dystrophin gene. The mdx/utrn ?/? mouse, lacking in both dystrophin and its autosomal homologue utrophin, is commonly used to model the clinical symptoms of DMD. Interestingly, these mice are infertile but the mechanisms underlying this phenomenon remain unclear. Using dystrophin deficient mdx mouse and utrophin haplodeficient mdx/utrn +/? mouse models, we demonstrate the contribution of Dp427 (f...

  2. Treatment with the anti-IL-6 receptor antibody attenuates muscular dystrophy via promoting skeletal muscle regeneration in dystrophin-/utrophin-deficient mice.

    Science.gov (United States)

    Wada, Eiji; Tanihata, Jun; Iwamura, Akira; Takeda, Shin'ichi; Hayashi, Yukiko K; Matsuda, Ryoichi

    2017-10-27

    Chronic increases in the levels of the inflammatory cytokine interleukin-6 (IL-6) in serum and skeletal muscle are thought to contribute to the progression of muscular dystrophy. Dystrophin/utrophin double-knockout (dKO) mice develop a more severe and progressive muscular dystrophy than the mdx mice, the most common murine model of Duchenne muscular dystrophy (DMD). In particular, dKO mice have smaller body sizes and muscle diameters, and develop progressive kyphosis and fibrosis in skeletal and cardiac muscles. As mdx mice and DMD patients, we found that IL-6 levels in the skeletal muscle were significantly increased in dKO mice. Thus, in this study, we aimed to analyze the effects of IL-6 receptor (IL-6R) blockade on the muscle pathology of dKO mice. Male dKO mice were administered an initial injection (200 mg/kg intraperitoneally (i.p.)) of either the anti-IL-6R antibody MR16-1 or an isotype-matched control rat IgG at the age of 14 days, and were then given weekly injections (25 mg/kg i.p.) until 90 days of age. Treatment of dKO mice with the MR16-1 antibody successfully inhibited the IL-6 pathway in the skeletal muscle and resulted in a significant reduction in the expression levels of phosphorylated signal transducer and activator of transcription 3 in the skeletal muscle. Pathologically, a significant increase in the area of embryonic myosin heavy chain-positive myofibers and muscle diameter, and reduced fibrosis in the quadriceps muscle were observed. These results demonstrated the therapeutic effects of IL-6R blockade on promoting muscle regeneration. Consistently, serum creatine kinase levels were decreased. Despite these improvements observed in the limb muscles, degeneration of the diaphragm and cardiac muscles was not ameliorated by the treatment of mice with the MR16-1 antibody. As no adverse effects of treatment with the MR16-1 antibody were observed, our results indicate that the anti-IL-6R antibody is a potential therapy for muscular dystrophy

  3. Androgen receptor agonists increase lean mass, improve cardiopulmonary functions and extend survival in preclinical models of Duchenne muscular dystrophy.

    Science.gov (United States)

    Ponnusamy, Suriyan; Sullivan, Ryan D; You, Dahui; Zafar, Nadeem; He Yang, Chuan; Thiyagarajan, Thirumagal; Johnson, Daniel L; Barrett, Maron L; Koehler, Nikki J; Star, Mayra; Stephenson, Erin J; Bridges, Dave; Cormier, Stephania A; Pfeffer, Lawrence M; Narayanan, Ramesh

    2017-07-01

    Duchenne muscular dystrophy (DMD) is a neuromuscular disease that predominantly affects boys as a result of mutation(s) in the dystrophin gene. DMD is characterized by musculoskeletal and cardiopulmonary complications, resulting in shorter life-span. Boys afflicted by DMD typically exhibit symptoms within 3-5 years of age and declining physical functions before attaining puberty. We hypothesized that rapidly deteriorating health of pre-pubertal boys with DMD could be due to diminished anabolic actions of androgens in muscle, and that intervention with an androgen receptor (AR) agonist will reverse musculoskeletal complications and extend survival. While castration of dystrophin and utrophin double mutant (mdx-dm) mice to mimic pre-pubertal nadir androgen condition resulted in premature death, maintenance of androgen levels extended the survival. Non-steroidal selective-AR modulator, GTx-026, which selectively builds muscle and bone was tested in X-linked muscular dystrophy mice (mdx). GTx-026 significantly increased body weight, lean mass and grip strength by 60-80% over vehicle-treated mdx mice. While vehicle-treated castrated mdx mice exhibited cardiopulmonary impairment and fibrosis of heart and lungs, GTx-026 returned cardiopulmonary function and intensity of fibrosis to healthy control levels. GTx-026 elicits its musculoskeletal effects through pathways that are distinct from dystrophin-regulated pathways, making AR agonists ideal candidates for combination approaches. While castration of mdx-dm mice resulted in weaker muscle and shorter survival, GTx-026 treatment increased the muscle mass, function and survival, indicating that androgens are important for extended survival. These preclinical results support the importance of androgens and the need for intervention with AR agonists to treat DMD-affected boys. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Dual Myostatin and Dystrophin Exon Skipping by Morpholino Nucleic Acid Oligomers Conjugated to a Cell-penetrating Peptide Is a Promising Therapeutic Strategy for the Treatment of Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Alberto Malerba

    2012-01-01

    Full Text Available The knockdown of myostatin, a negative regulator of skeletal muscle mass may have important implications in disease conditions accompanied by muscle mass loss like cancer, HIV/AIDS, sarcopenia, muscle atrophy, and Duchenne muscular dystrophy (DMD. In DMD patients, where major muscle loss has occurred due to a lack of dystrophin, the therapeutic restoration of dystrophin expression alone in older patients may not be sufficient to restore the functionality of the muscles. We recently demonstrated that phosphorodiamidate morpholino oligomers (PMOs can be used to re-direct myostatin splicing and promote the expression of an out-of-frame transcript so reducing the amount of the synthesized myostatin protein. Furthermore, the systemic administration of the same PMO conjugated to an octaguanidine moiety (Vivo-PMO led to a significant increase in the mass of soleus muscle of treated mice. Here, we have further optimized the use of Vivo-PMO in normal mice and also tested the efficacy of the same PMO conjugated to an arginine-rich cell-penetrating peptide (B-PMO. Similar experiments conducted in mdx dystrophic mice showed that B-PMO targeting myostatin is able to significantly increase the tibialis anterior (TA muscle weight and when coadministered with a B-PMO targeting the dystrophin exon 23, it does not have a detrimental interaction. This study confirms that myostatin knockdown by exon skipping is a potential therapeutic strategy to counteract muscle wasting conditions and dual myostatin and dystrophin skipping has potential as a therapy for DMD.

  5. Treatment of dystrophic calcification on a silicone intraocular lens with pars plana vitrectomy

    Directory of Open Access Journals (Sweden)

    Mehta N

    2014-07-01

    Full Text Available Nitish Mehta,1 Roger A Goldberg,2 Chirag P Shah21University of Massachusetts Medical School, Worcester, MA, USA; 2Department of Retina, Ophthalmic Consultants of Boston, Boston, Massachusetts, USAPurpose: Dense, vision-obscuring calcification on the posterior aspect of silicone intraocular lenses (IOLs is often not amenable to neodymium:yttrium-aluminum-garnet capsulotomy, and, in prior reports, has required IOL exchange. We report the successful removal of dense calcium deposition on the posterior surface of a three-piece silicone lens using pars plana vitrectomy (PPV.Materials and methods: A 23-gauge PPV was performed using the Stellaris® vitrectomy system. A light pipe was used to retroilluminate the IOL, and a dense fibrous tissue setting with a low cut-rate and high aspiration rate was able to clear the visual axis of the dystrophic calcification without damaging the IOL optic.Results: Visual acuity improved from 20/100 to 20/25.Conclusion: Small-gauge PPV may be utilized to remove dense dystrophic calcium deposits on the lens surface in lieu of IOL exchange. Keywords: cataract surgery, technique, Nd:YAG capsulotomy, IOL exchange

  6. Electroretinographic genotype-phenotype correlations for mouse and man at the dmd/DMD locus

    Energy Technology Data Exchange (ETDEWEB)

    Millers, D.M.; Weleber, R.G.; Woodward, W.R. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others

    1994-09-01

    Reduced or absent b-waves in the dark-adapted electroretinogram (ERG) of Duchenne and Becker muscular dystrophy (DMD/BMD) patients led to the identification of dystrophin in human retina and the proposal that it plays a role in retinal electrophysiology. Study of a large group of Duchenne and Becker muscular dystrophy males to determine their ocular characteristics indicated that there were position-specific effects of deletions, with 3{prime} defects associated with severe electroretinographic changes, whereas some 5{prime} patients demonstrated less severe, or even normal, ERGs. We studied the mdx mouse, a model with X-linked muscular dystrophy and defective full-length dystrophin, which failed to show any ERG abnormalities. Given the presence of alternate isoforms of dystrophin in retina, and the 5{prime} deletion DMD/BMD patients with normal ERGs, we studied mouse models with differing dystrophin mutations (mdx{sup Cv3}, mdx{sup Cv5}) to determine the usefulness of alternate strains as models for the visual effects of dystropin. Abnormal ERGs similar to those seen in DMD/BMS patients exist in the mdx{sup Cv3} strain of muscular dystrophy mice. Normal ERGs were found the mdx{sup Cv5} strain. The mutations in the mdx and mdx{sup Cv5} mice have been mapped to the 5{prime} end of the dmd gene, while the mutation in the mdx{sup Cv3} mouse is in the 3{prime} end. Thus, there are position effects of the gene defect on the ERG phenotype that are conserved in the mouse. Such genotype-phenotype correlations may reflect differential expression of shorter isoforms of dystrophin.

  7. Similar efficacy from specific and non-specific mineralocorticoid receptor antagonist treatment of muscular dystrophy mice.

    Science.gov (United States)

    Lowe, Jeovanna; Floyd, Kyle T; Rastogi, Neha; Schultz, Eric J; Chadwick, Jessica A; Swager, Sarah A; Zins, Jonathan G; Kadakia, Feni K; Smart, Suzanne; Gomez-Sanchez, Elise P; Gomez-Sanchez, Celso E; Raman, Subha V; Janssen, Paul M L; Rafael-Fortney, Jill A

    2016-01-01

    Combined treatment with an angiotensin-converting enzyme inhibitor and a mineralocorticoid receptor (MR) antagonist improved cardiac and skeletal muscle function and pathology in a mouse model of Duchenne muscular dystrophy. MR is present in limb and respiratory skeletal muscles and functions as a steroid hormone receptor. The goals of the current study were to compare the efficacy of the specific MR antagonist eplerenone with the non-specific MR antagonist spironolactone, both in combination with the angiotensin-converting enzyme inhibitor lisinopril. Three groups of n=18 dystrophin-deficient, utrophin-haploinsufficient male mice were given chow containing: lisinopril plus spironolactone, lisinopril plus eplerenone, or no drug, from four to 20 weeks-of-age. Eighteen C57BL/10 male mice were used as wild-type controls. In vivo measurements included cardiac magnetic resonance imaging, conscious electrocardiography, and grip strength. From each mouse in the study, diaphragm, extensor digitorum longus , and cardiac papillary muscle force was measured ex vivo , followed by histological quantification of muscle damage in heart, diaphragm, quadriceps, and abdominal muscles. MR protein levels were also verified in treated muscles. Treatment with specific and non-specific MR antagonists did not result in any adverse effects to dystrophic skeletal muscles or heart. Both treatments resulted in similar functional and pathological improvements across a wide array of parameters. MR protein levels were not reduced by treatment. These data suggest that spironolactone and eplerenone show similar effects in dystrophic mice and support the clinical development of MR antagonists for treating skeletal muscles in Duchenne muscular dystrophy.

  8. mRNA and microRNA transcriptomics analyses in a murine model of dystrophin loss and therapeutic restoration

    Directory of Open Access Journals (Sweden)

    Thomas C. Roberts

    2016-03-01

    Full Text Available Duchenne muscular dystrophy (DMD is a pediatric, X-linked, progressive muscle-wasting disorder caused by loss of function mutations affecting the gene encoding the dystrophin protein. While the primary genetic insult in DMD is well described, many details of the molecular and cellular pathologies that follow dystrophin loss are incompletely understood. To investigate gene expression in dystrophic muscle we have applied mRNA and microRNA (miRNA microarray technology to the mdx mouse model of DMD. This study was designed to generate a complete description of gene expression changes associated with dystrophic pathology and the response to an experimental therapy which restores dystrophin protein function. These datasets have enabled (1 the determination of gene expression changes associated with dystrophic pathology, (2 identification of differentially expressed genes that are restored towards wild-type levels after therapeutic dystrophin rescue, (3 investigation of the correlation between mRNA and protein expression (determined by parallel mass spectrometry proteomics analysis, and (4 prediction of pathology associated miRNA-target interactions. Here we describe in detail how the data were generated including the basic analysis as contained in the manuscript published in Human Molecular Genetics with PMID 26385637. The data have been deposited in the Gene Expression Omnibus (GEO with the accession number GSE64420.

  9. Humoral Immunity to AAV-6, 8, and 9 in Normal and Dystrophic Dogs

    Science.gov (United States)

    Shin, Jin-Hong; Yue, Yongping; Smith, Bruce

    2012-01-01

    Abstract Adeno-associated virus (AAV)-6, 8, and 9 are promising gene-delivery vectors for testing novel Duchenne muscular dystrophy gene therapy in the canine model. Humoral immunity greatly influences in vivo AAV transduction. However, neutralizing antibodies to AAV-6, 8, and 9 have not been systemically examined in normal and dystrophic dogs. To gain information on the seroprevalence of antibodies to AAV-6, 8, and 9, we measured neutralizing antibody titers using an in vitro transduction inhibition assay. We examined 72 naive serum samples and 26 serum samples obtained from dogs that had received AAV gene transfer. Our data demonstrated that AAV-6 neutralizing antibody was the most prevalent antibody in dogs irrespective of age, gender, disease status (dystrophic or not), and prior parvovirus vaccination history. Surprisingly, high-level anti-AAV-6 antibody was detected at birth in newborn puppies. Further, a robust antibody response was induced in affected, but not normal newborn dogs following systemic AAV gene transfer. Taken together, our data have provided an important baseline on the seroprevalence of AAV-6, 8, and 9 neutralizing antibodies in normal and Duchenne muscular dystrophy dogs. These results will help guide translational AAV gene-therapy studies in dog models of muscular dystrophy. PMID:22040468

  10. TNF-α-Induced microRNAs Control Dystrophin Expression in Becker Muscular Dystrophy.

    Science.gov (United States)

    Fiorillo, Alyson A; Heier, Christopher R; Novak, James S; Tully, Christopher B; Brown, Kristy J; Uaesoontrachoon, Kitipong; Vila, Maria C; Ngheim, Peter P; Bello, Luca; Kornegay, Joe N; Angelini, Corrado; Partridge, Terence A; Nagaraju, Kanneboyina; Hoffman, Eric P

    2015-09-08

    The amount and distribution of dystrophin protein in myofibers and muscle is highly variable in Becker muscular dystrophy and in exon-skipping trials for Duchenne muscular dystrophy. Here, we investigate a molecular basis for this variability. In muscle from Becker patients sharing the same exon 45-47 in-frame deletion, dystrophin levels negatively correlate with microRNAs predicted to target dystrophin. Seven microRNAs inhibit dystrophin expression in vitro, and three are validated in vivo (miR-146b/miR-374a/miR-31). microRNAs are expressed in dystrophic myofibers and increase with age and disease severity. In exon-skipping-treated mdx mice, microRNAs are significantly higher in muscles with low dystrophin rescue. TNF-α increases microRNA levels in vitro whereas NFκB inhibition blocks this in vitro and in vivo. Collectively, these data show that microRNAs contribute to variable dystrophin levels in muscular dystrophy. Our findings suggest a model where chronic inflammation in distinct microenvironments induces pathological microRNAs, initiating a self-sustaining feedback loop that exacerbates disease progression. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. TNF-α-Induced microRNAs Control Dystrophin Expression in Becker Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Alyson A. Fiorillo

    2015-09-01

    Full Text Available The amount and distribution of dystrophin protein in myofibers and muscle is highly variable in Becker muscular dystrophy and in exon-skipping trials for Duchenne muscular dystrophy. Here, we investigate a molecular basis for this variability. In muscle from Becker patients sharing the same exon 45–47 in-frame deletion, dystrophin levels negatively correlate with microRNAs predicted to target dystrophin. Seven microRNAs inhibit dystrophin expression in vitro, and three are validated in vivo (miR-146b/miR-374a/miR-31. microRNAs are expressed in dystrophic myofibers and increase with age and disease severity. In exon-skipping-treated mdx mice, microRNAs are significantly higher in muscles with low dystrophin rescue. TNF-α increases microRNA levels in vitro whereas NFκB inhibition blocks this in vitro and in vivo. Collectively, these data show that microRNAs contribute to variable dystrophin levels in muscular dystrophy. Our findings suggest a model where chronic inflammation in distinct microenvironments induces pathological microRNAs, initiating a self-sustaining feedback loop that exacerbates disease progression.

  12. Modified forelimb grip strength test detects aging-associated physiological decline in skeletal muscle function in male mice.

    Science.gov (United States)

    Takeshita, Hikari; Yamamoto, Koichi; Nozato, Satoko; Inagaki, Tadakatsu; Tsuchimochi, Hirotsugu; Shirai, Mikiyasu; Yamamoto, Ryohei; Imaizumi, Yuki; Hongyo, Kazuhiro; Yokoyama, Serina; Takeda, Masao; Oguro, Ryosuke; Takami, Yoichi; Itoh, Norihisa; Takeya, Yasushi; Sugimoto, Ken; Fukada, So-Ichiro; Rakugi, Hiromi

    2017-02-08

    The conventional forelimb grip strength test is a widely used method to assess skeletal muscle function in rodents; in this study, we modified this method to improve its variability and consistency. The modified test had lower variability among trials and days than the conventional test in young C57BL6 mice, especially by improving the variabilities in male. The modified test was more sensitive than the conventional test to detect a difference in motor function between female and male mice, or between young and old male mice. When the modified test was performed on male mice during the aging process, reduction of grip strength manifested between 18 and 24 months of age at the group level and at the individual level. The modified test was similar to the conventional test in detecting skeletal muscle dysfunction in young male dystrophic mice. Thus, the modified forelimb grip strength test, with its improved validity and reliability may be an ideal substitute for the conventional method.

  13. Effect of higher implant density on curve correction in dystrophic thoracic scoliosis secondary to neurofibromatosis Type 1.

    Science.gov (United States)

    Li, Yang; Yuan, Xinxin; Sha, Shifu; Liu, Zhen; Zhu, Weiguo; Qiu, Yong; Wang, Bin; Yu, Yang; Zhu, Zezhang

    2017-10-01

    OBJECTIVE The aim of this study was to investigate how implant density affects radiographic results and clinical outcomes in patients with dystrophic scoliosis secondary to neurofibromatosis Type 1 (NF1). METHODS A total of 41 patients with dystrophic scoliosis secondary to NF1 who underwent 1-stage posterior correction between June 2011 and December 2013 were included. General information about patients was recorded, as were preoperative and postoperative scores from Scoliosis Research Society (SRS)-22 questionnaires. Pearson correlation analysis was used to analyze the associations among implant density, coronal Cobb angle correction rate and correction loss at last follow-up, change of sagittal curve, and apical vertebral translation. Patients were then divided into 2 groups: those with low-density and those with high-density implants. Independent-sample t-tests were used to compare demographic data, radiographic findings, and clinical outcomes before surgery and at last follow-up between the groups. RESULTS Significant correlations were found between the implant density and the coronal correction rate of the main curve (r = 0.505, p density and change of sagittal profile (p = 0.662) or apical vertebral translation (p = 0.062). The SRS-22 scores improved in the appearance, activity, and mental health domains within both groups, but there was no difference between the groups in any of the SRS-22 domains at final follow-up (p > 0.05 for all). CONCLUSIONS Although no significant differences between the high- and low-density groups were found in any of the SRS-22 domains at final follow-up, higher implant density was correlated with superior coronal correction and less postoperative correction loss in patients with dystrophic NF1-associated scoliosis.

  14. Donor Satellite Cell Engraftment is Significantly Augmented When the Host Niche is Preserved and Endogenous Satellite Cells are Incapacitated

    Science.gov (United States)

    Boldrin, Luisa; Neal, Alice; Zammit, Peter S; Muntoni, Francesco; Morgan, Jennifer E

    2012-01-01

    Stem cell transplantation is already in clinical practice for certain genetic diseases and is a promising therapy for dystrophic muscle. We used the mdx mouse model of Duchenne muscular dystrophy to investigate the effect of the host satellite cell niche on the contribution of donor muscle stem cells (satellite cells) to muscle regeneration. We found that incapacitation of the host satellite cells and preservation of the muscle niche promote donor satellite cell contribution to muscle regeneration and functional reconstitution of the satellite cell compartment. But, if the host niche is not promptly refilled, or is filled by competent host satellite cells, it becomes nonfunctional and donor engraftment is negligible. Application of this regimen to aged host muscles also promotes efficient regeneration from aged donor satellite cells. In contrast, if the niche is destroyed, yet host satellite cells remain proliferation-competent, donor-derived engraftment is trivial. Thus preservation of the satellite cell niche, concomitant with functional impairment of the majority of satellite cells within dystrophic human muscles, may improve the efficiency of stem cell therapy. Stem Cells2012;30:1971–1984 PMID:22730231

  15. (−)-EPICATECHIN IMPROVES MITOCHONDRIAL RELATED PROTEIN LEVELS AND AMELIORATES OXIDATIVE STRESS IN DYSTROPHIC DELTA SARCOGLYCAN NULL MOUSE STRIATED MUSCLE

    Science.gov (United States)

    Ramirez-Sanchez, Israel; De los Santos, Sergio; Gonzalez-Basurto, Silvia; Canto, Patricia; Mendoza-Lorenzo, Patricia; Palma-Flores, Carlos; Ceballos-Reyes, Guillermo; Villarreal, Francisco; Zentella-Dehesa, Alejandro; Coral-Vazquez, Ramon

    2014-01-01

    Muscular dystrophies (MD) are a group of heterogeneous genetic disorders characterized by progressive striated muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for disease pathogenesis remains unclear. The presence of oxidative stress (OS) is known to contribute to the pathophysiology and severity of the MD. Mitochondrial dysfunction is observed in MD and likely represents an important determinant of increased OS. Experimental antioxidant therapies have been implemented with the aim of protecting against disease progression, but results from clinical trials have been disappointing. In this study, we explored the capacity of the cacao flavonoid (−)-epicatechin (Epi) to mitigate OS by acting as a positive regulator of mitochondrial structure/function endpoints and redox balance control systems in skeletal and cardiac muscles of dystrophic, δ-sarcoglycan (δ-SG) null mice. Wild type or δ-SG null 2.5 month old male mice were treated via oral gavage with either water (control animals) or Epi (1 mg/kg, twice/day) for 2 weeks. Results evidence a significant normalization of total protein carbonylation, recovery of reduced/oxidized glutathione (GSH/GSSG ratio) and enhanced superoxide dismutase 2, catalase and citrate synthase activities with Epi treatment. These effects were accompanied by increases in protein levels for thiolredoxin, glutathione peroxidase, superoxide dismutase 2, catalase and mitochondrial endpoints. Furthermore, we evidence decreases in heart and skeletal muscle fibrosis, accompanied with an improvement in skeletal muscle function with treatment. These results warrant the further investigation of Epi as a potential therapeutic agent to mitigate MD associated muscle degeneration. PMID:25284161

  16. Company profile: QuantuMDx group limited.

    Science.gov (United States)

    Burn, Jamie

    2013-07-01

    QuantuMDx Group Ltd (QMDx) is a group of companies based in the International Centre for Life, Newcastle upon Tyne, UK. The Group owns the founding patent and the exclusive worldwide license for, among others, the use of nanowires and nanotubes in DNA detection. It has further developed a patent estate around the functionalization of nanowires for DNA detection, and is working with commercial partners globally to produce the Q-POC™, a handheld point-of-care genetic testing device. This novel lab-on-a-chip technology integrates and automates the sample-to-result genetic testing process in a single microfluidic channel, incorporating novel lysis technologies, the filtration of cellular constituents to achieve DNA extraction and fractionation, a rapid, thermal PCR system, and nanowires functionalized with nucleic acid probes to capture targeted sequences of genetic material. The device further makes use of novel chemistries to boost the charge of nucleotides binding to the isolated material, increasing the sensitivity and read length of the device and making it capable of robust SNP and pathogen detection. Complete with a sophisticated software package, the Q-POC™ can detect binding events through changes in resistance and effectively convert genetic code into binary code, providing a simple display of the results, complete with treatment options. The competitive advantages of this system are the sensitivity and specificity of the nanowire detection system, the extremely low cost profile of the technology, and the speed of the process, which will allow the sample-to-result detection of targeted genetic material in less than 15 min.

  17. Ex vivo stretch reveals altered mechanical properties of isolated dystrophin-deficient hearts.

    Directory of Open Access Journals (Sweden)

    Matthew S Barnabei

    Full Text Available Duchenne muscular dystrophy (DMD is a progressive and fatal disease of muscle wasting caused by loss of the cytoskeletal protein dystrophin. In the heart, DMD results in progressive cardiomyopathy and dilation of the left ventricle through mechanisms that are not fully understood. Previous reports have shown that loss of dystrophin causes sarcolemmal instability and reduced mechanical compliance of isolated cardiac myocytes. To expand upon these findings, here we have subjected the left ventricles of dystrophin-deficient mdx hearts to mechanical stretch. Unexpectedly, isolated mdx hearts showed increased left ventricular (LV compliance compared to controls during stretch as LV volume was increased above normal end diastolic volume. During LV chamber distention, sarcomere lengths increased similarly in mdx and WT hearts despite greater excursions in volume of mdx hearts. This suggests that the mechanical properties of the intact heart cannot be modeled as a simple extrapolation of findings in single cardiac myocytes. To explain these findings, a model is proposed in which disruption of the dystrophin-glycoprotein complex perturbs cell-extracellular matrix contacts and promotes the apparent slippage of myocytes past each other during LV distension. In comparison, similar increases in LV compliance were obtained in isolated hearts from β-sarcoglycan-null and laminin-α(2 mutant mice, but not in dysferlin-null mice, suggesting that increased whole-organ compliance in mdx mice is a specific effect of disrupted cell-extracellular matrix contacts and not a general consequence of cardiomyopathy via membrane defect processes. Collectively, these findings suggest a novel and cell-death independent mechanism for the progressive pathological LV dilation that occurs in DMD.

  18. PSAPP mice exhibit regionally selective reductions in gliosis and plaque deposition in response to S100B ablation

    Directory of Open Access Journals (Sweden)

    Young Keith A

    2010-11-01

    Full Text Available Abstract Background Numerous studies have reported that increased expression of S100B, an intracellular Ca2+ receptor protein and secreted neuropeptide, exacerbates Alzheimer's disease (AD pathology. However, the ability of S100B inhibitors to prevent/reverse AD histopathology remains controversial. This study examines the effect of S100B ablation on in vivo plaque load, gliosis and dystrophic neurons. Methods Because S100B-specific inhibitors are not available, genetic ablation was used to inhibit S100B function in the PSAPP AD mouse model. The PSAPP/S100B-/- line was generated by crossing PSAPP double transgenic males with S100B-/- females and maintained as PSAPP/S100B+/- crosses. Congo red staining was used to quantify plaque load, plaque number and plaque size in 6 month old PSAPP and PSAPP/S100B-/- littermates. The microglial marker Iba1 and astrocytic marker glial fibrillary acidic protein (GFAP were used to quantify gliosis. Dystrophic neurons were detected with the phospho-tau antibody AT8. S100B immunohistochemistry was used to assess the spatial distribution of S100B in the PSAPP line. Results PSAPP/S100B-/- mice exhibited a regionally selective decrease in cortical but not hippocampal plaque load when compared to PSAPP littermates. This regionally selective reduction in plaque load was accompanied by decreases in plaque number, GFAP-positive astrocytes, Iba1-positive microglia and phospho-tau positive dystrophic neurons. These effects were not attributable to regional variability in the distribution of S100B. Hippocampal and cortical S100B immunoreactivity in PSAPP mice was associated with plaques and co-localized with astrocytes and microglia. Conclusions Collectively, these data support S100B inhibition as a novel strategy for reducing cortical plaque load, gliosis and neuronal dysfunction in AD and suggest that both extracellular as well as intracellular S100B contribute to AD histopathology.

  19. Congenital muscle dystrophy and diet consistency affect mouse skull shape differently.

    Science.gov (United States)

    Spassov, Alexander; Toro-Ibacache, Viviana; Krautwald, Mirjam; Brinkmeier, Heinrich; Kupczik, Kornelius

    2017-11-01

    The bones of the mammalian skull respond plastically to changes in masticatory function. However, the extent to which muscle function affects the growth and development of the skull, whose regions have different maturity patterns, remains unclear. Using muscle dissection and 3D landmark-based geometric morphometrics we investigated the effect of changes in muscle function established either before or after weaning, on skull shape and muscle mass in adult mice. We compared temporalis and masseter mass and skull shape in mice with a congenital muscle dystrophy (mdx) and wild type (wt) mice fed on either a hard or a soft diet. We found that dystrophy and diet have distinct effects on the morphology of the skull and the masticatory muscles. Mdx mice show a flattened neurocranium with a more dorsally displaced foramen magnum and an anteriorly placed mandibular condyle compared with wt mice. Compared with hard diet mice, soft diet mice had lower masseter mass and a face with more gracile features as well as labially inclined incisors, suggesting reduced bite strength. Thus, while the early-maturing neurocranium and the posterior portion of the mandible are affected by the congenital dystrophy, the late-maturing face including the anterior part of the mandible responds to dietary differences irrespective of the mdx mutation. Our study confirms a hierarchical, tripartite organisation of the skull (comprising neurocranium, face and mandible) with a modular division based on development and function. Moreover, we provide further experimental evidence that masticatory loading is one of the main environmental stimuli that generate craniofacial variation. © 2017 Anatomical Society.

  20. Targeting TGF-β Signaling by Antisense Oligonucleotide-mediated Knockdown of TGF-β Type I Receptor

    Directory of Open Access Journals (Sweden)

    Dwi U Kemaladewi

    2014-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is caused by lack of functional dystrophin and results in progressive myofiber damage and degeneration. In addition, impaired muscle regeneration and fibrosis contribute to the progressive pathology of DMD. Importantly, transforming growth factor-β (TGF-β is implicated in DMD pathology and is known to stimulate fibrosis and inhibit muscle regeneration. In this study, we present a new strategy to target TGF-β signaling cascades by specifically inhibiting the expression of TGF-β type I receptor TGFBR1 (ALK5. Antisense oligonucleotides (AONs were designed to specifically induce exon skipping of mouse ALK5 transcripts. AON-induced exon skipping of ALK5 resulted in specific downregulation of full-length receptor transcripts in vitro in different cell types, repression of TGF-β activity, and enhanced C2C12 myoblast differentiation. To determine the effect of these AONs in dystrophic muscles, we performed intramuscular injections of ALK5 AONs in mdx mice, which resulted in a decrease in expression of fibrosis-related genes and upregulation of Myog expression compared to control AON-injected muscles. In summary, our study presents a novel method to target TGF-β signaling cascades with potential beneficial effects for DMD.

  1. Heme oxygenase and carbon monoxide protect from muscle dystrophy.

    Science.gov (United States)

    Chan, Mun Chun; Ziegler, Olivia; Liu, Laura; Rowe, Glenn C; Das, Saumya; Otterbein, Leo E; Arany, Zoltan

    2016-11-28

    Duchenne muscle dystrophy (DMD) is one of the most common lethal genetic diseases of children worldwide and is 100% fatal. Steroids, the only therapy currently available, are marred by poor efficacy and a high side-effect profile. New therapeutic approaches are urgently needed. Here, we leverage PGC-1α, a powerful transcriptional coactivator known to protect against dystrophy in the mdx murine model of DMD, to search for novel mechanisms of protection against dystrophy. We identify heme oxygenase-1 (HO-1) as a potential novel target for the treatment of DMD. Expression of HO-1 is blunted in the muscles from the mdx murine model of DMD, and further reduction of HO-1 by genetic haploinsufficiency worsens muscle damage in mdx mice. Conversely, induction of HO-1 pharmacologically protects against muscle damage. Mechanistically, HO-1 degrades heme into biliverdin, releasing in the process ferrous iron and carbon monoxide (CO). We show that exposure to a safe low dose of CO protects against muscle damage in mdx mice, as does pharmacological treatment with CO-releasing molecules. These data identify HO-1 and CO as novel therapeutic agents for the treatment of DMD. Safety profiles and clinical testing of inhaled CO already exist, underscoring the translational potential of these observations.

  2. NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation.

    Science.gov (United States)

    Ryu, Dongryeol; Zhang, Hongbo; Ropelle, Eduardo R; Sorrentino, Vincenzo; Mázala, Davi A G; Mouchiroud, Laurent; Marshall, Philip L; Campbell, Matthew D; Ali, Amir Safi; Knowels, Gary M; Bellemin, Stéphanie; Iyer, Shama R; Wang, Xu; Gariani, Karim; Sauve, Anthony A; Cantó, Carles; Conley, Kevin E; Walter, Ludivine; Lovering, Richard M; Chin, Eva R; Jasmin, Bernard J; Marcinek, David J; Menzies, Keir J; Auwerx, Johan

    2016-10-19

    Neuromuscular diseases are often caused by inherited mutations that lead to progressive skeletal muscle weakness and degeneration. In diverse populations of normal healthy mice, we observed correlations between the abundance of mRNA transcripts related to mitochondrial biogenesis, the dystrophin-sarcoglycan complex, and nicotinamide adenine dinucleotide (NAD + ) synthesis, consistent with a potential role for the essential cofactor NAD + in protecting muscle from metabolic and structural degeneration. Furthermore, the skeletal muscle transcriptomes of patients with Duchene's muscular dystrophy (DMD) and other muscle diseases were enriched for various poly[adenosine 5'-diphosphate (ADP)-ribose] polymerases (PARPs) and for nicotinamide N-methyltransferase (NNMT), enzymes that are major consumers of NAD + and are involved in pleiotropic events, including inflammation. In the mdx mouse model of DMD, we observed significant reductions in muscle NAD + levels, concurrent increases in PARP activity, and reduced expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD + biosynthesis. Replenishing NAD + stores with dietary nicotinamide riboside supplementation improved muscle function and heart pathology in mdx and mdx/Utr -/- mice and reversed pathology in Caenorhabditis elegans models of DMD. The effects of NAD + repletion in mdx mice relied on the improvement in mitochondrial function and structural protein expression (α-dystrobrevin and δ-sarcoglycan) and on the reductions in general poly(ADP)-ribosylation, inflammation, and fibrosis. In combination, these studies suggest that the replenishment of NAD + may benefit patients with muscular dystrophies or other neuromuscular degenerative conditions characterized by the PARP/NNMT gene expression signatures. Copyright © 2016, American Association for the Advancement of Science.

  3. A novel PNPLA2 mutation causes neutral lipid storage disease with myopathy (NLSDM) presenting muscular dystrophic features with lipid storage and rimmed vacuoles.

    Science.gov (United States)

    Chen, J; Hong, D; Wang, Z; Yuan, Y

    2010-01-01

    Neutral lipid storage disease with myopathy (NLSDM) is a type of lipid storage myopathy arising due to a mutation in the PNPLA2 gene encoding an adipose triglyceride lipase responsible for the degradation of intracellular triglycerides. Herein, we report the cases of two siblings manifesting slowly progressive proximal and distal limb weakness in adulthood. One of the patients had dilated cardiomyopathy, hearing loss and short stature. Muscle specimens of the 2 patients revealed muscular dystrophic features with massive lipid droplets and numerous rimmed vacuoles in the fibers. A novel homozygous mutation IVS2+1G > A in the PNPLA2 gene was identified in the 2 cases, but not in the healthy familial individuals. The presence of massive lipid droplets with muscular dystrophic changes and rimmed vacuoles in muscle fibers might be one of the characteristic pathological changes of NLSDM.

  4. Altered phosphorylation of rhodopsin in retinal dystrophic Irish Setters

    International Nuclear Information System (INIS)

    Cunnick, J.; Takemoto, D.J.; Takemoto, L.J.

    1986-01-01

    The carboxyl-terminus of rhodopsin in retinal dystrophic (rd) Irish Setters is altered near a possible phosphorylation site. To determine if this alteration affects ATP-mediated phosphorylation they compared the phosphorylation of rhodopsin from rd affected Irish Setters and normal unaffected dogs. Retinas from 8-week-old Irish Setters were phosphorylated with γ- 32 P-ATP and separated on SDS-PAGE. Compared to unaffected normal retinas, equalized for rhodopsin content, phosphorylation of rd rhodopsin was drastically reduced. When rd retinas were mixed with normal dog retinas, phosphorylation of the latter was inhibited. Inhibition also occurred when bovine retinas were mixed with rd retinas. The rd-mediated inhibition of phosphorylation was prevented by including 1mM NaF in the reaction mixture. Likewise, 1mM NaF restored phosphorylation of rd rhodopsin to normal levels. Phosphopeptide maps of rd and normal rhodopsin were identical and indicated 5 phosphopeptides present in each. Results suggest that one cause of the depressed rd rhodopsin phosphorylation is an increased phosphatase activity

  5. Does intraoperative navigation improve the accuracy of pedicle screw placement in the apical region of dystrophic scoliosis secondary to neurofibromatosis type I: comparison between O-arm navigation and free-hand technique.

    Science.gov (United States)

    Jin, Mengran; Liu, Zhen; Liu, Xingyong; Yan, Huang; Han, Xiao; Qiu, Yong; Zhu, Zezhang

    2016-06-01

    To assess the accuracy of O-arm-navigation-based pedicle screw insertion in dystrophic scoliosis secondary to NF-1 and compare it with free-hand pedicle screw insertion technique. 32 patients with dystrophic NF-1-associated scoliosis were divided into two groups. A total of 92 pedicle screws were implanted in apical region (two vertebrae above and below the apex each) in 13 patients using O-arm-based navigation (O-arm group), and 121 screws were implanted in 19 patients using free-hand technique (free-hand group). The postoperative CT images were reviewed and analyzed for pedicle violation. The screw penetration was divided into four grades: grade 0 (ideal placement), grade 1 (penetration 4 mm). The accuracy rate of pedicle screw placement (grade 0, 1) was significantly higher in the O-arm group (79 %, 73/92) compared to 67 % (81/121) of the free-hand group (P = 0.045). Meanwhile, a significantly lower prevalence of grade 2-3 perforation was observed in the O-arm group (21 vs. 33 %, P arm navigation compared to free-hand technique (2 vs. 15 %, P arm navigation (58 vs. 42 %, P arm-based pedicle screw placement in dystrophic NF-1-associated scoliosis. O-arm navigation system does facilitate pedicle screw insertion in dystrophic NF-1-associated scoliosis, demonstrating superiorities in the safety and accuracy of pedicle screw placement in comparison with free-hand technique.

  6. A Quantitative Measure of Handgrip Myotonia in Non-dystrophic Myotonia

    Science.gov (United States)

    Statland, Jeffrey M; Bundy, Brian N; Wang, Yunxia; Trivedi, Jaya R; Rayan, Dipa Raja; Herbelin, Laura; Donlan, Merideth; McLin, Rhonda; Eichinger, Katy J; Findlater, Karen; Dewar, Liz; Pandya, Shree; Martens, William B; Venance, Shannon L; Matthews, Emma; Amato, Anthony A; Hanna, Michael G; Griggs, Robert C; Barohn, Richard J

    2012-01-01

    Introduction Non-dystrophic Myotonia (NDM) is characterized by myotonia without muscle wasting. A standardized quantitative myotonia assessment (QMA) is important for clinical trials. Methods Myotonia was assessed in 91 individuals enrolled in a natural history study using a commercially available computerized handgrip myometer and automated software. Average peak force and 90% to 5% relaxation times were compared to historical normal controls studied with identical methods. Results 30 subjects had chloride channel mutations, 31 sodium channel mutations, 6 DM2, and 24 no identified mutation. Chloride channel mutations were associated with prolonged 1st handgrip relaxation times, and warm up on subsequent handgrips. Sodium channel mutations were associated with prolonged 1st handgrip relaxation times and paradoxical myotonia or warm-up, depending on underlying mutations. DM2 subjects had normal relaxation times but decreased peak force. Sample size estimates are provided for clinical trial planning. Conclusion QMA is an automated, non-invasive technique for evaluating myotonia in NDM. PMID:22987687

  7. Low intensity, high frequency vibration training to improve musculoskeletal function in a mouse model of Duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Susan A Novotny

    Full Text Available The objective of the study was to determine if low intensity, high frequency vibration training impacted the musculoskeletal system in a mouse model of Duchenne muscular dystrophy, relative to healthy mice. Three-week old wildtype (n = 26 and mdx mice (n = 22 were randomized to non-vibrated or vibrated (45 Hz and 0.6 g, 15 min/d, 5 d/wk groups. In vivo and ex vivo contractile function of the anterior crural and extensor digitorum longus muscles, respectively, were assessed following 8 wks of vibration. Mdx mice were injected 5 and 1 days prior to sacrifice with Calcein and Xylenol, respectively. Muscles were prepared for histological and triglyceride analyses and subcutaneous and visceral fat pads were excised and weighed. Tibial bones were dissected and analyzed by micro-computed tomography for trabecular morphometry at the metaphysis, and cortical geometry and density at the mid-diaphysis. Three-point bending tests were used to assess cortical bone mechanical properties and a subset of tibiae was processed for dynamic histomorphometry. Vibration training for 8 wks did not alter trabecular morphometry, dynamic histomorphometry, cortical geometry, or mechanical properties (P ≥ 0.34. Vibration did not alter any measure of muscle contractile function (P ≥ 0.12; however the preservation of muscle function and morphology in mdx mice indicates vibration is not deleterious to muscle lacking dystrophin. Vibrated mice had smaller subcutaneous fat pads (P = 0.03 and higher intramuscular triglyceride concentrations (P = 0.03. These data suggest that vibration training at 45 Hz and 0.6 g did not significantly impact the tibial bone and the surrounding musculature, but may influence fat distribution in mice.

  8. Squamous cell carcinoma of the skin with bone involvement in a patient with hereditary dystrophic epidermiolysis

    International Nuclear Information System (INIS)

    Kuebler, W.

