WorldWideScience

Sample records for mdr efflux pumps

  1. Multidrug Efflux Pumps in Staphylococcus aureus: an Update

    Science.gov (United States)

    Costa, Sofia Santos; Viveiros, Miguel; Amaral, Leonard; Couto, Isabel

    2013-01-01

    The emergence of infections caused by multi- or pan-resistant bacteria in the hospital or in the community settings is an increasing health concern. Albeit there is no single resistance mechanism behind multiresistance, multidrug efflux pumps, proteins that cells use to detoxify from noxious compounds, seem to play a key role in the emergence of these multidrug resistant (MDR) bacteria. During the last decades, experimental data has established their contribution to low level resistance to antimicrobials in bacteria and their potential role in the appearance of MDR phenotypes, by the extrusion of multiple, unrelated compounds. Recent studies suggest that efflux pumps may be used by the cell as a first-line defense mechanism, avoiding the drug to reach lethal concentrations, until a stable, more efficient alteration occurs, that allows survival in the presence of that agent. In this paper we review the current knowledge on MDR efflux pumps and their intricate regulatory network in Staphylococcus aureus, a major pathogen, responsible from mild to life-threatening infections. Particular emphasis will be given to the potential role that S. aureus MDR efflux pumps, either chromosomal or plasmid-encoded, have on resistance towards different antimicrobial agents and on the selection of drug - resistant strains. We will also discuss the many questions that still remain on the role of each specific efflux pump and the need to establish appropriate methodological approaches to address all these questions. PMID:23569469

  2. Multidrug Efflux Pumps in Staphylococcus aureus: an Update.

    Science.gov (United States)

    Costa, Sofia Santos; Viveiros, Miguel; Amaral, Leonard; Couto, Isabel

    2013-01-01

    The emergence of infections caused by multi- or pan-resistant bacteria in the hospital or in the community settings is an increasing health concern. Albeit there is no single resistance mechanism behind multiresistance, multidrug efflux pumps, proteins that cells use to detoxify from noxious compounds, seem to play a key role in the emergence of these multidrug resistant (MDR) bacteria. During the last decades, experimental data has established their contribution to low level resistance to antimicrobials in bacteria and their potential role in the appearance of MDR phenotypes, by the extrusion of multiple, unrelated compounds. Recent studies suggest that efflux pumps may be used by the cell as a first-line defense mechanism, avoiding the drug to reach lethal concentrations, until a stable, more efficient alteration occurs, that allows survival in the presence of that agent. In this paper we review the current knowledge on MDR efflux pumps and their intricate regulatory network in Staphylococcus aureus, a major pathogen, responsible from mild to life-threatening infections. Particular emphasis will be given to the potential role that S. aureus MDR efflux pumps, either chromosomal or plasmid-encoded, have on resistance towards different antimicrobial agents and on the selection of drug - resistant strains. We will also discuss the many questions that still remain on the role of each specific efflux pump and the need to establish appropriate methodological approaches to address all these questions.

  3. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations.

    Science.gov (United States)

    Sun, Jingjing; Deng, Ziqing; Yan, Aixin

    2014-10-17

    Multidrug resistance (MDR) refers to the capability of bacterial pathogens to withstand lethal doses of structurally diverse drugs which are capable of eradicating non-resistant strains. MDR has been identified as a major threat to the public health of human being by the World Health Organization (WHO). Among the four general mechanisms that cause antibiotic resistance including target alteration, drug inactivation, decreased permeability and increased efflux, drug extrusion by the multidrug efflux pumps serves as an important mechanism of MDR. Efflux pumps not only can expel a broad range of antibiotics owing to their poly-substrate specificity, but also drive the acquisition of additional resistance mechanisms by lowering intracellular antibiotic concentration and promoting mutation accumulation. Over-expression of multidrug efflux pumps have been increasingly found to be associated with clinically relevant drug resistance. On the other hand, accumulating evidence has suggested that efflux pumps also have physiological functions in bacteria and their expression is subject tight regulation in response to various of environmental and physiological signals. A comprehensive understanding of the mechanisms of drug extrusion, and regulation and physiological functions of efflux pumps is essential for the development of anti-resistance interventions. In this review, we summarize the development of these research areas in the recent decades and present the pharmacological exploitation of efflux pump inhibitors as a promising anti-drug resistance intervention. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Detection of efflux pump activity among clinical isolates of ...

    African Journals Online (AJOL)

    Purpose: To detect efflux pump activity (EPA) and screening a suspected efflux pump inhibitor (EPI) [1- (3-(trifluoromethyl)benzyl]-piperazine (TFMBP)], which could help in reducing multi-drug resistance (MDR). Methods: Eighteen isolates, viz, 14 S. aureus, 2 S. lentus, 1 S. xylosus and 1 Micrococcus species from various ...

  5. New methods for the identification of efflux mediated MDR bacteria, genetic assessment of regulators and efflux pump constituents, characterization of efflux systems and screening for inhibitors of efflux pumps

    DEFF Research Database (Denmark)

    Viveiros, M; Martins, M; Couto, I

    2008-01-01

    We have developed a number of methods that identify efflux pump mediated multi-drug resistant bacteria, characterize efflux systems and screen for inhibitors of efflux pumps. These approaches were complemented by the quantification of the expression of genes that regulate and code for constituents...

  6. A requirement of TolC and MDR efflux pumps for acid adaptation and GadAB induction in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Kari N W Deininger

    Full Text Available BACKGROUND: The TolC outer membrane channel is a key component of several multidrug resistance (MDR efflux pumps driven by H(+ transport in Escherichia coli. While tolC expression is under the regulation of the EvgA-Gad acid resistance regulon, the role of TolC in growth at low pH and extreme-acid survival is unknown. METHODS AND PRINCIPAL FINDINGS: TolC was required for extreme-acid survival (pH 2 of strain W3110 grown aerobically to stationary phase. A tolC deletion decreased extreme-acid survival (acid resistance of aerated pH 7.0-grown cells by 10(5-fold and of pH 5.5-grown cells by 10-fold. The requirement was specific for acid resistance since a tolC defect had no effect on aerobic survival in extreme base (pH 10. TolC was required for expression of glutamate decarboxylase (GadA, GadB, a key component of glutamate-dependent acid resistance (Gad. TolC was also required for maximal exponential growth of E. coli K-12 W3110, in LBK medium buffered at pH 4.5-6.0, but not at pH 6.5-8.5. The TolC growth requirement in moderate acid was independent of Gad. TolC-associated pump components EmrB and MdtB contributed to survival in extreme acid (pH 2, but were not required for growth at pH 5. A mutant lacking the known TolC-associated efflux pumps (acrB, acrD, emrB, emrY, macB, mdtC, mdtF, acrEF showed no growth defect at acidic pH and a relatively small decrease in extreme-acid survival when pre-grown at pH 5.5. CONCLUSIONS: TolC and proton-driven MDR efflux pump components EmrB and MdtB contribute to E. coli survival in extreme acid and TolC is required for maximal growth rates below pH 6.5. The TolC enhancement of extreme-acid survival includes Gad induction, but TolC-dependent growth rates below pH 6.5 do not involve Gad. That MDR resistance can enhance growth and survival in acid is an important consideration for enteric organisms passing through the acidic stomach.

  7. New Roads Leading to Old Destinations: Efflux Pumps as Targets to Reverse Multidrug Resistance in Bacteria

    Directory of Open Access Journals (Sweden)

    Gabriella Spengler

    2017-03-01

    Full Text Available Multidrug resistance (MDR has appeared in response to selective pressures resulting from the incorrect use of antibiotics and other antimicrobials. This inappropriate application and mismanagement of antibiotics have led to serious problems in the therapy of infectious diseases. Bacteria can develop resistance by various mechanisms and one of the most important factors resulting in MDR is efflux pump-mediated resistance. Because of the importance of the efflux-related multidrug resistance the development of new therapeutic approaches aiming to inhibit bacterial efflux pumps is a promising way to combat bacteria having over-expressed MDR efflux systems. The definition of an efflux pump inhibitor (EPI includes the ability to render the bacterium increasingly more sensitive to a given antibiotic or even reverse the multidrug resistant phenotype. In the recent years numerous EPIs have been developed, although so far their clinical application has not yet been achieved due to their in vivo toxicity and side effects. In this review, we aim to give a short overview of efflux mediated resistance in bacteria, EPI compounds of plant and synthetic origin, and the possible methods to investigate and screen EPI compounds in bacterial systems.

  8. The ins and outs of RND efflux pumps in Escherichia coli.

    Science.gov (United States)

    Anes, João; McCusker, Matthew P; Fanning, Séamus; Martins, Marta

    2015-01-01

    Infectious diseases remain one of the principal causes of morbidity and mortality in the world. Relevant authorities including the WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. They have also reaffirmed the urgent need for investment in the discovery and development of new antibiotics and therapeutic approaches to treat multidrug resistant (MDR) bacteria. The extensive use of antimicrobial compounds in diverse environments, including farming and healthcare, has been identified as one of the main causes for the emergence of MDR bacteria. Induced selective pressure has led bacteria to develop new strategies of defense against these chemicals. Bacteria can accomplish this by several mechanisms, including enzymatic inactivation of the target compound; decreased cell permeability; target protection and/or overproduction; altered target site/enzyme and increased efflux due to over-expression of efflux pumps. Efflux pumps can be specific for a single substrate or can confer resistance to multiple antimicrobials by facilitating the extrusion of a broad range of compounds including antibiotics, heavy metals, biocides and others, from the bacterial cell. To overcome antimicrobial resistance caused by active efflux, efforts are required to better understand the fundamentals of drug efflux mechanisms. There is also a need to elucidate how these mechanisms are regulated and how they respond upon exposure to antimicrobials. Understanding these will allow the development of combined therapies using efflux inhibitors together with antibiotics to act on Gram-negative bacteria, such as the emerging globally disseminated MDR pathogen Escherichia coli ST131 (O25:H4). This review will summarize the current knowledge on resistance-nodulation-cell division efflux mechanisms in E. coli, a bacteria responsible for community and hospital-acquired infections, as well as foodborne outbreaks worldwide.

  9. The Ins and Outs of RND Efflux Pumps in Escherichia coli

    Directory of Open Access Journals (Sweden)

    João eAnes

    2015-06-01

    Full Text Available Infectious diseases remain one of the principal causes of morbidity and mortality in the world. Relevant authorities including the WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. They have also reaffirmed the urgent need for investment in the discovery and development of new antibiotics and therapeutic approaches to treat multidrug resistant (MDR bacteria.The extensive use of antimicrobial compounds in diverse environments, including farming and healthcare, has been identified as one of the main causes for the emergence of MDR bacteria. Induced selective pressure has led bacteria to develop new strategies of defence against these chemicals. Bacteria can accomplish this by several mechanisms, including enzymatic inactivation of the target compound; decreased cell permeability; target protection and/or overproduction; altered target site/enzyme and increased efflux due to over-expression of efflux pumps.Efflux pumps can be specific for a single substrate or can confer resistance to multiple antimicrobials by facilitating the extrusion of a broad range of compounds including antibiotics, heavy metals, biocides and others, from the bacterial cell. To overcome antimicrobial resistance caused by active efflux, efforts are required to better understand the fundamentals of drug efflux mechanisms. There is also a need to elucidate how these mechanisms are regulated and how they respond upon exposure to antimicrobials. Understanding these will allow the development of combined therapies using efflux inhibitors together with antibiotics to act on Gram-negative bacteria, such as the emerging globally disseminated MDR pathogen Escherichia coli ST131 (O25:H4. This review will summarise the current knowledge on resistance-nodulation-cell division efflux mechanisms in E. coli, a bacteria responsible for community and hospital-acquired infections, as well as foodborne

  10. The ins and outs of RND efflux pumps in Escherichia coli

    Science.gov (United States)

    Anes, João; McCusker, Matthew P.; Fanning, Séamus; Martins, Marta

    2015-01-01

    Infectious diseases remain one of the principal causes of morbidity and mortality in the world. Relevant authorities including the WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. They have also reaffirmed the urgent need for investment in the discovery and development of new antibiotics and therapeutic approaches to treat multidrug resistant (MDR) bacteria. The extensive use of antimicrobial compounds in diverse environments, including farming and healthcare, has been identified as one of the main causes for the emergence of MDR bacteria. Induced selective pressure has led bacteria to develop new strategies of defense against these chemicals. Bacteria can accomplish this by several mechanisms, including enzymatic inactivation of the target compound; decreased cell permeability; target protection and/or overproduction; altered target site/enzyme and increased efflux due to over-expression of efflux pumps. Efflux pumps can be specific for a single substrate or can confer resistance to multiple antimicrobials by facilitating the extrusion of a broad range of compounds including antibiotics, heavy metals, biocides and others, from the bacterial cell. To overcome antimicrobial resistance caused by active efflux, efforts are required to better understand the fundamentals of drug efflux mechanisms. There is also a need to elucidate how these mechanisms are regulated and how they respond upon exposure to antimicrobials. Understanding these will allow the development of combined therapies using efflux inhibitors together with antibiotics to act on Gram-negative bacteria, such as the emerging globally disseminated MDR pathogen Escherichia coli ST131 (O25:H4). This review will summarize the current knowledge on resistance-nodulation-cell division efflux mechanisms in E. coli, a bacteria responsible for community and hospital-acquired infections, as well as foodborne outbreaks worldwide

  11. From phenothiazine to 3-phenyl-1,4-benzothiazine derivatives as inhibitors of the Staphylococcus aureus NorA multidrug efflux pump.

    Science.gov (United States)

    Sabatini, Stefano; Kaatz, Glenn W; Rossolini, Gian Maria; Brandini, David; Fravolini, Arnaldo

    2008-07-24

    Overexpression of efflux pumps is an important mechanism by which bacteria evade effects of substrate antimicrobial agents and inhibition of such pumps is a promising strategy to circumvent this resistance mechanism. NorA is a Staphylococcus aureus multidrug efflux pump, the activity of which confers decreased susceptibility to many structurally unrelated agents, including fluoroquinolones, resulting in a multidrug resistant (MDR) phenotype. In this work, a series of 1,4-benzothiazine derivatives were designed and synthesized as a minimized structural template of phenothiazine MDR efflux pump inhibitors (EPIs) in an effort to identify more potent S. aureus NorA EPIs. Almost all derivatives evaluated showed good activity in combination with ciprofloxacin against S. aureus ATCC 25923; some were capable of completely restoring ciprofloxacin activity in a norA-overexpressing strain (SA-K2378). Compounds 6k and 7j displayed good activity against SA-1199B, a strain that also overexpresses norA, in an ethidium bromide (EtBr) efflux inhibition assay.

  12. YnfA , a SMR family efflux pump is abundant in Escherichia coli isolates from urinary infection

    Directory of Open Access Journals (Sweden)

    S K Sarkar

    2015-01-01

    Full Text Available A quantitative study was undertaken to determine the expression level of different efflux pumps in multi-drug-resistant (MDR Escherichia coli isolates from urinary infection. We have determined the presence of different efflux pumps and measured the expression level of tolC, mdfA, norE and ynfA genes among 48 isolates by quantitative real-time PCR. The expression level of tolC and ynfA was constantly high and observed among 75-80% of isolates, whereas mdfA and norE were expressed occasionally. Our findings suggest that ynfA, a new SMR efflux pump gene family member increases the antibiotics′ resistance in E. coli.

  13. Multidrug Efflux Pumps in Staphylococcus aureus: an Update

    OpenAIRE

    Costa, Sofia Santos; Viveiros, Miguel; Amaral, Leonard; Couto, Isabel

    2013-01-01

    The emergence of infections caused by multi- or pan-resistant bacteria in the hospital or in the community settings is an increasing health concern. Albeit there is no single resistance mechanism behind multiresistance, multidrug efflux pumps, proteins that cells use to detoxify from noxious compounds, seem to play a key role in the emergence of these multidrug resistant (MDR) bacteria. During the last decades, experimental data has established their contribution to low level resistance to an...

  14. Ligand Promiscuity between the Efflux Pumps Human P-Glycoprotein and S. aureus NorA.

    Science.gov (United States)

    Brincat, Jean Pierre; Broccatelli, Fabio; Sabatini, Stefano; Frosini, Maria; Neri, Annalisa; Kaatz, Glenn W; Cruciani, Gabriele; Carosati, Emanuele

    2012-03-08

    Thirty-two diverse compounds were evaluated for their ability to inhibit both Pgp-mediated efflux in mouse T-lymphoma L5178 MDR1 and NorA-mediated efflux in S. aureus SA-1199B. Only four compounds were strong inhibitors of both efflux pumps. Three compounds were found to inhibit Pgp exclusively and strongly, while seven compounds inhibited only NorA. These results demonstrate that Pgp and NorA inhibitors do not necessarily overlap, opening the way to safer therapeutic use of effective NorA inhibitors.

  15. Evaluation of the tannic acid inhibitory effect against the NorA efflux pump of Staphylococcus aureus.

    Science.gov (United States)

    Tintino, Saulo R; Oliveira-Tintino, Cícera D M; Campina, Fábia F; Silva, Raimundo L P; Costa, Maria do S; Menezes, Irwin R A; Calixto-Júnior, João T; Siqueira-Junior, José P; Coutinho, Henrique D M; Leal-Balbino, Tereza C; Balbino, Valdir Q

    2016-08-01

    During the early periods of antibiotic usage, bacterial infections were considered tamed. However, widespread antibiotic use has promoted the emergence of antibiotic-resistant pathogens, including multidrug resistant strains. Active efflux is a mechanism for bacterial resistance to inhibitory substances, known simply as drug efflux pumps. The bacterium Staphylococcus aureus is an important pathogenic bacterium responsible for an array of infections. The NorA efflux pump has been shown to be responsible for moderate fluoroquinolone resistance of S. aureus. The inhibition of the efflux pump was assayed using a sub-inhibitory concentration of standard efflux pump inhibitors and tannic acid (MIC/8), where its capacity to decrease the MIC of Ethidium bromide (EtBr) and antibiotics due to the possible inhibitory effect of these substances was observed. The MICs of EtBr and antibiotics were significantly reduced in the presence of tannic acid, indicating the inhibitory effect of this agent against the efflux pumps of both strains causing a three-fold reduction of the MIC when compared with the control. These results indicate the possible usage of tannic acid as an adjuvant in antibiotic therapy against multidrug resistant bacteria (MDR). Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Efflux pump inhibitors (EPIs as new antimicrobial agents against Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Momen Askoura

    2011-05-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic human pathogen and one of the leading causes of nosocomial infections worldwide. The difficulty in treatment of pseudomonas infections arises from being multidrug resistant (MDR and exhibits resistance to most antimicrobial agents due to the expression of different mechanisms overcoming their effects. Of these resistance mechanisms, the active efflux pumps in Pseudomonas aeruginosa that belong to the resistance nodulation division (RND plays a very important role in extruding the antibiotics outside the bacterial cells providing a protective means against their antibacterial activity. Beside its role against the antimicrobial agents, these pumps can extrude biocides, detergents, and other metabolic inhibitors. It is clear that efflux pumps can be targets for new antimicrobial agents. Peptidomimetic compounds such as phenylalanine arginyl β-naphthylamide (PAβN have been introduced as efflux pump inhibitors (EPIs; their mechanism of action is through competitive inhibition with antibiotics on the efflux pump resulting in increased intracellular concentration of antibiotic, hence, restoring its antibacterial activity. The advantage of EPIs is the difficulty to develop bacterial resistance against them, but the disadvantage is their toxic property hindering their clinical application. The structure activity relationship of these compounds showed other derivatives from PAβN that are higher in their activity with higher solubility in biological fluids and decreased toxicity level. This raises further questions on how can we compact Pseudomonas infections. Of particular importance, the recent resurgence in the use of older antibiotics such as polymyxins and probably applying stricter control measures in order to prevent their spread in clinical sittings.

  17. Tannic acid affects the phenotype of Staphylococcus aureus resistant to tetracycline and erythromycin by inhibition of efflux pumps.

    Science.gov (United States)

    Tintino, Saulo R; Morais-Tintino, Cícera D; Campina, Fábia F; Costa, Maria do S; Menezes, Irwin R A; de Matos, Yedda Maria L S; Calixto-Júnior, João T; Pereira, Pedro S; Siqueira-Junior, José P; Leal-Balbino, Teresa C; Coutinho, Henrique D M; Balbino, Valdir Q

    2017-10-01

    The widespread use of antibiotics created selective pressure for the emergence of strains that would persist despite antibiotic toxicity. The bacterial resistance mechanisms are several, with efflux pumps being one of the main ones. These pumps are membrane proteins with the function of removing antibiotics from the cell cytoplasm. Due to this importance, the aim of this work was to evaluate the inhibitory effect of tannic acid against efflux pumps expressed by the Staphylococcus aureus RN4220 and IS-58 strains. The efflux pump inhibition was assayed using a sub-inhibitory concentration of efflux pump standard inhibitors and tannic acid (MIC/8), observing their capacity to decrease the MIC of Ethidium bromide (EtBr) and antibiotics due the possible inhibitory effect of these substances. The MICs of EtBr and antibiotics were significantly different in the presence of tannic acid, indicating the inhibitory effect of this product against efflux pumps of both strains. These results indicate the possible usage of tannic acid asan inhibitor and an adjuvant in the antibiotic therapy against multidrug resistant bacteria (MDR). Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Physiological characterisation of the efflux pump system of antibiotic-susceptible and multidrug-resistant

    OpenAIRE

    Martins , A.; Spengler , G.; Martins , M.; Rodrigues , L.; Viveiros , M.; Davin-Regli , A.; Chevalier , J.; Couto , I.; Pagès , J.M.; Amaral , L.

    2010-01-01

    Abstract Enterobacter aerogenes predominates among Enterobacteriaceae species that are increasingly reported as producers of extended-spectrum ?-lactamases. Although this mechanism of resistance to ?-lactams is important, other mechanisms bestowing a multidrug-resistant (MDR) phenotype in this species are now well documented. Among these mechanisms is the overexpression of efflux pumps that extrude structurally unrelated antibiotics prior to their reaching their targets. Interestin...

  19. MDR1 P-glycoprotein transports endogenous opioid peptides

    NARCIS (Netherlands)

    Oude Elferink, R. P.; Zadina, J.

    2001-01-01

    MDR1 P-glycoprotein is generally regarded as an efflux pump for amphipathic toxic compounds. The question remains, however, whether certain endogenous compounds are also substrates for this transporter. Certain peptides have been shown to interact with MDR1 Pgp as well and we have therefore

  20. Re-evolution of the 2-phenylquinolines: ligand-based design, synthesis, and biological evaluation of a potent new class of Staphylococcus aureus NorA efflux pump inhibitors to combat antimicrobial resistance.

    Science.gov (United States)

    Sabatini, Stefano; Gosetto, Francesca; Iraci, Nunzio; Barreca, Maria Letizia; Massari, Serena; Sancineto, Luca; Manfroni, Giuseppe; Tabarrini, Oriana; Dimovska, Mirjana; Kaatz, Glenn W; Cecchetti, Violetta

    2013-06-27

    Overexpression of efflux pumps is an important mechanism by which bacteria evade the effects of antimicrobial agents that are substrates. NorA is a Staphylococcus aureus efflux pump that confers reduced susceptibility to many structurally unrelated agents, including fluoroquinolones, biocides, and dyes, resulting in a multidrug resistant (MDR) phenotype. In this work, a series of 2-phenylquinoline derivatives was designed by means of ligand-based pharmacophore modeling in an attempt to identify improved S. aureus NorA efflux pump inhibitors (EPIs). Most of the 2-phenylquinoline derivatives displayed potent EPI activity against the norA overexpressing strain SA-1199B. The antibacterial activity of ciprofloxacin, when used in combination with some of the synthesized compounds, was completely restored in SA-1199B and SA-K2378, a strain overexpressing norA from a multicopy plasmid. Compounds 3m and 3q also showed potent synergistic activity with the ethidium bromide dye in a strain overexpressing the MepA MDR efflux pump.

  1. Dithiazole thione derivative as competitive NorA efflux pump inhibitor to curtail multi drug resistant clinical isolate of MRSA in a zebrafish infection model.

    Science.gov (United States)

    Lowrence, Rene Christena; Raman, Thiagarajan; Makala, Himesh V; Ulaganathan, Venkatasubramanian; Subramaniapillai, Selva Ganesan; Kuppuswamy, Ashok Ayyappa; Mani, Anisha; Chittoor Neelakantan, Sundaresan; Nagarajan, Saisubramanian

    2016-11-01

    Multi drug resistant (MDR) pathogens pose a serious threat to public health since they can easily render most potent drugs ineffective. Efflux pump inhibitors (EPI) can be used to counter the MDR phenotypes arising due to increased efflux. In the present study, a series of dithiazole thione derivatives were synthesized and checked for its antibacterial and efflux pump inhibitory (EPI) activity. Among 10 dithiazole thione derivatives, real-time efflux studies revealed that seven compounds were potent EPIs relative to CCCP. Zebrafish toxicity studies identified four non-toxic putative EPIs. Both DTT3 and DTT9 perturbed membrane potential and DTT6 was haemolytic. Among DTT6 and DTT10, the latter was less toxic as evidenced by histopathology studies. Since DTT10 was non-haemolytic, did not affect the membrane potential, and was least toxic, it was chosen further for in vivo study, wherein DTT10 potentiated effect of ciprofloxacin against clinical strain of MRSA and reduced bacterial burden in muscle and skin tissue of infected zebrafish by ~ 1.7 and 2.5 log fold respectively. Gene expression profiling of major efflux transport proteins by qPCR revealed that clinical isolate of MRSA, in the absence of antibiotic, upregulated NorA, NorB and MepA pump, whereas it downregulates NorC and MgrA relative to wild-type strain of Staphylococcus aureus. In vitro studies with NorA mutant strains and substrate profiling revealed that at higher concentrations DTT10 is likely to function as a competitive inhibitor of NorA efflux protein in S. aureus, whereas at lower concentrations it might inhibit ciprofloxacin efflux through NorB and MepA as implied by docking studies. A novel non-toxic, non-haemolytic dithiazole thione derivative (DTT10) was identified as a potent competitive inhibitor of NorA efflux pump in S. aureus using in silico, in vitro and in vivo studies. This study also underscores the importance of using zebrafish infection model to screen and evaluate putative EPI for

  2. Antibacterial Efficacy of Polysaccharide Capped Silver Nanoparticles Is Not Compromised by AcrAB-TolC Efflux Pump

    Directory of Open Access Journals (Sweden)

    Mitali Mishra

    2018-05-01

    Full Text Available Antibacterial therapy is of paramount importance in treatment of several acute and chronic infectious diseases caused by pathogens. Over the years extensive use and misuse of antimicrobial agents has led to emergence of multidrug resistant (MDR and extensive drug resistant (XDR pathogens. This drastic escalation in resistant phenotype has limited the efficacy of available therapeutic options. Thus, the need of the hour is to look for alternative therapeutic approaches to mitigate healthcare concerns caused due to MDR bacterial infections. Nanoparticles have gathered much attention as potential candidates for antibacterial therapy. Equipped with advantages of, wide spectrum bactericidal activity at very low dosage, inhibitor of biofilm formation and ease of permeability, nanoparticles have been considered as leading therapeutic candidates to curtail infections resulting from MDR bacteria. However, substrate non-specificity of efflux pumps, particularly those belonging to resistance nodulation division super family, have been reported to reduce efficacy of many potent antibacterial therapeutic drugs. Previously, we had reported antibacterial activity of polysaccharide-capped silver nanoparticles (AgNPs toward MDR bacteria. We showed that AgNPs inhibits biofilm formation and alters expression of cytoskeletal proteins FtsZ and FtsA, with minimal cytotoxicity toward mammalian cells. In the present study, we report no reduction in antibacterial efficacy of silver nanoparticles in presence of AcrAB-TolC efflux pump proteins. Antibacterial tests were performed according to CLSI macrobroth dilution method, which revealed that both silver nanoparticles exhibited bactericidal activity at very low concentrations. Further, immunoblotting results indicated that both the nanoparticles modulate the transporter AcrB protein expression. However, expression of the membrane fusion protein AcrA did show a significant increase after exposure to AgNPs. Our results

  3. Substrate specificities and efflux efficiencies of RND efflux pumps of Acinetobacter baumannii.

    Science.gov (United States)

    Leus, Inga V; Weeks, Jon W; Bonifay, Vincent; Smith, Lauren; Richardson, Sophie; Zgurskaya, Helen I

    2018-04-16

    Antibiotic resistant Acinetobacter baumannii causes infections that are extremely difficult to treat. A significant role in these resistance profiles is attributed to multidrug efflux pumps, especially those belonging to Resistance-Nodulation-cell Division (RND) superfamily of transporters. In this study, we analyzed functions and properties of RND efflux pumps in A. baumannii ATCC 17978. This strain is susceptible to antibiotics and does not contain mutations that are commonly selected upon exposure to high concentrations of antibiotics. We constructed derivatives of ATCC 17978 lacking chromosomally encoded RND pumps and complemented these strains by the plasmid-borne genes. We analyzed the substrate selectivities and efficiencies of the individual pumps in the context of native outer membranes and their hyperporinated variants. Our results show that inactivation of AdeIJK provides the strongest potentiation of antibiotic activities, whereas inactivation of AdeFGH triggers the overexpression of AdeAB. The plasmid-borne overproduction complements the hypersusceptible phenotypes of the efflux deletion mutants to the levels of the parental ATCC 17978. Only a few antibiotics strongly benefitted from the overproduction of efflux pumps and antibacterial activities of some of those depended on the synergistic interaction with the low permeability barrier of the outer membrane. Either overproduction or inactivation of efflux pumps change dramatically the lipidome of ATCC 17978. We conclude that efflux pumps of A. baumannii are tightly integrated into physiology of this bacterium and that clinical levels of antibiotic resistance in A. baumannii isolates are unlikely to be reached solely due to overproduction of RND efflux pumps. Importance RND-type efflux pumps are important contributors in development of clinical antibiotic resistance in A. baumannii However, their specific roles and the extent of contribution to antibiotic resistance remain unclear. We analyzed

  4. Expression of multidrug resistance markers ABCB1 (MDR-1/P-gp) and ABCC1 (MRP-1) in renal cell carcinoma.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Renal cell carcinoma patients respond poorly to conventional chemotherapy, this unresponsiveness may be attributable to multidrug resistance (MDR). The mechanisms of MDR in renal cancer are not fully understood and the specific contribution of ABC transporter proteins which have been implicated in the chemoresistance of various cancers has not been fully defined in this disease. METHODS: In this retrospective study the expression of two of these transporter efflux pumps, namely MDR-1 P-gp (ABCB1) and MRP-1 (ABCC1) were studied by immunohistochemistry in archival material from 95 renal cell carcinoma patients. RESULTS: In the first study investigating MDR-1 P-gp and MRP-1 protein expression patterns in renal cell carcinoma patients, high levels of expression of both efflux pumps are observed with 100% of tumours studied showing MDR-1 P-gp and MRP-1 positivity. CONCLUSION: Although these findings do not prove a causal role, the high frequency of tumours expressing these efflux pumps suggests that they may be important contributors to the chemoresistance of this tumour type.

  5. Efflux Pump-mediated Drug Resistance in Burkholderia

    Directory of Open Access Journals (Sweden)

    Nicole L Podnecky

    2015-04-01

    Full Text Available Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in B. cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance.

  6. Role of bacterial efflux pumps in biofilm formation.

    Science.gov (United States)

    Alav, Ilyas; Sutton, J Mark; Rahman, Khondaker Miraz

    2018-02-28

    Efflux pumps are widely implicated in antibiotic resistance because they can extrude the majority of clinically relevant antibiotics from within cells to the extracellular environment. However, there is increasing evidence from many studies to suggest that the pumps also play a role in biofilm formation. These studies have involved investigating the effects of efflux pump gene mutagenesis and efflux pump inhibitors on biofilm formation, and measuring the levels of efflux pump gene expression in biofilms. In particular, several key pathogenic species associated with increasing multidrug resistance, such as Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, have been investigated, whilst other studies have focused on Salmonella enterica serovar Typhimurium as a model organism and problematic pathogen. Studies have shown that efflux pumps, including AcrAB-TolC of E. coli, MexAB-OprM of P. aeruginosa, AdeFGH of A. baumannii and AcrD of S. enterica, play important roles in biofilm formation. The substrates for such pumps, and whether changes in their efflux activity affect biofilm formation directly or indirectly, remain to be determined. By understanding the roles that efflux pumps play in biofilm formation, novel therapeutic strategies can be developed to inhibit their function, to help disrupt biofilms and improve the treatment of infections. This review will discuss and evaluate the evidence for the roles of efflux pumps in biofilm formation and the potential approaches to overcome the increasing problem of biofilm-based infections.

  7. Expression of the MDR1 gene and P-glycoprotein in canine mast cell tumor cell lines

    OpenAIRE

    NAKAICHI, Munekazu; TAKESHITA, Yoko; OKUDA, Masaru; NAKAMOTO, Yuya; ITAMOTO, Kazuhito; UNE, Satoshi; SASAKI, Nobuo; KADOSAWA, Tsuyoshi; TAKAHASHI, Tomoko; TAURA, Yasuho

    2007-01-01

    Cellular drug resistance to antineoplastic drugs is often due to the presence of a drug efflux pump that reduces intracellular drug accumulation and chemosensitivity. P-glycoprotein (P-gp), which is encoded by the MDR1 gene, is considered to function as an ATP-driven membrane drug efflux pump and appears to play an important role in tumor cell resistance. In the present report, we assessed the expression of MDR1 by RT-PCR in three canine mast cell tumor cell lines, TiMC, CoMS and LuMC, origin...

  8. Optimized efflux assay for the NorA multidrug efflux pump in Staphylococcus aureus.

    Science.gov (United States)

    Zimmermann, Saskia; Tuchscherr, Lorena; Rödel, Jürgen; Löffler, Bettina; Bohnert, Jürgen A

    2017-11-01

    Real-time fluorescent efflux assays are commonly used for measuring the efflux of bacterial pumps. Here we describe an optimized protocol for the NorA efflux pump in S. aureus using DiOC 3 instead of ethidium bromide. Glucose and sodium formate were tested as energy carriers. This novel method is fast and reproducible. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Inactivation of Efflux Pumps Abolishes Bacterial Biofilm Formation

    DEFF Research Database (Denmark)

    Kvist, Malin; Hancock, Viktoria; Klemm, Per

    2008-01-01

    Bacterial biofilms cause numerous problems in health care and industry; notably, biofilms are associated with a large number of infections. Biofilm-dwelling bacteria are particularly resistant to antibiotics, making it hard to eradicate biofilm-associated infections. Bacteria rely on efflux pumps...... to get rid of toxic substances. We discovered that efflux pumps are highly active in bacterial biofilms, thus making efflux pumps attractive targets for antibiofilm measures. A number of efflux pump inhibitors (EPIs) are known. EPIs were shown to reduce biofilm formation, and in combination they could...... abolish biofilm formation completely. Also, EPIs were able to block the antibiotic tolerance of biofilms. The results of this feasibility study might pave the way for new treatments for biofilm-related infections and may be exploited for prevention of biofilms in general....

  10. Natural and Synthetic Polymers as Inhibitors of Drug Efflux Pumps

    Science.gov (United States)

    2007-01-01

    Inhibition of efflux pumps is an emerging approach in cancer therapy and drug delivery. Since it has been discovered that polymeric pharmaceutical excipients such as Tweens® or Pluronics® can inhibit efflux pumps, various other polymers have been investigated regarding their potential efflux pump inhibitory activity. Among them are polysaccharides, polyethylene glycols and derivatives, amphiphilic block copolymers, dendrimers and thiolated polymers. In the current review article, natural and synthetic polymers that are capable of inhibiting efflux pumps as well as their application in cancer therapy and drug delivery are discussed. PMID:17896100

  11. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants.

    Science.gov (United States)

    Blanco, Paula; Hernando-Amado, Sara; Reales-Calderon, Jose Antonio; Corona, Fernando; Lira, Felipe; Alcalde-Rico, Manuel; Bernardini, Alejandra; Sanchez, Maria Blanca; Martinez, Jose Luis

    2016-02-16

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics.

  12. [Bacterial efflux pumps - their role in antibiotic resistance and potential inhibitors].

    Science.gov (United States)

    Hricová, Kristýna; Kolář, Milan

    2014-12-01

    Efflux pumps capable of actively draining antibiotic agents from bacterial cells may be considered one of potential mechanisms of the development of antimicrobial resistance. The most important group of efflux pumps capable of removing several types of antibiotics include RND (resistance - nodulation - division) pumps. These are three proteins that cross the bacterial cell wall, allowing direct expulsion of the agent out from the bacterial cell. The most investigated efflux pumps are the AcrAB-TolC system in Escherichia coli and the MexAB-OprM system in Pseudomonas aeruginosa. Moreover, efflux pumps are able to export other than antibacterial agents such as disinfectants, thus decreasing their effectiveness. One potential approach to inactivation of an efflux pump is to use the so-called efflux pump inhibitors (EPIs). Potential inhibitors tested in vitro involve, for example, phenylalanyl-arginyl-b-naphthylamide (PAbN), carbonyl cyanide m-chlorophenylhydrazone (CCCP) or agents of the phenothiazine class.

  13. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence

    Directory of Open Access Journals (Sweden)

    Manuel Alcalde-Rico

    2016-09-01

    Full Text Available Multidrug efflux pumps can be involved in bacterial resistance to antibiotics at different levels. Some efflux pumps are constitutively expressed at low levels and contribute to intrinsic resistance. In addition, their overexpression may allow higher levels of resistance. This overexpression can be transient, in the presence of an effector (phenotypic resistance, or constitutive when mutants in the regulatory elements of the expression of efflux pumps are selected (acquired resistance. Efflux pumps are present in all cells, from human to bacteria and are highly conserved, which indicates that they are ancient elements in the evolution of different organisms. Consequently, it has been suggested that, besides antibiotic resistance, bacterial multidrug efflux pumps would likely contribute to other relevant process of the microbial physiology. In the current article, we discuss some specific examples of the role that efflux pumps may have in the bacterial virulence of animals' and plants' pathogens, including the processes of intercellular communication. Based in these evidences, we propose that efflux pumps are at the crossroad between resistance and virulence of bacterial pathogens. Consequently, the comprehensive study of multidrug efflux pumps requires addressing these functions, which are of relevance for the bacterial-host interactions during infection.

  14. Multidrug Efflux Pumps at the Crossroad between Antibiotic Resistance and Bacterial Virulence.

    Science.gov (United States)

    Alcalde-Rico, Manuel; Hernando-Amado, Sara; Blanco, Paula; Martínez, José L

    2016-01-01

    Multidrug efflux pumps can be involved in bacterial resistance to antibiotics at different levels. Some efflux pumps are constitutively expressed at low levels and contribute to intrinsic resistance. In addition, their overexpression may allow higher levels of resistance. This overexpression can be transient, in the presence of an effector (phenotypic resistance), or constitutive when mutants in the regulatory elements of the expression of efflux pumps are selected (acquired resistance). Efflux pumps are present in all cells, from human to bacteria and are highly conserved, which indicates that they are ancient elements in the evolution of different organisms. Consequently, it has been suggested that, besides antibiotic resistance, bacterial multidrug efflux pumps would likely contribute to other relevant processes of the microbial physiology. In the current article, we discuss some specific examples of the role that efflux pumps may have in the bacterial virulence of animals' and plants' pathogens, including the processes of intercellular communication. Based in these evidences, we propose that efflux pumps are at the crossroad between resistance and virulence of bacterial pathogens. Consequently, the comprehensive study of multidrug efflux pumps requires addressing these functions, which are of relevance for the bacterial-host interactions during infection.

  15. Multidrug efflux pumps in Staphylococcus aureus and their clinical implications.

    Science.gov (United States)

    Jang, Soojin

    2016-01-01

    Antibiotic resistance is rapidly spreading among bacteria such as Staphylococcus aureus, an opportunistic bacterial pathogen that causes a variety of diseases in humans. For the last two decades, bacterial multidrug efflux pumps have drawn attention due to their potential association with clinical multidrug resistance. Numerous researchers have demonstrated efflux-mediated resistance in vitro and in vivo and found novel multidrug transporters using advanced genomic information about bacteria. This article aims to provide a concise summary of multidrug efflux pumps and their important clinical implications, focusing on recent findings concerning S. aureus efflux pumps.

  16. A mass spectrometry-based assay for improved quantitative measurements of efflux pump inhibition.

    Directory of Open Access Journals (Sweden)

    Adam R Brown

    Full Text Available Bacterial efflux pumps are active transport proteins responsible for resistance to selected biocides and antibiotics. It has been shown that production of efflux pumps is up-regulated in a number of highly pathogenic bacteria, including methicillin resistant Staphylococcus aureus. Thus, the identification of new bacterial efflux pump inhibitors is a topic of great interest. Existing assays to evaluate efflux pump inhibitory activity rely on fluorescence by an efflux pump substrate. When employing these assays to evaluate efflux pump inhibitory activity of plant extracts and some purified compounds, we observed severe optical interference that gave rise to false negative results. To circumvent this problem, a new mass spectrometry-based method was developed for the quantitative measurement of bacterial efflux pump inhibition. The assay was employed to evaluate efflux pump inhibitory activity of a crude extract of the botanical Hydrastis Canadensis, and to compare the efflux pump inhibitory activity of several pure flavonoids. The flavonoid quercetin, which appeared to be completely inactive with a fluorescence-based method, showed an IC50 value of 75 μg/mL with the new method. The other flavonoids evaluated (apigenin, kaempferol, rhamnetin, luteolin, myricetin, were also active, with IC50 values ranging from 19 μg/mL to 75 μg/mL. The assay described herein could be useful in future screening efforts to identify efflux pump inhibitors, particularly in situations where optical interference precludes the application of methods that rely on fluorescence.

  17. Biocide Selective TolC-Independent Efflux Pumps in Enterobacteriaceae.

    Science.gov (United States)

    Slipski, Carmine J; Zhanel, George G; Bay, Denice C

    2018-02-01

    Bacterial resistance to biocides used as antiseptics, dyes, and disinfectants is a growing concern in food preparation, agricultural, consumer manufacturing, and health care industries, particularly among Gram-negative Enterobacteriaceae, some of the most common community and healthcare-acquired bacterial pathogens. Biocide resistance is frequently associated with antimicrobial cross-resistance leading to reduced activity and efficacy of both antimicrobials and antiseptics. Multidrug resistant efflux pumps represent an important biocide resistance mechanism in Enterobacteriaceae. An assortment of structurally diverse efflux pumps frequently co-exist in these species and confer both unique and overlapping biocide and antimicrobial selectivity. TolC-dependent multicomponent systems that span both the plasma and outer membranes have been shown to confer clinically significant resistance to most antimicrobials including many biocides, however, a growing number of single component TolC-independent multidrug resistant efflux pumps are specifically associated with biocide resistance: small multidrug resistance (SMR), major facilitator superfamily (MFS), multidrug and toxin extruder (MATE), cation diffusion facilitator (CDF), and proteobacterial antimicrobial compound efflux (PACE) families. These efflux systems are a growing concern as they are rapidly spread between members of Enterobacteriaceae on conjugative plasmids and mobile genetic elements, emphasizing their importance to antimicrobial resistance. In this review, we will summarize the known biocide substrates of these efflux pumps, compare their structural relatedness, Enterobacteriaceae distribution, and significance. Knowledge gaps will be highlighted in an effort to unravel the role that these apparent "lone wolves" of the efflux-mediated resistome may offer.

  18. Reconstitution of the activity of RND efflux pumps: a "bottom-up" approach.

    Science.gov (United States)

    Puvanendran, Dhenesh; Cece, Quentin; Picard, Martin

    2017-12-05

    Efflux pumps are systems devoted to the extrusion of noxious compounds. In this review, we discuss the various strategies that have thus far been undertaken for the investigation of efflux pumps after reconstitution into liposomes. It is challenging to uncover mechanisms and dynamics of efflux pumps due to a number of characteristics: their function depends on the correct assembly of three components and they span two adjacent membranes whose lipid compositions are very different. In addition, efflux pumps are active transporters that need energy to work. We present possible lines of improvement for the study of such systems and provide insights into future goals and challenges of efflux pump reconstitution and transport. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. RND-type Drug Efflux Pumps from Gram-negative bacteria: Molecular Mechanism and Inhibition

    Directory of Open Access Journals (Sweden)

    Henrietta eVenter

    2015-04-01

    Full Text Available Drug efflux protein complexes confer multidrug resistance on bacteria by transporting a wide spectrum of structurally diverse antibiotics. Moreover, organisms can only acquire resistance in the presence of an active efflux pump. The substrate range of drug efflux pumps is not limited to antibiotics, but it also includes toxins, dyes, detergents, lipids and molecules involved in quorum sensing; hence efflux pumps are also associated with virulence and biofilm formation. Inhibitors of efflux pumps are therefore attractive compounds to reverse multidrug resistance and to prevent the development of resistance in clinically relevant bacterial pathogens. Recent successes on the structure determination and functional analysis of the AcrB and MexB components of the AcrAB-TolC and MexAB-OprM drug efflux systems as well as the structure of the fully assembled, functional triparted AcrAB-TolC complex significantly contributed to our understanding of the mechanism of substrate transport and the options for inhibition of efflux. These data, combined with the well-developed methodologies for measuring efflux pump inhibition, could allow the rational design and subsequent experimental verification of potential efflux pump inhibitors. In this review we will explore how the available biochemical and structural information can be translated into the discovery and development of new compounds that could reverse drug resistance in Gram-negative pathogens. The current literature on efflux pump inhibitors will also be analysed and the reasons why no compounds have yet progressed into clinical use will be explored.

  20. Monoclonal antibody to an external epitope of the human mdr1 P-glycoprotein

    NARCIS (Netherlands)

    Arceci, R. J.; Stieglitz, K.; Bras, J.; Schinkel, A.; Baas, F.; Croop, J.

    1993-01-01

    A membrane glycoprotein, termed P-glycoprotein, has been shown to be responsible for cross-resistance to a broad range of structurally and functionally distinct cytotoxic agents. P-glycoprotein, encoded in humans by the mdr1 gene, functions as an energy-dependent efflux pump to exclude these

  1. Nanoparticles as Efflux Pump and Biofilm Inhibitor to Rejuvenate Bactericidal Effect of Conventional Antibiotics

    Science.gov (United States)

    Gupta, Divya; Singh, Ajeet; Khan, Asad U.

    2017-07-01

    The universal problem of bacterial resistance to antibiotic reflects a serious threat for physicians to control infections. Evolution in bacteria results in the development of various complex resistance mechanisms to neutralize the bactericidal effect of antibiotics, like drug amelioration, target modification, membrane permeability reduction, and drug extrusion through efflux pumps. Efflux pumps acquire a wide range of substrate specificity and also the tremendous efficacy for drug molecule extrusion outside bacterial cells. Hindrance in the functioning of efflux pumps may rejuvenate the bactericidal effect of conventional antibiotics. Efflux pumps also play an important role in the exclusion or inclusion of quorum-sensing biomolecules responsible for biofilm formation in bacterial cells. This transit movement of quorum-sensing biomolecules inside or outside the bacterial cells may get interrupted by impeding the functioning of efflux pumps. Metallic nanoparticles represent a potential candidate to block efflux pumps of bacterial cells. The application of nanoparticles as efflux pump inhibitors will not only help to revive the bactericidal effect of conventional antibiotics but will also assist to reduce biofilm-forming capacity of microbes. This review focuses on a novel and fascinating application of metallic nanoparticles in synergy with conventional antibiotics for efflux pump inhibition.

  2. A Transcriptomic Approach to Identify Novel Drug Efflux Pumps in Bacteria.

    Science.gov (United States)

    Li, Liping; Tetu, Sasha G; Paulsen, Ian T; Hassan, Karl A

    2018-01-01

    The core genomes of most bacterial species include a large number of genes encoding putative efflux pumps. The functional roles of most of these pumps are unknown, however, they are often under tight regulatory control and expressed in response to their substrates. Therefore, one way to identify pumps that function in antimicrobial resistance is to examine the transcriptional responses of efflux pump genes to antimicrobial shock. By conducting complete transcriptomic experiments following antimicrobial shock treatments, it may be possible to identify novel drug efflux pumps encoded in bacterial genomes. In this chapter we describe a complete workflow for conducting transcriptomic analyses by RNA sequencing, to determine transcriptional changes in bacteria responding to antimicrobials.

  3. Role of MexAB-OprM and MexXY-OprM efflux pumps and class 1 integrons in resistance to antibiotics in burn and Intensive Care Unit isolates of Pseudomonas aeruginosa.

    Science.gov (United States)

    Goli, Hamid Reza; Nahaei, Mohammad Reza; Ahangarzadeh Rezaee, Mohammad; Hasani, Alka; Samadi Kafil, Hossein; Aghazadeh, Mohammad; Nikbakht, Mojtaba; Khalili, Younes

    2017-10-06

    The overexpression of efflux pumps and existence of class 1 integrons are the most important mechanisms that contribute to antimicrobial resistance in Pseudomonas aeruginosa especially in burn and Intensive Care Units (ICUs). The present study evaluated the role of MexAB-OprM and MexXY-OprM efflux pumps and class 1 integrons in resistance to antibiotics in burn and ICU isolates of P. aeruginosa. Fifteen burn and forty-two ICU isolates were obtained from four hospitals in Northwest Iran. The isolates were identified and evaluated by the disk diffusion and agar dilution methods for determining antibiotic resistances. The presence of class 1 integrons and associated resistance gene cassettes were detected by PCR and sequencing of the products. The expression levels of efflux pumps were evaluated by phenotypic and genotypic (Quantitative Real-time PCR) methods. The isolates were genotyped by Random Amplified Polymorphic DNA Typing (RAPD-PCR). All burn isolates were integron positive and Multi-drug resistant (MDR), while 78.5% and 69% of ICU isolates were found as MDR and integron positive, respectively. The aadB gene was the most prevalent gene cassette (63.6%) followed by aacA4 (47.7%). Thirty-nine (68.4%) and 43 (75.4%) isolates exhibited an overexpression of MexAB-OprM and MexXY-OprM. Among burn isolates, 80% and 86.6% of them were mexB and mexY overexpressed, while 64.2% and 71.4% of ICU isolates exhibited mexB and mexY overexpression, correspondingly. The isolates were genotyped as 24 different RAPD profiles and were grouped into 15 clusters. The data suggested that class 1 integron had a more significant role than efflux pumps in resistance to beta-lactams and aminoglycosides in burn and ICUs except for gentamicin in burn isolates. Based on our data, it is possible that efflux pumps were not the main cause of high-level resistance to antibiotics. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Juerg eDreier

    2015-07-01

    Full Text Available Pseudomonas aeruginosa infections are becoming increasingly difficult to treat due to intrinsic antibiotic resistance and the propensity of this pathogen to accumulate diverse resistance mechanisms. Hyperexpression of efflux pumps of the Resistance-Nodulation-Division-type multidrug efflux pumps (e.g. MexAB-OprM, chromosomally encoded by mexAB-oprM, mexCD-oprJ, mexEF-oprN, and mexXY (-oprA is often detected in clinical isolates and contributes to worrying multi-drug resistance phenotypes.Not all antibiotics are affected to the same extent by the aforementioned RND efflux pumps. The impact of efflux on antibiotic activity varies not only between different classes of antibiotics but also between members of the same family of antibiotics. Subtle differences in physicochemical features of compound-pump and compound-solvent interactions largely determine how compounds are affected by efflux activity.The combination of different high-resolution techniques helps to gain insight into the functioning of these molecular machineries. This review discusses substrate recognition patterns based on experimental evidence and computer simulations with a focus on MexB, the pump subunit of the main RND transporter in P. aeruginosa.

  5. Efflux pumps of Mycobacterium tuberculosis play a significant role in antituberculosis activity of potential drug candidates.

    Science.gov (United States)

    Balganesh, Meenakshi; Dinesh, Neela; Sharma, Sreevalli; Kuruppath, Sanjana; Nair, Anju V; Sharma, Umender

    2012-05-01

    Active efflux of drugs mediated by efflux pumps that confer drug resistance is one of the mechanisms developed by bacteria to counter the adverse effects of antibiotics and chemicals. To understand these efflux mechanisms in Mycobacterium tuberculosis, we generated knockout (KO) mutants of four efflux pumps of the pathogen belonging to different classes. We measured the MICs and kill values of two different compound classes on the wild type (WT) and the efflux pump (EP) KO mutants in the presence and absence of the efflux inhibitors verapamil and l-phenylalanyl-l-arginyl-β-naphthylamide (PAβN). Among the pumps studied, the efflux pumps belonging to the ABC (ATP-binding cassette) class, encoded by Rv1218c, and the SMR (small multidrug resistance) class, encoded by Rv3065, appear to play important roles in mediating the efflux of different chemical classes and antibiotics. Efflux pumps encoded by Rv0849 and Rv1258c also mediate the efflux of these compounds, but to a lesser extent. Increased killing is observed in WT M. tuberculosis cells by these compounds in the presence of either verapamil or PAβN. The efflux pump KO mutants were more susceptible to these compounds in the presence of efflux inhibitors. We have shown that these four efflux pumps of M. tuberculosis play a vital role in mediating efflux of different chemical scaffolds. Inhibitors of one or several of these efflux pumps could have a significant impact in the treatment of tuberculosis. The identification and characterization of Rv0849, a new efflux pump belonging to the MFS (major facilitator superfamily) class, are reported.

  6. Bacterial Multidrug Efflux Pumps of the Major Facilitator Superfamily as Targets for Modulation.

    Science.gov (United States)

    Kumar, Sanath; He, Guixin; Kakarla, Prathusha; Shrestha, Ugina; Ranjana, K C; Ranaweera, Indrika; Willmon, T Mark; Barr, Sharla R; Hernandez, Alberto J; Varela, Manuel F

    2016-01-01

    Causative agents of infectious disease that are multidrug resistant bacterial pathogens represent a serious public health concern due to the increasingly difficult nature of achieving efficacious clinical treatments. Of the various acquired and intrinsic antimicrobial agent resistance determinants, integral-membrane multidrug efflux pumps of the major facilitator superfamily constitute a major mechanism of bacterial resistance. The major facilitator superfamily (MFS) encompasses thousands of known related secondary active and passive solute transporters, including multidrug efflux pumps, from bacteria to humans. This review article addresses recent developments involving the targeting by various modulators of bacterial multidrug efflux pumps from the major facilitator superfamily. It is currently of tremendous interest to modulate bacterial multidrug efflux pumps in order to eventually restore the clinical efficacy of therapeutic agents against recalcitrant bacterial infections. Such MFS multidrug efflux pumps are good targets for modulation.

  7. Current Advances in Developing Inhibitors of Bacterial Multidrug 
Efflux Pumps

    Science.gov (United States)

    Mahmood, Hannah Y.; Jamshidi, Shirin; Sutton, J. Mark; Rahman, Khondaker M.

    2016-01-01

    Antimicrobial resistance represents a significant challenge to future healthcare provision. An acronym ESKAPEE has been derived from the names of the organisms recognised as the major threats although there are a number of other organisms, notably Neisseria gonorrhoeae, that have become equally challenging to treat in the clinic. These pathogens are characterised by the ability to rapidly develop and/or acquire resistance mechanisms in response to exposure to different antimicrobial agents. A key part of the armoury of these pathogens is a series of efflux pumps, which effectively exclude or reduce the intracellular concentration of a large number of antibiotics, making the pathogens significantly more resistant. These efflux pumps are the topic of considerable interest, both from the perspective of basic understanding of efflux pump function, and its role in drug resistance but also as targets for the development of novel adjunct therapies. The necessity to overcome antimicrobial resistance has encouraged investigations into the characterisation of resistance-modifying efflux pump inhibitors to block the mechanisms of drug extrusion, thereby restoring antibacterial susceptibility and returning existing antibiotics into the clinic. A greater understanding of drug recognition and transport by multidrug efflux pumps is needed to develop clinically useful inhibitors, given the breadth of molecules that can be effluxed by these systems. This review discusses different bacterial EPIs originating from both natural source and chemical synthesis and examines the challenges to designing successful EPIs that can be useful against multidrug resistant bacteria. PMID:26947776

  8. The role of efflux pumps in Bacteroides fragilis resistance to antibiotics.

    Science.gov (United States)

    Ghotaslou, Reza; Yekani, Mina; Memar, Mohammad Yousef

    2018-05-01

    The resistance of Bacteroides fragilis to the most antimicrobial agents has been reported in the world. Identification of the microbial resistance mechanisms can play an important role in controlling these resistances. Currently, B. fragilis is resistant to most antibiotics. The multi-drug efflux pumps have been shown to underlie the antimicrobial resistance in B. fragilis strains. Two types of these efflux pumps including RND and MATE can be regarded as main structures responsible for antibiotic resistance. Therefore, the strategy for suppressing of this efflux system may be useful in the treatment and control of the multidrug-resistant B. fragilis. The purpose of this study is to review the B. fragilis efflux pumps and their functions in the resistance to antibiotics. Copyright © 2018 Elsevier GmbH. All rights reserved.

  9. RND multidrug efflux pumps: what are they good for?

    Science.gov (United States)

    Alvarez-Ortega, Carolina; Olivares, Jorge; Martínez, José L.

    2013-01-01

    Multidrug efflux pumps are chromosomally encoded genetic elements capable of mediating resistance to toxic compounds in several life forms. In bacteria, these elements are involved in intrinsic and acquired resistance to antibiotics. Unlike other well-known horizontally acquired antibiotic resistance determinants, genes encoding for multidrug efflux pumps belong to the core of bacterial genomes and thus have evolved over millions of years. The selective pressure stemming from the use of antibiotics to treat bacterial infections is relatively recent in evolutionary terms. Therefore, it is unlikely that these elements have evolved in response to antibiotics. In the last years, several studies have identified numerous functions for efflux pumps that go beyond antibiotic extrusion. In this review we present some examples of these functions that range from bacterial interactions with plant or animal hosts, to the detoxification of metabolic intermediates or the maintenance of cellular homeostasis. PMID:23386844

  10. Structures and transport dynamics of a Campylobacter jejuni multidrug efflux pump

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chih-Chia; Yin, Linxiang; Kumar, Nitin; Dai, Lei; Radhakrishnan, Abhijith; Bolla, Jani Reddy; Lei, Hsiang-Ting; Chou, Tsung-Han; Delmar, Jared A.; Rajashankar, Kanagalaghatta R.; Zhang, Qijing; Shin, Yeon-Kyun; Yu, Edward W. (Cornell); (Iowa State)

    2017-08-01

    Resistance-nodulation-cell division efflux pumps are integral membrane proteins that catalyze the export of substrates across cell membranes. Within the hydrophobe-amphiphile efflux subfamily, these resistance-nodulation-cell division proteins largely form trimeric efflux pumps. The drug efflux process has been proposed to entail a synchronized motion between subunits of the trimer to advance the transport cycle, leading to the extrusion of drug molecules. Here we use X-ray crystallography and single-molecule fluorescence resonance energy transfer imaging to elucidate the structures and functional dynamics of the Campylobacter jejuni CmeB multidrug efflux pump. We find that the CmeB trimer displays a very unique conformation. A direct observation of transport dynamics in individual CmeB trimers embedded in membrane vesicles indicates that each CmeB subunit undergoes conformational transitions uncoordinated and independent of each other. On the basis of our findings and analyses, we propose a model for transport mechanism where CmeB protomers function independently within the trimer.

  11. Punigratane, a novel pyrrolidine alkaloid from Punica granatum rind with putative efflux inhibition activity.

    Science.gov (United States)

    Rafiq, Zumaana; Narasimhan, Sreevidya; Vennila, Rosy; Vaidyanathan, Rama

    2016-02-25

    A new pyrrolidine alkaloid named Punigratane was isolated from the rind of Punica granatum. This is the first report of a pyrrolidine-like structure from the rind. The activity of this compound was tested in a representative MDR Klebsiella pneumoniae strain which exhibited high efflux pump activity. At a concentration of 6 mg, this compound Punigratane was found to have efflux inhibition activity.

  12. Piperine analogs as potent Staphylococcus aureus NorA efflux pump inhibitors

    DEFF Research Database (Denmark)

    Sangwan, Payare L; Koul, Jawahir L; Koul, Surrinder

    2008-01-01

    Based on our recent findings that piperine is a potent Staphylococcus aureus NorA efflux pump inhibitor (EPI), 38 piperine analogs were synthesized and bioevaluated for their EPI activity. Twenty-five of them were found active with potentiating activity equivalent or more than known EPIs like...... reserpine, carsonic acid and verapamil. The inhibitory mechanism of the compounds was confirmed by efflux inhibition assay using ethidium bromide as NorA substrate. The present communication describes the synthesis, bioevaluation and structure related activity of these efflux pump inhibitors....

  13. Action of cholecalciferol and alpha-tocopherol on Staphylococcus aureus efflux pumps.

    Science.gov (United States)

    Tintino, Saulo R; Morais-Tintino, Cícera D; Campina, Fábia F; Pereira, Raimundo L; Costa, Maria do S; Braga, Maria Flaviana B M; Limaverde, Paulo W; Andrade, Jacqueline C; Siqueira-Junior, José P; Coutinho, Henrique Douglas Melo; Balbino, Valdir Q; Leal-Balbino, Tereza C; Ribeiro-Filho, Jaime; Quintans-Júnior, Lucindo J

    2016-01-01

    Alpha-tocopherol is one the most abundant and biologically active isoforms of vitamin E. This compound is a potent antioxidant and one of most studied isoforms of vitamin E. Vitamin D3 (cholecalciferol) is an important nutrient for calcium homeostasis and bone health, that has also been recognized as a potent modulator of the immune response. Methicillin-resistant Staphylococcus aureus (MRSA) is the most important causative agent of both nosocomial and community-acquired infections. The aim of this study was to evaluate the inhibitory effect of alpha-tocopherol and cholecalciferol on both S. aureus and multidrug resistant S. aureus efflux pumps. The RN4220 strain has the plasmid pUL5054 that is the carrier of gene that encodes the macrolide resistance protein (an efflux pump) MsrA; the IS-58 strain possesses the TetK tetracycline efflux protein in its genome and the 1199B strain resists to hydrophilic fluoroquinolones via a NorA-mediated mechanism. The antibacterial activity was evaluated by determining the Minimal Inhibitory Concentration (MIC) and a possible inhibition of efflux pumps was associated to a reduction of the MIC. In this work we observed that in the presence of the treatments there was a decrease in the MIC for the RN4220 and IS-58 strains, suggesting that the substances presented an inhibitory effect on the efflux pumps of these strains. Significant efforts have been done to identify efflux pump inhibitors (EPIs) from natural sources and, therefore, the antibacterial properties of cholecalciferol and alpha-tocopherol might be attributed to a direct effect on the bacterial cell depending on their amphipathic structure.

  14. MOLECULAR DYNAMICS COMPUTER SIMULATIONS OF MULTIDRUG RND EFFLUX PUMPS

    Directory of Open Access Journals (Sweden)

    Paolo Ruggerone

    2013-02-01

    Full Text Available Over-expression of multidrug efflux pumps of the Resistance Nodulation Division (RND protein super family counts among the main causes for microbial resistance against pharmaceuticals. Understanding the molecular basis of this process is one of the major challenges of modern biomedical research, involving a broad range of experimental and computational techniques. Here we review the current state of RND transporter investigation employing molecular dynamics simulations providing conformational samples of transporter components to obtain insights into the functional mechanism underlying efflux pump-mediated antibiotics resistance in Escherichia coli and Pseudomonas aeruginosa.

  15. Molecular Dynamics Computer Simulations of Multidrug RND Efflux Pumps

    Directory of Open Access Journals (Sweden)

    Paolo Ruggerone

    2013-02-01

    Full Text Available Over-expression of multidrug efflux pumps of the Resistance Nodulation Division (RND protein super family counts among the main causes for microbial resistance against pharmaceuticals. Understanding the molecular basis of this process is one of the major challenges of modern biomedical research, involving a broad range of experimental and computational techniques. Here we review the current state of RND transporter investigation employing molecular dynamics simulations providing conformational samples of transporter components to obtain insights into the functional mechanism underlying efflux pump-mediated antibiotics resistance in Escherichia coli and Pseudomonas aeruginosa.

  16. Crystal structure of the Neisseria gonorrhoeae MtrD inner membrane multidrug efflux pump.

    Directory of Open Access Journals (Sweden)

    Jani Reddy Bolla

    Full Text Available Neisseria gonorrhoeae is an obligate human pathogen and the causative agent of the sexually-transmitted disease gonorrhea. The control of this disease has been compromised by the increasing proportion of infections due to antibiotic-resistant strains, which are growing at an alarming rate. The MtrCDE tripartite multidrug efflux pump, belonging to the hydrophobic and amphiphilic efflux resistance-nodulation-cell division (HAE-RND family, spans both the inner and outer membranes of N. gonorrhoeae and confers resistance to a variety of antibiotics and toxic compounds. We here report the crystal structure of the inner membrane MtrD multidrug efflux pump, which reveals a novel structural feature that is not found in other RND efflux pumps.

  17. Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome

    Directory of Open Access Journals (Sweden)

    Manina Giulia

    2006-07-01

    Full Text Available Abstract Background Burkholderia cenocepacia is recognized as opportunistic pathogen that can cause lung infections in cystic fibrosis patients. A hallmark of B. cenocepacia infections is the inability to eradicate the organism because of multiple intrinsic antibiotic resistance. As Resistance-Nodulation-Division (RND efflux systems are responsible for much of the intrinsic multidrug resistance in Gram-negative bacteria, this study aims to identify RND genes in the B. cenocepacia genome and start to investigate their involvement into antimicrobial resistance. Results Genome analysis and homology searches revealed 14 open reading frames encoding putative drug efflux pumps belonging to RND family in B. cenocepacia J2315 strain. By reverse transcription (RT-PCR analysis, it was found that orf3, orf9, orf11, and orf13 were expressed at detectable levels, while orf10 appeared to be weakly expressed in B. cenocepacia. Futhermore, orf3 was strongly induced by chloramphenicol. The orf2 conferred resistance to fluoroquinolones, tetraphenylphosphonium, streptomycin, and ethidium bromide when cloned and expressed in Escherichia coli KAM3, a strain lacking the multidrug efflux pump AcrAB. The orf2-overexpressing E. coli also accumulate low concentrations of ethidium bromide, which was restored to wild type level in the presence of CCCP, an energy uncoupler altering the energy of the drug efflux pump. Conclusion The 14 RND pumps gene we have identified in the genome of B. cenocepacia suggest that active efflux could be a major mechanism underlying antimicrobial resistance in this microorganism. We have characterized the ORF2 pump, one of these 14 potential RND efflux systems. Its overexpression in E. coli conferred resistance to several antibiotics and to ethidium bromide but it remains to be determined if this pump play a significant role in the antimicrobial intrinsic resistance of B. cenocepacia. The characterization of antibiotic efflux pumps in B

  18. Pharmacophore-Based Repositioning of Approved Drugs as Novel Staphylococcus aureus NorA Efflux Pump Inhibitors.

    Science.gov (United States)

    Astolfi, Andrea; Felicetti, Tommaso; Iraci, Nunzio; Manfroni, Giuseppe; Massari, Serena; Pietrella, Donatella; Tabarrini, Oriana; Kaatz, Glenn W; Barreca, Maria L; Sabatini, Stefano; Cecchetti, Violetta

    2017-02-23

    An intriguing opportunity to address antimicrobial resistance is represented by the inhibition of efflux pumps. Focusing on NorA, the most important efflux pump of Staphylococcus aureus, an efflux pump inhibitors (EPIs) library was used for ligand-based pharmacophore modeling studies. By exploitation of the obtained models, an in silico drug repositioning approach allowed for the identification of novel and potent NorA EPIs.

  19. Computer simulations of the activity of RND efflux pumps.

    Science.gov (United States)

    Vargiu, Attilio Vittorio; Ramaswamy, Venkata Krishnan; Malloci, Giuliano; Malvacio, Ivana; Atzori, Alessio; Ruggerone, Paolo

    2018-01-31

    The putative mechanism by which bacterial RND-type multidrug efflux pumps recognize and transport their substrates is a complex and fascinating enigma of structural biology. How a single protein can recognize a huge number of unrelated compounds and transport them through one or just a few mechanisms is an amazing feature not yet completely unveiled. The appearance of cooperativity further complicates the understanding of structure-dynamics-activity relationships in these complex machineries. Experimental techniques may have limited access to the molecular determinants and to the energetics of key processes regulating the activity of these pumps. Computer simulations are a complementary approach that can help unveil these features and inspire new experiments. Here we review recent computational studies that addressed the various molecular processes regulating the activity of RND efflux pumps. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  20. Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies.

    Directory of Open Access Journals (Sweden)

    Vassiliy N. Bavro

    2015-05-01

    Full Text Available Recent years have seen major advances in the structural understanding of the different components of tripartite efflux assemblies, which encompass the multidrug efflux (MDR pumps and type I secretion systems. The majority of these investigations have focused on the role played by the inner membrane transporters and the outer membrane factor (OMF, leaving the third component of the system – the Periplasmic Adaptor Proteins (PAPs - relatively understudied. Here we review the current state of knowledge of these versatile proteins which, far from being passive linkers between the OMF and the transporter, emerge as active architects of tripartite assemblies, and play diverse roles in the transport process. Recognition between the PAPs and OMFs is essential for pump assembly and function, and targeting this interaction may provide a novel avenue for combating multidrug resistance. With the recent advances elucidating the drug-efflux and energetics of the tripartite assemblies, the understanding of the interaction between the OMFs and PAPs is the last piece remaining in the complete structure of the tripartite pump assembly puzzle.

  1. Efflux pump-mediated benzalkonium chloride resistance in Listeria monocytogenes isolated from retail food.

    Science.gov (United States)

    Jiang, Xiaobing; Yu, Tao; Liang, Yu; Ji, Shengdong; Guo, Xiaowei; Ma, Jianmin; Zhou, Lijun

    2016-01-18

    In this study, efflux pump-mediated benzalkonium chloride (BC) resistance, including plasmid-encoded (Qac protein family and BcrABC) and chromosome-borne efflux pumps, was investigated in Listeria monocytogenes from retail food in China. Among the 59 L. monocytogenes strains, 13 (22.0%) strains were resistant to BC. The PCR results showed that bcrABC was harbored by 2 of 13 BC resistant strains. However, none of the qac genes were detected among the 59 strains. The bcrABC was absent in both of the plasmid cured strains, indicating that this BC resistance determinant was plasmid-encoded in the two bcrABC-positive strains. In the presence of reserpine, most of the bcrABC-negative strains had decreases in the MICs of BC, suggesting the existence of other efflux pumps and their role in BC resistance. After exposed to reserpine, the reduction in BC MICs was observed in the two cured strains, indicating that efflux pumps located on chromosome was also involved in BC resistance. Our findings suggest that food products may act as reservoirs for BC resistant isolates of L. monocytogenes and plasmid- and chromosome-encoded efflux pumps could mediate the BC resistance of L. monocytogenes, which is especially relevant to the adaption of this organism in food-related environments with frequent BC use. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. High efflux pump activity and gene expression at baseline linked to ...

    African Journals Online (AJOL)

    Phenotypic TB drug resistance, also known as drug tolerance, has been previously attributed to slowed bacterial growth in vivo. The increased activity and expression of efflux systems can lower the intracellular concentration of many antibiotics thus reducing their efficacy. We hypothesized that efflux pump activation and ...

  3. Enhancing isoprenoid production through systematically assembling and modulating efflux pumps in Escherichia coli.

    Science.gov (United States)

    Wang, Jian-Feng; Xiong, Zhi-Qiang; Li, Shi-Yuan; Wang, Yong

    2013-09-01

    Enhancement of the cellular exportation of heterologous compounds is an important aspect to improve the product yield in microbial cell factory. Efflux pumps can expel various intra- or extra-cellular substances out of microbial hosts and increase the cellular tolerance. Thus in this study, by using the hydrophobic sesquiterpene (amorphadiene) and diterpene (kaurene) as two model compounds, we attempted to improve isoprenoid production through systematically engineering the efflux pumps in Escherichia coli BL21(DE3). The pleiotropic resistant pumps, AcrAB-TolC, MdtEF-TolC from E. coli and heterologous MexAB-OprM pump from Pseudomonas aeruginosa, were overexpressed, assembled, and finely modulated. We found that overexpression of AcrB and TolC components can effectively enhance the specific yield of amorphadiene and kaurene, e.g., 31 and 37 % improvement for amorphadiene compared with control, respectively. The heterologous MexB component can enhance kaurene production with 70 % improvement which is more effective than TolC and AcrB. The results suggest that the three components of tripartite efflux pumps play varied effect to enhance isoprenoid production. Considering the highly organized structure of efflux pumps and importance of components interaction, various component combinations were constructed and the copy number of key components AcrB and TolC was finely modulated as well. The results exhibit that the combination TolC and TolC and AcrB improved the specific yield of amorphadiene with 118 %, and AcrA and TolC and AcrB improved that of kaurene with 104 %. This study indicates that assembling and finely modulating efflux pumps is an effective strategy to improve the production of heterologous compounds in E. coli.

  4. Study of the role of efflux pump in ciprofloxacin resistance in Salmonella enterica serotype Typhi

    Directory of Open Access Journals (Sweden)

    V Sharma

    2013-01-01

    Full Text Available Purpose: There are increasing reports on failure of clinical response to ciprofloxacin in typhoid fever despite the strain being sensitive to drug in in-vitro using standard guidelines and showing mutations in DNA gyrase. But this increased MIC and clinical failures with ciprofloxacin are not always co-related with mutations presently identified in gyrA and parC genes. This shows that there may be other mechanisms such as an active drug efflux pump responsible as has been shown in other Enterobacteriaceae. This study was carried out to determine the role of efflux pump in Salmonella Typhi isolates. Materials and Methods : Total 25 already characterized nalidixic acid sensitive and nalidixic acid resistant S. Typhi strains with different range of ciprofloxacin MIC were included to study the role of efflux pump in the presence of CCCP (efflux pump inhibitor. For genotypic characterization, the entire acrR gene was sequenced to confirm the presence of any mutation in the gene. Results: The MIC of ciprofloxacin remained same in the presence and absence of CCCP in the studied strains and no significant mutations were found in the acrR gene in any of the isolates studied. Conclusions: No role of efflux pump in ciprofloxacin resistance was found in strains studied. There is a need to explore further mechanism of ciprofloxacin resistance in Salmonella Typhi.

  5. Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus

    DEFF Research Database (Denmark)

    Kumar, Ashwani; Khan, Inshad Ali; Koul, Surrinder

    2008-01-01

    OBJECTIVES: Evaluation of novel synthetic analogues of piperine as inhibitors of multidrug efflux pump NorA of Staphylococcus aureus. METHODS: A library of piperine-derived compounds was evaluated for their potential to inhibit ethidium bromide efflux in NorA-overexpressing S. aureus SA 1199B...... inhibitors of the NorA efflux pump. These inhibitors acted in a synergistic manner with ciprofloxacin, by substantially increasing its activity against both NorA-overexpressing and wild-type S. aureus isolates. These analogues were 2- to 4-fold more potent than piperine at a significantly lower minimal...... of ciprofloxacin through the inhibition of the NorA efflux pump. These molecules may prove useful in augmenting the antibacterial activities of fluoroquinolones in a clinical setting....

  6. Anion-coupled Na efflux mediated by the human red blood cell Na/K pump

    International Nuclear Information System (INIS)

    Dissing, S.; Hoffman, J.F.

    1990-01-01

    The red cell Na/K pump is known to continue to extrude Na when both Na and K are removed from the external medium. Because this ouabain-sensitive flux occurs in the absence of an exchangeable cation, it is referred to as uncoupled Na efflux. This flux is also known to be inhibited by 5 mM Nao but to a lesser extent than that inhibitable by ouabain. Uncoupled Na efflux via the Na/K pump therefore can be divided into a Nao-sensitive and Nao-insensitive component. We used DIDS-treated, SO4-equilibrated human red blood cells suspended in HEPES-buffered (pHo 7.4) MgSO4 or (Tris)2SO4, in which we measured 22Na efflux, 35SO4 efflux, and changes in the membrane potential with the fluorescent dye, diS-C3 (5). A principal finding is that uncoupled Na efflux occurs electroneurally, in contrast to the pump's normal electrogenic operation when exchanging Nai for Ko. This electroneutral uncoupled efflux of Na was found to be balanced by an efflux of cellular anions. (We were unable to detect any ouabain-sensitive uptake of protons, measured in an unbuffered medium at pH 7.4 with a Radiometer pH-STAT.) The Nao-sensitive efflux of Nai was found to be 1.95 +/- 0.10 times the Nao-sensitive efflux of (SO4)i, indicating that the stoichiometry of this cotransport is two Na+ per SO4=, accounting for 60-80% of the electroneutral Na efflux. The remainder portion, that is, the ouabain-sensitive Nao-insensitive component, has been identified as PO4-coupled Na transport and is the subject of a separate paper. That uncoupled Na efflux occurs as a cotransport with anions is supported by the result, obtained with resealed ghosts, that when internal and external SO4 was substituted by the impermeant anion, tartrate i,o, the efflux of Na was inhibited 60-80%. This inhibition could be relieved by the inclusion, before DIDS treatment, of 5 mM Cli,o

  7. Coumpounds affecting cell membrane functions and integrity: MDR pumps and theit exploration

    Czech Academy of Sciences Publication Activity Database

    Sigler, Karel; Gášková, D.

    2002-01-01

    Roč. 51, č. 24 (2002), s. 19-22 ISSN 0137-1398. [Uroczyste Seminarium z okazji urodzin Profesora Stanislawa Witka /70./. Wroclaw, 21.07.2002] R&D Projects: GA AV ČR IBS5020202; GA MŠk ME 577 Keywords : xenobioticexporting * multidrug resistance * mdr pumps Subject RIV: EE - Microbiology, Virology

  8. Differential roles of RND efflux pumps in antimicrobial drug resistance of sessile and planktonic Burkholderia cenocepacia cells.

    Science.gov (United States)

    Buroni, Silvia; Matthijs, Nele; Spadaro, Francesca; Van Acker, Heleen; Scoffone, Viola C; Pasca, Maria Rosalia; Riccardi, Giovanna; Coenye, Tom

    2014-12-01

    Burkholderia cenocepacia is notorious for causing respiratory tract infections in people with cystic fibrosis. Infections with this organism are particularly difficult to treat due to its high level of intrinsic resistance to most antibiotics. Multidrug resistance in B. cenocepacia can be ascribed to different mechanisms, including the activity of efflux pumps and biofilm formation. In the present study, the effects of deletion of the 16 operons encoding resistance-nodulation-cell division (RND)-type efflux pumps in B. cenocepacia strain J2315 were investigated by determining the MICs of various antibiotics and by investigating the antibiofilm effect of these antibiotics. Finally, the expression levels of selected RND genes in treated and untreated cultures were investigated using reverse transcriptase quantitative PCR (RT-qPCR). Our data indicate that the RND-3 and RND-4 efflux pumps are important for resistance to various antimicrobial drugs (including tobramycin and ciprofloxacin) in planktonic B. cenocepacia J2315 populations, while the RND-3, RND-8, and RND-9 efflux systems protect biofilm-grown cells against tobramycin. The RND-8 and RND-9 efflux pumps are not involved in ciprofloxacin resistance. Results from the RT-qPCR experiments on the wild-type strain B. cenocepacia J2315 suggest that there is little regulation at the level of mRNA expression for these efflux pumps under the conditions tested. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Engineering bacterial efflux pumps for solar-powered bioremediation of surface waters.

    Science.gov (United States)

    Kapoor, Vikram; Wendell, David

    2013-05-08

    Antibiotics are difficult to selectively remove from surface waters by present treatment methods. Bacterial efflux pumps have evolved the ability to discriminately expel antibiotics and other noxious agents via proton and ATP driven pathways. Here, we describe light-dependent removal of antibiotics by engineering the bacterial efflux pump AcrB into a proteovesicle system. We have created a chimeric protein with the requisite proton motive force by coupling AcrB to the light-driven proton pump Delta-rhodopsin (dR) via a glycophorin A transmembrane domain. This creates a solar powered protein material capable of selectively capturing antibiotics from bulk solutions. Using environmental water and direct sunlight, our AcrB-dR vesicles removed almost twice as much antibiotic as the treatment standard, activated carbon. Altogether, the AcrB-dR system provides an effective means of extracting antibiotics from surface waters as well as potential antibiotic recovery through vesicle solubilization.

  10. Use and engineering of efflux pumps for the export of olefins in microbes

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Aindrila [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States)

    2016-07-14

    The scope of the project is to investigate efflux pump systems in engineered host microorganisms, such as E. coli, and develop a pump engineered to export a target compound. To initiate the project in coordination with other TOTAL driven projects, the first target compound to be studied was 1-hexene. However, we were investigating other chemicals as Styrene. The main goal of the project was to generate a set of optimized efflux pump systems for microorganisms (E. coli and Streptomyces or other host) engineered to contain biosynthetic pathways to export large titers of target compounds that are toxic (or accumulate and push back biosynthesis) to the host cell. An optimized microbial host will utilize specific and efficient cell wall located pumps to extrude harmful target compounds and enable greater production of these compounds.

  11. Stress Introduction Rate Alters the Benefit of AcrAB-TolC Efflux Pumps.

    Science.gov (United States)

    Langevin, Ariel M; Dunlop, Mary J

    2018-01-01

    Stress tolerance studies are typically conducted in an all-or-none fashion. However, in realistic settings-such as in clinical or metabolic engineering applications-cells may encounter stresses at different rates. Therefore, how cells tolerate stress may depend on its rate of appearance. To address this, we studied how the rate of stress introduction affects bacterial stress tolerance by focusing on a key stress response mechanism. Efflux pumps, such as AcrAB-TolC of Escherichia coli , are membrane transporters well known for the ability to export a wide variety of substrates, including antibiotics, signaling molecules, and biofuels. Although efflux pumps improve stress tolerance, pump overexpression can result in a substantial fitness cost to the cells. We hypothesized that the ideal pump expression level would involve a rate-dependent trade-off between the benefit of pumps and the cost of their expression. To test this, we evaluated the benefit of the AcrAB-TolC pump under different rates of stress introduction, including a step, a fast ramp, and a gradual ramp. Using two chemically diverse stresses, the antibiotic chloramphenicol and the jet biofuel precursor pinene, we assessed the benefit provided by the pumps. A mathematical model describing these effects predicted the benefit as a function of the rate of stress introduction. Our findings demonstrate that as the rate of introduction is lowered, stress response mechanisms provide a disproportionate benefit to pump-containing strains, allowing cells to survive beyond the original inhibitory concentrations. IMPORTANCE Efflux pumps are ubiquitous in nature and provide stress tolerance in the cells of species ranging from bacteria to mammals. Understanding how pumps provide tolerance has far-reaching implications for diverse fields, from medicine to biotechnology. Here, we investigated how the rate of stressor appearance impacts tolerance. We focused on two distinct substrates of AcrAB-TolC efflux pumps, the

  12. Multidrug Efflux Pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus Bacterial Food Pathogens

    Directory of Open Access Journals (Sweden)

    Jody L. Andersen

    2015-01-01

    Full Text Available Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations.

  13. Multidrug Efflux Pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus Bacterial Food Pathogens

    Science.gov (United States)

    Andersen, Jody L.; He, Gui-Xin; Kakarla, Prathusha; KC, Ranjana; Kumar, Sanath; Lakra, Wazir Singh; Mukherjee, Mun Mun; Ranaweera, Indrika; Shrestha, Ugina; Tran, Thuy; Varela, Manuel F.

    2015-01-01

    Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations. PMID:25635914

  14. Efflux pump, the masked side of beta-lactam resistance in Klebsiella pneumoniae clinical isolates.

    Directory of Open Access Journals (Sweden)

    Jean-Marie Pages

    Full Text Available BACKGROUND: Beta-lactamase production and porin decrease are the well-recognized mechanisms of acquired beta-lactam resistance in Klebsiella pneumoniae isolates. However, such mechanisms proved to be absent in K. pneumoniae isolates that are non susceptible to cefoxitin (FOX and susceptible to amoxicillin+clavulanic acid in our hospital. Assessing the role of efflux pumps in this beta-lactam phenotype was the aim of this study. METHODOLOGY/FINDINGS: MICs of 9 beta-lactams, including cloxacillin (CLX, and other antibiotic families were tested alone and with an efflux pump inhibitor (EPI, then with both CLX (subinhibitory concentrations and EPI against 11 unique bacteremia K. pneumoniae isolates displaying the unusual phenotype, and 2 ATCC strains. CLX and EPI-dose dependent effects were studied on 4 representatives strains. CLX MICs significantly decreased when tested with EPI. A similar phenomenon was observed with piperacillin+tazobactam whereas MICs of the other beta-lactams significantly decreased only in the presence of both EPI and CLX. Thus, FOX MICs decreased 128 fold in the K. pneumoniae isolates but also 16 fold in ATCC strain. Restoration of FOX activity was CLX dose-dependent suggesting a competitive relationship between CLX and the other beta-lactams with regard to their efflux. For chloramphenicol, erythromycin and nalidixic acid whose resistance was also due to efflux, adding CLX to EPI did not increase their activity suggesting differences between the efflux process of these molecules and that of beta-lactams. CONCLUSION: This is the first study demonstrating that efflux mechanism plays a key role in the beta-lactam susceptibility of clinical isolates of K. pneumoniae. Such data clearly evidence that the involvement of efflux pumps in beta-lactam resistance is specially underestimated in clinical isolates.

  15. Involvement of the efflux pumps in chloramphenicol selected strains of Burkholderia thailandensis: proteomic and mechanistic evidence.

    Directory of Open Access Journals (Sweden)

    Fabrice V Biot

    Full Text Available Burkholderia is a bacterial genus comprising several pathogenic species, including two species highly pathogenic for humans, B. pseudomallei and B. mallei. B. thailandensis is a weakly pathogenic species closely related to both B. pseudomallei and B. mallei. It is used as a study model. These bacteria are able to exhibit multiple resistance mechanisms towards various families of antibiotics. By sequentially plating B. thailandensis wild type strains on chloramphenicol we obtained several resistant variants. This chloramphenicol-induced resistance was associated with resistance against structurally unrelated antibiotics including quinolones and tetracyclines. We functionally and proteomically demonstrate that this multidrug resistance phenotype, identified in chloramphenicol-resistant variants, is associated with the overexpression of two different efflux pumps. These efflux pumps are able to expel antibiotics from several families, including chloramphenicol, quinolones, tetracyclines, trimethoprim and some β-lactams, and present a partial susceptibility to efflux pump inhibitors. It is thus possible that Burkholderia species can develop such adaptive resistance mechanisms in response to antibiotic pressure resulting in emergence of multidrug resistant strains. Antibiotics known to easily induce overexpression of these efflux pumps should be used with discernment in the treatment of Burkholderia infections.

  16. Promising therapy of XDR-TB/MDR-TB with thioridazine an inhibitor of bacterial efflux pumps

    DEFF Research Database (Denmark)

    Amaral, L; Martins, M; Viveiros, M

    2008-01-01

    -TB) - a M. tuberculosis organism that is resistant to the most effective second line drugs available for the treatment of TB. This review provides detailed, significant evidence that supports the use of an old neuroleptic compound, thioridazine (TZ), for the management of MDR-TB and XDR-TB infections...... therapy predictably ineffective and death is inevitable, compassionate therapy with TZ should be contemplated. The risks are small and the rewards great....

  17. Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction

    International Nuclear Information System (INIS)

    Noonan, K.E.; Beck, C.; Holzmayer, T.A.; Chin, J.E.; Roninson, I.B.; Wunder, J.S.; Andrulis, I.L.; Gazdar, A.F.; Willman, C.L.; Griffith, B.; Von Hoff, D.D.

    1990-01-01

    The resistance of tumor cells ot chemotheraprutic drugs is a major obstacle to successful cancer chemotherapy. In human cells, expression of the MDR1 gene, encoding a transmembrane efflux pump (P-glycoprotein), leads to decreased intracellular accumulation and resistance to a variety of lipophilic drugs (multidrug resistance; MDR). The levels of MDR in cell lines selected in bitro have been shown to correlate with the steady-state levels of MDR1 mRNA and P-glycoprotein. In cells with a severalfold increase in cellular drug resistance, MDR1 expression levels are close to the limits of detection by conventional assays. MDR1 expression has been frequently observed in human tumors after chemotherapy and in some but not all types of clinically refactory tumors untreated with chemotherapeutic drugs. The authors have devised a highly sensitive, specific, and quantitative protocol for measuring the levels of MDR1 mRNA in clincal samples, based on the polymerase chain reaction. They have used this assay to measure MDR1 gene expression in MDR cell lines and >300 normal tissues, tumor-derived cell lines, and clinical specimens of untreated tumors of the types in which MDR1 expression was rarely observed by standard assays. Low levels of MDR1 expression were found by polymerase chain reaction in most solid tumors and leukemias tested. The frequency of samples without detectable MDR1 expression varied among different types of tumors; MDR1-negative samples were ost common among tumor types known to be relatively responsive to chemotherapy

  18. Evaluation of a series of 2-napthamide derivatives as inhibitors of the drug efflux pump AcrB for the reversal of antimicrobial resistance.

    Science.gov (United States)

    Wang, Yinhu; Mowla, Rumana; Guo, Liwei; Ogunniyi, Abiodun D; Rahman, Taufiq; De Barros Lopes, Miguel A; Ma, Shutao; Venter, Henrietta

    2017-02-15

    Drug efflux pumps confer multidrug resistance to dangerous pathogens which makes these pumps important drug targets. We have synthesised a novel series of compounds based on a 2-naphthamide pharmacore aimed at inhibiting the efflux pumps from Gram-negative bacteria. The archeatypical transporter AcrB from Escherichia coli was used as model efflux pump as AcrB is widely conserved throughout Gram-negative organisms. The compounds were tested for their antibacterial action, ability to potentiate the action of antibiotics and for their ability to inhibit Nile Red efflux by AcrB. None of the compounds were antimicrobial against E. coli wild type cells. Most of the compounds were able to inhibit Nile Red efflux indicating that they are substrates of the AcrB efflux pump. Three compounds were able to synergise with antibiotics and reverse resistance in the resistant phenotype. Compound A3, 4-(isopentyloxy)-2-naphthamide, reduced the MICs of erythromycin and chloramphenicol to the MIC levels of the drug sensitive strain that lacks an efflux pump. A3 had no effect on the MIC of the non-substrate rifampicin indicating that this compound acts specifically through the AcrB efflux pump. A3 also does not act through non-specific mechanisms such as outer membrane or inner membrane permeabilisation and is not cytotoxic against mammalian cell lines. Therefore, we have designed and synthesised a novel chemical compound with great potential to further optimisation as inhibitor of drug efflux pumps. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Efflux pump induction by quaternary ammonium compounds and fluoroquinolone resistance in bacteria.

    Science.gov (United States)

    Buffet-Bataillon, Sylvie; Tattevin, Pierre; Maillard, Jean-Yves; Bonnaure-Mallet, Martine; Jolivet-Gougeon, Anne

    2016-01-01

    Biocides, primarily those containing quaternary ammonium compounds (QAC), are heavily used in hospital environments and various industries (e.g., food, water, cosmetic). To date, little attention has been paid to potential implications of QAC use in the emergence of antibiotic resistance, especially fluoroquinolone-resistant bacteria in patients and in the environment. QAC-induced overexpression of efflux pumps can lead to: cross resistance with fluoroquinolones mediated by multidrug efflux pumps; stress response facilitating mutation in the Quinolone Resistance Determining Region; and biofilm formation increasing the risk of transfer of mobile genetic elements carrying fluoroquinolone or QAC resistance determinants. By following the European Biocidal Product Regulation, manufacturers of QAC are required to ensure that their QAC-based biocidal products are safe and will not contribute to emerging bacterial resistance.

  20. Different phenotypic and molecular mechanisms associated with multidrug resistance in Gram-negative clinical isolates from Egypt

    Directory of Open Access Journals (Sweden)

    Helmy OM

    2017-12-01

    Full Text Available Omneya M Helmy, Mona T Kashef Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt Objectives: We set out to investigate the prevalence, different mechanisms, and clonal relatedness of multidrug resistance (MDR among third-generation cephalosporin-resistant Gram-negative clinical isolates from Egypt.Materials and methods: A total of 118 third-generation cephalosporin-resistant Gram-negative clinical isolates were included in this study. Their antimicrobial susceptibility pattern was determined using Kirby–Bauer disk diffusion method. Efflux pump-mediated resistance was tested by the efflux-pump inhibitor-based microplate assay using chlorpromazine. Detection of different aminoglycoside-, β-lactam-, and quinolone-resistance genes was done using polymerase chain reaction. The genetic diversity of MDR isolates was investigated using random amplification of polymorphic DNA.Results: Most of the tested isolates exhibited MDR phenotypes (84.75%. The occurrence of efflux pump-mediated resistance in the different MDR species tested was 40%–66%. Acinetobacter baumannii isolates showed resistance to most of the tested antibiotics, including imipenem. The blaOXA-23-like gene was detected in 69% of the MDR A. baumannii isolates. The MDR phenotype was detected in 65% of Pseudomonas aeruginosa isolates, of which only 23% exhibited efflux pump-mediated resistance. On the contrary, efflux-mediated resistance to piperacillin and gentamicin was recorded in 47.5% of piperacillin-resistant and 25% of gentamicin-resistant MDR Enterobacteriaceae. Moreover, the plasmid-mediated quinolone-resistance genes (aac(6’-Ib-cr, qnrB, and qnrS were detected in 57.6% and 83.33% of quinolone-resistant MDR Escherichia coli and Klebsiella pneumoniae isolates, respectively. The β-lactamase-resistance gene blaSHV-31 was detected for the first time in one MDR K. pneumoniae isolate from an endotracheal tube specimen in Egypt

  1. Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus.

    Science.gov (United States)

    Kumar, Ashwani; Khan, Inshad Ali; Koul, Surrinder; Koul, Jawahir Lal; Taneja, Subhash Chandra; Ali, Intzar; Ali, Furqan; Sharma, Sandeep; Mirza, Zahid Mehmood; Kumar, Manoj; Sangwan, Pyare Lal; Gupta, Pankaj; Thota, Niranjan; Qazi, Ghulam Nabi

    2008-06-01

    Evaluation of novel synthetic analogues of piperine as inhibitors of multidrug efflux pump NorA of Staphylococcus aureus. A library of piperine-derived compounds was evaluated for their potential to inhibit ethidium bromide efflux in NorA-overexpressing S. aureus SA 1199B. The active compounds were then individually combined with ciprofloxacin to study the potentiation of ciprofloxacin's activity. Based on the efflux inhibition assay, a library of 200 compounds was screened. Three piperine analogues, namely SK-20, SK-56 and SK-29, were found to be the most potent inhibitors of the NorA efflux pump. These inhibitors acted in a synergistic manner with ciprofloxacin, by substantially increasing its activity against both NorA-overexpressing and wild-type S. aureus isolates. These analogues were 2- to 4-fold more potent than piperine at a significantly lower minimal effective concentration. Furthermore, these inhibitors also significantly suppressed the in vitro emergence of ciprofloxacin-resistant S. aureus. A newly identified class of compounds derived from a natural amide, piperine, is more potent than the parent molecule in potentiating the activity of ciprofloxacin through the inhibition of the NorA efflux pump. These molecules may prove useful in augmenting the antibacterial activities of fluoroquinolones in a clinical setting.

  2. Focus on the Outer Membrane Factor OprM, the Forgotten Player from Efflux Pumps Assemblies

    Directory of Open Access Journals (Sweden)

    Gilles Phan

    2015-11-01

    Full Text Available Antibiotics have been used extensively during several decades and we are now facing the emergence of multidrug resistant strains. It has become a major public concern, urging the need to discover new strategies to combat them. Among the different ways used by bacteria to resist antibiotics, the active efflux is one of the main mechanisms. In Gram-negative bacteria the efflux pumps are comprised of three components forming a long edifice crossing the complete cell wall from the inside to the outside of the cell. Blocking these pumps would permit the restoration of the effectiveness of the current antibiotherapy which is why it is important to increase our knowledge on the different proteins involved in these complexes. A tremendous number of experiments have been performed on the inner membrane protein AcrB from Escherichia coli and, to a lesser extent, the protein partners forming the AcrAB-TolC pump, but less information is available concerning the efflux pumps from other virulent Gram-negative bacteria. The present review will focus on the OprM outer membrane protein from the MexAB-OprM pump of Pseudomonas aeruginosa, highlighting similarities and differences compare to the archetypal AcrAB-TolC in terms of structure, function, and assembly properties.

  3. Structural and functional aspects of the multidrug efflux pump AcrB.

    Science.gov (United States)

    Eicher, Thomas; Brandstätter, Lorenz; Pos, Klaas M

    2009-08-01

    The tripartite efflux system AcrA/AcrB/TolC is the main pump in Escherichia coli for the efflux of multiple antibiotics, dyes, bile salts and detergents. The inner membrane component AcrB is central to substrate recognition and energy transduction and acts as a proton/drug antiporter. Recent structural studies show that homotrimeric AcrB can adopt different monomer conformations representing consecutive states in an allosteric functional rotation transport cycle. The conformational changes create an alternate access drug transport tunnel including a hydrophobic substrate binding pocket in one of the cycle intermediates.

  4. Role of efflux pumps and intracellular thiols in natural antimony resistant isolates of Leishmania donovani.

    Directory of Open Access Journals (Sweden)

    Smita Rai

    Full Text Available BACKGROUND: In view of the recent upsurge in the phenomenon of therapeutic failure, drug resistance in Leishmania, developed under natural field conditions, has become a great concern yet little understood. Accordingly, the study of determinants of antimony resistance is urgently warranted. Efflux transporters have been reported in Leishmania but their role in clinical resistance is still unknown. The present study was designed to elucidate the mechanism of natural antimony resistance in L. donovani field isolates by analyzing the functionality of efflux pump(s and expression profiles of known genes involved in transport and thiol based redox metabolism. METHODOLOGY/PRINCIPAL FINDINGS: We selected 7 clinical isolates (2 sensitive and 5 resistant in addition to laboratory sensitive reference and SbIII resistant mutant strains for the present study. Functional characterization using flow cytometry identified efflux pumps that transported substrates of both P-gp and MRPA and were inhibited by the calmodulin antagonist trifluoperazine. For the first time, verapamil sensitive efflux pumps for rhodamine 123 were observed in L. donovani that were differentially active in resistant isolates. RT-PCR confirmed the over-expression of MRPA in isolates with high resistance index only. Resistant isolates also exhibited consistent down regulation of AQP1 and elevated intracellular thiol levels which were accompanied with increased expression of ODC and TR genes. Interestingly, γ-GCS is not implicated in clinical resistance in L. donovani isolates. CONCLUSIONS/SIGNIFICANCE: Here we demonstrate for the first time, the role of P-gp type plasma membrane efflux transporter(s in antimony resistance in L. donovani field isolates. Further, decreased levels of AQP1 and elevated thiols levels have emerged as biomarkers for clinical resistance.

  5. Inactivation of a putative efflux pump (LmrB) in Streptococcus mutans results in altered biofilm structure and increased exopolysaccharide synthesis: implications for biofilm resistance.

    Science.gov (United States)

    Liu, Jia; Zhang, Jianying; Guo, Lihong; Zhao, Wei; Hu, Xiaoli; Wei, Xi

    2017-07-01

    Efflux pumps are a mechanism associated with biofilm formation and resistance. There is limited information regarding efflux pumps in Streptococcus mutans, a major pathogen in dental caries. The aim of this study was to investigate potential roles of a putative efflux pump (LmrB) in S. mutans biofilm formation and susceptibility. Upon lmrB inactivation and antimicrobial exposure, the biofilm structure and expression of other efflux pumps were examined using confocal laser scanning microscopy (CLSM) and qRT-PCR. lmrB inactivation resulted in biofilm structural changes, increased EPS formation and EPS-related gene transcription (p < 0.05), but no improvement in susceptibility was observed. The expression of most efflux pump genes increased upon lmrB inactivation when exposed to antimicrobials (p < 0.05), suggesting a feedback mechanism that activated the transcription of other efflux pumps to compensate for the loss of lmrB. These observations imply that sole inactivation of lmrB is not an effective solution to control biofilms.

  6. Glucose-induced MDR pump resynthesis in respiring yeast cells depends on nutrient level

    Czech Academy of Sciences Publication Activity Database

    Maláč, J.; Sigler, Karel; Gášková, D.

    -, č. 337 (2005), s. 138-141 ISSN 0006-291X R&D Projects: GA ČR GD204/03/H066; GA ČR GP202/04/P110 Grant - others:GA FRVŠ FRVS 555/2005/G3 Institutional research plan: CEZ:AV0Z50200510 Keywords : MDR pumps * yeast * fluorimetric assay Subject RIV: EE - Microbiology, Virology Impact factor: 3.000, year: 2005

  7. Drug transport mechanism of the AcrB efflux pump.

    Science.gov (United States)

    Pos, Klaas M

    2009-05-01

    In Gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa, tripartite multidrug efflux systems extrude cytotoxic substances from the cell directly into the medium bypassing periplasm and the outer membrane. In E. coli, the tripartite efflux system AcrA/AcrB/TolC is the pump that extrudes multiple antibiotics, dyes, bile salts and detergents. The inner membrane component AcrB, a member of the Resistance Nodulation cell Division (RND) family, is the major site for substrate recognition and energy transduction of the entire tripartite system. The drug/proton antiport processes in this secondary transporter are suggested to be spatially separated, a feature frequently observed for primary transporters like membrane-bound ATPases. The recently elucidated asymmetric structure of the AcrB trimer reveals three different monomer conformations proposed to represent consecutive states in a directional transport cycle. Each monomer shows a distinct tunnel system with entrances located at the boundary of the outer leaflet of the inner membrane and the periplasm through the periplasmic porter (pore) domain towards the funnel of the trimer and TolC. In one monomer a hydrophobic pocket is present which has been shown to bind the AcrB substrates minocyclin and doxorubicin. The energy conversion from the proton motive force into drug efflux includes proton binding in (and release from) the transmembrane part. The conformational changes observed within a triad of essential, titratable residues (D407/D408/K940) residing in the hydrophobic transmembrane domain appear to be transduced by transmembrane helix 8 and associated with the conformational changes seen in the periplasmic domain. From the asymmetric structure a possible peristaltic pump transport mechanism based on a functional rotation of the AcrB trimer has been postulated. The novel drug transport model combines the alternate access pump mechanism with the rotating site catalysis of F(1)F(o) ATPase as

  8. Candida albicans Swi/Snf and Mediator Complexes Differentially Regulate Mrr1-Induced MDR1 Expression and Fluconazole Resistance.