    1982-01-01

    A report is given about a patient with a documented case history of hereditary dystrophic epidermiolysis for 43 years. The patient showed the rare malignant mutation resulting from chronic changes of the skin leading to a squamous cell carcinoma of the skin. The tibial bone under the affected skin area was attacked. The X-ray morphological findings of the osteolytic destruction of the tibia resulting in a pathological fracture and the changes in the skin, which are typical for the diesease will be discussed. (orig.)

  9. Treatment with a nitric oxide-donating NSAID alleviates functional muscle ischemia in the mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Thomas, Gail D; Ye, Jianfeng; De Nardi, Claudio; Monopoli, Angela; Ongini, Ennio; Victor, Ronald G

    2012-01-01

    In patients with Duchenne muscular dystrophy (DMD) and the standard mdx mouse model of DMD, dystrophin deficiency causes loss of neuronal nitric oxide synthase (nNOSμ) from the sarcolemma, producing functional ischemia when the muscles are exercised. We asked if functional muscle ischemia would be eliminated and normal blood flow regulation restored by treatment with an exogenous nitric oxide (NO)-donating drug. Beginning at 8 weeks of age, mdx mice were fed a standard diet supplemented with 1% soybean oil alone or in combination with a low (15 mg/kg) or high (45 mg/kg) dose of HCT 1026, a NO-donating nonsteroidal anti-inflammatory agent which has previously been shown to slow disease progression in the mdx model. After 1 month of treatment, vasoconstrictor responses to intra-arterial norepinephrine (NE) were compared in resting and contracting hindlimbs. In untreated mdx mice, the usual effect of muscle contraction to attenuate NE-mediated vasoconstriction was impaired, resulting in functional ischemia: NE evoked similar decreases in femoral blood flow velocity and femoral vascular conductance (FVC) in the contracting compared to resting hindlimbs (ΔFVC contraction/ΔFVC rest=0.88 ± 0.03). NE-induced functional ischemia was unaffected by low dose HCT 1026 (ΔFVC ratio=0.92 ± 0.04; P>0.05 vs untreated), but was alleviated by the high dose of the drug (ΔFVC ratio=0.22 ± 0.03; Ptreatment up to 3 months. The effect of the NO-donating drug HCT 1026 to normalize blood flow regulation in contracting mdx mouse hindlimb muscles suggests a putative novel treatment for DMD. Further translational research is warranted.

  10. Antisense Oligonucleotide-mediated Exon Skipping as a Systemic Therapeutic Approach for Recessive Dystrophic Epidermolysis Bullosa : Exon Skipping as Systemic Therapy for RDEB

    NARCIS (Netherlands)

    Bremer, Jeroen; Bornert, Olivier; Nyström, Alexander; Gostynski, Antoni; Jonkman, Marcel F; Aartsma-Rus, Annemieke; van den Akker, Peter C; Pasmooij, Anna MG

    2016-01-01

    The "generalized severe" form of recessive dystrophic epidermolysis bullosa (RDEB-gen sev) is caused by bi-allelic null mutations in COL7A1, encoding type VII collagen. The absence of type VII collagen leads to blistering of the skin and mucous membranes upon the slightest trauma. Because most

  11. Loss of niche-satellite cell interactions in syndecan-3 null mice alters muscle progenitor cell homeostasis improving muscle regeneration.

    Science.gov (United States)

    Pisconti, Addolorata; Banks, Glen B; Babaeijandaghi, Farshad; Betta, Nicole Dalla; Rossi, Fabio M V; Chamberlain, Jeffrey S; Olwin, Bradley B

    2016-01-01

    The skeletal muscle stem cell niche provides an environment that maintains quiescent satellite cells, required for skeletal muscle homeostasis and regeneration. Syndecan-3, a transmembrane proteoglycan expressed in satellite cells, supports communication with the niche, providing cell interactions and signals to maintain quiescent satellite cells. Syndecan-3 ablation unexpectedly improves regeneration in repeatedly injured muscle and in dystrophic mice, accompanied by the persistence of sublaminar and interstitial, proliferating myoblasts. Additionally, muscle aging is improved in syndecan-3 null mice. Since syndecan-3 null myofiber-associated satellite cells downregulate Pax7 and migrate away from the niche more readily than wild type cells, syxndecan-3 appears to regulate satellite cell homeostasis and satellite cell homing to the niche. Manipulating syndecan-3 provides a promising target for development of therapies to enhance muscle regeneration in muscular dystrophies and in aged muscle.

  12. Compound Heterozygosity of Dominant and Recessive COL7A Alleles in a Severely Affected Patient with a Family History of Dystrophic Epidermolysis Bullosa: Clinical Findings, Genetic Testing, and Treatment Implications.

    Science.gov (United States)

    Watson, Kendra D; Schoch, Jennifer J; Beek, Geoffrey J; Hand, Jennifer L

    2017-03-01

    An 8-year-old girl born to a family with more than three generations of dominant dystrophic epidermolysis bullosa (DDEB) presented with life-threatening confluent skin erosions, mitten hand deformity, and failure to thrive. Reassessment of her family history and genetic testing showed compound heterozygous COL7A mutations, one inherited from her DDEB-affected mother and one from her unaffected, healthy father. This family illustrates the risk of unexpected, severe, autosomal recessive epidermolysis bullosa (EB) in a family with milder, multigenerational autosomal dominant EB. Clinicians should recognize the clinical spectrum of dystrophic EB and recommend genetic consultation when the phenotype conflicts with family history. © 2017 Wiley Periodicals, Inc.

  13. Galectin-3 and N-acetylglucosamine promote myogenesis and improve skeletal muscle function in the mdx model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Rancourt, Ann; Dufresne, Sébastien S; St-Pierre, Guillaume; Lévesque, Julie-Christine; Nakamura, Haruka; Kikuchi, Yodai; Satoh, Masahiko S; Frenette, Jérôme; Sato, Sachiko

    2018-06-12

    The muscle membrane, sarcolemma, must be firmly attached to the basal lamina. The failure of proper attachment results in muscle injury, which is the underlying cause of Duchenne muscular dystrophy (DMD), in which mutations in the dystrophin gene disrupts the firm adhesion. In patients with DMD, even moderate contraction causes damage, leading to progressive muscle degeneration. The damaged muscles are repaired through myogenesis. Consequently, myogenesis is highly active in patients with DMD, and the repeated activation of myogenesis leads to the exhaustion of the myogenic stem cells. Therefore, approaches to reducing the risk of the exhaustion are to develop a treatment that strengthens the interaction between the sarcolemma and the basal lamina and increases the efficiency of the myogenesis. Galectin-3 is an oligosaccharide-binding protein and is known to be involved in cell-cell interactions and cell-matrix interactions. Galectin-3 is expressed in myoblasts and skeletal muscle, although its function in muscle remains elusive. In this study, we found evidence that galectin-3 and the monosaccharide N-acetylglucosamine, which increases the synthesis of binding partners (oligosaccharides) of galectin-3, promote myogenesis in vitro. Moreover, in the mdx mouse model of DMD, treatment with N-acetylglucosamine increased muscle-force production. The results suggest that treatment with N-acetylglucosamine might mitigate the burden of DMD.-Rancourt, A., Dufresne, S. S., St-Pierre, G., Lévesque, J.-C., Nakamura, H., Kikuchi, Y., Satoh, M. S., Frenette, J., Sato, S. Galectin-3 and N-acetylglucosamine promote myogenesis and improve skeletal muscle function in the mdx model of Duchenne muscular dystrophy.

  14. Dramatic elevation in urinary amino terminal titin fragment excretion quantified by immunoassay in Duchenne muscular dystrophy patients and in dystrophin deficient rodents.

    Science.gov (United States)

    Robertson, Alan S; Majchrzak, Mark J; Smith, Courtney M; Gagnon, Robert C; Devidze, Nino; Banks, Glen B; Little, Sean C; Nabbie, Fizal; Bounous, Denise I; DiPiero, Janet; Jacobsen, Leslie K; Bristow, Linda J; Ahlijanian, Michael K; Stimpson, Stephen A

    2017-07-01

    Enzyme-linked and electrochemiluminescence immunoassays were developed for quantification of amino (N-) terminal fragments of the skeletal muscle protein titin (N-ter titin) and qualified for use in detection of urinary N-ter titin excretion. Urine from normal subjects contained a small but measurable level of N-ter titin (1.0 ± 0.4 ng/ml). A 365-fold increase (365.4 ± 65.0, P = 0.0001) in urinary N-ter titin excretion was seen in Duchene muscular dystrophy (DMD) patients. Urinary N-ter titin was also evaluated in dystrophin deficient rodent models. Mdx mice exhibited low urinary N-ter titin levels at 2 weeks of age followed by a robust and sustained elevation starting at 3 weeks of age, coincident with the development of systemic skeletal muscle damage in this model; fold elevation could not be determined because urinary N-ter titin was not detected in age-matched wild type mice. Levels of serum creatine kinase and serum skeletal muscle troponin I (TnI) were also low at 2 weeks, elevated at later time points and were significantly correlated with urinary N-ter titin excretion in mdx mice. Corticosteroid treatment of mdx mice resulted in improved exercise performance and lowering of both urinary N-ter titin and serum skeletal muscle TnI concentrations. Low urinary N-ter titin levels were detected in wild type rats (3.0 ± 0.6 ng/ml), while Dmd mdx rats exhibited a 556-fold increase (1652.5 ± 405.7 ng/ml, P = 0.002) (both at 5 months of age). These results suggest that urinary N-ter titin is present at low basal concentrations in normal urine and increases dramatically coincident with muscle damage produced by dystrophin deficiency. Urinary N-ter titin has potential as a facile, non-invasive and translational biomarker for DMD. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Treatment with human immunoglobulin G improves the early disease course in a mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Zschüntzsch, Jana; Zhang, Yaxin; Klinker, Florian; Makosch, Gregor; Klinge, Lars; Malzahn, Dörthe; Brinkmeier, Heinrich; Liebetanz, David; Schmidt, Jens

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a severe hereditary myopathy. Standard treatment by glucocorticosteroids is limited because of numerous side effects. The aim of this study was to test immunomodulation by human immunoglobulin G (IgG) as treatment in the experimental mouse model (mdx) of DMD. 2 g/kg human IgG compared to human albumin was injected intraperitoneally in mdx mice at the age of 3 and 7 weeks. Advanced voluntary wheel running parameters were recorded continuously. At the age of 11 weeks, animals were killed so that blood, diaphragm, and lower limb muscles could be removed for quantitative PCR, histological analysis and ex vivo muscle contraction tests. IgG compared to albumin significantly improved the voluntary running performance and reduced muscle fatigability in an ex vivo muscle contraction test. Upon IgG treatment, serum creatine kinase values were diminished and mRNA expression levels of relevant inflammatory markers were reduced in the diaphragm and limb muscles. Macrophage infiltration and myopathic damage were significantly ameliorated in the quadriceps muscle. Collectively, this study demonstrates that, in the early disease course of mdx mice, human IgG improves the running performance and diminishes myopathic damage and inflammation in the muscle. Therefore, IgG may be a promising approach for treatment of DMD. Two monthly intraperitoneal injections of human immunoglobulin G (IgG) improved the early 11-week disease phase of mdx mice. Voluntary running was improved and serum levels of creatine kinase were diminished. In the skeletal muscle, myopathic damage was ameliorated and key inflammatory markers such as mRNA expression of SPP1 and infiltration by macrophages were reduced. The study suggests that IgG could be explored as a potential treatment option for Duchenne muscular dystrophy and that pre-clinical long-term studies should be helpful. © 2015 International Society for Neurochemistry.

  16. Glucocorticoids enhance muscle endurance and ameliorate Duchenne muscular dystrophy through a defined metabolic program

    DEFF Research Database (Denmark)

    Morrison-Nozik, Alexander; Anand, Priti; Zhu, Han

    2015-01-01

    in Duchenne muscular dystrophy (DMD), a genetic muscle-wasting disease. A defined molecular basis underlying these performance-enhancing properties of GCs in skeletal muscle remains obscure. Here, we demonstrate that ergogenic effects of GCs are mediated by direct induction of the metabolic transcription......Classic physiology studies dating to the 1930s demonstrate that moderate or transient glucocorticoid (GC) exposure improves muscle performance. The ergogenic properties of GCs are further evidenced by their surreptitious use as doping agents by endurance athletes and poorly understood efficacy...... factor KLF15, defining a downstream pathway distinct from that resulting in GC-related muscle atrophy. Furthermore, we establish that KLF15 deficiency exacerbates dystrophic severity and muscle GC-KLF15 signaling mediates salutary therapeutic effects in the mdx mouse model of DMD. Thus, although...

  17. Are Soy Products Effective in DMD?

    Science.gov (United States)

    Marston, Gemma; Winder, Steve J

    2018-03-27

    In addition to their nutritional value, processed soy bean extracts contain several activities with potential therapeutic benefits. These include anti-oxidants, and tyrosine kinase and protease inhibitory activity. There are also anecdotal reports of health benefits of soy products in alleviating DMD symptoms. Mdx mice were fed a control soy-free diet or the same diet containing either a proprietary soy preparation (Haelan 951), purified soy isoflavones, purified Bowman-Birk protease inhibitor or a combination of isoflavones and Bowman-Birk inhibitor. Mice were tested for their wire hanging ability at the start of the diet regimen and every 4 weeks until week 12 of treatment. The diet containing Bowman-Birk inhibitor was the only one to show a significant and sustained improvement over the 12 weeks of the study. All other dietary additions; Haelan 951, isoflavones and isoflavones with Bowman-Birk inhibitor, were not significantly different from each other or from control. The effectiveness of Bowman-Birk inhibitor in mdx mice clearly warrants further study.

  18. External Ocular Manifestations in Autosomal Dominant Dystrophic Epidermolysis Bullosa; a Case Report

    Directory of Open Access Journals (Sweden)

    Manizheh Mahdavi

    2008-11-01

    Full Text Available

    PURPOSE: To present a case of autosomal dominant dystrophic epidermolysis bullosa with symblepharon formation due to eye rubbing. CASE REPORT: A 10-year-old girl suffering from blistering and ulcerative lesions of the trunk and palms and dystrophic nails since childhood was referred to our clinic with a symblepharon connecting the medial portion of the right upper lid to the superonasal quadrant of the cornea. The central cornea in both eyes exhibited mild subepithelial opacification. She had history of eye rubbing due to foreign body sensation in the right eye, resulting in red eye and blister-like conjunctival lesions since three years ago. She had previously undergone surgical symblepharon removal leading to more severe recurrence of the condition. CONCLUSION: Dominant dystrophic epidermolysis bullosa may be accompanied by external ocular manifestations. Protection of the eye from minor trauma such as rubbing may help prevent ocular complications.

  1. Somatic mosaicism for the COL7A1 mutation p.Gly2034Arg in the unaffected mother of a patient with dystrophic epidermolysis bullosa pruriginosa

    NARCIS (Netherlands)

    Akker, P.C. van den; Pasmooij, A.M.; Meijer, R.; Scheffer, H.; Jonkman, M.F.

    2015-01-01

    Dystrophic epidermolysis bullosa (DEB) is a heritable blistering disorder caused by mutations in the type VII collagen gene, COL7A1. Although revertant mosaicism is well known in DEB, 'forward' somatic mosaicism, in which a pathogenic mutation arises on a wild-type (WT) background, extending beyond

  2. β-adrenergic ([3H] CGP-12177) receptors are elevated in slices of soleus muscle from CHF 147 dystrophic hamsters

    International Nuclear Information System (INIS)

    Watson-Wright, W.M.; Wilkinson, M.

    1987-01-01

    The authors utilized a muscle slice technique to compare the ontogeny of cell surface β-adrenergic receptor binding in soleus and extensor digitorum longus (EDL) muscles of male Golden Syrian (GS) and Canadian Hybrid Farms 147 (CHF 147) dystrophic hamsters. Binding of the β-adrenergic antagonist, [ 3 H] CGP-12177 (CGP), to GS muscle slices was reversible, saturable, stereospecific and of high affinity. Bmax was higher in the soleus (2.57+/-.12 fmol/mg wet wt) than in the EDL (1.61+/-.17 fmol/mg wet wt) of adult animals while affinities were similar (0.35+/-.06 and 0.24+/-.04 nM respectively). No differences in binding characteristics were seen in EDL of GS compared to CHF 147 animals. In soleus slices from GS hamsters, Bmax was highest at 16 days of age (5.72+/-0.26 fmol/mg), decreased between 16 and 29 days and remained constant until 300 days (2.51+/-0.52 fmol/mg). In dystrophic soleus slices, Bmax was also higher at 16 days than at any other age but receptor number decreased gradually, remaining higher than in GS until 90 days of age (p<0.05). The failure of β-adrenergic receptor number to decrease at a normal rate may be implicated in the pathogenesis of hamster polymyopathy. 21 references, 5 figures, 1 table

  3. Roentgenological assessment of diaphragm functional state in case of degenerative dystrophic injuries of the skeleton

    International Nuclear Information System (INIS)

    Dmitriev, A.E.; Arapov, N.A.

    1989-01-01

    The results of complex clinicoroengenological investigations of patients with degenerative dystrophic injuries of the backbone are presented. It is shown that the conditions of functioning of the inspiratory muscle group greatly change in the case of this pathology. The most typical picture is observed during the disease exacerbation when costovertebral and costotrasverse joints were drawn into the process. The greater increase of the motion amplitude corresponding to a half of the diagram was revealed in the presence of a considerably more pronounced osteoarthosis phenomena from any side. The necessity is shown to take into account in the case of osteochondrosis of the cervical and thoracal spinal sections the reconstruction of respiration mechanisms takes place

  4. Cognitive dysfunction in the dystrophin-deficient mouse model of Duchenne muscular dystrophy: A reappraisal from sensory to executive processes.

    Science.gov (United States)

    Chaussenot, Rémi; Edeline, Jean-Marc; Le Bec, Benoit; El Massioui, Nicole; Laroche, Serge; Vaillend, Cyrille

    2015-10-01

    Duchenne muscular dystrophy (DMD) is associated with language disabilities and deficits in learning and memory, leading to intellectual disability in a patient subpopulation. Recent studies suggest the presence of broader deficits affecting information processing, short-term memory and executive functions. While the absence of the full-length dystrophin (Dp427) is a common feature in all patients, variable mutation profiles may additionally alter distinct dystrophin-gene products encoded by separate promoters. However, the nature of the cognitive dysfunctions specifically associated with the loss of distinct brain dystrophins is unclear. Here we show that the loss of the full-length brain dystrophin in mdx mice does not modify the perception and sensorimotor gating of auditory inputs, as assessed using auditory brainstem recordings and prepulse inhibition of startle reflex. In contrast, both acquisition and long-term retention of cued and trace fear memories were impaired in mdx mice, suggesting alteration in a functional circuit including the amygdala. Spatial learning in the water maze revealed reduced path efficiency, suggesting qualitative alteration in mdx mice learning strategy. However, spatial working memory performance and cognitive flexibility challenged in various behavioral paradigms in water and radial-arm mazes were unimpaired. The full-length brain dystrophin therefore appears to play a role during acquisition of associative learning as well as in general processes involved in memory consolidation, but no overt involvement in working memory and/or executive functions could be demonstrated in spatial learning tasks. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. [Clinical application of three-dimensional O-arm navigation system in treating patients with dystrophic scoliosis secondary to neurofibromatosis type Ⅰ].

    Science.gov (United States)

    Liu, Z; Qiu, Y; Li, Y; Zhao, Z H; Wang, B; Zhu, F; Yu, Y; Sun, X; Zhu, Z Z

    2017-03-01

    Objective: To investigate the clinical outcomes and the accuracy of O-arm-navigation system assisted pedicle screw insertion in dystrophic scoliosis secondary to neurofibromatosis type Ⅰ(NF-1). Methods: A retrospective study was conducted in 41 patients with dystrophic NF-1-associated thoracic scoliosis who were surgically treated at Department of Orthopaedics, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School between June 2012 and October 2014 with more than 18 months follow-up. The patients were then divided into two groups: 18 patients were under the assistance of O-arm-navigation-based pedicle screw insertion (O-arm group) and the remaining 23 patients' pedicle screws insertion were conducted by free-hand (free-hand group). The X-ray and CT were analyzed to investigate the correction rate and safety of pedicle insertion. t -test was used to analyze measurement data and χ(2) test was used to analyze accuracy of screw insertion between the two groups. Results: The mean coronal Cobb angle was 63.2°±8.7° in the O-arm group and 66.9°±7.4° in the free-hand group ( P >0.05), which was then corrected into 23.1°±6.8° and 30.2°±7.6°( t =2.231, P =0.031) after surgery respectively.Operation time was (265.0±70.3)minutes and estimated blood loss was (1 024±465)ml in the O-arm group. Operation time and estimated blood loss was (243.0±49.6)minutes and (1 228±521)ml respectively in the free-hand group, which had no significant difference between the two groups. However, the implant density was higher in the O-arm group than that in the free-hand group ((64.1±10.8)% vs .(44.3±15.3)%)( t =4.652, P =0.000). The O-arm group comprised 122 screws, of which 72.9% were excellent, 22.1% were good and 4.9% were bad. The free-hand group comprised 136 screws and 48.5% of them were excellent, 33.8% were good and 17.6% were bad.Accuracy of pedicle screw insertion was higher in the O-arm group than that in the free-hand group(χ(2

  6. Dystrophic calcinosis in a child with a thumb sucking habit: case report

    Directory of Open Access Journals (Sweden)

    Giovannini Cesar Abrantes Lima de Figueiredo

    2000-10-01

    Full Text Available We present an uncommon case of a 3-year-old boy with a finger sucking habit who developed dystrophic calcification in his left thumb. Two years after excision, there was no recurrence, and the thumb retained full range of motion. We also discuss its probable pathogenesis and present a brief review of the literature about orthopedic complications in the hand due to this habit.Os autores apresentam caso incomum de uma criança de três anos de idade com o hábito de chupar o dedo que desenvolveu calcinose distrófica no polegar esquerdo. Dois anos após a ressecção cirúrgica, não ocorreu recidiva e o polegar mantém todos os movimentos. Discutem, ainda, sua provável patogênese e fazem breve revisão da literatura a respeito das complicações ortopédicas na mão devido a este hábito.

  7. Water erosion of dystrophic Red Latosols (Oxisols

    Directory of Open Access Journals (Sweden)

    Joaquim Ernesto Bernardes Ayer

    2015-06-01

    Full Text Available In their natural state, Latosols (Oxisols present great stability and resistance to erosion, being the most abundant and used soils for farming and cattle raising activities in southern Minas Gerais State, Brazil. However, along the last one hundred years, they have been submitted to intensive cultivation and managements which favor water erosion. This study aimed to estimate the water erosion rates of dystrophic Red Latosols from the Revised Universal Soil Loss Equation, compared with the soil loss tolerance limits, and assess the impact on water erosion of the managements more common in the region, by alternative conservation management simulation. Soil loss tolerance limits ranged from 8.94 Mg ha-1 year-1 to 9.99 Mg ha-1 year-1, with the study area presenting a susceptibility of soil loss of 23.86 Mg year-1, with an average rate of 8.40 Mg ha-1 year-1, corresponding to 34.80 % of the area with values above the soil loss tolerance limit. The biggest annual losses occur in areas with use and management of eucalyptus grown downhill (30.67 Mg ha-1 year-1 and pasture under continuous occupancy (11.10 Mg ha-1 year-1. However, when the average loss per type of use is considered, the areas more susceptible to water erosion are those with potato and eucalyptus crops, grown downhill, and those in bare soil. Nevertheless, in the simulated conservation management scenario, the average losses would be drastically reduced (8.40 Mg ha-1 year-1 to 2.84 Mg ha-1 year-1 and only 4.00 % of the area with soil loss would remain above the tolerance limits.

  8. A founder synonymous COL7A1 mutation in three Danish families with dominant dystrophic epidermolysis bullosa pruriginosa identifies exonic regulatory sequences required for exon 87 splicing

    DEFF Research Database (Denmark)

    Covaciu, C; Grosso, F; Pisaneschi, E

    2011-01-01

    Dystrophic epidermolysis bullosa pruriginosa (DEB-Pr) (OMIM 604129) represents a distinct variant within the DEB clinical spectrum. It is characterized by intense pruritus and distinctive nodular prurigo-like and/or hypertrophic lichenoid lesions mainly localized on the arms, legs and upper shoul...

  9. Epidermólise bolhosa distrófica recessiva mitis: relato de caso clínico Recessive dystrophic epidermolysis bullosa mitis: case report

    Directory of Open Access Journals (Sweden)

    Thaiz Gava Rigoni Gürtler

    2005-10-01

    Full Text Available As epidermólises bolhosas são dermatoses bolhosas congênitas que levam à formação de bolhas espontaneamente ou após trauma. São reconhecidos três grupos de da doença, de acordo com o segundo consenso internacional: simples, juncional e distrófica. Nas formas distróficas, o defeito genético deve-se à mutação no gene COL7A1, responsável pela codificação do colágeno VII, principal constituinte das fibrilas de ancoragem, que participam na aderência da lâmina densa à derme. Os autores relatam o caso de paciente do sexo feminino, de 15 anos, apresentando ulcerações nas pernas, bolhas serosas e lesões atrófico-acastanhadas nos braços e tronco. Foram observadas distrofias ungueais e alterações dentárias, iniciadas a partir do nascimento. O exame histopatológico da bolha revelou quadro compatével com epidermólise bolhosa, que, associado aos dados clínicos, permitiram a classificação do caso na forma distrófica recessiva mitis.Epidermolysis bullosa are congenital bullous dermatoses that lead to spontaneous or post-traumatic formation of blisters. There are three recognized disease groups, according to the second international consensus: simplex, junctional and dystrophic. The genetic defect of the dystrophic forms is due to a mutation in the COL7A1 gene, which is responsible for codifying collagen VII, the main representative of anchoring fibrils, which participate in the adherence of the "lamina densa" to the dermis. The authors describe a case of a 15 year-old female patient who presented ulcers on her legs, serous blisters and atrophic scars on her arms and body. Dystrophic ungual and dental abnormalities had also been observed since her birth. Blister histopathological examination was compatible with epidermolysis bullosa, which, in association with clinical data, allowed the classification of recessive distrophic epidermolysis bullosa.

  10. Role of dystrophin in airway smooth muscle phenotype, contraction and lung function.

    Directory of Open Access Journals (Sweden)

    Pawan Sharma

    Full Text Available Dystrophin links the transmembrane dystrophin-glycoprotein complex to the actin cytoskeleton. We have shown that dystrophin-glycoprotein complex subunits are markers for airway smooth muscle phenotype maturation and together with caveolin-1, play an important role in calcium homeostasis. We tested if dystrophin affects phenotype maturation, tracheal contraction and lung physiology. We used dystrophin deficient Golden Retriever dogs (GRMD and mdx mice vs healthy control animals in our approach. We found significant reduction of contractile protein markers: smooth muscle myosin heavy chain (smMHC and calponin and reduced Ca2+ response to contractile agonist in dystrophin deficient cells. Immunocytochemistry revealed reduced stress fibers and number of smMHC positive cells in dystrophin-deficient cells, when compared to control. Immunoblot analysis of Akt1, GSK3β and mTOR phosphorylation further revealed that downstream PI3K signaling, which is essential for phenotype maturation, was suppressed in dystrophin deficient cell cultures. Tracheal rings from mdx mice showed significant reduction in the isometric contraction to methacholine (MCh when compared to genetic control BL10ScSnJ mice (wild-type. In vivo lung function studies using a small animal ventilator revealed a significant reduction in peak airway resistance induced by maximum concentrations of inhaled MCh in mdx mice, while there was no change in other lung function parameters. These data show that the lack of dystrophin is associated with a concomitant suppression of ASM cell phenotype maturation in vitro, ASM contraction ex vivo and lung function in vivo, indicating that a linkage between the DGC and the actin cytoskeleton via dystrophin is a determinant of the phenotype and functional properties of ASM.

  11. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer's disease.

    Science.gov (United States)

    Streit, Wolfgang J; Braak, Heiko; Xue, Qing-Shan; Bechmann, Ingo

    2009-10-01

    The role of microglial cells in the pathogenesis of Alzheimer's disease (AD) neurodegeneration is unknown. Although several works suggest that chronic neuroinflammation caused by activated microglia contributes to neurofibrillary degeneration, anti-inflammatory drugs do not prevent or reverse neuronal tau pathology. This raises the question if indeed microglial activation occurs in the human brain at sites of neurofibrillary degeneration. In view of the recent work demonstrating presence of dystrophic (senescent) microglia in aged human brain, the purpose of this study was to investigate microglial cells in situ and at high resolution in the immediate vicinity of tau-positive structures in order to determine conclusively whether degenerating neuronal structures are associated with activated or with dystrophic microglia. We used a newly optimized immunohistochemical method for visualizing microglial cells in human archival brain together with Braak staging of neurofibrillary pathology to ascertain the morphology of microglia in the vicinity of tau-positive structures. We now report histopathological findings from 19 humans covering the spectrum from none to severe AD pathology, including patients with Down's syndrome, showing that degenerating neuronal structures positive for tau (neuropil threads, neurofibrillary tangles, neuritic plaques) are invariably colocalized with severely dystrophic (fragmented) rather than with activated microglial cells. Using Braak staging of Alzheimer neuropathology we demonstrate that microglial dystrophy precedes the spread of tau pathology. Deposits of amyloid-beta protein (Abeta) devoid of tau-positive structures were found to be colocalized with non-activated, ramified microglia, suggesting that Abeta does not trigger microglial activation. Our findings also indicate that when microglial activation does occur in the absence of an identifiable acute central nervous system insult, it is likely to be the result of systemic infectious

  12. Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography

    Science.gov (United States)

    Klyen, Blake R.; Shavlakadze, Thea; Radley-Crabb, Hannah G.; Grounds, Miranda D.; Sampson, David D.

    2011-07-01

    Three-dimensional optical coherence tomography (3D-OCT) was used to image the structure and pathology of skeletal muscle tissue from the treadmill-exercised mdx mouse model of human Duchenne muscular dystrophy. Optical coherence tomography (OCT) images of excised muscle samples were compared with co-registered hematoxylin and eosin-stained and Evans blue dye fluorescence histology. We show, for the first time, structural 3D-OCT images of skeletal muscle dystropathology well correlated with co-located histology. OCT could identify morphological features of interest and necrotic lesions within the muscle tissue samples based on intrinsic optical contrast. These findings demonstrate the utility of 3D-OCT for the evaluation of small-animal skeletal muscle morphology and pathology, particularly for studies of mouse models of muscular dystrophy.

  13. Levels of α7 integrin and laminin-α2 are increased following prednisone treatment in the mdx mouse and GRMD dog models of Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Ryan D. Wuebbles

    2013-09-01

    Duchenne muscular dystrophy (DMD is a fatal neuromuscular disease for which there is no cure and limited treatment options. Prednisone is currently the first line treatment option for DMD and studies have demonstrated that it improves muscle strength. Although prednisone has been used for the treatment of DMD for decades, the mechanism of action of this drug remains unclear. Recent studies have shown that the α7β1 integrin is a major modifier of disease progression in mouse models of DMD and is therefore a target for drug-based therapies. In this study we examined whether prednisone increased α7β1 integrin levels in mdx mouse and GRMD dog models and myogenic cells from humans with DMD. Our results show that prednisone promotes an increase in α7 integrin protein in cultured myogenic cells and in the muscle of mdx and GRMD animal models of DMD. The prednisone-mediated increase in α7 integrin was associated with increased laminin-α2 in prednisone-treated dystrophin-deficient muscle. Together, our results suggest that prednisone acts in part through increased merosin in the muscle basal lamina and through sarcolemmal stabilization of α7β1 integrin in dystrophin-deficient muscle. These results indicate that therapies that target an increase in muscle α7β1 integrin, its signaling pathways and/or laminin could be therapeutic in DMD.

  14. Activation of c-Raf-1 kinase signal transduction pathway in alpha(7) integrin-deficient mice.

    Science.gov (United States)

    Saher, G; Hildt, E

    1999-09-24

    Integrin alpha(7)-deficient mice develop a novel form of muscular dystrophy. Here we report that deficiency of alpha(7) integrin causes an activation of the c-Raf-1/mitogen-activated protein (MAP) 2 kinase signal transduction pathway in muscle cells. The observed activation of c-Raf-1/MAP2 kinases is a specific effect, because the alpha(7) integrin deficiency does not cause unspecific stress as determined by measurement of the Hsp72/73 level and activity of the JNK2 kinase. Because an increased level of activated FAK was found in muscle of alpha(7) integrin-deficient mice, the activation of c-Raf-1 kinase is triggered most likely by an integrin-dependent pathway. In accordance with this, in the integrin alpha(7)-deficient mice, part of the integrin beta(1D) variant in muscle is replaced by the beta(1A) variant, which permits the FAK activation. A recent report describes that integrin activity can be down-modulated by the c-Raf-1/MAP2 kinase pathway. Specific activation of the c-Raf-1/MAP2 kinases by cell-permeable peptides in skeletal muscle of rabbits causes degeneration of muscle fibers. Therefore, we conclude that in alpha(7) integrin-deficient mice, the continuous activation of c-Raf-1 kinase causes a permanent reduction of integrin activity diminishing integrin-dependent cell-matrix interactions and thereby contributing to the development of the dystrophic phenotype.

  15. Protection of dystrophic muscle cells with polyphenols from green tea correlates with improved glutathione balance and increased expression of 67LR, a receptor for (-)-epigallocatechin gallate

    OpenAIRE

    Dorchies OM Wagner S Buetler TM Ruegg UT

    2009-01-01

    Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease caused by the absence of the protein dystrophin. Because oxidative stress contributes to the pathogenesis of DMD we investigated if a green tea polyphenol blend (GTP) and its major polyphenol ( ) epigallocatechin gallate (EGCg) could protect muscle cell primary cultures from oxidative damage induced by hydrogen peroxide (H(2)O(2)) in the widely used mdx mouse model. On line fluorimetric measurements using an H(2)O(2) sensitiv...

  16. Creation of Dystrophin Expressing Chimeric Cells of Myoblast Origin as a Novel Stem Cell Based Therapy for Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Siemionow, M; Cwykiel, J; Heydemann, A; Garcia-Martinez, J; Siemionow, K; Szilagyi, E

    2018-04-01

    Over the past decade different stem cell (SC) based approaches were tested to treat Duchenne Muscular Dystrophy (DMD), a lethal X-linked disorder caused by mutations in dystrophin gene. Despite research efforts, there is no curative therapy for DMD. Allogeneic SC therapies aim to restore dystrophin in the affected muscles; however, they are challenged by rejection and limited engraftment. Thus, there is a need to develop new more efficacious SC therapies. Chimeric Cells (CC), created via ex vivo fusion of donor and recipient cells, represent a promising therapeutic option for tissue regeneration and Vascularized Composite Allotransplantation (VCA) due to tolerogenic properties that eliminate the need for lifelong immunosuppression. This proof of concept study tested feasibility of myoblast fusion for Dystrophin Expressing. Chimeric Cell (DEC) therapy through in vitro characterization and in vivo assessment of engraftment, survival, and efficacy in the mdx mouse model of DMD. Murine DEC were created via ex vivo fusion of normal (snj) and dystrophin-deficient (mdx) myoblasts using polyethylene glycol. Efficacy of myoblast fusion was confirmed by flow cytometry and dystrophin immunostaining, while proliferative and myogenic differentiation capacity of DEC were assessed in vitro. Therapeutic effect after DEC transplant (0.5 × 10 6 ) into the gastrocnemius muscle (GM) of mdx mice was assessed by muscle functional tests. At 30 days post-transplant dystrophin expression in GM of injected mdx mice increased to 37.27 ± 12.1% and correlated with improvement of muscle strength and function. Our study confirmed feasibility and efficacy of DEC therapy and represents a novel SC based approach for treatment of muscular dystrophies.

  17. Automated multiscale morphometry of muscle disease from second harmonic generation microscopy using tensor-based image processing.

    Science.gov (United States)

    Garbe, Christoph S; Buttgereit, Andreas; Schürmann, Sebastian; Friedrich, Oliver

    2012-01-01

    Practically, all chronic diseases are characterized by tissue remodeling that alters organ and cellular function through changes to normal organ architecture. Some morphometric alterations become irreversible and account for disease progression even on cellular levels. Early diagnostics to categorize tissue alterations, as well as monitoring progression or remission of disturbed cytoarchitecture upon treatment in the same individual, are a new emerging field. They strongly challenge spatial resolution and require advanced imaging techniques and strategies for detecting morphological changes. We use a combined second harmonic generation (SHG) microscopy and automated image processing approach to quantify morphology in an animal model of inherited Duchenne muscular dystrophy (mdx mouse) with age. Multiphoton XYZ image stacks from tissue slices reveal vast morphological deviation in muscles from old mdx mice at different scales of cytoskeleton architecture: cell calibers are irregular, myofibrils within cells are twisted, and sarcomere lattice disruptions (detected as "verniers") are larger in number compared to samples from healthy mice. In young mdx mice, such alterations are only minor. The boundary-tensor approach, adapted and optimized for SHG data, is a suitable approach to allow quick quantitative morphometry in whole tissue slices. The overall detection performance of the automated algorithm compares very well with manual "by eye" detection, the latter being time consuming and prone to subjective errors. Our algorithm outperfoms manual detection by time with similar reliability. This approach will be an important prerequisite for the implementation of a clinical image databases to diagnose and monitor specific morphological alterations in chronic (muscle) diseases. © 2011 IEEE

  18. Four-week rapamycin treatment improves muscular dystrophy in a fukutin-deficient mouse model of dystroglycanopathy.

    Science.gov (United States)

    Foltz, Steven J; Luan, Junna; Call, Jarrod A; Patel, Ankit; Peissig, Kristen B; Fortunato, Marisa J; Beedle, Aaron M

    2016-01-01

    Secondary dystroglycanopathies are a subset of muscular dystrophy caused by abnormal glycosylation of α-dystroglycan (αDG). Loss of αDG functional glycosylation prevents it from binding to laminin and other extracellular matrix receptors, causing muscular dystrophy. Mutations in a number of genes, including FKTN (fukutin), disrupt αDG glycosylation. We analyzed conditional Fktn knockout (Fktn KO) muscle for levels of mTOR signaling pathway proteins by Western blot. Two cohorts of Myf5-cre/Fktn KO mice were treated with the mammalian target of rapamycin (mTOR) inhibitor rapamycin (RAPA) for 4 weeks and evaluated for changes in functional and histopathological features. Muscle from 17- to 25-week-old fukutin-deficient mice has activated mTOR signaling. However, in tamoxifen-inducible Fktn KO mice, factors related to Akt/mTOR signaling were unchanged before the onset of dystrophic pathology, suggesting that Akt/mTOR signaling pathway abnormalities occur after the onset of disease pathology and are not causative in early dystroglycanopathy development. To determine any pharmacological benefit of targeting mTOR signaling, we administered RAPA daily for 4 weeks to Myf5/Fktn KO mice to inhibit mTORC1. RAPA treatment reduced fibrosis, inflammation, activity-induced damage, and central nucleation, and increased muscle fiber size in Myf5/Fktn KO mice compared to controls. RAPA-treated KO mice also produced significantly higher torque at the conclusion of dosing. These findings validate a misregulation of mTOR signaling in dystrophic dystroglycanopathy skeletal muscle and suggest that such signaling molecules may be relevant targets to delay and/or reduce disease burden in dystrophic patients.

  19. Botulinum toxin A injection for chronic anal fissures and anal sphincter spasm improves quality of life in recessive dystrophic epidermolysis bullosa

    Directory of Open Access Journals (Sweden)

    Cassandra Chaptini, MBBS

    2015-12-01

    Full Text Available We report a 20-year-old female with generalized, severe, recessive dystrophic epidermolysis bullosa who developed secondary chronic anal fissures. This resulted in anal sphincter spasm and severe, disabling pain. She was treated with five botulinum toxin A injections into the internal anal sphincter over a period of 2 years and gained marked improvement in her symptoms. This case demonstrates the successful use of botulinum toxin A injections to relieve anal sphincter spasm and fissuring, with long-term improvement.

  20. Genome-wide expression analysis comparing hypertrophic changes in normal and dysferlinopathy mice

    Directory of Open Access Journals (Sweden)

    Yun-Sil Lee

    2015-12-01

    Full Text Available Because myostatin normally limits skeletal muscle growth, there are extensive efforts to develop myostatin inhibitors for clinical use. One potential concern is that in muscle degenerative diseases, inducing hypertrophy may increase stress on dystrophic fibers. Our study shows that blocking this pathway in dysferlin deficient mice results in early improvement in histopathology but ultimately accelerates muscle degeneration. Hence, benefits of this approach should be weighed against these potential detrimental effects. Here, we present detailed experimental methods and analysis for the gene expression profiling described in our recently published study in Human Molecular Genetics (Lee et al., 2015. Our data sets have been deposited in the Gene Expression Omnibus (GEO database (GSE62945 and are available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62945. Our data provide a resource for exploring molecular mechanisms that are related to hypertrophy-induced, accelerated muscular degeneration in dysferlinopathy.

  1. Morphological and functional analyses of skeletal muscles from an immunodeficient animal model of limb-girdle muscular dystrophy type 2E.

    Science.gov (United States)

    Giovannelli, Gaia; Giacomazzi, Giorgia; Grosemans, Hanne; Sampaolesi, Maurilio

    2018-02-24

    Limb-girdle muscular dystrophy type 2E (LGMD2E) is caused by mutations in the β-sarcoglycan gene, which is expressed in skeletal, cardiac, and smooth muscles. β-Sarcoglycan-deficient (Sgcb-null) mice develop severe muscular dystrophy and cardiomyopathy with focal areas of necrosis. In this study we performed morphological (histological and cellular characterization) and functional (isometric tetanic force and fatigue) analyses in dystrophic mice. Comparison studies were carried out in 1-month-old (clinical onset of the disease) and 7-month-old control mice (C57Bl/6J, Rag2/γc-null) and immunocompetent and immunodeficient dystrophic mice (Sgcb-null and Sgcb/Rag2/γc-null, respectively). We found that the lack of an immunological system resulted in an increase of calcification in striated muscles without impairing extensor digitorum longus muscle performance. Sgcb/Rag2/γc-null muscles showed a significant reduction of alkaline phosphate-positive mesoangioblasts. The immunological system counteracts skeletal muscle degeneration in the murine model of LGMD2E. Muscle Nerve, 2018. © 2018 The Authors. Muscle & Nerve Published by Wiley Periodicals, Inc.