    Science.gov (United States)

    Liu, Zhongle; Myers, Lawrence C

    2017-11-01

    Long-term azole treatment of patients with chronic Candida albicans infections can lead to drug resistance. Gain-of-function (GOF) mutations in the transcription factor Mrr1 and the consequent transcriptional activation of MDR1 , a drug efflux coding gene, is a common pathway by which this human fungal pathogen acquires fluconazole resistance. This work elucidates the previously unknown downstream transcription mechanisms utilized by hyperactive Mrr1. We identified the Swi/Snf chromatin remodeling complex as a key coactivator for Mrr1, which is required to maintain basal and induced open chromatin, and Mrr1 occupancy, at the MDR1 promoter. Deletion of snf2 , the catalytic subunit of Swi/Snf, largely abrogates the increases in MDR1 expression and fluconazole MIC observed in MRR1 GOF mutant strains. Mediator positively and negatively regulates key Mrr1 target promoters. Deletion of the Mediator tail module med3 subunit reduces, but does not eliminate, the increased MDR1 expression and fluconazole MIC conferred by MRR1 GOF mutations. Eliminating the kinase activity of the Mediator Ssn3 subunit suppresses the decreased MDR1 expression and fluconazole MIC of the snf2 null mutation in MRR1 GOF strains. Ssn3 deletion also suppresses MDR1 promoter histone displacement defects in snf2 null mutants. The combination of this work with studies on other hyperactive zinc cluster transcription factors that confer azole resistance in fungal pathogens reveals a complex picture where the induction of drug efflux pump expression requires the coordination of multiple coactivators. The observed variations in transcription factor and target promoter dependence of this process may make the search for azole sensitivity-restoring small molecules more complicated. Copyright © 2017 American Society for Microbiology.

  9. NorA efflux pump inhibitory activity of coumarins from Mesua ferrea.

    Science.gov (United States)

    Roy, Somendu K; Kumari, Neela; Pahwa, Sonika; Agrahari, Udai C; Bhutani, Kamlesh K; Jachak, Sanjay M; Nandanwar, Hemraj

    2013-10-01

    The purpose of this investigation was to study the modulator and efflux pump inhibitor activity of coumarins isolated from Mesua ferrea against clinical strains as well as NorA-over expressed strain of Staphylococcus aureus 1199B. Seven coumarins were tested for modulator activity using ethidium bromide (EtBr) as a substrate. Compounds 1, 4-7 modulated the MIC of EtBr by ≥ 2 fold against wild type clinical strains of S. aureus 1199 and S. aureus 1199B, whereas compounds 4-7 modulated the MIC of EtBr by ≥ 16 fold against MRSA 831. Compounds 1, 4-7 also reduced the MIC of norfloxacin by ≥ 8 fold against S. aureus 1199B, and 4-6 reduced the MIC of norfloxacin by ≥ 8 fold against MRSA 831 at half of their MICs. Inhibition of EtBr efflux by NorA-overproducing S. aureus 1199B and MRSA 831 confirmed the role of compounds 4-6 as NorA efflux pump inhibitors (EPI). Dose-dependent activity at sub-inhibitory concentration (6.25 μg/mL) suggested that compounds 4 and 5 are promising EPI compared to verapamil against 1199B and MRSA 831 strains. © 2013.

  10. First identification of boronic species as novel potential inhibitors of the Staphylococcus aureus NorA efflux pump.

    Science.gov (United States)

    Fontaine, Fanny; Hequet, Arnaud; Voisin-Chiret, Anne-Sophie; Bouillon, Alexandre; Lesnard, Aurélien; Cresteil, Thierry; Jolivalt, Claude; Rault, Sylvain

    2014-03-27

    Overexpression of efflux pumps is an important mechanism of bacterial resistance that results in the extrusion of antimicrobial agents outside the bacterial cell. Inhibition of such pumps appears to be a promising strategy that could restore the potency of existing antibiotics. The NorA efflux pump of Staphylococcus aureus confers resistance to a wide range of unrelated substrates, such as hydrophilic fluoroquinolones, leading to a multidrug-resistance phenotype. In this work, approximately 150 heterocyclic boronic species were evaluated for their activity against susceptible and resistant strains of S. aureus. Twenty-four hit compounds, although inactive when tested alone, were found to potentiate ciprofloxacin activity by a 4-fold increase at concentrations ranging from 0.5 to 8 μg/mL against S. aureus 1199B, which overexpresses NorA. Boron-free analogues showed no biological activity, thus revealing that the boron atom is crucial for biological activity. This work describes the first reported efflux pump inhibitory activity of boronic acid derivatives.

  11. Genetic modification of haematopoietic cells for combined resistance to podophyllotoxins, other agents covered by MDR1-mediated efflux activity and nitrosoureas.

    Science.gov (United States)

    Baum, C; Peinert, S; Carpinteiro, A; Eckert, H G; Fairbairn, L J

    2000-05-01

    Genetic transfer and expression of drug-resistance functions into haematopoietic stem and progenitor cells is a promising means to overcome both the acute and longterm side-effects of cytotoxic drugs in bone marrow. Here, we describe a functional analysis of a retroviral vector that co-expresses human cDNAs for multidrug resistance 1/P-glycoprotein (MDR1) and a double mutant of O(6)-alkylguanine-alkyltransferase (hATPA/GA) to high levels. The hATPA/GA protein contains two amino acid substitutions that render it resistant to compounds such as O(6)-benzylguanine that inhibit the wild-type protein which is often overexpressed in resistant tumour cells. Evidence for simultaneous drug resistance of genetically modified primary murine progenitor cells to colchicine or the podophyllotoxin etoposide, both covered by MDR1-mediated efflux activity, and the nitrosourea BCNU, which is counteracted by hATPA/GA, is presented using in vitro colony assays.

  12. Chalcone inhibitors of the NorA efflux pump in Staphylococcus aureus whole cells and enriched everted membrane vesicles.

    Science.gov (United States)

    Holler, Jes Gitz; Slotved, Hans-Christian; Mølgaard, Per; Olsen, Carl Erik; Christensen, Søren Brøgger

    2012-07-15

    A library of 117 chalcones was screened for efflux pump inhibitory (EPI) activity against NorA mediated ethidium bromide efflux. Five of the chalcones (5-7, 9, and 10) were active and two chalcones (9 and 10) were equipotent to reserpine with IC(50)-values of 9.0 and 7.7 μM, respectively. Twenty chalcones were subsequently proved to be inhibitors of the NorA efflux pump in everted membrane vesicles. Compounds 5, 7, and 9 synergistically increased the effect of ciprofloxacin on Staphylococcus aureus. Our results suggest that chalcones might be developed into drugs for overcoming multidrug resistance based on efflux transporters of microorganisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Crystallization and preliminary X-ray analysis of the TetR-like efflux pump regulator SimR

    International Nuclear Information System (INIS)

    Le, Tung B. K.; Stevenson, Clare E. M.; Buttner, Mark J.; Lawson, David M.

    2011-01-01

    Crystals of SimR, a TetR-like efflux pump repressor from S. antibioticus, were obtained and X-ray data were recorded to a resolution of 2.3 Å. Crystals of SimR were grown by vapour diffusion. The protein crystallized with trigonal symmetry and X-ray data were recorded to a resolution of 2.3 Å from a single crystal at the synchrotron. SimR belongs to the TetR family of bacterial transcriptional regulators. In the absence of the antibiotic simocyclinone, SimR represses the transcription of a divergently transcribed gene encoding the simocyclinone efflux pump SimX in Streptomyces antibioticus by binding to operators in the simR–simX intergenic region. Simocyclinone binding causes SimR to dissociate from its operators, leading to expression of the SimX efflux pump. Thus, SimR represents an intimate link between the biosynthesis of simocyclinone and its export, which may also provide the mechanism of self-resistance to the antibiotic in the producer strain

  14. Vitamin K3 Induces the Expression of the Stenotrophomonas maltophilia SmeVWX Multidrug Efflux Pump.

    Science.gov (United States)

    Blanco, P; Corona, F; Sánchez, M B; Martínez, J L

    2017-05-01

    Stenotrophomonas maltophilia is an opportunistic pathogen with increasing prevalence, which is able to cause infections in immunocompromised patients or in those with a previous pathology. The treatment of the infections caused by this bacterium is often complicated due to the several intrinsic antibiotic resistance mechanisms that it presents. Multidrug efflux pumps are among the best-studied mechanisms of S. maltophilia antibiotic resistance. Some of these efflux pumps have a basal expression level but, in general, their expression is often low and only reaches high levels when the local regulator is mutated or bacteria are in the presence of an effector. In the current work, we have developed a yellow fluorescent protein (YFP)-based sensor with the aim to identify effectors able to trigger the expression of SmeVWX, an efflux pump that confers resistance to quinolones, chloramphenicol, and tetracycline when it is expressed at high levels. With this purpose in mind, we tested a variety of different compounds and analyzed the fluorescence signal given by the expression of YFP under the control of the smeVWX promoter. Among the tested compounds, vitamin K 3 , which is a compound belonging to the 2-methyl-1,4-naphthoquinone family, is produced by plants in defense against infection, and has increasing importance in human therapy, was able to induce the expression of the SmeVWX efflux pump. In addition, a decrease in the susceptibility of S. maltophilia to ofloxacin and chloramphenicol was observed in the presence of vitamin K 3 , in both wild-type and smeW -deficient strains. Copyright © 2017 American Society for Microbiology.

  15. Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance

    Science.gov (United States)

    Fernández, Lucía

    2012-01-01

    Summary: The substantial use of antibiotics in the clinic, combined with a dearth of new antibiotic classes, has led to a gradual increase in the resistance of bacterial pathogens to these compounds. Among the various mechanisms by which bacteria endure the action of antibiotics, those affecting influx and efflux are of particular importance, as they limit the interaction of the drug with its intracellular targets and, consequently, its deleterious effects on the cell. This review evaluates the impact of porins and efflux pumps on two major types of resistance, namely, mutational and adaptive types of resistance, both of which are regarded as key phenomena in the global rise of antibiotic resistance among pathogenic microorganisms. In particular, we explain how adaptive and mutational events can dramatically influence the outcome of antibiotic therapy by altering the mechanisms of influx and efflux of antibiotics. The identification of porins and pumps as major resistance markers has opened new possibilities for the development of novel therapeutic strategies directed specifically against these mechanisms. PMID:23034325

  16. Phenotypic and Genotypic Efflux Pumps in Resistance to Fluoroquinolones in E.coli Isolated from Inpatients in Kermanshah Hospitals in 2013

    Directory of Open Access Journals (Sweden)

    Maryam Doosti Mohajer

    2017-12-01

    Full Text Available Abstract Background: Antibiotic resistance rates in E. coli are rapidly rising, especially with regard to fluoroquinolones. One of the mechanisms that lead to antibiotic resistance is efflux pumps. The aim of this study was phonotypic and genotypic analysis of efflux pump role in fluoroquinolones resistance of E. coli strains isolated from hospitalized patients in Kermanshah 2013. Materials and Methods: In this cross-sectional study, 100 isolates of E. coli were collected from hospitalized patients from Kermanshah. All isolates were identified by standard biochemical tests. The antimicrobial susceptibility patterns were determined by disk diffusion method according to CLSI guidelines. The presence of Efflux pump genes was determined by a PCR method. Results: The rates of resistance to Ceftazidime, Nalidixic Acid, Ciprofloxacin, Norfloxacin, Ofloxacin, Gentamicin, and Tetracycline were 73%, 67%, 55%, 54%, 45%, 38%, and 24%, respectively. According to the results of PCR test, of 100 E. coli isolates, 99% of isolates were positive for acrA, 98% for acrB, 95% for acrE, 98% for acrF, 94% for mdfA, 96% for norE, and 96% for tolC. Conclusion: In Strains with positive gene acrA, acrB, acrA, acrB, tolC, mdfA, norE, the presence of efflux pump inhibitor reduced the amount of resistance to antibiotics. So, efflux pumps are important in antibiotic resistance.

  17. Citral derived amides as potent bacterial NorA efflux pump inhibitors

    DEFF Research Database (Denmark)

    Thota, Niranjan; Koul, Surrinder; Reddy, Mallepally V

    2008-01-01

    Monoterpene citral and citronellal have been used as starting material for the preparation of 5,9-dimethyl-deca-2,4,8-trienoic acid amides and 9-formyl-5-methyl-deca-2,4,8-trienoic acid amides. The amides on bioevaluation as efflux pump inhibitors (EPIs) against Staphylococcus aureus 1199 and NorA...

  18. Transcriptome response to alkane biofuels in Saccharomyces cerevisiae: identification of efflux pumps involved in alkane tolerance

    Science.gov (United States)

    2013-01-01

    Background Hydrocarbon alkanes have been recently considered as important next-generation biofuels because microbial production of alkane biofuels was demonstrated. However, the toxicity of alkanes to microbial hosts can possibly be a bottleneck for high productivity of alkane biofuels. To tackle this toxicity issue, it is essential to understand molecular mechanisms of interactions between alkanes and microbial hosts, and to harness these mechanisms to develop microbial host strains with improved tolerance against alkanes. In this study, we aimed to improve the tolerance of Saccharomyces cerevisiae, a model eukaryotic host of industrial significance, to alkane biofuels by exploiting cellular mechanisms underlying alkane response. Results To this end, we first confirmed that nonane (C9), decane (C10), and undecane (C11) were significantly toxic and accumulated in S. cerevisiae. Transcriptome analyses suggested that C9 and C10 induced a range of cellular mechanisms such as efflux pumps, membrane modification, radical detoxification, and energy supply. Since efflux pumps could possibly aid in alkane secretion, thereby reducing the cytotoxicity, we formed the hypothesis that those induced efflux pumps could contribute to alkane export and tolerance. In support of this hypothesis, we demonstrated the roles of the efflux pumps Snq2p and Pdr5p in reducing intracellular levels of C10 and C11, as well as enhancing tolerance levels against C10 and C11. This result provided the evidence that Snq2p and Pdr5p were associated with alkane export and tolerance in S. cerevisiae. Conclusions Here, we investigated the cellular mechanisms of S. cerevisiae response to alkane biofuels at a systems level through transcriptome analyses. Based on these mechanisms, we identified efflux pumps involved in alkane export and tolerance in S. cerevisiae. We believe that the results here provide valuable insights into designing microbial engineering strategies to improve cellular tolerance for

  19. Efflux pumps as antimicrobial resistance mechanisms.

    Science.gov (United States)

    Poole, Keith

    2007-01-01

    Antibiotic resistance continues to hamper antimicrobial chemotherapy of infectious disease, and while biocide resistance outside of the laboratory is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are not uncommon. Efflux mechanisms, both drug-specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials in important human pathogens. Multidrug efflux mechanisms are generally chromosome-encoded, with their expression typically resultant from mutations in regulatory genes, while drug-specific efflux mechanisms are encoded by mobile genetic elements whose acquisition is sufficient for resistance. While it has been suggested that drug-specific efflux systems originated from efflux determinants of self-protection in antibiotic-producing Actinomycetes, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, are appreciated as having an intended housekeeping function unrelated to drug export and resistance. Thus, it will be important to elucidate the intended natural function of these efflux mechanisms in order, for example, to anticipate environmental conditions or circumstances that might promote their expression and, so, compromise antimicrobial chemotherapy. Given the clinical significance of antimicrobial exporters, it is clear that efflux must be considered in formulating strategies for treatment of drug-resistant infections, both in the development of new agents, for example, less impacted by efflux or in targeting efflux directly with efflux inhibitors.

  20. Enhanced Efflux Pump Activity in Old Candida glabrata Cells.

    Science.gov (United States)

    Bhattacharya, Somanon; Fries, Bettina C

    2018-03-01

    We investigated the effect of replicative aging on antifungal resistance in Candida glabrata Our studies demonstrate significantly increased transcription of ABC transporters and efflux pump activity in old versus young C. glabrata cells of a fluconazole-sensitive and -resistant strain. In addition, higher tolerance to killing by micafungin and amphotericin B was noted and is associated with higher transcription of glucan synthase gene FKS1 and lower ergosterol content in older cells. Copyright © 2018 American Society for Microbiology.

  1. Contribution of efflux pumps in fluroquinolone resistance in multi-drug resistant nosocomial isolates of Pseudomanas aeruginosa from a tertiary referral hospital in north east India

    Directory of Open Access Journals (Sweden)

    D Choudhury

    2015-01-01

    Full Text Available Background: Pseudomonas aeruginosa is one of the leading opportunistic pathogen and its ability to acquire resistance against series of antimicrobial agents confine treatment option for nosocomial infections. Increasing resistance to fluroquinolone (FQ agents has further worsened the scenario. The major mechanism of resistance to FQs includes mutation in FQs target genes in bacteria (DNA gyrase and/or topoisomerases and overexpression of antibiotic efflux pumps. Objective: We have investigated the role of efflux pump mediated FQ resistance in nosocomial isolates of P. aeruginosa from a tertiary referral hospital in north eastern part of India. Materials and Methods: A total of 234 non-duplicate, consecutive clinical isolates of P. aeruginosa were obtained from a tertiary referral hospital of north-east India. An efflux pump inhibitor (EPI, carbonyl cyanide m-chlorophenylhydrazone (CCCP based method was used for determination of efflux pump activity and multiplex polymerase chain reaction (PCR was performed for molecular characterisation of efflux pump. Minimum inhibitory concentration (MIC reduction assay was also performed for all the isolates. Results and Conclusion: A total number of 56 (23% have shown efflux mediated FQ resistance. MexAB-OprM efflux system was predominant type. This is the first report of efflux pump mediated FQ resistance from this part of the world and the continued emergence of these mutants with such high MIC range from this part of the world demands serious awareness, diagnostic intervention, and proper therapeutic option.

  2. Evaluation of expression of NorA efflux pump in ciprofloxacin resistant Staphylococcus aureus against hexahydroquinoline derivative by real-time PCR.

    Science.gov (United States)

    Pourmand, Mohammad Reza; Yousefi, Masoud; Salami, Seyed Alireza; Amini, Mohsen

    2014-01-01

    Staphylococcus aureus causes a wide variety of infections worldwide. Methicillin-resistant S. aureus is one of most common causes of nosocomial and community acquired infections. The fluoroquinolones are an important class of antibiotics that used to treat infections caused by S. aureus. Today, a significant increase in the rate of ciprofloxacin resistance in methicillin-resistant S. aureus strains is concerning. The norA efflux pump is considered as contributors to antibiotic resistance. Here, we aimed to evaluate the expression of norA efflux pump in the presence of hexahydroquinoline derivative in methicillin and ciprofloxacin resistant S. aureus. We were determined minimum inhibitory concentration of ciprofloxacin and hexahydroquinoline derivative and their combination by broth microdilution method against ciprofloxacin resistant S. aureus. The expression of the norA efflux pump gene was evaluated by quantitative Real-time PCR. This study showed that minimum inhibitory concentrations of ciprofloxacin in the presence of hexahydroquinoline derivative in comparison to ciprofloxacin were decreased. Quantitative Real-time PCR identified the increased expression of norA efflux pump gene in methicillin and ciprofloxacin resistant S. aureus strain. The increased expression of norA efflux pump gene may have resulted in the effort of S. aureus to survive. The results showed that the hexahydroquinoline derivative enhanced the antibacterial effect of ciprofloxacin against methicillin and ciprofloxacin resistant S. aureus. Therefore, the derivatives may be used as inhibitors of antibiotic resistance for combination therapy.

  3. Efflux Pumps Might Not Be the Major Drivers of QAC Resistance in Methicillin-Resistant Staphylococcus aureus.

    Science.gov (United States)

    Jennings, Megan C; Forman, Megan E; Duggan, Stephanie M; Minbiole, Kevin P C; Wuest, William M

    2017-08-17

    Quaternary ammonium compounds (QACs) are commonly used antiseptics that are now known to be subject to bacterial resistance. The prevalence and mechanisms of such resistance, however, remain underexplored. We investigated a variety of QACs, including those with multicationic structures (multiQACs), and the resistance displayed by a variety of Staphylococcus aureus strains with and without genes encoding efflux pumps, the purported main driver of bacterial resistance in MRSA. Through minimum inhibitory concentration (MIC)-, kinetic-, and efflux-based assays, we found that neither the qacR/qacA system present in S. aureus nor another efflux pump system is the main reason for bacterial resistance to QACs. Our findings suggest that membrane composition could be the predominant driver that allows CA-MRSA to withstand the assault of conventional QAC antiseptics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Carpobrotus edulis methanol extract inhibits the MDR efflux pumps, enhances killing of phagocytosed S. aureus and promotes immune modulation.

    Science.gov (United States)

    Ordway, Diane; Hohmann, Judit; Viveiros, Miguel; Viveiros, Antonio; Molnar, Joseph; Leandro, Clara; Arroz, Maria Jorge; Gracio, Maria Amelia; Amaral, Leonard

    2003-05-01

    Although alkaloids from the family Aizoaceae have anticancer activity, species of this family have received little attention. Because these alkaloids also exhibit properties normally associated with compounds that have activity at the level of the plasma membrane, a methanol extract of Carpobrotus edulis, a common plant found along the Portuguese coast, was studied for properties normally associated with plasma membrane active compounds. The results of this study show that the extract is non-toxic at concentrations that inhibit a verapamil sensitive efflux pump of L5178 mouse T cell lymphoma cell line thereby rendering these multi-drug resistant cells susceptible to anticancer drugs. These non-toxic concentrations also prime THP-1 human monocyte-derived macrophages to kill ingested Staphylococcus aureus and to promote the release of lymphokines associated with cellular immune functions. The extract also induces the proliferation of THP-1 cells within 1 day of exposure to quantities normally associated with phytohaemagglutinin. The potential role of the compound(s) isolated from this plant in cancer biology is intriguing and is currently under investigation. It is supposed that the resistance modifier and immunomodulatory effect of this plant extract can be exploited in the experimental chemotherapy of cancer and bacterial or viral infections. Copyright 2003 John Wiley & Sons, Ltd.

  5. Antibacterial and efflux pump inhibitors of thymol and carvacrol against food-borne pathogens.

    Science.gov (United States)

    Miladi, Hanene; Zmantar, Tarek; Chaabouni, Yassine; Fedhila, Kais; Bakhrouf, Amina; Mahdouani, Kacem; Chaieb, Kamel

    2016-10-01

    In this study thymol (THY) and carvacrol (CAR), two monoterpenic phenol produced by various aromatic plants, was tested for their antibacterial and efflux pump inhibitors potencies against a panel of clinical and foodborne pathogenes. Our results demonstrated a substantial susceptibility of the tested bacteria toward THY and CAR. Especially, THY displayed a strong inhibitory activity (MIC's values ranged from 32 to 64 μg/mL) against the majority of the tested strains compared to CAR. Moreover, a significant reduction in MIC's of TET and benzalkonium chloride (QAC) were noticed when tested in combinations with THY and CAR. Their synergic effect was more significant in the case of THY which resulted a reduction of MIC's values of TET (2-8 fold) and QAC (2-8 fold). We noted also that THY and CAR inhibited the ethidium bromide (EtBr) cell efflux in a concentration-dependent manner. The rate of EtBr accumulation in food-borne pathogen was enhanced with THY and CAR (0, 250 and 500 μg/mL). The lowest concentration causing 50% of EtBr efflux inhibition (IC 50) was noticed in Salmonella enteritidis (1129) at 150 μg/mL of THY and 190 μg/mL of CAR respectively. These findings indicate that THY and CAR may serve as potential sources of efflux pump inhibitor in food-borne pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Distribution of different efflux pump genes in clinical isolates of multidrug-resistant Acinetobacter baumannii and their correlation with antimicrobial resistance.

    Science.gov (United States)

    Lin, Ming-Feng; Lin, Yun-You; Tu, Chi-Chao; Lan, Chung-Yu

    2017-04-01

    Efflux pumps are one of the major mechanisms of antimicrobial resistance in Acinetobacter baumannii. This study aimed to understand the distribution of different types of pump genes in clinical isolates of multidrug-resistant A. baumannii (MDRAB) and to reveal the relationship between their presence and expression with antimicrobial resistance. MDRAB isolates were collected from five hospitals in Taiwan. Different categories of pump genes, including adeB, adeJ, macB, abeM, abeS, emrA-like, emrB-like, and craA, were chosen, and their presence in the collected isolates was determined. Three induced resistant strains of A. baumannii ATCC 17978 to tigecycline, imipenem, and amikacin were also included. The expressions of the selected pump genes were determined using quantitative reverse transcription-polymerase chain reaction. Twenty-one MDRAB clinical isolates were obtained from five hospitals. All of the studied pump genes were present in the collected MDRAB isolates except one isolate that lacked the emrA-like gene. The gene expression of these efflux pumps was variable among the strains. The upregulation of the adeB, adeJ, and macB genes was responsible for tigecycline resistance, and the increased abeS expression was strongly related to amikacin resistance. Of all the antibiotics studied, tigecycline was the strongest inducer of gene expression for many efflux pumps in A. baumannii. Efflux pump genes are universally present in the collected clinical MDRAB isolates. The upregulation of the adeB, adeJ, macB and abeS genes is more related with antibiotic resistance. Copyright © 2015. Published by Elsevier B.V.

  7. The AcrB efflux pump: conformational cycling and peristalsis lead to multidrug resistance.

    Science.gov (United States)

    Seeger, Markus A; Diederichs, Kay; Eicher, Thomas; Brandstätter, Lorenz; Schiefner, André; Verrey, François; Pos, Klaas M

    2008-09-01

    Antimicrobial resistance of human pathogenic bacteria is an emerging problem for global public health. This resistance is often associated with the overproduction of membrane transport proteins that are capable to pump chemotherapeutics, antibiotics, detergents, dyes and organic solvents out of the cell. In Gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa, tripartite multidrug efflux systems extrude a large variety of cytotoxic substances from the cell membrane directly into the medium bypassing the periplasm and the outer membrane. In E. coli, the tripartite efflux system AcrA/AcrB/TolC is the pump in charge of the efflux of multiple antibiotics, dyes, bile salts and detergents. The trimeric outer membrane factor (OMF) TolC forms a beta-barrel pore in the outer membrane and exhibits a long periplasmic alpha-helical conduit. The periplasmic membrane fusion protein (MFP) AcrA serves as a linker between TolC and the trimeric resistance nodulation cell division (RND) pump AcrB, located in the inner membrane acting as a proton/drug antiporter. The newly elucidated asymmetric structure of trimeric AcrB reveals three different monomer conformations representing consecutive states in a transport cycle. The monomers show tunnels with occlusions at different sites leading from the lateral side through the periplasmic porter (pore) domains towards the funnel of the trimer and TolC. The structural changes create a hydrophobic pocket in one monomer, which is not present in the other two monomers. Minocyclin and doxorubicin, both AcrB substrates, specifically bind to this pocket substantiating its role as drug binding pocket. The energy transduction from the proton motive force into drug efflux includes proton binding in (and release from) the transmembrane part. The conformational changes observed within a triad of essential, titratable residues (Asp407/Asp408/Lys940) residing in the hydrophobic transmembrane domain appear to be transduced by

  8. Aminoguanidine hydrazones (AGH's) as modulators of norfloxacin resistance in Staphylococcus aureus that overexpress NorA efflux pump.

    Science.gov (United States)

    Dantas, Natalina; de Aquino, Thiago Mendonça; de Araújo-Júnior, João Xavier; da Silva-Júnior, Edeildo; Gomes, Ednaldo Almeida; Gomes, Antoniel Augusto Severo; Siqueira-Júnior, José Pinto; Mendonça Junior, Francisco Jaime Bezerra

    2018-01-25

    One of the promising fields for improving the effectiveness of antimicrobial agents is their combination with efflux pump inhibitors (EPIs), which besides expanding the use of existing antibiotics. The goal of this research was to evaluate a series of aminoguanidine hydrazones (AGH's, 1-19) as antibacterial agents and NorA efflux pump inhibitors in Staphylococcus aureus strain SA-1199B. Molecular modeling and docking studies were also performed in order to explain at the molecular level the interactions of the compounds with the generated NorA efflux pump model. The MICs of the antibiotic and ethidium bromide were determined by microdilution assay in absence or presence of a subinhibitory concentration of aminoguanidine hydrazones and macrophages viability was determined through MTT assay. Bioinformatic software Swiss-Model and AutoDock 4.2 were used to perform modeling and docking studies, respectively. As results, all AGH's were able to potentiate the action for the antibiotic norfloxacin, causing MIC's reduction of 16-fold and 32-fold to ethidium bromide. In the cell viability test, the concentration of 10 μg/mL showed better results than 90% and the concentration of 1000 μg/mL showed the lowest viability, reaching a maximum of 50% for the analyzed aminoguanidine hydrazones. Molecular docking studies showed that both norfloxacin and derivative 13 were recognized by the same binding site of NorA pump, suggesting a competitive mechanism. The present work demonstrated for the first time that AGH derivatives have potential to be putative inhibitors of NorA efflux pump, showing a promising activity as an antibacterial drug development. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Liao, Julie; Schurr, Michael J; Sauer, Karin

    2013-08-01

    A defining characteristic of biofilms is antibiotic tolerance that can be up to 1,000-fold greater than that of planktonic cells. In Pseudomonas aeruginosa, biofilm tolerance to antimicrobial agents requires the biofilm-specific MerR-type transcriptional regulator BrlR. However, the mechanism by which BrlR mediates biofilm tolerance has not been elucidated. Genome-wide transcriptional profiling indicated that brlR was required for maximal expression of genes associated with antibiotic resistance, in particular those encoding the multidrug efflux pumps MexAB-OprM and MexEF-OprN. Chromatin immunoprecipitation (ChIP) analysis revealed a direct regulation of these genes by BrlR, with DNA binding assays confirming BrlR binding to the promoter regions of the mexAB-oprM and mexEF-oprN operons. Quantitative reverse transcriptase PCR (qRT-PCR) analysis further indicated BrlR to be an activator of mexAB-oprM and mexEF-oprN gene expression. Moreover, immunoblot analysis confirmed increased MexA abundance in cells overexpressing brlR. Inactivation of both efflux pumps rendered biofilms significantly more susceptible to five different classes of antibiotics by affecting MIC but not the recalcitrance of biofilms to killing by bactericidal agents. Overexpression of either efflux pump in a ΔbrlR strain partly restored tolerance of ΔbrlR biofilms to antibiotics. Expression of brlR in mutant biofilms lacking both efflux pumps partly restored antimicrobial tolerance of biofilms to wild-type levels. Our results indicate that BrlR acts as an activator of multidrug efflux pumps to confer tolerance to P. aeruginosa biofilms and to resist the action of antimicrobial agents.

  10. Development of a Novel Antimicrobial Screening System Targeting the Pyoverdine-Mediated Iron Acquisition System and Xenobiotic Efflux Pumps

    Directory of Open Access Journals (Sweden)

    Kazuki Sato

    2015-04-01

    Full Text Available The iron acquisition systems in Pseudomonas aeruginosa are inducible in response to low-iron conditions and important for growth of this organism under iron limitation. OprM is the essential outer membrane subunit of the MexAB-OprM xenobiotic efflux pump. We designed and constructed a new model antimicrobial screening system targeting both the iron-uptake system and xenobiotic efflux pumps. The oprM gene was placed immediately downstream of the ferri-pyoverdine receptor gene, fpvA, in the host lacking chromosomal oprM and the expression of oprM was monitored by an antibiotic susceptibility test under iron depleted and replete conditions. The recombinant cells showed wild-type susceptibility to pump substrate antibiotics, e.g., aztreonam, under iron limitation and became supersusceptible to them under iron repletion, suggesting that expression of oprM is under control of the iron acquisition system. Upon screening of a chemical library comprising 2952 compounds using this strain, a compound—ethyl 2-(1-acetylpiperidine-4-carboxamido-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate—was found to enhance the efficacy of aztreonam under iron limitation, suggesting that the compound inhibits either the iron acquisition system or the MexAB-OprM efflux pump. This compound was subsequently found to inhibit the growth of wild-type cells in the presence of sublethal amounts of aztreonam, regardless of the presence or absence of dipyridyl, an iron-chelator. The compound was eventually identified to block the function of the MexAB-OprM efflux pump, showing the validity of this new method.

  11. Development of a novel antimicrobial screening system targeting the pyoverdine-mediated iron acquisition system and xenobiotic efflux pumps.

    Science.gov (United States)

    Sato, Kazuki; Ushioda, Kenichi; Akiba, Keiji; Matsumoto, Yoshimi; Maseda, Hideaki; Ando, Tasuke; Isogai, Emiko; Nakae, Taiji; Yoneyama, Hiroshi

    2015-04-29

    The iron acquisition systems in Pseudomonas aeruginosa are inducible in response to low-iron conditions and important for growth of this organism under iron limitation. OprM is the essential outer membrane subunit of the MexAB-OprM xenobiotic efflux pump. We designed and constructed a new model antimicrobial screening system targeting both the iron-uptake system and xenobiotic efflux pumps. The oprM gene was placed immediately downstream of the ferri-pyoverdine receptor gene, fpvA, in the host lacking chromosomal oprM and the expression of oprM was monitored by an antibiotic susceptibility test under iron depleted and replete conditions. The recombinant cells showed wild-type susceptibility to pump substrate antibiotics, e.g., aztreonam, under iron limitation and became supersusceptible to them under iron repletion, suggesting that expression of oprM is under control of the iron acquisition system. Upon screening of a chemical library comprising 2952 compounds using this strain, a compound-ethyl 2-(1-acetylpiperidine-4-carboxamido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate-was found to enhance the efficacy of aztreonam under iron limitation, suggesting that the compound inhibits either the iron acquisition system or the MexAB-OprM efflux pump. This compound was subsequently found to inhibit the growth of wild-type cells in the presence of sublethal amounts of aztreonam, regardless of the presence or absence of dipyridyl, an iron-chelator. The compound was eventually identified to block the function of the MexAB-OprM efflux pump, showing the validity of this new method.

  12. Dual effects of the PI3K inhibitor ZSTK474 on multidrug efflux pumps in resistant cancer cells.

    Science.gov (United States)

    Muthiah, Divya; Callaghan, Richard

    2017-11-15

    ZSTK474 is a potent phosphoinositide 3-kinase (PI3K) inhibitor that reduces cell proliferation via G 1 -arrest. However, there is little information on the susceptibility of this anticancer drug to resistance conferred by the multidrug pumps P-glycoprotein (ABCB1) and ABCG2. We have demonstrated that ZSTK474 generated cytotoxicity in cells over-expressing either pump with potency similar to that in drug sensitive cells. In addition, the co-administration of ZSTK474 with the cytotoxic anti-cancer drugs vinblastine and mitoxantrone caused a potentiated cytotoxic effect in both drug sensitive and efflux pump expressing cells. These observations suggest that ZSTK474 is unaffected by the presence of multidrug efflux pumps and may circumvent their activities. Indeed, ZSTK474 increased the cellular accumulation of calcein-AM and mitoxantrone in cells expressing ABCB1 and ABCG2, respectively. ZSTK474 treatment also resulted in reduced expression of both efflux pumps in multidrug resistant cancer cells. Measurement of ABCB1 or ABCG2 mRNA levels demonstrated that the reduction was not due to altered transcription. Similarly, inhibitor studies showed that the proteasomal degradation pathway for ABCB1 and the lysosomal route for ABCG2 degradation were unaffected by ZSTK474. Thus the mechanism underlying reduced ABCB1 and ABCG2 levels caused by ZSTK474 was due to a reduction in overall protein synthesis; a process influenced by the PI3K pathway. In summary, ZSTK474 is not susceptible to efflux by the resistance mediators ABCB1 and ABCG2. Moreover, it inhibits the drug transport function of the pumps and leads to a reduction in their cellular expression levels. Our observations demonstrate that ZSTK474 is a powerful anticancer drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Homology modeling, molecular dynamics, and virtual screening of NorA efflux pump inhibitors of Staphylococcus aureus.

    Science.gov (United States)

    Bhaskar, Baki Vijaya; Babu, Tirumalasetty Muni Chandra; Reddy, Netala Vasudeva; Rajendra, Wudayagiri

    2016-01-01

    Emerging drug resistance in clinical isolates of Staphylococcus aureus might be implicated to the overexpression of NorA efflux pump which is capable of extruding numerous structurally diverse compounds. However, NorA efflux pump is considered as a potential drug target for the development of efflux pump inhibitors. In the present study, NorA model was constructed based on the crystal structure of glycerol-3-phosphate transporter (PDBID: 1PW4). Molecular dynamics (MD) simulation was performed using NAMD2.7 for NorA which is embedded in the hydrated lipid bilayer. Structural design of NorA unveils amino (N)- and carboxyl (C)-terminal domains which are connected by long cytoplasmic loop. N and C domains are composed of six transmembrane α-helices (TM) which exhibits pseudo-twofold symmetry and possess voluminous substrate binding cavity between TM helices. Molecular docking of reserpine, totarol, ferruginol, salvin, thioxanthene, phenothiazine, omeprazole, verapamil, nalidixic acid, ciprofloxacin, levofloxacin, and acridine to NorA found that all the molecules were bound at the large hydrophobic cleft and indicated significant interactions with the key residues. In addition, structure-based virtual screening was employed which indicates that 14 potent novel lead molecules such as CID58685302, CID58685367, CID5799283, CID5578487, CID60028372, ZINC12196383, ZINC72140751, ZINC72137843, ZINC39227983, ZINC43742707, ZINC12196375, ZINC66166948, ZINC39228014, and ZINC14616160 have highest binding affinity for NorA. These lead molecules displayed considerable pharmacological properties as evidenced by Lipinski rule of five and prophecy of toxicity risk assessment. Thus, the present study will be helpful in designing and synthesis of a novel class of NorA efflux pump inhibitors that restore the susceptibilities of drug compounds.

  14. Evolution from a natural flavones nucleus to obtain 2-(4-Propoxyphenyl)quinoline derivatives as potent inhibitors of the S. aureus NorA efflux pump.

    Science.gov (United States)

    Sabatini, Stefano; Gosetto, Francesca; Manfroni, Giuseppe; Tabarrini, Oriana; Kaatz, Glenn W; Patel, Diixa; Cecchetti, Violetta

    2011-08-25

    Overexpression of efflux pumps is an important mechanism by which bacteria evade the effects of substrate antimicrobial agents. Inhibition of such pumps is a promising strategy to circumvent this resistance mechanism. NorA is a Staphylococcus aureus efflux pump that confers reduced susceptibility to many structurally unrelated agents, including fluoroquinolones, resulting in a multidrug resistant phenotype. In this work, a series of 2-phenyl-4(1H)-quinolone and 2-phenyl-4-hydroxyquinoline derivatives, obtained by modifying the flavone nucleus of known efflux pump inhibitors (EPIs), were synthesized in an effort to identify more potent S. aureus NorA EPIs. The 2-phenyl-4-hydroxyquinoline derivatives 28f and 29f display potent EPI activity against SA-1199B, a strain that overexpresses norA, in an ethidium bromide efflux inhibition assay. The same compounds, in combination with ciprofloxacin, were able to completely restore its antibacterial activity against both S. aureus SA-K2378 and SA-1199B, norA-overexpressing strains. © 2011 American Chemical Society

  15. Substituted dihydronaphthalenes as efflux pump inhibitors of Staphylococcus aureus

    DEFF Research Database (Denmark)

    Thota, Niranjan; Reddy, Mallepally V; Kumar, Ashwani

    2010-01-01

    A new series of 3-(substituted-3,4-dihydronaphthyl)-2-propenoic acid amides has been prepared through convergent synthetic strategies and tested in combination with ciprofloxacin against NorA overexpressing Staphylococcus aureus 1199B as test strain for potentiating of the drug activity. Out of 24...... compounds evaluated, 12 compounds potentiated the activity of ciprofloxacin and resulted in 2-16 fold reduction in the MIC (4-0.5 microg/mL) of the drug. The failure of these efflux pump inhibitors (EPIs) to potentiate the activity of ciprofloxacin when tested against NorA knock out S. aureus SA-K1758...

  16. Detection of expression and modulation of multidrug-resistance (MDR) and establishment of a new bioassay

    International Nuclear Information System (INIS)

    Berger, W.

    1993-08-01

    The present thesis deals with the resistance of human malignant cells against cellular toxicity of anticancer drugs, a phenomenon representing one of the major obstacles to successful chemotherapy. One mechanism underlying a cross-resistance to different drugs called multidrug resistance (MDR) is characterized by the expression of an active transport protein (P-glycoprotein), causing decreased intracellular drug retention and cytotoxicity. The main subjects of the present work were to establish different detection methods for MDR and its modulation (by substances blocking activity of P-glycoprotein) including immunological methods (immunocytochemistry, radioimmunoassay), molecular biology (slot-blot analysis, in-situ hybridization) and functional assays (drug-accumulation analysis, drug-cytotoxicity analysis). The methods were evaluated and compared using human and mouse MDR control cell lines and human tumor cell lines established in our laboratory. In cell lines derived from human melanoma - a malignancy insensitive to chemotherapy - expression of P-glycoprotein of relatively low transporting activity was detected by different methods in 8 of 33 cases. Furthermore a new sensitive in vitro assay for the functional detection of MDR was established using the biological features of cytochalasins, a microfilament disrupting substance group. These compounds were shown to be substrates for the P-glycoprotein efflux pump and their effects on cell division (blockade of cytokinesis resulting in multinucleate cells) correlated with MDR-activity of the tested cells. With this new assay P-glycoprotein activity can be demonstrated and analysed over a wide range of resistance against different cytotoxic drugs. Therefore it may by a suitable tool for research and diagnosis in the field of drug resistance

  17. Inhibition of the NorA efflux pump of Staphylococcus aureus by synthetic riparins.

    Science.gov (United States)

    Costa, L M; de Macedo, E V; Oliveira, F A A; Ferreira, J H L; Gutierrez, S J C; Peláez, W J; Lima, F C A; de Siqueira Júnior, J P; Coutinho, H D M; Kaatz, G W; de Freitas, R M; Barreto, H M

    2016-11-01

    The goal of this study was to increase knowledge about the antimicrobial activity of some synthetic Riparin-derived compounds, alone or in combination with fluoroquinolone antibiotics, against a strain of Staphylococcus aureus resistant to fluoroquinolone by way of overexpression of the NorA efflux pump. Microdilution tests showed that Riparins A and B did not show any significant antibacterial activity against Staph. aureus strains. On the other hand, the intrinsic antibacterial activity increased with increasing lipophilicity of the compounds, in the following order: Riparin-D (MIC 256 μg ml -1 ; Log P 2·95) NorA-overexpressing test strain. Riparin-B, which has two methoxyl groups at the phenethyl moiety, showed the best modulatory effect. Riparin-E is a good anti-staphylococci agent, while Riparin-B functions as a NorA efflux pump inhibitor. Our data suggest the possibility of using Riparin-B in combination with norfloxacin or ciprofloxacin for therapy of infections caused by multi-drug resistant Staph. aureus. © 2016 The Society for Applied Microbiology.

  18. EFFECTS OF PSYCHOTROPIC DRUGS AS BACTERIAL EFFLUX PUMP INHIBITORS ON QUORUM SENSING REGULATED BEHAVIORS

    Directory of Open Access Journals (Sweden)

    Aynur Aybey

    2014-10-01

    Full Text Available Psychotropic drugs are known to have antimicrobial activity against several groups of microorganisms. The antidepressant agents such as duloxetine, paroxetine, hydroxyzine and venlafaxine are shown to act as efflux pump inhibitors in bacterial cells. In order to the investigation of the effects of psychotropic drugs were determined for clinically significant pathogens by using standart broth microdillusion method. The anti-quorum sensing (anti-QS activity of psychotropic drugs was tested against four test pathogens using the agar well diffusion method. All drugs showed strong inhibitory effect on the growth of S. typhimurium. Additionally, quorum sensing-regulated behaviors of Pseudomonas aeruginosa, including swarming, swimming and twitching motility and alkaline protease production were investigated. Most effective drugs on swarming, swimming and twitching motility and alkaline protease production, respectively, were paroxetine and duloxetine; duloxetine; hydroxyzine and venlafaxine; paroxetine and venlafaxine; venlafaxine. Accordingly, psychotropic drugs were shown strongly anti-QS activity by acting as bacterial efflux pump inhibitors and effection on motility and alkaline protease production of P. aeruginosa.

  19. Reversing multidrug resistance in Caco-2 by silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL using liposomal antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Yu-Li Lo

    Full Text Available Multidrug resistance (MDR is a major impediment to chemotherapy. In the present study, we designed antisense oligonucleotides (ASOs against MDR1, MDR-associated protein (MRP1, MRP2, and/or BCL-2/BCL-xL to reverse MDR transporters and induce apoptosis, respectively. The cationic liposomes (100 nm composed of N-[1-(2,3-dioleyloxypropyl]-n,n,n-trimethylammonium chloride and dioleoyl phosphotidylethanolamine core surrounded by a polyethylene glycol (PEG shell were prepared to carry ASOs and/or epirubicin, an antineoplastic agent. We aimed to simultaneously suppress efflux pumps, provoke apoptosis, and enhance the chemosensitivity of human colon adenocarcinoma Caco-2 cells to epirubicin. We evaluated encapsulation efficiency, particle size, cytotoxicity, intracellular accumulation, mRNA levels, cell cycle distribution, and caspase activity of these formulations. We found that PEGylated liposomal ASOs significantly reduced Caco-2 cell viability and thus intensified epirubicin-mediated apoptosis. These formulations also decreased the MDR1 promoter activity levels and enhanced the intracellular retention of epirubicin in Caco-2 cells. Epirubicin and ASOs in PEGylated liposomes remarkably decreased mRNA expression levels of human MDR1, MRP1, MRP2, and BCL-2. The combined treatments all significantly increased the mRNA expressions of p53 and BAX, and activity levels of caspase-3, -8, and -9. The formulation of epirubicin and ASOs targeting both pump resistance of MDR1, MRP1, and MRP2 and nonpump resistance of BCL-2/BCL-xL demonstrated more superior effect to all the other formulations used in this study. Our results provide a novel insight into the mechanisms by which PEGylated liposomal ASOs against both resistance types act as activators to epirubicin-induced apoptosis through suppressing MDR1, MRP1, and MRP2, as well as triggering intrinsic mitochondrial and extrinsic death receptor pathways. The complicated regulation of MDR highlights the necessity

  20. Interaction mediated by the putative tip regions of MdsA and MdsC in the formation of a Salmonella-specific tripartite efflux pump.

    Directory of Open Access Journals (Sweden)

    Saemee Song

    Full Text Available To survive in the presence of a wide range of toxic compounds, gram-negative bacteria expel such compounds via tripartite efflux pumps that span both the inner and outer membranes. The Salmonella-specific MdsAB pump consists of MdsB, a resistance-nodulation-division (RND-type inner membrane transporter (IMT that requires the membrane fusion protein (MFP MdsA, and an outer membrane protein (OMP; MdsC or TolC to form a tripartite efflux complex. In this study, we investigated the role of the putative tip regions of MdsA and its OMPs, MdsC and TolC, in the formation of a functional MdsAB-mediated efflux pump. Comparative analysis indicated that although sequence homologies of MdsA and MdsC with other MFPs and OMPs, respectively, are extremely low, key residues in the putative tip regions of these proteins are well conserved. Mutagenesis studies on these conserved sites demonstrated their importance for the physical and functional interactions required to form an MdsAB-mediated pump. Our studies suggest that, despite differences in the primary amino acid sequences and functions of various OMPs and MFPs, interactions mediated by the conserved tip regions of OMP and MFP are required for the formation of functional tripartite efflux pumps in gram-negative bacteria.

  1. Expression of multidrug resistance associated protein 5 (MRP5) on cornea and its role in drug efflux.

    Science.gov (United States)

    Karla, Pradeep K; Quinn, Tim L; Herndon, Betty L; Thomas, Priscilla; Pal, Dhananjay; Mitra, Ashim

    2009-04-01

    The purpose of this manuscript is to investigate the presence of nucleoside/nucleotide efflux transporter in cornea and to evaluate the role in ocular drug efflux. RT-PCR, immunoprecipitation followed by Western blot analysis and immunostaining were employed to establish molecular presence of multidrug resistance associated protein 5 (MRP5) on cornea. Corneal efflux by MRP5 was studied with bis(POM)-PMEA and acyclovir using rabbit and human corneal epithelial cells along with MRP5 over expressing cells (MDCKII-MRP5). Ex vivo studies using excised rabbit cornea and in vivo ocular microdialysis in male New Zealand white rabbits were used to further evaluate the role of MRP5 in conferring ocular drug resistance. RT-PCR confirms the expression of MRP5 in both rabbit and human corneal epithelial cells along with MDCKII-MRP5 cells. Immunoprecipitation followed by Western blot analysis using a rat (M511-54) monoclonal antibody that reacts with human epitope confirms the expression of MRP5 protein in human corneal epithelial cells and MDCKII-MRP5 cells. Immunostaining performed on human cornea indicates the localization of this efflux pump on both epithelium and endothelium. Efflux studies reveal that depletion of ATP decreased PMEA efflux significantly. MRP5 inhibitors also diminished PMEA and acyclovir efflux. However, depletion of glutathione did not alter efflux. MDR1 and MRP2 did not contribute to PMEA efflux. However, MRP2 is involved in acyclovir efflux while MDR1 do not participate in this process. TLC/autoradiography suggested the conversion of bis(POM)-PMEA to PMEA in rabbit and human corneal epithelial cells. Two well known antiglaucoma drugs, bimatoprost and latanoprost were rapidly effluxed by MRP5. Ex vivo study on intact rabbit corneas demonstrated accumulation of PMEA in cornea in the presence of ATP-depleting medium. In vivo ocular pharmacokinetics also revealed a significant increase in maximum aqueous humor concentration (C(max)) and area under the

  2. Capsaicin, a novel inhibitor of the NorA efflux pump, reduces the intracellular invasion of Staphylococcus aureus.

    Science.gov (United States)

    Kalia, Nitin Pal; Mahajan, Priya; Mehra, Rukmankesh; Nargotra, Amit; Sharma, Jai Parkash; Koul, Surrinder; Khan, Inshad Ali

    2012-10-01

    To delineate the role of capsaicin (8-methyl-N-vanillyl-6-nonenamide) as an inhibitor of the NorA efflux pump and its impact on invasion of macrophages by Staphylococcus aureus. Capsaicin in combination with ciprofloxacin was tested for activity against S. aureus SA-1199B (NorA overproducing), SA-1199 (wild-type) and SA-K1758 (norA knockout). The role of NorA in the intracellular invasion of S. aureus and the ability of capsaicin to inhibit this invasion was established in J774 macrophage cell lines. The three-dimensional structure of NorA was predicted using an in silico approach and docking studies of capsaicin were performed. Capsaicin significantly reduced the MIC of ciprofloxacin for S. aureus SA-1199 and SA-1199B. Furthermore, capsaicin also extended the post-antibiotic effect of ciprofloxacin by 1.1 h at MIC concentration. There was a decrease in mutation prevention concentration of ciprofloxacin when combined with capsaicin. Inhibition of ethidium bromide efflux by NorA-overproducing S. aureus SA-1199B confirmed the role of capsaicin as a NorA efflux pump inhibitor (EPI). The most significant finding of this study was the ability of capsaicin to reduce the intracellular invasion of S. aureus SA-1199B (NorA overproducing) in J774 macrophage cell lines by 2 log(10). This study, for the first time, has shown that capsaicin, a novel EPI, not only inhibits the NorA efflux pump of S. aureus but also reduces the invasiveness of S. aureus, thereby reducing its virulence.

  3. In vivo evaluation of anionic thiolated polymers as oral delivery systems for efflux pump inhibition.

    Science.gov (United States)

    Palmberger, Thomas F; Laffleur, Flavia; Greindl, Melanie; Bernkop-Schnürch, Andreas

    2015-08-01

    Recently, the cationic polymer thiolated chitosan has been reported to modulate drug absorption by inhibition of intestinal efflux pumps. The objective of this study was to evaluate in vitro and in vivo whether thiolated anionic biopolymers also show an efflux pump inhibitory effect in order to improve intestinal transcellular drug uptake. Therefore, three thiomers have been synthesized due covalent attachment of cysteine to various polymer backbones: pectin-cysteine (pect-cys), carboxymethylcellulose-cysteine (CMC-cys) and alginate-cysteine (alg-cys). In vitro, the permeation enhancing properties of these thiomers and their corresponding unmodified polymers have been evaluated on rat small intestine in Ussing-type chambers, using sulforhodamine 101 (SR-101) as MRP2 model substrate. In comparison to buffer only, SR-101 transport in presence of pect-cys, CMC-cys and alg-cys was improved 1.5-fold, 1.8-fold and 3.0-fold, respectively. Due to the comparatively best in vitro performance of thiolated alginate, it has been chosen for in vivo studies: a SR-101 solution containing 4% (w/v) alg-cys led to an AUC0 ≥ 12 of SR-101 of 109 ng ml(-1)h in rats representing a 3.8-fold improvement in comparison to a SR-101 buffer solution. Unmodified alginate improved the AUC0 ≥ 12 of SR-101 by a factor of 1.9. These findings suggest thiolated alginate as promising auxiliary agent for drugs being anionic efflux pump substrates, since the oral bioavailability of a MRP2 substrate could be significantly improved. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Efflux as a mechanism of antimicrobial drug resistance in clinical relevant microorganisms: the role of efflux inhibitors.

    Science.gov (United States)

    Willers, Clarissa; Wentzel, Johannes Frederik; du Plessis, Lissinda Hester; Gouws, Chrisna; Hamman, Josias Hendrik

    2017-01-01

    Microbial resistance against antibiotics is a serious threat to the effective treatment of infectious diseases. Several mechanisms exist through which microorganisms can develop resistance against antimicrobial drugs, of which the overexpression of genes to produce efflux pumps is a major concern. Several efflux transporters have been identified in microorganisms, which infer resistance against specific antibiotics and even multidrug resistance. Areas covered: This paper focuses on microbial resistance against antibiotics by means of the mechanism of efflux and gives a critical overview of studies conducted to overcome this problem by combining efflux pump inhibitors with antibiotics. Information was obtained from a literature search done with MEDLINE, Pubmed, Scopus, ScienceDirect, OneSearch and EBSCO host. Expert opinion: Efflux as a mechanism of multidrug resistance has presented a platform for improved efficacy against resistant microorganisms by co-administration of efflux pump inhibitors with antimicrobial agents. Although proof of concept has been shown for this approach with in vitro experiments, further research is needed to develop more potent inhibitors with low toxicity which is clinically effective.

  5. Amino acid amides of piperic acid (PA) and 4-ethylpiperic acid (EPA) as NorA efflux pump inhibitors of Staphylococcus aureus.

    Science.gov (United States)

    Wani, Naiem Ahmad; Singh, Samsher; Farooq, Saleem; Shankar, Sudha; Koul, Surrinder; Khan, Inshad Ali; Rai, Rajkishor

    2016-09-01

    A total of eighteen piperic acid (PA) and 4-ethylpiperic acid (EPA) amides (C1-C18) with α-, β- and γ-amino acids were synthesized, characterized and evaluated for their efflux pump inhibitory activity against ciprofloxacin resistant Staphylococcus aureus. The amides were screened against NorA overexpressing S. aureus SA-1199B and wild type S. aureus SA-1199 using ethidium bromide as NorA efflux pump substrate. EPI C6 was found to be most potent and reduced the MIC of ciprofloxacin by 16 fold followed by C18 which showed 4 fold reduction of MIC. Ethidium bromide efflux inhibition and accumulation assay proved these compounds as NorA inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. An ace up their sleeve: a transcriptomic approach exposes the AceI efflux protein of Acinetobacter baumannii and reveals the drug efflux potential hidden in many microbial pathogens

    Directory of Open Access Journals (Sweden)

    Karl A Hassan

    2015-04-01

    Full Text Available The era of antibiotics as a cure-all for bacterial infections appears to be coming to an end. The emergence of multidrug resistance in many hospital-associated pathogens has resulted in superbugs that are effectively untreatable. Multidrug efflux pumps are well known mediators of bacterial drug resistance. Genome sequencing efforts have highlighted an abundance of putative efflux pump genes in bacteria. However, it is not clear how many of these pumps play a role in antimicrobial resistance. Several studies have demonstrated that efflux pump genes that participate in drug resistance are typically under tight regulatory control and expressed only in response to their substrates. Consequently, changes in gene expression following antimicrobial shock treatments may be used to identify efflux pumps that mediate antimicrobial resistance, informing targeted functional analyses of these proteins. Using this approach we have characterised novel efflux pumps in both Gram-negative and Gram-positive bacteria. Notably, we recently applied this strategy to characterise the AceI efflux pump from Acinetobacter. AceI is a prototype for a new family of multidrug efflux proteins that is conserved across many proteobacterial lineages. Different efflux pumps in this family have been shown to confer resistance to biocides including chlorhexidine, dequalinium, benzalkonium, proflavine and/or acriflavine. The discovery of this novel family of multidrug efflux proteins raises the possibility that additional undiscovered intrinsic resistance proteins may be encoded in the core genomes of pathogenic bacteria.

  7. Evaluation of multidrug efflux pump inhibitors by a new method using microfluidic channels.

    Directory of Open Access Journals (Sweden)

    Yoshimi Matsumoto

    Full Text Available Fluorescein-di-β-D-galactopyranoside (FDG, a fluorogenic compound, is hydrolyzed by β-galactosidase in the cytoplasm of Escherichia coli to produce a fluorescent dye, fluorescein. We found that both FDG and fluorescein were substrates of efflux pumps, and have developed a new method to evaluate efflux-inhibitory activities in E. coli using FDG and a microfluidic channel device. We used E. coli MG1655 wild-type, ΔacrB (ΔB, ΔtolC (ΔC and ΔacrBΔtolC (ΔBC harboring plasmids carrying the mexAB-oprM (pABM or mexXY-oprM (pXYM genes of Pseudomonas aeruginosa. Two inhibitors, MexB-specific pyridopyrimidine (D13-9001 and non-specific Phe-Arg-β-naphthylamide (PAβN were evaluated. The effects of inhibitors on pumps were observed using the microfluidic channel device under a fluorescence microscope. AcrAB-TolC and analogous pumps effectively prevented FDG influx in wild-type cells, resulting in no fluorescence. In contrast, ΔB or ΔC easily imported and hydrolyzed FDG to fluorescein, which was exported by residual pumps in ΔB. Consequently, fluorescent medium in ΔB and fluorescent cells of ΔC and ΔBC were observed in the microfluidic channels. D13-9001 substantially increased fluorescent cell number in ΔBC/pABM but not in ΔBC/pXYM. PAβN increased medium fluorescence in all strains, especially in the pump deletion mutants, and caused fluorescein accumulation to disappear in ΔC. The checkerboard method revealed that D13-9001 acts synergistically with aztreonam, ciprofloxacin, and erythromycin only against the MexAB-OprM producer (ΔBC/pABM, and PAβN acts synergistically, especially with erythromycin, in all strains including the pump deletion mutants. The results obtained from PAβN were similar to the results from membrane permeabilizer, polymyxin B or polymyxin B nonapeptide by concentration. The new method clarified that D13-9001 specifically inhibited MexAB-OprM in contrast to PAβN, which appeared to be a substrate of the pumps and

  8. Factors influencing [F-18]2-fluoro-2-deoxy-D-glucose (F-18 FDG) accumulation in melanoma cells. Is FDG a substrate of multidrug resistance (MDR)?

    International Nuclear Information System (INIS)

    Yamada, Kiyoshi; Brink, I.; Engelhardt, R.

    2005-01-01

    In order to specify the influence of multidrug-resistance (MDR) on the accumulation of the PET tracer, F-18 FDG ([Fluorine-18]2-fluoro-2-deoxy-D-glucose, in melanoma cells, both the MDR function and expression of two human melanoma cell lines SK-MEL 23 and 24, were evaluated. The effects of MDR modulators on FDG accumulation and efflux were also investigated. A functional analysis using representative MDR fluorescent substrates and inhibitors clarified the following characteristics: SK-MEL 23 possesses a highly active function of multidrug resistance-associated protein (MRP), but not P-gp. SK-MEL 24 possesses weak functions of both MRP and P-gp. Western blot analysis using monoclonal antibodies for MDR expression demonstrated an exceedingly high MRP expression of SK-MEL 23 and only slight P-gp and MRP expression of SK-MEL 24, corresponding to the functional data. The efflux inhibition assay using F-18 FDG revealed a considerable retention of FDG in SK-MEL 23 in the presence of the MRP inhibitor probenecid. It was also found that the P-gp inhibitor verapamil depressed the FDG efflux of SK-MEL 24. Our present in vitro study suggests that FDG may be a substrate of MDR in some melanoma cells and further MDR may be one of the important factors affecting FDG-PET melanoma imaging. (author)

  9. Prognostic significance of multidrug-resistance protein (MDR-1 in renal clear cell carcinomas: A five year follow-up analysis

    Directory of Open Access Journals (Sweden)

    Strazzullo Viviana

    2006-12-01

    Full Text Available Abstract Background A large number of renal cancer patients shows poor or partial response to chemotherapy and the mechanisms have not been still understood. Multi-drug resistance is the principal mechanism by which many cancers develop resistance to chemotherapic drugs. The role of the multi-drug resistant transporter (MDR-1/P-glycoprotein, the gene product of MDR-1, and that one of the so-called multi-drug resistance associated protein (MRP, two energy-dependent efflux pumps, are commonly known to confer drug resistance. We studied MDR-1 expression in selected cases of renal cell carcinoma (RCC, clear cell type, with long-term follow-up, in order to establish its prognostic role and its possible contribution in the choice of post-surgical therapy. Methods MDR-1 has been studied by standard LSAB-HRP immunohistochemical technique, in paraffin embedded RCC samples. Protein expression has been compared to clinical and histopathological data and to disease specific survival of RCC patients, by Kaplan-Meier curve and Cox multivariate regression analyses. Results Two groups of RCCs were obtained by esteeming MDR-1 expression and disease specific survival (obtained with Kaplan-Meier curve and Cox multivariate regression analyses: the first one presents low or absent MDR-1 expression and good survival; the second one is characterized by high MDR-1 expression and significant poor outcome (p p p p Conclusion In our opinion, the results of this study well prove the relationship between MDR-1 expression and worse clinical prognosis in RCC, because MDR-1 over-expressing RCCs can be considered a group of tumours with a more aggressive behavior. This finding outlines a possible role of MDR-1 as prognostic factor, dependent and independent of multidrug resistance. These results could be useful to predict cancer evolution and to choose the appropriate treatment: this is another step that can stimulate further promising and interesting investigations on broader

  10. Evaluation of HP0605 and HP0971 genes of efflux pumps in Helicobacter pylori resistance to Metronidazole

    Directory of Open Access Journals (Sweden)

    Mohammad hasan Shirazi

    2009-12-01

    Full Text Available Background: The presence of antibiotic resistance has been reported in H.pylori and it is a major cause of treatment failure. Five families of multidrug efflux pumps are defined in bacteria and resistance-nodulation-division (RND pumps are found mainly in gram negative bacteria. TolC is one of RND pump components and play a critical role in drug resistance. It hasn’t been established that RND family has a role in drug resistance in H.pylori. In this study, we assessed the role of two efflux genes in resistant to metronidazole in H.pylori by evaluation of overexpression TolC genes by RT-PCR method. Methods: In five metronidazole resistant strains of H.pylori, total RNA was extracted. RNA treated with DNase and RNA reverse transcribed to cDNA. Aliquots of the cDNA solution were assayed by RT- PCR for HP0605 and HP0971 genes. The levels of mRNA expression were evaluated by densitometry analysis. Results: All five strains displayed overexpression for HP0605 basis of increased concentration of metronidazole. Three strains showed transcripts for HP0971. One of these had transcripts for HP0971 only in Metronidazole concentration equaled to 16 µg/ml but two strains overexpressed adapt to increase concentration of metronidazole. Conclusion: According to current study, HP0605 and HP0971 genes overexpressed due to increase metronidazole. So, increasing of Metronidazole affects in H.pylori΄s efflux system in transcription level.

  11. Mdr65 decreases toxicity of multiple insecticides in Drosophila melanogaster.

    Science.gov (United States)

    Sun, Haina; Buchon, Nicolas; Scott, Jeffrey G

    2017-10-01

    ABC transporters are ubiquitous membrane-bound proteins, present in both prokaryotes and eukaryotes. The major function of eukaryotic ABC transporters is to mediate the efflux of a variety of substrates (including xenobiotics) out of cells. ABC transporters have been widely investigated in humans, particularly for their involvement in multidrug resistance (MDR). Considerably less is known about their roles in transport and/or excretion in insects. ABC transporters are only known to function as exporters in insects. Drosophila melanogaster has 56 ABC transporter genes, including eight which are phylogenetically most similar to the human Mdr genes (ABCB1 clade). We investigated the role of ABC transporters in the ABCB1 clade in modulating the susceptibility to insecticides. We took advantage of the GAL4/UAS system in D. melanogaster to knockdown the expression levels of Mdr65, Mdr50, Mdr49 and ABCB6 using transgenic UAS-RNAi lines and conditional driver lines. The most notable effects were increased sensitivities to nine different insecticides by silencing of Mdr65. Furthermore, a null mutation of Mdr65 decreased the malathion, malaoxon and fipronil LC 50 values by a factor of 1.9, 2.1 and 3.9, respectively. Altogether, this data demonstrates the critical role of ABC transporters, particularly Mdr65, in altering the toxicity of specific, structurally diverse, insecticides in D. melanogaster. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The Impact of Efflux Pump Inhibitors on the Activity of Selected Non-Antibiotic Medicinal Products against Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Agnieszka E. Laudy

    2017-01-01

    Full Text Available The potential role of non-antibiotic medicinal products in the treatment of multidrug-resistant Gram-negative bacteria has recently been investigated. It is highly likely that the presence of efflux pumps may be one of the reasons for the weak activity of non-antibiotics, as in the case of some non-steroidal anti-inflammatory drugs (NSAIDs, against Gram-negative rods. The activity of eight drugs of potential non-antibiotic activity, active substance standards, and relevant medicinal products were analysed with and without of efflux pump inhibitors against 180 strains of five Gram-negative rod species by minimum inhibitory concentration (MIC value determination in the presence of 1 mM MgSO4. Furthermore, the influence of non-antibiotics on the susceptibility of clinical strains to quinolones with or without PAβN (Phe-Arg-β-naphthylamide was investigated. The impacts of PAβN on the susceptibility of bacteria to non-antibiotics suggests that amitriptyline, alendronate, nicergoline, and ticlopidine are substrates of efflux pumps in Gram-negative rods. Amitriptyline/Amitriptylinum showed the highest direct antibacterial activity, with MICs ranging 100–800 mg/L against all studied species. Significant decreases in the MIC values of other active substances (acyclovir, atorvastatin, and famotidine tested with pump inhibitors were not observed. The investigated non-antibiotic medicinal products did not alter the MICs of quinolones in the absence and in the presence of PAβN to the studied clinical strains of five groups of species.

  13. Multidrug Efflux Systems in Microaerobic and Anaerobic Bacteria

    OpenAIRE

    Xu, Zeling; Yan, Aixin

    2015-01-01

    Active drug efflux constitutes an important mechanism of antibiotic and multidrug resistance in bacteria. Understanding the distribution, expression, and physiological functions of multidrug efflux pumps, especially under physiologically and clinically relevant conditions of the pathogens, is the key to combat drug resistance. In animal hosts, most wounded, infected and inflamed tissues display low oxygen tensions. In this article, we summarize research development on multidrug efflux pumps i...

  14. The "racemic approach" in the evaluation of the enantiomeric NorA efflux pump inhibition activity of 2-phenylquinoline derivatives.

    Science.gov (United States)

    Carotti, Andrea; Ianni, Federica; Sabatini, Stefano; Di Michele, Alessandro; Sardella, Roccaldo; Kaatz, Glenn W; Lindner, Wolfgang; Cecchetti, Violetta; Natalini, Benedetto

    2016-09-10

    Among the mechanisms adopted by bacteria, efflux pumps (EPs) have been recognized as being significantly involved in contributing to resistance to commonly used antibacterial agents. However, little is known about their three-dimensional structures or the steric requirements for their inhibition. Lack of such knowledge includes NorA, one of the most studied Staphylococcus aureus EPs. In the present study, the use of two commercialized Cinchona alkaloid-based zwitterionic chiral stationary phases allowed the enantioseparation of four 2-((2-(4-propoxyphenyl)quinolin-4-yl)oxy)alkylamines 1-4 previously found to be potent S. aureus NorA efflux pump inhibitors when tested as racemates. In the identified optimal polar-ionic conditions (MeOH/THF/H2O-49/49/2 (v/v/v)+25mM formic acid, 12.5mM diethylamine), repeated consecutive injections of 1 allowed the isolation of sufficient amount of its enantiomers (2.6mg and 2.8mg, for (R)-1 and (S)-1, respectively) and then to evaluate their ability to inhibit the S. aureus NorA efflux pump. The biological evaluation highlighted the main contribution of the (R)-1 enantiomer to both the EtBr efflux inhibition and synergistic effect with against SA-1199B (norA+/A116E GrlA) respect to the racemate activity. The comparison between the experimental electronic circular dichroism and the time-dependent density functional theory calculations spectra of the two isolated enantiomeric fractions allowed for all compounds a clear and easy assignment of the enantiomeric elution order. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Establishment of optimized MDCK cell lines for reliable efflux transport studies.

    Science.gov (United States)

    Gartzke, Dominik; Fricker, Gert

    2014-04-01

    Madin-Darby canine kidney (MDCK) cells transfected with human MDR1 gene (MDCK-MDR1) encoding for P-glycoprotein (hPgp, ABCB1) are widely used for transport studies to identify drug candidates as substrates of this efflux protein. Therefore, it is necessary to rely on constant and comparable expression levels of Pgp to avoid false negative or positive results. We generated a cell line with homogenously high and stable expression of hPgp through sorting single clones from a MDCK-MDR1 cell pool using fluorescence-activated cell sorting (FACS). To obtain control cell lines for evaluation of cross-interactions with endogenous canine Pgp (cPgp) wild-type cells were sorted with a low expression pattern of cPgp in comparison with the MDCK-MDR1. Expression of other transporters was also characterized in both cell lines by quantitative real-time PCR and Western blot. Pgp function was investigated applying the Calcein-AM assay as well as bidirectional transport assays using (3) H-Digoxin, (3) H-Vinblastine, and (3) H-Quinidine as substrates. Generated MDCK-MDR1 cell lines showed high expression of hPgp. Control MDCK-WT cells were optimized in showing a comparable expression level of cPgp in comparison with MDCK-MDR1 cell lines. Generated cell lines showed higher and more selective Pgp transport compared with parental cells. Therefore, they provide a significant improvement in the performance of efflux studies yielding more reliable results. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Boronic species as promising inhibitors of the Staphylococcus aureus NorA efflux pump: study of 6-substituted pyridine-3-boronic acid derivatives.

    Science.gov (United States)

    Fontaine, Fanny; Héquet, Arnaud; Voisin-Chiret, Anne-Sophie; Bouillon, Alexandre; Lesnard, Aurélien; Cresteil, Thierry; Jolivalt, Claude; Rault, Sylvain

    2015-05-05

    In response to the extensive use of antibiotics, bacteria have evolved numerous mechanisms of defense against antimicrobial agents. Among them, extrusion of the antimicrobial agents outside the bacterial cell through efflux pumps is a major cause of concern. At first limited to one or few structurally-related antibiotics, bacterial resistance have then progressed towards cross-resistance between different classes of antibiotics, leading to multidrug-resistant microorganisms. Emergence of these pathogens requires development of novel therapeutic strategies and inhibition of efflux pumps appears to be a promising strategy that could restore the potency of existing antibiotics. NorA is the most studied chromosomal efflux pump of Staphylococcus aureus; it is known to be implied in resistance of Methicillin-resistant S. aureus (MRSA) strains against a wide range of unrelated substrates, including hydrophilic fluoroquinolones. Starting from 6-benzyloxypyridine-3-boronic acid I that we previously identified as a potential inhibitor of the NorA efflux pump against the NorA-overexpressing S. aureus 1199B strain (SA1199B), we describe here the synthesis and biological evaluation of a series of 6-(aryl)alkoxypyridine-3-boronic acids. 6-(3-Phenylpropoxy)pyridine-3-boronic acid 3i and 6-(4-phenylbutoxy)pyridine-3-boronic acid 3j were found to potentiate ciprofloxacin activity by a 4-fold increase compared to the parent compound I. In addition, it has been shown that both compounds promote Ethidium Bromide (EtBr) accumulation in SA1199B, thus corroborating their potential mode of action as NorA inhibitors. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Azole resistance in Candida spp. isolated from Catú Lake, Ceará, Brazil: an efflux-pump-mediated mechanism

    Directory of Open Access Journals (Sweden)

    Raimunda S.N. Brilhante

    2016-03-01

    Full Text Available Abstract Since, there is no study reporting the mechanism of azole resistance among yeasts isolated from aquatic environments; the present study aims to investigate the occurrence of antifungal resistance among yeasts isolated from an aquatic environment, and assess the efflux-pump activity of the azole-resistant strains to better understand the mechanism of resistance for this group of drugs. For this purpose, monthly water and sediment samples were collected from Catú Lake, Ceará, Brazil, from March 2011 to February 2012. The obtained yeasts were identified based on morphological and biochemical characteristics. Of the 46 isolates, 37 were Candida spp., 4 were Trichosporon asahii, 3 were Cryptococcus laurentii, 1 Rhodotorula mucilaginosa, and 1 was Kodamaea ohmeri. These isolates were subjected to broth microdilution assay with amphotericin B, itraconazole, and fluconazole, according to the methodology standardized by the Clinical and Laboratory Standards Institute (CLSI. The minimum inhibitory concentrations (MICs of amphotericin B, itraconazole, and fluconazole were 0.03125–2 µg/mL, 0.0625 to ≥16 µg/mL, and 0.5 to ≥64 µg/mL, respectively, and 13 resistant azole-resistant Candida isolates were detected. A reduction in the azole MICs leading to the phenotypical reversal of the azole resistance was observed upon addition of efflux-pump inhibitors. These findings suggest that the azole resistance among environmental Candida spp. is most likely associated with the overexpression of efflux-pumps.

  18. Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation.

    Science.gov (United States)

    Aparna, Vasudevan; Dineshkumar, Kesavan; Mohanalakshmi, Narasumani; Velmurugan, Devadasan; Hopper, Waheeta

    2014-01-01

    Pseudomonas aeruginosa and Escherichia coli are resistant to wide range of antibiotics rendering the treatment of infections very difficult. A main mechanism attributed to the resistance is the function of efflux pumps. MexAB-OprM and AcrAB-TolC are the tripartite efflux pump assemblies, responsible for multidrug resistance in P. aeruginosa and E. coli respectively. Substrates that are more susceptible for efflux are predicted to have a common pharmacophore feature map. In this study, a new criterion of excluding compounds with efflux substrate-like features was used, thereby refining the selection process and enriching the inhibitor identification process. An in-house database of phytochemicals was created and screened using high-throughput virtual screening against AcrB and MexB proteins and filtered by matching with the common pharmacophore models (AADHR, ADHNR, AAHNR, AADHN, AADNR, AAADN, AAADR, AAANR, AAAHN, AAADD and AAADH) generated using known efflux substrates. Phytochemical hits that matched with any one or more of the efflux substrate models were excluded from the study. Hits that do not have features similar to the efflux substrate models were docked using XP docking against the AcrB and MexB proteins. The best hits of the XP docking were validated by checkerboard synergy assay and ethidium bromide accumulation assay for their efflux inhibition potency. Lanatoside C and diadzein were filtered based on the synergistic potential and validated for their efflux inhibition potency using ethidium bromide accumulation study. These compounds exhibited the ability to increase the accumulation of ethidium bromide inside the bacterial cell as evidenced by these increase in fluorescence in the presence of the compounds. With this good correlation between in silico screening and positive efflux inhibitory activity in vitro, the two compounds, lanatoside C and diadzein could be promising efflux pump inhibitors and effective to use in combination therapy against drug

  19. Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation.

    Directory of Open Access Journals (Sweden)

    Vasudevan Aparna

    Full Text Available Pseudomonas aeruginosa and Escherichia coli are resistant to wide range of antibiotics rendering the treatment of infections very difficult. A main mechanism attributed to the resistance is the function of efflux pumps. MexAB-OprM and AcrAB-TolC are the tripartite efflux pump assemblies, responsible for multidrug resistance in P. aeruginosa and E. coli respectively. Substrates that are more susceptible for efflux are predicted to have a common pharmacophore feature map. In this study, a new criterion of excluding compounds with efflux substrate-like features was used, thereby refining the selection process and enriching the inhibitor identification process. An in-house database of phytochemicals was created and screened using high-throughput virtual screening against AcrB and MexB proteins and filtered by matching with the common pharmacophore models (AADHR, ADHNR, AAHNR, AADHN, AADNR, AAADN, AAADR, AAANR, AAAHN, AAADD and AAADH generated using known efflux substrates. Phytochemical hits that matched with any one or more of the efflux substrate models were excluded from the study. Hits that do not have features similar to the efflux substrate models were docked using XP docking against the AcrB and MexB proteins. The best hits of the XP docking were validated by checkerboard synergy assay and ethidium bromide accumulation assay for their efflux inhibition potency. Lanatoside C and diadzein were filtered based on the synergistic potential and validated for their efflux inhibition potency using ethidium bromide accumulation study. These compounds exhibited the ability to increase the accumulation of ethidium bromide inside the bacterial cell as evidenced by these increase in fluorescence in the presence of the compounds. With this good correlation between in silico screening and positive efflux inhibitory activity in vitro, the two compounds, lanatoside C and diadzein could be promising efflux pump inhibitors and effective to use in combination

  20. Virtual screening for novel Staphylococcus Aureus NorA efflux pump inhibitors from natural products.

    Science.gov (United States)

    Thai, Khac-Minh; Ngo, Trieu-Du; Phan, Thien-Vy; Tran, Thanh-Dao; Nguyen, Ngoc-Vinh; Nguyen, Thien-Hai; Le, Minh-Tri

    2015-01-01

    NorA is a member of the Major Facilitator Superfamily (MFS) drug efflux pumps that have been shown to mediate antibiotic resistance in Staphylococcus aureus (SA). In this study, QSAR analysis, virtual screening and molecular docking were implemented in an effort to discover novel SA NorA efflux pump inhibitors. Originally, a set of 47 structurally diverse compounds compiled from the literature was used to develop linear QSAR models and another set of 15 different compounds were chosen for extra validation. The final model which was estimated by statistical values for the full data set (n = 45, Q(2) = 0.80, RMSE = 0.20) and for the external test set (n = 15, R(2) = 0.60, |res|max = 0.75, |res|min = 0.02) was applied on the collection of 182 flavonoides and the traditional Chinese medicine (TCM) database to screen for novel NorA inhibitors. Finally, 33 lead compounds that met the Lipinski's rules of five/three and had good predicted pIC50 values from in silico screening process were employed to analyze the binding ability by docking studies on NorA homology model in place of its unavailable crystal structures at two active sites, the central channel and the Walker B.

  1. Development of PET and SPECT radiopharmaceuticals to study multi-drug resistance (MDR)

    International Nuclear Information System (INIS)

    Katsififs, A.; Dikic, B.; Greguric, I.; Knott, R.; Mattner, F.

    2002-01-01

    Full text: Cellular resistance or Multidrug Resistance (MDR) to cytotoxic agents is the major cause of treatment failure in many human cancers. P-glycoprotein (Pgp), a Mr 17,0000 transmembrane protein and Multi Resistance Protein (MRP) are two proteins that are over expressed and confer resistance to a large number of chemotherapeutic agents by enhancing their extracellular transport. P-glycoprotein is expressed at a relative high level in treated and untreated human malignant tumours, including renal, colonic, adrenal, hepatocellular carcinoma and a considerable percentage of breast carcinomas. 99m Tc-Sestamibi, a lipophilic cationic complex is a transport substrate for Pgp. In clinical studies of human neoplasms it was found that tumour uptake and clearance of this tracer correlate with Pgp expression and may be used for the phenotypic assessment of MDR. However, new tracers with better substrate specificity for Pgp and other drug transporters would greatly assist in optimising chemotherapeutic treatment and improving patient management by predicting tumour response to therapy and to assist in the development of antagonists, which may reverse or halt MDR. The aim of this project is therefore to develop PET and SPECT radiopharmaceuticals with improved affinity and selectivity for Pgp and MRP for the clinical evaluation of MDR in cancer patients. To optimise cellular transport characteristics, a number of chemical families that have been found to be substrates of Pgp and other drug efflux pumps, will be investigated. In the first instance, a series of drugs based on the flavonol natural product, Quercetin will be developed, screened for MDR and radiolabelled with PET and SPECT isotopes. Quercetin and related flavonol derivatives have been selected for this project because of their moderate to good affinity for Pgp. With the assistance of molecular modeling and in vitro studies, structural modification will be undertaken to improve the specificity and affinity for

  2. Expression of Sme efflux pumps and multilocus sequence typing in clinical isolates of Stenotrophomonas maltophilia.

    Science.gov (United States)

    Cho, Hye Hyun; Sung, Ji Youn; Kwon, Kye Chul; Koo, Sun Hoe

    2012-01-01

    Stenotrophomonas maltophilia has emerged as an important opportunistic pathogen, which causes infections that are often difficult to manage because of the inherent resistance of the pathogen to a variety of antimicrobial agents. In this study, we analyzed the expressions of smeABC and smeDEF and their correlation with antimicrobial susceptibility. We also evaluated the genetic relatedness and epidemiological links among 33 isolates of S. maltophilia. In total, 33 S. maltophilia strains were isolated from patients in a tertiary hospital in Daejeon. Minimum inhibitory concentrations (MICs) of 11 antimicrobial agents were determined by using agar dilution method and E-test (BioMérieux, France). Real-time PCR analysis was performed to evaluate the expression of the Sme efflux systems in the S. maltophilia isolates. Additionally, an epidemiological investigation was performed using multilocus sequence typing (MLST) assays. The findings of susceptibility testing showed that the majority of the S. maltophilia isolates were resistant to β-lactams and aminoglycosides. Twenty-one clinical isolates overexpressed smeABC and showed high resistance to ciprofloxacin. Moreover, a high degree of genetic diversity was observed among the S. maltophilia isolates; 3 sequence types (STs) and 23 allelic profiles were observed. The smeABC efflux pump was associated with multidrug resistance in clinical isolates of S. maltophilia. In particular, smeABC efflux pumps appear to perform an important role in ciprofloxacin resistance of S. maltophilia. The MLST scheme for S. maltophilia represents a discriminatory typing method with stable markers and is appropriate for studying population structures.

  3. Bafetinib (INNO-406) reverses multidrug resistance by inhibiting the efflux function of ABCB1 and ABCG2 transporters

    Science.gov (United States)

    Zhang, Yun-Kai; Zhang, Guan-Nan; Wang, Yi-Jun; Patel, Bhargav A.; Talele, Tanaji T.; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-05-01

    ATP-Binding Cassette transporters are involved in the efflux of xenobiotic compounds and are responsible for decreasing drug accumulation in multidrug resistant (MDR) cells. Discovered by structure-based virtual screening algorithms, bafetinib, a Bcr-Abl/Lyn tyrosine kinase inhibitor, was found to have inhibitory effects on both ABCB1- and ABCG2-mediated MDR in this in-vitro investigation. Bafetinib significantly sensitized ABCB1 and ABCG2 overexpressing MDR cells to their anticancer substrates and increased the intracellular accumulation of anticancer drugs, particularly doxorubicin and [3H]-paclitaxel in ABCB1 overexpressing cells; mitoxantrone and [3H]-mitoxantrone in ABCG2 overexpressing cells, respectively. Bafetinib stimulated ABCB1 ATPase activities while inhibited ABCG2 ATPase activities. There were no significant changes in the expression level or the subcellular distribution of ABCB1 and ABCG2 in the cells exposed to 3 μM of bafetinib. Overall, our study indicated that bafetinib reversed ABCB1- and ABCG2-mediated MDR by blocking the drug efflux function of these transporters. These findings might be useful in developing combination therapy for MDR cancer treatment.

  4. Response to Bile Salts in Clinical Strains of Acinetobacter baumannii Lacking the AdeABC Efflux Pump: Virulence Associated with Quorum Sensing

    Directory of Open Access Journals (Sweden)

    Maria López

    2017-05-01

    Full Text Available Introduction:Acinetobacter baumannii is an opportunistic nosocomial pathogen associated with multiple infections. This pathogen usually colonizes (first stage of microbial infection host tissues that are in contact with the external environment. As one of the sites of entry in human hosts is the gastrointestinal tract, the pathogen must be capable of tolerating bile salts. However, studies analyzing the molecular characteristics involved in the response to bile salts in clinical strains of A. baumannii are scarce.Material and Methods: Microbiological and transcriptional studies (arrays and RT-PCR in the response to bile salts were carried out in isogenic (A. baumanni ΔadeB ATCC 17978 and A. baumannii ΔadeL ATCC 17978 and clinical strains from clone ST79/PFGE-HUI-1 which is characterized by lacking the AdeABC efflux pump and by overexpression the AdeFGH efflux pump.Results and Discussion: In presence of bile salts, in addition to the glutamate/aspartate transporter were found overexpressed in A. baumannii ΔadeB ATCC 17978, the virulence factors (surface motility, biofilm, and Type VI Secretion System which are associated with activation of the Quorum Sensing system. Overexpression of these factors was confirmed in clinical strains of clone ST79/PFGE-HUI-1.Conclusions: This the first study about the adaptive response to bile salts investigating the molecular and microbiological characteristics in response to bile salts of an isogenic model of A. baumannii ATCC 17978 and clinical isolates of A. baumannii (clinical strains of ST79/PFGE-HUI-1 lacking the main RND efflux pump (AdeABC. Clinical isolates of A. baumannii lacking the AdeABC efflux pump (clone ST79/PFGE-HUI-1 displayed a new clinical profile (increased invasiveness possibly associated with the response to stress conditions (such as the presence of bile salts.

  5. Response to Bile Salts in Clinical Strains of Acinetobacter baumannii Lacking the AdeABC Efflux Pump: Virulence Associated with Quorum Sensing.

    Science.gov (United States)

    López, Maria; Blasco, Lucia; Gato, Eva; Perez, Astrid; Fernández-Garcia, Laura; Martínez-Martinez, Luis; Fernández-Cuenca, Felipe; Rodríguez-Baño, Jesús; Pascual, Alvaro; Bou, German; Tomás, Maria

    2017-01-01

    Introduction: Acinetobacter baumannii is an opportunistic nosocomial pathogen associated with multiple infections. This pathogen usually colonizes (first stage of microbial infection) host tissues that are in contact with the external environment. As one of the sites of entry in human hosts is the gastrointestinal tract, the pathogen must be capable of tolerating bile salts. However, studies analyzing the molecular characteristics involved in the response to bile salts in clinical strains of A. baumannii are scarce. Material and Methods: Microbiological and transcriptional studies (arrays and RT-PCR) in the response to bile salts were carried out in isogenic ( A. baumanni Δ adeB ATCC 17978 and A. baumannii Δ adeL ATCC 17978) and clinical strains from clone ST79/PFGE-HUI-1 which is characterized by lacking the AdeABC efflux pump and by overexpression the AdeFGH efflux pump. Results and Discussion: In presence of bile salts, in addition to the glutamate/aspartate transporter were found overexpressed in A. baumannii Δ adeB ATCC 17978, the virulence factors (surface motility, biofilm, and Type VI Secretion System) which are associated with activation of the Quorum Sensing system. Overexpression of these factors was confirmed in clinical strains of clone ST79/PFGE-HUI-1. Conclusions: This the first study about the adaptive response to bile salts investigating the molecular and microbiological characteristics in response to bile salts of an isogenic model of A. baumannii ATCC 17978 and clinical isolates of A. baumannii (clinical strains of ST79/PFGE-HUI-1) lacking the main RND efflux pump (AdeABC). Clinical isolates of A. baumannii lacking the AdeABC efflux pump (clone ST79/PFGE-HUI-1) displayed a new clinical profile (increased invasiveness) possibly associated with the response to stress conditions (such as the presence of bile salts).

  6. Detection of potential AcrAB-TolC multidrug efflux pump inhibitor in calyces extract of Hibiscus sabdariffa

    Directory of Open Access Journals (Sweden)

    Nehaya Al-Karablieh

    2017-12-01

    Full Text Available Aim: The aim of this study is to investigate occurrence of potential efflux pump inhibitor (EPI against AcrAB-TolC efflux pump in the methanol extract of H. sabdariffa. Materials and Methods: Calyces of H. sabdariffa were purchased from the local market in April 2014, methanol extract of H. sabdariffa was subjected to agar plate diffusion against Escherichia coli TG1 and its ∆acrB-∆tolC and thin layer chromatography (TLC bioassay. The corresponding EPI fraction was eluted by methanol. The synergistic effect of antimicrobials and EPI fraction was measured by minimum inhibitory concentration (MIC determination for E. coli and Erwinia amylovora strains, and the ability of EPI fraction to enhance EtBr accumulation was conducted. Results: E. coli TG1 was more sensitive to the methanol extracts of H. sabdariffa than E. coli ∆acrB-∆tolC, and inhibition zone corresponding to flavones on TLC bioassay plate has been formed which might be related to the fraction of potential EPI. The MIC values revealed that EPI fraction enhanced the activity of the used antimicrobials by 4 to 8 folds in E. coli TG1 and by 4 to 10 folds in E. amylovora 1189. Addition of EPI fraction in a dose-dependent manner increased the intercellular accumulation of Ethidium Bromide (EtBr in the wild type stains of E. coli TG1 and E. amylovora 1189. Conclusion: EPI fraction behaves like a multidrug efflux pump inhibitor and further investigation should be conducted for determination of the chemical structure of EPI fraction. [J Complement Med Res 2017; 6(4.000: 357-363

  7. Functional evidence of multidrug resistance transporters (MDR in rodent olfactory epithelium.

    Directory of Open Access Journals (Sweden)

    Adrien Molinas

    Full Text Available P-glycoprotein (Pgp and multidrug resistance-associated protein (MRP1 are membrane transporter proteins which function as efflux pumps at cell membranes and are considered to exert a protective function against the entry of xenobiotics. While evidence for Pgp and MRP transporter activity is reported for olfactory tissue, their possible interaction and participation in the olfactory response has not been investigated.Functional activity of putative MDR transporters was assessed by means of the fluorometric calcein acetoxymethyl ester (calcein-AM accumulation assay on acute rat and mouse olfactory tissue slices. Calcein-AM uptake was measured as fluorescence intensity changes in the presence of Pgp or MRP specific inhibitors. Epifluorescence microscopy measured time course analysis in the olfactory epithelium revealed significant inhibitor-dependent calcein uptake in the presence of each of the selected inhibitors. Furthermore, intracellular calcein accumulation in olfactory receptor neurons was also significantly increased in the presence of either one of the Pgp or MRP inhibitors. The presence of Pgp or MRP1 encoding genes in the olfactory mucosa of rat and mouse was confirmed by RT-PCR with appropriate pairs of species-specific primers. Both transporters were expressed in both newborn and adult olfactory mucosa of both species. To assess a possible involvement of MDR transporters in the olfactory response, we examined the electrophysiological response to odorants in the presence of the selected MDR inhibitors by recording electroolfactograms (EOG. In both animal species, MRPs inhibitors induced a marked reduction of the EOG magnitude, while Pgp inhibitors had only a minor or no measurable effect.The findings suggest that both Pgp and MRP transporters are functional in the olfactory mucosa and in olfactory receptor neurons. Pgp and MRPs may be cellular constituents of olfactory receptor neurons and represent potential mechanisms for modulation

  8. IPEC-J2 MDR1, a Novel High-Resistance Cell Line with Functional Expression of Human P-glycoprotein (ABCB1) for Drug Screening Studies

    DEFF Research Database (Denmark)

    Saaby, Lasse; Helms, Hans Christian Cederberg; Brodin, Birger

    2016-01-01

    The P-glycoprotein (P-gp) efflux pump has been shown to affect drug distribution and absorption in various organs and to cause drug resistance in cancer therapy. The aim of this work was to develop a cell line to serve as a screening system for potential substrates of P-gp. This requires a cell...... line with high paracellular tightness, low expression of nonhuman ABC transporters, and high expression of functional human P-gp (ABCB1). The porcine intestinal epithelial cell line, IPEC-J2, was selected as a transfection host, due to its ability to form extremely high-resistance monolayers (>10,000 Ω......·cm(2)) and its low endogenous expression of ABC-type efflux transporters. The IPEC-J2 cells were transfected with a plasmid that contained the sequence of the human MDR1 gene, which encodes P-gp, followed by a selection of successfully transfected cells with geneticin and puromycin. The resulting cell...

  9. Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids

    Directory of Open Access Journals (Sweden)

    Buddhasukh Duang

    2004-04-01

    Full Text Available Abstract Background Multidrug resistance (MDR is a phenomenon that is often associated with decreased intracellular drug accumulation in patient's tumor cells resulting from enhanced drug efflux. It is related to the overexpression of a membrane protein, P-glycoprotein (Pgp-170, thereby reducing drug cytotoxicity. A variety of studies have tried to find MDR modulators which increase drug accumulation in cancer cells. Methods In this study, natural curcuminoids, pure curcumin, demethoxycurcumin and bisdemethoxycurcumin, isolated from turmeric (Curcuma longa Linn, were compared for their potential ability to modulate the human MDR-1 gene expression in multidrug resistant human cervical carcinoma cell line, KB-V1 by Western blot analysis and RT-PCR. Results Western blot analysis and RT-PCR showed that all the three curcuminoids inhibited MDR-1 gene expression, and bisdemethoxycurcumin produced maximum effect. In additional studies we found that commercial grade curcuminoid (approximately 77% curcumin, 17% demethoxycurcumin and 3% bisdemthoxycurcumin decreased MDR-1 gene expression in a dose dependent manner and had about the same potent inhibitory effect on MDR-1 gene expression as our natural curcuminoid mixtures. Conclusion These results indicate that bisdemethoxycurcumin is the most active of the curcuminoids present in turmeric for modulation of MDR-1 gene. Treatment of drug resistant KB-V1 cells with curcumin increased their sensitivity to vinblastine, which was consistent with a decreased MDR-1 gene product, a P-glycoprotein, on the cell plasma membrane. Although many drugs that prevent the P-glycoprotein function have been reported, this report describes the inhibition of MDR-1 expression by a phytochemical. The modulation of MDR-1 expression may be an attractive target for new chemosensitizing agents.

  10. Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids

    International Nuclear Information System (INIS)

    Limtrakul, Pornngarm; Anuchapreeda, Songyot; Buddhasukh, Duang

    2004-01-01

    Multidrug resistance (MDR) is a phenomenon that is often associated with decreased intracellular drug accumulation in patient's tumor cells resulting from enhanced drug efflux. It is related to the overexpression of a membrane protein, P-glycoprotein (Pgp-170), thereby reducing drug cytotoxicity. A variety of studies have tried to find MDR modulators which increase drug accumulation in cancer cells. In this study, natural curcuminoids, pure curcumin, demethoxycurcumin and bisdemethoxycurcumin, isolated from turmeric (Curcuma longa Linn), were compared for their potential ability to modulate the human MDR-1 gene expression in multidrug resistant human cervical carcinoma cell line, KB-V1 by Western blot analysis and RT-PCR. Western blot analysis and RT-PCR showed that all the three curcuminoids inhibited MDR-1 gene expression, and bisdemethoxycurcumin produced maximum effect. In additional studies we found that commercial grade curcuminoid (approximately 77% curcumin, 17% demethoxycurcumin and 3% bisdemthoxycurcumin) decreased MDR-1 gene expression in a dose dependent manner and had about the same potent inhibitory effect on MDR-1 gene expression as our natural curcuminoid mixtures. These results indicate that bisdemethoxycurcumin is the most active of the curcuminoids present in turmeric for modulation of MDR-1 gene. Treatment of drug resistant KB-V1 cells with curcumin increased their sensitivity to vinblastine, which was consistent with a decreased MDR-1 gene product, a P-glycoprotein, on the cell plasma membrane. Although many drugs that prevent the P-glycoprotein function have been reported, this report describes the inhibition of MDR-1 expression by a phytochemical. The modulation of MDR-1 expression may be an attractive target for new chemosensitizing agents

  11. The Influence of Efflux Pump Inhibitors on the Activity of Non-Antibiotic NSAIDS against Gram-Negative Rods.

    Directory of Open Access Journals (Sweden)

    Agnieszka E Laudy

    Full Text Available Most patients with bacterial infections suffer from fever and various pains that require complex treatments with antibiotics, antipyretics, and analgaesics. The most common drugs used to relieve these symptoms are non-steroidal anti-inflammatory drugs (NSAIDs, which are not typically considered antibiotics. Here, we investigate the effects of NSAIDs on bacterial susceptibility to antibiotics and the modulation of bacterial efflux pumps.The activity of 12 NSAID active substances, paracetamol (acetaminophen, and eight relevant medicinal products was analyzed with or without pump inhibitors against 89 strains of Gram-negative rods by determining the MICs. Furthermore, the effects of NSAIDs on the susceptibility of clinical strains to antimicrobial agents with or without PAβN (Phe-Arg-β-naphtylamide were measured.The MICs of diclofenac, mefenamic acid, ibuprofen, and naproxen, in the presence of PAβN, were significantly (≥4-fold reduced, decreasing to 25-1600 mg/L, against the majority of the studied strains. In the case of acetylsalicylic acid only for 5 and 7 out of 12 strains of P. mirabilis and E. coli, respectively, a 4-fold increase in susceptibility in the presence of PAβN was observed. The presence of Aspirin resulted in a 4-fold increase in the MIC of ofloxacin against only two strains of E. coli among 48 tested clinical strains, which included species such as E. coli, K. pneumoniae, P. aeruginosa, and S. maltophilia. Besides, the medicinal products containing the following NSAIDs, diclofenac, mefenamic acid, ibuprofen, and naproxen, did not cause the decrease of clinical strains' susceptibility to antibiotics.The effects of PAβN on the susceptibility of bacteria to NSAIDs indicate that some NSAIDs are substrates for efflux pumps in Gram-negative rods. Morever, Aspirin probably induced efflux-mediated resistance to fluoroquinolones in a few E. coli strains.

  12. Regulation of the aceI multidrug efflux pump gene in Acinetobacter baumannii.

    Science.gov (United States)

    Liu, Qi; Hassan, Karl A; Ashwood, Heather E; Gamage, Hasinika K A H; Li, Liping; Mabbutt, Bridget C; Paulsen, Ian T

    2018-06-01

    To investigate the function of AceR, a putative transcriptional regulator of the chlorhexidine efflux pump gene aceI in Acinetobacter baumannii. Chlorhexidine susceptibility and chlorhexidine induction of aceI gene expression were determined by MIC and quantitative real-time PCR, respectively, in A. baumannii WT and ΔaceR mutant strains. Recombinant AceR was prepared as both a full-length protein and as a truncated protein, AceR (86-299), i.e. AceRt, which has the DNA-binding domain deleted. The binding interaction of the purified AceR protein and its putative operator region was investigated by electrophoretic mobility shift assays and DNase I footprinting assays. The binding of AceRt with its putative ligand chlorhexidine was examined using surface plasmon resonance and tryptophan fluorescence quenching assays. MIC determination assays indicated that the ΔaceI and ΔaceR mutant strains both showed lower resistance to chlorhexidine than the parental strain. Chlorhexidine-induced expression of aceI was abolished in a ΔaceR background. Electrophoretic mobility shift assays and DNase I footprinting assays demonstrated chlorhexidine-stimulated binding of AceR with two sites upstream of the putative aceI promoter. Surface plasmon resonance and tryptophan fluorescence quenching assays suggested that the purified ligand-binding domain of the AceR protein was able to bind with chlorhexidine with high affinity. This study provides strong evidence that AceR is an activator of aceI gene expression when challenged with chlorhexidine. This study is the first characterization, to our knowledge, of a regulator controlling expression of a PACE family multidrug efflux pump.

  13. Water-mediated interactions enable smooth substrate transport in a bacterial efflux pump.

    Science.gov (United States)

    Vargiu, Attilio Vittorio; Ramaswamy, Venkata Krishnan; Malvacio, Ivana; Malloci, Giuliano; Kleinekathöfer, Ulrich; Ruggerone, Paolo

    2018-04-01

    Efflux pumps of the Resistance-Nodulation-cell Division superfamily confer multi-drug resistance to Gram-negative bacteria. The most-studied polyspecific transporter belonging to this class is the inner-membrane trimeric antiporter AcrB of Escherichia coli. In previous studies, a functional rotation mechanism was proposed for its functioning, according to which the three monomers undergo concerted conformational changes facilitating the extrusion of substrates. However, the molecular determinants and the energetics of this mechanism still remain unknown, so its feasibility must be proven mechanistically. A computational protocol able to mimic the functional rotation mechanism in AcrB was developed. By using multi-bias molecular dynamics simulations we characterized the translocation of the substrate doxorubicin driven by conformational changes of the protein. In addition, we estimated for the first time the free energy profile associated to this process. We provided a molecular view of the process in agreement with experimental data. Moreover, we showed that the conformational changes occurring in AcrB enable the formation of a layer of structured waters on the internal surface of the transport channel. This water layer, in turn, allows for a fairly constant hydration of the substrate, facilitating its diffusion over a smooth free energy profile. Our findings reveal a new molecular mechanism of polyspecific transport whereby water contributes by screening potentially strong substrate-protein interactions. We provided a mechanistic understanding of a fundamental process related to multi-drug transport. Our results can help rationalizing the behavior of other polyspecific transporters and designing compounds avoiding extrusion or inhibitors of efflux pumps. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  14. Berberine-INF55 (5-Nitro-2-Phenylindole) Hybrid Antimicrobials: Effects of Varying the Relative Orientation of the Berberine and INF55 Components ▿

    Science.gov (United States)

    Tomkiewicz, Danuta; Casadei, Gabriele; Larkins-Ford, Jonah; Moy, Terence I.; Garner, James; Bremner, John B.; Ausubel, Frederick M.; Lewis, Kim; Kelso, Michael J.

    2010-01-01

    Hybrid antimicrobials containing an antibacterial linked to a multidrug resistance (MDR) pump inhibitor make up a promising new class of agents for countering efflux-mediated bacterial drug resistance. This study explores the effects of varying the relative orientation of the antibacterial and efflux pump inhibitor components in three isomeric hybrids (SS14, SS14-M, and SS14-P) which link the antibacterial alkaloid and known substrate for the NorA MDR pump berberine to different positions on INF55 (5-nitro-2-phenylindole), an inhibitor of NorA. The MICs for all three hybrids against wild-type, NorA-knockout, and NorA-overexpressing Staphylococcus aureus cells were found to be similar (9.4 to 40.2 μM), indicating that these compounds are not effectively effluxed by NorA. The three hybrids were also found to have similar curing effects in a Caenorhabditis elegans live infection model. Each hybrid was shown to accumulate in S. aureus cells to a greater extent than either berberine or berberine in the presence of INF55, and the uptake kinetics of SS14 were found to differ from those of SS14-M and SS14-P. The effects on the uptake and efflux of the NorA substrate ethidium bromide into S. aureus cells in the presence or absence of the hybrids were used to confirm MDR inhibition by the hybrids. MDR-inhibitory activity was confirmed for SS14-M and SS14-P but not for SS14. Molecular dynamics simulations revealed that SS14 prefers to adopt a conformation that is not prevalent in either SS14-M or SS14-P, which may explain why some properties of SS14 diverge from those of its two isomers. In summary, subtle repositioning of the pump-blocking INF55 moiety in berberine-INF55 hybrids was found to have a minimal effect on their antibacterial activities but to significantly alter their effects on MDR pumps. PMID:20498327

  15. Development of novel strategies to combat multidrug resistance mediated by efflux transporters and intracellular bacteria

    OpenAIRE

    Kuriakose, Jerrin

    2014-01-01

    Multidrug resistance (MDR) is the condition where cancer cells or microorganisms cease to respond to multiple drugs. MDR conferred by efflux transporters, that deprive the bioavailability of drugs at their site of action, are a threat to cancer and malarial chemotherapy. Specifically, the mammalian ABC transporter Pglycoprotein (P-gp) has undermined many drugs in treatment of cancer and other disease states. Mutations in the parasitic transporter Plasmodium falciparum chloroquine resistance t...