  2. Pulsatile Lavage of Musculoskeletal Wounds Causes Muscle Necrosis and Dystrophic Calcification in a Rat Model.

    Science.gov (United States)

    Chiaramonti, Alexander M; Robertson, Astor D; Nguyen, Thao P; Jaffe, David E; Hanna, E Lex; Holmes, Robert; Barfield, William R; Fourney, William L; Stains, Joseph P; Pellegrini, Vincent D

    2017-11-01

    demonstrated signs of variable regression. Histological analysis of interval biopsy and postmortem specimens demonstrated tissue damage with inflammatory cells, cell death, and dystrophic calcification. Pulsatile lavage of musculoskeletal wounds can cause irreversible insult to tissue, resulting in myonecrosis and dystrophic calcification. The benefits and offsetting harm of pulsatile lavage (20 psi) should be considered before its routine use in the management of musculoskeletal wounds.

  3. Single Stem Cell Imaging and Analysis Reveals Telomere Length Differences in Diseased Human and Mouse Skeletal Muscles

    Directory of Open Access Journals (Sweden)

    Elisia D. Tichy

    2017-10-01

    Full Text Available Muscle stem cells (MuSCs contribute to muscle regeneration following injury. In many muscle disorders, the repeated cycles of damage and repair lead to stem cell dysfunction. While telomere attrition may contribute to aberrant stem cell functions, methods to accurately measure telomere length in stem cells from skeletal muscles have not been demonstrated. Here, we have optimized and validated such a method, named MuQ-FISH, for analyzing telomere length in MuSCs from either mice or humans. Our analysis showed no differences in telomere length between young and aged MuSCs from uninjured wild-type mice, but MuSCs isolated from young dystrophic mice exhibited significantly shortened telomeres. In corroboration, we demonstrated that telomere attrition is present in human dystrophic MuSCs, which underscores its importance in diseased regenerative failure. The robust technique described herein provides analysis at a single-cell resolution and may be utilized for other cell types, especially rare populations of cells.

  4. Muscle Moment Arms and Sensitivity Analysis of a Mouse Hindlimb Musculoskeletal Model

    Science.gov (United States)

    2016-05-12

    musculature in squirrels, rats, and guinea pigs with con- trast-enhanced microCT. Anat Rec (Hoboken) 294, 915–928. Deisseroth K (2011) Optogenetics. Nat...downhill running in mdx mice. Muscle Nerve 43, 878–886. Medler S (2002) Comparative trends in shortening velocity and force production in skeletal muscles

  5. Sediment features, macrozoobenthic assemblages and trophic relationships (δ13C and δ15N analysis) following a dystrophic event with anoxia and sulphide development in the Santa Giusta lagoon (western Sardinia, Italy)

    International Nuclear Information System (INIS)

    Magni, P.; Rajagopal, S.; Velde, G. van der; Fenzi, G.; Kassenberg, J.; Vizzini, S.; Mazzola, A.; Giordani, G.

    2008-01-01

    Macrozoobenthic assemblages and stable carbon (δ 13 C) and nitrogen (δ 15 N) isotope values of various primary producers (macroalgae and angiosperms) and consumers (macroinvertebrate filter/suspension feeders, deposit feeders, detritivores/omnivores and carnivores and fishes) were studied in the Santa Giusta lagoon (Sardinia, Italy) before (spring) and after (autumn) a dystrophic event which occurred in the summer of 2004. A few days after the dystrophy, the physico-chemical characteristics of sediments and macrozoobenthic assemblages were also investigated. In the latter occasion, high total organic carbon (3.9%) and organic matter (15.9%) contents of surface sediments went together with peaks in acid-volatile sulphide concentrations. Certain immediate effects were quite extreme, such as the drastic reduction in macrozoobenthos and the massive fish kill in August 2004. Among the macrozoobenthos, there were few individuals of chironomid larvae and Capitella cf. capitata left. However, by October, chironomid larvae were numerous, indicating a lack of predators (e.g. fish) and competitors. In addition, some bivalve species and polychaetes which were absent, or present in small numbers before the event, became relatively numerous. The results are discussed based on a knowledge of the sulphide tolerance of these species. Stable isotope analysis clearly showed that the basal level of the food web for most consumers consisted mainly of macroalgae and sedimentary organic matter, and that the values before and after the dystrophic event were not significantly different from one another. This indicates that the relations among different trophic levels were quickly restored following the dystrophic event

  6. Increased susceptibility of dystrophin-deficient brain to mild hypoxia

    International Nuclear Information System (INIS)

    Wallis, T.; Rae, C.; Bubb, W.A.; Head, S.I.

    2002-01-01

    Full text: Duchenne muscular dystrophy is an X-linked disorder resulting from total absence of the 427 kDa protein dystrophin. Dystrophin is normally expressed in the brain mainly in a neuronal subpopulation: cortical pyramidal cells, hippocampal CA1 neurons and cerebellar Purkinje cells. One suggested role for dystrophin is in colocalising mitochondrial creatine kinase with ADP translocase and ATP synthase in mitochondria. Brain tissue slices in the murine model of Duchenne dystrophy, the mdx mouse, have been shown to be more sensitive to hypoxia than control. In this work, we used 13 C NMR to monitor the metabolic response of mdx cortical brain tissue slices to normoxia (95%O 2 /5% CO 2 ) and mild hypoxia (95%air/5% CO 2 ). Under normoxic conditions, mdx cortical slices displayed increased net flux through the Krebs cycle and glutamate/glutamine cycle, consistent with the proposed GABA A lesion which results in decreased inhibitory input. By contrast, mild hypoxia resulted in a significant increase in the total pool size of lactate and decreased net flux of 13 C from [3- 13 C]pyruvate into glutamate C4, GABA C2 and Ala C2, as well as decreased anaplerotic activity as measured by the ratio of Asp C2: Asp C3 label. Mild hypoxia has a significantly greater effect on brain oxidative metabolism in mdx mice, than in control

  7. Morphological study of liver of mice-like rodents from the areas of Altai region exposed to radiation pollution

    International Nuclear Information System (INIS)

    Lushnikova, E.L.; Molodykh, O.P.; Nepomnyashikh, L.M.

    1997-01-01

    Morphofunctional liver state of two mice-like rodents species caught at the three areas of Altai region exposed to radiation during nuclear tests at Semipalatinsk site was studied. It was shown that the stereotype morphofunctional changes in the liver of both rodent species were developed under chronical influence of low doses of radiation and chemical contamination. These changes are manifested as dystrophic disorders of hepatocytes and hemodynamic disturbances accompanied by a decrease of volume ratio of sinusoidal capillaries to hepatocytes and stroma to parenchyma. Hyperglicogenosis, redistribution of the main cytoplasmic organelles, and considerably reduction of the volume densities of mitochondria, smooth and rough endoplasmic reticulum are the leading ultrastructural changes. Moreover, character and manifestation of the changes are determined by ecological belonging and correlated with intensity of anthropogenic pollution. The role of these changes in development of long term pathology are discussed

  8. TRAF6 regulates satellite stem cell self-renewal and function during regenerative myogenesis

    Science.gov (United States)

    Hindi, Sajedah M.; Kumar, Ashok

    2015-01-01

    Satellite cells are a stem cell population within adult muscle and are responsible for myofiber regeneration upon injury. Satellite cell dysfunction has been shown to underlie the loss of skeletal muscle mass in many acquired and genetic muscle disorders. The transcription factor paired box-protein-7 (PAX7) is indispensable for supplementing the reservoir of satellite cells and driving regeneration in normal and diseased muscle. TNF receptor–associated factor 6 (TRAF6) is an adaptor protein and an E3 ubiquitin ligase that mediates the activation of multiple cell signaling pathways in a context-dependent manner. Here, we demonstrated that TRAF6-mediated signaling is critical for homeostasis of satellite cells and their function during regenerative myogenesis. Selective deletion of Traf6 in satellite cells of adult mice led to profound muscle regeneration defects and dramatically reduced levels of PAX7 and late myogenesis markers. TRAF6 was required for the activation of MAPKs ERK1/2 and JNK1/2, which in turn activated the transcription factor c-JUN, which binds the Pax7 promoter and augments Pax7 expression. Moreover, TRAF6/c-JUN signaling repressed the levels of the microRNAs miR-1 and miR-206, which promote differentiation, to maintain PAX7 levels in satellite cells. We also determined that satellite cell–specific deletion of Traf6 exaggerates the dystrophic phenotype in the mdx (a mouse model of Duchenne muscular dystrophy) mouse by blunting the regeneration of injured myofibers. Collectively, our study reveals an essential role for TRAF6 in satellite stem cell function. PMID:26619121

  9. Neuromuscular electrical stimulation as a method to maximize the beneficial effects of muscle stem cells transplanted into dystrophic skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Giovanna Distefano

    Full Text Available Cellular therapy is a potential approach to improve the regenerative capacity of damaged or diseased skeletal muscle. However, its clinical use has often been limited by impaired donor cell survival, proliferation and differentiation following transplantation. Additionally, functional improvements after transplantation are all-too-often negligible. Because the host microenvironment plays an important role in the fate of transplanted cells, methods to modulate the microenvironment and guide donor cell behavior are warranted. The purpose of this study was to investigate whether the use of neuromuscular electrical stimulation (NMES for 1 or 4 weeks following muscle-derived stem cell (MDSC transplantation into dystrophic skeletal muscle can modulate the fate of donor cells and enhance their contribution to muscle regeneration and functional improvements. Animals submitted to 4 weeks of NMES after transplantation demonstrated a 2-fold increase in the number of dystrophin+ myofibers as compared to control transplanted muscles. These findings were concomitant with an increased vascularity in the MDSC+NMES group when compared to non-stimulated counterparts. Additionally, animals subjected to NMES (with or without MDSC transplantation presented an increased maximal specific tetanic force when compared to controls. Although cell transplantation and/or the use of NMES resulted in no changes in fatigue resistance, the combination of both MDSC transplantation and NMES resulted in a faster recovery from fatigue, when compared to non-injected and non-stimulated counterparts. We conclude that NMES is a viable method to improve MDSC engraftment, enhance dystrophic muscle strength, and, in combination with MDSC transplantation, improve recovery from fatigue. These findings suggest that NMES may be a clinically-relevant adjunct approach for cell transplantation into skeletal muscle.

  10. Sediment features, macrozoobenthic assemblages and trophic relationships ({delta}{sup 13}C and {delta}{sup 15}N analysis) following a dystrophic event with anoxia and sulphide development in the Santa Giusta lagoon (western Sardinia, Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Magni, P. [CNR-IAMC National Research Council - Institute for Coastal Marine Environment c/o IMC - International Marine Centre, Loc. Sa Mardini, Torregrande, 09072 Oristano (Italy); IMC - International Marine Centre, Loc. Sa Mardini, Torregrande, 09072 Oristano (Italy)], E-mail: paolo.magni@iamc.cnr.it; Rajagopal, S. [Department of Animal Ecology and Ecophysiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Toernooiveld, 6525 ED Nijmegen (Netherlands); Velde, G. van der [Department of Animal Ecology and Ecophysiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Toernooiveld, 6525 ED Nijmegen (Netherlands); National Museum of Natural History Naturalis, P.O. Box 9517, 2300 RA Leiden (Netherlands); Fenzi, G. [IMC - International Marine Centre, Loc. Sa Mardini, Torregrande, 09072 Oristano (Italy); Kassenberg, J. [Department of Animal Ecology and Ecophysiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Toernooiveld, 6525 ED Nijmegen (Netherlands); Vizzini, S.; Mazzola, A. [Dipartimento di Biologia Animale, Universita di Palermo, via Archirafi 18, 90123 Palermo (Italy); Giordani, G. [Dipartimento di Scienze Ambientali, Universita di Parma, Via Usberti 33/A, 43100 Parma (Italy)

    2008-07-01

    Macrozoobenthic assemblages and stable carbon ({delta}{sup 13}C) and nitrogen ({delta}{sup 15}N) isotope values of various primary producers (macroalgae and angiosperms) and consumers (macroinvertebrate filter/suspension feeders, deposit feeders, detritivores/omnivores and carnivores and fishes) were studied in the Santa Giusta lagoon (Sardinia, Italy) before (spring) and after (autumn) a dystrophic event which occurred in the summer of 2004. A few days after the dystrophy, the physico-chemical characteristics of sediments and macrozoobenthic assemblages were also investigated. In the latter occasion, high total organic carbon (3.9%) and organic matter (15.9%) contents of surface sediments went together with peaks in acid-volatile sulphide concentrations. Certain immediate effects were quite extreme, such as the drastic reduction in macrozoobenthos and the massive fish kill in August 2004. Among the macrozoobenthos, there were few individuals of chironomid larvae and Capitella cf. capitata left. However, by October, chironomid larvae were numerous, indicating a lack of predators (e.g. fish) and competitors. In addition, some bivalve species and polychaetes which were absent, or present in small numbers before the event, became relatively numerous. The results are discussed based on a knowledge of the sulphide tolerance of these species. Stable isotope analysis clearly showed that the basal level of the food web for most consumers consisted mainly of macroalgae and sedimentary organic matter, and that the values before and after the dystrophic event were not significantly different from one another. This indicates that the relations among different trophic levels were quickly restored following the dystrophic event.

  11. Muscle function recovery in golden retriever muscular dystrophy after AAV1-U7 exon skipping.

    Science.gov (United States)

    Vulin, Adeline; Barthélémy, Inès; Goyenvalle, Aurélie; Thibaud, Jean-Laurent; Beley, Cyriaque; Griffith, Graziella; Benchaouir, Rachid; le Hir, Maëva; Unterfinger, Yves; Lorain, Stéphanie; Dreyfus, Patrick; Voit, Thomas; Carlier, Pierre; Blot, Stéphane; Garcia, Luis

    2012-11-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder resulting from lesions of the gene encoding dystrophin. These usually consist of large genomic deletions, the extents of which are not correlated with the severity of the phenotype. Out-of-frame deletions give rise to dystrophin deficiency and severe DMD phenotypes, while internal deletions that produce in-frame mRNAs encoding truncated proteins can lead to a milder myopathy known as Becker muscular dystrophy (BMD). Widespread restoration of dystrophin expression via adeno-associated virus (AAV)-mediated exon skipping has been successfully demonstrated in the mdx mouse model and in cardiac muscle after percutaneous transendocardial delivery in the golden retriever muscular dystrophy dog (GRMD) model. Here, a set of optimized U7snRNAs carrying antisense sequences designed to rescue dystrophin were delivered into GRMD skeletal muscles by AAV1 gene transfer using intramuscular injection or forelimb perfusion. We show sustained correction of the dystrophic phenotype in extended muscle areas and partial recovery of muscle strength. Muscle architecture was improved and fibers displayed the hallmarks of mature and functional units. A 5-year follow-up ruled out immune rejection drawbacks but showed a progressive decline in the number of corrected muscle fibers, likely due to the persistence of a mild dystrophic process such as occurs in BMD phenotypes. Although AAV-mediated exon skipping was shown safe and efficient to rescue a truncated dystrophin, it appears that recurrent treatments would be required to maintain therapeutic benefit ahead of the progression of the disease.

  12. Overexpression of Latent TGFβ Binding Protein 4 in Muscle Ameliorates Muscular Dystrophy through Myostatin and TGFβ.

    Science.gov (United States)

    Lamar, Kay-Marie; Bogdanovich, Sasha; Gardner, Brandon B; Gao, Quan Q; Miller, Tamari; Earley, Judy U; Hadhazy, Michele; Vo, Andy H; Wren, Lisa; Molkentin, Jeffery D; McNally, Elizabeth M

    2016-05-01

    Latent TGFβ binding proteins (LTBPs) regulate the extracellular availability of latent TGFβ. LTBP4 was identified as a genetic modifier of muscular dystrophy in mice and humans. An in-frame insertion polymorphism in the murine Ltbp4 gene associates with partial protection against muscular dystrophy. In humans, nonsynonymous single nucleotide polymorphisms in LTBP4 associate with prolonged ambulation in Duchenne muscular dystrophy. To better understand LTBP4 and its role in modifying muscular dystrophy, we created transgenic mice overexpressing the protective murine allele of LTBP4 specifically in mature myofibers using the human skeletal actin promoter. Overexpression of LTBP4 protein was associated with increased muscle mass and proportionally increased strength compared to age-matched controls. In order to assess the effects of LTBP4 in muscular dystrophy, LTBP4 overexpressing mice were bred to mdx mice, a model of Duchenne muscular dystrophy. In this model, increased LTBP4 led to greater muscle mass with proportionally increased strength, and decreased fibrosis. The increase in muscle mass and reduction in fibrosis were similar to what occurs when myostatin, a related TGFβ family member and negative regulator of muscle mass, was deleted in mdx mice. Supporting this, we found that myostatin forms a complex with LTBP4 and that overexpression of LTBP4 led to a decrease in myostatin levels. LTBP4 also interacted with TGFβ and GDF11, a protein highly related to myostatin. These data identify LTBP4 as a multi-TGFβ family ligand binding protein with the capacity to modify muscle disease through overexpression.

  13. Overexpression of Latent TGFβ Binding Protein 4 in Muscle Ameliorates Muscular Dystrophy through Myostatin and TGFβ.

    Directory of Open Access Journals (Sweden)

    Kay-Marie Lamar

    2016-05-01

    Full Text Available Latent TGFβ binding proteins (LTBPs regulate the extracellular availability of latent TGFβ. LTBP4 was identified as a genetic modifier of muscular dystrophy in mice and humans. An in-frame insertion polymorphism in the murine Ltbp4 gene associates with partial protection against muscular dystrophy. In humans, nonsynonymous single nucleotide polymorphisms in LTBP4 associate with prolonged ambulation in Duchenne muscular dystrophy. To better understand LTBP4 and its role in modifying muscular dystrophy, we created transgenic mice overexpressing the protective murine allele of LTBP4 specifically in mature myofibers using the human skeletal actin promoter. Overexpression of LTBP4 protein was associated with increased muscle mass and proportionally increased strength compared to age-matched controls. In order to assess the effects of LTBP4 in muscular dystrophy, LTBP4 overexpressing mice were bred to mdx mice, a model of Duchenne muscular dystrophy. In this model, increased LTBP4 led to greater muscle mass with proportionally increased strength, and decreased fibrosis. The increase in muscle mass and reduction in fibrosis were similar to what occurs when myostatin, a related TGFβ family member and negative regulator of muscle mass, was deleted in mdx mice. Supporting this, we found that myostatin forms a complex with LTBP4 and that overexpression of LTBP4 led to a decrease in myostatin levels. LTBP4 also interacted with TGFβ and GDF11, a protein highly related to myostatin. These data identify LTBP4 as a multi-TGFβ family ligand binding protein with the capacity to modify muscle disease through overexpression.

  14. New Advances in Molecular Therapy for Muscle Repair after Diseases and Injuries

    Science.gov (United States)

    2012-01-01

    muscle regeneration in a preclinical mouse model of muscle regeneration and Duchenne muscular dystrophy (DMD...improve the regeneration of muscles damaged by trauma or by chronic muscle diseases, such as Duchenne and Becker muscular dystrophies . In the past...selected MDX mice, a mouse model for Duchenne muscular dystrophy [DMD], to investigate if MMP1 could enhance muscle cell migration and

  15. The ubiquitin ligase tripartite-motif-protein 32 is induced in Duchenne muscular dystrophy.

    Science.gov (United States)

    Assereto, Stefania; Piccirillo, Rosanna; Baratto, Serena; Scudieri, Paolo; Fiorillo, Chiara; Massacesi, Manuela; Traverso, Monica; Galietta, Luis J; Bruno, Claudio; Minetti, Carlo; Zara, Federico; Gazzerro, Elisabetta

    2016-08-01

    Activation of the proteasome pathway is one of the secondary processes of cell damage, which ultimately lead to muscle degeneration and necrosis in Duchenne muscular dystrophy (DMD). In mdx mice, the proteasome inhibitor bortezomib up-regulates the membrane expression of members of the dystrophin complex and reduces the inflammatory reaction. However, chronic inhibition of the 26S proteasome may be toxic, as indicated by the systemic side-effects caused by this drug. Therefore, we sought to determine the components of the ubiquitin-proteasome pathway that are specifically activated in human dystrophin-deficient muscles. The analysis of a cohort of patients with genetically determined DMD or Becker muscular dystrophy (BMD) unveiled a selective up-regulation of the ubiquitin ligase tripartite motif-containing protein 32 (TRIM32). The induction of TRIM32 was due to a transcriptional effect and it correlated with disease severity in BMD patients. In contrast, atrogin1 and muscle RING-finger protein-1 (MuRF-1), which are strongly increased in distinct types of muscular atrophy, were not affected by the DMD dystrophic process. Knock-out models showed that TRIM32 is involved in ubiquitination of muscle cytoskeletal proteins as well as of protein inhibitor of activated STAT protein gamma (Piasγ) and N-myc downstream-regulated gene, two inhibitors of satellite cell proliferation and differentiation. Accordingly, we showed that in DMD/BMD muscle tissue, TRIM32 induction was more pronounced in regenerating myofibers rather than in necrotic muscle cells, thus pointing out a role of this protein in the regulation of human myoblast cell fate. This finding highlights TRIM32 as a possible therapeutic target to favor skeletal muscle regeneration in DMD patients.

  16. Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy.

    Science.gov (United States)

    Rau, Frédérique; Lainé, Jeanne; Ramanoudjame, Laetitita; Ferry, Arnaud; Arandel, Ludovic; Delalande, Olivier; Jollet, Arnaud; Dingli, Florent; Lee, Kuang-Yung; Peccate, Cécile; Lorain, Stéphanie; Kabashi, Edor; Athanasopoulos, Takis; Koo, Taeyoung; Loew, Damarys; Swanson, Maurice S; Le Rumeur, Elisabeth; Dickson, George; Allamand, Valérie; Marie, Joëlle; Furling, Denis

    2015-05-28

    Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1.

  17. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy

    Science.gov (United States)

    McGreevy, Joe W.; Hakim, Chady H.; McIntosh, Mark A.; Duan, Dongsheng

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder. It is caused by loss-of-function mutations in the dystrophin gene. Currently, there is no cure. A highly promising therapeutic strategy is to replace or repair the defective dystrophin gene by gene therapy. Numerous animal models of DMD have been developed over the last 30 years, ranging from invertebrate to large mammalian models. mdx mice are the most commonly employed models in DMD research and have been used to lay the groundwork for DMD gene therapy. After ~30 years of development, the field has reached the stage at which the results in mdx mice can be validated and scaled-up in symptomatic large animals. The canine DMD (cDMD) model will be excellent for these studies. In this article, we review the animal models for DMD, the pros and cons of each model system, and the history and progress of preclinical DMD gene therapy research in the animal models. We also discuss the current and emerging challenges in this field and ways to address these challenges using animal models, in particular cDMD dogs. PMID:25740330

  18. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy.

    Science.gov (United States)

    McGreevy, Joe W; Hakim, Chady H; McIntosh, Mark A; Duan, Dongsheng

    2015-03-01

    Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder. It is caused by loss-of-function mutations in the dystrophin gene. Currently, there is no cure. A highly promising therapeutic strategy is to replace or repair the defective dystrophin gene by gene therapy. Numerous animal models of DMD have been developed over the last 30 years, ranging from invertebrate to large mammalian models. mdx mice are the most commonly employed models in DMD research and have been used to lay the groundwork for DMD gene therapy. After ~30 years of development, the field has reached the stage at which the results in mdx mice can be validated and scaled-up in symptomatic large animals. The canine DMD (cDMD) model will be excellent for these studies. In this article, we review the animal models for DMD, the pros and cons of each model system, and the history and progress of preclinical DMD gene therapy research in the animal models. We also discuss the current and emerging challenges in this field and ways to address these challenges using animal models, in particular cDMD dogs. © 2015. Published by The Company of Biologists Ltd.

  19. Positive effects of bisphosphonates on bone and muscle in a mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Yoon, Sung-Hee; Sugamori, Kim S; Grynpas, Marc D; Mitchell, Jane

    2016-01-01

    Patients with Duchenne muscular dystrophy are at increased risk of decreased bone mineral density and bone fracture as a result of inactivity. To determine if antiresorptive bisphosphonates could improve bone quality and their effects on muscle we studied the Mdx mouse, treated with pamidronate during peak bone growth at 5 and 6 weeks of age, and examined the outcome at 13 weeks of age. Pamidronate increased cortical bone architecture and strength in femurs with increased resistance to fracture. While overall long bone growth was not affected by pamidronate, there was significant inhibition of remodeling in metaphyseal trabecular bone with evidence of residual calcified cartilage. Pamidronate treatment had positive effects on skeletal muscle in the Mdx mice with decreased serum and muscle creatine kinase and evidence of improved muscle histology and grip strength. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Role of dystrophic epidermolysis bullosa in anxiety, depression and self-esteem: A controlled cross-sectional study.

    Science.gov (United States)

    Fortuna, Giulio; Aria, Massimo; Cepeda-Valdes, Rodrigo; Garcia-Garcia, Sandra Cecilia; Moreno Trevino, Maria Guadalupe; Salas-Alanís, Julio Cesar

    2016-01-01

    The psychological aspect in patients with dystrophic epidermolysis bullosa (DEB) is poorly documented. We sought to determine the role of DEB in anxiety, depression and self-esteem. We conducted a cross-sectional study, collecting data from 27 DEB patients and 26 healthy individuals. DEB patients and healthy controls completed three different psychometric scales for anxiety and depression and one scale for self-esteem. DEB patients and healthy controls were homogeneous for age and sex (P > 0.05), but not for employment, marital status and economic level (P depression (P = 0.037) and slightly significant for Zung Scale for anxiety (P = 0.048) with no difference between DEB patients with dominant versus recessive form in all scales (P > 0.05). Among DEB patients, only employment showed a significant difference in all scales (P depression, whereas self-esteem seemed to be affected by marriage (P = 0.04) and education (P = 0.016). DEB patients apparently are not more anxious and/or depressed and do not have less self-esteem than healthy individuals. © 2015 Japanese Dermatological Association.

  1. Antisense Oligonucleotide-mediated Exon Skipping as a Systemic Therapeutic Approach for Recessive Dystrophic Epidermolysis Bullosa.

    Science.gov (United States)

    Bremer, Jeroen; Bornert, Olivier; Nyström, Alexander; Gostynski, Antoni; Jonkman, Marcel F; Aartsma-Rus, Annemieke; van den Akker, Peter C; Pasmooij, Anna Mg

    2016-10-18

    The "generalized severe" form of recessive dystrophic epidermolysis bullosa (RDEB-gen sev) is caused by bi-allelic null mutations in COL7A1, encoding type VII collagen. The absence of type VII collagen leads to blistering of the skin and mucous membranes upon the slightest trauma. Because most patients carry exonic point mutations or small insertions/deletions, most exons of COL7A1 are in-frame, and low levels of type VII collagen already drastically improve the disease phenotype, this gene seems a perfect candidate for antisense oligonucleotide (AON)-mediated exon skipping. In this study, we examined the feasibility of AON-mediated exon skipping in vitro in primary cultured keratinocytes and fibroblasts, and systemically in vivo using a human skin-graft mouse model. We show that treatment with AONs designed against exon 105 leads to in-frame exon 105 skipping at the RNA level and restores type VII collagen protein production in vitro. Moreover, we demonstrate that systemic delivery in vivo induces de novo expression of type VII collagen in skin grafts generated from patient cells. Our data demonstrate strong proof-of-concept for AON-mediated exon skipping as a systemic therapeutic strategy for RDEB.

  2. GRAF1 deficiency blunts sarcolemmal injury repair and exacerbates cardiac and skeletal muscle pathology in dystrophin-deficient mice.

    Science.gov (United States)

    Lenhart, Kaitlin C; O'Neill, Thomas J; Cheng, Zhaokang; Dee, Rachel; Demonbreun, Alexis R; Li, Jianbin; Xiao, Xiao; McNally, Elizabeth M; Mack, Christopher P; Taylor, Joan M

    2015-01-01

    The plasma membranes of striated muscle cells are particularly susceptible to rupture as they endure significant mechanical stress and strain during muscle contraction, and studies have shown that defects in membrane repair can contribute to the progression of muscular dystrophy. The synaptotagmin-related protein, dysferlin, has been implicated in mediating rapid membrane repair through its ability to direct intracellular vesicles to sites of membrane injury. However, further work is required to identify the precise molecular mechanisms that govern dysferlin targeting and membrane repair. We previously showed that the bin-amphiphysin-Rvs (BAR)-pleckstrin homology (PH) domain containing Rho-GAP GTPase regulator associated with focal adhesion kinase-1 (GRAF1) was dynamically recruited to the tips of fusing myoblasts wherein it promoted membrane merging by facilitating ferlin-dependent capturing of intracellular vesicles. Because acute membrane repair responses involve similar vesicle trafficking complexes/events and because our prior studies in GRAF1-deficient tadpoles revealed a putative role for GRAF1 in maintaining muscle membrane integrity, we postulated that GRAF1 might also play an important role in facilitating dysferlin-dependent plasma membrane repair. We used an in vitro laser-injury model to test whether GRAF1 was necessary for efficient muscle membrane repair. We also generated dystrophin/GRAF1 doubledeficient mice by breeding mdx mice with GRAF1 hypomorphic mice. Evans blue dye uptake and extensive morphometric analyses were used to assess sarcolemmal integrity and related pathologies in cardiac and skeletal muscles isolated from these mice. Herein, we show that GRAF1 is dynamically recruited to damaged skeletal and cardiac muscle plasma membranes and that GRAF1-depleted muscle cells have reduced membrane healing abilities. Moreover, we show that dystrophin depletion exacerbated muscle damage in GRAF1-deficient mice and that mice with dystrophin/GRAF1

  3. Glucocorticoids enhance muscle endurance and ameliorate Duchenne muscular dystrophy through a defined metabolic program.

    Science.gov (United States)

    Morrison-Nozik, Alexander; Anand, Priti; Zhu, Han; Duan, Qiming; Sabeh, Mohamad; Prosdocimo, Domenick A; Lemieux, Madeleine E; Nordsborg, Nikolai; Russell, Aaron P; MacRae, Calum A; Gerber, Anthony N; Jain, Mukesh K; Haldar, Saptarsi M

    2015-12-08

    Classic physiology studies dating to the 1930s demonstrate that moderate or transient glucocorticoid (GC) exposure improves muscle performance. The ergogenic properties of GCs are further evidenced by their surreptitious use as doping agents by endurance athletes and poorly understood efficacy in Duchenne muscular dystrophy (DMD), a genetic muscle-wasting disease. A defined molecular basis underlying these performance-enhancing properties of GCs in skeletal muscle remains obscure. Here, we demonstrate that ergogenic effects of GCs are mediated by direct induction of the metabolic transcription factor KLF15, defining a downstream pathway distinct from that resulting in GC-related muscle atrophy. Furthermore, we establish that KLF15 deficiency exacerbates dystrophic severity and muscle GC-KLF15 signaling mediates salutary therapeutic effects in the mdx mouse model of DMD. Thus, although glucocorticoid receptor (GR)-mediated transactivation is often associated with muscle atrophy and other adverse effects of pharmacologic GC administration, our data define a distinct GR-induced gene regulatory pathway that contributes to therapeutic effects of GCs in DMD through proergogenic metabolic programming.

  4. Clinical variability in dystrophic epidermolysis bullosa and findings with scanning electron microscopy Variabilidade clínica em epidermólise bolhosa distrófica e achados de microscopia eletrônica de varredura

    Directory of Open Access Journals (Sweden)

    Hiram Larangeira de Almeida Jr

    2012-02-01

    Full Text Available In dystrophic epidermolysis bullosa, the genetic defect of anchoring fibrils leads to cleavage beneath the basement membrane and its consequent loss. A 46 year-old female patient presented blisters with a pretibial distribution associated with nail dystrophy. Her two children had hyponychia and anonychia, which affected all toe nails and the thumb, forefinger and middle finger. DNA sequencing identified in exon 75 of COL7A1 gene a pathologic mutation: c.6235G>A (p.Gly2079Arg. Immunomapping of a blister demonstrated collagen IV (basal membrane in the blister roof and collagen VII in its floor, confirming dystrophic epidermolysis bullosa. Scanning electron microscopy of an inverted blister showed net-forming collagen attached to the blister roof . The variability found in this family has already been reported and confirms, on a clinical basis, the nail subtype as a dystrophic variant.Na epidermólise bolhosa distrófica, o defeito genético das fibrilas de ancoragem leva à clivagem abaixo da membrana basal com sua consequente perda. Uma paciente de 46 anos apresentava bolhas pré-tibiais associadas à distrofia ungueal. Seus dois filhos apresentavam hipo e anoníquia, afetando todas as unhas dos pododáctilos e dos primeiros, segundos e terceiros quirodáctilos. O sequenciamento de DNA identificou no exon 75 do gene COL7A1 uma mutação patológica: c.6235G>A (p.Gly2079Arg. O imunomapeamento identificou o colágeno IV no teto e colágeno VII no assoalho de uma bolha , confirmando o diagnóstico de epidermólise bolhosa distrófica. A microscopia eletrônica de varredura de um teto invertido de bolha demonstrou rede de colágeno aderida ao mesmo. A variabilidade clínica encontrada nessa família já foi escrita e confirma, que o subtipo ungueal das epidermólises bolhosas é uma forma distrófica.

  5. Context Dependent Effects of Chimeric Peptide Morpholino Conjugates Contribute to Dystrophin Exon-skipping Efficiency

    OpenAIRE

    HaiFang Yin; Prisca Boisguerin; Hong M Moulton; Corinne Betts; Yiqi Seow; Jordan Boutilier; Qingsong Wang; Anthony Walsh; Bernard Lebleu; Matthew JA Wood

    2013-01-01

    We have recently reported that cell-penetrating peptides (CPPs) and novel chimeric peptides containing CPP (referred as B peptide) and muscle-targeting peptide (referred as MSP) motifs significantly improve the systemic exon-skipping activity of morpholino phosphorodiamidate oligomers (PMOs) in dystrophin-deficient mdx mice. In the present study, the general mechanistic significance of the chimeric peptide configuration on the activity and tissue uptake of peptide conjugated PMOs in vivo was ...

  6. Oral health status in children with inherited dystrophic epidermolysis bullosa

    Directory of Open Access Journals (Sweden)

    Čolović Aleksandra

    2017-01-01

    Full Text Available Background/Aim. Epidermolysis bullosa is a group of rare, genetic connective tissue diseases that cause blisters in the skin and mucosal membranes. The aim of this study was to evaluate the oral health status of patients with epidermolysis bullosa dystrophica and level of knowledge and opinion of parents about the implementation of preventive measaures and quality of dental care of affected children. Methods. This study included a group of 17 patients from Serbia suffering from dystrophic epidermolysis bullosa and matched control group. Dental caries status was assessed using the Klein-Palmer index. Oral hygiene status was verified with oral hygiene indices, simplified plaque index, and calculus index as described by Green and Vermillion. The gingiva was assessed as healthy or inflamed (gingivitis on the basis of any changes in color, shape, size and surface texture. The condition of oral mucosa has been registered on the basis of inspection of the lips, tongue, a floor of the mouth, mouth vestibule and palate. The level of knowledge and the impressions of parents about the application of preventive measures were investigated through two questionnaires specifically designed for this study. Results. In both dentitions, there was the highest percentage of caries teeth. In primary dentition average value of the modified plaque index was 1.4 ± 1.14 and modified calculus was 0.7 ± 1. On permanent teeth average plaque index was 2 ± 0.4, and average calculus 1.6 ± 0.6. Statistically, significant higher values were found in permanent dentition in percentage distribution of decayed, missing, filled teeth and also for plaque and calculus indices between affected children and the control group. Most common findings on mucosa were microstomia (76.5% and ankyloglossia (88.2%. Conclusion. The absence of protocol between the treating physician and the dentist and not sufficiently informed parents are leading to inadequate dental care. The implementation of

  7. Sarcospan Regulates Cardiac Isoproterenol Response and Prevents Duchenne Muscular Dystrophy-Associated Cardiomyopathy.

    Science.gov (United States)

    Parvatiyar, Michelle S; Marshall, Jamie L; Nguyen, Reginald T; Jordan, Maria C; Richardson, Vanitra A; Roos, Kenneth P; Crosbie-Watson, Rachelle H

    2015-12-23

    Duchenne muscular dystrophy is a fatal cardiac and skeletal muscle disease resulting from mutations in the dystrophin gene. We have previously demonstrated that a dystrophin-associated protein, sarcospan (SSPN), ameliorated Duchenne muscular dystrophy skeletal muscle degeneration by activating compensatory pathways that regulate muscle cell adhesion (laminin-binding) to the extracellular matrix. Conversely, loss of SSPN destabilized skeletal muscle adhesion, hampered muscle regeneration, and reduced force properties. Given the importance of SSPN to skeletal muscle, we investigated the consequences of SSPN ablation in cardiac muscle and determined whether overexpression of SSPN into mdx mice ameliorates cardiac disease symptoms associated with Duchenne muscular dystrophy cardiomyopathy. SSPN-null mice exhibited cardiac enlargement, exacerbated cardiomyocyte hypertrophy, and increased fibrosis in response to β-adrenergic challenge (isoproterenol; 0.8 mg/day per 2 weeks). Biochemical analysis of SSPN-null cardiac muscle revealed reduced sarcolemma localization of many proteins with a known role in cardiomyopathy pathogenesis: dystrophin, the sarcoglycans (α-, δ-, and γ-subunits), and β1D integrin. Transgenic overexpression of SSPN in Duchenne muscular dystrophy mice (mdx(TG)) improved cardiomyofiber cell adhesion, sarcolemma integrity, cardiac functional parameters, as well as increased expression of compensatory transmembrane proteins that mediate attachment to the extracellular matrix. SSPN regulates sarcolemmal expression of laminin-binding complexes that are critical to cardiac muscle function and protects against transient and chronic injury, including inherited cardiomyopathy. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  8. Inhibition of muscle fibrosis results in increases in both utrophin levels and the number of revertant myofibers in Duchenne muscular dystrophy.

    Science.gov (United States)

    Levi, Oshrat; Genin, Olga; Angelini, Corrado; Halevy, Orna; Pines, Mark

    2015-09-15

    Duchenne Muscular Dystrophy is characterized by: near absence of dystrophin in skeletal muscles; low percentage of revertant myofibers; up-regulation of utrophin synthesis; and a high degree of muscle fibrosis. In patient quadriceps femoris biopsies (n = 6, ages between 3-9 years) an inverse correlation was observed between the levels of collagen type I - representing fibrosis - and the levels of utrophin. This correlation was independent of the patient's age and was observed in the entire muscle biopsy sections. In the mdx mice diaphragm (n = 6/group), inhibition of fibrosis by halofuginone resulted in increases in the levels of utrophin. The utrophin/fibrosis relationships were not limited to collagen type I, but also applied to other constituents of the fibrosis machinery. The inverse correlation was found also in old mdx mice with established fibrosis. In addition, inhibition of collagen type I levels was associated with increases in the numbers of revertant myofibers, both as single myofibers and in clusters in the diaphragm and the gastrocnemius. In summary, our results demonstrate an inverse correlation between the level of muscle fibrosis and the level of utrophin and that of the number of revertant myofibers. These findings may reveal common links between the fibrotic and utrophin-synthesis pathways and offer new insights into the regulation of utrophin synthesis.

  9. Localization and expression of substance P in transgenic mice overexpressing human APP751 with the London (V717I) and Swedish (K670M/N671L) mutations.

    Science.gov (United States)

    Willis, Michael; Hutter-Paier, Birgit; Wietzorrek, Georg; Windisch, Manfred; Humpel, Christian; Knaus, Hans Günther; Marksteiner, Josef

    2007-04-27

    Substance P-like immunoreactivity (-LI) is found in neuritic plaques, and is reduced in patients suffering from Alzheimer disease (AD). In this study, we examined the distribution and expression of substance P in transgenic mice overexpressing human amyloid precursor protein (hAPP) APP751 with the London (V717I) and Swedish (K670M/N671L) mutations. Immunohistochemistry was performed to localize substance P- and glial fibrillary acidic protein-LI by confocal microscopy. In hAPP transgenic mice, the number of beta-amyloid plaques significantly increased from 6 to 12 months. About 5% of beta-amyloid plaques were substance P-immunoreactive. In transgenic mice, the morphology of substance P-immunoreactive structures changed by consisting of swollen and dystrophic neurites mostly associated with beta-amyloid plaques. The overall localization and the relative substance P densities were not different between wild type and transgenic mice at 6 and 12 months. At month 12, a dramatic change in the distribution pattern of substance P-LI was observed as it was now expressed in a high number of reactive astrocytes. This expression of substance P in astrocytes was mainly found in the hippocampal formation and thalamic nuclei with a preferential association with beta-amyloid plaques, whereas in cortical regions only faintly substance P-immunoreactive astrocytes were observed. This study indicates that substance P undergoes complex changes in this animal Alzheimer disease model. Future experiments including substance P antagonists are necessary to further explore the interaction between beta-amyloid deposits and substance P.

  10. Macrophages improve survival, proliferation and migration of engrafted myogenic precursor cells into MDX skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Pierre-François Lesault

    Full Text Available Transplantation of muscle precursor cells is of therapeutic interest for focal skeletal muscular diseases. However, major limitations of cell transplantation are the poor survival, expansion and migration of the injected cells. The massive and early death of transplanted myoblasts is not fully understood although several mechanisms have been suggested. Various attempts have been made to improve their survival or migration. Taking into account that muscle regeneration is associated with the presence of macrophages, which are helpful in repairing the muscle by both cleansing the debris and deliver trophic cues to myoblasts in a sequential way, we attempted in the present work to improve myoblast transplantation by coinjecting macrophages. The present data showed that in the 5 days following the transplantation, macrophages efficiently improved: i myoblast survival by limiting their massive death, ii myoblast expansion within the tissue and iii myoblast migration in the dystrophic muscle. This was confirmed by in vitro analyses showing that macrophages stimulated myoblast adhesion and migration. As a result, myoblast contribution to regenerating host myofibres was increased by macrophages one month after transplantation. Altogether, these data demonstrate that macrophages are beneficial during the early steps of myoblast transplantation into skeletal muscle, showing that coinjecting these stromal cells may be used as a helper to improve the efficiency of parenchymal cell engraftment.

  11. TGFβ-signaling in Squamous Cell Carcinoma Occurring in Recessive Dystrophic Epidermolysis Bullosa

    Directory of Open Access Journals (Sweden)

    Julia Knaup

    2011-01-01

    Full Text Available Background: Recessive dystrophic epidermolysis bullosa (RDEB is a hereditary skin disorder characterized by mechanical fragility of the skin, resulting in blistering and chronic wounds. The causative mutations lie in the COL7A1 gene. Patients suffering from RDEB have a high risk to develop aggressive, rapidly metastasizing squamous cell carcinomas (SCCs. Cutaneous RDEB SCCs develop preferentially in long-term skin wounds or cutaneous scars. Albeit being well differentiated, they show a more aggressive behavior than UV-induced SCCs. These findings suggest other contributing factors in SCC tumorigenesis in RDEB. Objective: To analyze factors contributing to RDEB tumorigenesis, we conducted a comprehensive gene expression study comparing a non-malignant RDEB (RDEB-CL to a RDEB SCC cell line (SCCRDEB4 to achieve an overview on the changes of the gene expression levels in RDEB related skin cancer. Methods: We applied cDNA arrays comprising 9738 human expressed sequence tags (EST with various functions. Selected results were verified by Real-time RT PCR. Results: Large-scale gene expression analysis revealed changes in the expression level of transforming growth factor β1 (TGFβ1 and several genes under the control of TGFβ for RDEB and SCCRDEB4 cell lines. Even untransformed RDEB keratinocytes show elevated levels of TGFβ1. Conclusion: Our findings demonstrate a prominent role of TGFβ-signaling in RDEB-related skin cancer. Once activated, TGFβ signaling either in response to wounding or in order to influence type VII collagen expression levels could facilitate cancer development and progression. Moreover, TGFβ signaling might also represent a potentially useful therapeutic target in this disease.

  12. Spatial variability of chemical and physical attributes of dystrophic Red-Yellow Latosol in no tillage

    Directory of Open Access Journals (Sweden)

    João Vidal de Negreiros Neto

    2014-02-01

    Full Text Available Knowledge of spatial variability in chemical and physical properties of the soil is very important, especially for precision agriculture. Geostatistics is seeking to improve techniques that can enable the correct and responsible use of soil. So during the agricultural year 2011/2012 in an area of direct planting the corn crop in the municipality of Gurupi (TO, in the Brazilian Cerrado, aimed to analyze the spatial variability of chemical and physical properties in a Typic Dystrophic tillage. Was installed sampling grid for the collection of soil, with 100 sampling points in an area of 1755m2. The contents of available phosphorus, organic matter, pH (H2O, concentrations of K +, Ca2+, Mg2+, the sum of values and base saturation (BS, V at depths of 0-0.20 m, and resistance to penetration (RP at depths 0-0.05 m, 0.05-0.10 m, 0.10-0.20 m and 0.20-0.40 m and bulk density (Ds. We conducted a descriptive analysis classic, with the aid of statistical software ASSISTAT, and then were modeled semivariograms for all attributes, resulting in their cross-validation and kriging maps. The chemical and physical properties of soil, except the base saturation (V, spatial dependence. Probably the discontinuity of the spatial dependence of Vvalue, is due to fertility management over the years.

  13. Diseased muscles that lack dystrophin or laminin-α2 have altered compositions and proliferation of mononuclear cell populations

    Directory of Open Access Journals (Sweden)

    Miller Jeffrey

    2005-04-01

    Full Text Available Abstract Background Multiple types of mononucleate cells reside among the multinucleate myofibers in skeletal muscles and these mononucleate cells function in muscle maintenance and repair. How neuromuscular disease might affect different types of muscle mononucleate cells had not been determined. In this study, therefore, we examined how two neuromuscular diseases, dystrophin-deficiency and laminin-α2-deficiency, altered the proliferation and composition of different subsets of muscle-derived mononucleate cells. Methods We used fluorescence-activated cell sorting combined with bromodeoxyuridine labeling to examine proliferation rates and compositions of mononuclear cells in diseased and healthy mouse skeletal muscle. We prepared mononucleate cells from muscles of mdx (dystrophin-deficient or Lama2-/- (laminin-α2-deficient mice and compared them to cells from healthy control muscles. We enumerated subsets of resident muscle cells based on Sca-1 and CD45 expression patterns and determined the proliferation of each cell subset in vivo by BrdU incorporation. Results We found that the proliferation and composition of the mononucleate cells in dystrophin-deficient and laminin-α2-deficient diseased muscles are different than in healthy muscle. The mdx and Lama2-/- muscles showed similar significant increases in CD45+ cells compared to healthy muscle. Changes in proliferation, however, differed between the two diseases with proliferation increased in mdx and decreased in Lama2-/- muscles compared to healthy muscles. In particular, the most abundant Sca-1-/CD45- subset, which contains muscle precursor cells, had increased proliferation in mdx muscle but decreased proliferation in Lama2-/- muscles. Conclusion The similar increases in CD45+ cells, but opposite changes in proliferation of muscle precursor cells, may underlie aspects of the distinct pathologies in the two diseases.

  14. Sarcospan integration into laminin-binding adhesion complexes that ameliorate muscular dystrophy requires utrophin and α7 integrin

    Science.gov (United States)

    Marshall, Jamie L.; Oh, Jennifer; Chou, Eric; Lee, Joy A.; Holmberg, Johan; Burkin, Dean J.; Crosbie-Watson, Rachelle H.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene that result in loss of the dystrophin–glycoprotein complex, a laminin receptor that connects the myofiber to its surrounding extracellular matrix. Utrophin, a dystrophin ortholog that is normally localized to the neuromuscular junction, is naturally upregulated in DMD muscle, which partially compensates for the loss of dystrophin. Transgenic overexpression of utrophin causes broad sarcolemma localization of utrophin, restoration of laminin binding and amelioration of disease in the mdx mouse model of DMD. We previously demonstrated that overexpression of sarcospan, a dystrophin- and utrophin-binding protein, ameliorates mdx muscular dystrophy. Sarcospan boosts levels of utrophin to therapeutic levels at the sarcolemma, where attachment to laminin is restored. However, understanding the compensatory mechanism is complicated by concomitant upregulation of α7β1 integrin, which also binds laminin. Similar to the effects of utrophin, transgenic overexpression of α7 integrin prevents DMD disease in mice and is accompanied by increased abundance of utrophin around the extra-synaptic sarcolemma. In order to investigate the mechanisms underlying sarcospan ‘rescue’ of muscular dystrophy, we created double-knockout mice to test the contributions of utrophin or α7 integrin. We show that sarcospan-mediated amelioration of muscular dystrophy in DMD mice is dependent on the presence of both utrophin and α7β1 integrin, even when they are individually expressed at therapeutic levels. Furthermore, we found that association of sarcospan into laminin-binding complexes is dependent on utrophin and α7β1 integrin. PMID:25504048

  15. SMASH - semi-automatic muscle analysis using segmentation of histology: a MATLAB application.

    Science.gov (United States)

    Smith, Lucas R; Barton, Elisabeth R

    2014-01-01

    Histological assessment of skeletal muscle tissue is commonly applied to many areas of skeletal muscle physiological research. Histological parameters including fiber distribution, fiber type, centrally nucleated fibers, and capillary density are all frequently quantified measures of skeletal muscle. These parameters reflect functional properties of muscle and undergo adaptation in many muscle diseases and injuries. While standard operating procedures have been developed to guide analysis of many of these parameters, the software to freely, efficiently, and consistently analyze them is not readily available. In order to provide this service to the muscle research community we developed an open source MATLAB script to analyze immunofluorescent muscle sections incorporating user controls for muscle histological analysis. The software consists of multiple functions designed to provide tools for the analysis selected. Initial segmentation and fiber filter functions segment the image and remove non-fiber elements based on user-defined parameters to create a fiber mask. Establishing parameters set by the user, the software outputs data on fiber size and type, centrally nucleated fibers, and other structures. These functions were evaluated on stained soleus muscle sections from 1-year-old wild-type and mdx mice, a model of Duchenne muscular dystrophy. In accordance with previously published data, fiber size was not different between groups, but mdx muscles had much higher fiber size variability. The mdx muscle had a significantly greater proportion of type I fibers, but type I fibers did not change in size relative to type II fibers. Centrally nucleated fibers were highly prevalent in mdx muscle and were significantly larger than peripherally nucleated fibers. The MATLAB code described and provided along with this manuscript is designed for image processing of skeletal muscle immunofluorescent histological sections. The program allows for semi-automated fiber detection

  16. AbetaPP induces cdk5-dependent tau hyperphosphorylation in transgenic mice Tg2576.

    Science.gov (United States)

    Otth, Carola; Concha, Ilona I; Arendt, Thomas; Stieler, Jens; Schliebs, Reinhard; González-Billault, Christian; Maccioni, Ricardo B

    2002-10-01

    Previous studies of Abeta-induced neuronal damage of hippocampal cells in culture have provided strong evidence that deregulation of the Cdk5/p35 kinase system is involved in the neurodegeneration pathway. Cdk5 inhibitors and antisense probes neuroprotected hippocampal cells against the neurotoxic action of Abeta. To further investigate the mechanisms underlying the participation of Cdk5 in neuronal degeneration, the transgenic mouse containing the Swedish mutations, Tg2576, was used as an animal model. Immunocytochemical studies using anti-Abeta(1-17) antibody evidenced the presence of labeled small-clustered core plaques in the hippocampus and cortex of 18-month-old transgenic mice brains. The loss of granular cells without a compressed appearance was detected in the vicinity of the cores in the dentate gyrus of the hippocampus. Immunostaining of Tg2576 brain sections with antibodies AT8, PHF1 and GFAP labeled punctuate dystrophic neurites in and around the amyloid core. Reactive astrogliosis around the plaques in the hippocampus was also observed. Studies at the molecular level showed differences in the expression of the truncated Cdk5 activator p25 in the transgenic animal, as compared with wild type controls. However no differences in Cdk5 levels were detected, thus corroborating previous cellular findings. Interestingly, hyperphosphorylated tau epitopes were substantially increased as assessed with the AT8 and PHF1 antibodies, in agreement with the observation of a p25 increase in the transgenic animal. These observations strongly suggest that the increased exposure of Alzheimer's type tau phosphoepitopes in the transgenic mice correlated with deregulation of Cdk5 leading to an increase in p25 levels. These studies also provide further evidence on the links between extraneuronal amyloid deposition and tau pathology.

  17. Dual exon skipping in myostatin and dystrophin for Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    van Ommen Gert Jan B

    2011-04-01

    Full Text Available Abstract Background Myostatin is a potent muscle growth inhibitor that belongs to the Transforming Growth Factor-β (TGF-β family. Mutations leading to non functional myostatin have been associated with hypermuscularity in several organisms. By contrast, Duchenne muscular dystrophy (DMD is characterized by a loss of muscle fibers and impaired regeneration. In this study, we aim to knockdown myostatin by means of exon skipping, a technique which has been successfully applied to reframe the genetic defect of dystrophin gene in DMD patients. Methods We targeted myostatin exon 2 using antisense oligonucleotides (AON in healthy and DMD-derived myotubes cultures. We assessed the exon skipping level, transcriptional expression of myostatin and its target genes, and combined myostatin and several dystrophin AONs. These AONs were also applied in the mdx mice models via intramuscular injections. Results Myostatin AON induced exon 2 skipping in cell cultures and to a lower extent in the mdx mice. It was accompanied by decrease in myostatin mRNA and enhanced MYOG and MYF5 expression. Furthermore, combination of myostatin and dystrophin AONs induced simultaneous skipping of both genes. Conclusions We conclude that two AONs can be used to target two different genes, MSTN and DMD, in a straightforward manner. Targeting multiple ligands of TGF-beta family will be more promising as adjuvant therapies for DMD.

  18. Efficacy and Safety of Human Retinal Progenitor Cells

    Science.gov (United States)

    Semo, Ma'ayan; Haamedi, Nasrin; Stevanato, Lara; Carter, David; Brooke, Gary; Young, Michael; Coffey, Peter; Sinden, John; Patel, Sara; Vugler, Anthony

    2016-01-01

    Purpose We assessed the long-term efficacy and safety of human retinal progenitor cells (hRPC) using established rodent models. Methods Efficacy of hRPC was tested initially in Royal College of Surgeons (RCS) dystrophic rats immunosuppressed with cyclosporine/dexamethasone. Due to adverse effects of dexamethasone, this drug was omitted from a subsequent dose-ranging study, where different hRPC doses were tested for their ability to preserve visual function (measured by optokinetic head tracking) and retinal structure in RCS rats at 3 to 6 months after grafting. Safety of hRPC was assessed by subretinal transplantation into wild type (WT) rats and NIH-III nude mice, with analysis at 3 to 6 and 9 months after grafting, respectively. Results The optimal dose of hRPC for preserving visual function/retinal structure in dystrophic rats was 50,000 to 100,000 cells. Human retinal progenitor cells integrated/survived in dystrophic and WT rat retina up to 6 months after grafting and expressed nestin, vimentin, GFAP, and βIII tubulin. Vision and retinal structure remained normal in WT rats injected with hRPC and there was no evidence of tumors. A comparison between dexamethasone-treated and untreated dystrophic rats at 3 months after grafting revealed an unexpected reduction in the baseline visual acuity of dexamethasone-treated animals. Conclusions Human retinal progenitor cells appear safe and efficacious in the preclinical models used here. Translational Relevance Human retinal progenitor cells could be deployed during early stages of retinal degeneration or in regions of intact retina, without adverse effects on visual function. The ability of dexamethasone to reduce baseline visual acuity in RCS dystrophic rats has important implications for the interpretation of preclinical and clinical cell transplant studies. PMID:27486556

  19. Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa.

    Science.gov (United States)

    Shinkuma, Satoru; Guo, Zongyou; Christiano, Angela M

    2016-05-17

    Genome editing with engineered site-specific endonucleases involves nonhomologous end-joining, leading to reading frame disruption. The approach is applicable to dominant negative disorders, which can be treated simply by knocking out the mutant allele, while leaving the normal allele intact. We applied this strategy to dominant dystrophic epidermolysis bullosa (DDEB), which is caused by a dominant negative mutation in the COL7A1 gene encoding type VII collagen (COL7). We performed genome editing with TALENs and CRISPR/Cas9 targeting the mutation, c.8068_8084delinsGA. We then cotransfected Cas9 and guide RNA expression vectors expressed with GFP and DsRed, respectively, into induced pluripotent stem cells (iPSCs) generated from DDEB fibroblasts. After sorting, 90% of the iPSCs were edited, and we selected four gene-edited iPSC lines for further study. These iPSCs were differentiated into keratinocytes and fibroblasts secreting COL7. RT-PCR and Western blot analyses revealed gene-edited COL7 with frameshift mutations degraded at the protein level. In addition, we confirmed that the gene-edited truncated COL7 could neither associate with normal COL7 nor undergo triple helix formation. Our data establish the feasibility of mutation site-specific genome editing in dominant negative disorders.

  20. Chromogranin B and Secretogranin II in transgenic mice overexpressing human APP751 with the London (V717I) and Swedish (K670M/N671L) mutations and in Alzheimer patients.

    Science.gov (United States)

    Willis, Michael; Prokesch, Manuela; Hutter-Paier, Birgit; Windisch, Manfred; Stridsberg, Mats; Mahata, Sushil K; Kirchmair, Rudolf; Wietzorrek, Georg; Knaus, Hans-Günther; Jellinger, Kurt; Humpel, Christian; Marksteiner, Josef

    2008-03-01

    Chromogranin B and secretogranin II are major soluble constituents of large dense core vesicles of presynaptic structures and have been found in neuritic plaques of Alzheimer patients. We examined the distribution and expression of these peptides in both transgenic mice over expressing human amyloid-beta protein precursor APP751 with the London (V717I) and Swedish (K670M/N671L) mutations and in human post-mortem brain. In transgenic mice, the number of amyloid-beta plaques and chromogranin immunopositive plaques increased from 6 to 12 months. About 60% of amyloid-beta plaques were associated with chromogranin B and about 40% with secretogranin II. Chromogranin immunoreactivity appeared mainly as swollen dystrophic neurites. Neither synaptophysin- nor glial fibrillary acidic protein- immunoreactivity was expressed in chromogranin immunoreactive structures at any timepoint. Density of chromogranin peptides in hippocampal structures did not change in transgenic animals at any timepoint, even though animals had a poorer performance in the Morris water maze task. In conclusion, our findings in transgenic animals partly resembled findings in Alzheimer patients. Chromogranin peptides were associated with amyloid-beta plaques, but were not reduced in specific brain areas as previously reported by our group. Therefore specific changes of chromogranin peptides observed in Alzheimer patients can be related to amyloid-beta pathology only.

  1. Differential Gene Expression Profiling of Dystrophic Dog Muscle after MuStem Cell Transplantation.

    Science.gov (United States)

    Robriquet, Florence; Lardenois, Aurélie; Babarit, Candice; Larcher, Thibaut; Dubreil, Laurence; Leroux, Isabelle; Zuber, Céline; Ledevin, Mireille; Deschamps, Jack-Yves; Fromes, Yves; Cherel, Yan; Guevel, Laetitia; Rouger, Karl

    2015-01-01

    Several adult stem cell populations exhibit myogenic regenerative potential, thus representing attractive candidates for therapeutic approaches of neuromuscular diseases such as Duchenne Muscular Dystrophy (DMD). We have recently shown that systemic delivery of MuStem cells, skeletal muscle-resident stem cells isolated in healthy dog, generates the remodelling of muscle tissue and gives rise to striking clinical benefits in Golden Retriever Muscular Dystrophy (GRMD) dog. This global effect, which is observed in the clinically relevant DMD animal model, leads us to question here the molecular pathways that are impacted by MuStem cell transplantation. To address this issue, we compare the global gene expression profile between healthy, GRMD and MuStem cell treated GRMD dog muscle, four months after allogenic MuStem cell transplantation. In the dystrophic context of the GRMD dog, disease-related deregulation is observed in the case of 282 genes related to various processes such as inflammatory response, regeneration, calcium ion binding, extracellular matrix organization, metabolism and apoptosis regulation. Importantly, we reveal the impact of MuStem cell transplantation on several molecular and cellular pathways based on a selection of 31 genes displaying signals specifically modulated by the treatment. Concomitant with a diffuse dystrophin expression, a histological remodelling and a stabilization of GRMD dog clinical status, we show that cell delivery is associated with an up-regulation of genes reflecting a sustained enhancement of muscle regeneration. We also identify a decreased mRNA expression of a set of genes having metabolic functions associated with lipid homeostasis and energy. Interestingly, ubiquitin-mediated protein degradation is highly enhanced in GRMD dog muscle after systemic delivery of MuStem cells. Overall, our results provide the first high-throughput characterization of GRMD dog muscle and throw new light on the complex molecular

  2. Differential Gene Expression Profiling of Dystrophic Dog Muscle after MuStem Cell Transplantation.

    Directory of Open Access Journals (Sweden)

    Florence Robriquet

    Full Text Available Several adult stem cell populations exhibit myogenic regenerative potential, thus representing attractive candidates for therapeutic approaches of neuromuscular diseases such as Duchenne Muscular Dystrophy (DMD. We have recently shown that systemic delivery of MuStem cells, skeletal muscle-resident stem cells isolated in healthy dog, generates the remodelling of muscle tissue and gives rise to striking clinical benefits in Golden Retriever Muscular Dystrophy (GRMD dog. This global effect, which is observed in the clinically relevant DMD animal model, leads us to question here the molecular pathways that are impacted by MuStem cell transplantation. To address this issue, we compare the global gene expression profile between healthy, GRMD and MuStem cell treated GRMD dog muscle, four months after allogenic MuStem cell transplantation.In the dystrophic context of the GRMD dog, disease-related deregulation is observed in the case of 282 genes related to various processes such as inflammatory response, regeneration, calcium ion binding, extracellular matrix organization, metabolism and apoptosis regulation. Importantly, we reveal the impact of MuStem cell transplantation on several molecular and cellular pathways based on a selection of 31 genes displaying signals specifically modulated by the treatment. Concomitant with a diffuse dystrophin expression, a histological remodelling and a stabilization of GRMD dog clinical status, we show that cell delivery is associated with an up-regulation of genes reflecting a sustained enhancement of muscle regeneration. We also identify a decreased mRNA expression of a set of genes having metabolic functions associated with lipid homeostasis and energy. Interestingly, ubiquitin-mediated protein degradation is highly enhanced in GRMD dog muscle after systemic delivery of MuStem cells.Overall, our results provide the first high-throughput characterization of GRMD dog muscle and throw new light on the complex

  3. Genetic Evaluation for the Scoliosis Gene(s) in Patients with Neurofibromatosis 1 and Scoliosis

    Science.gov (United States)

    2015-10-01

    by advertising our study on Children’s Tumor Foundation and The Littlest Tumor Foundation Midwest Society. The study was also posted on...Identification of 53 Single- Nucleotide Polymorphism (SNP) Markers 6 Associated with Scoliosis Progression in Adolescent Idiopathic Scoliosis Fake ID...23 105 dystrophic 24 26 non dystrophic 25 35 dystrophic 26 43 non dystrophic 27 53 dystrophic 28 70 non dystrophic 29 7 non dystrophic Fake

  4. SIRT1: A Novel Target for the Treatment of Muscular Dystrophies

    Directory of Open Access Journals (Sweden)

    Atsushi Kuno

    2016-01-01

    Full Text Available Muscular dystrophies are inherited myogenic disorders accompanied by progressive skeletal muscle weakness and degeneration. Duchenne muscular dystrophy (DMD is the most common and severe form of muscular dystrophy and is caused by mutations in the gene that encodes the cytoskeletal protein dystrophin. The treatment for DMD is limited to glucocorticoids, which are associated with multiple side effects. Thus, the identification of novel therapeutic targets is urgently needed. SIRT1 is an NAD+-dependent histone/protein deacetylase that plays roles in diverse cellular processes, including stress resistance and cell survival. Studies have shown that SIRT1 activation provides beneficial effects in the dystrophin-deficient mdx mouse, a model of DMD. SIRT1 activation leads to the attenuation of oxidative stress and inflammation, a shift from the fast to slow myofiber phenotype, and the suppression of tissue fibrosis. Although further research is needed to clarify the molecular mechanisms underlying the protective role of SIRT1 in mdx mice, we propose SIRT1 as a novel therapeutic target for patients with muscular dystrophies.

  5. Junctional epidermolysis bullosa incidence and survival: 5-year experience of the Dystrophic Epidermolysis Bullosa Research Association of America (DebRA) nurse educator, 2007 to 2011.

    Science.gov (United States)

    Kelly-Mancuso, Geraldine; Kopelan, Brett; Azizkhan, Richard G; Lucky, Anne W

    2014-01-01

    Junctional epidermolysis bullosa (JEB) is a particularly devastating type of epidermolysis bullosa, especially in the newborn period. Data about the number of new cases of JEB in the United States were collected from the records of the Dystrophic Epidermolysis Bullosa Research Association of America (DebRA) nurse educator. Seventy-one children with JEB were reported to have been born in the 5 years between 2007 and 2011, reflecting an incidence of at least 3.59 per million per year, significantly higher than previously estimated (2.04 per million). There was a high prevalence of morbidity and infant mortality of at least 73%, as 52 of the 71 cases proved fatal by June 2012. These data emphasize the need for future research to develop treatment and ultimately a cure for this disorder. © 2013 Wiley Periodicals, Inc.

  6. Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: Effect on myotube fusion

    International Nuclear Information System (INIS)

    Roffe, Suzy; Hagai, Yosey; Pines, Mark; Halevy, Orna

    2010-01-01

    Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of the phosphoinositide 3'-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.

  7. Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: Effect on myotube fusion

    Energy Technology Data Exchange (ETDEWEB)

    Roffe, Suzy [Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100 (Israel); Hagai, Yosey [Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100 (Israel); Institute of Animal Sciences, Volcani Center, Bet Dagan 50250 (Israel); Pines, Mark [Institute of Animal Sciences, Volcani Center, Bet Dagan 50250 (Israel); Halevy, Orna, E-mail: halevyo@agri.huji.ac.il [Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100 (Israel)

    2010-04-01

    Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of the phosphoinositide 3'-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.

  8. Pharmacologic Management of Duchenne Muscular Dystrophy: Target Identification and Preclinical Trials

    Science.gov (United States)

    Kornegay, Joe N.; Spurney, Christopher F.; Nghiem, Peter P.; Brinkmeyer-Langford, Candice L.; Hoffman, Eric P.; Nagaraju, Kanneboyina

    2014-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked human disorder in which absence of the protein dystrophin causes degeneration of skeletal and cardiac muscle. For the sake of treatment development, over and above definitive genetic and cell-based therapies, there is considerable interest in drugs that target downstream disease mechanisms. Drug candidates have typically been chosen based on the nature of pathologic lesions and presumed underlying mechanisms and then tested in animal models. Mammalian dystrophinopathies have been characterized in mice (mdx mouse) and dogs (golden retriever muscular dystrophy [GRMD]). Despite promising results in the mdx mouse, some therapies have not shown efficacy in DMD. Although the GRMD model offers a higher hurdle for translation, dogs have primarily been used to test genetic and cellular therapies where there is greater risk. Failed translation of animal studies to DMD raises questions about the propriety of methods and models used to identify drug targets and test efficacy of pharmacologic intervention. The mdx mouse and GRMD dog are genetically homologous to DMD but not necessarily analogous. Subcellular species differences are undoubtedly magnified at the whole-body level in clinical trials. This problem is compounded by disparate cultures in clinical trials and preclinical studies, pointing to a need for greater rigor and transparency in animal experiments. Molecular assays such as mRNA arrays and genome-wide association studies allow identification of genetic drug targets more closely tied to disease pathogenesis. Genes in which polymorphisms have been directly linked to DMD disease progression, as with osteopontin, are particularly attractive targets. PMID:24936034

  9. Differential Gene Expression Profiling of Dystrophic Dog Muscle after MuStem Cell Transplantation

    Science.gov (United States)

    Babarit, Candice; Larcher, Thibaut; Dubreil, Laurence; Leroux, Isabelle; Zuber, Céline; Ledevin, Mireille; Deschamps, Jack-Yves; Fromes, Yves; Cherel, Yan; Guevel, Laetitia; Rouger, Karl

    2015-01-01

    Background Several adult stem cell populations exhibit myogenic regenerative potential, thus representing attractive candidates for therapeutic approaches of neuromuscular diseases such as Duchenne Muscular Dystrophy (DMD). We have recently shown that systemic delivery of MuStem cells, skeletal muscle-resident stem cells isolated in healthy dog, generates the remodelling of muscle tissue and gives rise to striking clinical benefits in Golden Retriever Muscular Dystrophy (GRMD) dog. This global effect, which is observed in the clinically relevant DMD animal model, leads us to question here the molecular pathways that are impacted by MuStem cell transplantation. To address this issue, we compare the global gene expression profile between healthy, GRMD and MuStem cell treated GRMD dog muscle, four months after allogenic MuStem cell transplantation. Results In the dystrophic context of the GRMD dog, disease-related deregulation is observed in the case of 282 genes related to various processes such as inflammatory response, regeneration, calcium ion binding, extracellular matrix organization, metabolism and apoptosis regulation. Importantly, we reveal the impact of MuStem cell transplantation on several molecular and cellular pathways based on a selection of 31 genes displaying signals specifically modulated by the treatment. Concomitant with a diffuse dystrophin expression, a histological remodelling and a stabilization of GRMD dog clinical status, we show that cell delivery is associated with an up-regulation of genes reflecting a sustained enhancement of muscle regeneration. We also identify a decreased mRNA expression of a set of genes having metabolic functions associated with lipid homeostasis and energy. Interestingly, ubiquitin-mediated protein degradation is highly enhanced in GRMD dog muscle after systemic delivery of MuStem cells. Conclusions Overall, our results provide the first high-throughput characterization of GRMD dog muscle and throw new light on the

  10. Attention benefits after a single dose of metadoxine extended release in adults with predominantly inattentive ADHD.

    Science.gov (United States)

    Manor, Iris; Rubin, Jonathan; Daniely, Yaron; Adler, Lenard A

    2014-09-01

    To assess the first-dose effectiveness and tolerability of metadoxine extended release (MDX) in adults with predominantly inattentive attention-deficit/hyperactivity disorder (ADHD-PI). In this double-blind, placebo-controlled, crossover study, adults with ADHD-PI were randomized 1:1:1 to receive a single dose of MDX 1400 mg, MDX 700 mg, and placebo (ClinicalTrials.gov identifier: NCT01685281). The primary efficacy end point was the mean change in the Test of Variables of Attention (TOVA) ADHD score from baseline to 3 to 5 hours after drug administration. Secondary assessments included TOVA subscores, TOVA response rates (defined as an increase of 0.8 points in the TOVA ADHD score), and the Cambridge Neuropsychological Automated Test Battery. Safety assessments included adverse events and vital signs. The intention-to-treat population included 36 patients (52.8% men; mean age, 32 years). The efficacy of MDX 1400 mg was demonstrated by a statistically significant difference in the mean (± SD) change in the TOVA ADHD score at baseline to 3 to 5 hours after drug administration compared with placebo (2.0 [4.2]; P = 0.009). The TOVA response time variability subscore was significantly different between MDX 1400 mg and placebo (mean difference, 7.9 [19.2] points; P = 0.022). Significantly more adults responded to single-dose MDX 1400 mg versus placebo (97.1% vs 71.4%, P = 0.006). There were no statistically significant differences between MDX 700 mg and placebo on any measures. Exploratory analyses of the Cambridge Neuropsychological Automated Test Battery did not yield significant findings. Fatigue and headache were the 2 most frequently reported adverse events. There were no clinically significant abnormalities in laboratory values, vital signs measurements, Columbia-Suicide Severity Rating Scale scores, or electrocardiographic parameters. Single-dose MDX 1400 mg significantly improved sustained and selective attention in adults with ADHD-PI as measured by the TOVA

  11. Dystrophic calcification in muscles of legs in calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, and telangiectasia syndrome: Accurate evaluation of the extent with 99mTc-methylene diphosphonate single photon emission computed tomography/computed tomography

    International Nuclear Information System (INIS)

    Chakraborty, Partha Sarathi; Karunanithi, Sellam; Dhull, Varun Singh; Kumar, Kunal; Tripathi, Madhavi

    2015-01-01

    We present the case of a 35-year-old man with calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly and telangiectasia variant scleroderma who presented with dysphagia, Raynaud's phenomenon and calf pain. 99m Tc-methylene diphosphonate bone scintigraphy was performed to identify the extent of the calcification. It revealed extensive dystrophic calcification in the left thigh and bilateral legs which was involving the muscles and was well-delineated on single photon emission computed tomography/computed tomography. Calcinosis in scleroderma usually involves the skin but can be found in deeper periarticular tissues. Myopathy is associated with a poor prognosis

  12. The golden retriever model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Kornegay, Joe N

    2017-05-19

    Duchenne muscular dystrophy (DMD) is an X-linked disease caused by mutations in the DMD gene and loss of the protein dystrophin. The absence of dystrophin leads to myofiber membrane fragility and necrosis, with eventual muscle atrophy and contractures. Affected boys typically die in their second or third decade due to either respiratory failure or cardiomyopathy. Despite extensive attempts to develop definitive therapies for DMD, the standard of care remains prednisone, which has only palliative benefits. Animal models, mainly the mdx mouse and golden retriever muscular dystrophy (GRMD) dog, have played a key role in studies of DMD pathogenesis and treatment development. Because the GRMD clinical syndrome is more severe than in mice, better aligning with the progressive course of DMD, canine studies may translate better to humans. The original founder dog for all GRMD colonies worldwide was identified in the early 1980s before the discovery of the DMD gene and dystrophin. Accordingly, analogies to DMD were initially drawn based on similar clinical features, ranging from the X-linked pattern of inheritance to overlapping histopathologic lesions. Confirmation of genetic homology between DMD and GRMD came with identification of the underlying GRMD mutation, a single nucleotide change that leads to exon skipping and an out-of-frame DMD transcript. GRMD colonies have subsequently been established to conduct pathogenetic and preclinical treatment studies. Simultaneous with the onset of GRMD treatment trials, phenotypic biomarkers were developed, allowing definitive characterization of treatment effect. Importantly, GRMD studies have not always substantiated findings from mdx mice and have sometimes identified serious treatment side effects. While the GRMD model may be more clinically relevant than the mdx mouse, usage has been limited by practical considerations related to expense and the number of dogs available. This further complicates ongoing broader concerns about

  13. Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse

    DEFF Research Database (Denmark)

    Xu, H; Christmas, P; Wu, X R

    1994-01-01

    -linked Duchenne and Becker muscular dystrophies. We have examined M-laminin expression in mice with autosomal recessive muscular dystrophy caused by the mutation dy. The heavy chain of M-laminin was undetectable in skeletal muscle, heart muscle, and peripheral nerve by immunofluorescence and immunoblotting......M-laminin is a major member of the laminin family of basement membrane proteins. It is prominently expressed in striated muscle and peripheral nerve. M-laminin is deficient in patients with the autosomal recessive Fukuyama congenital muscular dystrophy but is normal in patients with the sex...... tissue from dy/dy mice, suggesting that M-laminin heavy-chain mRNA may be produced at very low levels or is unstable. Information about the chromosomal localization of the M heavy-chain in human and mouse suggests that a mutation in the M-chain gene causes the muscular dystrophy in dy/dy mice. The dy...

  14. Gamma-sarcoglycan is required for the response of archvillin to mechanical stimulation in skeletal muscle

    Science.gov (United States)

    Spinazzola, Janelle M.; Smith, Tara C.; Liu, Min; Luna, Elizabeth J.; Barton, Elisabeth R.

    2015-01-01

    Loss of gamma-sarcoglycan (γ-SG) induces muscle degeneration and signaling defects in response to mechanical load, and its absence is common to both Duchenne and limb girdle muscular dystrophies. Growing evidence suggests that aberrant signaling contributes to the disease pathology; however, the mechanisms of γ-SG-mediated mechanical signaling are poorly understood. To uncover γ-SG signaling pathway components, we performed yeast two-hybrid screens and identified the muscle-specific protein archvillin as a γ-SG and dystrophin interacting protein. Archvillin protein and message levels were significantly upregulated at the sarcolemma of murine γ-SG-null (gsg−/−) muscle but delocalized in dystrophin-deficient mdx muscle. Similar elevation of archvillin protein was observed in human quadriceps muscle lacking γ-SG. Reintroduction of γ-SG in gsg−/− muscle by rAAV injection restored archvillin levels to that of control C57 muscle. In situ eccentric contraction of tibialis anterior (TA) muscles from C57 mice caused ERK1/2 phosphorylation, nuclear activation of P-ERK1/2 and stimulus-dependent archvillin association with P-ERK1/2. In contrast, TA muscles from gsg−/− and mdx mice exhibited heightened P-ERK1/2 and increased nuclear P-ERK1/2 localization following eccentric contractions, but the archvillin–P-ERK1/2 association was completely ablated. These results position archvillin as a mechanically sensitive component of the dystrophin complex and demonstrate that signaling defects caused by loss of γ-SG occur both at the sarcolemma and in the nucleus. PMID:25605665

  15. Alzheimer's disease pathological lesions activate the spleen tyrosine kinase.

    Science.gov (United States)

    Schweig, Jonas Elias; Yao, Hailan; Beaulieu-Abdelahad, David; Ait-Ghezala, Ghania; Mouzon, Benoit; Crawford, Fiona; Mullan, Michael; Paris, Daniel

    2017-09-06

    The pathology of Alzheimer's disease (AD) is characterized by dystrophic neurites (DNs) surrounding extracellular Aβ-plaques, microgliosis, astrogliosis, intraneuronal tau hyperphosphorylation and aggregation. We have previously shown that inhibition of the spleen tyrosine kinase (Syk) lowers Aβ production and tau hyperphosphorylation in vitro and in vivo. Here, we demonstrate that Aβ-overexpressing Tg PS1/APPsw, Tg APPsw mice, and tau overexpressing Tg Tau P301S mice exhibit a pathological activation of Syk compared to wild-type littermates. Syk activation is occurring in a subset of microglia and is age-dependently increased in Aβ-plaque-associated dystrophic neurites of Tg PS1/APPsw and Tg APPsw mice. In Tg Tau P301S mice, a pure model of tauopathy, activated Syk occurs in neurons that show an accumulation of misfolded and hyperphosphorylated tau in the cortex and hippocampus. Interestingly, the tau pathology is exacerbated in neurons that display high levels of Syk activation supporting a role of Syk in the formation of tau pathological species in vivo. Importantly, human AD brain sections show both pathological Syk activation in DNs around Aβ deposits and in neurons immunopositive for pathological tau species recapitulating the data obtained in transgenic mouse models of AD. Additionally, we show that Syk overexpression leads to increased tau accumulation and promotes tau hyperphosphorylation at multiple epitopes in human neuron-like SH-SY5Y cells, further supporting a role of Syk in the formation of tau pathogenic species. Collectively, our data show that Syk activation occurs following Aβ deposition and the formation of tau pathological species. Given that we have previously shown that Syk activation also promotes Aβ formation and tau hyperphosphorylation, our data suggest that AD pathological lesions may be self-propagating via a Syk dependent mechanism highlighting Syk as an attractive therapeutic target for the treatment of AD.

  16. A urinary biomarker-based risk score correlates with multiparametric MRI for prostate cancer detection.

    Science.gov (United States)

    Hendriks, Rianne J; van der Leest, Marloes M G; Dijkstra, Siebren; Barentsz, Jelle O; Van Criekinge, Wim; Hulsbergen-van de Kaa, Christina A; Schalken, Jack A; Mulders, Peter F A; van Oort, Inge M

    2017-10-01

    Prostate cancer (PCa) diagnostics would greatly benefit from more accurate, non-invasive techniques for the detection of clinically significant disease, leading to a reduction of over-diagnosis and over-treatment. The aim of this study was to determine the association between a novel urinary biomarker-based risk score (SelectMDx), multiparametric MRI (mpMRI) outcomes, and biopsy results for PCa detection. This retrospective observational study used data from the validation study of the SelectMDx score, in which urine was collected after digital rectal examination from men undergoing prostate biopsies. A subset of these patients also underwent a mpMRI scan of the prostate. The indications for performing mpMRI were based on persistent clinical suspicion of PCa or local staging after PCa was found upon biopsy. All mpMRI images were centrally reviewed in 2016 by an experienced radiologist blinded for the urine test results and biopsy outcome. The PI-RADS version 2 was used. In total, 172 patients were included for analysis. Hundred (58%) patients had PCa detected upon prostate biopsy, of which 52 (52%) had high-grade disease correlated with a significantly higher SelectMDx score (P < 0.01). The median SelectMDx score was significantly higher in patients with a suspicious significant lesion on mpMRI compared to no suspicion of significant PCa (P < 0.01). For the prediction of mpMRI outcome, the area-under-the-curve of SelectMDx was 0.83 compared to 0.66 for PSA and 0.65 for PCA3. There was a positive association between SelectMDx score and the final PI-RADS grade. There was a statistically significant difference in SelectMDx score between PI-RADS 3 and 4 (P < 0.01) and between PI-RADS 4 and 5 (P < 0.01). The novel urinary biomarker-based SelectMDx score is a promising tool in PCa detection. This study showed promising results regarding the correlation between the SelectMDx score and mpMRI outcomes, outperforming PCA3. Our results suggest that this risk

  17. Bone Marrow Stromal Cells Generate Muscle Cells and Repair Muscle Degeneration

    Science.gov (United States)

    Dezawa, Mari; Ishikawa, Hiroto; Itokazu, Yutaka; Yoshihara, Tomoyuki; Hoshino, Mikio; Takeda, Shin-ichi; Ide, Chizuka; Nabeshima, Yo-ichi

    2005-07-01

    Bone marrow stromal cells (MSCs) have great potential as therapeutic agents. We report a method for inducing skeletal muscle lineage cells from human and rat general adherent MSCs with an efficiency of 89%. Induced cells differentiated into muscle fibers upon transplantation into degenerated muscles of rats and mdx-nude mice. The induced population contained Pax7-positive cells that contributed to subsequent regeneration of muscle upon repetitive damage without additional transplantation of cells. These MSCs represent a more ready supply of myogenic cells than do the rare myogenic stem cells normally found in muscle and bone marrow.

  18. SU9516 Increases α7β1 Integrin and Ameliorates Disease Progression in the mdx Mouse Model of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Sarathy, Apurva; Wuebbles, Ryan D; Fontelonga, Tatiana M; Tarchione, Ashley R; Mathews Griner, Lesley A; Heredia, Dante J; Nunes, Andreia M; Duan, Suzann; Brewer, Paul D; Van Ry, Tyler; Hennig, Grant W; Gould, Thomas W; Dulcey, Andrés E; Wang, Amy; Xu, Xin; Chen, Catherine Z; Hu, Xin; Zheng, Wei; Southall, Noel; Ferrer, Marc; Marugan, Juan; Burkin, Dean J

    2017-06-07

    Duchenne muscular dystrophy (DMD) is a fatal muscle disease caused by mutations in the dystrophin gene, resulting in a complete loss of the dystrophin protein. Dystrophin is a critical component of the dystrophin glycoprotein complex (DGC), which links laminin in the extracellular matrix to the actin cytoskeleton within myofibers and provides resistance to shear stresses during muscle activity. Loss of dystrophin in DMD patients results in a fragile sarcolemma prone to contraction-induced muscle damage. The α7β1 integrin is a laminin receptor protein complex in skeletal and cardiac muscle and a major modifier of disease progression in DMD. In a muscle cell-based screen for α7 integrin transcriptional enhancers, we identified a small molecule, SU9516, that promoted increased α7β1 integrin expression. Here we show that SU9516 leads to increased α7B integrin in murine C2C12 and human DMD patient myogenic cell lines. Oral administration of SU9516 in the mdx mouse model of DMD increased α7β1 integrin in skeletal muscle, ameliorated pathology, and improved muscle function. We show that these improvements are mediated through SU9516 inhibitory actions on the p65-NF-κB pro-inflammatory and Ste20-related proline alanine rich kinase (SPAK)/OSR1 signaling pathways. This study identifies a first in-class α7 integrin-enhancing small-molecule compound with potential for the treatment of DMD. Copyright © 2017 The American Society of Gene and Cell Therapy. All rights reserved.

  19. Systemic granulocyte colony-stimulating factor (G-CSF) enhances wound healing in dystrophic epidermolysis bullosa (DEB): Results of a pilot trial.