  16. Tacrolimus is a class II low-solubility high-permeability drug: the effect of P-glycoprotein efflux on regional permeability of tacrolimus in rats.

    Science.gov (United States)

    Tamura, Shigeki; Ohike, Atsuo; Ibuki, Rinta; Amidon, Gordon L; Yamashita, Shinji

    2002-03-01

    The objective of this study is to investigate the role of P-glycoprotein (P-gp), a membrane efflux pump associated with multidrug resistance (MDR) and a known substrate for tacrolimus, in determining the regional intestinal permeability of tacrolimus in rats. Thus, isolated segments of rat jejunum, ileum, or colon were perfused with tacrolimus solutions containing polyethoxylated hydrogenated castor oil 60 surfactant, and with or without verapamil, a P-gp substrate used to reverse the MDR phenotype. The results indicated that the intrinsic permeability of tacrolimus in the jejunum, calculated on the basis of the concentration of non-micellized free tacrolimus, was quite high ( approximately 1.4 x 10(-4) cm/s). The apparent permeability (P(app)) in the jejunum was unaffected by the presence of verapamil; however, the P(app) in the ileum and the colon increased significantly in the presence of verapamil and were similar to the values observed in the jejunum. The results suggest that systemic absorption of tacrolimus from the gastrointestinal tract could be significantly affected by P-gp efflux mechanisms. It is also possible that differences in P-gp function at various intestinal sites in a subject or at a given intestinal site in various subjects could lead to large intra- and interindividual variability in bioavailability of tacrolimus following oral administration. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association .

  17. Metabolic Compensation of Fitness Costs Is a General Outcome for Antibiotic-Resistant Pseudomonas aeruginosa Mutants Overexpressing Efflux Pumps.

    Science.gov (United States)

    Olivares Pacheco, Jorge; Alvarez-Ortega, Carolina; Alcalde Rico, Manuel; Martínez, José Luis

    2017-07-25

    It is generally assumed that the acquisition of antibiotic resistance is associated with a fitness cost. We have shown that overexpression of the MexEF-OprN efflux pump does not decrease the fitness of a resistant Pseudomonas aeruginosa strain compared to its wild-type counterpart. This lack of fitness cost was associated with a metabolic rewiring that includes increased expression of the anaerobic nitrate respiratory chain when cells are growing under fully aerobic conditions. It was not clear whether this metabolic compensation was exclusive to strains overexpressing MexEF-OprN or if it extended to other resistant strains that overexpress similar systems. To answer this question, we studied a set of P. aeruginosa mutants that independently overexpress the MexAB-OprM, MexCD-OprJ, or MexXY efflux pumps. We observed increased expression of the anaerobic nitrate respiratory chain in all cases, with a concomitant increase in NO 3 consumption and NO production. These efflux pumps are proton/substrate antiporters, and their overexpression may lead to intracellular H + accumulation, which may in turn offset the pH homeostasis. Indeed, all studied mutants showed a decrease in intracellular pH under anaerobic conditions. The fastest way to eliminate the excess of protons is by increasing oxygen consumption, a feature also displayed by all analyzed mutants. Taken together, our results support metabolic rewiring as a general mechanism to avoid the fitness costs derived from overexpression of P. aeruginosa multidrug efflux pumps. The development of drugs that block this metabolic "reaccommodation" might help in reducing the persistence and spread of antibiotic resistance elements among bacterial populations. IMPORTANCE It is widely accepted that the acquisition of resistance confers a fitness cost in such a way that in the absence of antibiotics, resistant populations will be outcompeted by susceptible ones. Based on this assumption, antibiotic cycling regimes have been

  18. Attaching NorA efflux pump inhibitors to methylene blue enhances antimicrobial photodynamic inactivation of Escherichia coli and Acinetobacter baumannii in vitro and in vivo.

    Science.gov (United States)

    Rineh, Ardeshir; Bremner, John B; Hamblin, Michael R; Ball, Anthony R; Tegos, George P; Kelso, Michael J

    2018-02-24

    Resistance of bacteria to antibiotics is a public health concern worldwide due to the increasing failure of standard antibiotic therapies. Antimicrobial photodynamic inactivation (aPDI) is a promising non-antibiotic alternative for treating localized bacterial infections that uses non-toxic photosensitizers and harmless visible light to produce reactive oxygen species and kill microbes. Phenothiazinium photosensitizers like methylene blue (MB) and toluidine blue O are hydrophobic cations that are naturally expelled from bacterial cells by multidrug efflux pumps, which reduces their effectiveness. We recently reported the discovery of a NorA efflux pump inhibitor-methylene blue (EPI-MB) hybrid compound INF55-(Ac)en-MB that shows enhanced photodynamic inactivation of the Gram-positive bacterium methicillin-resistant Staphylococcus aureus (MRSA) relative to MB, both in vitro and in vivo. Here, we report the surprising observation that INF55-(Ac)en-MB and two related hybrids bearing the NorA efflux pump inhibitors INF55 and INF271 also show enhanced aPDI activity in vitro (relative to MB) against the Gram-negative bacteria Escherichia coli and Acinetobacter baumannii, despite neither species expressing the NorA pump. Two of the hybrids showed superior effects to MB in murine aPDI infection models. The findings motivate wider exploration of aPDI with EPI-MB hybrids against Gram-negative pathogens and more detailed studies into the molecular mechanisms underpinning their activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Over expression of AdeABC and AcrAB-TolC efflux systems confers tigecycline resistance in clinical isolates of Acinetobacter baumannii and Klebsiella pneumoniae

    Directory of Open Access Journals (Sweden)

    Yin Yuhan

    2016-04-01

    Full Text Available Abstract: INTRODUCTION: Due to the wide use of tigecycline in the treatment of severe infections caused by multidrug-resistant (MDR bacteria, clinical resistance to tigecycline has increased in recent years. Here, we investigated the relationship between tigecycline resistance and the expression of efflux pumps. METHODS: Clinical isolates of Acinetobacter baumannii and Klebsiella pneumoniae were consecutively collected from hospitalized patients in three hospitals. The minimum inhibitory concentration (MIC of tigecycline was determined using the broth microdilution method. Expression levels of efflux pump genes and regulators were examined by quantitative real-time reverse transcription polymerase chain reaction. The correlations between tigecycline MICs and gene expression levels were analyzed. RESULTS: Overall, 1,026 A. baumannii and 725 K. pneumoniae strains were collected. Most strains were isolated from sputum. The tigecycline resistance rate was 13.4% in A. baumannii isolates and 6.5% in K. pneumoniae isolates. Overexpression of AdeABC and AcrAB-TolC efflux systems was observed found in clinical tigecycline-resistant isolates. The tigecycline MIC had a linear relationship with the adeB expression level in A. baumannii isolates, but not with the acrB expression level in K. pneumoniae isolates. There were significant linear trends in the overexpression of ramA as the tigecycline MIC increased in K. pneumoniae isolates. CONCLUSIONS: Tigecycline resistance in A. baumannii and K. pneumoniae was strongly associated with the overexpression of efflux systems. More studies are needed to elucidate whether there are other regulators that affect the expression of adeB in A. baumannii and how ramA affects the expression of acrB in K. pneumoniae.

  20. 1-(1H-indol-3-yl)ethanamine derivatives as potent Staphylococcus aureus NorA efflux pump inhibitors.

    Science.gov (United States)

    Hequet, Arnaud; Burchak, Olga N; Jeanty, Matthieu; Guinchard, Xavier; Le Pihive, Emmanuelle; Maigre, Laure; Bouhours, Pascale; Schneider, Dominique; Maurin, Max; Paris, Jean-Marc; Denis, Jean-Noël; Jolivalt, Claude

    2014-07-01

    The synthesis of 37 1-(1H-indol-3-yl)ethanamine derivatives, including 12 new compounds, was achieved through a series of simple and efficient chemical modifications. These indole derivatives displayed modest or no intrinsic anti-staphylococcal activity. By contrast, several of the compounds restored, in a concentration-dependent manner, the antibacterial activity of ciprofloxacin against Staphylococcus aureus strains that were resistant to fluoroquinolones due to overexpression of the NorA efflux pump. Structure-activity relationships studies revealed that the indolic aldonitrones halogenated at position 5 of the indole core were the most efficient inhibitors of the S. aureus NorA efflux pump. Among the compounds, (Z)-N-benzylidene-2-(tert-butoxycarbonylamino)-1-(5-iodo-1H-indol-3-yl)ethanamine oxide led to a fourfold decrease of the ciprofloxacin minimum inhibitory concentration against the SA-1199B strain when used at a concentration of 0.5 mg L(-1) . To the best of our knowledge, this activity is the highest reported to date for an indolic NorA inhibitor. In addition, a new antibacterial compound, tert-butyl (2-(3-hydroxyureido)-2-(1H-indol-3-yl)ethyl)carbamate, which is not toxic for human cells, was also found. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Inhibition of the essential oil from Chenopodium ambrosioides L. and α-terpinene on the NorA efflux-pump of Staphylococcus aureus.

    Science.gov (United States)

    de Morais Oliveira-Tintino, Cícera Datiane; Tintino, Saulo Relison; Limaverde, Paulo W; Figueredo, Fernando G; Campina, Fábia F; da Cunha, Francisco A B; da Costa, Roger H S; Pereira, Pedro Silvino; Lima, Luciene F; de Matos, Yedda M L S; Coutinho, Henrique Douglas Melo; Siqueira-Júnior, José P; Balbino, Valdir Q; da Silva, Teresinha Gonçalves

    2018-10-01

    This study was carried out to test the essential oil from C. ambrosioides leaves and its main constituent, α-Terpinene, in an antibacterial activity assay. As well, it was evaluated ability reduce resistance to norfloxacin and ethidium bromide was compared the Staphylococcus aureus 1199B whith 1199 wild type strain. The MIC of the C. ambrosioides essential oil and α-Terpinene were determined by microdilution method. The MIC of the essential oil and α-Terpinene presented a value ≥ 1024 μg/mL. However, when associated with antibacterials, the essential oil from C. ambrosioides leaves significantly reduced the MIC of antibiotics and ethidium bromide, characterizing an efflux pump inhibition. The C. ambrosioides essential oil, despite having no direct antibacterial activity against the S. aureus 1199B strain, showed a potentiating action when associated with antibacterial agents, this being attributed to an inhibition of efflux pumps. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Effect of iron on expression of efflux pump (adeABC) and quorum sensing (luxI, luxR) genes in clinical isolates of Acinetobacter baumannii.

    Science.gov (United States)

    Modarresi, Farzan; Azizi, Omid; Shakibaie, Mohammad Reza; Motamedifar, Mohammad; Valibeigi, Behnaz; Mansouri, Shahla

    2015-11-01

    Resistance-nodulation-division efflux system (RND) adeABC contributes to intrinsic resistance to various drug classes in Acinetobacter baumannii. Similarly, quorum sensing (QS) plays an important role in the biofilm formation and pathogenicity of this bacterium. The aims of this study were to evaluate the influence of iron limitation on the expression of efflux pump (adeABC) genes and QS (luxI, luxR) system by relative quantitative real-time polymerase chain reaction (qRT-PCR). In addition, DNA sequence and phylogenetic relatedness of biofilm-associated protein (Bap) gene was also investigated. Sixty-five multidrug-resistant isolates of A. baumannii were recovered from ICU patients of three hospitals in Kerman, Iran. The isolates were highly resistant to at least 11 antibiotics (MIC ≥64 μg/mL); however, 87% and 89% were susceptible to colistin and tigecycline, respectively (MIC 0.05 μg/mL) (p ≤ 0.05). We detected the presence of RND efflux pump, QS, and bap genes with the frequencies of 92% (adeA), 61.5% (adeB), 84.6% (adeC), 80% (luxI), 61% (luxR), and 66% (bap), respectively. qRT-PCR analysis showed that in some isolates, expression of both adeABC and luxI/R was increased more than fourfold in the presence of low iron (20 μm), suggesting the additional regulatory role of iron on both efflux pump and QS system. Alignment and phylogenetic analysis on the strong biofilm forming isolates confirmed that the fragments amplified were indeed part of bap gene and deduced sequence was similar to A. baumannii K9B410. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  3. Modulation of the multidrug efflux pump EmrD-3 from Vibrio cholerae by Allium sativum extract and the bioactive agent allyl sulfide plus synergistic enhancement of antimicrobial susceptibility by A. sativum extract.

    Science.gov (United States)

    Bruns, Merissa M; Kakarla, Prathusha; Floyd, Jared T; Mukherjee, Mun Mun; Ponce, Robert C; Garcia, John A; Ranaweera, Indrika; Sanford, Leslie M; Hernandez, Alberto J; Willmon, T Mark; Tolson, Grace L; Varela, Manuel F

    2017-10-01

    The causative agent of cholera, Vibrio cholerae, is a public health concern. Multidrug-resistant V. cholerae variants may reduce chemotherapeutic efficacies of severe cholera. We previously reported that the multidrug efflux pump EmrD-3 from V. cholerae confers resistance to multiple structurally distinct antimicrobials. Medicinal plant compounds are potential candidates for EmrD-3 efflux pump modulation. The antibacterial activities of garlic Allium sativum, although poorly understood, predicts that a main bioactive component, allyl sulfide, modulates EmrD-3 efflux. Thus, we tested whether A. sativum extract acts in synergy with antimicrobials and that a main bioactive component allyl sulfide inhibits EmrD-3 efflux. We found that A. sativum extract and allyl sulfide inhibited ethidium bromide efflux in cells harboring EmrD-3 and that A. sativum lowered the MICs of multiple antibacterials. We conclude that A. sativum and allyl sulfide inhibit EmrD-3 and that A. sativum extract synergistically enhances antibacterial agents.

  4. Fluorometric determination of ethidium bromide efflux kinetics in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Monteiro Gabriel A

    2009-10-01

    Full Text Available Abstract Background Efflux pump activity has been associated with multidrug resistance phenotypes in bacteria, compromising the effectiveness of antimicrobial therapy. The development of methods for the early detection and quantification of drug transport across the bacterial cell wall is a tool essential to understand and overcome this type of drug resistance mechanism. This approach was developed to study the transport of the efflux pump substrate ethidium bromide (EtBr across the cell envelope of Escherichia coli K-12 and derivatives, differing in the expression of their efflux systems. Results EtBr transport across the cell envelope of E. coli K-12 and derivatives was analysed by a semi-automated fluorometric method. Accumulation and efflux of EtBr was studied under limiting energy supply (absence of glucose and low temperature and in the presence and absence of the efflux pump inhibitor, chlorpromazine. The bulk fluorescence variations were also observed by single-cell flow cytometry analysis, revealing that once inside the cells, leakage of EtBr does not occur and that efflux is mediated by active transport. The importance of AcrAB-TolC, the main efflux system of E. coli, in the extrusion of EtBr was evidenced by comparing strains with different levels of AcrAB expression. An experimental model was developed to describe the transport kinetics in the three strains. The model integrates passive entry (influx and active efflux of EtBr, and discriminates different degrees of efflux between the studied strains that vary in the activity of their efflux systems, as evident from the calculated efflux rates: = 0.0173 ± 0.0057 min-1; = 0.0106 ± 0.0033 min-1; and = 0.0230 ± 0.0075 min-1. Conclusion The combined use of a semi-automated fluorometric method and an experimental model allowed quantifying EtBr transport in E. coli strains that differ in their overall efflux activity. This methodology can be used for the early detection of differences in

  5. Contribution of EmrAB efflux pumps to colistin resistance in Acinetobacter baumannii.

    Science.gov (United States)

    Lin, Ming-Feng; Lin, Yun-You; Lan, Chung-Yu

    2017-02-01

    Efflux pumps play an important role in antimicrobial resistance for Acinetobacter baumannii. However, the function of the Emr pump system and the relationship between Emr and drug resistance has not been characterized in A. baumannii. In this study, four possible groups of emr-like genes were found by searching a genome database. Among them, A1S_1772 (emrB) and A1S_1773 (emrA) were demonstrated to be co-transcribed as a single operon. Moreover, during osmotic stress, A1S_1772 showed the largest change in gene expression compared to the other emrB-like genes, and deletion of A1S_1772 (AB ΔemrB) significantly slowed cell growth in 20% sucrose. Using a phenotypic microarray analysis, the AB ΔemrB mutant was more susceptible to colistin and nafcillin, paromomycin, spiramycin, and D,L-serine hydroxmate than the wild type. The spot assay, time kill assay and minimal inhibition concentration determination also indicated that the wild type could tolerate colistin better than the AB ΔemrB mutant. Finally, the increased expression levels of all emrB-like genes, including A1S_0775, A1S_0909, A1S_1772, and A1S_1799, in colistin resistance-induced A. baumannii further supported the possible involvement of the emrB genes in A. baumannii colistin resistance. Together, the Emr pump systems in A. baumannii contribute to adaptation to osmotic stress and resistance to colistin.

  6. Efflux drug transporters at the forefront of antimicrobial resistance.

    Science.gov (United States)

    Rahman, Tahmina; Yarnall, Benjamin; Doyle, Declan A

    2017-10-01

    Bacterial antibiotic resistance is rapidly becoming a major world health consideration. To combat antibiotics, microorganisms employ their pre-existing defence mechanisms that existed long before man's discovery of antibiotics. Bacteria utilise levels of protection that range from gene upregulation, mutations, adaptive resistance, and production of resistant phenotypes (persisters) to communal behaviour, as in swarming and the ultimate defence of a biofilm. A major part of all of these responses involves the use of antibiotic efflux transporters. At the single cell level, it is becoming apparent that the use of efflux pumps is the first line of defence against an antibiotic, as these pumps decrease the intracellular level of antibiotic while the cell activates the various other levels of protection. This frontline of defence involves a coordinated network of efflux transporters. In the future, inhibition of this efflux transporter network, as a target for novel antibiotic therapy, will require the isolation and then biochemical/biophysical characterisation of each pump against all known and new antibiotics. This depth of knowledge is required so that we can fully understand and tackle the mechanisms of developing antimicrobial resistance.

  7. Improved Potency of Indole-Based NorA Efflux Pump Inhibitors: From Serendipity toward Rational Design and Development.

    Science.gov (United States)

    Buonerba, Federica; Lepri, Susan; Goracci, Laura; Schindler, Bryan D; Seo, Susan M; Kaatz, Glenn W; Cruciani, Gabriele

    2017-01-12

    The NorA efflux pump is a potential drug target for reversal of resistance to selected antibacterial agents, and recently we described indole-based inhibitor candidates. Herein we report a second class of inhibitors derived from them but with significant differences in shape and size. In particular, compounds 13 and 14 are very potent inhibitors in that they demonstrated the lowest IC 50 values (2 μM) ever observed among all indole-based compounds we have evaluated.

  8. Clonality, outer-membrane proteins profile and efflux pump in KPC- producing Enterobacter sp. in Brazil.

    Science.gov (United States)

    Rosa, Juliana Ferraz; Rizek, Camila; Marchi, Ana Paula; Guimaraes, Thais; Miranda, Lourdes; Carrilho, Claudia; Levin, Anna S; Costa, Silvia F

    2017-03-17

    Carbapenems resistance in Enterobacter spp. has increased in the last decade, few studies, however, described the mechanisms of resistance in this bacterium. This study evaluated clonality and mechanisms of carbapenems resistance in clinical isolates of Enterobacter spp. identified in three hospitals in Brazil (Hospital A, B and C) over 7-year. Antibiotics sensitivity, pulsed-field gel electrophoresis (PFGE), PCR for carbapenemase and efflux pump genes were performed for all carbapenems-resistant isolates. Outer-membrane protein (OMP) was evaluated based on PFGE profile. A total of 130 isolates of Enterobacter spp were analyzed, 44/105 (41, 9%) E. aerogenes and 8/25 (32,0%) E. cloacae were resistant to carbapenems. All isolates were susceptible to fosfomycin, polymyxin B and tigecycline. KPC was present in 88.6% of E. aerogenes and in all E. cloacae resistant to carbapenems. The carbapenems-resistant E. aerogenes identified in hospital A belonged to six clones, however, a predominant clone was identified in this hospital over the study period. There is a predominant clone in Hospital B and Hospital C as well. The mechanisms of resistance to carbapenems differ among subtypes. Most of the isolates co-harbored blaKPC, blaTEM and /or blaCTX associated with decreased or lost of 35-36KDa and or 39 KDa OMP. The efflux pump AcrAB-TolC gene was only identified in carbapenems-resistant E. cloacae. There was a predominant clone in each hospital suggesting that cross-transmission of carbapenems-resistant Enterobacter spp. was frequent. The isolates presented multiple mechanisms of resistance to carbapenems including OMP alteration.

  9. Alpha-tocopheryl polyethylene glycol succinate-emulsified poly(lactic-co-glycolic acid) nanoparticles for reversal of multidrug resistance in vitro

    International Nuclear Information System (INIS)

    Wang Ying; Lu Yu; Ding Liying; Liu Yaqing; Yu Shuqin; Guo Miao; Ron Wenting; Song Feifei

    2012-01-01

    Multidrug resistance (MDR) is one of the factors in the failure of anticancer chemotherapy. In order to enhance the anticancer effect of P-glycoprotein (P-gp) substrates, inhibition of the P-gp efflux pump on MDR cells is a good tactic. We designed novel multifunctional drug-loaded alpha-tocopheryl polyethylene glycol succinate (TPGS)/poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TPGS/PLGA/SN-38 NPs; SN-38 is 7-ethyl-10-hydroxy-camptothecin), with TPGS-emulsified PLGA NPs as the carrier and modulator of the P-gp efflux pump and SN-38 as the model drug. TPGS/PLGA/SN-38 NPs were prepared using a modified solvent extraction/evaporation method. Physicochemical characterizations of TPGS/PLGA/SN-38 NPs were in conformity with the principle of nano-drug delivery systems (nDDSs), including a diameter of about 200 nm, excellent spherical particles with a smooth surface, narrow size distribution, appropriate surface charge, and successful drug-loading into the NPs. The cytotoxicity of TPGS/PLGA/SN-38 NPs to MDR cells was increased by 3.56 times compared with that of free SN-38. Based on an intracellular accumulation study relative to the time-dependent uptake and efflux inhibition, we suggest novel mechanisms of MDR reversal of TPGS/PLGA NPs. Firstly, TPGS/PLGA/SN-38 NPs improved the uptake of the loaded drug by clathrin-mediated endocytosis in the form of unbroken NPs. Simultaneously, intracellular NPs escaped the recognition of P-gp by MDR cells. After SN-38 was released from TPGS/PLGA/SN-38 NPs in MDR cells, TPGS or/and PLGA may modulate the efflux microenvironment of the P-gp pump, such as mitochondria and the P-gp domain with an ATP-binding site. Finally, the controlled-release drug entered the nucleus of the MDR cell to induce cytotoxicity. The present study showed that TPGS-emulsified PLGA NPs could be functional carriers in nDDS for anticancer drugs that are also P-gp substrates. More importantly, to enhance the therapeutic effect of P-gp substrates, this work

  10. Impact of anatase and rutile titanium dioxide nanoparticles on uptake carriers and efflux pumps in Caco-2 gut epithelial cells

    Science.gov (United States)

    Dorier, M.; Brun, E.; Veronesi, G.; Barreau, F.; Pernet-Gallay, K.; Desvergne, C.; Rabilloud, T.; Carapito, C.; Herlin-Boime, N.; Carrière, M.

    2015-04-01

    TiO2 microparticles are widely used in food products, where they are added as a white food colouring agent. This food additive contains a significant amount of nanoscale particles; still the impact of TiO2 nanoparticles (TiO2-NPs) on gut cells is poorly documented. Our study aimed at evaluating the impact of rutile and anatase TiO2-NPs on the main functions of enterocytes, i.e. nutrient absorption driven by solute-liquid carriers (SLC transporters) and protection against other xenobiotics driven by efflux pumps from the ATP-binding cassette (ABC) family. We show that acute exposure of Caco-2 cells to both anatase (12 nm) and rutile (20 nm) TiO2-NPs induce early upregulation of a battery of efflux pumps and nutrient transporters. In addition they cause overproduction of reactive oxygen species and misbalance redox repair systems, without inducing cell mortality or DNA damage. Taken together, these data suggest that TiO2-NPs may increase the functionality of gut epithelial cells, particularly their property to form a protective barrier against exogenous toxicants and to absorb nutrients.TiO2 microparticles are widely used in food products, where they are added as a white food colouring agent. This food additive contains a significant amount of nanoscale particles; still the impact of TiO2 nanoparticles (TiO2-NPs) on gut cells is poorly documented. Our study aimed at evaluating the impact of rutile and anatase TiO2-NPs on the main functions of enterocytes, i.e. nutrient absorption driven by solute-liquid carriers (SLC transporters) and protection against other xenobiotics driven by efflux pumps from the ATP-binding cassette (ABC) family. We show that acute exposure of Caco-2 cells to both anatase (12 nm) and rutile (20 nm) TiO2-NPs induce early upregulation of a battery of efflux pumps and nutrient transporters. In addition they cause overproduction of reactive oxygen species and misbalance redox repair systems, without inducing cell mortality or DNA damage. Taken

  11. Antibiotics: Pharmacokinetics, toxicity, resistance and multidrug efflux pumps.

    Science.gov (United States)

    Yılmaz, Çiğdem; Özcengiz, Gülay

    2017-06-01

    The discovery of penicillin followed by streptomycin, tetracycline, cephalosporins and other natural, semi-synthetic and synthetic antimicrobials completely revolutionized medicine by reducing human morbidity and mortality from most of the common infections. However, shortly after they were introduced to clinical practice, the development of resistance was emerged. The decreasing interest from antibiotic industry in spite of rapid global emergence of antibiotic resistance is a tough dilemma from the pointview of public health. The efficiency of antimicrobial treatment is determined by both pharmacokinetics and pharmacodynamics. In spite of their selective toxicity, antibiotics still cause severe, life-threatening adverse reactions in host body mostly due to defective drug metabolism or excessive dosing regimen. The present article aims at updating current knowledge on pharmacokinetics/pharmacodynamics concepts and models, toxicity of antibiotics as well as antibiotic resistance mechanisms, resistome analyses and search for novel antibiotic resistance determinants with special emphasis given to the-state-of-the-art regarding multidrug efflux pumps and their additional physiological functions in stress adaptation and virulence of bacteria. All these issues are highly linked to each other and not only important for most efficient and prolonged use of current antibiotics, but also for discovery and development of new antibiotics and novel inhibitors of antibiotic resistance determinants of pathogens. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Overexpression of the novel MATE fluoroquinolone efflux pump FepA in Listeria monocytogenes is driven by inactivation of its local repressor FepR.

    Directory of Open Access Journals (Sweden)

    François Guérin

    Full Text Available Whereas fluoroquinolone resistance mainly results from target modifications in gram-positive bacteria, it is primarily due to active efflux in Listeria monocytogenes. The aim of this study was to dissect a novel molecular mechanism of fluoroquinolone resistance in this important human pathogen. Isogenic L. monocytogenes clinical isolates BM4715 and BM4716, respectively susceptible and resistant to fluoroquinolones, were studied. MICs of norfloxacin and ciprofloxacin were determined in the presence or in the absence of reserpine (10 mg/L. Strain BM4715 was susceptible to norfloxacin (MIC, 4 mg/L and ciprofloxacin (MIC, 0.5 mg/L whereas BM4716 was highly resistant to both drugs (MICs 128 and 32 mg/L, respectively. Reserpine was responsible for a 16-fold decrease in both norfloxacin and ciprofloxacin MICs against BM4716 suggesting efflux associated resistance. Whole-genome sequencing of the strains followed by comparative genomic analysis revealed a single point mutation in the gene for a transcriptional regulator, designated fepR (for fluoroquinolone efflux protein regulator belonging to the TetR family. The frame-shift mutation was responsible for the introduction of a premature stop codon resulting in an inactive truncated protein. Just downstream from fepR, the structural gene for an efflux pump of the MATE family (named FepA was identified. Gene expression was quantified by qRT-PCR and demonstrated that fepA expression was more than 64-fold higher in BM4716 than in BM4715. The clean deletion of the fepR gene from BM4715 was responsible for an overexpression of fepA with resistance to norfloxacin and ciprofloxacin, confirming the role of FepR as a local repressor of fepA. In conclusion, we demonstrated that overexpression of the new MATE efflux pump FepA is responsible for fluoroquinolone resistance in L. monocytogenes and secondary to inactivation of the FepR repressor.

  13. Correlation Between qacE and qacE∆1 Efflux Pump Genes, Antibiotic and Disinfectant Resistant Among Clinical Isolates of E.coli.

    Science.gov (United States)

    Shafaati, Maryam; Boroumand, Mohammadali; Nowroozi, Jamileh; Amiri, Pouya; Kazemian, Hossein

    2016-01-01

    Antiseptics and disinfectants have been used widely in hospitals and other health care settings to control the growth of microorganisms. However, some disinfectant resistant strains were reported. The objectives of our study were to evaluate correlation between the efflux pump genes, drugs and disinfectant resistant among clinical isolates of E.coli. A total of 102 of E. coli strains were isolated from urine sample of hospitalized patients. The antibiotic susceptibility was carried out by disc diffusion method. Didecyl di-methyl ammonium chloride (DDDMAC) was used as Quaternary ammonium compound (QAC) disinfectant which was used in Heart Center Hospital. PCR reaction was carried out for detection of qacE and qac∆E efflux pump genes. Almost all the strains had higher resistance to ampicillin, ciproflaxacin, cotrimaxazole and cephalothin. Totally 49% (n: 50) of strains were produced ESBL. Almost all the strains have MIC value between 0.00195 to 0.0078 mg/l for DDDMAC. Correlation between presence of qacE and qac∆E genes and antibiotic resistance was perceived. Presence of qacE and qac∆E genes among strains that have high disinfectant MIC value were 96.9% and 93.7% respectively. In addition, 98% of ESBL producing strains harbored qacE gene and 94% of ESBL producing strains harbored qac∆E gene. Our study indicated that there was a strong correlation between presence of qacE and qac∆E genes with resistance to some antibiotics and growth in media which contain high concentration of disinfectant. In conclusion, other mechanisms also play important role in resistant to antimicrobial agents but the role of efflux pumps in resistant to antimicrobial agents should not be neglected. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Evaluating the Role of Multidrug Resistance Protein 3 (MDR3) Inhibition in Predicting Drug-Induced Liver Injury Using 125 Pharmaceuticals.

    Science.gov (United States)

    Aleo, Michael D; Shah, Falgun; He, Kan; Bonin, Paul D; Rodrigues, A David

    2017-05-15

    The role of bile salt export protein (BSEP) inhibition in drug-induced liver injury (DILI) has been investigated widely, while inhibition of the canalicular multidrug resistant protein 3 (MDR3) has received less attention. This transporter plays a pivotal role in secretion of phospholipids into bile and functions coordinately with BSEP to mediate the formation of bile acid-containing biliary micelles. Therefore, inhibition of MDR3 in human hepatocytes was examined across 125 drugs (70 of Most-DILI-concern and 55 of No-DILI-concern). Of these tested, 41% of Most-DILI-concern and 47% of No-DILI-concern drugs had MDR3 IC 50 values of <50 μM. A better distinction across DILI classifications occurred when systemic exposure was considered where safety margins of 50-fold had low sensitivity (0.29), but high specificity (0.96). Analysis of physical chemical property space showed that basic compounds were twice as likely to be MDR3 inhibitors as acids, neutrals, and zwitterions and that inhibitors were more likely to have polar surface area (PSA) values of <100 Å 2 and cPFLogD values between 1.5 and 5. These descriptors, with different cutoffs, also highlighted a group of compounds that shared dual potency as MDR3 and BSEP inhibitors. Nine drugs classified as Most-DILI-concern compounds (four withdrawn, four boxed warning, and one liver injury warning in their approved label) had intrinsic potency features of <20 μM in both assays, thereby reinforcing the notion that multiple inhibitory mechanisms governing bile formation (bile acid and phospholipid efflux) may confer additional risk factors that play into more severe forms of DILI as shown by others for BSEP inhibitors combined with multidrug resistance-associated protein (MRP2, MRP3, MRP4) inhibitory properties. Avoiding physical property descriptors that highlight dual BSEP and MDR3 inhibition or testing drug candidates for inhibition of multiple efflux transporters (e.g., BSEP, MDR3, and MRPs) may be an effective

  15. Tripartite assembly of RND multidrug efflux pumps.

    Science.gov (United States)

    Daury, Laetitia; Orange, François; Taveau, Jean-Christophe; Verchère, Alice; Monlezun, Laura; Gounou, Céline; Marreddy, Ravi K R; Picard, Martin; Broutin, Isabelle; Pos, Klaas M; Lambert, Olivier

    2016-02-12

    Tripartite multidrug efflux systems of Gram-negative bacteria are composed of an inner membrane transporter, an outer membrane channel and a periplasmic adaptor protein. They are assumed to form ducts inside the periplasm facilitating drug exit across the outer membrane. Here we present the reconstitution of native Pseudomonas aeruginosa MexAB-OprM and Escherichia coli AcrAB-TolC tripartite Resistance Nodulation and cell Division (RND) efflux systems in a lipid nanodisc system. Single-particle analysis by electron microscopy reveals the inner and outer membrane protein components linked together via the periplasmic adaptor protein. This intrinsic ability of the native components to self-assemble also leads to the formation of a stable interspecies AcrA-MexB-TolC complex suggesting a common mechanism of tripartite assembly. Projection structures of all three complexes emphasize the role of the periplasmic adaptor protein as part of the exit duct with no physical interaction between the inner and outer membrane components.

  16. Enhancement of antibiotic activity by efflux inhibitors against multidrug resistant Mycobacterium tuberculosis clinical isolates from Brazil

    Directory of Open Access Journals (Sweden)

    Tatiane eCoelho

    2015-04-01

    Full Text Available Drug resistant tuberculosis continues to increase and new approaches for its treatment are necessary. The identification of M. tuberculosis clinical isolates presenting efflux as part of their resistant phenotype has a major impact in tuberculosis treatment. In this work, we used a checkerboard procedure combined with the tetrazolium microplate-based assay (TEMA to study single combinations between antituberculosis drugs and efflux inhibitors (EIs against multidrug resistant M. tuberculosis clinical isolates using the fully susceptible strain H37Rv as reference. Efflux activity was studied on a real-time basis by a fluorometric method that uses ethidium bromide as efflux substrate. Quantification of efflux pump genes mRNA transcriptional levels were performed by RT-qPCR. The fractional inhibitory concentrations (FIC indicated synergistic activity for the interactions between isoniazid, rifampicin, amikacin, ofloxacin, and ethidium bromide plus the EIs verapamil, thioridazine and chlorpromazine. The FICs ranged from 0.25, indicating a four-fold reduction on the MICs, to 0.015, 64-fold reduction. The detection of active efflux by real-time fluorometry showed that all strains presented intrinsic efflux activity that contributes to the overall resistance which can be inhibited in the presence of the EIs. The quantification of the mRNA levels of the most important efflux pump genes on these strains shows that they are intrinsically predisposed to expel toxic compounds as the exposure to subinhibitory concentrations of antibiotics were not necessary to increase the pump mRNA levels when compared with the non-exposed counterpart. The results obtained in this study confirm that the intrinsic efflux activity contributes to the overall resistance in multidrug resistant clinical isolates of M. tuberculosis and that the inhibition of efflux pumps by the EIs can enhance the clinical effect of antibiotics that are their substrates.

  17. Studies on 2-phenylquinoline Staphylococcus aureus NorA efflux pump inhibitors: New insights on the C-6 position.

    Science.gov (United States)

    Felicetti, Tommaso; Cannalire, Rolando; Nizi, Maria Giulia; Tabarrini, Oriana; Massari, Serena; Barreca, Maria Letizia; Manfroni, Giuseppe; Schindler, Bryan D; Cecchetti, Violetta; Kaatz, Glenn W; Sabatini, Stefano

    2018-06-06

    The alarming and rapid spread of antimicrobial resistance among bacteria represents a high risk for global health. Targeting factors involved in resistance to restore the activity of failing antibiotics is a promising strategy to overcome this urgent medical need. Efflux pump inhibitors are able to increase antibiotic concentrations in bacteria, thus they can be considered true antimicrobial resistance breakers. In this work, continuing our studies on inhibitors of the Staphylococcus aureus NorA pump, we designed, synthesized and biologically evaluated novel 2-phenylquinoline derivatives starting from our hits 1 and 2. Two of the synthesized compounds (6 and 7) bearing a C-6 benzyloxy group showed the best NorA inhibition activity, thereby providing an excellent starting point to direct future chemical optimizations. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Gallic acid-based indanone derivative interacts synergistically with tetracycline by inhibiting efflux pump in multidrug resistant E. coli.

    Science.gov (United States)

    Dwivedi, Gaurav Raj; Tiwari, Nimisha; Singh, Aastha; Kumar, Akhil; Roy, Sudeep; Negi, Arvind Singh; Pal, Anirban; Chanda, Debabrata; Sharma, Ashok; Darokar, Mahendra P

    2016-03-01

    The purpose of the present study was to study the synergy potential of gallic acid-based derivatives in combination with conventional antibiotics using multidrug resistant cultures of Escherichia coli. Gallic acid-based derivatives significantly reduced the MIC of tetracycline against multidrug resistant clinical isolate of E. coli. The best representative, 3-(3',4,'5'-trimethoxyphenyl)-4,5,6-trimethoxyindanone-1, an indanone derivative of gallic acid, was observed to inhibit ethidium bromide efflux and ATPase which was also supported by in silico docking. This derivative extended the post-antibiotic effect and decreased the mutation prevention concentration of tetracycline. This derivative in combination with TET was able to reduce the concentration of TNFα up to 18-fold in Swiss albino mice. This derivative was nontoxic and well tolerated up to 300 mg/kg dose in subacute oral toxicity study in mice. This is the first report of gallic acid-based indanone derivative as drug resistance reversal agent acting through ATP-dependent efflux pump inhibition.

  19. Efflux Pump‑Mediated Resistance in Chemotherapy

    African Journals Online (AJOL)

    to elucidate their structure and mechanisms of action so as to integrate the efflux pump mechanisms in the ... resistance. c. Alteration of the penicillin binding protein (PBP) in ..... Perloff MD, von Moltke LL, Fahey JM, Daily JP, Greenblat. DJ.

  20. Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor.

    Science.gov (United States)

    Kalle, Arunasree M; Rizvi, Arshad

    2011-01-01

    Multidrug resistance (MDR) is a major problem in the treatment of infectious diseases and cancer. Accumulating evidence suggests that the cyclooxygenase-2 (COX-2)-specific inhibitor celecoxib would not only inhibit COX-2 but also help in the reversal of drug resistance in cancers by inhibiting the MDR1 efflux pump. Here, we demonstrate that celecoxib increases the sensitivity of bacteria to the antibiotics ampicillin, kanamycin, chloramphenicol, and ciprofloxacin by accumulating the drugs inside the cell, thus reversing MDR in bacteria.

  1. HIV-1 integrase inhibitors are substrates for the multidrug transporter MDR1-P-glycoprotein

    Directory of Open Access Journals (Sweden)

    Cara Andrea

    2007-03-01

    Full Text Available Abstract Background The discovery of diketoacid-containing derivatives as inhibitors of HIV-1 Integrase (IN (IN inhibitors, IINs has played a major role in validating this enzyme as an important target for antiretroviral therapy. Since the in vivo efficacy depends on access of these drugs to intracellular sites where HIV-1 replicates, we determined whether the IINs are recognized by the multidrug transporter MDR1-P-glycoprotein (P-gp thereby reducing their intracellular accumulation. To address the effect of IINs on drug transport, nine quinolonyl diketo acid (DKA derivatives active on the HIV-1 IN strand transfer (ST step and with EC50 ranging from 1.83 to >50 μm in cell-based assays were tested for their in vitro interaction with P-gp in the CEM-MDR cell system. IINs were investigated for the inhibition and induction of the P-gp function and expression as well as for multidrug resistance (MDR reversing ability. Results The HIV-1 IINs act as genuine P-gp substrates by inhibiting doxorubicin efflux and inducing P-gp functional conformation changes as evaluated by the modulation of UIC2 mAb epitope. Further, IINs chemosensitize MDR cells to vinblastine and induce P-gp expression in drug sensitive revertants of CEM-MDR cells. Conclusion To our knowledge, this is the first demonstration that HIV-1 IINs are P-gp substrates. This biological property may influence the absorption, distribution and elimination of these novels anti HIV-1 compounds.

  2. Synergistic and complete reversal of the multidrug resistance of mitoxantrone hydrochloride by three-in-one multifunctional lipid-sodium glycocholate nanocarriers based on simultaneous BCRP and Bcl-2 inhibition.

    Science.gov (United States)

    Ling, Guixia; Zhang, Tianhong; Zhang, Peng; Sun, Jin; He, Zhonggui

    Multidrug resistance (MDR) is a severe obstacle to successful chemotherapy due to its complicated nature that involves multiple mechanisms, such as drug efflux by transporters (P-glycoprotein and breast cancer resistance protein, BCRP) and anti-apoptotic defense (B-cell lymphoma, Bcl-2). To synergistically and completely reverse MDR by simultaneous inhibition of pump and non-pump cellular resistance, three-in-one multifunctional lipid-sodium glycocholate (GcNa) nanocarriers (TMLGNs) have been designed for controlled co-delivery of water-soluble cationic mitoxantrone hydrochloride (MTO), cyclosporine A (CsA - BCRP inhibitor), and GcNa (Bcl-2 inhibitor). GcNa and dextran sulfate were incorporated as anionic compounds to enhance the encapsulation efficiency of MTO (up to 97.8%±1.9%) and sustain the release of cationic MTO by electrostatic interaction. The results of a series of in vitro and in vivo investigations indicated that the TMLGNs were taken up by the resistant cancer cells by an endocytosis pathway that escaped the efflux induced by BCRP, and the simultaneous release of CsA with MTO further efficiently inhibited the efflux of the released MTO by BCRP; meanwhile GcNa induced the apoptosis process, and an associated synergistic antitumor activity and reversion of MDR were achieved because the reversal index was almost 1.0.

  3. In vivo evaluation of thiolated poly(acrylic acid) as a drug absorption modulator for MRP2 efflux pump substrates.

    Science.gov (United States)

    Greindl, Melanie; Föger, Florian; Hombach, Juliane; Bernkop-Schnürch, Andreas

    2009-08-01

    Recently, several polymers have been reported to modulate drug absorption by inhibition of intestinal efflux pumps such as multidrug resistance proteins (MRPs) and P-glycoprotein (P-gp). The aim of the present study was to evaluate the efficiency of thiolated poly(acrylic acid) (PAA-Cys) to act as a drug absorption modulator for MRP2 efflux pump substrates in vivo, using sulforhodamine 101 as representative MRP2 substrate. In vitro, the permeation-enhancing effect of unmodified PAA and PAA(250)-Cys(,) displaying 580 micromol free thiol groups per gram polymer, was evaluated by using freshly excised rat intestinal mucosa mounted in Ussing-type chambers. In comparison to that of the buffer control, the sulforhodamine 101 transport in the presence of 0.5% unmodified PAA(250) and 0.5% (w/v) PAA(250)-Cys was 1.3- and 4.0-fold improved, respectively. In vivo, sulforhodamine 101 solutions containing 4% (w/v) unmodified PAA(250) or 4% (w/v) thiolated PAA(250) were orally given to rats. The PAA(250)-Cys solution increased the area under the plasma concentration-time curve (AUC(0-12)) of sulforhodamine 101 3.8-fold in comparison to control and 2.2-fold in comparison to unmodified PAA(250). This in vivo study revealed that PAA(250)-Cys significantly increased the oral bioavailability of MRP2 substrate sulforhodamine 101.

  4. The Prevalence of acrA and acrB Genes Among Multiple-Drug Resistant Uropathogenic Escherichia coli Isolated From Patients With UTI in Milad Hospital, Tehran

    Directory of Open Access Journals (Sweden)

    Maleki

    2016-09-01

    Full Text Available Background Urinary tract infection (UTI is one of the most common infectious diseases and nosocomial infections worldwide, and uropathogenic Escherichia coli is the primary cause of UTI. Due to increased antibiotic resistance and the emergence of multidrug resistant (MDR UPEC clones, the treatment of UTI is difficult. The occurrence of MDR in E. coli has been attributed to the AcrAB-TolC complex of efflux pumps. Objectives The aim of this study was to complete a frequency evaluation of acrA and acrB genes among UPEC MDR strains isolated from patients with UTI who were admitted to Milad hospital in Tehran. Methods For 123 UPEC strains that were isolated and diagnosed from the urine samples of patients using biochemical tests, antibiotic susceptibility was carried out using the disc diffusion method according to CLSI guidelines. Isolates that were resistant to at least one antimicrobial agent in three or more of the categories were considered to be MDR. The presence and frequency of acrA and acrB genes was determined using PCR. Results The rates of antibiotic resistance to ampicillin, cefalotin, tetracycline, cefazolin, ceftriaxone, ceftizoxime, ceftazidime, ciprofloxacin, and cotrimoxazole were 82.9%, 78.1%, 61.1%, 49.5%, 38.2%, 30.2%, 26.1%, 42.2%, and 60.1%, respectively. The isolates were most sensitive to nitrofurantoin (95.9%, gentamicin (77.2%, and amikacin (71.5%. A total of 78% of the isolates were MDR. The frequency of the acrA gene was 82.90%, the acrB gene was 95.90% and acrA + acrB was 95.90%. There was no significant difference between acrA and acrB frequency relating to bacterial antibiotic resistance. Conclusions Our results showed that ways to control the treatment of UTI for the prevention of MDR occurrence should be sought. For a better study of efflux pumps, a comprehensive and detailed study regarding the presence of efflux pumps gees is required.

  5. Global transcriptional profiling of longitudinal clinical isolates of Mycobacterium tuberculosis exhibiting rapid accumulation of drug resistance.

    Directory of Open Access Journals (Sweden)

    Anirvan Chatterjee

    Full Text Available The identification of multidrug resistant (MDR, extensively and totally drug resistant Mycobacterium tuberculosis (Mtb, in vulnerable sites such as Mumbai, is a grave threat to the control of tuberculosis. The current study aimed at explaining the rapid expression of MDR in Directly Observed Treatment Short Course (DOTS compliant patients, represents the first study comparing global transcriptional profiles of 3 pairs of clinical Mtb isolates, collected longitudinally at initiation and completion of DOTS. While the isolates were drug susceptible (DS at onset and MDR at completion of DOTS, they exhibited identical DNA fingerprints at both points of collection. The whole genome transcriptional analysis was performed using total RNA from H37Rv and 3 locally predominant spoligotypes viz. MANU1, CAS and Beijing, hybridized on MTBv3 (BuG@S microarray, and yielded 36, 98 and 45 differentially expressed genes respectively. Genes encoding transcription factors (sig, rpoB, cell wall biosynthesis (emb genes, protein synthesis (rpl and additional central metabolic pathways (ppdK, pknH, pfkB were found to be down regulated in the MDR isolates as compared to the DS isolate of the same genotype. Up regulation of drug efflux pumps, ABC transporters, trans-membrane proteins and stress response transcriptional factors (whiB in the MDR isolates was observed. The data indicated that Mtb, without specific mutations in drug target genes may persist in the host due to additional mechanisms like drug efflux pumps and lowered rate of metabolism. Furthermore this population of Mtb, which also showed reduced DNA repair activity, would result in selection and stabilization of spontaneous mutations in drug target genes, causing selection of a MDR strain in the presence of drug pressures. Efflux pump such as drrA may play a significant role in increasing fitness of low level drug resistant cells and assist in survival of Mtb till acquisition of drug resistant mutations with

  6. Hydroxypropyl-sulfobutyl-β-cyclodextrin improves the oral bioavailability of edaravone by modulating drug efflux pump of enterocytes.

    Science.gov (United States)

    Rong, Wen-Ting; Lu, Ya-Peng; Tao, Qing; Guo, Miao; Lu, Yu; Ren, Yong; Yu, Shu-Qin

    2014-02-01

    The objective of the study was to evaluate the effect of hydroxypropyl-sulfobutyl-β-cyclodextrin (HP-SBE-βCD) on the bioavailability and intestinal absorption of edaravone, and identify its mechanism of action. We devised HP-SBE-βCD as a carrier and modulator of P-glycoprotein (Pgp) efflux pump, and edaravone as a model drug, and prepared edaravone/HP-SBE-βCD inclusion complex. HP-SBE-βCD improved the water solubility and enhanced the bioavailability of edaravone by 10.3-fold in rats. Then, in situ single-pass intestinal perfusion showed that HP-SBE-βCD had an effect of improving the permeability and inhibiting the efflux of edaravone. Furthermore, the effects of HP-SBE-βCD on Pgp were achieved through interfering with the lipid raft and depleting the cholesterol of enterocytes membrane. From the results, we presented the novel mechanisms. First, edaravone/HP-SBE-βCD had a lower release from the inclusion compound to protect edaravone from the low pH of the stomach. Then, HP-SBE-βCD modulated the membrane microenvironment of intestinal absorption epithelial cells. At last, the result was that HP-SBE-βCD enhanced the absorption of edaravone by interfering with Pgp. In conclusion, HP-SBE-βCD improves the bioavailability of drug not only because of its enhancing water solubility of the drug, but also because it modulates the Pgp-mediated efflux from enterocytes. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. P-gp Expression and Rh 123 Efflux Assay Have no Impact on Survival in Egyptian Pediatric Acute Lymphoblastic Leukemia Patients

    International Nuclear Information System (INIS)

    Kamel, A.M.; El-Sharkawy, N.; Yassin, D.; Shaaban, Kh.; Hussein, H.; Sidhom, I; Abo El-Naga, S.; Ameen, M.; El-Hattab, O.; Aly El-Din, N.H.

    2005-01-01

    In a previous work we have studied MDR status in terms of P-glycoprotein (P-gp) expression and Rhodamine 123 efflux assay in Egyptian acute leukemia patients. We have reported results comparable to the literature as regards ANLL both in pediatric and adult cases. However, higher figures were encountered for the functional assay in ALL. As our ALL cases especially in pediatric age group show worse prognosis compared to literature, we hypothesized that the higher percentage of cases with positive Rh 123 efflux assay might be a contributing factor. Material and Methods: A total of 108 cases were studied including 80 ALL and 28 ANLL. ALL cases included 48 male and 32 female with an age range of 6m to 18 yrs and a median of 7 yrs. ANLL cases included 18 male and 10 female with an age range of 6m to 18 yrs and a median of 8 yrs. P-gp expression was evaluated using 4E3 and DIC2 mAb, analyzed by Coulter XL flow cytometer and expressed as a ratio at a cut off of ≤1.1 and/or ≤5% positive cells. For the evaluation of MDR function Rh 123 efflux assay using cyclosporine as a blocker and expressed as a ratio at a cutoff of ≤1. 1 and/or ≤ 10% positive cells was performed. MDR expression and function were correlated to age, Hb, TLC, CD34 expression, immuno phenotype and DNA index in ALL, FAB subtypes in ANLL as well as to CR, DFS and EFS in ALL. In ALL, P-gp expression was encountered in 26.4% of cases. Positive Rh efflux was reported in 61.5%. No correlation was encountered between neither expression nor functional assay with age, Hb, TLC, CD34 expression or immuno phenotype. CR was achieved in 89.8%; neither P-gp expression nor Rh123 efflux had an impact on CR except for Rh 123 efflux in T-ALL where a cutoff of 1.25 could predict CR at a total accuracy of 70.6%. DFS was 92.3% while EFS was 72.2% for the whole group. No significant difference was encountered neither between cases expressing or lacking P-gp nor between cases with negative or positive Rh 123 efflux assay

  8. P-glycoprotein targeted nanoscale drug carriers

    KAUST Repository

    Li, Wengang; Abu Samra, Dina Bashir Kamil; Merzaban, Jasmeen; Khashab, Niveen M.

    2013-01-01

    Multi-drug resistance (MDR) is a trend whereby tumor cells exposed to one cytotoxic agent develop cross-resistance to a range of structurally and functionally unrelated compounds. P -glycoprotein (P -gp) efflux pump is one of the mostly studied drug

  9. Lack of AcrB Efflux Function Confers Loss of Virulence on Salmonella enterica Serovar Typhimurium

    Directory of Open Access Journals (Sweden)

    Xuan Wang-Kan

    2017-07-01

    Full Text Available AcrAB-TolC is the paradigm resistance-nodulation-division (RND multidrug resistance efflux system in Gram-negative bacteria, with AcrB being the pump protein in this complex. We constructed a nonfunctional AcrB mutant by replacing D408, a highly conserved residue essential for proton translocation. Western blotting confirmed that the AcrB D408A mutant had the same native level of expression of AcrB as the parental strain. The mutant had no growth deficiencies in rich or minimal medium. However, compared with wild-type SL1344, the mutant had increased accumulation of Hoechst 33342 dye and decreased efflux of ethidium bromide and was multidrug hypersusceptible. The D408A mutant was attenuated in vivo in mouse and Galleria mellonella models and showed significantly reduced invasion into intestinal epithelial cells and macrophages in vitro. A dose-dependent inhibition of invasion was also observed when two different efflux pump inhibitors were added to the wild-type strain during infection of epithelial cells. RNA sequencing (RNA-seq revealed downregulation of bacterial factors necessary for infection, including those in the Salmonella pathogenicity islands 1, 2, and 4; quorum sensing genes; and phoPQ. Several general stress response genes were upregulated, probably due to retention of noxious molecules inside the bacterium. Unlike loss of AcrB protein, loss of efflux function did not induce overexpression of other RND efflux pumps. Our data suggest that gene deletion mutants are unsuitable for studying membrane transporters and, importantly, that inhibitors of AcrB efflux function will not induce expression of other RND pumps.

  10. Rapid genotyping assays for the 4-base pair deletion of canine MDR1/ABCB1 gene and low frequency of the mutant allele in Border Collie dogs.

    Science.gov (United States)

    Mizukami, Keijiro; Chang, Hye-Sook; Yabuki, Akira; Kawamichi, Takuji; Hossain, Mohammad A; Rahman, Mohammad M; Uddin, Mohammad M; Yamato, Osamu

    2012-01-01

    P-glycoprotein, encoded by the MDR1 or ABCB1 gene, is an integral component of the blood-brain barrier as an efflux pump for xenobiotics crucial in limiting drug uptake into the central nervous system. Dogs homozygous for a 4-base pair deletion of the canine MDR1 gene show altered expression or function of P-glycoprotein, resulting in neurotoxicosis after administration of the substrate drugs. In the present study, the usefulness of microchip electrophoresis for genotyping assays detecting this deletion mutation was evaluated. Mutagenically separated polymerase chain reaction (MS-PCR) and real-time PCR assays were newly developed and evaluated. Furthermore, a genotyping survey was carried out in a population of Border Collies dogs in Japan to determine the allele frequency in this breed. Microchip electrophoresis showed advantages in detection sensitivity and time saving over other modes of electrophoresis. The MS-PCR assay clearly discriminated all genotypes. Real-time PCR assay was most suitable for a large-scale survey due to its high throughput and rapidity. The genotyping survey demonstrated that the carrier and mutant allele frequencies were 0.49% and 0.25%, respectively, suggesting that the mutant allele frequency in Border Collies is markedly low compared to that in the susceptible dog breeds such as rough and smooth Collies.

  11. Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a kaempferol rhamnoside isolated from Persea lingue Nees.

    Science.gov (United States)

    Holler, Jes Gitz; Christensen, S Brøgger; Slotved, Hans-Christian; Rasmussen, Hasse B; Gúzman, Alfonso; Olsen, Carl-Erik; Petersen, Bent; Mølgaard, Per

    2012-05-01

    To isolate a plant-derived compound with efflux inhibitory activity towards the NorA transporter of Staphylococcus aureus. Bioassay-guided isolation was used, with inhibition of ethidium bromide efflux via NorA as a guide. Characterization of activity was carried out using MIC determination and potentiation studies of a fluoroquinolone antibiotic in combination with the isolated compound. Everted membrane vesicles of Escherichia coli cells enriched with NorA were prepared to study efflux inhibitory activity in an isolated manner. The ethanolic extract of Persea lingue was subjected to bioassay-guided fractionation and led to the isolation of the known compound kaempferol-3-O-α-L-(2,4-bis-E-p-coumaroyl)rhamnoside (compound 1). Evaluation of the dose-response relationship of compound 1 showed that ethidium bromide efflux was inhibited, with an IC(50) value of 2 μM. The positive control, reserpine, was found to have an IC(50) value of 9 μM. Compound 1 also inhibited NorA in enriched everted membrane vesicles of E. coli. Potentiation studies revealed that compound 1 at 1.56 mg/L synergistically increased the antimicrobial activity of ciprofloxacin 8-fold against a NorA overexpresser, and the synergistic activity was exerted at a fourth of the concentration necessary for reserpine. Compound 1 was not found to exert a synergistic effect on ciprofloxacin against a norA deletion mutant. The 2,3-coumaroyl isomer of compound 1 has been shown previously not to cause acute toxicity in mice at 20 mg/kg/day. Our results show that compound 1 acts through inhibition of the NorA efflux pump. Combination of compound 1 with subinhibitory concentrations of ciprofloxacin renders a wild-type more susceptible and a NorA overexpresser S. aureus susceptible.

  12. ABCB1 (MDR1) polymorphisms and ovarian cancer progression and survival

    DEFF Research Database (Denmark)

    Johnatty, Sharon E; Beesley, Jonathan; Gao, Bo

    2013-01-01

    ABCB1 encodes the multi-drug efflux pump P-glycoprotein (P-gp) and has been implicated in multi-drug resistance. We comprehensively evaluated this gene and flanking regions for an association with clinical outcome in epithelial ovarian cancer (EOC)....

  13. Deciphering the role of RND efflux transporters in Burkholderia cenocepacia.

    Directory of Open Access Journals (Sweden)

    Silvia Bazzini

    Full Text Available Burkholderia cenocepacia J2315 is representative of a highly problematic group of cystic fibrosis (CF pathogens. Eradication of B. cenocepacia is very difficult with the antimicrobial therapy being ineffective due to its high resistance to clinically relevant antimicrobial agents and disinfectants. RND (Resistance-Nodulation-Cell Division efflux pumps are known to be among the mediators of multidrug resistance in gram-negative bacteria. Since the significance of the 16 RND efflux systems present in B. cenocepacia (named RND-1 to -16 has been only partially determined, the aim of this work was to analyze mutants of B. cenocepacia strain J2315 impaired in RND-4 and RND-9 efflux systems, and assess their role in the efflux of toxic compounds. The transcriptomes of mutants deleted individually in RND-4 and RND-9 (named D4 and D9, and a double-mutant in both efflux pumps (named D4-D9, were compared to that of the wild-type B. cenocepacia using microarray analysis. Microarray data were confirmed by qRT-PCR, phenotypic experiments, and by Phenotype MicroArray analysis. The data revealed that RND-4 made a significant contribution to the antibiotic resistance of B. cenocepacia, whereas RND-9 was only marginally involved in this process. Moreover, the double mutant D4-D9 showed a phenotype and an expression profile similar to D4. The microarray data showed that motility and chemotaxis-related genes appeared to be up-regulated in both D4 and D4-D9 strains. In contrast, these gene sets were down-regulated or expressed at levels similar to J2315 in the D9 mutant. Biofilm production was enhanced in all mutants. Overall, these results indicate that in B. cenocepacia RND pumps play a wider role than just in drug resistance, influencing additional phenotypic traits important for pathogenesis.

  14. Analysis of the inhibition potential of zosuquidar derivatives on selected bacterial and fungal ABC transporters

    NARCIS (Netherlands)

    Infed, Nacera; Smits, Sander H. J.; Dittrich, Torsten; Braun, Manfred; Driessen, Arnold J. M.; Hanekop, Nils; Schmitt, Lutz

    The increasing number of multidrug-resistant pathogenic microorganisms is a serious public health issue. Among the multitude of mechanisms that lead to multidrug resistance, the active extrusion of toxic compounds, mediated by MDR efflux pumps, plays an important role. In our study we analyzed the

  15. Mechanistic and Structural Insights Into the Unique TetR-Dependent Regulation of a Drug Efflux Pump in Mycobacterium abscessus.

    Science.gov (United States)

    Richard, Matthias; Gutiérrez, Ana Victoria; Viljoen, Albertus J; Ghigo, Eric; Blaise, Mickael; Kremer, Laurent

    2018-01-01

    Mycobacterium abscessus is an emerging human pathogen causing severe pulmonary infections and is refractory to standard antibiotherapy, yet few drug resistance mechanisms have been reported in this organism. Recently, mutations in MAB_4384 leading to up-regulation of the MmpS5/MmpL5 efflux pump were linked to increased resistance to thiacetazone derivatives. Herein, the DNA-binding activity of MAB_4384 was investigated by electrophoretic mobility shift assays using the palindromic sequence IR S5/L5 located upstream of mmpS5/mmpL5 . Introduction of point mutations within IR S5/L5 identified the sequence requirements for optimal binding of the regulator. Moreover, formation of the protein/IR S5/L5 complex was severely impaired for MAB_4384 harboring D14N or F57L substitutions. IR S5/L5 /lacZ reporter fusions in M. abscessus demonstrated increased β-galactosidase activity either in strains lacking a functional MAB_4384 or in cultures treated with the TAC analogs. In addition, X-ray crystallography confirmed a typical TetR homodimeric structure of MAB_4384 and unraveled a putative ligand binding site in which the analogs could be docked. Overall, these results support drug recognition of the MAB_4384 TetR regulator, alleviating its binding to IR S5/L5 and steering up-regulation of MmpS5/MmpL5. This study provides new mechanistic and structural details of TetR-dependent regulatory mechanisms of efflux pumps and drug resistance in mycobacteria.

  16. The putative P-gp inhibitor telmisartan does not affect the transcellular permeability and cellular uptake of the calcium channel antagonist verapamil in the P-glycoprotein expressing cell line MDCK II MDR1

    DEFF Research Database (Denmark)

    Saaby, Lasse; Tfelt-Hansen, Peer; Brodin, Birger

    2015-01-01

    monolayers with a permeability of 5.7 × 10−5 cm sec−1 compared to an apical to basolateral permeability of 1.3 × 10−5 cm sec-1. The efflux could be inhibited with the P-gp inhibitor zosuquidar. Zosuquidar (0.4 μmol/L) reduced the efflux ratio (PB-A/PA-B) for verapamil 4.6–1.6. The presence of telmisartan......Verapamil is used in high doses for the treatment of cluster headache. Verapamil has been described as a P-glycoprotein (P-gp, ABCB1) substrate. We wished to evaluate in vitro whether co administration of a P-gp inhibitor with verapamil could be a feasible strategy for increasing CNS uptake...... of verapamil. Fluxes of radiolabelled verapamil across MDCK II MDR1 monolayers were measured in the absence and presence of the putative P-gp inhibitor telmisartan (a clinically approved drug compound). Verapamil displayed a vectorial basolateral-to-apical transepithelial efflux across the MDCK II MDR1...

  17. Curcumin as a Modulator of P-Glycoprotein in Cancer: Challenges and Perspectives

    Directory of Open Access Journals (Sweden)

    Vanessa Lopes-Rodrigues

    2016-11-01

    Full Text Available Multidrug resistance (MDR presents a serious challenge to the efficiency of cancer treatment, and may be associated with the overexpression of drug efflux pumps. P-glycoprotein (P-gp is a drug efflux pump often found overexpressed in cases of acquired MDR. Nevertheless, there are no P-gp inhibitors being used in the current clinical practice, due to toxicity problems, drug interactions, or pharmacokinetic issues. Therefore, it is important to identify novel inhibitors of P-gp activity or expression. Curcumin is a secondary metabolite isolated from the turmeric of Curcuma longa L. which has been associated with several biological activities, particularly P-gp modulatory activity (by inhibiting both P-gp function and expression. However, curcumin shows extensive metabolism and instability, which has justified the recent and intensive search for analogs of curcumin that maintain the P-gp modulatory activity but have enhanced stability. This review summarizes and compares the effects of curcumin and several curcumin analogs on P-glycoprotein function and expression, emphasizing the potential of these molecules for the possible development of safe and effective inhibitors of P-gp to overcome MDR in human cancer.

  18. Interplay between Mutations and Efflux in Drug Resistant Clinical Isolates of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Miguel Viveiros

    2017-04-01

    Full Text Available Numerous studies show efflux as a universal bacterial mechanism contributing to antibiotic resistance and also that the activity of the antibiotics subject to efflux can be enhanced by the combined use of efflux inhibitors. Nevertheless, the contribution of efflux to the overall drug resistance levels of clinical isolates of Mycobacterium tuberculosis is poorly understood and still is ignored by many. Here, we evaluated the contribution of drug efflux plus target-gene mutations to the drug resistance levels in clinical isolates of M. tuberculosis. A panel of 17 M. tuberculosis clinical strains were characterized for drug resistance associated mutations and antibiotic profiles in the presence and absence of efflux inhibitors. The correlation between the effect of the efflux inhibitors and the resistance levels was assessed by quantitative drug susceptibility testing. The bacterial growth/survival vs. growth inhibition was analyzed through the comparison between the time of growth in the presence and absence of an inhibitor. For the same mutation conferring antibiotic resistance, different MICs were observed and the different resistance levels found could be reduced by efflux inhibitors. Although susceptibility was not restored, the results demonstrate the existence of a broad-spectrum synergistic interaction between antibiotics and efflux inhibitors. The existence of efflux activity was confirmed by real-time fluorometry. Moreover, the efflux pump genes mmr, mmpL7, Rv1258c, p55, and efpA were shown to be overexpressed in the presence of antibiotics, demonstrating the contribution of these efflux pumps to the overall resistance phenotype of the M. tuberculosis clinical isolates studied, independently of the genotype of the strains. These results showed that the drug resistance levels of multi- and extensively-drug resistant M. tuberculosis clinical strains are a combination between drug efflux and the presence of target-gene mutations, a reality

  19. Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems.

    Science.gov (United States)

    Hassan, Karl A; Liu, Qi; Henderson, Peter J F; Paulsen, Ian T

    2015-02-10

    Multidrug efflux systems are a major cause of resistance to antimicrobials in bacteria, including those pathogenic to humans, animals, and plants. These proteins are ubiquitous in these pathogens, and five families of bacterial multidrug efflux systems have been identified to date. By using transcriptomic and biochemical analyses, we recently identified the novel AceI (Acinetobacter chlorhexidine efflux) protein from Acinetobacter baumannii that conferred resistance to the biocide chlorhexidine, via an active efflux mechanism. Proteins homologous to AceI are encoded in the genomes of many other bacterial species and are particularly prominent within proteobacterial lineages. In this study, we expressed 23 homologs of AceI and examined their resistance and/or transport profiles. MIC analyses demonstrated that, like AceI, many of the homologs conferred resistance to chlorhexidine. Many of the AceI homologs conferred resistance to additional biocides, including benzalkonium, dequalinium, proflavine, and acriflavine. We conducted fluorimetric transport assays using the AceI homolog from Vibrio parahaemolyticus and confirmed that resistance to both proflavine and acriflavine was mediated by an active efflux mechanism. These results show that this group of AceI homologs represent a new family of bacterial multidrug efflux pumps, which we have designated the proteobacterial antimicrobial compound efflux (PACE) family of transport proteins. Bacterial multidrug efflux pumps are an important class of resistance determinants that can be found in every bacterial genome sequenced to date. These transport proteins have important protective functions for the bacterial cell but are a significant problem in the clinical setting, since a single efflux system can mediate resistance to many structurally and mechanistically diverse antibiotics and biocides. In this study, we demonstrate that proteins related to the Acinetobacter baumannii AceI transporter are a new class of multidrug

  20. Multidrug resistance gene expression is controlled by steroid hormones in the secretory epithelium of the uterus

    NARCIS (Netherlands)

    Arceci, R. J.; Baas, F.; Raponi, R.; Horwitz, S. B.; Housman, D.; Croop, J. M.

    1990-01-01

    The multidrug resistance (mdr) gene family has been shown to encode a membrane glycoprotein, termed the P-glycoprotein, which functions as a drug efflux pump with broad substrate specificity. This multigene family is expressed in a tissue-specific fashion in a wide variety of normal and neoplastic

  1. Characterization of a Novel 99mTc-Carbonyl Complex as a Functional Probe of MDR1 P-Glycoprotein Transport Activity

    Directory of Open Access Journals (Sweden)

    Mary Dyszlewski

    2002-01-01

    Full Text Available Multidrug resistance (MDR mediated by overexpression of MDR1 P-glycoprotein (Pgp is one of the best characterized barriers to chemotherapy in cancer patients. Furthermore, the protective function of Pgp-mediated efflux of xenobiotics in various organs has a profound effect on the bioavailability of drugs in general. Thus, there is an expanding requirement to noninvasively interrogate Pgp transport activity in vivo. We herein report the Pgp recognition properties of a novel 99mTc(I-tricarbonyl complex, [99mTc(CO3(MIBI3] + (Tc-CO-MIBI. Tc-CO-MIBI showed 60-fold higher accumulation in drug-sensitive KB 3–1 cells compared to colchicine-selected drug-resistant KB 8-5 cells. In KB 8-5 cells, tracer enhancement was observed with the potent MDR modulator LY335979 (EC50 = 62 nM. Similar behavior was observed using drug-sensitive MCF-7 breast adenocarcinoma cells and MCF-7/MDR1 stable transfectants, confirming that Tc-CO-MIBI is specifically excluded by overexpression of MDR1 Pgp. By comparison, net accumulation in control H69 lung tumor cells was 9-fold higher than in MDR-associated protein (MRP1-expressing H69AR cells, indicating only modest transport by MRP1. Biodistribution analysis following tail vein injection of Tc-CO-MIBI showed delayed liver clearance as well as enhanced brain uptake and retention in mdr1a/1b(−/− gene deleted mice versus wild-type mice, directly demonstrating that Tc-CO-MIBI is a functional probe of Pgp transport activity in vivo.

  2. Mdr1a plays a crucial role in regulating the analgesic effect and toxicity of aconitine by altering its pharmacokinetic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lijun; Wu, Jinjun; Zhao, Min; Song, Wenjie; Qi, Xiaoxiao; Wang, Ying [International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006 (China); Lu, Linlin [International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006 (China); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 999078 (China); Liu, Zhongqiu, E-mail: liuzq@gzucm.edu.cn [International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006 (China); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 999078 (China)

    2017-04-01

    Aconitine (AC) is the primary bioactive/toxic alkaloid in plants of the Aconitum species. Our previous study demonstrated that Mdr1 was involved in efflux of AC. However, the mechanism by which Mdr1 regulates the efficacy/toxicity of AC in vivo remains unclear. The present study aimed to determine the effects of Mdr1a on the efficacy/toxicity and pharmacokinetics of AC in wild-type and Mdr1a{sup −/−} FVB mice. After oral administration of AC, significantly higher analgesic effect was observed in Mdr1a{sup −/−} mice (49% to 105%) compared to wild-type mice (P < 0.05). The levels of s100-β protein and creatine kinase, which indicate cerebral and myocardial damage, respectively, were also significantly increased (P < 0.05) in Mdr1a{sup −/−} mice. Histopathological examination revealed that the Mdr1a{sup −/−} mice suffered from evident cerebral and myocardial damages, but the wild-type mice did not. These findings suggested that Mdr1a deficiency significantly promoted the analgesic effect of AC and exacerbated its toxicity. Pharmacokinetic experiments showed that T{sub 1/2} of AC in the Mdr1a{sup −/−} mice was significantly higher (from 87% to 300%) than that in wild-type mice (P < 0.05). The distribution of AC in the brain of Mdr1a{sup −/−} mice was 2- to 32-fold higher than that in the brains of wild-type mice (P < 0.05). Toxic reactions were more severe in Mdr1a{sup −/−} mice compared to wild-type mice. In conclusion, Mdr1a deficiency significantly enhanced the analgesic effect of AC and exacerbated its toxicity by upregulating its distribution to the brain and decreasing its plasma elimination rate. Thus, Mdr1a dysfunction may cause severe AC poisoning. - Highlights: • The efficacy and toxicity of aconitine were significantly enhanced in Mdr1a{sup −/−} mice. • The distribution of aconitine to the brain was remarkably increased in Mdr1a{sup −/−} mice. • The elimination rate of aconitine was significantly decreased in Mdr1a

  3. A new in vivo method to study P-glycoprotein transport in tumors and the blood-brain barrier

    NARCIS (Netherlands)

    Hendrikse, NH; de Vries, EGE; Eriks-Fluks, L; van der Graaf, WTA; Hospers, GAP; Willemsen, ATM; Vaalburg, W; Franssen, EJF

    1999-01-01

    Drug resistance is a major cause of chemotherapy failure in cancer treatment, One reason is the overexpression of the drug efflux pump P-glycoprotein (P-gp), involved in multidrug resistance (MDR), In vivo pharmacokinetic analysis of P-gp transport might identify the capacity of modulation by P-gp

  4. Calcium efflux systems in stress signalling and adaptation in plants

    Directory of Open Access Journals (Sweden)

    Jayakumar eBose

    2011-12-01

    Full Text Available Transient cytosolic calcium ([Ca2+]cyt elevation is an ubiquitous denominator of the signalling network when plants are exposed to literally every known abiotic and biotic stress. These stress-induced [Ca2+]cyt elevations vary in magnitude, frequency and shape, depending on the severity of the stress as well the type of stress experienced. This creates a unique stress-specific calcium signature that is then decoded by signal transduction networks. While most published papers have been focused predominantly on the role of Ca2+ influx mechanisms in shaping [Ca2+]cyt signatures, restoration of the basal [Ca2+]cyt levels is impossible without both cytosolic Ca2+ buffering and efficient Ca2+ efflux mechanisms removing excess Ca2+ from cytosol, to reload Ca2+ stores and to terminate Ca2+ signalling. This is the topic of the current review. The molecular identity of two major types of Ca2+ efflux systems, Ca2+-ATPase pumps and Ca2+/H+ exchangers, is described, and their regulatory modes are analysed in detail. The spatial and temporal organisation of calcium signalling networks is described, and the importance of existence of intracellular calcium microdomains is discussed. Experimental evidence for the role of Ca2+ efflux systems in plant responses to a range of abiotic and biotic factors is summarised. Contribution of Ca2+-ATPase pumps and Ca2+/H+ exchangers in shaping [Ca2+]cyt signatures is then modelled by using a four-component model (plasma- and endo- membrane-based Ca2+-permeable channels and efflux systems taking into account the cytosolic Ca2+ buffering. It is concluded that physiologically relevant variations in the activity of Ca2+-ATPase pumps and Ca2+/H+ exchangers are sufficient to fully describe all the reported experimental evidence and determine the shape of [Ca2+]cyt signatures in response to environmental stimuli, emphasising the crucial role these active efflux systems play in plant adaptive responses to environment.

  5. Molecular detection of genes encoding AcrAB , Qep A efflux pumps in Klebsiella pneumoniae strains isolated from hospitalized patients in selected hospitals in Tehran

    Directory of Open Access Journals (Sweden)

    Mohsen Heidary

    2017-03-01

    Full Text Available Abstract Background and Objectives: Increasing emergence of fluoroquinolone resistance among clinical isolates of Klebsiella pneumoniae  (K. pneumoniae, has limited the treatment options for treatment of infections caused by these bacteria. The aim of this study was to investigate the dissemination of genes encoding AcrAB and QepA efflux pumps among K. pneumoniae strains. Methods: This study was carried out on 117 K. pneumoniae strains isolated from patients hospitalized in selected hospitals in Tehran city, 2015-2016, Iran. Antimicrobial susceptibility tests were performed using disk diffusion method (based on CLSI guidelines and identification of acr A, acr B and qep A genes using PCR assay. Results: In this study, colistin and tigecycline had the best effect against clinical isolates of K. pneumoniae. According to PCR results, 110 (94% isolates had acrA gene and 102 (87% isolates had acrB gene, respectively. The qepA gene was not found in any of the K. pneumoniae strains. Conclusion: According to the results of the present study, dissemination of the genes encoding AcrAB efflux pumps among K. pneumoniae strains, which cause resistance to fluoroquinolones, is a matter of concern. Therefore, infection control and prevention of the spread of drug-resistant bacteria requires careful management in drug prescription and identification of resistant isolates.

  6. Cytotoxicity and Efflux Pump Inhibition Induced by Molybdenum Disulfide and Boron Nitride Nanomaterials with Sheetlike Structure.

    Science.gov (United States)

    Liu, Su; Shen, Zhuoyan; Wu, Bing; Yu, Yue; Hou, Hui; Zhang, Xu-Xiang; Ren, Hong-Qiang

    2017-09-19

    Sheetlike molybdenum disulfide (MoS 2 ) and boron nitride (BN) nanomaterials have attracted attention in the past few years due to their unique material properties. However, information on adverse effects and their underlying mechanisms for sheetlike MoS 2 and BN nanomaterials is rare. In this study, cytotoxicities of sheetlike MoS 2 and BN nanomaterials on human hepatoma HepG2 cells were systematically investigated at different toxic end points. Results showed that MoS 2 and BN nanomaterials decreased cell viability at 30 μg/mL and induced adverse effects on intracellular ROS generation (≥2 μg/mL), mitochondrial depolarization (≥4 μg/mL), and membrane integrity (≥8 μg/mL for MoS 2 and ≥2 μg/mL for BN). Furthermore, this study first found that low exposure concentrations (0.2-2 μg/mL) of MoS 2 and BN nanomaterials could increase plasma membrane fluidity and inhibit transmembrane ATP binding cassette (ABC) efflux transporter activity, which make both nanomaterials act as a chemosensitizer (increasing arsenic toxicity). Damage to plasma membrane and release of soluble Mo or B species might be two reasons that both nanomaterials inhibit efflux pump activities. This study provides a systematic understanding of the cytotoxicity of sheetlike MoS 2 and BN nanomaterials at different exposure levels, which is important for their safe use.

  7. Treatment Outcomes of Patients with Multidrug-Resistant Tuberculosis (MDR- TB) Compared with Non-MDR-TB Infections in Peninsular Malaysia.

    Science.gov (United States)

    Elmi, Omar Salad; Hasan, Habsah; Abdullah, Sarimah; Mat Jeab, Mat Zuki; Ba, Zilfalil; Naing, Nyi Nyi

    2016-07-01

    Treating patients with multidrug-resistant tuberculosis (MDR-TB) strains is more complicated, complex, toxic, expensive, than treating patients with susceptible TB strains. This study aims to compare the treatment outcomes and potential factors associated between patients with MDR-TB and non MDR TB infections in peninsular Malaysia. This study was a retrospective cohort study. Data were collected from the medical records of all registered MDR-TB patients and Non-MDR-TB patients at five TB hospitals in peninsular Malaysia from January 2010 to January 2014. A total of 314 subjects were studied, including 105 MDR-TB cases and 209 non-MDR-TB. After TB treatment, 24.8% of the MDR-TB patients and 17.7% of non MDR TB relapsed; 17.1% of the MDR-TB patients and 16.3% of non MDR TB defaulted from TB treatment. A significant difference seen in treatment success rate 17.1% for MDR-TB; 63.1% for non MDR TB (P history of TB treatment, and presence of HIV infection.

  8. Efflux inhibitor suppresses Streptococcus mutans virulence properties.

    Science.gov (United States)

    Zeng, Huihui; Liu, Jia; Ling, Junqi

    2017-04-01

    It is well established that efflux pumps play important roles in bacterial pathogenicity and efflux inhibitors (EIs) have been proved to be effective in suppressing bacterial virulence properties. However, little is known regarding the EI of Streptococcus mutans, a well-known caries-inducing bacterium. In this study, we identified the EI of S. mutans through ethidium bromide efflux assay and investigated how EI affected S. mutans virulence regarding the cariogenicity and stress response. Results indicated that reserpine, the identified EI, suppressed acid tolerance, mutacin production and transformation efficiency of S. mutans, and modified biofilm architecture and extracellular polysaccharide distribution. Suppressed glycosyltransferase activity was also noted after reserpine exposure. The data from quantitative real-time-PCR demonstrated that reserpine significantly altered the expression profile of quorum-sensing and virulence-associated genes. These findings suggest that reserpine represents a promising adjunct anticariogenic agent in that it suppresses virulence properties of S. mutans. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Structure and Function of Neisseria gonorrhoeae MtrF Illuminates a Class of Antimetabolite Efflux Pumps

    Directory of Open Access Journals (Sweden)

    Chih-Chia Su

    2015-04-01

    Full Text Available Neisseria gonorrhoeae is an obligate human pathogen and the causative agent of the sexually transmitted disease gonorrhea. The control of this disease has been compromised by the increasing proportion of infections due to antibiotic-resistant strains, which are growing at an alarming rate. N. gonorrhoeae MtrF is an integral membrane protein that belongs to the AbgT family of transporters for which no structural information is available. Here, we describe the crystal structure of MtrF, revealing a dimeric molecule with architecture distinct from all other families of transporters. MtrF is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm to halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins, posing a plausible pathway for substrate transport. A combination of the crystal structure and biochemical functional assays suggests that MtrF is an antibiotic efflux pump mediating bacterial resistance to sulfonamide antimetabolite drugs.

  10. Coarse-grained Simulations of Substrate Export through Multidrug Efflux Transporter AcrB

    Science.gov (United States)

    Jewel, Yead; Dutta, Prashanta; Liu, Jin

    2017-11-01

    The treatment of bacterial infectious diseases hampered by the overexpression of multidrug resistance (MDR) systems. The MDR system actively pumps the antibiotic drugs as well as other toxic compounds out of the cells. During the pumping, AcrB (one of the key MDR components) undergoes a series of large-scale proton/substrate dependent conformational changes. In this work, we implement a hybrid coarse-grained PACE force field that couples the united-atom protein model with the coarse-grained MARTINI water/lipid, to investigate the conformational changes of AcrB. We first develop the substrate force field which is compatible with PACE, then we implement the force field to explore large scale structural changes of AcrB in microsecond simulations. The effects of the substrate and the protonation states of two key residues: Asp407 and Asp408, are investigated. Our results show that the drug export through AcrB is proton as well as substrate dependent. Our simulations explain molecular mechanisms of substrate transport through AcrB complex, as well as provide valuable insights for designing proper antibiotic drugs. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM122081.

  11. Strategies to overcome or circumvent P-glycoprotein mediated multidrug resistance.

    Science.gov (United States)

    Yuan, Hongyu; Li, Xun; Wu, Jifeng; Li, Jinpei; Qu, Xianjun; Xu, Wenfang; Tang, Wei

    2008-01-01

    Cancer patients who receive chemotherapy often experience intrinsic or acquired resistance to a broad spectrum of chemotherapeutic agents. The phenomenon, termed multidrug resistance (MDR), is often associated with the over-expression of P-glycoprotein, a transmembrane protein pump, which can enhance efflux of a various chemicals structurally unrelated at the expense of ATP depletion, resulting in decrease of the intracellular cytotoxic drug accumulation. The MDR has been a big threaten to the human health and the war fight for it continues. Although several other mechanisms for MDR are elucidated in recent years, considerable efforts attempting to inverse MDR are involved in exploring P-glycoprotein modulators and suppressing P-glycoprotein expression. In this review, we will report on the recent advances in various strategies for overcoming or circumventing MDR mediated by P-glycoprotein.

  12. PigZ, a TetR/AcrR family repressor, modulates secondary metabolism via the expression of a putative four-component resistance-nodulation-cell-division efflux pump, ZrpADBC, in Serratia sp. ATCC 39006.

    Science.gov (United States)

    Gristwood, Tamzin; Fineran, Peter C; Everson, Lee; Salmond, George P C

    2008-07-01

    The Gram-negative enterobacterium, Serratia sp. ATCC 39006 synthesizes several secondary metabolites, including prodigiosin (Pig) and a carbapenem antibiotic (Car). A complex hierarchical network of regulatory proteins control Pig and Car production. In this study we characterize a TetR family regulator, PigZ, which represses transcription of a divergently transcribed putative resistance-nodulation-cell-division (RND) efflux pump, encoded by zrp (PigZ repressed pump) ADBC, via direct binding to the zrpA-pigZ intergenic region. Unusually, this putative RND pump contains two predicted membrane fusion proteins (MFPs), ZrpA and ZrpD. A mutation in pigZ resulted in multiple phenotypic changes, including exoenzyme production, motility and differential regulation of Pig and Car production. A polar suppressor mutation, within zrpA, restored all tested phenotypes to parental strain levels, indicating that the changes observed are due to the increase in expression of ZrpADBC in the absence of the repressor, PigZ. Genomic deletions of zrpA and zrpD indicate that the MFP ZrpD, but not ZrpA, is essential for activity of the putative pump. Bioinformatic analysis revealed that putative RND efflux pumps encoding two MFP components are not uncommon, particularly among plant-associated, Gram-negative bacteria. In addition, based on phylogenetic analysis, we propose that these pairs of MFPs consist of two distinct subtypes.

  13. Structure and operation of bacterial tripartite pumps.

    Science.gov (United States)

    Hinchliffe, Philip; Symmons, Martyn F; Hughes, Colin; Koronakis, Vassilis

    2013-01-01

    In bacteria such as Pseudomonas aeruginosa and Escherichia coli, tripartite membrane machineries, or pumps, determine the efflux of small noxious molecules, such as detergents, heavy metals, and antibiotics, and the export of large proteins including toxins. They are therefore influential in bacterial survival, particularly during infections caused by multidrug-resistant pathogens. In these tripartite pumps an inner membrane transporter, typically an ATPase or proton antiporter, binds and translocates export or efflux substrates. In cooperation with a periplasmic adaptor protein it recruits and opens a TolC family cell exit duct, which is anchored in the outer membrane and projects across the periplasmic space between inner and outer membranes. Assembled tripartite pumps thus span the entire bacterial cell envelope. We review the atomic structures of each of the three pump components and discuss how these have allowed high-resolution views of tripartite pump assembly, operation, and possible inhibition.

  14. Structures of Gate Loop Variants of the AcrB Drug Efflux Pump Bound by Erythromycin Substrate.

    Directory of Open Access Journals (Sweden)

    Abdessamad Ababou

    Full Text Available Gram-negative bacteria such as E. coli use tripartite efflux pumps such as AcrAB-TolC to expel antibiotics and noxious compounds. A key feature of the inner membrane transporter component, AcrB, is a short stretch of residues known as the gate/switch loop that divides the proximal and distal substrate binding pockets. Amino acid substitutions of the gate loop are known to decrease antibiotic resistance conferred by AcrB. Here we present two new AcrB gate loop variants, the first stripped of its bulky side chains, and a second in which the gate loop is removed entirely. By determining the crystal structures of the variant AcrB proteins in the presence and absence of erythromycin and assessing their ability to confer erythromycin tolerance, we demonstrate that the gate loop is important for AcrB export activity but is not required for erythromycin binding.

  15. The role of active efflux in antibiotic - resistance of clinical isolates of Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Falsafi T

    2009-01-01

    Full Text Available Purpose: In gram-negative bacteria, active efflux pumps that excrete drugs can confer resistance to antibiotics however, in Helicobacter pylori this role is not well established. The purpose of this study is to evaluate the role of active efflux in resistance of H. pylori isolates to antibiotics. Materials and Methods: Twelve multiple antibiotic resistant (MAR isolates resistant to at least four antibiotics, including β-lactams, metronidazole, tetracycline, erythromycin, and ciprofloxacin; three resistant to only β-lactams, and two hyper-susceptible isolates, were obtained from screening of 96 clinical isolates of H. pylori . Their minimal inhibitory concentrations (MICs for antibiotics and ethidium-bromide (EtBr were compared in the presence- and absence of a proton-conductor, carbonyl cyanide-m chlorophenyl-hydrazone (CCCP using agar-dilution and disc diffusion. Drug accumulation studies for EtBr and antibiotics were assessed in the presence and absence of CCCP using spectrofluorometry. Results: MIC of EtBr for eight MAR-isolates was decreased two- to four-folds in the presence of CCCP, of which five showed reduced MICs for β-lactam, metronidazole, tetracycline, and ciprofloxacin with CCCP. Accumulation of EtBr by the MAR-isolates was rapid and not dependant on the pattern of multiple resistance. Antibiotic accumulation assay confirmed the presence of energy-dependant efflux of β-lactam, metronidazole, tetracycline, and ciprofloxacin, but no erythromycin in five MAR isolates. Energy-dependant efflux of EtBr or antibiotics was not observed for four MAR-isolates, and three isolates were resistant only to β-lactams. Conclusion: Energy-dependant efflux plays a role in the resistance of H. pylori clinical isolates to structurally unrelated antibiotics in a broadly specific multidrug efflux manner. Difference in the efflux potential of MAR isolates may be related to the presence or absence of functional efflux-pumps in diverse H. pylori

  16. IP3 stimulates CA++ efflux from fusogenic carrot protoplasts

    International Nuclear Information System (INIS)

    Rincon, M.; Boss, W.F.

    1986-01-01

    Polyphosphoinositide breakdown plays an important role in signal transduction in animal cells (Berridge and Irvine, 1984, Nature, 312:315). Upon stimulation, phospholipase C hydrolyzes phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate (IP 3 ) and diacylglycerol both of which act as cellular second messengers. IP 3 mobilizes Ca ++ from internal stores, hence the cytosolic free Ca ++ concentration increases and those physiological activities regulated by Ca ++ are stimulated. To test if plant cells also responded to IP 3 , Ca ++ efflux studies were done with fusogenic carrot protoplasts released in EGTA. The protoplasts were preloaded with 45 Ca ++ placed in a Ca ++ -free medium, and efflux determined as 45 Ca ++ loss from the protoplasts. IP 3 (10-20μM) caused enhanced 45 Ca ++ efflux and the response was sustained for at least 15 min. In plants, as in animals, the observed IP 3 -enhanced 45 Ca ++ efflux suggested that IP 3 released Ca ++ from internal stores, and the increased free cytosolic Ca ++ activated Ca ++ pumping mechanisms which restored the Ca ++ concentration in the cytosol to the normal level

  17. Evidence of MexT-independent overexpression of MexEF-OprN multidrug efflux pump of Pseudomonas aeruginosa in presence of metabolic stress.

    Directory of Open Access Journals (Sweden)

    Ayush Kumar

    Full Text Available The Pseudomonas aeruginosa MexEF-OprN efflux pump confers resistance to clinically significant antibiotics. Regulation of mexEF-oprN operon expression is multifaceted with the MexT activator being one of the most prominent regulatory proteins.We have exploited the impaired metabolic fitness of a P. aeruginosa mutant strain lacking several efflux pump of the resistance nodulation cell division superfamily and the TolC homolog OpmH, and isolated derivatives (large colony variants that regained fitness by incubation on nutrient-rich medium in the absence of antibiotics. Although the mexEF-oprN operon is uninducible in this mutant due to a 8-bp mexT insertion present in some P. aeruginosa PAO1 strains, the large colony variants expressed high levels of MexEF-OprN. Unlike large colony variants obtained after plating on antibiotic containing medium which expressed mexEF-oprN in a MexT-dependent fashion as evidenced by clean excision of the 8-bp insertion from mexT, mexEF-oprN expression was MexT-independent in the large colony variants obtained by plating on LB alone since the mexT gene remained inactivated. A search for possible regulators of mexEF-oprN expression using transposon mutagenesis and genomic library expression approaches yielded several candidates but proved inconclusive.Our results show that antibiotic and metabolic stress lead to up-regulation of MexEF-OprN expression via different mechanisms and that MexEF-OprN does not only extrude antimicrobials but rather serves other important metabolic functions.

  18. A Novel TetR-Like Transcriptional Regulator Is Induced in Acid-Nitrosative Stress and Controls Expression of an Efflux Pump in Mycobacteria

    Directory of Open Access Journals (Sweden)

    Filomena Perrone

    2017-10-01

    Full Text Available Mycobacterium tuberculosis has the ability to survive inside macrophages under acid-nitrosative stress. M. tuberculosis Rv1685c and its ortholog in M. smegmatis, MSMEG_3765, are induced on exposure to acid-nitrosative stress. Both genes are annotated as TetR transcriptional regulators, a family of proteins that regulate a wide range of cellular activities, including multidrug resistance, carbon catabolism and virulence. Here, we demonstrate that MSMEG_3765 is co-transcribed with the upstream genes MSMEG_3762 and MSMEG_3763, encoding efflux pump components. RTq-PCR and GFP-reporter assays showed that the MSMEG_3762/63/65 gene cluster, and the orthologous region in M. tuberculosis (Rv1687c/86c/85c, was up-regulated in a MSMEG_3765 null mutant, suggesting that MSMEG_3765 acts as a repressor, typical of this family of regulators. We further defined the MSMEG_3765 regulon using genome-wide transcriptional profiling and used reporter assays to confirm that the MSMEG_3762/63/65 promoter was induced under acid-nitrosative stress. A putative 36 bp regulatory motif was identified upstream of the gene clusters in both M. smegmatis and M. tuberculosis and purified recombinant MSMEG_3765 protein was found to bind to DNA fragments containing this motif from both M. smegmatis and M. tuberculosis upstream regulatory regions. These results suggest that the TetR repressor MSMEG_3765/Rv1685c controls expression of an efflux pump with an, as yet, undefined role in the mycobacterial response to acid-nitrosative stress.

  19. Control of gdhR Expression in Neisseria gonorrhoeae via Autoregulation and a Master Repressor (MtrR of a Drug Efflux Pump Operon

    Directory of Open Access Journals (Sweden)

    Corinne E. Rouquette-Loughlin

    2017-04-01

    Full Text Available The MtrCDE efflux pump of Neisseria gonorrhoeae contributes to gonococcal resistance to a number of antibiotics used previously or currently in treatment of gonorrhea, as well as to host-derived antimicrobials that participate in innate defense. Overexpression of the MtrCDE efflux pump increases gonococcal survival and fitness during experimental lower genital tract infection of female mice. Transcription of mtrCDE can be repressed by the DNA-binding protein MtrR, which also acts as a global regulator of genes involved in important metabolic, physiologic, or regulatory processes. Here, we investigated whether a gene downstream of mtrCDE, previously annotated gdhR in Neisseria meningitidis, is a target for regulation by MtrR. In meningococci, GdhR serves as a regulator of genes involved in glucose catabolism, amino acid transport, and biosynthesis, including gdhA, which encodes an l-glutamate dehydrogenase and is located next to gdhR but is transcriptionally divergent. We report here that in N. gonorrhoeae, expression of gdhR is subject to autoregulation by GdhR and direct repression by MtrR. Importantly, loss of GdhR significantly increased gonococcal fitness compared to a complemented mutant strain during experimental murine infection. Interestingly, loss of GdhR did not influence expression of gdhA, as reported for meningococci. This variance is most likely due to differences in promoter localization and utilization between gonococci and meningococci. We propose that transcriptional control of gonococcal genes through the action of MtrR and GdhR contributes to fitness of N. gonorrhoeae during infection.

  20. The Prevalence of the OqxAB Multidrug Efflux Pump amongst Olaquindox-Resistant Escherichia coli in Pigs

    DEFF Research Database (Denmark)

    Hansen, Lars Hestbjerg; Sørensen, Søren Johannes; Jørgensen, Helle S.

    2005-01-01

    The quinoxaline olaquindox has been used extensively as a growth promoter for pigs. Recently, we isolated a plasmid (pOLA52) conferring resistance to olaquindox from swine manure. On this plasmid, the oqxA and oqxB genes encode an RND-family multidrug efflux pump, OqxAB. It facilitates resistance...... to olaquindox as well as resistance to other antimicrobials like chloramphenicol. In this study, 10 of the 556 (1.8%) previously isolated Escherichia coli strains were shown to have an MIC = 64 µg/ml olaquindox. In nine of the ten strains, the oqxA gene was detected. Sequencing of an internal fragment of oqx......A from the oqxA-positive strains showed no variation, indicating highly conserved oqxA genes. All of the oqxA-positive strains contain plasmids with replicons similar to that of pOLA52. It was verified by Southern hybridization that the oqxAB operon was situated on plasmids in most, if not all, resistant...

  1. The prevalence of the OqxAB amongst olaquindox-resistant multidrug efflux pump Escherichia coli in pigs

    DEFF Research Database (Denmark)

    Hansen, L.H.; Sørensen, S.J.; Jørgensen, H.S.

    2005-01-01

    The quinoxaline olaquindox has been used extensively as a growth promoter for pigs. Recently, we isolated a plasmid (pOLA52) conferring resistance to olaquindox from swine manure. On this plasmid, the oqxA and oqxB genes encode an RND-family multidrug efflux pump, OqxAB. It facilitates resistance...... to olaquindox as well as resistance to other antimicrobials like chloramphenicol. In this study, 10 of the 556 (1.8%) previously isolated Escherichia coli strains were shown to have an MIC >= 64 mu g/ml olaquindox. In nine of the ten strains, the oqxA gene was detected. Sequencing of an internal fragment of oqx......A from the oqxA-positive strains showed no variation, indicating highly conserved oqxA genes. All of the oqxA-positive strains contain plasmids with replicons similar to that of pOLA52. It was verified by Southern hybridization that the oqxAB operon was situated on plasmids in most, if not all, resistant...

  2. Reversal of P-glycoprotein-medicated multidrug resistance by LBM-A5 in vitro and a study of its pharmacokinetics in vivo.

    Science.gov (United States)

    Zhao, Tianxiao; Song, Yun; Liu, Baomin; Qiu, Qianqian; Jiao, Lei; Li, Yunman; Huang, Wenlong; Qian, Hai

    2015-01-01

    The overexpression of P-glycoprotein (P-gp) in tumors leads to multidrug resistance (MDR), which is a significant obstacle in clinical cancer chemotherapy. The co-administration of anticancer drugs and MDR modulators is a promising strategy for overcoming this problem. Our study aimed to explore the reversal mechanism and safety of the MDR modulator LBM-A5 in vitro, and evaluate its pharmacokinetics and effects on doxorubicin metabolism in vivo. We evaluated an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay of anticancer agents mediated by LBM-A5, the effect of LBM-A5 on rhodamine123 intracellular accumulation, and the efflux in K562/DOX cells to investigate the reversal mechanisms of LBM-A5. The results showed that LBM-A5 inhibits rhodamine123 efflux and increases intracellular accumulation by inhibiting the efflux pump function of P-gp. Furthermore, the therapeutic index and CYP3A4 activity analysis in vitro suggested that LBM-A5 is reasonably safe to use. Also, LBM-A5 (10 mg/kg body mass) achieved the required plasma concentration in sufficient time to reverse MDR in vivo. Importantly, the LBM-A5 treatment group shared similar doxorubicin (DOX) pharmacokinetics with the free DOX group. Our results suggest that LBM-A5 effectively reverses MDR (EC50 = 483.6 ± 81.7 nmol·L(-1)) by inhibiting the function of P-gp, with relatively ideal pharmacokinetics and in a safe manner, and so may be a promising candidate for cancer chemotherapy research.

  3. Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Staphylococcus aureus

    LENUS (Irish Health Repository)

    Costa, Sofia SANTOS

    2011-10-27

    Abstract Background Antimicrobial resistance mediated by efflux systems is still poorly characterized in Staphylococcus aureus, despite the description of several efflux pumps (EPs) for this bacterium. In this work we used several methodologies to characterize the efflux activity of 52 S. aureus isolates resistant to ciprofloxacin collected in a hospital in Lisbon, Portugal, in order to understand the role played by these systems in the resistance to fluoroquinolones. Results Augmented efflux activity was detected in 12 out of 52 isolates and correlated with increased resistance to fluoroquinolones. Addition of efflux inhibitors did not result in the full reversion of the fluoroquinolone resistance phenotype, yet it implied a significant decrease in the resistance levels, regardless of the type(s) of mutation(s) found in the quinolone-resistance determining region of grlA and gyrA genes, which accounted for the remaining resistance that was not efflux-mediated. Expression analysis of the genes coding for the main efflux pumps revealed increased expression only in the presence of inducing agents. Moreover, it showed that not only different substrates can trigger expression of different EP genes, but also that the same substrate can promote a variable response, according to its concentration. We also found isolates belonging to the same clonal type that showed different responses towards drug exposure, thus evidencing that highly related clinical isolates may diverge in the efflux-mediated response to noxious agents. The data gathered by real-time fluorometric and RT-qPCR assays suggest that S. aureus clinical isolates may be primed to efflux antimicrobial compounds. Conclusions The results obtained in this work do not exclude the importance of mutations in resistance to fluoroquinolones in S. aureus, yet they underline the contribution of efflux systems for the emergence of high-level resistance. All together, the results presented in this study show the potential

  4. Silencage du gene MDR1 et resensibilisation des cellules MCF-7 MDR a la doxorubicine en utilisant les nanoparticules chitosane/MDR1-siARN

    Science.gov (United States)

    El-Ariss, Mohamad

    Cancer is the leading cause of death in Canada and is responsible for about 30% of all deaths in the country.[1] It is estimated that by 2015, one in four Canadians (24% women and 29% men) will die from cancer. In the world and only for 2012, 14 million new cancer cases and 8.2 million deaths from the disease were reported.[2] The worst is yet to come because, according to World Health Organization, the number of new cases is expected to increase by about 70% over the next two decades. The high mortality associated with cancer is partly explained by the acquisition of drug resistance that make patients refractory to chemotherapy. In fact, cancer cells exposed to a cytotoxic agent during chemotherapy, may develop a resistance to this agent as well as various agents sharing structural or functional similarities. These cancer cells are known for multidrug resistance ("Multiple Drug resistant cells"). The development of resistance to chimiodrogues is a major public health problem that presents an obstacle for the development of new cancer treatments. MCF-7 MDR are established cell lines of human breast cancer that have developed resistance to chimiodrogues such as doxorubicin. MCF-7 MDR have the particularity to over-express P-gp protein that is responsible for the detoxification of cells by reflux of chimiodrogues. The purpose of this study was therefore to reduce the expression of P-gp, encoded by the MDR1 gene (also called gene ABCB1) in cancer cells MCF-7, and re-sensitize MCF-7 MDR cells to anti-cancer treatments. In order to modify MDR1 gene expression, we used small RNAi called siRNA that are specific to the MDR1 gene. In total, 4 duplexes of siRNA have been used: siRNA_1, siRNA_1M, siRNA_2 and siRNA_2M. Each of the duplexes strands is consists of 21 nucleic acids and has two protruding nucleic acids (overhangs) at the 3' end. siRNA_1 and siRNA_1M are complementary to the nucleic acid sequence (577-595 nucleic acids ) of the MDR1 gene, whereas siARN_2 and si

  5. Challenges and Future Prospects of Antibiotic Therapy: From Peptides to Phages Utilization

    Directory of Open Access Journals (Sweden)

    Santi M. Mandal

    2014-05-01

    Full Text Available Bacterial infections are raising serious concern across the globe. The effectiveness of conventional antibiotics is decreasing due to global emergence of multi-drug-resistant (MDR bacterial pathogens. This process seems to be primarily caused by an indiscriminate and inappropriate use of antibiotics in non-infected patients and in the food industry. New classes of antibiotics with different actions against MDR pathogens need to be developed urgently. In this context, this review focuses on several ways and future directions to search for the next generation of safe and effective antibiotics compounds including antimicrobial peptides, phage therapy, phytochemicals, metalloantibiotics, LPS and efflux pump inhibitors to control the infections caused by MDR pathogens.