    Science.gov (United States)

    Fine, Jo-David; Manes, Becky; Frangoul, Haydar

    2015-07-01

    Chronic nonhealing wounds are the norm in patients with inherited epidermolysis bullosa (EB), especially those with dystrophic EB (DEB). A possible benefit in wound healing after subcutaneous treatment with granulocyte colony-stimulating factor (G-CSF) was suggested from an anecdotal report of a patient given this during stem cell mobilization before bone-marrow transplantation. We sought to determine whether benefit in wound healing in DEB skin might result after 6 daily doses of G-CSF and to confirm its safety. Patients were assessed for changes in total body blister and erosion counts, surface areas of selected wounds, and specific symptomatology after treatment. Seven patients with DEB (recessive, 6; dominant, 1) were treated daily with subcutaneous G-CSF (10 μg/kg/dose) and reevaluated on day 7. For all patients combined, median reductions of 75.5% in lesional size and 36.6% in blister/erosion counts were observed. When only the 6 responders were considered, there were median reductions of 77.4% and 38.8% of each of these measured parameters, respectively. No adverse side effects were noted. Limitations include small patient number, more than 1 DEB subtype included, and lack of untreated age-matched control subjects. Subcutaneous G-CSF may be beneficial in promoting wound healing in some patients with DEB when conventional therapies fail. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  20. Fucoidan Extracted from Fucus evanescens Prevents Endotoxin-Induced Damage in a Mouse Model of Endotoxemia

    Directory of Open Access Journals (Sweden)

    Tatyana A. Kuznetsova

    2014-01-01

    Full Text Available An important problem of treating patients with endotoxemia is to find drugs to reduce the negative effects of endotoxin on the organism. We tested fucoidan (sulfated polysaccharide from the brown alga Fucus evanescens as a potential drug in a mouse model of endotoxemia inducted by lipopolysaccharide (LPS. The survival time of mice injected with LPS increased under fucoidan treatment compared with the group of mice injected with LPS only. The preventive administration of fucoidan to mice with endotoxemia resulted in inhibition of increased levels of proinflammatory cytokines (TNFα and IL-6, as well as decreasing of the processes of hypercoagulability. The parenteral or per os administration of fucoidan resulted in decreasing the degree of microcirculatory disorders and secondary dystrophic-destructive changes in parenchymal organs of mice with endotoxemia. Taken together, these results demonstrate that fucoidan prevents endotoxin-induced damage in a mouse model of endotoxemia and increases the mice’s resistance to LPS.

  1. The anticancer drug tamoxifen counteracts the pathology in a mouse model of duchenne muscular dystrophy.

    Science.gov (United States)

    Dorchies, Olivier M; Reutenauer-Patte, Julie; Dahmane, Elyes; Ismail, Heham M; Petermann, Olivier; Patthey- Vuadens, Ophélie; Comyn, Sophie A; Gayi, Elinam; Piacenza, Tony; Handa, Robert J; Décosterd, Laurent A; Ruegg, Urs T

    2013-02-01

    Duchenne muscular dystrophy (DMD) is a severe disorder characterized by progressive muscle wasting,respiratory and cardiac impairments, and premature death. No treatment exists so far, and the identification of active substances to fight DMD is urgently needed. We found that tamoxifen, a drug used to treat estrogen-dependent breast cancer, caused remarkable improvements of muscle force and of diaphragm and cardiac structure in the mdx(5Cv) mouse model of DMD. Oral tamoxifen treatment from 3 weeks of age for 15 months at a dose of 10 mg/kg/day stabilized myofiber membranes, normalized whole body force, and increased force production and resistance to repeated contractions of the triceps muscle above normal values. Tamoxifen improved the structure of leg muscles and diminished cardiac fibrosis by~ 50%. Tamoxifen also reduced fibrosis in the diaphragm, while increasing its thickness,myofiber count, and myofiber diameter, thereby augmenting by 72% the amount of contractile tissue available for respiratory function. Tamoxifen conferred a markedly slower phenotype to the muscles.Tamoxifen and its metabolites were present in nanomolar concentrations in plasma and muscles,suggesting signaling through high-affinity targets. Interestingly, the estrogen receptors ERa and ERb were several times more abundant in dystrophic than in normal muscles, and tamoxifen normalized the relative abundance of ERb isoforms. Our findings suggest that tamoxifen might be a useful therapy for DMD.

  2. Metabolic dysfunction and altered mitochondrial dynamics in the utrophin-dystrophin deficient mouse model of duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Meghna Pant

    Full Text Available The utrophin-dystrophin deficient (DKO mouse model has been widely used to understand the progression of Duchenne muscular dystrophy (DMD. However, it is unclear as to what extent muscle pathology affects metabolism. Therefore, the present study was focused on understanding energy expenditure in the whole animal and in isolated extensor digitorum longus (EDL muscle and to determine changes in metabolic enzymes. Our results show that the 8 week-old DKO mice consume higher oxygen relative to activity levels. Interestingly the EDL muscle from DKO mouse consumes higher oxygen per unit integral force, generates less force and performs better in the presence of pyruvate thus mimicking a slow twitch muscle. We also found that the expression of hexokinase 1 and pyruvate kinase M2 was upregulated several fold suggesting increased glycolytic flux. Additionally, there is a dramatic increase in dynamin-related protein 1 (Drp 1 and mitofusin 2 protein levels suggesting increased mitochondrial fission and fusion, a feature associated with increased energy demand and altered mitochondrial dynamics. Collectively our studies point out that the dystrophic disease has caused significant changes in muscle metabolism. To meet the increased energetic demand, upregulation of metabolic enzymes and regulators of mitochondrial fusion and fission is observed in the dystrophic muscle. A better understanding of the metabolic demands and the accompanied alterations in the dystrophic muscle can help us design improved intervention therapies along with existing drug treatments for the DMD patients.

  3. The polyproline site in hinge 2 influences the functional capacity of truncated dystrophins.

    Directory of Open Access Journals (Sweden)

    Glen B Banks

    2010-05-01

    Full Text Available Mutations in dystrophin can lead to Duchenne muscular dystrophy or the more mild form of the disease, Becker muscular dystrophy. The hinge 3 region in the rod domain of dystrophin is particularly prone to deletion mutations. In-frame deletions of hinge 3 are predicted to lead to BMD, however the severity of disease can vary considerably. Here we performed extensive structure-function analyses of truncated dystrophins with modified hinges and spectrin-like repeats in mdx mice. We found that the polyproline site in hinge 2 profoundly influences the functional capacity of a microdystrophin(DeltaR4-R23/DeltaCT with a large deletion in the hinge 3 region. Inclusion of polyproline in microdystrophin(DeltaR4-R23/DeltaCT led to small myofibers (12% smaller than wild-type, Achilles myotendinous disruption, ringed fibers, and aberrant neuromuscular junctions in the mdx gastrocnemius muscles. Replacing hinge 2 of microdystrophin(DeltaR4-R23/DeltaCT with hinge 3 significantly improved the functional capacity to prevent muscle degeneration, increase muscle fiber area, and maintain the junctions. We conclude that the rigid alpha-helical structure of the polyproline site significantly impairs the functional capacity of truncated dystrophins to maintain appropriate connections between the cytoskeleton and extracellular matrix.

  4. Sparing of extraocular muscle in aging and muscular dystrophies: A myogenic precursor cell hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Kallestad, Kristen M.; Hebert, Sadie L.; McDonald, Abby A.; Daniel, Mark L.; Cu, Sharon R.; McLoon, Linda K., E-mail: mcloo001@tc.umn.edu

    2011-04-01

    The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry, EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin{sup -/-} (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a

  5. Sparing of extraocular muscle in aging and muscular dystrophies: A myogenic precursor cell hypothesis

    International Nuclear Information System (INIS)

    Kallestad, Kristen M.; Hebert, Sadie L.; McDonald, Abby A.; Daniel, Mark L.; Cu, Sharon R.; McLoon, Linda K.

    2011-01-01

    The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry, EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin -/- (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a subpopulation of

  6. Development of Maltodextrin-Based Immediate-Release Tablets Using an Integrated Twin-Screw Hot-Melt Extrusion and Injection-Molding Continuous Manufacturing Process.

    Science.gov (United States)

    Puri, Vibha; Brancazio, Dave; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Myerson, Allan S; Trout, Bernhardt L

    2017-11-01

    The combination of hot-melt extrusion and injection molding (HME-IM) is a promising process technology for continuous manufacturing of tablets. However, there has been limited research on its application to formulate crystalline drug-containing immediate-release tablets. Furthermore, studies that have applied the HME-IM process to molded tablets have used a noncontinuous 2-step approach. The present study develops maltodextrin (MDX)-based extrusion-molded immediate-release tablets for a crystalline drug (griseofulvin) using an integrated twin-screw HME-IM continuous process. At 10% w/w drug loading, MDX was selected as the tablet matrix former based on a preliminary screen. Furthermore, liquid and solid polyols were evaluated for melt processing of MDX and for impact on tablet performance. Smooth-surfaced tablets, comprising crystalline griseofulvin solid suspension in the amorphous MDX-xylitol matrix, were produced by a continuous process on a twin-screw extruder coupled to a horizontally opening IM machine. Real-time HME process profiles were used to develop automated HME-IM cycles. Formulation adjustments overcame process challenges and improved tablet strength. The developed MDX tablets exhibited adequate strength and a fast-dissolving matrix (85% drug release in 20 min), and maintained performance on accelerated stability conditions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Opposing roles of miR-21 and miR-29 in the progression of fibrosis in Duchenne muscular dystrophy.

    Science.gov (United States)

    Zanotti, Simona; Gibertini, Sara; Curcio, Maurizio; Savadori, Paolo; Pasanisi, Barbara; Morandi, Lucia; Cornelio, Ferdinando; Mantegazza, Renato; Mora, Marina

    2015-07-01

    Excessive extracellular matrix deposition progressively replacing muscle fibres is the endpoint of most severe muscle diseases. Recent data indicate major involvement of microRNAs in regulating pro- and anti-fibrotic genes. To investigate the roles of miR-21 and miR-29 in muscle fibrosis in Duchenne muscle dystrophy, we evaluated their expression in muscle biopsies from 14 patients, and in muscle-derived fibroblasts and myoblasts. In Duchenne muscle biopsies, miR-21 expression was significantly increased, and correlated directly with COL1A1 and COL6A1 transcript levels. MiR-21 expression was also significantly increased in Duchenne fibroblasts, more so after TGF-β1 treatment. In Duchenne fibroblasts the expression of miR-21 target transcripts PTEN (phosphatase and tensin homolog deleted on chromosome 10) and SPRY-1 (Sprouty homolog 1) was significantly reduced; while collagen I and VI transcript levels and soluble collagen production were significantly increased. MiR-29a and miR-29c were significantly reduced in Duchenne muscle and myoblasts, and miR-29 target transcripts, COL3A1, FBN1 and YY1, significantly increased. MiR-21 silencing in mdx mice reduced fibrosis in the diaphragm muscle and in both Duchenne fibroblasts and mdx mice restored PTEN and SPRY-1 expression, and significantly reduced collagen I and VI expression; while miR-29 mimicking in Duchenne myoblasts significantly decreased miR-29 target transcripts. These findings indicate that miR-21 and miR-29 play opposing roles in Duchenne muscle fibrosis and suggest that pharmacological modulation of their expression has therapeutic potential for reducing fibrosis in this condition. Copyright © 2015. Published by Elsevier B.V.

  8. The extraocular muscle stem cell niche is resistant to ageing and disease

    Directory of Open Access Journals (Sweden)

    Luigi eFormicola

    2014-12-01

    Full Text Available Specific muscles are spared in many degenerative myopathies. Most notably, the extraocular muscles (EOMs do not show clinical signs of late stage myopathies including the accumulation of fibrosis and fat. It has been proposed that an altered stem cell niche underlies the resistance of EOMs in these pathologies, however, to date, no reports have provided a detailed characterization of the EOM stem cell niche. PW1/Peg3 is expressed in progenitor cells in all adult tissues including satellite cells and a subset of interstitial non-satellite cell progenitors in muscle. These PW1-positive interstitial cells (PICs include a fibroadipogenic progenitor population (FAPs that give rise to fat and fibrosis in late stage myopathies. PICs/FAPs are mobilized following injury and FAPs exert a promyogenic role upon myoblasts in vitro but require the presence of a minimal population of satellite cells in vivo. We and others recently described that FAPs express promyogenic factors while satellite cells express antimyogenic factors suggesting that PICs/FAPs act as support niche cells in skeletal muscle through paracrine interactions. We analyzed the EOM stem cell niche in young adult and aged wild-type mice and found that the balance between PICs and satellite cells within the EOM stem cell niche is maintained throughout life. Moreover, in the adult mdx mouse model for Duchenne muscular dystrophy, the EOM stem cell niche is unperturbed compared to normal mice, in contrast to Tibialis Anterior (TA muscle, which displays signs of ongoing degeneration/regeneration. Regenerating mdx TA shows increased levels of both PICs and satellite cells, comparable to normal unaffected EOMs. We propose that the increase in PICs that we observe in normal EOMs contributes to preserving the integrity of the myofibers and satellite cells. Our data suggest that molecular cues regulating muscle regeneration are intrinsic properties of EOMs.

  9. Context Dependent Effects of Chimeric Peptide Morpholino Conjugates Contribute to Dystrophin Exon-skipping Efficiency.

    Science.gov (United States)

    Yin, Haifang; Boisguerin, Prisca; Moulton, Hong M; Betts, Corinne; Seow, Yiqi; Boutilier, Jordan; Wang, Qingsong; Walsh, Anthony; Lebleu, Bernard; Wood, Matthew Ja

    2013-09-24

    We have recently reported that cell-penetrating peptides (CPPs) and novel chimeric peptides containing CPP (referred as B peptide) and muscle-targeting peptide (referred as MSP) motifs significantly improve the systemic exon-skipping activity of morpholino phosphorodiamidate oligomers (PMOs) in dystrophin-deficient mdx mice. In the present study, the general mechanistic significance of the chimeric peptide configuration on the activity and tissue uptake of peptide conjugated PMOs in vivo was investigated. Four additional chimeric peptide-PMO conjugates including newly identified peptide 9 (B-9-PMO and 9-B-PMO) and control peptide 3 (B-3-PMO and 3-B-PMO) were tested in mdx mice. Immunohistochemical staining, RT-PCR and western blot results indicated that B-9-PMO induced significantly higher level of exon skipping and dystrophin restoration than its counterpart (9-B-PMO), further corroborating the notion that the activity of chimeric peptide-PMO conjugates is dependent on relative position of the tissue-targeting peptide motif within the chimeric peptide with respect to PMOs. Subsequent mechanistic studies showed that enhanced cellular uptake of B-MSP-PMO into muscle cells leads to increased exon-skipping activity in comparison with MSP-B-PMO. Surprisingly, further evidence showed that the uptake of chimeric peptide-PMO conjugates of both orientations (B-MSP-PMO and MSP-B-PMO) was ATP- and temperature-dependent and also partially mediated by heparan sulfate proteoglycans (HSPG), indicating that endocytosis is likely the main uptake pathway for both chimeric peptide-PMO conjugates. Collectively, our data demonstrate that peptide orientation in chimeric peptides is an important parameter that determines cellular uptake and activity when conjugated directly to oligonucleotides. These observations provide insight into the design of improved cell targeting compounds for future therapeutics studies.Molecular Therapy-Nucleic Acids (2013) 2, e124; doi:10.1038/mtna.2013

  10. Context Dependent Effects of Chimeric Peptide Morpholino Conjugates Contribute to Dystrophin Exon-skipping Efficiency

    Directory of Open Access Journals (Sweden)

    HaiFang Yin

    2013-01-01

    Full Text Available We have recently reported that cell-penetrating peptides (CPPs and novel chimeric peptides containing CPP (referred as B peptide and muscle-targeting peptide (referred as MSP motifs significantly improve the systemic exon-skipping activity of morpholino phosphorodiamidate oligomers (PMOs in dystrophin-deficient mdx mice. In the present study, the general mechanistic significance of the chimeric peptide configuration on the activity and tissue uptake of peptide conjugated PMOs in vivo was investigated. Four additional chimeric peptide-PMO conjugates including newly identified peptide 9 (B-9-PMO and 9-B-PMO and control peptide 3 (B-3-PMO and 3-B-PMO were tested in mdx mice. Immunohistochemical staining, RT-PCR and western blot results indicated that B-9-PMO induced significantly higher level of exon skipping and dystrophin restoration than its counterpart (9-B-PMO, further corroborating the notion that the activity of chimeric peptide-PMO conjugates is dependent on relative position of the tissue-targeting peptide motif within the chimeric peptide with respect to PMOs. Subsequent mechanistic studies showed that enhanced cellular uptake of B-MSP-PMO into muscle cells leads to increased exon-skipping activity in comparison with MSP-B-PMO. Surprisingly, further evidence showed that the uptake of chimeric peptide-PMO conjugates of both orientations (B-MSP-PMO and MSP-B-PMO was ATP- and temperature-dependent and also partially mediated by heparan sulfate proteoglycans (HSPG, indicating that endocytosis is likely the main uptake pathway for both chimeric peptide-PMO conjugates. Collectively, our data demonstrate that peptide orientation in chimeric peptides is an important parameter that determines cellular uptake and activity when conjugated directly to oligonucleotides. These observations provide insight into the design of improved cell targeting compounds for future therapeutics studies.

  11. Cone function studied with flicker electroretinogram during progressive retinal degeneration in RCS rats.

    Science.gov (United States)

    Pinilla, I; Lund, R D; Sauvé, Y

    2005-01-01

    The Royal College of Surgeons (RCS) rat has a primary defect in retinal pigment epithelial cells that leads to the progressive loss of photoreceptors and central visual responsiveness. While most rods are lost by 90 days of age (P90), cones degenerate more slowly, and can be detected anatomically up to 2 years of age, despite massive neuronal death and retinal remodelling. To examine how this progressive degenerative process impacts on cone function, we recorded the electroretingram to white light flashes (1.37 log cd s m(-2)) presented at frequencies ranging from 3 to 50 Hz, under light adapted conditions (29.8 cd m(-2)). Pigmented dystrophic and congenic non-dystrophic RCS rats aged from 18 to 300 days were studied. In all responsive animals at all ages, maximal amplitudes were obtained at 3 Hz. In both non-dystrophic and dystrophic rats, there was an increase from P18 to P21 in response amplitude and critical fusion frequency. After P21, these two parameters declined progressively with age in dystrophic rats. Other changes included prolongation in latency, which was first detected prior to the initiation of amplitude reduction. While phase shifts were also detected in dystrophic RCS rats, they appeared at later degenerative stages. The latest age at which responses could be elicited in dystrophic rats was at P200, with positive waves being replaced by negative deflections. The effect of increments in the intensity of background illumination was tested at P50 in both groups. This caused a diminution in flicker response amplitude and critical fusion frequencies in non-dystrophics, while in dystrophic animals, response amplitudes were reduced only at low frequencies and critical fusion frequencies were unaltered. In conclusion, although dystrophic RCS rats undergo a progressive decline in cone function with age, the flicker responsiveness at P21 is comparable to that of non-dystrophic congenic rats, suggesting normal developmental maturation of the cone system in

  12. Generation of Equine-Induced Pluripotent Stem Cells and Analysis of Their Therapeutic Potential for Muscle Injuries.

    Science.gov (United States)

    Lee, Eun-Mi; Kim, Ah-Young; Lee, Eun-Joo; Park, Jin-Kyu; Park, Se-Il; Cho, Ssang-Goo; Kim, Hong Kyun; Kim, Shin-Yoon; Jeong, Kyu-Shik

    2016-11-01

    Horse health has become a major concern with the expansion of horse-related industries and sports; the importance of healthy muscles for horse performance and daily activities is undisputed. Here we generated equine-induced pluripotent stem cells (E-iPSCs) by reprogramming equine adipose-derived stem cells (E-ADSCs) into iPSCs using a polycistronic lentiviral vector encoding four transcription factors (i.e., Oct4, Sox2, Klf4, and c-Myc) and then examined their pluripotent characteristics. Subsequently, established E-iPSCs were transplanted into muscle-injured Rag/ mdx mice. The histopathology results showed that E-iPSC-transplanted mice exhibited enhanced muscle regeneration compared to controls. In addition, E-iPSC-derived myofibers were observed in the injured muscles. In conclusion, we show that E-iPSCs could be successfully generated from equine ADSCs and transplanted into injured muscles and that E-iPSCs have the capacity to induce regeneration of injured muscles.

  13. Myosin Binding Protein-C Slow Phosphorylation is Altered in Duchenne Dystrophy and Arthrogryposis Myopathy in Fast-Twitch Skeletal Muscles.

    Science.gov (United States)

    Ackermann, Maegen A; Ward, Christopher W; Gurnett, Christina; Kontrogianni-Konstantopoulos, Aikaterini

    2015-08-19

    Myosin Binding Protein-C slow (sMyBP-C), encoded by MYBPC1, comprises a family of regulatory proteins of skeletal muscles that are phosphorylated by PKA and PKC. MYBPC1 missense mutations are linked to the development of Distal Arthrogryposis-1 (DA-1). Although structure-function details for this myopathy are evolving, function is undoubtedly driven by sequence variations and post-translational modifications in sMyBP-C. Herein, we examined the phosphorylation profile of sMyBP-C in mouse and human fast-twitch skeletal muscles. We used Flexor Digitorum Brevis (FDB) isolated from young (~2-months old) and old (~14-months old) wild type and mdx mice, and human Abductor Hallucis (AH) and gastrocnemious muscles carrying the DA-1 mutations. Our results indicate both constitutive and differential phosphorylation of sMyBP-C in aged and diseased muscles. We report a 7-35% reduction in the phosphorylation levels of select sites in old wild type and young or old mdx FDB mouse muscles, compared to young wild type tissue. Similarly, we observe a 30-70% decrease in the phosphorylation levels of all PKA and PKC phospho-sites in the DA-1 AH, but not gastrocnemius, muscle. Overall, our studies show that the phosphorylation pattern of sMyBP-C is differentially regulated in response to age and disease, suggesting that phosphorylation plays important roles in these processes.

  14. Contribution of oxidative stress to pathology in diaphragm and limb muscles with Duchenne muscular dystrophy.

    Science.gov (United States)

    Kim, Jong-Hee; Kwak, Hyo-Bum; Thompson, LaDora V; Lawler, John M

    2013-02-01

    Duchenne muscular dystrophy (DMD) is a degenerative skeletal muscle disease that makes walking and breathing difficult. DMD is caused by an X-linked (Xp21) mutation in the dystrophin gene. Dystrophin is a scaffolding protein located in the sarcolemmal cytoskeleton, important in maintaining structural integrity and regulating muscle cell (muscle fiber) growth and repair. Dystrophin deficiency in mouse models (e.g., mdx mouse) destabilizes the interface between muscle fibers and the extracellular matrix, resulting in profound damage, inflammation, and weakness in diaphragm and limb muscles. While the link between dystrophin deficiency with inflammation and pathology is multi-factorial, elevated oxidative stress has been proposed as a central mediator. Unfortunately, the use of non-specific antioxidant scavengers in mouse and human studies has led to inconsistent results, obscuring our understanding of the importance of redox signaling in pathology of muscular dystrophy. However, recent studies with more mechanistic approaches in mdx mice suggest that NAD(P)H oxidase and nuclear factor-kappaB are important in amplifying dystrophin-deficient muscle pathology. Therefore, more targeted antioxidant therapeutics may ameliorate damage and weakness in human population, thus promoting better muscle function and quality of life. This review will focus upon the pathobiology of dystrophin deficiency in diaphragm and limb muscle primarily in mouse models, with a rationale for development of targeted therapeutic antioxidants in DMD patients.

  15. Health Technology Assessment for Molecular Diagnostics: Practices, Challenges, and Recommendations from the Medical Devices and Diagnostics Special Interest Group.

    Science.gov (United States)

    Garfield, Susan; Polisena, Julie; S Spinner, Daryl; Postulka, Anne; Y Lu, Christine; Tiwana, Simrandeep K; Faulkner, Eric; Poulios, Nick; Zah, Vladimir; Longacre, Michael

    2016-01-01

    Health technology assessments (HTAs) are increasingly used to inform coverage, access, and utilization of medical technologies including molecular diagnostics (MDx). Although MDx are used to screen patients and inform disease management and treatment decisions, there is no uniform approach to their evaluation by HTA organizations. The International Society for Pharmacoeconomics and Outcomes Research Devices and Diagnostics Special Interest Group reviewed diagnostic-specific HTA programs and identified elements representing common and best practices. MDx-specific HTA programs in Europe, Australia, and North America were characterized by methodology, evaluation framework, and impact. Published MDx HTAs were reviewed, and five representative case studies of test evaluations were developed: United Kingdom (National Institute for Health and Care Excellence's Diagnostics Assessment Programme, epidermal growth factor receptor tyrosine kinase mutation), United States (Palmetto's Molecular Diagnostic Services Program, OncotypeDx prostate cancer test), Germany (Institute for Quality and Efficiency in Healthcare, human papillomavirus testing), Australia (Medical Services Advisory Committee, anaplastic lymphoma kinase testing for non-small cell lung cancer), and Canada (Canadian Agency for Drugs and Technologies in Health, Rapid Response: Non-invasive Prenatal Testing). Overall, the few HTA programs that have MDx-specific methods do not provide clear parameters of acceptability related to clinical and analytic performance, clinical utility, and economic impact. The case studies highlight similarities and differences in evaluation approaches across HTAs in the performance metrics used (analytic and clinical validity, clinical utility), evidence requirements, and how value is measured. Not all HTAs are directly linked to reimbursement outcomes. To improve MDx HTAs, organizations should provide greater transparency, better communication and collaboration between industry and HTA

  16. Substrate Utilization and Cycling Performance Following Palatinose™ Ingestion: A Randomized, Double-Blind, Controlled Trial

    Directory of Open Access Journals (Sweden)

    Daniel König

    2016-06-01

    Full Text Available (1 Objective: To compare the effects of isomaltulose (Palatinose™, PSE vs. maltodextrin (MDX ingestion on substrate utilization during endurance exercise and subsequent time trial performance; (2 Methods: 20 male athletes performed two experimental trials with ingestion of either 75 g PSE or MDX 45 min before the start of exercise. The exercise protocol consisted of 90 min cycling (60% VO2max followed by a time trial; (3 Results: Time trial finishing time (−2.7%, 90% CI: ±3.0%, 89% likely beneficial; p = 0.147 and power output during the final 5 min (+4.6%, 90% CI: ±4.0%, 93% likely beneficial; p = 0.053 were improved with PSE compared with MDX. The blood glucose profile differed between trials (p = 0.013 with PSE resulting in lower glycemia during rest (95%–99% likelihood and higher blood glucose concentrations during exercise (63%–86% likelihood. In comparison to MDX, fat oxidation was higher (88%–99% likelihood; p = 0.005 and carbohydrate oxidation was lower following PSE intake (85%–96% likelihood; p = 0.002. (4 Conclusion: PSE maintained a more stable blood glucose profile and higher fat oxidation during exercise which resulted in improved cycling performance compared with MDX. These results could be explained by the slower availability and the low-glycemic properties of Palatinose™ allowing a greater reliance on fat oxidation and sparing of glycogen during the initial endurance exercise.

  17. Study of axonal dystrophy. II Dystrophy and atrophy of the presynaptic boutons: a dual pathology.

    Science.gov (United States)

    Fujisawa, K; Shiraki, H

    1980-01-01

    In succession to the previous quantitative work, a qualitative study has been carried out on the nature of a dual pathology affecting presynaptic boutons in the posterior tract nuclei of ageing rats. Based on the morphology of dystrophic boutons in early stage, it is concluded that the initial and therefore essential characteristic of dystrophic process is an abnormal increase of normal axonal components within the presynaptic boutons, and that various abnormal substructures of spheroids hitherto reported in the literature are probably the results of their secondary metamorphosis. The dystrophic process within the posterior tract nuclei is a selective one, involving presynaptic boutons and preterminal axons only of the posterior tract fibres. Comparison of the frequency of early dystrophic boutons and of fully grown-up spheroids indicates that a small percentage of boutons deriving from posterior tract fibres become dystrophic and of these dystrophic boutons only a small percentage again continue to develop unto large spheroids, throughout lifespan of the animals. On the other hand, in search of a morphological counterpart for the age-related decrease of volume ratio of presynaptic boutons to the neuropil, some dubious atrophic changes were also found in presynaptic boutons, which could have been easily missed from observation if studied qualitatively alone. Accordingly, no less numerous boutons other than dystrophic ones are supposed to atrophy 'independently' and to disappear 'silently' during the same period. The dystrophic and the atrophic changes involve different boutons (of different or the same terminal axons) within the same gray matter. This dual pathology of boutons needs further elucidation of its neurocytopathological as well as neurobiological background in the future.

  18. A protein anomaly in erythrocyte membranes of patients with Duchenne muscular dystrophy

    Science.gov (United States)

    1983-01-01

    Raman spectroscopic comparisons of erythrocyte membranes from 20 patients with Duchenne muscular dystrophy and 8 age-matched controls indicate a prominent and consistent protein anomaly in the patient samples. This was apparent in the following: (a) CH-stretching signals from control membranes reveal a thermotropic transition at 15.6 degrees C, attributable to a protein/lipid phase that is lacking in dystrophic membranes. (b) CH-stretching signals from control membranes also show a protein transition at 39 degrees C [pH 7.4] that is shifted to 45 degrees in dystrophic membranes. (c) A reduction in pH to 5.7 shifts this transition from 39 degrees C to 7 degrees C in normal membranes and from 45 degrees C to 24 degrees C in dystrophic membranes. (d) The Amide I/Amide III regions indicate a significant proportion of beta- structured peptide in dystrophic but not normal membranes. (e) Analysis of tyrosine signals indicates greater polar exposure of tyrosine hydroxyl groups in dystrophic vs normal membranes. All of the differences between dystrophic and normal membranes are highly significant (P less than 0.001). PMID:6854213

  19. Case Report: Whole exome sequencing reveals a novel frameshift deletion mutation p.G2254fs in COL7A1 associated with autosomal recessive dystrophic epidermolysis bullosa [version 2; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Shamsudheen Karuthedath Vellarikkal

    2016-07-01

    Full Text Available Dystrophic epidermolysis bullosa simplex (DEB is a phenotypically diverse inherited skin fragility disorder. It is majorly manifested by appearance of epidermal bullae upon friction caused either by physical or environmental trauma. The phenotypic manifestations also include appearance of milia, scarring all over the body and nail dystrophy. DEB can be inherited in a recessive or dominant form and the recessive form of DEB (RDEB is more severe. In the present study, we identify a novel p.G2254fs mutation in COL7A1 gene causing a sporadic case of RDEB by whole exome sequencing (WES. Apart from adding a novel frameshift Collagen VII mutation to the repertoire of known mutations reported in the disease, to the best of our knowledge, this is the first report of a genetically characterized case of DEB from India.

  20. Case Report: Whole exome sequencing reveals a novel frameshift deletion mutation p.G2254fs in COL7A1 associated with autosomal recessive dystrophic epidermolysis bullosa [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Shamsudheen Karuthedath Vellarikkal

    2016-05-01

    Full Text Available Dystrophic epidermolysis bullosa simplex (DEB is a phenotypically diverse inherited skin fragility disorder. It is majorly manifested by appearance of epidermal bullae upon friction caused either by physical or environmental trauma. The phenotypic manifestations also include appearance of milia, scarring all over the body and nail dystrophy. DEB can be inherited in a recessive or dominant form and the recessive form of DEB (RDEB is more severe. In the present study, we identify a novel p.G2254fs mutation in COL7A1 gene causing a sporadic case of RDEB by whole exome sequencing (WES. Apart from adding a novel frameshift Collagen VII mutation to the repertoire of known mutations reported in the disease, to the best of our knowledge, this is the first report of a genetically characterized case of DEB from India.

  1. Disruption of ERBB2IP is not associated with dystrophic epidermolysis bullosa in both father and son carrying a balanced 5;13 translocation.

    Science.gov (United States)

    Stefanova, Margarita; Zemke, Katrin; Dimitrov, Boyan; Has, Christina; Kern, Johannes S; Bruckner-Tuderman, Leena; Kutsche, Kerstin

    2005-10-01

    Mutations in the type VII collagen gene (COL7A1) cause autosomal recessive and autosomal dominant inherited dystrophic epidermolysis bullosa (DEB). We report a family with three individuals who present blistering, scarring, hypo- and hyperpigmentation, and nail dystrophy suggestive for DEB. Whereas father and son carry a 5;13 translocation, the daughter shows a normal karyotype. Segregation analysis revealed that all affected family members inherited the same COL7A1 allele. Mutation analysis disclosed a heterozygous missense mutation, c.6227G > A (p.G2076D), in COL7A1 in all affected individuals. Delineation of the translocation breakpoints showed that the ERBB2IP (erbb2 interacting protein or Erbin) gene is disrupted in 5q13.1 and GPC6 in 13q32. GPC6 encodes glypican 6 belonging to a family of cell surface heparan sulfate proteoglycans. The binding partners of Erbin, BP230 (BPAG1) and the integrin beta4 subunit, both involved in hemidesmosome (HD) function, and the presence of Erbin in HD suggested that it plays a role in establishment and maintenance of cell-basement membrane adhesions. However, loss of function of one ERBB2IP copy or expression of a putative novel ERBB2IP fusion protein did not apparently modulate the DEB phenotype in both translocation patients. Nonetheless, one cannot yet exclude that ERBB2IP is a candidate for human blistering disorders such as epidermolysis bullosa.

  2. Serum Osteopontin as a Novel Biomarker for Muscle Regeneration in Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Kuraoka, Mutsuki; Kimura, En; Nagata, Tetsuya; Okada, Takashi; Aoki, Yoshitsugu; Tachimori, Hisateru; Yonemoto, Naohiro; Imamura, Michihiro; Takeda, Shin'ichi

    2016-05-01

    Duchenne muscular dystrophy is a lethal X-linked muscle disorder. We have already reported that osteopontin (OPN), an inflammatory cytokine and myogenic factor, is expressed in the early dystrophic phase in canine X-linked muscular dystrophy in Japan, a dystrophic dog model. To further explore the possibility of OPN as a new biomarker for disease activity in Duchenne muscular dystrophy, we monitored serum OPN levels in dystrophic and wild-type dogs at different ages and compared the levels to other serum markers, such as serum creatine kinase, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinase-1. Serum OPN levels in the dystrophic dogs were significantly elevated compared with those in wild-type dogs before and 1 hour after a cesarean section birth and at the age of 3 months. The serum OPN level was significantly correlated with the phenotypic severity of dystrophic dogs at the period corresponding to the onset of muscle weakness, whereas other serum markers including creatine kinase were not. Immunohistologically, OPN was up-regulated in infiltrating macrophages and developmental myosin heavy chain-positive regenerating muscle fibers in the dystrophic dogs, whereas serum OPN was highly elevated. OPN expression was also observed during the synergic muscle regeneration process induced by cardiotoxin injection. In conclusion, OPN is a promising biomarker for muscle regeneration in dystrophic dogs and can be applicable to boys with Duchenne muscular dystrophy. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. Chronic Co-species Housing Mice and Rats Increased the Competitiveness of Male Mice.

    Science.gov (United States)

    Liu, Ying-Juan; Li, Lai-Fu; Zhang, Yao-Hua; Guo, Hui-Fen; Xia, Min; Zhang, Meng-Wei; Jing, Xiao-Yuan; Zhang, Jing-Hua; Zhang, Jian-Xu

    2017-03-01

    Rats are predators of mice in nature. Nevertheless, it is a common practice to house mice and rats in a same room in some laboratories. In this study, we investigated the behavioral and physiological responsively of mice in long-term co-species housing conditions. Twenty-four male mice were randomly assigned to their original raising room (control) or a rat room (co-species-housed) for more than 6 weeks. In the open-field and light-dark box tests, the behaviors of the co-species-housed mice and controls were not different. In a 2-choice test of paired urine odors [rabbit urine (as a novel odor) vs. rat urine, cat urine (as a natural predator-scent) vs. rabbit urine, and cat urine vs. rat urine], the co-species-housed mice were more ready to investigate the rat urine odor compared with the controls and may have adapted to it. In an encounter test, the rat-room-exposed mice exhibited increased aggression levels, and their urines were more attractive to females. Correspondingly, the levels of major urinary proteins were increased in the co-species-housed mouse urine, along with some volatile pheromones. The serum testosterone levels were also enhanced in the co-species-housed mice, whereas the corticosterone levels were not different. The norepinephrine, dopamine, and 5-HT levels in the right hippocampus and striatum were not different between the 2. Our findings indicate that chronic co-species housing results in adaptation in male mice; furthermore, it appears that long-term rat-odor stimuli enhance the competitiveness of mice, which suggests that appropriate predator-odor stimuli may be important to the fitness of prey animals. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Bcl-2 expression during the development and degeneration of RCS rat retinae.

    Science.gov (United States)

    Sharma, R K

    2001-12-14

    In various hereditary retinal degenerations, including that in Royal College of Surgeons (RCS) rats, the photoreceptors ultimately die by apoptosis. Bcl-2 is one of the genes, which regulates apoptosis and is thought to promote survival of cells. This study has investigated the developmental expression of Bcl-2 in RCS rat, which is a well-studied animal model for hereditary retinal degeneration. An antibody against Bcl-2 was used for its immunohistochemical localization in dystrophic RCS rat retinae from postnatal (PN) days 4, 7, 13, 35, 45, 70, 202 and 14 months. Results were compared with Bcl-2 localization in congenic non-dystrophic rats from PN 4, 7, 13, 44, 202 and 14 months. Bcl-2 immunoreactivity in non-dystrophic retinae was already present in PN 4 retinae in the nerve fiber layer (presumably in the endfeet of immature Müller cells) and in the proximal parts of certain radially aligned neuroepithelial cells/immature Müller cell radial processes. With increasing age the immunoreactivity in relatively more mature Müller cell radial processes spread distally towards the outer retina and between PN 13 and 44 it reached the adult distribution. No cell bodies in the ganglion cell layer were found to be immunoreactive. Expression of Bcl-2 immunoreactivity in dystrophic RCS rat retinae closely resembled that of non-dystrophic retinae. No immunoreactivity was seen in photoreceptors or retinal pigment epithelium in dystrophic or non-dystrophic retinae. In conclusion, Bcl-2 expression is not altered, either in terms of its chronology or the cell type expressing it, during retinal degeneration in RCS rats.

  5. A field-deployable mobile molecular diagnostic system for malaria at the point of need.

    Science.gov (United States)

    Choi, Gihoon; Song, Daniel; Shrestha, Sony; Miao, Jun; Cui, Liwang; Guan, Weihua

    2016-11-01

    In response to the urgent need of a field-deployable and highly sensitive malaria diagnosis, we developed a standalone, "sample-in-answer-out" molecular diagnostic system (AnyMDx) to enable quantitative molecular analysis of blood-borne malaria in low resource areas. The system consists of a durable battery-powered analyzer and a disposable microfluidic compact disc loaded with reagents ready for use. A low power thermal module and a novel fluorescence-sensing module are integrated into the analyzer for real-time monitoring of loop-mediated isothermal nucleic acid amplification (LAMP) of target parasite DNA. With 10 μL of raw blood sample, the AnyMDx system automates the nucleic acid sample preparation and subsequent LAMP and real-time detection. Under laboratory conditions with whole-blood samples spiked with cultured Plasmodium falciparum, we achieved a detection limit of ∼0.6 parasite per μL, much lower than those for the conventional microscopy and rapid diagnostic tests (∼50-100 parasites per μL). The turnaround time from sample to answer is less than 40 minutes. The AnyMDx is user-friendly requiring minimal technological training. The analyzer and the disposable reagent compact discs are cost-effective, making AnyMDx a potential tool for malaria molecular diagnosis under field settings for malaria elimination.

  6. Zidovudine ameliorates pathology in the mouse model of Duchenne muscular dystrophy via P2RX7 purinoceptor antagonism.

    Science.gov (United States)

    Al-Khalidi, Rasha; Panicucci, Chiara; Cox, Paul; Chira, Natalia; Róg, Justyna; Young, Christopher N J; McGeehan, Rhiannon E; Ambati, Kameshwari; Ambati, Jayakrishna; Zabłocki, Krzysztof; Gazzerro, Elisabetta; Arkle, Stephen; Bruno, Claudio; Górecki, Dariusz C

    2018-04-11

    Duchenne muscular dystrophy (DMD) is the most common inherited muscle disorder that causes severe disability and death of young men. This disease is characterized by progressive muscle degeneration aggravated by sterile inflammation and is also associated with cognitive impairment and low bone density. Given that no current treatment can improve the long-term outcome, approaches with a strong translational potential are urgently needed. Duchenne muscular dystrophy (DMD) alters P2RX7 signaling in both muscle and inflammatory cells and inhibition of this receptor resulted in a significant attenuation of muscle and non-muscle symptoms in DMD mdx mouse model. As P2RX7 is an attractive target in a range of human diseases, specific antagonists have been developed. Yet, these will require lengthy safety testing in the pediatric population of Duchenne muscular dystrophy (DMD) patients. In contrast, Nucleoside Reverse Transcriptase Inhibitors (NRTIs) can act as P2RX7 antagonists and are drugs with an established safety record, including in children. We demonstrate here that AZT (Zidovudine) inhibits P2RX7 functions acting via the same allosteric site as other antagonists. Moreover, short-term AZT treatment at the peak of disease in DMD mdx mice attenuated the phenotype without any detectable side effects. Recovery was evident in the key parameters such as reduced sarcolemma permeability confirmed by lower serum creatine kinase levels and IgG influx into myofibres, decreased inflammatory cell numbers and inflammation markers in leg and heart muscles of treated mice. Moreover, this short-term therapy had some positive impact on muscle strength in vivo and no detrimental effect on mitochondria, which is the main side-effect of Nucleoside Reverse Transcriptase Inhibitors (NRTIs). Given these results, we postulate that AZT could be quickly re-purposed for the treatment of this highly debilitating and lethal disease. This approach is not constrained by causative DMD mutations and

  7. The MICE Online Systems

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The Muon Ionization Cooling Experiment (MICE) is designed to test transverse cooling of a muon beam, demonstrating an important step along the path toward creating future high intensity muon beam facilities. Protons in the ISIS synchrotron impact a titanium target, producing pions which decay into muons that propagate through the beam line to the MICE cooling channel. Along the beam line, particle identification (PID) detectors, scintillating fiber tracking detectors, and beam diagnostic tools identify and measure individual muons moving through the cooling channel. The MICE Online Systems encompass all tools; including hardware, software, and documentation, within the MLCR (MICE Local Control Room) that allow the experiment to efficiently record high quality data. Controls and Monitoring (C&M), Data Acquisition (DAQ), Online Monitoring and Reconstruction, Data Transfer, and Networking all fall under the Online Systems umbrella. C&M controls all MICE systems including the target, conventional an...

  8. Immunobiology of congenitally athymic-asplenic mice

    International Nuclear Information System (INIS)

    Gershwin, M.E.; Ahmed, A.; Ikeda, R.M.; Shifrine, M.; Wilson, F.

    1978-01-01

    A study has been made of congenitally athymic-asplenic mice obtained by the mating of nude by hereditarily asplenic (Dh/+) mice. The mice survived for up to 9 months, under specific pathogen-free conditions, with no evidence for increased risk of spontaneous neoplasia. Although lymphocyte surface markers and sera immunoglobulin levels of athymic-asplenic mice were similar to those of their nude and asplenic littermates, there were a number of major immunologic differences. The athymic-asplenic mice appeared more immunologically compromised than nude mice. There was an elevated rate of growth and a lower inoculated cell threshold needed for successful transplantation of a human malignant melanoma. There was no evidence for auto-antibody production in mice up to 9 months of age. Congenitally athymic-asplenic mice can be used for a variety of studies in which other immunologically deprived mouse mutants are desired. (author)

  9. Voluntary exercise inhibits intestinal tumorigenesis in ApcMin/+ mice and azoxymethane/dextran sulfate sodium-treated mice

    International Nuclear Information System (INIS)

    Ju, Jihyeung; Nolan, Bonnie; Cheh, Michelle; Bose, Mousumi; Lin, Yong; Wagner, George C; Yang, Chung S

    2008-01-01

    Epidemiological studies suggest that physical activity reduces the risk of colon cancer in humans. Results from animal studies, however, are inconclusive. The present study investigated the effects of voluntary exercise on intestinal tumor formation in two different animal models, Apc Min/+ mice and azoxymethane (AOM)/dextran sulfate sodium (DSS)-treated mice. In Experiments 1 and 2, five-week old female Apc Min/+ mice were either housed in regular cages or cages equipped with a running wheel for 6 weeks (for mice maintained on the AIN93G diet; Experiment 1) or 9 weeks (for mice on a high-fat diet; Experiment 2). In Experiment 3, male CF-1 mice at 6 weeks of age were given a dose of AOM (10 mg/kg body weight, i.p.) and, 12 days later, 1.5% DSS in drinking fluid for 1 week. The mice were then maintained on a high-fat diet and housed in regular cages or cages equipped with a running wheel for 16 weeks. In the Apc Min/+ mice maintained on either the AIN93G or the high-fat diet, voluntary exercise decreased the number of small intestinal tumors. In the AOM/DSS-treated mice maintained on a high-fat diet, voluntary exercise also decreased the number of colon tumors. In Apc Min/+ mice, voluntary exercise decreased the ratio of serum insulin like growth factor (IGF)-1 to IGF binding protein (BP)-3 levels. It also decreased prostaglandin E 2 and nuclear β-catenin levels, but increased E-cadherin levels in the tumors. These results indicate hat voluntary exercise inhibited intestinal tumorigenesis in Apc Min/+ mice and AOM/DSS-treated mice, and the inhibitory effect is associated with decreased IGF-1/IGFBP-3 ratio, aberrant β-catenin signaling, and arachidonic acid metabolism

  10. Reduced immune responses in chimeric mice engrafted with bone marrow cells from mice with airways inflammation.

    Science.gov (United States)

    Scott, Naomi M; Ng, Royce L X; McGonigle, Terence A; Gorman, Shelley; Hart, Prue H

    2015-11-01

    During respiratory inflammation, it is generally assumed that dendritic cells differentiating from the bone marrow are immunogenic rather than immunoregulatory. Using chimeric mice, the outcomes of airways inflammation on bone marrow progenitor cells were studied. Immune responses were analyzed in chimeric mice engrafted for >16 weeks with bone marrow cells from mice with experimental allergic airways disease (EAAD). Responses to sensitization and challenge with the allergen causing inflammation in the bone marrow-donor mice were significantly reduced in the chimeric mice engrafted with bone marrow cells from mice with EAAD (EAAD-chimeric). Responses to intranasal LPS and topical fluorescein isothiocyanate (non-specific challenges) were significantly attenuated. Fewer activated dendritic cells from the airways and skin of the EAAD-chimeric mice could be tracked to the draining lymph nodes, and may contribute to the significantly reduced antigen/chemical-induced hypertrophy in the draining nodes, and the reduced immune responses to sensitizing allergens. Dendritic cells differentiating in vitro from the bone marrow of >16 weeks reconstituted EAAD-chimeric mice retained an ability to poorly prime immune responses when transferred into naïve mice. Dendritic cells developing from bone marrow progenitors during airways inflammation are altered such that daughter cells have reduced antigen priming capabilities.

  11. Responses of Male C57BL/6N Mice to Observing the Euthanasia of Other Mice

    Science.gov (United States)

    Boivin, Gregory P; Bottomley, Michael A; Grobe, Nadja

    2016-01-01

    The AVMA Panel on Euthanasia recommends that sensitive animals should not be present during the euthanasia of others, especially of their own species, but does not provide guidelines on how to identify a sensitive species. To determine if mice are a sensitive species we reviewed literature on empathy in mice, and measured the cardiovascular and activity response of mice observing euthanasia of conspecifics. We studied male 16-wk-old C57BL/6N mice and found no increase in cardiovascular parameters or activity in the response of the mice to observing CO2 euthanasia. Mice observing decapitation had an increase in all values, but this was paralleled by a similar increase during mock decapitations in which no animals were handled or euthanized. We conclude that CO2 euthanasia of mice does not have an impact on other mice in the room, and that euthanasia by decapitation likely only has an effect due to the noise of the guillotine. We support the conceptual idea that mice are both a sensitive species and display empathy, but under the controlled circumstances of the euthanasia procedures used in this study there was no signaling of stress to witnessing inhabitants in the room. PMID:27423146

  12. Mexiletine for Symptoms and Signs of Myotonia in Non-Dystrophic Myotonia: A Randomized Controlled Trial

    Science.gov (United States)

    Statland, Jeffrey M; Bundy, Brian N; Wang, Yunxia; Rayan, Dipa Raja; Trivedi, Jaya R; Sansone, Valeria A; Salajegheh, Mohammad K; Venance, Shannon L.; Ciafaloni, Emma; Matthews, Emma; Meola, Giovanni; Herbelin, Laura; Griggs, Robert C; Barohn, Richard J; Hanna, Michael G

    2012-01-01

    Context Non-dystrophic myotonias (NDM) are rare diseases caused by mutations in skeletal muscle ion channels. Patients experience delayed muscle relaxation causing functionally-limiting stiffness and pain. Mexiletine-induced sodium channel blockade reduced myotonia in case studies and one single blind trial. As is common in rare diseases, larger studies of safety and efficacy have not previously been considered feasible. Objective To determine the effects of mexiletine for symptoms and signs of myotonia in NDM. Design, Setting, and Participation Fifty-nine patients with NDM participated in a randomized, double-blind, placebo-controlled two-period crossover study conducted between December 23, 2008 and March 30, 2011 at 7 neuromuscular referral centers in 4 countries, as part of the NIH-funded Rare Disease Clinical Research Network. Intervention Oral 200 mg mexiletine or placebo capsules three times daily for 4 weeks, followed by the opposite intervention for 4 weeks, with 1 week wash-out between periods. Main Outcome Measures Patient-reported stiffness recorded on an interactive voice response diary (IVR) was the primary endpoint (1 ‘minimal’ to 9 ‘worst ever experienced’). Secondary endpoints included IVR-reported changes in pain, weakness, and tiredness, clinical myotonia assessment, quantitative grip myotonia, Individualized Neuromuscular Quality of Life (INQoL, percent of maximal detrimental impact), SF-36, electrophysiological exercise testing, and needle EMG. Results Mexiletine significantly improved patient-reported stiffness on the IVR. Because of a statistically significant interaction between treatment and period for this outcome, primary endpoint is presented by period (period 1 means were mexiletine 2.53 versus placebo 4.21, difference −1.68, 95% Confidence Interval [CI] −2.66, −0.706, P<0.001; period 2 means were mexiletine 1.60 versus placebo 5.27, difference −3.68, 95% CI −3.85, −0.139, P=0.04). Mexiletine improved the INQoL QOL

  13. Cassava is not a goitrogen in mice

    International Nuclear Information System (INIS)

    Hershman, J.M.; Pekary, A.E.; Sugawara, M.; Adler, M.; Turner, L.; Demetriou, J.A.; Hershman, J.D.

    1985-01-01

    To examine the effect of cassava on the thyroid function of mice, the authors fed fresh cassava root to mice and compared this diet with low iodine diet and Purina. Cassava provided a low iodine intake and increased urine thiocyanate excretion and serum thiocyanate levels. Mice on cassava lost weight. The thyroid glands of mice on cassava were not enlarged, even when normalized for body weight. The 4- and 24-hr thyroid uptakes of mice on cassava were similar to those of mice on low iodine diets. Protein-bound [ 125 I]iodine at 24 hr was high in mice on either the cassava or low iodine diets. The thyroid iodide trap (T/M) was similar in mice on cassava and low iodine diets. When thiocyanate was added in vitro to the incubation medium, T/M was reduced in all groups of mice; under these conditions, thiocyanate caused a dose-related inhibition of T/M. The serum thyroxine (T4) and triiodothyronine (T3) concentrations of mice on cassava were reduced compared with mice on Purina diet. Thyroid T4 and T3 contents of mice on cassava were relatively low compared with mice on Purina diet. Hepatic T3 content and T4 5'-monodeiodination in liver homogenates were reduced in mice on cassava compared with other groups. The data show that cassava does not cause goiter in mice. The thiocyanate formed from ingestation of cassava is insufficient to inhibit thyroid iodide transport or organification of iodide. The cassava diet leads to rapid turnover of hormonal iodine because it is a low iodine diet. It also impairs 5'-monodeiodination of T4 which may be related to nutritional deficiency. These data in mice do not support the concept that cassava per se has goitrogenic action in man

  14. Dwarf Mice and Aging.

    Science.gov (United States)

    Masternak, Michal M; Darcy, Justin; Victoria, Berta; Bartke, Andrzej

    2018-01-01

    Dwarf mice have been studied for many decades, however, the focus of these studies shifted in 1996 when it was shown by Brown-Borg and her coworkers that Ames dwarf (Prop1 df ) mice are exceptionally long-lived. Since then, Snell dwarf (Pit1 dw ) and growth hormone receptor knockout (GHR-KO, a.k.a. Laron dwarf) mice were also shown to be exceptionally long-lived, presumably due to their growth hormone (GH)-deficiency or -resistance, respectively. What is of equal importance in these dwarf mice is their extended health span, that is, these animals have a longer period of life lived free of frailty and age-related diseases. This review article focuses on recent studies conducted in these dwarf mice, which concerned brown and white adipose tissue biology, microRNA (miRNA) profiling, as well as early-life dietary and hormonal interventions. Results of these studies identify novel mechanisms linking reduced GH action with extensions of both life span and health span. Copyright © 2017. Published by Elsevier Inc.

  15. Cannabinoid Receptor 2 Participates in Amyloid-β Processing in a Mouse Model of Alzheimer's Disease but Plays a Minor Role in the Therapeutic Properties of a Cannabis-Based Medicine.

    Science.gov (United States)

    Aso, Ester; Andrés-Benito, Pol; Carmona, Margarita; Maldonado, Rafael; Ferrer, Isidre

    2016-01-01

    The endogenous cannabinoid system represents a promising therapeutic target to modify neurodegenerative pathways linked to Alzheimer's disease (AD). The aim of the present study was to evaluate the specific contribution of CB2 receptor to the progression of AD-like pathology and its role in the positive effect of a cannabis-based medicine (1:1 combination of Δ9-tetrahidrocannabinol and cannabidiol) previously demonstrated to be beneficial in the AβPP/PS1 transgenic model of the disease. A new mouse strain was generated by crossing AβPP/PS1 transgenic mice with CB2 knockout mice. Results show that lack of CB2 exacerbates cortical Aβ deposition and increases the levels of soluble Aβ40. However, CB2 receptor deficiency does not affect the viability of AβPP/PS1 mice, does not accelerate their memory impairment, does not modify tau hyperphosphorylation in dystrophic neurites associated to Aβ plaques, and does not attenuate the positive cognitive effect induced by the cannabis-based medicine in these animals. These findings suggest a minor role for the CB2 receptor in the therapeutic effect of the cannabis-based medicine in AβPP/PS1 mice, but also constitute evidence of a link between CB2 receptor and Aβ processing.

  16. Cardiomyopathy in Patients With Hereditary Bullous Epidermolysis.

    Science.gov (United States)

    Batalla, A; Vicente, A; Bartrons, J; Prada, F; Fortuny, C; González-Enseñat, M A

    In recent decades, an association has been reported between epidermolysis bullosa (EB) and dilated cardiomyopathy (DC). DC is typically in an advanced phase when detected, leading to a poorer prognosis. Our objective was to determine the prevalence of DC in patients with EB seen in Hospital San Joan de Déu in Barcelona, Spain, between May 1986 and April 2015. This was a descriptive, cross-sectional chart-review study in which we recorded the type and main subtypes of EB and the presence or absence of DC. Fifty-seven patients with EB were found, 19 with EB simplex, 10 with junctional EB, 27 with dystrophic EB (14 dominant dystrophic and 13 recessive dystrophic), and just 1 with Kindler syndrome. DC was detected in only 2 patients with recessive dystrophic EB. Twenty-three patients had presented factors that could have had a causal relationship with the potential onset of DC. DC is a possible complication of EB, particularly in recessive dystrophic EB. Periodic follow-up should be performed to make an early diagnosis and start treatment. Copyright © 2017 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Analysis of Pathogenesis of Autoimmune Insulitis in NOD Mice: Adoptive Transfer Experiments of Insulitis in ILI and NOD Nude Mice

    OpenAIRE

    Nakamura, Moritaka; Nishimura, Masahiko; Koide, Yukio; Takato, O.Yoshida

    2003-01-01

    In an effort to study the pathophysiological events in the development of insulitis in NOD mice, we have developed ILI- and NOD-nu/nu mice. ILI mice are a nondiabetic inbred strain but are derived from the same Jcl:ICR mouse as NOD mice and share the same H-2 allotype with NOD mice. Splenocytes and CD4+ cells from diabetic NOD mice appeared to transfer insulitis to ILI-nu/nu mice, suggesting that ILI mice already express autoantigen(s) responsible for insulitis. But reciprocal thymic grafts f...

  18. Dystrophin Expressing Chimeric (DEC) Human Cells Provide a Potential Therapy for Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Siemionow, Maria; Cwykiel, Joanna; Heydemann, Ahlke; Garcia, Jesus; Marchese, Enza; Siemionow, Krzysztof; Szilagyi, Erzsebet

    2018-06-01

    Duchenne Muscular Dystrophy (DMD) is a progressive and lethal disease caused by mutations of the dystrophin gene. Currently no cure exists. Stem cell therapies targeting DMD are challenged by limited engraftment and rejection despite the use of immunosuppression. There is an urgent need to introduce new stem cell-based therapies that exhibit low allogenic profiles and improved cell engraftment. In this proof-of-concept study, we develop and test a new human stem cell-based approach to increase engraftment, limit rejection, and restore dystrophin expression in the mdx/scid mouse model of DMD. We introduce two Dystrophin Expressing Chimeric (DEC) cell lines created by ex vivo fusion of human myoblasts (MB) derived from two normal donors (MB N1 /MB N2 ), and normal and DMD donors (MB N /MB DMD ). The efficacy of fusion was confirmed by flow cytometry and confocal microscopy based on donor cell fluorescent labeling (PKH26/PKH67). In vitro, DEC displayed phenotype and genotype of donor parent cells, expressed dystrophin, and maintained proliferation and myogenic differentiation. In vivo, local delivery of both DEC lines (0.5 × 10 6 ) restored dystrophin expression (17.27%±8.05-MB N1 /MB N2 and 23.79%±3.82-MB N /MB DMD ) which correlated with significant improvement of muscle force, contraction and tolerance to fatigue at 90 days after DEC transplant to the gastrocnemius muscles (GM) of dystrophin-deficient mdx/scid mice. This study establishes DEC as a potential therapy for DMD and other types of muscular dystrophies.

  19. The Mice Drawer System (MDS experiment and the space endurance record-breaking mice.

    Directory of Open Access Journals (Sweden)

    Ranieri Cancedda

    Full Text Available The Italian Space Agency, in line with its scientific strategies and the National Utilization Plan for the International Space Station (ISS, contracted Thales Alenia Space Italia to design and build a spaceflight payload for rodent research on ISS: the Mice Drawer System (MDS. The payload, to be integrated inside the Space Shuttle middeck during transportation and inside the Express Rack in the ISS during experiment execution, was designed to function autonomously for more than 3 months and to involve crew only for maintenance activities. In its first mission, three wild type (Wt and three transgenic male mice over-expressing pleiotrophin under the control of a bone-specific promoter (PTN-Tg were housed in the MDS. At the time of launch, animals were 2-months old. MDS reached the ISS on board of Shuttle Discovery Flight 17A/STS-128 on August 28(th, 2009. MDS returned to Earth on November 27(th, 2009 with Shuttle Atlantis Flight ULF3/STS-129 after 91 days, performing the longest permanence of mice in space. Unfortunately, during the MDS mission, one PTN-Tg and two Wt mice died due to health status or payload-related reasons. The remaining mice showed a normal behavior throughout the experiment and appeared in excellent health conditions at landing. During the experiment, the mice health conditions and their water and food consumption were daily checked. Upon landing mice were sacrificed, blood parameters measured and tissues dissected for subsequent analysis. To obtain as much information as possible on microgravity-induced tissue modifications, we organized a Tissue Sharing Program: 20 research groups from 6 countries participated. In order to distinguish between possible effects of the MDS housing conditions and effects due to the near-zero gravity environment, a ground replica of the flight experiment was performed at the University of Genova. Control tissues were collected also from mice maintained on Earth in standard vivarium cages.

  20. The Mice Drawer System (MDS) experiment and the space endurance record-breaking mice.

    Science.gov (United States)

    Cancedda, Ranieri; Liu, Yi; Ruggiu, Alessandra; Tavella, Sara; Biticchi, Roberta; Santucci, Daniela; Schwartz, Silvia; Ciparelli, Paolo; Falcetti, Giancarlo; Tenconi, Chiara; Cotronei, Vittorio; Pignataro, Salvatore

    2012-01-01

    The Italian Space Agency, in line with its scientific strategies and the National Utilization Plan for the International Space Station (ISS), contracted Thales Alenia Space Italia to design and build a spaceflight payload for rodent research on ISS: the Mice Drawer System (MDS). The payload, to be integrated inside the Space Shuttle middeck during transportation and inside the Express Rack in the ISS during experiment execution, was designed to function autonomously for more than 3 months and to involve crew only for maintenance activities. In its first mission, three wild type (Wt) and three transgenic male mice over-expressing pleiotrophin under the control of a bone-specific promoter (PTN-Tg) were housed in the MDS. At the time of launch, animals were 2-months old. MDS reached the ISS on board of Shuttle Discovery Flight 17A/STS-128 on August 28(th), 2009. MDS returned to Earth on November 27(th), 2009 with Shuttle Atlantis Flight ULF3/STS-129 after 91 days, performing the longest permanence of mice in space. Unfortunately, during the MDS mission, one PTN-Tg and two Wt mice died due to health status or payload-related reasons. The remaining mice showed a normal behavior throughout the experiment and appeared in excellent health conditions at landing. During the experiment, the mice health conditions and their water and food consumption were daily checked. Upon landing mice were sacrificed, blood parameters measured and tissues dissected for subsequent analysis. To obtain as much information as possible on microgravity-induced tissue modifications, we organized a Tissue Sharing Program: 20 research groups from 6 countries participated. In order to distinguish between possible effects of the MDS housing conditions and effects due to the near-zero gravity environment, a ground replica of the flight experiment was performed at the University of Genova. Control tissues were collected also from mice maintained on Earth in standard vivarium cages.

  1. Of mice and (Viking?) men: phylogeography of British and Irish house mice.

    Science.gov (United States)

    Searle, Jeremy B; Jones, Catherine S; Gündüz, Islam; Scascitelli, Moira; Jones, Eleanor P; Herman, Jeremy S; Rambau, R Victor; Noble, Leslie R; Berry, R J; Giménez, Mabel D; Jóhannesdóttir, Fríoa

    2009-01-22

    The west European subspecies of house mouse (Mus musculus domesticus) has gained much of its current widespread distribution through commensalism with humans. This means that the phylogeography of M. m. domesticus should reflect patterns of human movements. We studied restriction fragment length polymorphism (RFLP) and DNA sequence variations in mouse mitochondrial (mt) DNA throughout the British Isles (328 mice from 105 localities, including previously published data). There is a major mtDNA lineage revealed by both RFLP and sequence analyses, which is restricted to the northern and western peripheries of the British Isles, and also occurs in Norway. This distribution of the 'Orkney' lineage fits well with the sphere of influence of the Norwegian Vikings and was probably generated through inadvertent transport by them. To form viable populations, house mice would have required large human settlements such as the Norwegian Vikings founded. The other parts of the British Isles (essentially most of mainland Britain) are characterized by house mice with different mtDNA sequences, some of which are also found in Germany, and which probably reflect both Iron Age movements of people and mice and earlier development of large human settlements. MtDNA studies on house mice have the potential to reveal novel aspects of human history.

  2. Effects of social isolation, re-socialization and age on cognitive and aggressive behaviors of Kunming mice and BALB/c mice.

    Science.gov (United States)

    An, Dong; Chen, Wei; Yu, De-Qin; Wang, Shi-Wei; Yu, Wei-Zhi; Xu, Hong; Wang, Dong-Mei; Zhao, Dan; Sun, Yi-Ping; Wu, Jun-Cheng; Tang, Yi-Yuan; Yin, Sheng-Ming

    2017-05-01

    Both Kunming (KM) mice and BALB/c mice have been widely used as rodent models to investigate stress-associated mental diseases. However, little is known about the different behaviors of KM mice and BALB/c mice after social isolation, particularly cognitive and aggressive behaviors. In this study, the behaviors of KM and BALB/c mice isolated for 2, 4 and 8 weeks and age-matched controls were evaluated using object recognition, object location and resident-intruder tests. The recovery of behavioral deficits by re-socialization was also examined for the isolated mice in adolescence. Our study showed that isolation for 2, 4 and 8 weeks led to cognitive deficits and increased aggressiveness for both KM and BALB/c mice. An important finding is that re-socialization could completely recover spatial/non-spatial cognitive deficits resulted from social isolation for both KM and BALB/c mice. In addition, age only impacted aggressiveness of KM mice. Moreover, isolation duration showed different impacts on cognitive and aggressive behaviors for both KM and BALB/c mice. Furthermore, BALB/c mice showed weak spatial/non-spatial memory and low aggressiveness when they were at the same age and isolation duration, compared to KM mice. In conclusion, KM mice and BALB/c mice behaved characteristically under physiology and isolation conditions. © 2016 Japanese Society of Animal Science.

  3. Postnatal hematopoiesis and gut microbiota in NOD mice deviate from C57BL/6 mice

    DEFF Research Database (Denmark)

    Damlund, Dina Silke Malling; Metzdorff, Stine Broeng; Hasselby, Jane Preuss

    2016-01-01

    , a distinct splenic cell profile high in a granulocytic phenotype was evident in the neonatal NOD mice whereas neonatal C57BL/6 mice showed a profile rich in monocytes. Neonatal expression of Reg3g and Muc2 in the gut was deviating in NOD mice and coincided with fewer bacteria attaching to the Mucosal surface...

  4. Diacylglycerol lipase a knockout mice demonstrate metabolic and behavioral phenotypes similar to those of cannabinoid receptor 1 knockout mice

    Directory of Open Access Journals (Sweden)

    David R Powell

    2015-06-01

    Full Text Available After creating >4650 knockouts (KOs of independent mouse genes, we screened them by high-throughput phenotyping and found that cannabinoid receptor 1 (Cnr1 KO mice had the same lean phenotype published by others. We asked if our KOs of DAG lipase a or b (Dagla or Daglb, which catalyze biosynthesis of the endocannabinoid (EC 2-Arachidonoylglycerol (2-AG, or Napepld, which catalyzes biosynthesis of the EC anandamide, shared the lean phenotype of Cnr1 KO mice. We found that Dagla KO mice, but not Daglb or Napepld KO mice, were among the leanest of 3651 chow-fed KO lines screened. In confirmatory studies, chow- or high fat diet-fed Dagla and Cnr1 KO mice were leaner than wild type (WT littermates; when data from multiple cohorts of adult mice were combined, body fat was 47% and 45% lower in Dagla and Cnr1 KO mice, respectively, relative to WT values. In contrast, neither Daglb nor Napepld KO mice were lean. Weanling Dagla KO mice ate less than WT mice and had body weight similar to pair-fed WT mice, and adult Dagla KO mice had normal activity and VO2 levels, similar to Cnr1 KO mice. Our Dagla and Cnr1 KO mice also had low fasting insulin, triglyceride and total cholesterol levels, and after a glucose challenge had normal glucose but very low insulin levels. Dagla and Cnr1 KO mice also showed similar responses to a battery of behavioral tests. These data suggest: 1 the lean phenotype of young Dagla and Cnr1 KO mice is mainly due to hypophagia; 2 in pathways where ECs signal through Cnr1 to regulate food intake and other metabolic and behavioral phenotypes observed in Cnr1 KO mice, Dagla alone provides the 2-AG that serves as the EC signal; and 3 small molecule Dagla inhibitors with a pharmacokinetic profile similar to that of Cnr1 inverse agonists are likely to mirror the ability of these Cnr1 inverse agonists to lower body weight and improve glycemic control in obese patients with type 2 diabetes, but may also induce undesirable neuropsychiatric

  5. Of mice and men

    CERN Multimedia

    1973-01-01

    At the end of March , sixty mice were irradiated at the synchro-cyclotron in the course of an experimental programme studying radiation effects on mice and plants (Vicia faba bean roots) being carried out by the CERN Health Physics Group.

  6. Changes in the pharmacokinetics of digoxin in polyuria in streptozotocin-induced diabetic mice and lithium carbonate-treated mice.

    Science.gov (United States)

    Ikarashi, Nobutomo; Kagami, Mai; Kobayashi, Yasushi; Ishii, Makoto; Toda, Takahiro; Ochiai, Wataru; Sugiyama, Kiyoshi

    2011-06-01

    In humans, digoxin is mainly eliminated through the kidneys unchanged, and renal clearance represents approximately 70% of the total clearance. In this study, we used the mouse models to examine digoxin pharmacokinetics in polyuria induced by diabetes mellitus and lithium carbonate (Li(2)CO(3)) administration, including mechanistic evaluation of the contribution of glomerular filtration, tubular secretion, and tubular reabsorption. After digoxin administration to streptozotocin (STZ)-induced diabetic mice, digoxin CL/F increased to approximately 2.2 times that in normal mice. After treatment with Li(2)CO(3) (0.2%) for 10 days, the CL/F increased approximately 1.1 times for normal mice and 1.6 times for STZ mice. Creatinine clearance (CLcr) and the renal mRNA expression levels of mdr1a did not differ significantly between the normal, STZ, and Li(2)CO(3)-treated mice. The urine volume of STZ mice was approximately 26 mL/day, 22 times that of normal mice. The urine volume of Li(2)CO(3)-treated mice increased approximately 7.3 times for normal mice and 2.3 times for STZ mice. These results suggest that the therapeutic effect of digoxin may be significantly reduced in the presence of polyuria either induced by diabetes mellitus or manifested as an adverse effect of Li(2)CO(3) in diabetic patients, along with increased urine volume.

  7. Outbred CD1 mice are as suitable as inbred C57BL/6J mice in performing social tasks.

    Science.gov (United States)

    Hsieh, Lawrence S; Wen, John H; Miyares, Laura; Lombroso, Paul J; Bordey, Angélique

    2017-01-10

    Inbred mouse strains have been used preferentially for behavioral testing over outbred counterparts, even though outbred mice reflect the genetic diversity in the human population better. Here, we compare the sociability of widely available outbred CD1 mice with the commonly used inbred C57BL/6J (C57) mice in the one-chamber social interaction test and the three-chamber sociability test. In the one-chamber task, intra-strain pairs of juvenile, non-littermate, male CD1 or C57 mice display a series of social and aggressive behaviors. While CD1 and C57 pairs spend equal amount of time socializing, CD1 pairs spend significantly more time engaged in aggressive behaviors than C57 mice. In the three-chamber task, sociability of C57 mice was less dependent on acclimation paradigms than CD1 mice. Following acclimation to all three chambers, both groups of age-matched male mice spent more time in the chamber containing a stranger mouse than in the empty chamber, suggesting that CD1 mice are sociable like C57 mice. However, the observed power suggests that it is easier to achieve statistical significance with C57 than CD1 mice. Because the stranger mouse could be considered as a novel object, we assessed for a novelty effect by adding an object. CD1 mice spend more time in the chamber with a stranger mouse than that a novel object, suggesting that their preference is social in nature. Thus, outbred CD1 mice are as appropriate as inbred C57 mice for studying social behavior using either the single or the three-chamber test using a specific acclimation paradigm. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Zinc metabolism in genetically obese mice

    International Nuclear Information System (INIS)

    Kennedy, M.L.; Failla, M.L.

    1986-01-01

    Recent reports indicate that the concentrations and total amounts of several essential trace metals in various tissues of genetically obese rodents differ markedly from lean controls. In the present studies the absorption, retention and tissue distribution of zinc was compared in obese (ob/ob) and lean (+/?) C57BL/6J mice. When administered 0.1 and 1 umole 65 Zn by stomach tube and killed after 4 h, fasted 10 week old obese mice had 2.7 and 2.2 times more radioactivity in their carcasses, respectively, than age-matched lean mice. Higher levels of 65 Zn were also present in the intestinal mucosa of obese mice. To eliminate possible differences in the effects of fasting and gastric emptying rates between the phenotypes, zinc absorption and retention were determined according to the method of Heth and Hoekstra. Analysis of data revealed that obese and lean mice absorbed 43 and 18% of the oral dose, respectively. Also, the rate of 65 Zn excretion between 2 and 6 days post-treatment was similar for obese and lean mice. After 6 days obese mice had significantly lower levels of radioisotope in skin, muscle plus bone, spleen and testes and higher levels of 65 Zn in liver, small intestine and adipose tissue compared to tissues from lean mice. These results demonstrate increased absorption, altered tissue distribution and similar excretion of zinc in ob/ob mice

  9. Dystrophin deficiency leads to disturbance of LAMP1-vesicle-associated protein secretion

    DEFF Research Database (Denmark)

    Duguez, S.; Duddy, W.; Johnston, H.

    2013-01-01

    Duchenne muscular dystrophy results from loss of the protein dystrophin, which links the intracellular cytoskeletal network with the extracellular matrix, but deficiency in this function does not fully explain the onset or progression of the disease. While some intracellular events involved...... in the degeneration of dystrophin-deficient muscle fibers have been well characterized, changes in their secretory profile are undescribed. To analyze the secretome profile of mdx myotubes independently of myonecrosis, we labeled the proteins of mdx and wild-type myotubes with stable isotope-labeled amino acids...

  10. Generation of Novel Chimeric Mice with Humanized Livers by Using Hemizygous cDNA-uPA/SCID Mice.

    Directory of Open Access Journals (Sweden)

    Chise Tateno

    Full Text Available We have used homozygous albumin enhancer/promoter-driven urokinase-type plasminogen activator/severe combined immunodeficient (uPA/SCID mice as hosts for chimeric mice with humanized livers. However, uPA/SCID mice show four disadvantages: the human hepatocytes (h-heps replacement index in mouse liver is decreased due to deletion of uPA transgene by homologous recombination, kidney disorders are likely to develop, body size is small, and hemizygotes cannot be used as hosts as more frequent homologous recombination than homozygotes. To solve these disadvantages, we have established a novel host strain that has a transgene containing albumin promoter/enhancer and urokinase-type plasminogen activator cDNA and has a SCID background (cDNA-uPA/SCID. We applied the embryonic stem cell technique to simultaneously generate a number of transgenic lines, and found the line with the most appropriate levels of uPA expression-not detrimental but with a sufficiently damaged liver. We transplanted h-heps into homozygous and hemizygous cDNA-uPA/SCID mice via the spleen, and monitored their human albumin (h-alb levels and body weight. Blood h-alb levels and body weight gradually increased in the hemizygous cDNA-uPA/SCID mice and were maintained until they were approximately 30 weeks old. By contrast, blood h-alb levels and body weight in uPA/SCID chimeric mice decreased from 16 weeks of age onwards. A similar decrease in body weight was observed in the homozygous cDNA-uPA/SCID genotype, but h-alb levels were maintained until they were approximately 30 weeks old. Microarray analyses revealed identical h-heps gene expression profiles in homozygous and hemizygous cDNA-uPA/SCID mice were identical to that observed in the uPA/SCID mice. Furthermore, like uPA/SCID chimeric mice, homozygous and hemizygous cDNA-uPA/SCID chimeric mice were successfully infected with hepatitis B virus and C virus. These results indicate that hemizygous cDNA-uPA/SCID mice may be novel and

  11. Generation of Novel Chimeric Mice with Humanized Livers by Using Hemizygous cDNA-uPA/SCID Mice.

    Science.gov (United States)

    Tateno, Chise; Kawase, Yosuke; Tobita, Yoshimi; Hamamura, Satoko; Ohshita, Hiroki; Yokomichi, Hiroshi; Sanada, Harumi; Kakuni, Masakazu; Shiota, Akira; Kojima, Yuha; Ishida, Yuji; Shitara, Hiroshi; Wada, Naoko A; Tateishi, Hiromi; Sudoh, Masayuki; Nagatsuka, Shin-Ichiro; Jishage, Kou-Ichi; Kohara, Michinori

    2015-01-01

    We have used homozygous albumin enhancer/promoter-driven urokinase-type plasminogen activator/severe combined immunodeficient (uPA/SCID) mice as hosts for chimeric mice with humanized livers. However, uPA/SCID mice show four disadvantages: the human hepatocytes (h-heps) replacement index in mouse liver is decreased due to deletion of uPA transgene by homologous recombination, kidney disorders are likely to develop, body size is small, and hemizygotes cannot be used as hosts as more frequent homologous recombination than homozygotes. To solve these disadvantages, we have established a novel host strain that has a transgene containing albumin promoter/enhancer and urokinase-type plasminogen activator cDNA and has a SCID background (cDNA-uPA/SCID). We applied the embryonic stem cell technique to simultaneously generate a number of transgenic lines, and found the line with the most appropriate levels of uPA expression-not detrimental but with a sufficiently damaged liver. We transplanted h-heps into homozygous and hemizygous cDNA-uPA/SCID mice via the spleen, and monitored their human albumin (h-alb) levels and body weight. Blood h-alb levels and body weight gradually increased in the hemizygous cDNA-uPA/SCID mice and were maintained until they were approximately 30 weeks old. By contrast, blood h-alb levels and body weight in uPA/SCID chimeric mice decreased from 16 weeks of age onwards. A similar decrease in body weight was observed in the homozygous cDNA-uPA/SCID genotype, but h-alb levels were maintained until they were approximately 30 weeks old. Microarray analyses revealed identical h-heps gene expression profiles in homozygous and hemizygous cDNA-uPA/SCID mice were identical to that observed in the uPA/SCID mice. Furthermore, like uPA/SCID chimeric mice, homozygous and hemizygous cDNA-uPA/SCID chimeric mice were successfully infected with hepatitis B virus and C virus. These results indicate that hemizygous cDNA-uPA/SCID mice may be novel and useful hosts for

  12. Skin mites in mice (Mus musculus): high prevalence of Myobia sp. (Acari, Arachnida) in Robertsonian mice.

    Science.gov (United States)

    Sastre, Natalia; Calvete, Oriol; Martínez-Vargas, Jessica; Medarde, Nuria; Casellas, Joaquim; Altet, Laura; Sánchez, Armand; Francino, Olga; Ventura, Jacint

    2018-05-04

    Myobia sp. and Demodex sp. are two skin mites that infest mice, particularly immunodeficient or transgenic lab mice. In the present study, wild house mice from five localities from the Barcelona Roberstonian system were analysed in order to detect skin mites and compare their prevalence between standard (2n = 40) and Robertsonian mice (2n > 40). We found and identified skin mites through real-time qPCR by comparing sequences from the mitochondrial 16S rRNA and the nuclear 18S rRNA genes since no sequences are available so far using the mitochondrial gene. Fourteen positive samples were identified as Myobia musculi except for a deletion of 296 bp out to 465 bp sequenced, and one sample was identified as Demodex canis. Sampling one body site, the mite prevalence in standard and Robertsonian mice was 0 and 26%, respectively. The malfunction of the immune system elicits an overgrowth of skin mites and consequently leads to diseases such as canine demodicosis in dogs or rosacea in humans. In immunosuppressed mice, the probability of developing demodicosis is higher than in healthy mice. Since six murine toll-like receptors (TLRs) are located in four chromosomes affected by Robertsonian fusions, we cannot dismiss that differences in mite prevalence could be the consequence of the interruption of TLR function. Although ecological and/or morphological factors cannot be disregarded to explain differences in mite prevalence, the detection of translocation breakpoints in TLR genes or the analysis of TLR gene expression are needed to elucidate how Robertsonian fusions affect the immune system in mice.

  13. Generating Chimeric Mice by Using Embryos from Nonsuperovulated BALB/c Mice Compared with Superovulated BALB/c and Albino C57BL/6 Mice.

    Science.gov (United States)

    Esmail, Michael Y; Qi, Peimin; Connor, Aurora Burds; Fox, James G; García, Alexis

    2016-01-01

    The reliable generation of high-percentage chimeras from gene-targeted C57BL/6 embryonic stem cells has proven challenging, despite optimization of cell culture and microinjection techniques. To improve the efficiency of this procedure, we compared the generation of chimeras by using 3 different inbred, albino host, embryo-generating protocols: BALB/cAnNTac (BALB/c) donor mice superovulated at 4 wk of age, 12-wk-old BALB/c donor mice without superovulation, and C57BL/6NTac-Tyr(tm1Arte) (albino B6) mice superovulated at 4 wk of age. Key parameters measured included the average number of injectable embryos per donor, the percentage of live pups born from the total number of embryos transferred to recipients, and the number of chimeric pups with high embryonic-stem-cell contribution by coat color. Although albino B6 donors produced significantly more injectable embryos than did BALB/c donors, 12-wk-old BALB/c donor produced high-percentage (at least 70%) chimeras more than 2.5 times as often as did albino B6 mice and 20 times more efficiently than did 4-wk-old BALB/c donors. These findings clearly suggest that 12-wk-old BALB/c mice be used as blastocyst donors to reduce the number of mice used to generate each chimera, reduce the production of low-percentage chimeras, and maximize the generation of high-percentage chimeras from C57BL/6 embryonic stem cells.

  14. Increased Expression of Laminin Subunit Alpha 1 Chain by dCas9-VP160

    Directory of Open Access Journals (Sweden)

    Arnaud Perrin

    2017-03-01

    Full Text Available Laminin-111 protein complex links the extracellular matrix to integrin α7β1 in sarcolemma, thus replacing in dystrophic muscles links normally insured by the dystrophin complex. Laminin-111 injection in mdx mouse stabilized sarcolemma, restored serum creatine kinase to wild-type levels, and protected muscles from exercised-induced damages. These results suggested that increased laminin-111 is a potential therapy for DMD. Laminin subunit beta 1 and laminin subunit gamma 1 are expressed in adult human muscle, but laminin subunit alpha 1 (LAMA1 gene is expressed only during embryogenesis. We thus developed an alternative method to laminin-111 protein repeated administration by inducing expression of the endogenous mouse Lama1 gene. This was done with the CRSPR/Cas9 system, i.e., by targeting the Lama1 promoter with one or several gRNAs and a dCas9 coupled with the VP160 transcription activation domain. Lama1 mRNA (qRT-PCR and proteins (immunohistochemistry and western blot were not detected in the control C2C12 myoblasts and in control muscles. However, significant expression was observed in cells transfected and in mouse muscles electroporated with plasmids coding for dCas9-VP160 and a gRNA. Larger synergic increases were observed by using two or three gRNAs. The increased Lama1 expression did not modify the expression of the α7 and β1 integrins. Increased expression of Lama1 by the CRISPR/Cas9 system will have to be further investigated by systemic delivery of the CRISPR/Cas9 components to verify whether this could be a treatment for several myopathies.

  15. Euthanasia of neonatal mice with carbon dioxide

    Science.gov (United States)

    Pritchett, K.; Corrow, D.; Stockwell, J.; Smith, A.

    2005-01-01

    Exposure to carbon dioxide (CO2) is the most prevalent method used to euthanize rodents in biomedical research. The purpose of this study was to determine the time of CO2 exposure required to euthanize neonatal mice (0 to 10 days old). Multiple groups of mice were exposed to 100% CO 2 for time periods between 5 and 60 min. Mice were placed in room air for 10 or 20 min after CO2 exposure, to allow for the chance of recovery. If mice recovered at one time point, a longer exposure was examined. Inbred and outbred mice were compared. Results of the study indicated that time to death varied with the age of the animals and could be as long as 50 min on the day of birth and differed between inbred and outbred mice. Institutions euthanizing neonatal mice with CO2 may wish to adjust their CO 2 exposure time periods according the age of the mice and their genetic background. Copyright 2005 by the American Association for Laboratory Animal Science.

  16. Cardiac dysfunction in pneumovirus-induced lung injury in mice

    NARCIS (Netherlands)

    Bem, Reinout A.; van den Berg, Elske; Suidgeest, Ernst; van der Weerd, Louise; van Woensel, Job B. M.; Grotenhuis, Heynric B.

    2013-01-01

    To determine biventricular cardiac function in pneumovirus-induced acute lung injury in spontaneously breathing mice. Experimental animal study. Animal laboratory. C57Bl/6 mice. Mice were inoculated with the rodent pneumovirus, pneumonia virus of mice. Pneumonia virus of mice-infected mice were

  17. Oral lactoferrin protects against experimental candidiasis in mice.

    Science.gov (United States)

    Velliyagounder, K; Alsaedi, W; Alabdulmohsen, W; Markowitz, K; Fine, D H

    2015-01-01

    To determine the role of human lactoferrin (hLF) in protecting the oral cavities of mice against Candida albicans infection in lactoferrin knockout (LFKO(-/-)) mice was compared to wild-type (WT) mice. We also aim to determine the protective role of hLF in LFKO(-/-) mice. Antibiotic-treated immunosuppressed mice were inoculated with C. albicans (or sham infection) by oral swab and evaluated for the severity of infection after 7 days of infection. To determine the protective role of hLF, we added 0·3% solution of hLF to the drinking water given to some of the mice. CFU count, scoring of lesions and microscopic observations were carried out to determine the severity of infection. LFKO(-/-) I mice showed a 2 log (P = 0·001) higher CFUs of C. albicans in the oral cavity compared to the WT mice infected with C. albicans (WTI). LFKO(-/-) I mice given hLF had a 3 log (P = 0·001) reduction in CFUs in the oral cavity compared to untreated LFKO(-/-) I mice. The severity of infection, observed by light microscopy, revealed that the tongue of the LFKO(-/-) I mice showed more white patches compared to WTI and LFKO(-/-) I + hLF mice. Scanning electron microscopic observations revealed that more filiform papillae were destroyed in LFKO(-/-) I mice when compared to WTI or LFKO(-/-) I + hLF mice. Human LF is important in protecting mice from oral C. albicans infection. Administered hLF may be used to prevent C. albicans infection. Human LF, a multifunctional iron-binding glycoprotein can be used as a therapeutic active ingredient in oral healthcare products against C. albicans. © 2014 The Society for Applied Microbiology.