  6. Computational Study of Correlated Domain Motions in the AcrB Efflux Transporter

    Directory of Open Access Journals (Sweden)

    Robert Schulz

    2015-01-01

    Full Text Available As active part of the major efflux system in E. coli bacteria, AcrB is responsible for the uptake and pumping of toxic substrates from the periplasm toward the extracellular space. In combination with the channel protein TolC and membrane fusion protein AcrA, this efflux pump is able to help the bacterium to survive different kinds of noxious compounds. With the present study we intend to enhance the understanding of the interactions between the domains and monomers, for example, the transduction of mechanical energy from the transmembrane domain into the porter domain, correlated motions of different subdomains within monomers, and cooperative effects between monomers. To this end, targeted molecular dynamics simulations have been employed either steering the whole protein complex or specific parts thereof. By forcing only parts of the complex towards specific conformational states, the risk for transient artificial conformations during the simulations is reduced. Distinct cooperative effects between the monomers in AcrB have been observed. Possible allosteric couplings have been identified providing microscopic insights that might be exploited to design more efficient inhibitors of efflux systems.

  7. Effects of L-arabinose efflux on λ Red recombination-mediated gene knockout in multiple-antimicrobial-resistant Salmonella enterica serovar Choleraesuis.

    Science.gov (United States)

    Liao, Shi-Wei; Lee, Jen-Jie; Ptak, Christopher P; Wu, Ying-Chen; Hsuan, Shih-Ling; Kuo, Chih-Jung; Chen, Ter-Hsin

    2018-03-01

    In this study, six swine-derived multiple-antimicrobial-resistant (MAR) strains of Salmonella Choleraesuis (S. Choleraesuis) were demonstrated to possess higher efflux pump activity than the wild-type (WT). L-Arabinose, a common inducer for gene expression, modulated S. Choleraesuis efflux pump activity in a dose-dependent manner. At low L-arabinose concentrations, increasing L-arabinose led to a corresponding increase in fluorophore efflux, while at higher L-arabinose concentrations, increasing L-arabinose decreased fluorophore efflux activity. The WT S. Choleraesuis that lacks TolC (ΔtolC), an efflux protein associated with bacterial antibiotic resistance and virulence, was demonstrated to possess a significantly reduced ability to extrude L-arabinose. Further, due to the rapid export of L-arabinose, an efficient method for recombination-mediated gene knockout, the L-arabinose-inducible bacteriophage λ Red recombinase system, has a reduced recombination frequency (~ 12.5%) in clinically isolated MAR Salmonella strains. An increased recombination frequency (up to 60%) can be achieved using a higher concentration of L-arabinose (fivefold) for genetic manipulation and functional analysis for MAR Salmonella using the λ Red system. The study suggests that L-arabinose serves not only as an inducer of the TolC-dependent efflux system but also acts as a competitive substrate of the efflux system. In addition, understanding the TolC-dependent efflux of L-arabinose should facilitate the optimization of L-arabinose induction in strains with high efflux activity.

  8. N,N'-disubstituted cinnamamide derivatives potentiate ciprofloxacin activity against overexpressing NorA efflux pump Staphylococcus aureus 1199B strains.

    Science.gov (United States)

    Radix, Sylvie; Jordheim, Anne Doléans; Rocheblave, Luc; N'Digo, Serge; Prignon, Anne-Laure; Commun, Carine; Michalet, Serge; Dijoux-Franca, Marie-Geneviève; Mularoni, Angélique; Walchshofer, Nadia

    2018-04-25

    A multi-step procedure has been described which afforded satisfactory yields of N,N'-disubstituted cinnamamides derived from N-Boc-protected amino acids (Boc-Gly, Boc-Val, Boc-Phe). The key step of this synthesis was a regioselective RedAl reduction of an amide function in presence of a carbamate group. Next, these cinnamamides were evaluated in co-admnistration with ciprofloxacin as efflux pump inhibitors against two S. aureus strains, NorA overexpressing SA1199B and wild type SA1199. In parallel, their intrinsic toxicity was appreciated on human lung fibroblast MRC5 cells. Therefore, the cinnamamide combining both carbamate and indol-3-yl groups, was found to be the most active and one of the less toxic EPI and constituted a promising hit. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. A Helicobacter pylori TolC efflux pump confers resistance to metronidazole

    NARCIS (Netherlands)

    van Amsterdam, Karin; Bart, Aldert; van der Ende, Arie

    2005-01-01

    In Helicobacter pylori, the contribution of efflux proteins to antibiotic resistance is not well established. As translocases that act in parallel may have overlapping substrate specificities, the loss of function of one such translocase may be compensated for by that of another translocase with no

  10. Attaching the NorA Efflux Pump Inhibitor INF55 to Methylene Blue Enhances Antimicrobial Photodynamic Inactivation of Methicillin-Resistant Staphylococcus aureus in Vitro and in Vivo.

    Science.gov (United States)

    Rineh, Ardeshir; Dolla, Naveen K; Ball, Anthony R; Magana, Maria; Bremner, John B; Hamblin, Michael R; Tegos, George P; Kelso, Michael J

    2017-10-13

    Antimicrobial photodynamic inactivation (aPDI) uses photosensitizers (PSs) and harmless visible light to generate reactive oxygen species (ROS) and kill microbes. Multidrug efflux systems can moderate the phototoxic effects of PSs by expelling the compounds from cells. We hypothesized that increasing intracellular concentrations of PSs by inhibiting efflux with a covalently attached efflux pump inhibitor (EPI) would enhance bacterial cell phototoxicity and reduce exposure of neighboring host cells to damaging ROS. In this study, we tested the hypothesis by linking NorA EPIs to methylene blue (MB) and examining the photoantimicrobial activity of the EPI-MB hybrids against the human pathogen methicillin-resistant Staphylococcus aureus (MRSA). Photochemical/photophysical and in vitro microbiological evaluation of 16 hybrids carrying four different NorA EPIs attached to MB via four linker types identified INF55-(Ac)en-MB 12 as a lead. Compound 12 showed increased uptake into S. aureus cells and enhanced aPDI activity and wound healing effects (relative to MB) in a murine model of an abrasion wound infected by MRSA. The study supports a new approach for treating localized multidrug-resistant MRSA infections and paves the way for wider exploration of the EPI-PS hybrid strategy in aPDI.

  11. The ins and outs of RND efflux pumps in Escherichia coli

    OpenAIRE

    Anes, Jo?o; McCusker, Matthew P.; Fanning, S?amus; Martins, Marta

    2015-01-01

    Infectious diseases remain one of the principal causes of morbidity and mortality in the world. Relevant authorities including the WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. They have also reaffirmed the urgent need for investment in the discovery and development of new antibiotics and therapeutic approaches to treat multidrug resistant (MDR) bacteria. The extensive use of antimicrobial compounds in di...

  12. Photochemical internalisation of chemotherapy potentiates killing of multidrug-resistant breast and bladder cancer cells.

    Science.gov (United States)

    Adigbli, D K; Wilson, D G G; Farooqui, N; Sousi, E; Risley, P; Taylor, I; Macrobert, A J; Loizidou, M

    2007-08-20

    Multidrug resistance (MDR) is the major confounding factor in adjuvant solid tumour chemotherapy. Increasing intracellular amounts of chemotherapeutics to circumvent MDR may be achieved by a novel delivery method, photochemical internalisation (PCI). PCI consists of the co-administration of drug and photosensitiser; upon light activation the latter induces intracellular release of organelle-bound drug. We investigated whether co-administration of hypericin (photosensitiser) with mitoxantrone (MTZ, chemotherapeutic) plus illumination potentiates cytotoxicity in MDR cancer cells. We mapped the extent of intracellular co-localisation of drug/photosensitiser. We determined whether PCI altered drug-excreting efflux pump P-glycoprotein (Pgp) expression or function in MDR cells. Bladder and breast cancer cells and their Pgp-overexpressing MDR subclones (MGHU1, MGHU1/R, MCF-7, MCF-7/R) were given hypericin/MTZ combinations, with/without blue-light illumination. Pilot experiments determined appropriate sublethal doses for each. Viability was determined by the 3-[4,5-dimethylthiazolyl]-2,5-diphenyltetrazolium bromide assay. Intracellular localisation was mapped by confocal microscopy. Pgp expression was detected by immunofluorescence and Pgp function investigated by Rhodamine123 efflux on confocal microscopy. MTZ alone (0.1-0.2 microg ml(-1)) killed up to 89% of drug-sensitive cells; MDR cells exhibited less cytotoxicity (6-28%). Hypericin (0.1-0.2 microM) effects were similar for all cells; light illumination caused none or minimal toxicity. In combination, MTZ /hypericin plus illumination, potentiated MDR cell killing, vs hypericin or MTZ alone. (MGHU1/R: 38.65 and 36.63% increase, Phypericin increased killing by 28.15% (Phypericin was evident before illumination and at serial times post-illumination. MTZ was always found in sensitive cell nuclei, but not in dark resistant cell nuclei. In illuminated resistant cells there was some mobilisation of MTZ into the nucleus. Pgp

  13. Overproduction of active efflux pump and variations of OprD dominate in imipenem-resistant Pseudomonas aeruginosa isolated from patients with bloodstream infections in Taiwan.

    Science.gov (United States)

    Kao, Cheng-Yen; Chen, Shu-Sheng; Hung, Kuei-Hsiang; Wu, Hsiu-Mei; Hsueh, Po-Ren; Yan, Jing-Jou; Wu, Jiunn-Jong

    2016-06-13

    The emergence of imipenem-resistant Pseudomonas aeruginosa (IRPA) has become a great concern worldwide. The aim of this study was to investigate resistance mechanisms associated with bloodstream isolated IRPA strains in Taiwan. A total of 78 non-duplicated IRPA isolates were isolated from patients with bloodstream infection. The average prevalence of imipenem-resistance in those isolates was 5.9 % during a 10-year longitudinal surveillance in Taiwan. PFGE results showed high clonal diversity among the 78 isolates. VIM-2, VIM-3, OXA-10, and OXA-17 β-lactamases were identified in 2 (2.6 %), 3 (3.8 %), 2 (2.6 %), and 1 (1.3 %) isolates, respectively. Active efflux pumps, AmpC β-lactamase overproduction, and extended-spectrum AmpC cephalosporinases (ESACs) were found in 58 (74.4 %), 25 (32.1 %) and 15 (19.2 %) of IRPA isolates, respectively. oprD mutations with amino acid substitution, shortened putative loop L7, premature stop codon caused by point mutation, frameshift by nucleotide insertion or deletion, and interruption by insertion sequence were found in 19 (24.4 %), 18 (23.1 %), 15 (19.2 %), 14 (17.9 %), and 10 (12.8 %) of isolates, respectively. This study suggests that alterations in the OprD protein and having an active efflux pump are the main mechanisms associated with bloodstream isolated IRPA. Overproduction of AmpC, ESACs, and the presence of VIM- and OXA-type β-lactamases play additional roles in reduced susceptibility to imipenem in P. aeruginosa isolates in Taiwan.

  14. Asiatic Acid (AA) Sensitizes Multidrug-Resistant Human Lung Adenocarcinoma A549/DDP Cells to Cisplatin (DDP) via Downregulation of P-Glycoprotein (MDR1) and Its Targets.

    Science.gov (United States)

    Cheng, Qilai; Liao, Meixiang; Hu, Haibo; Li, Hongliang; Wu, Longhuo

    2018-01-01

    P-glycoprotein (P-gp, i.e., MDR1) is associated with the phenotype of multidrug resistance (MDR) and causes chemotherapy failure in the management of cancers. Searching for effective MDR modulators and combining them with anticancer drugs is a promising strategy against MDR. Asiatic acid (AA), a natural triterpene isolated from the plant Centella asiatica, may have an antitumor activity. The present study assessed the reversing effect of AA on MDR and possible molecular mechanisms of AA action in MDR1-overexpressing cisplatin (DDP)-resistant lung cancer cells, A549/DDP. Human lung adenocarcinoma A549/DDP cells were either exposed to different concentrations of AA or treated with DDP, and their viability was measured by the MTT assay. A Rhodamine 123 efflux assay, immunofluorescent staining, ATPase assay, reverse-transcription PCR (RT-PCR), and western blot analysis were conducted to elucidate the mechanisms of action of AA on MDR. Our results showed that AA significantly enhanced the cytotoxicity of DDP toward A549/DDP cells but not its parental A549 cells. Furthermore, AA strongly inhibited P-gp expression by blocking MDR1 gene transcription and increased the intracellular accumulation of the P-gp substrate Rhodamine 123 in A549/DDP cells. Nuclear factor (NF)-kB (p65) activity, IkB degradation, and NF-kB/p65 nuclear translocation were markedly inhibited by pretreatment with AA. Additionally, AA inhibited the MAPK-ERK pathway, as indicated by decreased phosphorylation of ERK1 and -2, AKT, p38, and JNK, thus resulting in reduced activity of the Y-box binding protein 1 (YB1) via blockage of its nuclear translocation. AA reversed P-gp-mediated MDR by inhibition of P-gp expression. This effect was likely related to downregulation of YB1, and this effect was mediated by the NF-kB and MAPK-ERK pathways. AA may be useful as an MDR reversal agent for combination therapy in clinical trials. © 2018 The Author(s). Published by S. Karger AG, Basel.

  15. Use of a combined effect model approach for discriminating between ABCB1- and ABCC1-type efflux activities in native bivalve gill tissue

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Melissa [Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona (Spain); CESAM & Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Pavlichenko, Vasiliy [Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences (SIPPB SB RAS), Lermontov Str. 132, 664033, Irkutsk (Russian Federation); Department of Bioanalytical Ecotoxicology, UFZ — Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig (Germany); Burkhardt-Medicke, Kathleen [Department of Bioanalytical Ecotoxicology, UFZ — Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig (Germany); Institute of Hydrobiology, Dresden University of Technology, D-01062 Dresden (Germany); Soares, Amadeu M.V.M. [CESAM & Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Altenburger, Rolf [Department of Bioanalytical Ecotoxicology, UFZ — Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig (Germany); Barata, Carlos [Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona (Spain); Luckenbach, Till, E-mail: till.luckenbach@ufz.de [Department of Bioanalytical Ecotoxicology, UFZ — Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig (Germany)

    2016-04-15

    Aquatic organisms, such as bivalves, employ ATP binding cassette (ABC) transporters for efflux of potentially toxic chemicals. Anthropogenic water contaminants can, as chemosensitizers, disrupt efflux transporter function enabling other, putatively toxic compounds to enter the organism. Applying rapid amplification of cDNA ends (RACE) PCR we identified complete cDNAs encoding ABCB1- and ABCC1-type transporter homologs from zebra mussel providing the molecular basis for expression of both transporter types in zebra mussel gills. Further, efflux activities of both transporter types in gills were indicated with dye accumulation assays where efflux of the dye calcein-am was sensitive to both ABCB1- (reversin 205, verapamil) and ABCC1- (MK571) type specific inhibitors. The assumption that different inhibitors targeted different efflux pump types was confirmed when comparing measured effects of binary inhibitor compound mixtures in dye accumulation assays with predictions from mixture effect models. Effects by the MK571/reversin 205 mixture corresponded better with independent action, whereas reversin 205/verapamil joint effects were better predicted by the concentration addition model indicating different and equal targets, respectively. The binary mixture approach was further applied to identify the efflux pump type targeted by environmentally relevant chemosensitizing compounds. Pentachlorophenol and musk ketone, which were selected after a pre-screen of twelve compounds that previously had been identified as chemosensitizers, showed mixture effects that corresponded better with concentration addition when combined with reversine 205 but with independent action predictions when combined with MK571 indicating targeting of an ABCB1-type efflux pump by these compounds. - Highlights: • Sequences and function of ABC efflux transporters in bivalve gills were explored. • Full length Dreissena polymorpha abcb1 and abcc1 cDNA sequences were identified. • A mixture effect

  16. Use of a combined effect model approach for discriminating between ABCB1- and ABCC1-type efflux activities in native bivalve gill tissue

    International Nuclear Information System (INIS)

    Faria, Melissa; Pavlichenko, Vasiliy; Burkhardt-Medicke, Kathleen; Soares, Amadeu M.V.M.; Altenburger, Rolf; Barata, Carlos; Luckenbach, Till

    2016-01-01

    Aquatic organisms, such as bivalves, employ ATP binding cassette (ABC) transporters for efflux of potentially toxic chemicals. Anthropogenic water contaminants can, as chemosensitizers, disrupt efflux transporter function enabling other, putatively toxic compounds to enter the organism. Applying rapid amplification of cDNA ends (RACE) PCR we identified complete cDNAs encoding ABCB1- and ABCC1-type transporter homologs from zebra mussel providing the molecular basis for expression of both transporter types in zebra mussel gills. Further, efflux activities of both transporter types in gills were indicated with dye accumulation assays where efflux of the dye calcein-am was sensitive to both ABCB1- (reversin 205, verapamil) and ABCC1- (MK571) type specific inhibitors. The assumption that different inhibitors targeted different efflux pump types was confirmed when comparing measured effects of binary inhibitor compound mixtures in dye accumulation assays with predictions from mixture effect models. Effects by the MK571/reversin 205 mixture corresponded better with independent action, whereas reversin 205/verapamil joint effects were better predicted by the concentration addition model indicating different and equal targets, respectively. The binary mixture approach was further applied to identify the efflux pump type targeted by environmentally relevant chemosensitizing compounds. Pentachlorophenol and musk ketone, which were selected after a pre-screen of twelve compounds that previously had been identified as chemosensitizers, showed mixture effects that corresponded better with concentration addition when combined with reversine 205 but with independent action predictions when combined with MK571 indicating targeting of an ABCB1-type efflux pump by these compounds. - Highlights: • Sequences and function of ABC efflux transporters in bivalve gills were explored. • Full length Dreissena polymorpha abcb1 and abcc1 cDNA sequences were identified. • A mixture effect

  17. Novel regulation of cardiac Na pump via phospholemman.

    Science.gov (United States)

    Pavlovic, Davor; Fuller, William; Shattock, Michael J

    2013-08-01

    As the only quantitatively significant Na efflux pathway from cardiac cells, the Na/K ATPase (Na pump) is the primary regulator of intracellular Na. The transmembrane Na gradient it establishes is essential for normal electrical excitability, numerous coupled-transport processes and, as the driving force for Na/Ca exchange, thus setting cardiac Ca load and contractility. As Na influx varies with electrical excitation, heart rate and pathology, the dynamic regulation of Na efflux is essential. It is now widely recognized that phospholemman, a 72 amino acid accessory protein which forms part of the Na pump complex, is the key nexus linking cellular signaling to pump regulation. Phospholemman is the target of a variety of post-translational modifications (including phosphorylation, palmitoylation and glutathionation) and these can dynamically alter the activity of the Na pump. This review summarizes our current understanding of the multiple regulatory mechanisms that converge on phospholemman and govern NA pump activity in the heart. The corrected Fig. 4 is reproduced below. The publisher would like to apologize for any inconvenience caused. [corrected]. Copyright © 2013. Published by Elsevier Ltd.

  18. Anaplasia and drug selection-independent overexpression of the multidrug resistance gene, MDR1, in Wilms' tumor.

    Science.gov (United States)

    Re, G G; Willingham, M C; el Bahtimi, R; Brownlee, N A; Hazen-Martin, D J; Garvin, A J

    1997-02-01

    One reason for the failure of chemotherapy is the overexpression of the multidrug resistance gene, MDR1. The product of this gene is the multidrug transporter P-glycoprotein, an ATP-dependent pump that extrudes drugs from the cytoplasm. Some tumors inherently express P-glycoprotein, whereas others acquire the ability to do so after exposure to certain chemotherapeutic agents, often by the mechanism of gene amplification. Classical Wilms' tumors (nephroblastoma) typically respond to therapy and have a good prognosis. On the contrary, anaplastic Wilms' tumors are generally refractory to chemotherapy. These anaplastic variants are rare (4.5% of all Wilms' tumors reported in the United States), aggressive, and often fatal forms of tumor, which are commonly thought to result from the progression of classical Wilms' tumors. To investigate the basis for this differential response to therapy, we examined a number of classical and anaplastic Wilms' tumors for the expression of the MDR1 gene by immunohistochemical and mRNA analysis. Classical Wilms' tumors consistently did not express P-glycoprotein except in areas of tubular differentiation, as in normal kidney. Similarly, two of three anaplastic tumors failed to show P-glycoprotein expression. In contrast, cultured cells derived from a third anaplastic tumor, W4, exhibited strong P-glycoprotein expression and were drug resistant in vitro. Southern analysis revealed that W4 cells contained a single copy of the MDR1 gene per haploid genome similar to normal cells, demonstrating that the overexpression of MDR1 was not caused by gene amplification. Transcriptional activation of the MDR1 gene would be in keeping with the concept that p53 might act as a transcriptional repressor of the MDR1 gene.

  19. Design, synthesis, and biological activities of novel hexahydropyrazino[1,2-a]indole derivatives as potent inhibitors of apoptosis (IAP) proteins antagonists with improved membrane permeability across MDR1 expressing cells.

    Science.gov (United States)

    Shiokawa, Zenyu; Hashimoto, Kentaro; Saito, Bunnai; Oguro, Yuya; Sumi, Hiroyuki; Yabuki, Masato; Yoshimatsu, Mie; Kosugi, Yohei; Debori, Yasuyuki; Morishita, Nao; Dougan, Douglas R; Snell, Gyorgy P; Yoshida, Sei; Ishikawa, Tomoyasu

    2013-12-15

    We previously reported octahydropyrrolo[1,2-a]pyrazine derivative 2 (T-3256336) as a potent antagonist for inhibitors of apoptosis (IAP) proteins. Because compound 2 was susceptible to MDR1 mediated efflux, we developed another scaffold, hexahydropyrazino[1,2-a]indole, using structure-based drug design. The fused benzene ring of this scaffold was aimed at increasing the lipophilicity and decreasing the basicity of the scaffold to improve the membrane permeability across MDR1 expressing cells. We established a chiral pool synthetic route to yield the desired tricyclic chiral isomers. Chemical modification of the core scaffold led to a representative compound 50, which showed strong inhibition of IAP binding (X chromosome-linked IAP [XIAP]: IC50 23 nM and cellular IAP [cIAP]: IC50 1.1 nM) and cell growth inhibition (MDA-MB-231 cells: GI50 2.8 nM) with high permeability and low potential of MDR1 substrate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Alcohols are inhibitors of Saccharomyces cerevisiae multidrug-resistance pumps Pdr5p and Snq2p

    Czech Academy of Sciences Publication Activity Database

    Gášková, D.; Plášek, J.; Zahumenský, J.; Benešová, I.; Buriánková, I.; Sigler, Karel

    2013-01-01

    Roč. 13, č. 8 (2013), s. 782-795 ISSN 1567-1356 Institutional support: RVO:61388971 Keywords : alcohols * yeast MDR pump * pump inhibitor Subject RIV: EE - Microbiology, Virology Impact factor: 2.436, year: 2013

  1. PD173074, a selective FGFR inhibitor, reverses MRP7 (ABCC10-mediated MDR

    Directory of Open Access Journals (Sweden)

    Nagaraju Anreddy

    2014-06-01

    Full Text Available Multidrug resistance protein 7 (MRP7, ABCC10 is a recently identified member of the ATP-binding cassette (ABC transporter family, which adequately confers resistance to a diverse group of antineoplastic agents, including taxanes, vinca alkaloids and nucleoside analogs among others. Clinical studies indicate an increased MRP7 expression in non-small cell lung carcinomas (NSCLC compared to a normal healthy lung tissue. Recent studies revealed increased paclitaxel sensitivity in the Mrp7−/− mouse model compared to their wild-type counterparts. This demonstrates that MRP7 is a key contributor in developing drug resistance. Recently our group reported that PD173074, a specific fibroblast growth factor receptor (FGFR inhibitor, could significantly reverse P-glycoprotein-mediated MDR. However, whether PD173074 can interact with and inhibit other MRP members is unknown. In the present study, we investigated the ability of PD173074 to reverse MRP7-mediated MDR. We found that PD173074, at non-toxic concentration, could significantly increase the cellular sensitivity to MRP7 substrates. Mechanistic studies indicated that PD173074 (1 μmol/L significantly increased the intracellular accumulation and in-turn decreased the efflux of paclitaxel by inhibiting the transport activity without altering expression levels of the MRP7 protein, thereby representing a promising therapeutic agent in the clinical treatment of chemoresistant cancer patients.

  2. In vivo detection of multidrug-resistant (MDR1) phenotype by technetium-99m sestamibi scan in untreated breast cancer patients

    International Nuclear Information System (INIS)

    Del Vecchio, S.; Ciarmiello, A.; Potena, M.I.; Carriero, M.V.; Mainolfi, C.; Botti, G.; Thomas, R.; Cerra, M.; D'Aiuto, G.; Tsuruo, T.; Salvatore, M.

    1997-01-01

    Technetium-99m sestamibi is a transport substrate recognised by the multidrug-resistant P-glycoprotein (Pgp). To test whether 99m Tc-sestamibi efflux is enhanced in breast carcinomas overexpressing Pgp, we determined the efflux rates of 99m Tc-sestamibi and Pgp levels in tumours from 30 patients with untreated breast carcinoma. Patients were intravenously injected with 740 MBq of 99m Tc-sestamibi and underwent a 15-min dynamic study followed by the acquisition of static planar images at 0.5, 1, 2 and 4 h. Tumour specimens were obtained from each patient 24 h after 99m Tc-sestamibi scan and Pgp levels were determined using 125 I-MRK16 monoclonal antibody and in vitro quantitative autoradiography. All breast carcinomas showed high uptake of 99m Tc-sestamibi and data from region of interest analysis on sequential images were fitted with a monoexponential function. The efflux rates of 99m Tc-sestamibi, calculated from decay-corrected time-activity curves, ranged between 0.00121 and 0.01690 min -1 and were directly correlated with Pgp levels measured in the same tumours (r=0.62; P 99m Tc-sestamibi efflux from tumours of group A was 2.7 times higher than that observed in tumours of group B (0.00686 ±0.00390 min -1 vs 0.00250 ±0.00090 min -1 , P 99m Tc-sestamibi showed a sensitivity and a specificity of 80% and 95%, respectively. In conclusion, the efflux rate of 99m Tc-sestamibi may be used for the in vivo identification of the multidrug resistant (MDR1) phenotype in untreated breast cancer patients. (orig.). With 7 figs., 3 tabs

  3. Genome analysis of urease positive Serratia marcescens, co-producing SRT-2 and AAC(6')-Ic with multidrug efflux pumps for antimicrobial resistance.

    Science.gov (United States)

    Srinivasan, Vijaya Bharathi; Rajamohan, Govindan

    2018-04-05

    In this study, we present the genome sequence of Serratia marcescens SM03, recovered from a human gut in India. The final assembly consists of 26 scaffolds (4620 coding DNA sequences, 5.08 Mb, 59.6% G + C ratio) and 79 tRNA genes. Analysis identified novel genes associated with lactose utilization, virulence, P-loop GTPases involved in urease production, CFA/I fimbriae apparatus and Yersinia - type CRISPR proteins. Antibiotic susceptibility testing indicated drug tolerant phenotype and inhibition assays demonstrated involvement of extrusion in resistance. Presence of enzymes SRT-2, AAC(6')-Ic, with additional Ybh transporter and EamA-like efflux pumps signifies the genetic plasticity observed in S. marcescens SM03. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Nose-to-Brain Delivery of Antiviral Drugs: A Way to Overcome Their Active Efflux?

    Directory of Open Access Journals (Sweden)

    Alessandro Dalpiaz

    2018-03-01

    Full Text Available Although several viruses can easily infect the central nervous system (CNS, antiviral drugs often show dramatic difficulties in penetrating the brain from the bloodstream since they are substrates of active efflux transporters (AETs. These transporters, located in the physiological barriers between blood and the CNS and in macrophage membranes, are able to recognize their substrates and actively efflux them into the bloodstream. The active transporters currently known to efflux antiviral drugs are P-glycoprotein (ABCB1 or P-gp or MDR1, multidrug resistance-associated proteins (ABCC1 or MRP1, ABCC4 or MRP4, ABCC5 or MRP5, and breast cancer resistance protein (ABCG2 or BCRP. Inhibitors of AETs may be considered, but their co-administration causes serious unwanted effects. Nasal administration of antiviral drugs is therefore proposed in order to overcome the aforementioned problems, but innovative devices, formulations (thermoreversible gels, polymeric micro- and nano-particles, solid lipid microparticles, nanoemulsions, absorption enhancers (chitosan, papaverine, and mucoadhesive agents (chitosan, polyvinilpyrrolidone are required in order to selectively target the antiviral drugs and, possibly, the AET inhibitors in the CNS. Moreover, several prodrugs of antiretroviral agents can inhibit or elude the AET systems, appearing as interesting substrates for innovative nasal formulations able to target anti-Human Immunodeficiency Virus (HIV agents into macrophages of the CNS, which are one of the most important HIV Sanctuaries of the body.

  5. In Vivo Evolution of Bacterial Resistance in Two Cases of Enterobacter aerogenes Infections during Treatment with Imipenem.

    Science.gov (United States)

    Philippe, Nadège; Maigre, Laure; Santini, Sébastien; Pinet, Elizabeth; Claverie, Jean-Michel; Davin-Régli, Anne-Véronique; Pagès, Jean-Marie; Masi, Muriel

    2015-01-01

    Infections caused by multidrug resistant (MDR) bacteria are a major concern worldwide. Changes in membrane permeability, including decreased influx and/or increased efflux of antibiotics, are known as key contributors of bacterial MDR. Therefore, it is of critical importance to understand molecular mechanisms that link membrane permeability to MDR in order to design new antimicrobial strategies. In this work, we describe genotype-phenotype correlations in Enterobacter aerogenes, a clinically problematic and antibiotic resistant bacterium. To do this, series of clinical isolates have been periodically collected from two patients during chemotherapy with imipenem. The isolates exhibited different levels of resistance towards multiple classes of antibiotics, consistently with the presence or the absence of porins and efflux pumps. Transport assays were used to characterize membrane permeability defects. Simultaneous genome-wide analysis allowed the identification of putative mutations responsible for MDR. The genome of the imipenem-susceptible isolate G7 was sequenced to closure and used as a reference for comparative genomics. This approach uncovered several loci that were specifically mutated in MDR isolates and whose products are known to control membrane permeability. These were omp35 and omp36, encoding the two major porins; rob, encoding a global AraC-type transcriptional activator; cpxA, phoQ and pmrB, encoding sensor kinases of the CpxRA, PhoPQ and PmrAB two-component regulatory systems, respectively. This report provides a comprehensive analysis of membrane alterations relative to mutational steps in the evolution of MDR of a recognized nosocomial pathogen.

  6. Direct action of aldosterone on transmembrane 22Na efflux from arterial smooth muscle. Rapid and delayed effects

    International Nuclear Information System (INIS)

    Moura, A.M.; Worcel, M.

    1984-01-01

    Acute subcutaneous (s.c.) administration of aldosterone increases ex vivo 22 Na efflux from rat tail artery smooth muscle, which appears to be due to a specific action on mineralocorticoid receptors. Indeed, this effect is blocked by the antimineralocorticoid compounds RU 28318 [17 beta-hydroxy-3-oxo,7 alpha-propyl(17 alpha)-pregn 4-ene, 21 potassium carboxylate] and spironolactone. The specific glucocorticoid receptor agonist RU 26988 does not modify 22 Na efflux. The authors show here that aldosterone has, at physiological concentrations, a mineralocorticoid specific stimulating effect on passive and sodium pump dependent transmembrane movements of sodium from the rat tail artery smooth muscle. Aldosterone exerts two types of action on sodium transport: 1) a delayed stimulation of ouabain-dependent 22 Na efflux and ouabain-independent 22 Na efflux, which are completely blocked by actinomycin D; and 2) a very rapid increase of passive 22 Na efflux, which is insensitive to actinomycin D and therefore does not seem to depend on transcription of genomic information

  7. The impact of ColRS two-component system and TtgABC efflux pump on phenol tolerance of Pseudomonas putida becomes evident only in growing bacteria

    Directory of Open Access Journals (Sweden)

    Kivisaar Maia

    2010-04-01

    Full Text Available Abstract Background We have recently found that Pseudomonas putida deficient in ColRS two-component system is sensitive to phenol and displays a serious defect on solid glucose medium where subpopulation of bacteria lyses. The latter phenotype is significantly enhanced by the presence of phenol in growth medium. Here, we focused on identification of factors affecting phenol tolerance of the colR-deficient P. putida. Results By using transposon mutagenesis approach we identified a set of phenol-tolerant derivatives of colR-deficient strain. Surprisingly, half of independent phenol tolerant clones possessed miniTn5 insertion in the ttgABC operon. However, though inactivation of TtgABC efflux pump significantly enhanced phenol tolerance, it did not affect phenol-enhanced autolysis of the colR mutant on glucose medium indicating that phenol- and glucose-caused stresses experienced by the colR-deficient P. putida are not coupled. Inactivation of TtgABC pump significantly increased the phenol tolerance of the wild-type P. putida as well. Comparison of phenol tolerance of growing versus starving bacteria revealed that both ColRS and TtgABC systems affect phenol tolerance only under growth conditions and not under starvation. Flow cytometry analysis showed that phenol strongly inhibited cell division and to some extent also caused cell membrane permeabilization to propidium iodide. Single cell analysis of populations of the ttgC- and colRttgC-deficient strains revealed that their membrane permeabilization by phenol resembles that of the wild-type and the colR mutant, respectively. However, cell division of P. putida with inactivated TtgABC pump seemed to be less sensitive to phenol than that of the parental strain. At the same time, cell division appeared to be more inhibited in the colR-mutant strain than in the wild-type P. putida. Conclusions ColRS signal system and TtgABC efflux pump are involved in the phenol tolerance of P. putida. However, as

  8. Efflux pump-deficient mutants as a platform to search for microbes that produce antibiotics.

    Science.gov (United States)

    Molina-Santiago, Carlos; Udaondo, Zulema; Daddaoua, Abdelali; Roca, Amalia; Martín, Jesús; Pérez-Victoria, Ignacio; Reyes, Fernando; Ramos, Juan-Luis

    2015-07-01

    Pseudomonas putida DOT-T1E-18 is a strain deficient in the major antibiotic efflux pump (TtgABC) that exhibits an overall increased susceptibility to a wide range of drugs when compared with the wild-type strain. We used this strain as a platform to search for microbes able to produce antibiotics that inhibit growth. A collection of 2400 isolates from soil, sediments and water was generated and a drop assay developed to identify, via growth inhibition halos, strains that prevent the growth of DOT-T1E-18 on solid Luria-Bertani plates. In this study, 35 different isolates that produced known and unknown antibiotics were identified. The most potent inhibitor of DOT-T1E-18 growth was an isolate named 250J that, through multi-locus sequence analysis, was identified as a Pseudomonas sp. strain. Culture supernatants of 250J contain four different xantholysins that prevent growth of Gram-positive bacteria, Gram-negative and fungi. Two of the xantholysins were produced in higher concentrations and purified. Xantholysin A was effective against Bacillus, Lysinibacillus and Rhodococcus strains, and the effect against these microbes was enhanced when used in combination with other antibiotics such as ampicillin, gentamicin and kanamycin. Xantholysin C was also efficient against Gram-positive bacteria and showed an interesting antimicrobial effect against Pseudomonas strains, and a synergistic inhibitory effect with ampicillin, chloramphenicol and gentamicin. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Boeravinone B, A Novel Dual Inhibitor of NorA Bacterial Efflux Pump of Staphylococcus aureus and Human P-Glycoprotein, Reduces the Biofilm Formation and Intracellular Invasion of Bacteria.

    Science.gov (United States)

    Singh, Samsher; Kalia, Nitin P; Joshi, Prashant; Kumar, Ajay; Sharma, Parduman R; Kumar, Ashok; Bharate, Sandip B; Khan, Inshad A

    2017-01-01

    This study elucidated the role of boeravinone B, a NorA multidrug efflux pump inhibitor, in biofilm inhibition. The effects of boeravinone B plus ciprofloxacin, a NorA substrate, were evaluated in NorA-overexpressing, wild-type, and knocked-out Staphylococcus aureus (SA-1199B, SA-1199, and SA-K1758, respectively). The mechanism of action was confirmed using the ethidium bromide accumulation and efflux assay. The role of boeravinone B as a human P -glycoprotein ( P -gp) inhibitor was examined in the LS-180 (colon cancer) cell line. Moreover, its role in the inhibition of biofilm formation and intracellular invasion of S. aureus in macrophages was studied. Boeravinone B reduced the minimum inhibitory concentration (MIC) of ciprofloxacin against S. aureus and its methicillin-resistant strains; the effect was stronger in SA-1199B. Furthermore, time-kill kinetics revealed that boeravinone B plus ciprofloxacin, at subinhibitory concentration (0.25 × MIC), is as equipotent as that at the MIC level. This combination also had a reduced mutation prevention concentration. Boeravinone B reduced the efflux of ethidium bromide and increased the accumulation, thus strengthening the role as a NorA inhibitor. Biofilm formation was reduced by four-eightfold of the minimal biofilm inhibitory concentration of ciprofloxacin, effectively preventing bacterial entry into macrophages. Boeravinone B effectively inhibited P -gp with half maximal inhibitory concentration (IC 50 ) of 64.85 μM. The study concluded that boeravinone B not only inhibits the NorA-mediated efflux of fluoroquinolones but also considerably inhibits the biofilm formation of S. aureus. Its P -gp inhibition activity demonstrates its potential as a bioavailability and bioefficacy enhancer.

  10. Transmission of MDR and XDR tuberculosis in Shanghai, China.

    Directory of Open Access Journals (Sweden)

    Ming Zhao

    Full Text Available Multidrug-resistant (MDR and extensively drug-resistant (XDR tuberculosis (TB are global health problems. We sought to determine the characteristics, prevalence, and relative frequency of transmission of MDR and XDR TB in Shanghai, one of the largest cities in Asia.TB is diagnosed in district TB hospitals in Shanghai, China. Drug susceptibility testing for first-line drugs was performed for all culture positive TB cases, and tests for second-line drugs were performed for MDR cases. VNTR-7 and VNTR-16 were used to genotype the strains, and prior treatment history and treatment outcomes were determined for each patient.There were 4,379 culture positive TB cases diagnosed with drug susceptibility test results available during March 2004 through November 2007. 247 (5.6% were infected with a MDR strain of M. tuberculosis and 11 (6.3% of the 175 MDR patients whose isolate was tested for susceptibility to second-line drugs, were XDR. More than half of the patients with MDR and XDR were newly diagnosed and had no prior history of TB treatment. Nearly 57% of the patients with MDR were successfully treated.Transmission of MDR and XDR strains is a serious problem in Shanghai. While a history of prior anti-TB treatment indicates which individuals may have acquired MDR or XDR TB, it does not accurately predict which TB patients have disease caused by transmission of MDR and XDR strains. Therefore, universal drug susceptibility testing is recommended for new and retreatment TB cases.

  11. A D-octapeptide drug efflux pump inhibitor acts synergistically with azoles in a murine oral candidiasis infection model.

    Science.gov (United States)

    Hayama, Kazumi; Ishibashi, Hiroko; Ishijima, Sanae A; Niimi, Kyoko; Tansho, Shigeru; Ono, Yasuo; Monk, Brian C; Holmes, Ann R; Harding, David R K; Cannon, Richard D; Abe, Shigeru

    2012-03-01

    Clinical management of patients undergoing treatment of oropharyngeal candidiasis with azole antifungals can be impaired by azole resistance. High-level azole resistance is often caused by the overexpression of Candida albicans efflux pump Cdr1p. Inhibition of this pump therefore represents a target for combination therapies that reverse azole resistance. We assessed the therapeutic potential of the D-octapeptide derivative RC21v3, a Cdr1p inhibitor, in the treatment of murine oral candidiasis caused by either the azole-resistant C. albicans clinical isolate MML611 or its azole-susceptible parental strain MML610. RC21v3, fluconazole (FLC), or a combination of both drugs were administered orally to immunosuppressed ICR mice at 3, 24, and 27 h after oral inoculation with C. albicans. FLC protected the mice inoculated with MML610 from oral candidiasis, but was only partially effective in MML611-infected mice. The co-application of RC21v3 (0.02 μmol per dose) potentiated the therapeutic performance of FLC for mice infected with either strain. It caused a statistically significant decrease in C. albicans cfu isolated from the oral cavity of the infected mice and reduced oral lesions. RC21v3 also enhanced the therapeutic activity of itraconazole against MML611 infection. These results indicate that RC21v3 in combination with azoles has potential as a therapy against azole-resistant oral candidiasis. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Plasmid borne Carbapenem-Hydrolyzing Class D β-Lactamases (CHDLs) and AdeABC efflux pump conferring carbapenem-tigecycline resistance among Acinetobacter baumannii isolates harboring TnAbaRs.

    Science.gov (United States)

    Savari, Mohammad; Ekrami, Alireza; Shoja, Saeed; Bahador, Abbas

    2017-03-01

    Here we studied the prevalence and mechanisms of simultaneous resistance to carbapenem and tigecycline and accumulation of resistance determinants reservoirs in genome of Acinetobacter baumannii (A. baumannii) clinical isolates. Susceptibility of the isolates were measured to 18 antimicrobial agents. Genetic diversity of the microbial population was determined using the International Clonal lineage typing (IC typing), multiple locus VNTR analysis (MLVA) and plasmid profiling methods. To detect the AbaRs, Carbapenem-Hydrolyzing Class D β-Lactamases (CHDLs) genes, AdeABC efflux pump genes and resistance determinants, PCR was used. Filter mating experiments were used to prove that if carbapenem resistance genes are located on conjugative plasmids or not. Among the A. baumannii clinical isolates, 40.8% were carbapenem-tigecycline resistant and in this population, 46.9% were belonging to IC I, IC II or IC III and 53.1% were IC variants. These isolates had fallen in 40 MLVA types and were harboring plasmids in multiple numbers and sizes. In this study, bla OXA-23-like was the most prevalent CHDL and conjugation analysis proved that the carbapenem resistance genes are located on conjugative plasmids. All efflux pump genes, except for adeC, were detected in all carbapenem-tigecycline resistant A. baumannii (CTRAb) isolates. Resistance determinants were distributed in both TnAbaRs and R plasmids with a shift toward the R plasmids. Emerging of carbapenem resistant A. baumannii (CRAB) with simultaneous resistance to the last line therapy including tigecycline represent emerging of extensively drug resistance (XDR) and pandrug resistance (PDR) phenotypes that would be a great threat to our public health system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. From MDR to MXR

    DEFF Research Database (Denmark)

    Litman, Thomas; Druley, T E; Stein, W D

    2001-01-01

    The ATP binding cassette (ABC) superfamily of membrane transporters is one of the largest protein classes known, and counts numerous proteins involved in the trafficking of biological molecules across cell membranes. The first known human ABC transporter was P-glycoprotein (P-gp), which confers...... multidrug resistance (MDR) to anticancer drugs. In recent years, we have obtained an increased understanding of the mechanism of action of P-gp as its ATPase activity, substrate specificity and pharmacokinetic interactions have been investigated. This review focuses on the functional characterization of P...... for reversal of MDR in cancer and for drug delivery, are discussed....

  14. Inhibitory Effects of Neochamaejasmin B on P-Glycoprotein in MDCK-hMDR1 Cells and Molecular Docking of NCB Binding in P-Glycoprotein

    Directory of Open Access Journals (Sweden)

    Lanying Pan

    2015-02-01

    Full Text Available Stellera chamaejasme L. (Thymelaeaceae is widely distributed in Mongolia, Tibet and the northern parts of China. Its roots are commonly used as “Langdu”, which is embodied in the Pharmacopoeia of the P.R. China (2010 as a toxic Traditional Chinese Medicine. It is claimed to have antivirus, antitumor and antibacterial properties in China and other Asian countries. Studies were carried out to characterize the inhibition of neochamaejasmin B (NCB on P-glycoprotein (P-gp, ABCB1, MDR1. Rhodamine-123 (R-123 transport and accumulation studies were performed in MDCK-hMDR1 cells. ABCB1 (MDR1 mRNA gene expression and P-gp protein expression were analyzed. Binding selectivity studies based on molecular docking were explored. R-123 transport and accumulation studies in MDCK-hMDR1 cells indicated that NCB inhibited the P-gp-mediated efflux in a concentration-dependent manner. RT-PCR and Western blot demonstrated that the P-gp expression was suppressed by NCB. To investigate the inhibition type of NCB on P-gp, Ki and Ki’ values were determined by double-reciprocal plots in R-123 accumulation studies. Since Ki was greater than Ki’, the inhibition of NCB on P-gp was likely a mixed type of competitive and non-competitive inhibition. The results were confirmed by molecular docking in our current work. The docking data indicated that NCB had higher affinity to P-gp than to Lig1 ((S-5,7-dihydroxy-2-(4-hydroxyphenylchroman-4-one.

  15. Personalized Medicine Digoxin Theraphy in Individuals with MDR Gene Polymorphism

    Directory of Open Access Journals (Sweden)

    Em Sutrisna

    2015-06-01

    Full Text Available Digoxin is one of digitalis drugs. Wider applicability to heart failure and arrhythmias (supraventricular requires fairly strict scrutiny because of its narrow therapeutic index. Digoxin is a substrate of P-glycoprotein (P-gp encoded by multi drugs resistance-1 (MDR1. MDR-1 gen located on chromosome 7q21.1. This gene contains 28 exons that encoded a protein of 1280 amino acids. This gene plays an important role in the absorption, distribution and elimination of many drugs. MDR1C3435T polymorphism occurs in exon 26. There are three types of MDR1C3435T gene namely MDR1C3435T CC, MDR1C3435T CT and MDR1C3435T TT. These polymorphisms will affect to the formation of P-gp and consequently to change the kinetic profile of digoxin. The change of kinetic profile causes changes in the digoxin blood levels. The method used in this review is data search based on pubmed, medline, and embase with keywords MDR and digoxin. There are several different studies of the influence of polymorphisms MDR1C3435T on blood digoxin levels. Increased levels of digoxin in the blood due to polymorphism of MDR1C3435T will be at risk of digitalis intoxication. Long-term digoxin treatment or large dose should consider the patient’s genetic profile. Distribution of polymorphism of MDR1C3435T in Javanese population is approximately TT (0,10, CT (0,52, and CC(0, 38.

  16. Multidrug-Resistant CTX-M-(15, 9, 2)- and KPC-2-Producing Enterobacter hormaechei and Enterobacter asburiae Isolates Possessed a Set of Acquired Heavy Metal Tolerance Genes Including a Chromosomal sil Operon (for Acquired Silver Resistance).

    Science.gov (United States)

    Andrade, Leonardo N; Siqueira, Thiago E S; Martinez, Roberto; Darini, Ana Lucia C

    2018-01-01

    Bacterial resistance to antibiotics is concern in healthcare-associated infections. On the other hand, bacterial tolerance to other antimicrobials, like heavy metals, has been neglected and underestimated in hospital pathogens. Silver has long been used as an antimicrobial agent and it seems to be an important indicator of heavy metal tolerance. To explore this perspective, we searched for the presence of acquired silver resistance genes ( sil operon: silE, silS, silR, silC, silF, silB, silA , and silP ) and acquired extended-spectrum cephalosporin and carbapenem resistance genes ( bla CTX-M and bla KPC ) in Enterobacter cloacae Complex (EcC) ( n = 27) and Enterobacter aerogenes ( n = 8) isolated from inpatients at a general hospital. Moreover, the genetic background of the silA (silver-efflux pump) and the presence of other acquired heavy metal tolerance genes, pcoD (copper-efflux pump), arsB (arsenite-efflux pump), terF (tellurite resistance protein), and merA (mercuric reductase) were also investigated. Outstandingly, 21/27 (78%) EcC isolates harbored silA gene located in the chromosome. Complete sil operon was found in 19/21 silA -positive EcC isolates. Interestingly, 8/20 (40%) E. hormaechei and 5/6 (83%) E. asburiae co-harbored silA/pcoD genes and bla CTX-M-(15,2,or9) and/or bla KPC-2 genes. Frequent occurrences of arsB, terF , and merA genes were detected, especially in silA/pcoD -positive, multidrug-resistant (MDR) and/or CTX-M-producing isolates. Our study showed co-presence of antibiotic and heavy metal tolerance genes in MDR EcC isolates. In our viewpoint, there are few studies regarding to bacterial heavy metal tolerance and we call attention for more investigations and discussion about this issue in different hospital pathogens.

  17. Multidrug-Resistant CTX-M-(15, 9, 2- and KPC-2-Producing Enterobacter hormaechei and Enterobacter asburiae Isolates Possessed a Set of Acquired Heavy Metal Tolerance Genes Including a Chromosomal sil Operon (for Acquired Silver Resistance

    Directory of Open Access Journals (Sweden)

    Leonardo N. Andrade

    2018-03-01

    Full Text Available Bacterial resistance to antibiotics is concern in healthcare-associated infections. On the other hand, bacterial tolerance to other antimicrobials, like heavy metals, has been neglected and underestimated in hospital pathogens. Silver has long been used as an antimicrobial agent and it seems to be an important indicator of heavy metal tolerance. To explore this perspective, we searched for the presence of acquired silver resistance genes (sil operon: silE, silS, silR, silC, silF, silB, silA, and silP and acquired extended-spectrum cephalosporin and carbapenem resistance genes (blaCTX−M and blaKPC in Enterobacter cloacae Complex (EcC (n = 27 and Enterobacter aerogenes (n = 8 isolated from inpatients at a general hospital. Moreover, the genetic background of the silA (silver-efflux pump and the presence of other acquired heavy metal tolerance genes, pcoD (copper-efflux pump, arsB (arsenite-efflux pump, terF (tellurite resistance protein, and merA (mercuric reductase were also investigated. Outstandingly, 21/27 (78% EcC isolates harbored silA gene located in the chromosome. Complete sil operon was found in 19/21 silA-positive EcC isolates. Interestingly, 8/20 (40% E. hormaechei and 5/6 (83% E. asburiae co-harbored silA/pcoD genes and blaCTX−M−(15,2,or9 and/or blaKPC−2 genes. Frequent occurrences of arsB, terF, and merA genes were detected, especially in silA/pcoD-positive, multidrug-resistant (MDR and/or CTX-M-producing isolates. Our study showed co-presence of antibiotic and heavy metal tolerance genes in MDR EcC isolates. In our viewpoint, there are few studies regarding to bacterial heavy metal tolerance and we call attention for more investigations and discussion about this issue in different hospital pathogens.

  18. Efflux-mediated antimicrobial resistance.

    Science.gov (United States)

    Poole, Keith

    2005-07-01

    Antibiotic resistance continues to plague antimicrobial chemotherapy of infectious disease. And while true biocide resistance is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are common and the history of antibiotic resistance should not be ignored in the development and use of biocidal agents. Efflux mechanisms of resistance, both drug specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials, with some accommodating both antibiotics and biocides. This latter raises the spectre (as yet generally unrealized) of biocide selection of multiple antibiotic-resistant organisms. Multidrug efflux mechanisms are broadly conserved in bacteria, are almost invariably chromosome-encoded and their expression in many instances results from mutations in regulatory genes. In contrast, drug-specific efflux mechanisms are generally encoded by plasmids and/or other mobile genetic elements (transposons, integrons) that carry additional resistance genes, and so their ready acquisition is compounded by their association with multidrug resistance. While there is some support for the latter efflux systems arising from efflux determinants of self-protection in antibiotic-producing Streptomyces spp. and, thus, intended as drug exporters, increasingly, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, appear not to be intended as drug exporters but as exporters with, perhaps, a variety of other roles in bacterial cells. Still, given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents, for example, less impacted by efflux and in targeting efflux directly with efflux inhibitors.