  18. Muscular dystrophy-related quantitative and chemical changes in adenohypophysis GH-cells in golden retrievers

    DEFF Research Database (Denmark)

    de Lima, A R; Nyengaard, Jens Randel; Jorge, A A L

    2007-01-01

    investigated the morphological aspects of the adenohypophysis as well as the total number and size of GH-granulated cells using design-based stereological methods in a limited number of dystrophic and healthy golden retrievers. GH-cells were larger (32.4%) in dystrophic dogs than in healthy animals (p=0...

  19. Experimental transmission of M. leprae into the testes of mice born from 60Co-irradiated pregnant mice

    International Nuclear Information System (INIS)

    Sushida, Kiyo; Tanemura, Mutsuko

    1979-01-01

    R 1 -mice, which were born from pregnant mice (R-P) irradiated with 60 CO 300 R were inoculated with leprosy bacilli into the testis. Recently, the author reported that the skin homograft survival duration in 60 CO-irradiated mice (R-P) was shown to be longer than the duration in the R 1 -F mice. The acid-fast bacilli, the so-called globi, were often found at the inoculated site of R-P mice, but not in the R 1 -F mice. The R 1 -F females bred with normal males and the R 2 -F females bred with normal males were both irradiated with 60 CO 300 R, and the R 2 -F male offspring from this R 1 -F and the R 3 -F male offspring from this R 2 -F showed the same increase in sensitivity to leprosy bacilli as the R-P generation. Acid-fast bacilli (globi, +G) were also found in the testes of the R 2 -F and R 3 -F males. IR-F mice which had received 131 I-Na 100 μci injections and also 60 CO 300 R irradiations during their fetus-term, showed few increase in sensitivity to infection of leprosy bacilli. (author)

  20. Differential cellular responses in healthy mice and in mice with established airway inflammation when exposed to hematite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Åsa, E-mail: asa.gustafsson@foi.se [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Dept of Public Health and Clinical Medicine, Umeå University (Sweden); Bergström, Ulrika [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Dept of Organismal Biology, Uppsala University, SE-751 Uppsala (Sweden); Ågren, Lina [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Österlund, Lars [Dept of Engineering Sciences, The Ångström Laboratory, Uppsala University, SE-751 Uppsala (Sweden); Sandström, Thomas [Dept of Public Health and Clinical Medicine, Umeå University (Sweden); Bucht, Anders [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Dept of Public Health and Clinical Medicine, Umeå University (Sweden)

    2015-10-01

    The aim of this study was to investigate the inflammatory and immunological responses in airways and lung-draining lymph nodes (LDLNs), following lung exposure to iron oxide (hematite) nanoparticles (NPs). The responses to the hematite NPs were evaluated in both healthy non-sensitized mice, and in sensitized mice with an established allergic airway disease. The mice were exposed intratracheally to either hematite NPs or to vehicle (PBS) and the cellular responses were evaluated on days 1, 2, and 7, post-exposure. Exposure to hematite NPs increased the numbers of neutrophils, eosinophils, and lymphocytes in the airways of non-sensitized mice on days 1 and 2 post-exposure; at these time points the number of lymphocytes was also elevated in the LDLNs. In contrast, exposing sensitized mice to hematite NPs induced a rapid and unspecific cellular reduction in the alveolar space on day 1 post-exposure; a similar decrease of lymphocytes was also observed in the LDLN. The results indicate that cells in the airways and in the LDLN of individuals with established airway inflammation undergo cell death when exposed to hematite NPs. A possible explanation for this toxic response is the extensive generation of reactive oxygen species (ROS) in the pro-oxidative environment of inflamed airways. This study demonstrates how sensitized and non-sensitized mice respond differently to hematite NP exposure, and it highlights the importance of including individuals with respiratory disorders when evaluating health effects of inhaled nanomaterials. - Highlights: • Hematite NPs induce differential responses in airways of healthy and allergic mice. • Hematite induced an airway inflammation in healthy mice. • Hematite induced cellular reduction in the alveolus and lymph nodes of allergic mice. • Cell death is possible due to extensive pro-oxidative environment in allergic mice. • It is important to include sensitive individuals when valuing health effects of NPs.

  1. Intestinal IgA responses to Giardia muris in mice depleted of helper T lymphocytes and in immunocompetent mice.

    Science.gov (United States)

    Heyworth, M F

    1989-04-01

    Immunocompetent mice infected with Giardia muris generate an intestinal antibody response to this parasite and clear G. muris infection. Previous work has shown that G. muris infection is prolonged in mice that have been depleted of helper (CD4+) T lymphocytes by treatment with a monoclonal antibody (mAb) directed against the murine CD4 antigen. The aim of the present study was to compare the intestinal anti-Giardia antibody response in immunocompetent mice and in mice depleted of helper T (Th) lymphocytes by treatment with anti-CD4 mAb. Immunocompetent mice generated an IgA response to G. muris, as judged by the presence of IgA on Giardia trophozoites harvested from the intestine of these animals more than 10 days after the start of the infection. The anti-Giardia IgA response was impaired in mice depleted of Th lymphocytes, as judged by virtual absence of immunofluorescent staining of trophozoites from these animals for surface-bound IgA. Clearance of G. muris infection was impaired by treatment of mice with anti-CD4 mAb. The results suggest that Th (CD4+) lymphocytes are important for the generation of a local IgA response against G. muris trophozoites in the mouse intestine and that IgA anti-trophozoite antibody may contribute to the clearance of G. muris from the intestine of immunocompetent mice.

  2. Bodyweight Assessment of Enamelin Null Mice

    Directory of Open Access Journals (Sweden)

    Albert H.-L. Chan

    2013-01-01

    Full Text Available The Enam null mice appear to be smaller than wild-type mice, which prompted the hypothesis that enamel defects negatively influence nutritional intake and bodyweight gain (BWG. We compared the BWG of Enam−/− and wild-type mice from birth (D0 to Day 42 (D42. Wild-type (WT and Enam−/− (N mice were given either hard chow (HC or soft chow (SC. Four experimental groups were studied: WTHC, WTSC, NHC, and NSC. The mother’s bodyweight (DBW and the average litter bodyweight (ALBW were obtained from D0 to D21. After D21, the pups were separated from the mother and provided the same type of food. Litter bodyweights were measured until D42. ALBW was compared at 7-day intervals using one-way ANOVA, while the influence of DBW on ALBW was analyzed by mixed-model analyses. The ALBW of Enam−/− mice maintained on hard chow (NHC was significantly lower than the two WT groups at D21 and the differences persisted into young adulthood. The ALBW of Enam−/− mice maintained on soft chow (NSC trended lower, but was not significantly different than that of the WT groups. We conclude that genotype, which affects enamel integrity, and food hardness influence bodyweight gain in postnatal and young adult mice.

  3. Improvement of cardiac contractile function by peptide-based inhibition of NF-κB in the utrophin/dystrophin-deficient murine model of muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Guttridge Denis C

    2011-05-01

    Full Text Available Abstract Background Duchenne muscular dystrophy (DMD is an inherited and progressive disease causing striated muscle deterioration. Patients in their twenties generally die from either respiratory or cardiac failure. In order to improve the lifespan and quality of life of DMD patients, it is important to prevent or reverse the progressive loss of contractile function of the heart. Recent studies by our labs have shown that the peptide NBD (Nemo Binding Domain, targeted at blunting Nuclear Factor κB (NF-κB signaling, reduces inflammation, enhances myofiber regeneration, and improves contractile deficits in the diaphragm in dystrophin-deficient mdx mice. Methods To assess whether cardiac function in addition to diaphragm function can be improved, we investigated physiological and histological parameters of cardiac muscle in mice deficient for both dystrophin and its homolog utrophin (double knockout = dko mice treated with NBD peptide. These dko mice show classic pathophysiological hallmarks of heart failure, including myocyte degeneration, an impaired force-frequency response and a severely blunted β-adrenergic response. Cardiac contractile function at baseline and frequencies and pre-loads throughout the in vivo range as well as β-adrenergic reserve was measured in isolated cardiac muscle preparations. In addition, we studied histopathological and inflammatory markers in these mice. Results At baseline conditions, active force development in cardiac muscles from NBD treated dko mice was more than double that of vehicle-treated dko mice. NBD treatment also significantly improved frequency-dependent behavior of the muscles. The increase in force in NBD-treated dko muscles to β-adrenergic stimulation was robustly restored compared to vehicle-treated mice. However, histological features, including collagen content and inflammatory markers were not significantly different between NBD-treated and vehicle-treated dko mice. Conclusions We conclude

  4. The effect of embryonal thymic calf extracts on neonatally thymectomized mice and on mice lethally irradiated with gamma rays

    International Nuclear Information System (INIS)

    Czaplicki, J.; Blonska, B.; Stec, L.

    1981-01-01

    The effect of embryonal thymic calf extracts (ETCE) on mice thymectomized at birth was investigated. ETCE was found to induce an increase in leukopenia and decrease in the level of serum gamma globulins; it also reduced survival time in mice. The effect of ETCE on lethally irradiated mice was also examined. Only long-term administration of ETCE prior to gamma irradiation at 750 rad prolonged the survival time of mice (40% permanent survival) as compared with irradiated controls; the leukocytes from mice retained mitotic capability. Neither long-term treatment with ETCE prior to irradiation at 1000 rad, nor short-term administration prior to 750 rad affected survival time. ETCE administered after irradiation of mice with 750 rad caused a rapid decrease in blood leukocytes and a significantly lowered survival time. (Auth.)

  5. Linkage disequilibrium in wild mice.

    Directory of Open Access Journals (Sweden)

    Cathy C Laurie

    2007-08-01

    Full Text Available Crosses between laboratory strains of mice provide a powerful way of detecting quantitative trait loci for complex traits related to human disease. Hundreds of these loci have been detected, but only a small number of the underlying causative genes have been identified. The main difficulty is the extensive linkage disequilibrium (LD in intercross progeny and the slow process of fine-scale mapping by traditional methods. Recently, new approaches have been introduced, such as association studies with inbred lines and multigenerational crosses. These approaches are very useful for interval reduction, but generally do not provide single-gene resolution because of strong LD extending over one to several megabases. Here, we investigate the genetic structure of a natural population of mice in Arizona to determine its suitability for fine-scale LD mapping and association studies. There are three main findings: (1 Arizona mice have a high level of genetic variation, which includes a large fraction of the sequence variation present in classical strains of laboratory mice; (2 they show clear evidence of local inbreeding but appear to lack stable population structure across the study area; and (3 LD decays with distance at a rate similar to human populations, which is considerably more rapid than in laboratory populations of mice. Strong associations in Arizona mice are limited primarily to markers less than 100 kb apart, which provides the possibility of fine-scale association mapping at the level of one or a few genes. Although other considerations, such as sample size requirements and marker discovery, are serious issues in the implementation of association studies, the genetic variation and LD results indicate that wild mice could provide a useful tool for identifying genes that cause variation in complex traits.

  6. Inner ear dysfunction in caspase-3 deficient mice

    Directory of Open Access Journals (Sweden)

    Woo Minna

    2011-10-01

    Full Text Available Abstract Background Caspase-3 is one of the most downstream enzymes activated in the apoptotic pathway. In caspase-3 deficient mice, loss of cochlear hair cells and spiral ganglion cells coincide closely with hearing loss. In contrast with the auditory system, details of the vestibular phenotype have not been characterized. Here we report the vestibular phenotype and inner ear anatomy in the caspase-3 deficient (Casp3-/- mouse strain. Results Average ABR thresholds of Casp3-/- mice were significantly elevated (P Casp3+/- mice and Casp3+/+ mice at 3 months of age. In DPOAE testing, distortion product 2F1-F2 was significantly decreased (P Casp3-/- mice, whereas Casp3+/- and Casp3+/+ mice showed normal and comparable values to each other. Casp3-/- mice were hyperactive and exhibited circling behavior when excited. In lateral canal VOR testing, Casp3-/- mice had minimal response to any of the stimuli tested, whereas Casp3+/- mice had an intermediate response compared to Casp3+/+ mice. Inner ear anatomical and histological analysis revealed gross hypomorphism of the vestibular organs, in which the main site was the anterior semicircular canal. Hair cell numbers in the anterior- and lateral crista, and utricle were significantly smaller in Casp3-/- mice whereas the Casp3+/- and Casp3+/+ mice had normal hair cell numbers. Conclusions These results indicate that caspase-3 is essential for correct functioning of the cochlea as well as normal development and function of the vestibule.

  7. Primary osteopathy of vertebrae in a neurofibromatosis type 1 murine model.

    Science.gov (United States)

    Zhang, Wei; Rhodes, Steven D; Zhao, Liming; He, Yongzheng; Zhang, Yingze; Shen, Yong; Yang, Dalong; Wu, Xiaohua; Li, Xiaohong; Yang, Xianlin; Park, Su-Jung; Chen, Shi; Turner, Charles; Yang, Feng-Chun

    2011-06-01

    Neurofibromatosis type 1 (NF1) is a common autosomal dominant genetic disorder caused by mutation of the NF1 tumor suppressor gene. Spinal deformities are common skeletal manifestations in patients with NF1. To date, the mechanism of vertebral abnormalities remains unclear because of the lack of appropriate animal models for the skeletal manifestations of NF1. In the present study, we report a novel murine NF1 model, Nf1(flox/-);Col2.3Cre(+) mice. These mice display short vertebral segments. In addition, a significant reduction in cortical and trabecular bone mass of the vertebrae was observed in Nf1(flox/-);Col2.3Cre(+) mice as measured by dual-energy X-ray absorptiometry (DEXA) and peripheral quantitative computed tomography (pQCT). Peak stress and peak load were also significantly reduced in Nf1(flox/-);Col2.3Cre(+) mice as compared to controls. Furthermore, the lumbar vertebrae showed enlargement of the inter-vertebral canal, a characteristic feature of lumbar vertebrae in NF1 patients. Finally, histologic analysis demonstrated increased numbers of osteoclasts and decreased numbers of osteoblasts in the vertebrae of Nf1(flox/-);Col2.3Cre(+) mice in comparison to controls. In summary, Nf1(flox/-);Col2.3Cre(+) mice demonstrate multiple structural and functional abnormalities in the lumbar vertebrae which recapitulate the dystrophic vertebral changes in NF1 patients. This novel murine model provides a platform to understand the cellular and molecular mechanisms underlying the pathogenesis of spinal deficits in NF1 patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia

    Energy Technology Data Exchange (ETDEWEB)

    Benny Klimek, Margaret E.; Aydogdu, Tufan [Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL (United States); Link, Majik J.; Pons, Marianne [Molecular Oncology Program, Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL (United States); Koniaris, Leonidas G. [Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL (United States); Molecular Oncology Program, Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL (United States); Molecular Oncology and Experimental Therapeutics Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL (United States); Zimmers, Teresa A., E-mail: tzimmers@med.miami.edu [Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL (United States); Molecular Oncology Program, Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL (United States); Molecular Oncology and Experimental Therapeutics Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL (United States)

    2010-01-15

    Cachexia, progressive loss of fat and muscle mass despite adequate nutrition, is a devastating complication of cancer associated with poor quality of life and increased mortality. Myostatin is a potent tonic muscle growth inhibitor. We tested how myostatin inhibition might influence cancer cachexia using genetic and pharmacological approaches. First, hypermuscular myostatin null mice were injected with Lewis lung carcinoma or B16F10 melanoma cells. Myostatin null mice were more sensitive to tumor-induced cachexia, losing more absolute mass and proportionately more muscle mass than wild-type mice. Because myostatin null mice lack expression from development, however, we also sought to manipulate myostatin acutely. The histone deacetylase inhibitor Trichostatin A has been shown to increase muscle mass in normal and dystrophic mice by inducing the myostatin inhibitor, follistatin. Although Trichostatin A administration induced muscle growth in normal mice, it failed to preserve muscle in colon-26 cancer cachexia. Finally we sought to inhibit myostatin and related ligands by administration of the Activin receptor extracellular domain/Fc fusion protein, ACVR2B-Fc. Systemic administration of ACVR2B-Fc potently inhibited muscle wasting and protected adipose stores in both colon-26 and Lewis lung carcinoma cachexia, without affecting tumor growth. Enhanced cachexia in myostatin knockouts indicates that host-derived myostatin is not the sole mediator of muscle wasting in cancer. More importantly, skeletal muscle preservation with ACVR2B-Fc establishes that targeting myostatin-family ligands using ACVR2B-Fc or related molecules is an important and potent therapeutic avenue in cancer cachexia.

  9. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia

    International Nuclear Information System (INIS)

    Benny Klimek, Margaret E.; Aydogdu, Tufan; Link, Majik J.; Pons, Marianne; Koniaris, Leonidas G.; Zimmers, Teresa A.

    2010-01-01

    Cachexia, progressive loss of fat and muscle mass despite adequate nutrition, is a devastating complication of cancer associated with poor quality of life and increased mortality. Myostatin is a potent tonic muscle growth inhibitor. We tested how myostatin inhibition might influence cancer cachexia using genetic and pharmacological approaches. First, hypermuscular myostatin null mice were injected with Lewis lung carcinoma or B16F10 melanoma cells. Myostatin null mice were more sensitive to tumor-induced cachexia, losing more absolute mass and proportionately more muscle mass than wild-type mice. Because myostatin null mice lack expression from development, however, we also sought to manipulate myostatin acutely. The histone deacetylase inhibitor Trichostatin A has been shown to increase muscle mass in normal and dystrophic mice by inducing the myostatin inhibitor, follistatin. Although Trichostatin A administration induced muscle growth in normal mice, it failed to preserve muscle in colon-26 cancer cachexia. Finally we sought to inhibit myostatin and related ligands by administration of the Activin receptor extracellular domain/Fc fusion protein, ACVR2B-Fc. Systemic administration of ACVR2B-Fc potently inhibited muscle wasting and protected adipose stores in both colon-26 and Lewis lung carcinoma cachexia, without affecting tumor growth. Enhanced cachexia in myostatin knockouts indicates that host-derived myostatin is not the sole mediator of muscle wasting in cancer. More importantly, skeletal muscle preservation with ACVR2B-Fc establishes that targeting myostatin-family ligands using ACVR2B-Fc or related molecules is an important and potent therapeutic avenue in cancer cachexia.

  10. Metabolite analysis distinguishes between mice with epidermolysis bullosa acquisita and healthy mice.

    Science.gov (United States)

    Schönig, Sarah; Recke, Andreas; Hirose, Misa; Ludwig, Ralf J; Seeger, Karsten

    2013-06-26

    Epidermolysis bullosa acquisita (EBA) is a rare skin blistering disease with a prevalence of 0.2/ million people. EBA is characterized by autoantibodies against type VII collagen. Type VII collagen builds anchoring fibrils that are essential for the dermal-epidermal junction. The pathogenic relevance of antibodies against type VII collagen subdomains has been demonstrated both in vitro and in vivo. Despite the multitude of clinical and immunological data, no information on metabolic changes exists. We used an animal model of EBA to obtain insights into metabolomic changes during EBA. Sera from mice with immunization-induced EBA and control mice were obtained and metabolites were isolated by filtration. Proton nuclear magnetic resonance (NMR) spectra were recorded and analyzed by principal component analysis (PCA), partial least squares discrimination analysis (PLS-DA) and random forest. The metabolic pattern of immunized mice and control mice could be clearly distinguished with PCA and PLS-DA. Metabolites that contribute to the discrimination could be identified via random forest. The observed changes in the metabolic pattern of EBA sera, i.e. increased levels of amino acid, point toward an increased energy demand in EBA. Knowledge about metabolic changes due to EBA could help in future to assess the disease status during treatment. Confirming the metabolic changes in patients needs probably large cohorts.

  11. Zinc metabolism in genetically obese (ob/ob) mice

    International Nuclear Information System (INIS)

    Kennedy, M.L.; Failla, M.L.

    1987-01-01

    Recent reports indicate that the concentrations and total amounts of several essential trace metals in various tissues of genetically obese rodents differ markedly from those in lean controls. In the present studies the absorption, retention and tissue distribution of zinc and constitutive levels of zinc-metallothionein (Zn-MT) in selected tissues were compared in obese (ob/ob) and lean (+/?) C57BL/6J mice. When 5-, 10- and 22-wk-old mice were administered 1.2 mumol 65 Zn by stomach tube the apparent absorption of 65 Zn by obese mice was 1.5, 2.2 and 3.9 times higher, respectively, than that in age-matched lean mice. Retention of orally administered 65 Zn after 96 h was also substantially higher in obese mice than in lean mice. To assess the possible influences of hyperphagia and intestinal hypertrophy on the enhanced apparent absorption of 65 Zn by obese mice food intake by an additional group of obese mice was restricted to that of age-matched lean controls. When actual absorption of zinc was determined according to the method of Heth and Hoekstra, groups of ad libitum--fed obese, pair-fed obese and lean mice absorbed 38, 32 and 18% of administered 65 Zn, respectively. In contrast, the rate of 65 Zn excretion 2-6 d after oral or subcutaneous administration of the metal was similar for obese and lean mice. Unrestricted and pair-fed obese mice had significantly lower percentages of carcass 65 Zn present in skin, muscle plus bone, spleen and testes and higher percentages present in liver, small intestine and adipose tissue than lean mice

  12. Skewed X-inactivation in cloned mice

    International Nuclear Information System (INIS)

    Senda, Sho; Wakayama, Teruhiko; Yamazaki, Yukiko; Ohgane, Jun; Hattori, Naka; Tanaka, Satoshi; Yanagimachi, Ryuzo; Shiota, Kunio

    2004-01-01

    In female mammals, dosage compensation for X-linked genes is accomplished by inactivation of one of two X chromosomes. The X-inactivation ratio (a percentage of the cells with inactivated maternal X chromosomes in the whole cells) is skewed as a consequence of various genetic mutations, and has been observed in a number of X-linked disorders. We previously reported that phenotypically normal full-term cloned mouse fetuses had loci with inappropriate DNA methylation. Thus, cloned mice are excellent models to study abnormal epigenetic events in mammalian development. In the present study, we analyzed X-inactivation ratios in adult female cloned mice (B6C3F1). Kidneys of eight naturally produced controls and 11 cloned mice were analyzed. Although variations in X-inactivation ratio among the mice were observed in both groups, the distributions were significantly different (Ansary-Bradley test, P < 0.01). In particular, 2 of 11 cloned mice showed skewed X-inactivation ratios (19.2% and 86.8%). Similarly, in intestine, 1 of 10 cloned mice had a skewed ratio (75.7%). Skewed X-inactivation was observed to various degrees in different tissues of different individuals, suggesting that skewed X-inactivation in cloned mice is the result of secondary cell selection in combination with stochastic distortion of primary choice. The present study is the first demonstration that skewed X-inactivation occurs in cloned animals. This finding is important for understanding both nuclear transfer technology and etiology of X-linked disorders

  13. Inherent and antigen-induced airway hyperreactivity in NC mice

    Directory of Open Access Journals (Sweden)

    Tetsuto Kobayashi

    1999-01-01

    Full Text Available In order to clarify the airway physiology of NC mice, the following experiments were carried out. To investigate inherent airway reactivity, we compared tracheal reactivity to various chemical mediators in NC, BALB/c, C57BL/6 and A/J mice in vitro. NC mice showed significantly greater reactivity to acetylcholine than BALB/c and C57BL/6 mice and a reactivity comparable to that of A/J mice, which are known as high responders. Then, airway reactivity to acetylcholine was investigated in those strains in vivo. NC mice again showed comparable airway reactivity to that seen in A/J mice and a significantly greater reactivity than that seen in BALB/c and C57BL/6 mice. To investigate the effects of airway inflammation on airway reactivity to acetylcholine in vivo, NC and BALB/c mice were sensitized to and challenged with antigen. Sensitization to and challenge with antigen induced accumulation of inflammatory cells, especially eosinophils, in lung and increased airway reactivity in NC and BALB/c mice. These results indicate that NC mice exhibit inherent and antigen-induced airway hyperreactivity. Therefore, NC mice are a suitable strain to use in investigating the mechanisms underlying airway hyperreactivity and such studies will provide beneficial information for understanding the pathophysiology of asthma.

  14. Docetaxel chronopharmacology in mice.

    Science.gov (United States)

    Tampellini, M; Filipski, E; Liu, X H; Lemaigre, G; Li, X M; Vrignaud, P; François, E; Bissery, M C; Lévi, F

    1998-09-01

    Docetaxel tolerance and antitumor efficacy could be enhanced if drug administration was adapted to circadian rhythms. This hypothesis was investigated in seven experiments involving a total of 626 male B6D2F1 mice, synchronized with an alternation of 12 h of light and 12 h of darkness (12:12), after i.v. administration of docetaxel. In experiment (Exp) 1, the drug was given once a week (wk) for 6 wks (20 mg/kg/wk) or for 5 wks (30 mg/kg/wk) at one of six circadian times, during light when mice were resting [3, 7, or 11 hours after light onset (HALO)], or during darkness, when mice were active (15, 19, or 23 HALO). Endpoints were survival and body weight change. In Exp 2 and 3, docetaxel (30 mg/kg/wk) was administered twice, 1 wk apart, at one of four circadian stages (7, 11, 19, or 23 HALO). Endpoints were hematological and intestinal toxicities. In Exp 4, circadian changes in cell cycle phase distribution and BCL-2 immunofluorescence were investigated in bone marrow as possible mechanisms of docetaxel tolerability rhythm. In Exp 5 to 7, docetaxel was administered to mice bearing measurable P03 pancreatic adenocarcinoma (270-370 mg), with tumor weight and survival as endpoints. Mice from Exp 5 and 6 received a weekly schedule of docetaxel at one of six circadian stages (20 or 30 mg/kg/wk at 3, 7, 11, 15, 19, or 23 HALO). In Exp 7, docetaxel (30 mg/kg) was given every 2 days (day 1, 3, 5 schedule) at 7, 11, 19, or 23 HALO. Docetaxel dosing in the second half of darkness (19 or 23 HALO) resulted in significantly worse toxicity than its administration during the light span (3, 7, or 11 HALO). The survival rate ranged from 56.3% in the mice treated at 23 HALO to 93.8 or 87.5% in those injected at 3 or 11 HALO, respectively (Exp 1, P active at 11 HALO (percentage increase in life span, 390%) and least active at 23 HALO (210%). Docetaxel tolerability and antitumor efficacy were simultaneously enhanced by drug dosing in the light span, when mice were resting. Mechanisms

  15. Lipid metabolism and body composition in Gclm(-/-) mice

    Energy Technology Data Exchange (ETDEWEB)

    Kendig, Eric L. [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Chen, Ying [Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO 80045 (United States); Krishan, Mansi; Johansson, Elisabet; Schneider, Scott N. [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Genter, Mary Beth; Nebert, Daniel W. [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Shertzer, Howard G., E-mail: shertzhg@ucmail.uc.edu [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States)

    2011-12-15

    In humans and experimental animals, high fat diets (HFD) are associated with risk factors for metabolic diseases, such as excessive weight gain and adiposity, insulin resistance and fatty liver. Mice lacking the glutamate-cysteine ligase modifier subunit gene (Gclm(-/-)) and deficient in glutathione (GSH), are resistant to HFD-mediated weight gain. Herein, we evaluated Gclm-associated regulation of energy metabolism, oxidative stress, and glucose and lipid homeostasis. C57BL/6J Gclm(-/-) mice and littermate wild-type (WT) controls received a normal diet or an HFD for 11 weeks. HFD-fed Gclm(-/-) mice did not display a decreased respiratory quotient, suggesting that they are unable to process lipid for metabolism. Although dietary energy consumption and intestinal lipid absorption were unchanged in Gclm(-/-) mice, feeding these mice an HFD did not produce excess body weight nor fat storage. Gclm(-/-) mice displayed higher basal metabolic rates resulting from higher activities of liver mitochondrial NADH-CoQ oxidoreductase, thus elevating respiration. Although Gclm(-/-) mice exhibited strong systemic and hepatic oxidative stress responses, HFD did not promote glucose intolerance or insulin resistance. Furthermore, HFD-fed Gclm(-/-) mice did not develop fatty liver, likely resulting from very low expression levels of genes encoding lipid metabolizing enzymes. We conclude that Gclm is involved in the regulation of basal metabolic rate and the metabolism of dietary lipid. Although Gclm(-/-) mice display a strong oxidative stress response, they are protected from HFD-induced excessive weight gain and adipose deposition, insulin resistance and steatosis. -- Highlights: Black-Right-Pointing-Pointer A high fat diet does not produce body weight and fat gain in Gclm(-/-) mice. Black-Right-Pointing-Pointer A high fat diet does not induce steatosis or insulin resistance in Gclm(-/-) mice. Black-Right-Pointing-Pointer Gclm(-/-) mice have high basal metabolism and mitochondrial

  16. Men and mice: Relating their ages.

    Science.gov (United States)

    Dutta, Sulagna; Sengupta, Pallav

    2016-05-01

    Since the late 18th century, the murine model has been widely used in biomedical research (about 59% of total animals used) as it is compact, cost-effective, and easily available, conserving almost 99% of human genes and physiologically resembling humans. Despite the similarities, mice have a diminutive lifespan compared to humans. In this study, we found that one human year is equivalent to nine mice days, although this is not the case when comparing the lifespan of mice versus humans taking the entire life at the same time without considering each phase separately. Therefore, the precise correlation of age at every point in their lifespan must be determined. Determining the age relation between mice and humans is necessary for setting up experimental murine models more analogous in age to humans. Thus, more accuracy can be obtained in the research outcome for humans of a specific age group, although current outcomes are based on mice of an approximate age. To fill this gap between approximation and accuracy, this review article is the first to establish a precise relation between mice age and human age, following our previous article, which explained the relation in ages of laboratory rats with humans in detail. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Craniofacial Statistical Deformation Models of Wild-type mice and Crouzon mice

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Darvann, Tron Andre; Ersbøll, Bjarne Kjær

    2007-01-01

    Crouzon syndrome is characterised by the premature fusion of cranial sutures and synchondroses leading to craniofacial growth disturbances. The gene causing the syndrome was discovered approximately a decade ago and recently the first mouse model of the syndrome was generated. In this study, a set...... of Micro CT scannings of the heads of wild-type (normal) mice and Crouzon mice were investigated. Statistical deformation models were built to assess the anatomical differences between the groups, as well as the within-group anatomical variation. Following the approach by Rueckert et al. we built an atlas...

  18. Enhanced radiosensitivity in 1,25-dihydroxyvitamin D3 deficient mice

    International Nuclear Information System (INIS)

    Zhang Zengli; Ding Xiaofei; Tong Jian; Li Bingyan

    2011-01-01

    To investigate whether impaired osteogenesis resulting from vitamin D deficiency can influence hematopoiesis recovery after radiation, the 25-hydroxyvitamin D-1α-hydroxylase (1α-hydroxylase) gene knockout (KO) mice and wild type (WT) mice were subjected to different doses of gamma ray. The survival rates, peripheral blood cell counts and bone marrow cellularity were studied after irradiation (IR). The survival rates of the KO mice were significantly lower than that of WT mice after 6 or 8 Gy dose of radiation. The recovery of white blood cells in KO mice was significantly delayed compared with that in WT mice after radiation. The red blood cell number in WT mice was observed to increase more than that in KO mice at days 14 and 28 after radiation. The nadir platelet count in KO mice was nearly half of that in WT mice. Dramatically higher bone marrow cell numbers were found in WT mice compared with KO mice. Our findings demonstrate the enhanced radiosensitivity in 1,25-dihydroxyvitamin D3 (1,25-(OH) 2 D 3 ) deficient mice. (author)

  19. Bone phenotypes of P2 receptor knockout mice

    DEFF Research Database (Denmark)

    Orriss, Isabel; Syberg, Susanne; Wang, Ning

    2011-01-01

    The action of extracellular nucleotides is mediated by ionotropic P2X receptors and G-protein coupled P2Y receptors. The human genome contains 7 P2X and 8 P2Y receptor genes. Knockout mice strains are available for most of them. As their phenotypic analysis is progressing, bone abnormalities have...... been observed in an impressive number of these mice: distinct abnormalities in P2X7-/- mice, depending on the gene targeting construct and the genetic background, decreased bone mass in P2Y1-/- mice, increased bone mass in P2Y2-/- mice, decreased bone resorption in P2Y6-/- mice, decreased bone...... formation and bone resorption in P2Y13-/- mice. These findings demonstrate the unexpected importance of extracellular nucleotide signalling in the regulation of bone metabolism via multiple P2 receptors and distinct mechanisms involving both osteoblasts and osteoclasts....

  20. Transplacental arsenic carcinogenesis in mice

    International Nuclear Information System (INIS)

    Waalkes, Michael P.; Liu, Jie; Diwan, Bhalchandra A.

    2007-01-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show that a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from days 8 to 18 of gestation, and the offspring were observed for up to 2 years. The doses used in all these studies were well tolerated by both the dam and offspring. In C3H mice, two separate studies show male offspring exposed to arsenic in utero developed liver carcinoma and adrenal cortical adenoma in a dose-related fashion during adulthood. Prenatally exposed female C3H offspring show dose-related increases in ovarian tumors and lung carcinoma and in proliferative lesions (tumors plus preneoplastic hyperplasia) of the uterus and oviduct. In addition, prenatal arsenic plus postnatal exposure to the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA) in C3H mice produces excess lung tumors in both sexes and liver tumors in females. Male CD1 mice treated with arsenic in utero develop tumors of the liver and adrenal and renal hyperplasia while females develop tumors of urogenital system, ovary, uterus and adrenal and hyperplasia of the oviduct. Additional postnatal treatment with diethylstilbestrol or tamoxifen after prenatal arsenic in CD1 mice induces urinary bladder transitional cell proliferative lesions, including carcinoma and papilloma, and enhances the carcinogenic response in the liver of both sexes. Overall this model has provided convincing evidence that arsenic is a transplacental carcinogen in mice with the ability to target tissues of potential human relevance, such as the urinary bladder, lung and liver. Transplacental carcinogenesis clearly occurs with other agents in humans

  1. Duchenne Muscular Dystrophy Gene Therapy in the Canine Model

    Science.gov (United States)

    2015-01-01

    Abstract Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disease caused by dystrophin deficiency. Gene therapy has significantly improved the outcome of dystrophin-deficient mice. Yet, clinical translation has not resulted in the expected benefits in human patients. This translational gap is largely because of the insufficient modeling of DMD in mice. Specifically, mice lacking dystrophin show minimum dystrophic symptoms, and they do not respond to the gene therapy vector in the same way as human patients do. Further, the size of a mouse is hundredfolds smaller than a boy, making it impossible to scale-up gene therapy in a mouse model. None of these limitations exist in the canine DMD (cDMD) model. For this reason, cDMD dogs have been considered a highly valuable platform to test experimental DMD gene therapy. Over the last three decades, a variety of gene therapy approaches have been evaluated in cDMD dogs using a number of nonviral and viral vectors. These studies have provided critical insight for the development of an effective gene therapy protocol in human patients. This review discusses the history, current status, and future directions of the DMD gene therapy in the canine model. PMID:25710459

  2. A Gene Gun-mediated Nonviral RNA trans-splicing Strategy for Col7a1 Repair

    Directory of Open Access Journals (Sweden)

    Patricia Peking

    2016-01-01

    Full Text Available RNA trans-splicing represents an auspicious option for the correction of genetic mutations at RNA level. Mutations within COL7A1 causing strong reduction or absence of type VII collagen are associated with the severe skin blistering disease dystrophic epidermolysis bullosa. The human COL7A1 mRNA constitutes a suitable target for this RNA therapy approach, as only a portion of the almost 9 kb transcript has to be delivered into the target cells. Here, we have proven the feasibility of 5′ trans-splicing into the Col7a1 mRNA in vitro and in vivo. We designed a 5′ RNA trans-splicing molecule, capable of replacing Col7a1 exons 1–15 and verified it in a fluorescence-based trans-splicing model system. Specific and efficient Col7a1 trans-splicing was confirmed in murine keratinocytes. To analyze trans-splicing in vivo, we used gene gun delivery of a minicircle expressing a FLAG-tagged 5′ RNA trans-splicing molecule into the skin of wild-type mice. Histological and immunofluorescence analysis of bombarded skin sections revealed vector delivery and expression within dermis and epidermis. Furthermore, we have detected trans-spliced type VII collagen protein using FLAG-tag antibodies. In conclusion, we describe a novel in vivo nonviral RNA therapy approach to restore type VII collagen expression for causative treatment of dystrophic epidermolysis bullosa.

  3. Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus.

    Science.gov (United States)

    Yue, Yongping; Pan, Xiufang; Hakim, Chady H; Kodippili, Kasun; Zhang, Keqing; Shin, Jin-Hong; Yang, Hsiao T; McDonald, Thomas; Duan, Dongsheng

    2015-10-15

    The ultimate goal of muscular dystrophy gene therapy is to treat all muscles in the body. Global gene delivery was demonstrated in dystrophic mice more than a decade ago using adeno-associated virus (AAV). However, translation to affected large mammals has been challenging. The only reported attempt was performed in newborn Duchenne muscular dystrophy (DMD) dogs. Unfortunately, AAV injection resulted in growth delay, muscle atrophy and contracture. Here we report safe and bodywide AAV delivery in juvenile DMD dogs. Three ∼2-m-old affected dogs received intravenous injection of a tyrosine-engineered AAV-9 reporter or micro-dystrophin (μDys) vector at the doses of 1.92-6.24 × 10(14) viral genome particles/kg under transient or sustained immune suppression. DMD dogs tolerated injection well and their growth was not altered. Hematology and blood biochemistry were unremarkable. No adverse reactions were observed. Widespread muscle transduction was seen in skeletal muscle, the diaphragm and heart for at least 4 months (the end of the study). Nominal expression was detected in internal organs. Improvement in muscle histology was observed in μDys-treated dogs. In summary, systemic AAV gene transfer is safe and efficient in young adult dystrophic large mammals. This may translate to bodywide gene therapy in pediatric patients in the future. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Reduced alcohol consumption in mice lacking preprodynorphin.

    Science.gov (United States)

    Blednov, Yuri A; Walker, Danielle; Martinez, Marni; Harris, R Adron

    2006-10-01

    Many studies suggest a role for endogenous opioid peptides and their receptors in regulation of ethanol intake. It is commonly accepted that the kappa-opioid receptors and their endogenous ligands, dynorphins, produce a dysphoric state and therefore may be responsible for avoidance of alcohol. We used mutant mice lacking preprodynorphin in a variety of behavioral tests of alcohol actions. Null mutant female, but not male, mice showed significantly lower preference for alcohol and consumed lower amounts of alcohol in a two-bottle choice test as compared with wild-type littermates. In the same test, knockout mice of both sexes showed a strong reduction of preference for saccharin compared to control mice. In contrast, under conditions of limited (4 h) access (light phase of the light/dark cycle), null mutant mice did not show any differences in consumption of saccharin, but they showed significantly reduced intake of sucrose. To determine the possible cause for reduction of ethanol preference and intake, we studied other ethanol-related behaviors in mice lacking the preprodynorphin gene. There were no differences between null mutant and wild-type mice in ethanol-induced loss of righting reflex, acute ethanol withdrawal, ethanol-induced conditioned place preference, or conditioned taste aversion to ethanol. These results indicate that deletion of preprodynorphin leads to substantial reduction of alcohol intake in female mice, and suggest that this is caused by decreased orosensory reward of alcohol (sweet taste and/or palatability).

  5. EXPERIMENTAL-INFECTION IN MICE WITH BACILLUS-LICHENIFORMIS

    DEFF Research Database (Denmark)

    Agerholm, J.S.; Jensen, H.E.; Jensen, N.E.

    1995-01-01

    The pathogenicity of Bacillus licheniformis was assessed in normal and immunodepressed BALB/c mice. The animals were challenged intravenously with 4 x 10(7) colony forming units of B, licheniformis (ATCC 14580) and both normal and immunodepressed mice were susceptible. However, the infection...... was more severe in the immunosuppressed animals. In normal mice, lesions were restricted to the liver and kidneys, while lesions also occurred in other organs of immunodepressed mice. By crossed immunoelectrophoresis it was shown that antigens of B. licheniformis are potent immunogens, and the bacteria...

  6. [Anatomy and histology characteristics of lymph node in nude mice].

    Science.gov (United States)

    Sun, R; Gao, B; Guo, C B

    2017-10-18

    To compare the differences of anatomical and histological characteristics of lymph nodes between BALB/c nude mice and BALB/c mice. Firstly, twenty BALB/c nude mice and twenty BALB/c mice were dissected by using a surgical microscope. Secondly, the differences of T cells and B cells at the lymph node were compared by the expressions of CD 3 and CD 20 immunohistochemistry dyes. There were, on average, 23 nodes per mouse contained within the large lymph node assembly in the BALB/c nude mouse. The anatomical features of the lymph node distribution in the nude mice were mainly found in the neck with relatively higher density. There were two lymph nodes both in the submandible lymph nodes group and in the superficial cervical lymph nodes group (the constituent ratios were 95% and 90%, respectively) in the BALB/c nude mice, but there were four lymph nodes (the constituent ratios were 95% and 90%, respectively) in the BALB/c mice. There were significant difference between the BALB/c nude mice and the BALB/c mice. Mostly there were two lymph nodes of deep cervical lymph nodes both in the BALB/c nude mice and the BALB/c mice (the constituent ratios were 95% and 100%, respectively). There were no significant difference between the BALB/c nude mice and the BALB/c mice. We confirmed that the number of CD 3 -positive T lymphocytes in lymph nodes of the nude mice decreased greatly as compared with the BALB/c mice. Expressions of CD3 in T cells were 95% and 100% in the BALB/c nude mice and in the BALB/c mice, respectively. There were significant differences between the BALB/c nude mice and the BALB/c mice. Expressions of CD20 in B cells were 95% and 100% in the BALB/c nude mice and in the BALB/c mice, respectively. There was no significant difference between the BALB/c nude mice and BALB/c mice. The anatomical pictures of lymph node distribution in the nude mouse will be benefit to those who are interested. The anatomical features of the lymph node local higher density in neck of

  7. Antitumour activity of cordycepin in mice.

    Science.gov (United States)

    Yoshikawa, Noriko; Nakamura, Kazuki; Yamaguchi, Yu; Kagota, Satomi; Shinozuka, Kazumasa; Kunitomo, Masaru

    2004-12-01

    1. The antitumour effect of orally administered cordycepin, a component isolated from water extracts of Cordyceps sinensis, was examined in mice inoculated with B16 melanoma (B16-BL6) cells. 2. B16-BL6 (1 x 10(6)) cells were inoculated subcutaneously into the right footpad of mice. At 2 weeks after the cell inoculation, the enlarged primary tumour lump was weighed. Cordycepin (0, 5 and 15 mg/kg per day) was administered orally to the mice for 2 weeks from the date of tumour inoculation. Cordycepin (15 mg/kg per day) significantly reduced by 36% the wet weight of the primary tumour lump compared to that of the untreated control mice, without any loss of bodyweight or systemic toxicity. 3. Cordycepin (15 mg/kg per day) administered orally for 2 weeks inhibited the tumour enlargement in the right thigh inoculated with B16-BL6 cells premixed with extracellular matrix (Matrigel). 4. These results indicate that orally administered cordycepin inhibits melanoma cell growth in mice with no adverse effects.

  8. Lymphoma of SJL/J mice strain, 3

    International Nuclear Information System (INIS)

    Takahashi, Masanori; Takeichi, Sanae; Otsuka, Hisashi

    1976-01-01

    This paper describes influences of 7, 12-dimethylbenz (α) anthracene (DMBA) and 60 Co irradiation in lymphoma, together with the past results. The influences of DMBA in the lymphoma were studied 265 days (an average) after the subcutaneous administration of 1 mg/day of DMBA in 35 mice, and 246 days after it accompanied with the extraction of the thymus. Eight hundred rads (200 rads/ week four times) intermittent systemic irradiation was given to 26 mice, and to 16 mice after the extraction of the thymus. The influences on the lymphoma were studied 233 days later (an average) in the former and 544 days later (an average) in the latter. Lymphoma occurred 242 days later (an average) in 20 of the 35 mice with the administration of DMBA (57.1%), and 260 days later (an average) in 13 of the 42 mice with the administration of DMBA accompanied with the extraction of the thymus (30.9%). It occurred 231 days later (an average) in 22 of the 26 mice with 60 Co irradiation (84.6%), and 561 days later (an average) in 12 of the 16 mice with 60 Co irradiation accompanied with the extraction of the thymus (75%). Lymphosarcoma occurred 211 days after the administration of DMBA in 37%, and 208 days after the irradiation of 60 Co in 53.8%. However, it did not occur in animals in which the thymus had been extracted. The frequency of thymic lymphoma was high in animals with the administration of N-nitrosobutylurea. Although the occurrence of lymphosarcoma was controlled after the extraction of the thymus, reticulosarcoma occurred. The time of occurrence of lymphoma and the frequency of its occurrence by tissues were the same in the mice with extraction of the thymus as in controls. The SJL/J strain mice seemed to be independent of the thymus. (Kanao, N.)

  9. Masking responses to light in period mutant mice.

    Science.gov (United States)

    Pendergast, Julie S; Yamazaki, Shin

    2011-10-01

    Masking is an acute effect of an external signal on an overt rhythm and is distinct from the process of entrainment. In the current study, we investigated the phase dependence and molecular mechanisms regulating masking effects of light pulses on spontaneous locomotor activity in mice. The circadian genes, Period1 (Per1) and Per2, are necessary components of the timekeeping machinery and entrainment by light appears to involve the induction of the expression of Per1 and Per2 mRNAs in the suprachiasmatic nuclei (SCN). We assessed the roles of the Per genes in regulating masking by assessing the effects of light pulses on nocturnal locomotor activity in C57BL/6J Per mutant mice. We found that Per1(-/-) and Per2(-/-) mice had robust negative masking responses to light. In addition, the locomotor activity of Per1(-/-)/Per2(-/-) mice appeared to be rhythmic in the light-dark (LD) cycle, and the phase of activity onset was advanced (but varied among individual mice) relative to lights off. This rhythm persisted for 1 to 2 days in constant darkness in some Per1(-/-)/Per2(-/-) mice. Furthermore, Per1(-/-)/Per2(-/-) mice exhibited robust negative masking responses to light. Negative masking was phase dependent in wild-type mice such that maximal suppression was induced by light pulses at zeitgeber time 14 (ZT14) and gradually weaker suppression occurred during light pulses at ZT16 and ZT18. By measuring the phase shifts induced by the masking protocol (light pulses were administered to mice maintained in the LD cycle), we found that the phase responsiveness of Per mutant mice was altered compared to wild-types. Together, our data suggest that negative masking responses to light are robust in Per mutant mice and that the Per1(-/-)/Per2(-/-) SCN may be a light-driven, weak/damping oscillator.

  10. Therapeutic cloning in individual parkinsonian mice

    Science.gov (United States)

    Tabar, Viviane; Tomishima, Mark; Panagiotakos, Georgia; Wakayama, Sayaka; Menon, Jayanthi; Chan, Bill; Mizutani, Eiji; Al-Shamy, George; Ohta, Hiroshi; Wakayama, Teruhiko; Studer, Lorenz

    2009-01-01

    Cell transplantation with embryonic stem (ES) cell progeny requires immunological compatibility with host tissue. ‘Therapeutic cloning’ is a strategy to overcome this limitation by generating nuclear transfer (nt)ES cells that are genetically matched to an individual. Here we establish the feasibility of treating individual mice via therapeutic cloning. Derivation of 187 ntES cell lines from 24 parkinsonian mice, dopaminergic differentiation, and transplantation into individually matched host mice showed therapeutic efficacy and lack of immunological response. PMID:18376409

  11. Metabolic characteristics of long-lived mice

    Directory of Open Access Journals (Sweden)

    Andrzej eBartke

    2012-12-01

    Full Text Available Genetic suppression of insulin/insulin-like growth factor signaling (IIS can extend longevity in worms, insects, and mammals. In laboratory mice, mutations with the greatest, most consistent, and best documented positive impact on lifespan are those that disrupt growth hormone (GH release or actions. These mutations lead to major alterations in IIS but also have a variety of effects that are not directly related to the actions of insulin or insulin-like growth factor (IGF-1. Long-lived GH-resistant GHRKO mice with targeted disruption of the GH receptor gene, as well as Ames dwarf (Prop1df and Snell dwarf (Pit1dw mice lacking GH (along with prolactin and TSH, are diminutive in size and have major alterations in body composition and metabolic parameters including increased subcutaneous adiposity, increased relative brain weight, small liver, hypoinsulinemia, mild hypoglycemia, increased adiponectin levels and insulin sensitivity, and reduced serum lipids. Body temperature is reduced in Ames, Snell, and female GHRKO mice. Indirect calorimetry revealed that both Ames dwarf and GHRKO mice utilize more oxygen per gram (g of body weight than sex- and age-matched normal animals from the same strain. They also have reduced respiratory quotient (RQ, implying greater reliance on fats, as opposed to carbohydrates, as an energy source. Differences in oxygen consumption (VO2 were seen in animals fed or fasted during the measurements as well as in animals that had been exposed to 30% calorie restriction or every-other-day feeding. However, at the thermoneutral temperature of 30°C, VO2 did not differ between GHRKO and normal mice. Thus, the increased metabolic rate of the GHRKO mice, at a standard animal room temperature of 23°C, is apparently related to increased energy demands for thermoregulation in these diminutive animals. We suspect that increased oxidative metabolism combined with enhanced fatty acid oxidation contribute to the extended longevity of

  12. Effect of Lactobacillus delbrueckii on cholesterol metabolism in germ-free mice and on atherogenesis in apolipoprotein E knock-out mice

    Directory of Open Access Journals (Sweden)

    Portugal L.R.

    2006-01-01

    Full Text Available Elevated blood cholesterol is an important risk factor associated with atherosclerosis and coronary heart disease. Several studies have reported a decrease in serum cholesterol during the consumption of large doses of fermented dairy products or lactobacillus strains. The proposed mechanism for this effect is the removal or assimilation of intestinal cholesterol by the bacteria, reducing cholesterol absorption. Although this effect was demonstrated in vitro, its relevance in vivo is still controversial. Furthermore, few studies have investigated the role of lactobacilli in atherogenesis. The aim of the present study was to determine the effect of Lactobacillus delbrueckii on cholesterol metabolism in germ-free mice and the possible hypocholesterolemic and antiatherogenic action of these bacteria using atherosclerosis-prone apolipoprotein E (apo E knock-out (KO mice. For this purpose, Swiss/NIH germ-free mice were monoassociated with L. delbrueckii and fed a hypercholesterolemic diet for four weeks. In addition, apo E KO mice were fed a normal chow diet and treated with L. delbrueckii for 6 weeks. There was a reduction in cholesterol excretion in germ-free mice, which was not associated with changes in blood or liver cholesterol concentration. In apo E KO mice, no effect of L. delbrueckii was detected in blood, liver or fecal cholesterol. The atherosclerotic lesion in the aorta was also similar in mice receiving or not these bacteria. In conclusion, these results suggest that, although L. delbrueckii treatment was able to reduce cholesterol excretion in germ-free mice, no hypocholesterolemic or antiatherogenic effect was observed in apo E KO mice.

  13. Development of intraepithelial T lymphocytes in the intestine of irradiated SCID mice by adult liver hematopoietic stem cells from normal mice

    International Nuclear Information System (INIS)

    Yamagiwa, Satoshi; Seki, Shuhji; Shirai, Katsuaki; Yoshida, Yuhei; Miyaji, Chikako; Watanabe, Hisami; Abo, Toru

    1999-01-01

    Background/Aims: We recently reported the adult mouse liver to contain c-kit + stem cells that can give rise to multilineage leukocytes. This study was designed to determine whether or not adult mouse liver stem cells can generate intraepithelial T cells in the intestine as well as to examine the possibility that adult liver c-kit + stem cells originate from the fetal liver. Methods: Adult liver mononuclear cells, bone marrow (BM) cells, liver c-kit + cells or bone BM c-kit + cells of BALB/c mice were i.v. transferred into 4 Gy irradiated CB17/-SCID mice. In other experiments, fetal liver cells from Ly5.1 C57BL/6 mice and T cell depleted adult BM cells from Ly5.2 C57BL/6 mice were simultaneously transferred into irradiated C57BL/6 SCID mice (Ly5.2). At 1 to 8 weeks after cell transfer, the SCID mice were examined. Results: Not only BM cells and BM c-kit + cells but also liver mononuclear cells and liver c-kit + cells reconstituted γδT cells, CD4 + CD8 + double-positive T cells and CDiα + β - T cells of intestinal intraepithelial lymphocytes of SCID mice. Injection of a mixture of fetal liver cells from Ly5.1 C57BL/6 mice and adult BM cells from Ly5.2 C57BL/6 mice into Ly5.2 C57BL/6 SCID mice induced both Ly5.1 and Ly5.2 T cells, while also generating c-kit + cells of both Ly5.1 and Ly5.2 origins in the liver. Conclusions: Adult mouse liver stem cells were able to generate intestinal intraepithelial T cells of the SCID mice, and it is thus suggested that some adult liver stem cells may indeed be derived from the fetal liver. (au)

  14. MDMA reinstates cocaine-seeking behaviour in mice.

    Science.gov (United States)

    Trigo, José Manuel; Orejarena, Maria Juliana; Maldonado, Rafael; Robledo, Patricia

    2009-06-01

    MDMA effects are mediated by monoaminergic systems, which seem to play a central role in cocaine craving and relapse. CD1 mice trained to self-administer cocaine (1 mg/kg/infusion) underwent an extinction procedure in which the cues contingent with drug self-administration remained present. Mice achieving extinction were injected with MDMA (10 mg/kg), d-amphetamine (1 and 2 mg/kg) or saline and tested for reinstatement. Acute MDMA, but not d-amphetamine or saline reinstated cocaine-seeking behaviour in mice in which cocaine self-administration and contingent cues were previously extinguished. Acute MDMA can reinstate cocaine-seeking behaviour in mice.

  15. [Immunodepressant action of cyclophosphamide in different strains of mice].

    Science.gov (United States)

    Pevnitskiĭ, L A; Telegin, L Iu; Bol'shev, V N

    1977-04-01

    A study was made of the immunodepressive effect of cyclophosphamide (CP) on mice of 3 strains (BALB/c, CBA, and DBA/2) immunized with sheep red blood cells (SRBC). With the optimal immunizing dose of the antigen (5 X 10(8) SRBC) the most pronounced immunodepression was noted in DBA/2 mice, and with the high dose (6.2 X 10(9))--in DBA/2 and CBA mice. The CP action proved to depend on the dose of the antigen administered; in BALB/c mice a reduction in the number of the antibody-forming cells was the same with both SRBC doses, in DBA/2 mice an increase of the antigen dose led to reduction of immunode pression, and in CBA mice -- to its enhancement (with sufficiently high CP doses). Determination of the rate of oxidative CP hydroxylation by the liver microsomes of mice showed it to be comparatively low in DBA/2 and CBA mice, and much greater in BALB/c mice. It is supposed that the detected differences in the immunodepressive action of CP could be connected with different sensitivity of the target cells and (or) with the peculiarities of its metabolism in mice belonging to different strains.

  16. Collagen-induced arthritis in mice

    NARCIS (Netherlands)

    Bevaart, Lisette; Vervoordeldonk, Margriet J.; Tak, Paul P.

    2010-01-01

    Collagen-induced arthritis (CIA) in mice is an animal model for rheumatoid arthritis (RA) and can be induced in DBA/1 and C57BL/6 mice using different protocols. The CIA model can be used to unravel mechanisms involved in the development of arthritis and is frequently used to study the effect of new

  17. Preference for and discrimination of paintings by mice.

    Directory of Open Access Journals (Sweden)

    Shigeru Watanabe

    Full Text Available I measured preference for paintings (Renoir vs. Picasso or Kandinsky vs. Mondrian in mice. In general mice did not display a painting preference except for two mice: one preferred Renoir to Picasso, and the other preferred Kandinsky to Mondrian. Thereafter, I examined discrimination of paintings with new mice. When exposure to paintings of one artist was associated with an injection of morphine (3.0 mg/kg, mice displayed conditioned preference for those paintings, showing discrimination of paintings by Renoir from those by Picasso, and paintings by Kandinsky from those by Mondrian after the conditioning. They also exhibited generalization of the preference to novel paintings of the artists. After conditioning with morphine for a set of paintings consisting of two artists, mice showed discrimination between two sets of paintings also from the two artists but not in association with morphine. These results suggest that mice can discriminate not only between an artist's style but also among paintings of the same artist. When mice were trained to discriminate a pair of paintings by Kandinsky and Renoir in an operant chamber equipped with a touch screen, they showed transfer of the discrimination to new pairs of the artists, but did not show transfer of discrimination of paintings by other artists, suggesting generalization.

  18. Hepatotoxicity and nephrotoxicity of 3-bromopyruvate in mice.

    Science.gov (United States)

    Pan, Qiong; Sun, Yiming; Jin, Qili; Li, Qixiang; Wang, Qing; Liu, Hao; Zhao, Surong

    2016-11-01

    To investigate the hepatotoxicity and nephrotoxicity of 3-Bromopyruvate (3BP) in mice. Fifteen nude mice were grafted subcutaneously in the left flank with MDA-MB-231 cells, then all mice were divided into control group (PBS), 3BP group (8 mg/kg), positive group (DNR: 0.8 mg/kg) when tumor volume reached approximately 100 mm3. 28 days later, tumors, livers and kidneys were stored in 4 % formalin solution and stained with hematoxylin and eosin staining. The Kunming mice experiment included control group (PBS), 3BP group (4mg/kg; 8mg/kg; 16mg/kg), positive group (DNR: 0.8 mg/kg). 24 hours later, the blood were used for the determination of hepatic damage serum biomarkers. Livers were stored in 4 % formalin solution for the later detection. 3BP at the dose of 8mg/kg had a good effect on inhibiting tumor growth in nude mice and did not damage liver and kidney tissues. Kunming mice experiment showed 3BP at the dose of 16mg/kg did damage to liver tissues. 3-Bromopyruvate at the dose of suppressing tumor growth did not exhibit hepatotoxicity and nephrotoxicity in nude mice, and the effect on liver was confirmed in Kunming mice.

  19. Impaired cutaneous wound healing in mice lacking tetranectin

    DEFF Research Database (Denmark)

    Iba, Kousuke; Hatakeyama, Naoko; Kojima, Takashi

    2009-01-01

    disruption of the tetranectin gene to elucidate the biological function of tetranectin. In this study, we showed that wound healing was markedly delayed in tetranectin-null mice compared with wild-type mice. A single full-thickness incision was made in the dorsal skin. By 14 days after the incision......, the wounds fully healed in all wild-type mice based on the macroscopic closure; in contrast, the progress of wound healing in the tetranectin null mice appeared to be impaired. In histological analysis, wounds of wild-type mice showed complete reepithelialization and healed by 14 days after the incision....... However, those of tetranectin-null mice never showed complete reepithelialization at 14 days. At 21 days after the injury, the wound healed and was covered with an epidermis. These results supported the fact that tetranectin may play a role in the wound healing process....

  20. Radiation carcinogenesis in scid mice

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Hiroko; Nishimura, Mayumi; Kobayashi, Shigeru; Tsuji, Hideo; Shimada, Yoshiya; Ogiu, Toshiaki [National Inst. of Radiological Sciences, Chiba (Japan); Suzuki, Fumio; Sado, Toshihiko

    1999-06-01

    Scid mice which have the defect of DNA-dependent protein kinase catalitic subunit, exhibit the limited activities of repair from DNA double strand breaks, and are sensitive to ionizing radiation. In order to study the relationship between repair capacity for DNA double strand breaks and carcinogenesis, the effects of ionizing radiation were studied using scid homozygotes (scid/scid), scid heterozygotes (scid/+) and CB-17 (+/+) mice. Both the Scid bone marrow cells and fibroblast cell lines from Scid embryos were highly sensitivity to acute effects of ionizing radiation. Carcinogenesis experiments showed the high incidence of thymic lymphomas (80 to 90%) in 1 to 3 Gy {sup 137}Cs-{gamma}-ray-irradiated Scid mice. (author)

  1. Hepcidin is elevated in mice injected with Mycoplasma arthritidis

    Directory of Open Access Journals (Sweden)

    Kaplan Jerry

    2009-11-01

    Full Text Available Abstract Mycoplasma arthritidis causes arthritis in specific mouse strains. M. arthritidis mitogen (MAM, a superantigen produced by M. arthritidis, activates T cells by forming a complex between the major histocompatability complex II on antigen presenting cells and the T cell receptor on CD4+ T lymphocytes. The MAM superantigen is also known to interact with Toll-like receptors (TLR 2 and 4. Hepcidin, an iron regulator protein, is upregulated by TLR4, IL-6, and IL-1. In this study, we evaluated serum hepcidin, transferrin saturation, ferritin, IL-6, IL-1, and hemoglobin levels in M. arthritidis injected C3H/HeJ (TLR2+/+, TLR4-/- mice and C3H/HeSnJ (TLR2+/+, TLR4+/+ mice over a 21 day period. C3H/HeJ mice have a defective TLR4 and an inability to produce IL-6. We also measured arthritis severity in these mice and the amount of hepcidin transcripts produced by the liver and spleen. C3H/HeJ mice developed a more severe arthritis than that of C3H/HeSnJ mice. Both mice had an increase in serum hepcidin within three days after infection. Hepcidin levels were greater in C3H/HeJ mice despite a nonfunctioning TLR4 and low serum levels of IL-6. Splenic hepcidin production in C3H/HeJ mice was delayed compared to C3H/HeSnJ mice. Unlike C3H/HeSnJ mice, C3H/HeJ mice did not develop a significant rise in serum IL-6 levels but did develop a significant increase in IL-1β during the first ten days after injection. Both mice had an increase in serum ferritin but a decrease in serum transferrin saturation. In conclusion, serum hepcidin regulation in C3H/HeJ mice does not appear to be solely dependent upon TLR4 or IL-6.

  2. Radiologic aspects of epiphysial dysplasia in adults

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, V.F. (Leningradskij Inst. Usovershenstvovaniya Vrachej (USSR))

    The results of radiologic examination of 40 patients aged 15 to 64 years with epiphysial (spondyloepiphysial) displasia, adequate in manifestness to developmental anomaly are analyzed. The radiologic examination involved standard radiographs in standard and atypical projections, radiography with direct enlargement of X-ray appearance, and tomography. Various types of epiphysial deformation have been distinguished as a manifest feature of the above-mentioned dysplastic process. Possible combinations of the tubular bones epiphysial hypoplasia with the damage of other articular components are pointed out. Concomitant degenerative-dystrophic processes are characterized as deforming arthrosis, degenerative-dystrophic lesions with cystoid reconstruction of the articulating bones, and aseptic epiphysial necrosis. X-ray picture of the degenerative-dystrophic lesion with cystoid reconstruction of the hinging bones is disclosed most comprehensively.

  3. Radiologic aspects of epiphysial dysplasia in adults

    International Nuclear Information System (INIS)

    Andreeva, V.F.

    1982-01-01

    The results of radiologic examination of 40 patients aged 15 to 64 years with epiphysial (spondyloepiphysial) displasia, adequate in manifestness to developmental anomaly are analyzed. The radiologic examination involved standard radiographs in standard and atypical projections, radiography with direct enlargement of X-ray appearance, and tomography. Various types of epiphysial deformation have been distinguished as a manifest feature of the above-mentioned dysplastic process. Possible combinations of the tubular bones epiphysial hypoplasia with the damage of other articular components are pointed out. Concomitant degenerative-dystrophic processes are characterized as deforming arthrosis, degenerative-dystrophic lesions with cystoid reconstruction of the articulating bones, and aseptic epiphysial necrosis. X-ray picture of the degenerative-dystrophic lesion with cystoid reconstruction of the hinging bones is disclosed most comprehensively

  4. Surfactant protein D is proatherogenic in mice

    DEFF Research Database (Denmark)

    Sorensen, Grith L; Madsen, Jens; Kejling, Karin

    2006-01-01

    Surfactant protein D (SP-D) is an important innate immune defense molecule that mediates clearance of pathogens and modulates the inflammatory response. Moreover, SP-D is involved in lipid homeostasis, and pulmonary accumulation of phospholipids has previously been observed in SP-D-deficient (Spd......-/-) mice. Atherogenesis involves both inflammation and lipid deposition, and we investigated the role of SP-D in the development of atherosclerosis. SP-D synthesis was localized to vascular endothelial cells. Atherosclerotic lesion areas were 5.6-fold smaller in the aortic roots in Spd-/- mice compared...... with wild-type C57BL/6N mice on an atherogenic diet. HDL cholesterol (HDL-C) was significantly elevated in Spd-/- mice. Treatment of Spd-/- mice with a recombinant fragment of human SP-D resulted in decreases of HDL-C (21%) as well as total cholesterol (26%), and LDL cholesterol (28%). Plasma TNF...

  5. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    Science.gov (United States)

    Kashyap, Sonu; Warner, Gina; Hu, Zeng; Gao, Feng; Osman, Mazen; Al Saiegh, Yousif; Lien, Karen R; Nath, Karl; Grande, Joseph P

    2017-01-01

    Renovascular hypertension (RVH) has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C) model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO) protects the stenotic kidney (STK) from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS) was established in Wild-type (WT) and Smad3 KO mice (129 genetic background) by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  6. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    Directory of Open Access Journals (Sweden)

    Sonu Kashyap

    Full Text Available Renovascular hypertension (RVH has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO protects the stenotic kidney (STK from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS was established in Wild-type (WT and Smad3 KO mice (129 genetic background by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  7. Masking Responses to Light in Period Mutant Mice

    Science.gov (United States)

    Pendergast, Julie S.; Yamazaki, Shin

    2013-01-01

    Masking is an acute effect of an external signal on an overt rhythm and is distinct from the process of entrainment. In the current study, we investigated the phase dependence and molecular mechanisms regulating masking effects of light pulses on spontaneous locomotor activity in mice. The circadian genes, Period1 (Per1) and Per2, are necessary components of the timekeeping machinery and entrainment by light appears to involve the induction of the expression of Per1 and Per2 mRNAs in the suprachiasmatic nuclei (SCN). We assessed the roles of the Per genes in regulating masking by assessing the effects of light pulses on nocturnal locomotor activity in C57BL/6J Per mutant mice. We found that Per1−/− and Per2−/− mice had robust negative masking responses to light. In addition, the locomotor activity of Per1−/−/Per2−/− mice appeared to be rhythmic in the light-dark (LD) cycle, and the phase of activity onset was advanced (but varied among individual mice) relative to lights off. This rhythm persisted for 1 to 2 days in constant darkness in some Per1−/−/Per2−/− mice. Furthermore, Per1−/−/Per2−/− mice exhibited robust negative masking responses to light. Negative masking was phase dependent in wild-type mice such that maximal suppression was induced by light pulses at zeitgeber time 14 (ZT14) and gradually weaker suppression occurred during light pulses at ZT16 and ZT18. By measuring the phase shifts induced by the masking protocol (light pulses were administered to mice maintained in the LD cycle), we found that the phase responsiveness of Per mutant mice was altered compared to wild-types. Together, our data suggest that negative masking responses to light are robust in Per mutant mice and that the Per1−/−/Per2−/− SCN may be a light-driven, weak/damping oscillator. PMID:21793695

  8. Chronotoxicity of glufosinate ammonium in mice.

    Science.gov (United States)

    Yoshiyama, Y; Kobayashi, T; Kondo, R; Tomonaga, F; Ohwada, T

    1995-02-01

    The effect of a circadian-stage dependent dosing schedule on the toxicity of glufosinate was studied in mice. Male ICR mice were housed in a standardized 12:12 light:dark cycle for 3 w. Each animal was given 1500 or 3000 mg glufosinate/kg po. A highly significant circadian rhythm occurred in the resulting mortality, with the highest mortality from doses given during the light phase and the lowest from doses administered during the dark phase. The circadian-stage dependent dosing schedule had a marked influence on the pattern of acute glufosinate toxicity in mice.

  9. Microbiota-Derived Metabolic Factors Reduce Campylobacteriosis in Mice.

    Science.gov (United States)

    Sun, Xiaolun; Winglee, Kathryn; Gharaibeh, Raad Z; Gauthier, Josee; He, Zhen; Tripathi, Prabhanshu; Avram, Dorina; Bruner, Steven; Fodor, Anthony; Jobin, Christian

    2018-05-01

    Campylobacter jejuni, a prevalent foodborne bacterial pathogen, exploits the host innate response to induce colitis. Little is known about the roles of microbiota in C jejuni-induced intestinal inflammation. We investigated interactions between microbiota and intestinal cells during C jejuni infection of mice. Germ-free C57BL/6 Il10 -/- mice were colonized with conventional microbiota and infected with a single dose of C jejuni (10 9 colony-forming units/mouse) via gavage. Conventional microbiota were cultured under aerobic, microaerobic, or anaerobic conditions and orally transplanted into germ-free Il10 -/- mice. Colon tissues were collected from mice and analyzed by histology, real-time polymerase chain reaction, and immunoblotting. Fecal microbiota and bile acids were analyzed with 16S sequencing and high-performance liquid chromatography with mass spectrometry, respectively. Introduction of conventional microbiota reduced C jejuni-induced colitis in previously germ-free Il10 -/- mice, independent of fecal load of C jejuni, accompanied by reduced activation of mammalian target of rapamycin. Microbiota transplantation and 16S ribosomal DNA sequencing experiments showed that Clostridium XI, Bifidobacterium, and Lactobacillus were enriched in fecal samples from mice colonized with microbiota cultured in anaerobic conditions (which reduce colitis) compared with mice fed microbiota cultured under aerobic conditions (susceptible to colitis). Oral administration to mice of microbiota-derived secondary bile acid sodium deoxycholate, but not ursodeoxycholic acid or lithocholic acid, reduced C jejuni-induced colitis. Depletion of secondary bile acid-producing bacteria with antibiotics that kill anaerobic bacteria (clindamycin) promoted C jejuni-induced colitis in specific pathogen-free Il10 -/- mice compared with the nonspecific antibiotic nalidixic acid; colitis induction by antibiotics was associated with reduced level of luminal deoxycholate. We identified a

  10. Transplantation of canine osteosarcoma into nude mice

    International Nuclear Information System (INIS)

    Shifrine, M.; Taylor, N.; Holloway, G.; Arnstein, P.R.; Chrisp, C.; Pool, R.; Whaley, C.

    1975-01-01

    Osteosarcomas from dogs were inoculated subcutaneously into mice. Sixty days later six mice had tumors that gradually increased in size. All tumors were undifferentiated sarcomas. Karyotypes of osteosarcomas grown in tissue culture and of tumors from mice inoculated with the culture were similar with two marker chromosomes. It was thus shown that radioinduced osteosarcomas can be cultivated in tissue culture while retaining their marker chromosomes and malignancy

  11. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice.

    Science.gov (United States)

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS.

  12. Tadalafil alleviates muscle ischemia in patients with Becker muscular dystrophy

    Science.gov (United States)

    Martin, Elizabeth A.; Barresi, Rita; Byrne, Barry J.; Tsimerinov, Evgeny I.; Scott, Bryan L.; Walker, Ashley E.; Gurudevan, Swaminatha V.; Anene, Francine; Elashoff, Robert M.; Thomas, Gail D.; Victor, Ronald G.

    2013-01-01

    Becker muscular dystrophy (BMD) is a progressive X-linked muscle wasting disease for which there is no treatment. Like Duchenne muscular dystrophy (DMD), BMD is caused by mutations in the gene encoding dystrophin, a structural cytoskeletal protein that also targets other proteins to the muscle sarcolemma. Among these is neuronal nitric oxide synthase (nNOSμ), which requires certain spectrin-like repeats in dystrophin’s rod domain and the adaptor protein α-syntrophin to be targeted to the sarcolemma. When healthy skeletal muscle is subjected to exercise, sarcolemmal nNOSμ-derived nitric oxide (NO) attenuates local α-adrenergic vasoconstriction thereby optimizing perfusion of muscle. We found previously that this protective mechanism is defective—causing functional muscle ischemia—in dystrophin-deficient muscles of the mdx mouse (a model of DMD) and of children with DMD, in whom nNOSμ is mislocalized to the cytosol instead of the sarcolemma. Here, we report that this protective mechanism also is defective in men with BMD in whom the most common dystrophin mutations disrupt sarcolemmal targeting of nNOSμ. In these men, the vasoconstrictor response, measured as a decrease in muscle oxygenation, to reflex sympathetic activation is not appropriately attenuated during exercise of the dystrophic muscles. In a randomized placebo-controlled cross-over trial, we show that functional muscle ischemia is alleviated and normal blood flow regulation fully restored in the muscles of men with BMD by boosting NO-cGMP signaling with a single dose of the drug tadalafil, a phosphodiesterase (PDE5A) inhibitor. These results further support an essential role for sarcolemmal nNOSμ in the normal modulation of sympathetic vasoconstriction in exercising human skeletal muscle and implicate the NO-cGMP pathway as a putative new target for treating BMD. PMID:23197572

  13. A duchenne muscular dystrophy gene hot spot mutation in dystrophin-deficient cavalier king charles spaniels is amenable to exon 51 skipping.

    Directory of Open Access Journals (Sweden)

    Gemma L Walmsley

    2010-01-01

    Full Text Available Duchenne muscular dystrophy (DMD, which afflicts 1 in 3500 boys, is one of the most common genetic disorders of children. This fatal degenerative condition is caused by an absence or deficiency of dystrophin in striated muscle. Most affected patients have inherited or spontaneous deletions in the dystrophin gene that disrupt the reading frame resulting in unstable truncated products. For these patients, restoration of the reading frame via antisense oligonucleotide-mediated exon skipping is a promising therapeutic approach. The major DMD deletion "hot spot" is found between exons 45 and 53, and skipping exon 51 in particular is predicted to ameliorate the dystrophic phenotype in the greatest number of patients. Currently the mdx mouse is the most widely used animal model of DMD, although its mild phenotype limits its suitability in clinical trials. The Golden Retriever muscular dystrophy (GRMD model has a severe phenotype, but due to its large size, is expensive to use. Both these models have mutations in regions of the dystrophin gene distant from the commonly mutated DMD "hot spot".Here we describe the severe phenotype, histopathological findings, and molecular analysis of Cavalier King Charles Spaniels with dystrophin-deficient muscular dystrophy (CKCS-MD. The dogs harbour a missense mutation in the 5' donor splice site of exon 50 that results in deletion of exon 50 in mRNA transcripts and a predicted premature truncation of the translated protein. Antisense oligonucleotide-mediated skipping of exon 51 in cultured myoblasts from an affected dog restored the reading frame and protein expression.Given the small size of the breed, the amiable temperament and the nature of the mutation, we propose that CKCS-MD is a valuable new model for clinical trials of antisense oligonucleotide-induced exon skipping and other therapeutic approaches for DMD.

  14. Increased Expression of Laminin Subunit Alpha 1 Chain by dCas9-VP160.

    Science.gov (United States)

    Perrin, Arnaud; Rousseau, Joël; Tremblay, Jacques P

    2017-03-17

    Laminin-111 protein complex links the extracellular matrix to integrin α7β1 in sarcolemma, thus replacing in dystrophic muscles links normally insured by the dystrophin complex. Laminin-111 injection in mdx mouse stabilized sarcolemma, restored serum creatine kinase to wild-type levels, and protected muscles from exercised-induced damages. These results suggested that increased laminin-111 is a potential therapy for DMD. Laminin subunit beta 1 and laminin subunit gamma 1 are expressed in adult human muscle, but laminin subunit alpha 1 (LAMA1) gene is expressed only during embryogenesis. We thus developed an alternative method to laminin-111 protein repeated administration by inducing expression of the endogenous mouse Lama1 gene. This was done with the CRSPR/Cas9 system, i.e., by targeting the Lama1 promoter with one or several gRNAs and a dCas9 coupled with the VP160 transcription activation domain. Lama1 mRNA (qRT-PCR) and proteins (immunohistochemistry and western blot) were not detected in the control C2C12 myoblasts and in control muscles. However, significant expression was observed in cells transfected and in mouse muscles electroporated with plasmids coding for dCas9-VP160 and a gRNA. Larger synergic increases were observed by using two or three gRNAs. The increased Lama1 expression did not modify the expression of the α7 and β1 integrins. Increased expression of Lama1 by the CRISPR/Cas9 system will have to be further investigated by systemic delivery of the CRISPR/Cas9 components to verify whether this could be a treatment for several myopathies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Tadalafil alleviates muscle ischemia in patients with Becker muscular dystrophy.

    Science.gov (United States)

    Martin, Elizabeth A; Barresi, Rita; Byrne, Barry J; Tsimerinov, Evgeny I; Scott, Bryan L; Walker, Ashley E; Gurudevan, Swaminatha V; Anene, Francine; Elashoff, Robert M; Thomas, Gail D; Victor, Ronald G

    2012-11-28

    Becker muscular dystrophy (BMD) is a progressive X-linked muscle wasting disease for which there is no treatment. Like Duchenne muscular dystrophy (DMD), BMD is caused by mutations in the gene encoding dystrophin, a structural cytoskeletal protein that also targets other proteins to the muscle sarcolemma. Among these is neuronal nitric oxide synthase (nNOSμ), which requires certain spectrin-like repeats in dystrophin's rod domain and the adaptor protein α-syntrophin to be targeted to the sarcolemma. When healthy skeletal muscle is subjected to exercise, sarcolemmal nNOSμ-derived NO attenuates local α-adrenergic vasoconstriction, thereby optimizing perfusion of muscle. We found previously that this protective mechanism is defective-causing functional muscle ischemia-in dystrophin-deficient muscles of the mdx mouse (a model of DMD) and of children with DMD, in whom nNOSμ is mislocalized to the cytosol instead of the sarcolemma. We report that this protective mechanism also is defective in men with BMD in whom the most common dystrophin mutations disrupt sarcolemmal targeting of nNOSμ. In these men, the vasoconstrictor response, measured as a decrease in muscle oxygenation, to reflex sympathetic activation is not appropriately attenuated during exercise of the dystrophic muscles. In a randomized placebo-controlled crossover trial, we show that functional muscle ischemia is alleviated and normal blood flow regulation is fully restored in the muscles of men with BMD by boosting NO-cGMP (guanosine 3',5'-monophosphate) signaling with a single dose of the drug tadalafil, a phosphodiesterase 5A inhibitor. These results further support an essential role for sarcolemmal nNOSμ in the normal modulation of sympathetic vasoconstriction in exercising human skeletal muscle and implicate the NO-cGMP pathway as a putative new target for treating BMD.

  16. Introducing Clicker Training as a Cognitive Enrichment for Laboratory Mice.

    Science.gov (United States)

    Leidinger, Charlotte; Herrmann, Felix; Thöne-Reineke, Christa; Baumgart, Nadine; Baumgart, Jan

    2017-03-06

    Establishing new refinement strategies in laboratory animal science is a central goal in fulfilling the requirements of Directive 2010/63/EU. Previous research determined a profound impact of gentle handling protocols on the well-being of laboratory mice. By introducing clicker training to the keeping of mice, not only do we promote the amicable treatment of mice, but we also enable them to experience cognitive enrichment. Clicker training is a form of positive reinforcement training using a conditioned secondary reinforcer, the "click" sound of a clicker, which serves as a time bridge between the strengthened behavior and an upcoming reward. The effective implementation of the clicker training protocol with a cohort of 12 BALB/c inbred mice of each sex proved to be uncomplicated. The mice learned rather quickly when challenged with tasks of the clicker training protocol, and almost all trained mice overcame the challenges they were given (100% of female mice and 83% of male mice). This study has identified that clicker training for mice strongly correlates with reduced fear in the mice during human-mice interactions, as shown by reduced anxiety-related behaviors (e.g., defecation, vocalization, and urination) and fewer depression-like behaviors (e.g., floating). By developing a reliable protocol that can be easily integrated into the daily routine of the keeping of laboratory mice, the lifetime experience of welfare in the mice can be improved substantially.

  17. Molecular Determinants of Influenza Virus Pathogenesis in Mice

    Science.gov (United States)

    Katz, Jaqueline M.; York, Ian A.

    2015-01-01

    Mice are widely used for studying influenza virus pathogenesis and immunology because of their low cost, the wide availability of mouse-specific reagents, and the large number of mouse strains available, including knockout and transgenic strains. However, mice do not fully recapitulate the signs of influenza infection of humans: transmission of influenza between mice is much less efficient than in humans, and influenza viruses often require adaptation before they are able to efficiently replicate in mice. In the process of mouse adaptation, influenza viruses acquire mutations that enhance their ability to attach to mouse cells, replicate within the cells, and suppress immunity, among other functions. Many such mouse-adaptive mutations have been identified, covering all 8 genomic segments of the virus. Identification and analysis of these mutations have provided insight into the molecular determinants of influenza virulence and pathogenesis, not only in mice but also in humans and other species. In particular, several mouse-adaptive mutations of avian influenza viruses have proved to be general mammalian-adaptive changes that are potential markers of pre-pandemic viruses. As well as evaluating influenza pathogenesis, mice have also been used as models for evaluation of novel vaccines and anti-viral therapies. Mice can be a useful animal model for studying influenza biology as long as differences between human and mice infections are taken into account. PMID:25038937

  18. Testosterone and Dihydrotestosterone Differentially Improve Cognition in Aged Female Mice

    Science.gov (United States)

    Benice, Ted S.; Raber, Jacob

    2009-01-01

    Compared with age-matched male mice, female mice experience a more severe age-related cognitive decline (ACD). Since androgens are less abundant in aged female mice compared with aged male mice, androgen supplementation may enhance cognition in aged female mice. To test this, we assessed behavioral performance on a variety of tasks in 22- to…

  19. Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy.

    Science.gov (United States)

    Larcher, Thibaut; Lafoux, Aude; Tesson, Laurent; Remy, Séverine; Thepenier, Virginie; François, Virginie; Le Guiner, Caroline; Goubin, Helicia; Dutilleul, Maéva; Guigand, Lydie; Toumaniantz, Gilles; De Cian, Anne; Boix, Charlotte; Renaud, Jean-Baptiste; Cherel, Yan; Giovannangeli, Carine; Concordet, Jean-Paul; Anegon, Ignacio; Huchet, Corinne

    2014-01-01

    A few animal models of Duchenne muscular dystrophy (DMD) are available, large ones such as pigs or dogs being expensive and difficult to handle. Mdx (X-linked muscular dystrophy) mice only partially mimic the human disease, with limited chronic muscular lesions and muscle weakness. Their small size also imposes limitations on analyses. A rat model could represent a useful alternative since rats are small animals but 10 times bigger than mice and could better reflect the lesions and functional abnormalities observed in DMD patients. Two lines of Dmd mutated-rats (Dmdmdx) were generated using TALENs targeting exon 23. Muscles of animals of both lines showed undetectable levels of dystrophin by western blot and less than 5% of dystrophin positive fibers by immunohistochemistry. At 3 months, limb and diaphragm muscles from Dmdmdx rats displayed severe necrosis and regeneration. At 7 months, these muscles also showed severe fibrosis and some adipose tissue infiltration. Dmdmdx rats showed significant reduction in muscle strength and a decrease in spontaneous motor activity. Furthermore, heart morphology was indicative of dilated cardiomyopathy associated histologically with necrotic and fibrotic changes. Echocardiography showed significant concentric remodeling and alteration of diastolic function. In conclusion, Dmdmdx rats represent a new faithful small animal model of DMD.

  20. Inherent and antigen-induced airway hyperreactivity in NC mice

    OpenAIRE

    Tetsuto Kobayashi; Toru Miura; Tomoko Haba; Miyuki Sato; Masao Takei; Isao Serizawa

    1999-01-01

    In order to clarify the airway physiology of NC mice, the following experiments were carried out. To investigate inherent airway reactivity, we compared tracheal reactivity to various chemical mediators in NC, BALB/c, C57BL/6 and A/J mice in vitro. NC mice showed significantly greater reactivity to acetylcholine than BALB/c and C57BL/6 mice and a reactivity comparable to that of A/J mice, which are known as high responders. Then, airway reactivity to acetylcholine was investigated in those st...