  19. [Molecular evolution of the sulphite efflux gene SSU1 in Saccharomyces cerevisiae].

    Science.gov (United States)

    Peng, Li-Xin; Sun, Fei-Fei; Huang, Yan-Yan; Li, Zhen-Chong

    2013-11-01

    The SSU1 gene encoding a membrane sulfite pump is a main facilitator invovled in sulfite efflux. In Saccharomyce cerevisiae, various range of resistance to sulfite was observed among strains. To explore the evolution traits of SSU1 gene, the population data of S. cerevisiae were collected and analyzed. The phylogenetic analysis indicated that S. cerevisiae population can be classified into three sub-populations, and the positive selection was detected in population by McDonald-Kreitman test. The anaylsis of Ka/Ks ratios further showed that S. cerevisiae sub-population was undergoing positive selection. This finding was also supported by PAML branch model. Nine potential positive selection sites were predicted by branch-site model, and four sites exclusively belong to the sub-population under positive seletion. The data from ssulp protein structure demonstrated that three sites are substitutions between polar and hydrophobic amino acids, and only one site of substitutaion from basic amino acid to basic amino acid (345R/K). Because amino acid pKa values are crucial for sulfite pump to maintain their routine function, positive selection of these amino acid substitutions might affect sulfite efflux efficient.

  20. Trans-Cinnamaldehyde and Eugenol Increase Acinetobacter baumannii Sensitivity to Beta-Lactam Antibiotics

    Directory of Open Access Journals (Sweden)

    Deepti P. Karumathil

    2018-05-01

    Full Text Available Multi-drug resistant (MDR Acinetobacter baumannii is a major nosocomial pathogen causing a wide range of clinical conditions with significant mortality rates. A. baumannii strains are equipped with a multitude of antibiotic resistance mechanisms, rendering them resistant to most of the currently available antibiotics. Thus, there is a critical need to explore novel strategies for controlling antibiotic resistance in A. baumannii. This study investigated the efficacy of two food-grade, plant-derived antimicrobials (PDAs, namely trans-cinnamaldehyde (TC and eugenol (EG in decreasing A. baumannii’s resistance to seven β-lactam antibiotics, including ampicillin, methicillin, meropenem, penicillin, aztreonam, amoxicillin, and piperacillin. Two MDR A. baumannii isolates (ATCC 17978 and AB 251847 were separately cultured in tryptic soy broth (∼6 log CFU/ml containing the minimum inhibitory concentration (MIC of TC or EG with or without the MIC of each antibiotic at 37°C for 18 h. A. baumannii strains not exposed to the PDAs or antibiotics served as controls. Following incubation, A. baumannii counts were determined by broth dilution assay. In addition, the effect of PDAs on the permeability of outer membrane and efflux pumps in A. baumannii was measured. Further, the effect of TC and EG on the expression of A. baumannii genes encoding resistance to β-lactam antibiotics (blaP, efflux pumps (adeABC, and multi-drug resistant protein (mdrp was studied using real-time quantitative PCR (RT-qPCR. The experiment was replicated three times with duplicate samples of each treatment and control. The results from broth dilution assay indicated that both TC and EG in combination with antibiotics increased the sensitivity of A. baumannii to all the tested antibiotics (P < 0.05. The two PDAs inhibited the function of A. baumannii efflux pump, (AdeABC, but did not increase the permeability of its outer membrane. Moreover, RT-qPCR data revealed that TC and EG

  1. The roles of CDR1, CDR2, and MDR1 in kaempferol-induced suppression with fluconazole-resistant Candida albicans.

    Science.gov (United States)

    Shao, Jing; Zhang, MengXiang; Wang, TianMing; Li, Yue; Wang, ChangZhong

    2016-01-01

    Fungal infections caused by fluconazole-resistant Candida albicans are an intractable clinical problem, calling for new efficient antifungal drugs. Kaempferol, an active flavonoid, has been considered a potential candidate against Candida species. This work investigates the resistance reversion of kaempferol in fluconazole-resistant C. albicans and the underlying mechanism. The antifungal activities of fluconazole and/or kaempferol were assessed by a series of standard procedures including broth microdilution method, checkerboard assay and time-kill (T-K) test in nine clinical strains as well as a standard reference isolate of C. albicans. Subsequently, the morphological changes, the efflux of rhodamine 6G, and the expressions of CDR 1, CDR 2, and MDR 1 were analysed by scanning electron microscope (SEM), inverted fluorescence microscope and quantitative reverse transcription polymerase chain reaction (qRT-PCR) in C. albicans z2003. For all the tested C. albicans strains, the minimum inhibitory concentrations (MICs) of fluconazole and kaempferol ranged 0.25-32 and 128-256 μg/mL with a range of fractional inhibitory concentration index of 0.257-0.531. In C. albicans z2003, the expression of both CDR 1 and CDR 2 were decreased after exposure to kaempferol alone with negligible rhodamine 6G accumulation, while the expression of CDR 1, CDR 2 and MDR 1 were all decreased when fluconazole and kaempferol were used concomitantly with notable fluorescence of rhodamine 6G observed. Kaempferol-induced reversion in fluconazole-resistant C. albicans might be likely due to the suppression of the expression of CDR1, CDR2 and MDR1.

  2. Experience with LDR and MDR brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Okawa, Tomohiko; Okawa, Midori-Kita; Kaneyasu, Yuko; Karasawa, Kumiko; Fukuhara, Noboru

    1996-01-01

    As the brachytherapy dose-rate increases, it is necessary to reduce the total dose or to increase the fraction number with reducing the fraction dose in order not to increase the incidence of the late effect. With the introduction to the Tokyo Women's Medical College, Hospital of a remote afterloading system of Selectron - MDR, delivering dose-rate to point A became approximately twice of that with our classical cesium LDR manual afterloading technique. Material and Methods: Between 1987 to 1993 a total of, previously untreated 74 patients with cervical cancer received MDR brachytherapy using a Selection - MDR. This analysis is therefore of those patients series who underwent radical radioradiotherapy with MDR, 1987-1993, in comparison with the 347 cases who were treated with classical manual LDR afterloading machine, 1969-1986. The treatment was a brachytherapy during external radiotherapy and dos-rate at point A was 160-180 cGy/hour with MDR and 80-90 cGy/hour with LDR. The mean fraction dose was 800-1000 cGy by MDR and 1000-1200 cGy by LDR and fraction number was increased 1-2times in the MDR group with no change of a total dose at point A. Results: The mean age was 63.3 years in the MDR group and 60.2 in the LDR group. In the MDR group, 4 patients were at stage I, 16 stage II, 32 stage III, and 22 stage IV. In the LDR group, 32 were at stage I, 83 stage II, 183 stage III, and 49 stage IV. The medical rate was not significantly different between two groups. The tumor response by manual examination one month after radiotherapy showed no significant difference. The 5-year survival rate for the MDR and LDR groups were 100% : 78% at stage I, 61% : 71% at stage II and 52% : 53% at stage III, with no significant differences. Late complications by severity with grade II-III according to Kottureire's classification were not significantly different in the rectum or bladder. These results suggested that MDR brachytherapy was useful for the patients' QOL as it reduced the

  3. Expression of the AcrAB Components of the AcrAB-TolC Multidrug Efflux Pump of Yersinia enterocolitica Is Subject to Dual Regulation by OmpR.

    Directory of Open Access Journals (Sweden)

    Adrianna Raczkowska

    Full Text Available OmpR is a transcriptional regulator implicated in the control of various cellular processes and functions in Enterobacteriaceae. This study was undertaken to identify genes comprising the OmpR regulon in the human gastrointestinal pathogen Yersinia enterocolitica. Derivatives of an ompR-negative strain with random transposon insertions creating transcriptional fusions with the reporter gene lacZ were isolated. These were supplied with the wild-type ompR allele in trans and then screened for OmpR-dependent changes in β-galactosidase activity. Using this strategy, five insertions in genes/operons positively regulated by OmpR and two insertions in genes negatively regulated by this protein were identified. Genetic analysis of one of these fusion strains revealed that the gene acrR, encoding transcriptional repressor AcrR is negatively regulated by OmpR. Differential analysis of membrane proteins by SDS-PAGE followed by mass spectrometry identified the protein AcrB, a component of the AcrAB-TolC multidrug efflux pump, as being positively regulated by OmpR. Analysis of the activity of the acrR and acrAB promoters using gfp fusions confirmed their OmpR-dependent repression and activation, respectively. The identification of putative OmpR-binding sites and electrophoretic mobility shift assays confirmed that this regulator binds specifically to both promoter regions with different affinity. Examination of the activity of the acrR and acrAB promoters after the exposure of cells to different chemicals showed that bile salts can act as an OmpR-independent inducer. Taken together, our findings suggest that OmpR positively controls the expression of the AcrAB-TolC efflux pump involved in the adaptive response of Y. enterocolitica O:9 to different chemical stressors, thus conferring an advantage in particular ecological niches.

  4. Expression of multidrug resistance efflux pump gene norA is iron responsive in Staphylococcus aureus.

    Science.gov (United States)

    Deng, Xin; Sun, Fei; Ji, Quanjiang; Liang, Haihua; Missiakas, Dominique; Lan, Lefu; He, Chuan

    2012-04-01

    Staphylococcus aureus utilizes efflux transporter NorA to pump out a wide range of structurally dissimilar drugs, conferring low-level multidrug resistance. The regulation of norA expression has yet to be fully understood although past studies have revealed that this gene is under the control of the global transcriptional regulator MgrA and the two-component system ArlRS. To identify additional regulators of norA, we screened a transposon library in strain Newman expressing the transcriptional fusion norA-lacZ for altered β-galactosidase activity. We identify a transposon insertion in fhuB, a gene that encodes a ferric hydroxamate uptake system permease, and propose that the norA transcription is iron responsive. In agreement with this observation, addition of FeCl(3) repressed the induction of norA-lacZ, suggesting that bacterial iron uptake plays an important role in regulating norA transcription. In addition, a fur (ferric uptake regulator) deletion exhibited compromised norA transcription and reduced resistance to quinolone compared to the wild-type strain, indicating that fur functions as a positive regulator of norA. A putative Fur box identified in the promoter region of norA was confirmed by electrophoretic mobility shift and DNase I footprint assays. Finally, by employing a siderophore secretion assay, we reveal that NorA may contribute to the export of siderophores. Collectively, our experiments uncover some novel interactions between cellular iron level and norA regulation in S. aureus.

  5. Quantitative structure activity relationship (QSAR) of piperine analogs for bacterial NorA efflux pump inhibitors.

    Science.gov (United States)

    Nargotra, Amit; Sharma, Sujata; Koul, Jawahir Lal; Sangwan, Pyare Lal; Khan, Inshad Ali; Kumar, Ashwani; Taneja, Subhash Chander; Koul, Surrinder

    2009-10-01

    Quantitative structure activity relationship (QSAR) analysis of piperine analogs as inhibitors of efflux pump NorA from Staphylococcus aureus has been performed in order to obtain a highly accurate model enabling prediction of inhibition of S. aureus NorA of new chemical entities from natural sources as well as synthetic ones. Algorithm based on genetic function approximation method of variable selection in Cerius2 was used to generate the model. Among several types of descriptors viz., topological, spatial, thermodynamic, information content and E-state indices that were considered in generating the QSAR model, three descriptors such as partial negative surface area of the compounds, area of the molecular shadow in the XZ plane and heat of formation of the molecules resulted in a statistically significant model with r(2)=0.962 and cross-validation parameter q(2)=0.917. The validation of the QSAR models was done by cross-validation, leave-25%-out and external test set prediction. The theoretical approach indicates that the increase in the exposed partial negative surface area increases the inhibitory activity of the compound against NorA whereas the area of the molecular shadow in the XZ plane is inversely proportional to the inhibitory activity. This model also explains the relationship of the heat of formation of the compound with the inhibitory activity. The model is not only able to predict the activity of new compounds but also explains the important regions in the molecules in quantitative manner.

  6. Combating multidrug-resistant Gram-negative bacterial infections.

    Science.gov (United States)

    Xu, Ze-Qi; Flavin, Michael T; Flavin, John

    2014-02-01

    Multidrug-resistant (MDR) bacterial infections, especially those caused by Gram-negative pathogens, have emerged as one of the world's greatest health threats. The development of novel antibiotics to treat MDR Gram-negative bacteria has, however, stagnated over the last half century. This review provides an overview of recent R&D activities in the search for novel antibiotics against MDR Gram-negatives. It provides emphasis in three key areas. First, the article looks at new analogs of existing antibiotic molecules such as β-lactams, tetracyclines, and aminoglycoside as well as agents against novel bacterial targets such as aminoacyl-tRNA synthetase and peptide deformylase. Second, it also examines alternative strategies to conventional approaches including cationic antimicrobial peptides, siderophores, efflux pump inhibitors, therapeutic antibodies, and renewed interest in abandoned treatments or those with limited indications. Third, the authors aim to provide an update on the current clinical development status for each drug candidate. The traditional analog approach is insufficient to meet the formidable challenge brought forth by MDR superbugs. With the disappointing results of the genomics approach for delivering novel targets and drug candidates, alternative strategies to permeate the bacterial cell membrane, enhance influx, disrupt efflux, and target specific pathogens via therapeutic antibodies are attractive and promising. Coupled with incentivized business models, governmental policies, and a clarified regulatory pathway, it is hoped that the antibiotic pipeline will be filled with an effective armamentarium to safeguard global health.

  7. ECG-triggered MDR-CT for the detection of pulmonary metastases

    International Nuclear Information System (INIS)

    Pauls, S.; Wahl, J.; Aschoff, A.J.; Brambs, H.J.; Fleiter, T.R.

    2003-01-01

    Purpose: Comparison of multidetector-row CT (MDR-CT) of the chest with and without ECG triggering for the detection of pulmonary metastases. Materials and Methods: Fifty patients with malignant tumors underwent CT of the chest. The unenhanced phase was performed with ECG-triggered MDR-CT and the contrast-enhanced phase with helical MDR-CT. The ECG-triggered and standard helical scans were interpreted in separate sessions, with the analysis determining the number and demarcation of the intrapulmonary nodules and the delineation of the mediastinal structure (rated 1 = excellent to 5 = poor). Results: ECG-MDR-CT images detected 38% more pulmonary nodules than MDR-CT. The detection rate for tumors [de

  8. Lack of efflux mediated quinolone resistance in Salmonella enterica serovars Typhi and Paratyphi A

    Directory of Open Access Journals (Sweden)

    Sylvie eBaucheron

    2014-01-01

    Full Text Available Salmonella enterica serovars Typhi and Paratyphi A isolates from human patients in France displaying different levels of resistance to quinolones or fluoroquinolones were studied for resistance mechanisms to these antimicrobial agents. All resistant isolates carried either single or multiple target gene mutations (i.e. in gyrA, gyrB, or parC correlating with the resistance levels observed. Active efflux, through upregulation of multipartite efflux systems, has also been previously reported as contributing mechanism for other serovars. Therefore, we investigated also the occurrence of non-target gene mutations in regulatory regions affecting efflux pump expression. However, no mutation was detected in these regions in both Typhi and Paratyphi isolates of this study. Besides, no overexpression of the major efflux systems was observed for these isolates. Nevertheless, a large deletion of 2334 bp was identified in the acrS-acrE region of all S. Typhi strains but which did not affect the resistance phenotype. As being specific to S. Typhi, this deletion could be used for specific molecular detection purposes. In conclusion, the different levels of quinolone or FQ resistance in both S. Typhi and S. Paratyphi A seem to rely only on target modifications.

  9. Enhanced resistance to fluoroquinolones in laboratory-grown mutants & clinical isolates of Shigella due to synergism between efflux pump expression & mutations in quinolone resistance determining region

    Directory of Open Access Journals (Sweden)

    Neelam Taneja

    2015-01-01

    Full Text Available Background & objectives: There is a worldwide emergence of fluoroquinolone resistance in Shigella species. To understand the molecular mechanisms associated with fluoroquinolone resistance, naturally occurring fluoroquinolone-resistant strains and laboratory-induced spontaneous mutants of Shigella spp. were used and the relative contributions of acrAB-tolC efflux pumps, gyrase and topoisomerase target gene mutations towards fluoroquinolone resistance were determined. Methods: Eight Shigella flexneri and six S. dysenteriae clinical isolates were studied. Three consecutive mutants resistant to ciprofloxacin for S. flexneri SFM1 (≥0.25 µg/ml, SFM2 (≥4 µg/ml and SFM3 (≥32 µg/ml were selected in 15 steps from susceptible isolates by serial exposure to increasing concentrations of nalidixic acid and ciprofloxacin. Similarly, two mutants for S. dysenteriae SDM1 (≥0.25 µg/ml and SDM2 (≥4 µg/ml were selected in eight steps. After PCR amplification sequence analyses of gyrase and topoisomerase target genes were performed. Expression of efflux genes acrA, acrB, acrR and tolC was measured using real-time PCR. Results: Mutations were observed in gyrA Ser [83]→Leu, Asp [87]→Asn/Gly, Val [196]→Ala and in parC Phe [93]→Val, Ser [80]→Ile, Asp [101]→Glu and Asp [110]→Glu. Overall, acrA and acrB overexpression was associated with fluoroquinolone resistance ( p0 <0.05; while tolC and acrR expression levels did not. Interpretation & conclusions: Fluoroquinolone resistance in Shigella spp. is the end product of either a single or a combination of mutations in QRDRs and/ or efflux activity. Novel polymorphisms were observed at Val [196]→Ala in gyrA in clinical isolates and Phe [93]→Val, Asp [101]→Glu, Asp [110]→Glu and in parC in majority of laboratory-grown mutants.

  10. Photochemical internalisation of chemotherapy potentiates killing of multidrug-resistant breast and bladder cancer cells

    Science.gov (United States)

    Adigbli, D K; Wilson, D G G; Farooqui, N; Sousi, E; Risley, P; Taylor, I; MacRobert, A J; Loizidou, M

    2007-01-01

    Multidrug resistance (MDR) is the major confounding factor in adjuvant solid tumour chemotherapy. Increasing intracellular amounts of chemotherapeutics to circumvent MDR may be achieved by a novel delivery method, photochemical internalisation (PCI). PCI consists of the co-administration of drug and photosensitiser; upon light activation the latter induces intracellular release of organelle-bound drug. We investigated whether co-administration of hypericin (photosensitiser) with mitoxantrone (MTZ, chemotherapeutic) plus illumination potentiates cytotoxicity in MDR cancer cells. We mapped the extent of intracellular co-localisation of drug/photosensitiser. We determined whether PCI altered drug-excreting efflux pump P-glycoprotein (Pgp) expression or function in MDR cells. Bladder and breast cancer cells and their Pgp-overexpressing MDR subclones (MGHU1, MGHU1/R, MCF-7, MCF-7/R) were given hypericin/MTZ combinations, with/without blue-light illumination. Pilot experiments determined appropriate sublethal doses for each. Viability was determined by the 3-[4,5-dimethylthiazolyl]-2,5-diphenyltetrazolium bromide assay. Intracellular localisation was mapped by confocal microscopy. Pgp expression was detected by immunofluorescence and Pgp function investigated by Rhodamine123 efflux on confocal microscopy. MTZ alone (0.1–0.2 μg ml−1) killed up to 89% of drug-sensitive cells; MDR cells exhibited less cytotoxicity (6–28%). Hypericin (0.1–0.2 μM) effects were similar for all cells; light illumination caused none or minimal toxicity. In combination, MTZ /hypericin plus illumination, potentiated MDR cell killing, vs hypericin or MTZ alone. (MGHU1/R: 38.65 and 36.63% increase, P<0.05; MCF-7/R: 80.2 and 46.1% increase, P<0.001). Illumination of combined MTZ/hypericin increased killing by 28.15% (P<0.05 MGHU1/R) compared to dark controls. Intracytoplasmic vesicular co-localisation of MTZ/hypericin was evident before illumination and at serial times post

  11. Analysis of multi drug resistant tuberculosis (MDR-TB) financial protection policy: MDR-TB health insurance schemes, in Chhattisgarh state, India.

    Science.gov (United States)

    Kundu, Debashish; Sharma, Nandini; Chadha, Sarabjit; Laokri, Samia; Awungafac, George; Jiang, Lai; Asaria, Miqdad

    2018-01-27

    There are significant financial barriers to access treatment for multi drug resistant tuberculosis (MDR-TB) in India. To address these challenges, Chhattisgarh state in India has established a MDR-TB financial protection policy by creating MDR-TB benefit packages as part of the universal health insurance scheme that the state has rolled out in their effort towards attaining Universal Health Coverage for all its residents. In these schemes the state purchases health insurance against set packages of services from third party health insurance agencies on behalf of all its residents. Provider payment reform by strategic purchasing through output based payments (lump sum fee is reimbursed as per the MDR-TB benefit package rates) to the providers - both public and private health facilities empanelled under the insurance scheme was the key intervention. To understand the implementation gap between policy and practice of the benefit packages with respect to equity in utilization of package claims by the poor patients in public and private sector. Data from primary health insurance claims from January 2013 to December 2015, were analysed using an extension of 'Kingdon's multiple streams for policy implementation framework' to explain the implementation gap between policy and practice of the MDR-TB benefit packages. The total number of claims for MDR-TB benefit packages increased over the study period mainly from poor patients treated in public facilities, particularly for the pre-treatment evaluation and hospital stay packages. Variations and inequities in utilizing the packages were observed between poor and non-poor beneficiaries in public and private sector. Private providers participation in the new MDR-TB financial protection mechanism through the universal health insurance scheme was observed to be much lower than might be expected given their share of healthcare provision overall in India. Our findings suggest that there may be an implementation gap due to weak

  12. Lack of biliary lipid excretion in the little skate, Raja erinacea, indicates the absence of functional Mdr2, Abcg5, and Abcg8 transporters

    NARCIS (Netherlands)

    Elferink, Ronald P. J. Oude; Ottenhoff, Roelof; Fricker, Gert; Seward, David J.; Ballatori, Nazzareno; Boyer, James

    2004-01-01

    The ABC transporters bile salt export pump ( BSEP; encoded by the ABCB11 gene), MDR3 P-glycoprotein (ABCB4), and sterolin 1 and 2 (ABCG5 and ABCG8) are crucial for the excretion of bile salt, phospholipid, and cholesterol, respectively, into the bile of mammals. The current paradigm is that

  13. Efflux protein expression in human stem cell-derived retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Kati Juuti-Uusitalo

    Full Text Available Retinal pigment epithelial (RPE cells in the back of the eye nourish photoreceptor cells and form a selective barrier that influences drug transport from the blood to the photoreceptor cells. At the molecular level, ATP-dependent efflux transporters have a major role in drug delivery in human RPE. In this study, we assessed the relative expression of several ATP-dependent efflux transporter genes (MRP1, -2, -3, -4, -5, -6, p-gp, and BCRP, the protein expression and localization of MRP1, MRP4, and MRP5, and the functionality of MRP1 efflux pumps at different maturation stages of undifferentiated human embryonic stem cells (hESC and RPE derived from the hESC (hESC-RPE. Our findings revealed that the gene expression of ATP-dependent efflux transporters MRP1, -3, -4, -5, and p-gp fluctuated during hESC-RPE maturation from undifferentiated hESC to fusiform, epithelioid, and finally to cobblestone hESC-RPE. Epithelioid hESC-RPE had the highest expression of MRP1, -3, -4, and P-gp, whereas the most mature cobblestone hESC-RPE had the highest expression of MRP5 and MRP6. These findings indicate that a similar efflux protein profile is shared between hESC-RPE and the human RPE cell line, ARPE-19, and suggest that hESC-RPE cells are suitable in vitro RPE models for drug transport studies. Embryonic stem cell model might provide a novel tool to study retinal cell differentiation, mechanisms of RPE-derived diseases, drug testing and targeted drug therapy.

  14. Analysis of mdr1-1Δ mutation of MDR1 gene in the “Cimarron Uruguayo” dog

    Directory of Open Access Journals (Sweden)

    Rosa Gagliardi B.

    2013-08-01

    Full Text Available Objective. The aim of this paper is to analyze the frequency of the mdr1-1D mutation of the MDR1 gene in a dog sample of the Uruguayan Cimarron breed with the objective of increasing the knowledge of this breed’s genome. Materials and methods. Thirty-six animals of this breed were analyzed. The MDR1 gene region, which includes the location where the mutation would be present, was amplified by PCR. Results. The mutation was not detected in any of the analyzed Uruguayan Cimarron. Conclusions. The lack of described ivermectin intoxication cases in veterinary clinic in this breed is explained by the lack of the mutation object of this study. The sequence studied in Cimarron dogs is kept compared to other breeds, except Collies and related breeds (Border Collie, Bearded Collie, Old English sheepdog.

  15. Influence of high-frequency ambient pressure pumping on carbon dioxide efflux from soil

    Science.gov (United States)

    Eugene S. Takle; William J. Massman; James R. Brandle; R. A. Schmidt; Xinhua Zhou; Irina V. Litvina; Rick Garcia; Geoffrey Doyle; Charles W. Rice

    2004-01-01

    We report measurements at 2Hz of pressure fluctuations at and beneath the soil in an agricultural field with dry soil and no vegetation. The objective of our study was to examine the possible role of pressure fluctuations produced by fluctuations in ambient wind on the efflux of CO2 at the soil surface.We observed that pressure fluctuations penetrate to 50 cm in the...

  16. Heightened vulnerability to MDR-TB epidemics after controlling drug-susceptible TB.

    Directory of Open Access Journals (Sweden)

    Jason D Bishai

    2010-09-01

    Full Text Available Prior infection with one strain TB has been linked with diminished likelihood of re-infection by a new strain. This paper attempts to determine the role of declining prevalence of drug-susceptible TB in enabling future epidemics of MDR-TB.A computer simulation of MDR-TB epidemics was developed using an agent-based model platform programmed in NetLogo (See http://mdr.tbtools.org/. Eighty-one scenarios were created, varying levels of treatment quality, diagnostic accuracy, microbial fitness cost, and the degree of immunogenicity elicited by drug-susceptible TB. Outcome measures were the number of independent MDR-TB cases per trial and the proportion of trials resulting in MDR-TB epidemics for a 500 year period after drug therapy for TB is introduced.MDR-TB epidemics propagated more extensively after TB prevalence had fallen. At a case detection rate of 75%, improving therapeutic compliance from 50% to 75% can reduce the probability of an epidemic from 45% to 15%. Paradoxically, improving the case-detection rate from 50% to 75% when compliance with DOT is constant at 75% increases the probability of MDR-TB epidemics from 3% to 45%.The ability of MDR-TB to spread depends on the prevalence of drug-susceptible TB. Immunologic protection conferred by exposure to drug-susceptible TB can be a crucial factor that prevents MDR-TB epidemics when TB treatment is poor. Any single population that successfully reduces its burden of drug-susceptible TB will have reduced herd immunity to externally or internally introduced strains of MDR-TB and can experience heightened vulnerability to an epidemic. Since countries with good TB control may be more vulnerable, their self interest dictates greater promotion of case detection and DOTS implementation in countries with poor control to control their risk of MDR-TB.

  17. P-Glycoprotein/MDR1 regulates pokemon gene transcription through p53 expression in human breast cancer cells.

    Science.gov (United States)

    He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang

    2010-08-27

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  18. Reduced intracellular drug accumulation in drug-resistant leukemia cells is not solely due to MDR-mediated efflux but also to decreased uptake

    Directory of Open Access Journals (Sweden)

    Angela Oliveira Pisco

    2014-10-01

    Full Text Available Expression of ABC family transporter proteins that promote drug efflux from cancer cells is a widely observed mechanism of multi-drug resistance of cancer cells. Cell adaptation in long-term culture of HL60 leukemic cells in the presence of chemotherapy leads to induction and maintenance of the ABC transporters expression, preventing further accumulation of drugs. However, we found that decreased accumulation of drugs and fluorescent dyes was also contributed by a reduced uptake by the resistant cells. Confocal time-lapse microscopy and flow cytometry revealed that fluid-phase endocytosis was diminished in drug-resistant cells compared to drug-sensitive cells. Drug uptake was increased by insulin co-treatment when cells were grown in methylcellulose and monitored under the microscope, but not when cultured in suspension. We propose that multi-drug resistance is not solely achieved by enhanced efflux capacity but also by supressed intake of the drug offering an alternative target to overcome drug resistance or potentiate chemotherapy.

  19. The effect of α-, β-adrenergic receptor agonists and antagonists of the efflux of 22Na and uptake of 42K by rat brain cortical slices

    International Nuclear Information System (INIS)

    Phillis, J.W.; Wu, P.H.; Thierry, D.L.

    1982-01-01

    The effects of norepinephrine on ion fluxes in rat brain cortical slices have now been ascertained. 22 Na efflux and 42 K influx are enhanced by norepinephrine. The increase in ion fluxes can be blocked by ouabain, phentolamine and propranolol, suggesting that the catecholamine activates a membrane sodium pump by a receptor-mediated step. The facilitation of 22 Na efflux is stereospecific as demonstrated by the very weak action of D-norepinephrine at 10 -5 M concentration. Various α-adrenergic and β-adrenergic receptor agonists, including oxymetazoline, naphazoline, clonidine, tramazoline, methoxamine, phenylephrine, L-isoproterenol and methoxyphenamine are potent stimulants of the sodium pump as demonstrated by their enhancement of ion fluxes in rat brain cortical slices. The results are consistent with the hypothesis that norepinephrine hyperpolarizes central neurons by activating an ouabain-sensitive, receptor-mediated sodium pump. (Auth.)

  20. MDR1 haplotypes conferring an increased expression of intestinal CYP3A4 rather than MDR1 in female living-donor liver transplant patients.

    Science.gov (United States)

    Hosohata, Keiko; Masuda, Satohiro; Yonezawa, Atsushi; Katsura, Toshiya; Oike, Fumitaka; Ogura, Yasuhiro; Takada, Yasutsugu; Egawa, Hiroto; Uemoto, Shinji; Inui, Ken-Ichi

    2009-07-01

    This study investigated whether haplotypes in the multidrug resistance 1 (MDR1) gene had effects on mRNA expression levels of MDR1 and cytochrome P450 (CYP) 3A4, and on the pharmacokinetics of tacrolimus in living-donor liver transplant (LDLT) patients, considering the gender difference. Haplotype analysis of MDR1 with G2677T/A and C3435T was performed in 63 de novo Japanese LDLT patients (17 to 55 years; 44.4% women). The expression levels of MDR1 and CYP3A4 mRNAs in jejunal biopsy specimens were quantified by real-time PCR. Intestinal CYP3A4 mRNA expression levels (amol/microg total RNA) showed significantly higher values in women carrying the 2677TT-3435TT haplotype (median, 10.7; range, 5.92-15.2) than those with 2677GG-3435CC (3.03; range 1.38-4.68) and 2677GT-3435CT (median, 4.31; range, 0.07-9.42) (P = 0.022), but not in men (P = 0.81). However, MDR1 haplotype did not influence mRNA expression levels of MDR1 nor the concentration/dose ratio [(ng/mL)/(mg/day)] of oral tacrolimus for the postoperative 7 days, irrespective of gender. MDR1 haplotype may have a minor association with the tacrolimus pharmacokinetics after LDLT, but could be a good predictor of the inter-individual variation of intestinal expression of CYP3A4 in women.

  1. Efflux-mediated resistance to a benzothiadiazol derivative effective against Burkholderia cenocepacia

    Directory of Open Access Journals (Sweden)

    Viola Camilla eScoffone

    2015-08-01

    Full Text Available Burkholderia cenocepacia is a major concern for people suffering from Cystic Fibrosis as it contributes to serious respiratory tract infections. The lack of drugs effective against this opportunistic pathogen, along with the high level of resistance to multiple antibiotics, render the treatment of these infections particularly difficult.Here a new compound, belonging to the 2,1,3-benzothiadiazol-5-yl family (10126109, with a bactericidal effect and a MIC of 8 µg/ml against B. cenocepacia, is described. The compound is not cytotoxic and effective against B. cenocepacia clinical isolates and members of all the known Burkholderia cepacia complex species.Spontaneous mutants resistant to 10126109 were isolated and mutations in the MerR transcriptional regulator BCAM1948 were identified. In this way, a mechanism of resistance to this new molecule was described, which relies on the overexpression of the RND-9 efflux pump. Indeed, rnd-9 overexpression was confirmed by qRT-PCR, and RND-9 was identified in the membrane fractions of the mutant strains. Moreover, the increase in the MIC values of different drugs in the mutant strains, together with complementation experiments, suggested the involvement of RND-9 in the efflux of 10126109, thus indicating again the central role of efflux transporters in B. cenocepacia drug resistance.

  2. Pump limiter experiment in the TFR tokamak

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Pump limiter experiments are carried out in the TFR Tokamak. The first TFR pump limiter is located in the outer part of the torus, its double-throat head is made of graphite tiles, the neutralizer plates are made of stainless steel, and it is pumped by a 3500 l s -1 titanium sublimation pump. The first attempts showed that the exhaust efficiency ε of this pump limiter was low (1.5% of the total plasma particle efflux). To improve on these results, a new limiter head with a single longer throat has been built. The particles were better trapped and the pumping achieved an important decrease of the recycling coefficient. Geometric features and also the highly non linear regime of pressure in the pump limiter as a function of the density at the entrance slot could explain the increase by a factor 3.5 of the exhaust efficiency (ε = 5%). Ion temperatures of the order of a few eV have been deduced from Doppler broadening measurements at the neutralizer plate of the pump limiter. (orig.)

  3. The Acinetobacter baumannii Two-Component System AdeRS Regulates Genes Required for Multidrug Efflux, Biofilm Formation, and Virulence in a Strain-Specific Manner

    Directory of Open Access Journals (Sweden)

    Grace E. Richmond

    2016-04-01

    Full Text Available The opportunistic pathogen Acinetobacter baumannii is able to persist in the environment and is often multidrug resistant (MDR, causing difficulties in the treatment of infections. Here, we show that the two-component system AdeRS, which regulates the production of the AdeABC multidrug resistance efflux pump, is required for the formation of a protective biofilm in an ex vivo porcine mucosal model, which mimics a natural infection of the human epithelium. Interestingly, deletion of adeB impacted only on the ability of strain AYE to form a biofilm on plastic and only on the virulence of strain Singapore 1 for Galleria mellonella. RNA-Seq revealed that loss of AdeRS or AdeB significantly altered the transcriptional landscape, resulting in the changed expression of many genes, notably those associated with antimicrobial resistance and virulence interactions. For example, A. baumannii lacking AdeRS displayed decreased expression of adeABC, pil genes, com genes, and a pgaC-like gene, whereas loss of AdeB resulted in increased expression of pil and com genes and decreased expression of ferric acinetobactin transport system genes. These data define the scope of AdeRS-mediated regulation, show that changes in the production of AdeABC mediate important phenotypes controlled by AdeRS, and suggest that AdeABC is a viable target for antimicrobial drug and antibiofilm discovery.

  4. Multi drug resistance to cancer chemotherapy: Genes involved and blockers

    International Nuclear Information System (INIS)

    Sayed-Ahmed, Mohamed M.

    2007-01-01

    During the last three decades, important and considerable research efforts had been performed to investigate the mechanism through which cancer cells overcome the cytotoxic effects of a variety of chemotherapeutic drugs. Most of the previously published work has been focused on the resistance of tumor cells to those anticancer drugs of natural source. Multidrug resistance (MDR) is a cellular cross-resistance to a broad spectrum of natural products used in cancer chemotherapy and is believed to be the major cause of the therapeutic failures of the drugs belonging to different naturally obtained or semisynthetic groups including vinca alkaloids, taxans, epipodophyllotoxins and certain antibiotics. This phenomenon results from overexpression of four MDR genes and their corresponding proteins that act as membrane-bound ATP consuming pumps. These proteins mediate the efflux of many structurally and functionally unrelated anticancer drugs of natural source. MDR may be intrinsic or acquired following exposure to chemotherapy. The existence of intrinsically resistant tumor cell clone before and following chemotherapeutic treatment has been associated with a worse final outcome because of increased incidence of distant metasis. In view of irreplaceability of natural product anticancer drugs as effective chemotherapeutic agents, and in view of MDR as a major obstacle to successful chemotherapy, this review is aimed to highlight the genes involved in MDR, classical MDR blockers and gene therapy approaches to overcome MDR. (author)

  5. Efflux in fungi: la pièce de résistance.

    Directory of Open Access Journals (Sweden)

    Jeffrey J Coleman

    2009-06-01

    Full Text Available Pathogens must be able to overcome both host defenses and antimicrobial treatment in order to successfully infect and maintain colonization of the host. One way fungi accomplish this feat and overcome intercellular toxin accumulation is efflux pumps, in particular ATP-binding cassette transporters and transporters of the major facilitator superfamily. Members of these two superfamilies remove many toxic compounds by coupling transport with ATP hydrolysis or a proton gradient, respectively. Fungal genomes encode a plethora of members of these families of transporters compared to other organisms. In this review we discuss the role these two fungal superfamilies of transporters play in virulence and resistance to antifungal agents. These efflux transporters are responsible not only for export of compounds involved in pathogenesis such as secondary metabolites, but also export of host-derived antimicrobial compounds. In addition, we examine the current knowledge of these transporters in resistance of pathogens to clinically relevant antifungal agents.

  6. Phosphorylation of MgrA and its effect on expression of the NorA and NorB efflux pumps of Staphylococcus aureus.

    Science.gov (United States)

    Truong-Bolduc, Que Chi; Hooper, David C

    2010-05-01

    MgrA is a global regulator in Staphylococcus aureus that controls the expression of diverse genes encoding virulence factors and multidrug resistance (MDR) efflux transporters. We identified pknB, which encodes the (Ser/Thr) kinase PknB, in the S. aureus genome. PknB was able to autophosphorylate as well as phosphorylate purified MgrA. We demonstrated that rsbU, which encodes a Ser/Thr phosphatase and is involved in the activation of the SigB regulon, was able to dephosphorylate MgrA-P but not PknB-P. Serines 110 and 113 of MgrA were found to be phosphorylated, and Ala substitutions at these positions resulted in reductions in the level of phosphorylation of MgrA. DNA gel shift binding assays using norA and norB promoters showed that MgrA-P was able to bind the norB promoter but not the norA promoter, a pattern which was the reverse of that for unphosphorylated MgrA. The double mutant MgrA(S110A-S113A) bound to the norA promoter but not the norB promoter. The double mutant led to a 2-fold decrease in norA transcripts and a 2-fold decrease in the MICs of norfloxacin and ciprofloxacin in strain RN6390. Thus, phosphorylation of MgrA results in loss of binding to the norA promoter, but with a gain of the ability to bind the norB promoter. Loss of the ability to phosphorylate MgrA by Ala substitution resulted in increased repression of norA expression and in reductions in susceptibilities to NorA substrates.

  7. P-Glycoprotein/MDR1 Regulates Pokemon Gene Transcription Through p53 Expression in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2010-08-01

    Full Text Available P-glycoprotein (Pgp, encoded by the multidrug resistance 1 (MDR1 gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  8. Efflux of inorganic substances from young barley roots. I. Efflux in water culture under various conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, H; Kojima, S [Radiation Center of Osaka Prefecture, Sakai (Japan)

    1977-09-01

    The efflux of elements from the roots of hydropomically grown young barley plants was studied. The effects of different mutrient compositions and pH values of the solutions was also studied using /sup 22/Na and /sup 45/Ca as the indexes. In all culture conditions, there was efflux of both elements. In two media with dilute hydrochloric acid and AlCl/sub 3/, respectively, the tendencies of Na and Ca efflux were similar in both media at first, but after 72 hr, the Na efflux in AlCl/sub 3/ decreased and that in dilute hydrochloric acid medium increased. The Ca efflux was high in AlCl/sub 3/ medium,however. The efflux of both Na and Ca was higher in the standard medium than in the media with some bases of high concentrations.

  9. [Efflux systems in Serratia marcescens].

    Science.gov (United States)

    Mardanova, A M; Bogomol'naia, L M; Romanova, Iu D; Sharipova, M R

    2014-01-01

    A widespread bacterium Serratia marcescens (family Enterobacteriaceae) is an opportunistic and exhibits multiple drug resistance. Active removal of antibiotics and other antimicrobials from pathogen and exhibits multiple drug resistance. Active removal of antibiotics and other antimicrobials from the cells by efflux systems is one of the mechanisms responsible for microbial resistance to these compounds. Among enterobacteria, efflux systems of Escherichia coli and Salmonella enterica var. Typhimurium have been studied most extensively. Few efflux systems that belong to different families have been reported for S. marcescens. In this review, we analyzed available literature about S. marcescens efflux systems and carried out the comparative analysis of the genes encoding the RND type systems in different Serratia species and in other enterobacteria. Bioinformatical analysis of the S. marcescens genome allowed us to identify the previously unknown efflux systems based on their homology with the relevant E. coli genes. Identification of additional efflux systems in S. marcescens genome will promote our understanding of physiology of these bacteria, will detect new molecular mechanisms of resistance and will reveal their resistance potential.

  10. In vitro, in vivo and ex vivo characterization of ibrutinib: a potent inhibitor of the efflux function of the transporter MRP1

    Science.gov (United States)

    Zhang, Hui; Patel, Atish; Ma, Shao-Lin; Li, Xiao Jie; Zhang, Yun-Kai; Yang, Pei-Qi; Kathawala, Rishil J; Wang, Yi-Jun; Anreddy, Nagaraju; Fu, Li-Wu; Chen, Zhe-Sheng

    2014-01-01

    Background and Purpose The transporter, multidrug resistance protein 1 (MRP1, ABCC1), plays a critical role in the development of multidrug resistance (MDR). Ibrutinib is an inhibitor of Bruton's tyrosine kinase. Here we investigated the reversal effect of ibrutinib on MRP1-mediated MDR. Experimental Approach Cytotoxicity was determined by MTT assay. The expression of protein was detected by Western blot. RT-PCR and Q-PCR were performed to detect the expression of MRP1 mRNA. The intracellular accumulation and efflux of substrates for MRP1 were measured by scintillation counter and flow cytometry. HEK293/MRP1 cell xenografts in nude mice were established to study the effects of ibrutinib in vivo. Key Results Ibrutinib significantly enhanced the cytotoxicity of MRP1 substrates in HEK293/MRP1 and HL60/Adr cells overexpressing MRP1. Furthermore, ibrutinib increased the accumulation of substrates in these MRP1-overexpressing cells by inhibiting the drug efflux function of MRP1. However, mRNA and protein expression of MRP1 remained unaltered after treatment with ibrutinib in MRP1-overexpressing cells. In vivo, ibrutinib enhanced the efficacy of vincristine to inhibit the growth of HEK293/MRP1 tumour xenografts in nude mice. Importantly, ibrutinib also enhances the cytotoxicity of vincristine in primary cultures of leukaemia blasts, derived from patients. Conclusions and Implications Our results indicated that ibrutinib significantly increased the efficacy of the chemotherapeutic agents which were MRP1 substrates, in MRP1-overexpressing cells, in vitro, in vivo and ex vivo. These findings will lead to further studies on the effects of a combination of ibrutinib with chemotherapeutic agents in cancer patients overexpressing MRP1. PMID:25164592

  11. Specificity of drug transport mediated by CaMDR1: a major facilitator ...

    Indian Academy of Sciences (India)

    Unknown

    CaMDR1 encodes a major facilitator superfamily (MFS) protein in Candida albicans whose expression has been linked to .... by plaque assay and the integration of CaMDR1 at the ... with recombinant virus, vAcCaMDR1 and cells infected.

  12. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins

    NARCIS (Netherlands)

    Schinkel, A. H.; Mayer, U.; Wagenaar, E.; Mol, C. A.; van Deemter, L.; Smit, J. J.; van der Valk, M. A.; Voordouw, A. C.; Spits, H.; van Tellingen, O.; Zijlmans, J. M.; Fibbe, W. E.; Borst, P.

    1997-01-01

    The mdr1-type P-glycoproteins (P-gps) confer multidrug resistance to cancer cells by active extrusion of a wide range of drugs from the cell. To study their physiological roles, we have generated mice genetically deficient in the mdr1b gene [mdr1b (-/-) mice] and in both the mdr1a and mdr1b genes

  13. Bakteri Simbion Gastropoda Pleuroploca trapesium Dari Perairan Ternate, Sebagai Alternatif Antibakteri MDR (Bacterial Symbiont Gastropoda Pleuroploca trapezium from Ternate, as Alternative Antibacterial MDR

    Directory of Open Access Journals (Sweden)

    Delianis Pringgenies

    2014-03-01

    The bacteria resistant to some antibiotics are known as multi drug resistant (MDR. To overcome the problem, it is needed to search for a new antibiotic compounds more effectively and efficiently. This study aims to identify potential from symbionts of Pleuroploca trapezium as a source of antibacteria MDR and identifying the bacteria that were active against the MDR. Samples were collected from Ternate, Maluku. Isolation of symbiotic bacteria, screening for bacteria which producing secondary metabolites as anti-MDR bacteria, antibacterial test, isolation of clinical pathogenic bacteria of MDR. Conducting anti-bacterial sensitivity test,  sensitivity test for antibacterial,  DNA exctraction, DNA amplification based on PCR method, DNA sequencing.  Result of 16S r-DNA sequence was then analyzed and edited using GENETYX program and followed by 16S rDNA sequence analysis. Screening of bacteria associated with P. trapezium resulted in 19 isolates with 5 active bacteria. Based on the size of the zone forming and the consistency of zone, so the best isolate is TPT 4.7. The identification shows that TPT 4.7 has a close relationship with the Paracoccus sp. MBIC4019 with homologi of 95%, which shows the relationship at the genus level. Its suggest that these results are very promising as a new antibacterial material. Keywords: antibacterial, symbiotic bacteria, Pleuroploca trapezium, multi drugs resistant

  14. P-glycoprotein is expressed and causes resistance to chemotherapy in EBV-positive T-cell lymphoproliferative diseases

    International Nuclear Information System (INIS)

    Yoshimori, Mayumi; Takada, Honami; Imadome, Ken-Ichi; Kurata, Morito; Yamamoto, Kouhei; Koyama, Takatoshi; Shimizu, Norio; Fujiwara, Shigeyoshi; Miura, Osamu; Arai, Ayako

    2015-01-01

    Epstein–Barr virus-positive T-cell lymphoproliferative diseases (EBV-T-LPDs) are rare lymphomas with poor prognosis. Although chemotherapeutic strategies such as CHOP have been often selected, they have exhibited only limited efficacy. To clarify the mechanism of chemoresistance, we examined P-glycoprotein (P-gp) expression. P-gp acts as an energy-dependent efflux pump that excretes drugs from the cytoplasm, resulting in low-intracellular drug concentrations and poor sensitivity to chemotherapy. We examined P-gp expression in EBV-positive cells by immunohistochemistry staining in three patients of EBV-T-LPDs and the expression was detected in all patients. We also examined mdr1 mRNA expression by reverse-transcriptase polymerase-chain reaction (RT-PCR) in EBV-positive tumor cells from these patients and additional three patients. The expression was detected in all examined patients. In five EBV-T-LPDs patients, P-gp function was detected by Rhodamine-123 efflux assay in these cells. The efflux was inhibited by treatment with a P-gp inhibitor, cyclosporine A (CsA). We also examined and detected P-gp expression in EBV-positive T-cell lines SNT8 and SNT16 established from EBV-T-LPDs patients, by RT-PCR and western blotting. The function was also detected by Rhodamine-123 efflux in these cell lines. Inhibition and knock down of P-gp by CsA and siRNA, respectively, enhanced etoposide- and doxorubicin-induced cell death in the EBV-positive T-cell lines. Finally, we infected the T-cell line MOLT4 with EBV, and found that mdr1 mRNA expression and Rhodamine 123 efflux were upregulated after infection. These results indicated that enhanced P-gp expression contributed to the chemoresistance of EBV-T-LPDs

  15. Characterization of the kinetics and mechanisms of inhibition of drugs interacting with the S.cerevisiae multidrug resistance pumps Pdr5p and Snq2p

    Czech Academy of Sciences Publication Activity Database

    Hendrych, T.; Kodedová, M.; Sigler, Karel; Gášková, D.

    2009-01-01

    Roč. 1788, č. 3 (2009), s. 717-723 ISSN 0006-3002 R&D Projects: GA MŠk 1M0570 Grant - others:UK(CZ) 7674/2007 Institutional research plan: CEZ:AV0Z50200510 Keywords : yeast MDR pump * pump inhibitor * membrane potential Subject RIV: EE - Microbiology, Virology

  16. Fullerene inhibits benzo(a)pyrene Efflux from Cyprinus carpio hepatocytes by affecting cell membrane fluidity and P-glycoprotein expression.

    Science.gov (United States)

    Chen, Qiqing; Hu, Xialin; Wang, Rui; Yuan, Jin; Yin, Daqiang

    2016-05-01

    P-Glycoprotein (P-gp) can protect cells by pumping out toxic compounds, and has been found widely expressed in fish tissues. Here, we illustrate the P-gp efflux ability for benzo(a)pyrene (BaP) in the hepatocytes of common carp (Cyprinus carpio) after exposing to fullerene aqueous suspension (nC60). The results revealed that nC60 increased the membrane fluidity by decreasing the ratio of saturated to unsaturated fatty acids, and increased the cholesterol contents. These findings, combined with 10-38% and 70-75% down-regulation of P-gp mRNA and protein respectively, suggested that nC60 caused inhibition on P-gp efflux transport system. Therefore, we further investigated the cellular efflux ability for BaP. Results showed unequivocally that nC60 is a potent P-gp inhibitor. The retaining BaP amounts after efflux were elevated by 1.7-2.8 fold during the 10 day exposure. Meanwhile, 5mg/L humic acid (one of the important fractions of natural organic matter, which is ubiquitous in aquatic environment) alleviated the nC60 damage to hepatocytes in terms of oxidative damage, cholesterol increment, and P-gp content reduction; and finally attenuated the suppressed P-gp efflux ability. Collectively, this study provides the first evidence of nC60 toxicity to P-gp functionality in fish and illustrates the possible mechanism of the suppressed P-gp efflux ability for BaP. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The search for the mdr1-1Δ mutation of the MDR1 gene in four canine breeds in Uruguay (preliminary study

    Directory of Open Access Journals (Sweden)

    Rosa Gagliardi B.

    2015-01-01

    Full Text Available Objective. The objective of this study is to analyze the frequency of mdr1-1Δ mutation in German Shepherd, Doberman, Border Collie and Greyhound dog breeds in Uruguay. Materials and methods. A total of 95 animals from the four breeds mentioned above were studied. DNA was isolated from blood using potassium acetate with a subsequent degradation from RNA with RNAsaH. The concentration and quality of the DNA obtained was evaluated with a Nanodrop, ND-1000 spectrophotometer. To determine the presence or absence of the mdr1-1Δ mutation, DNA samples were sent to Gene Seek, Neogen Corporation of Chicago, United States, for genotyping. Results. In all 95 animals studied, the mdr1-1Δ mutation was not present. Conclusions. Based on the preliminary results obtained, other elements that may cause adverse drug reactions must be considered: unidentified mutations in other regions of the MDR1 gene; mutations in other genes involved in the transport of drugs from the same subfamily or another; mutations in enzymes involved in drug metabolism (e.g. Cytochrome P450. Moreover, especially with Border Collies and Greyhounds, it is advisable to increase the number of animals in the study.

  18. Use of juglone as antibacterial and potential efflux pump inhibitors in Staphylococcus aureus isolated from the oral cavity.

    Science.gov (United States)

    Zmantar, Tarek; Miladi, Hanene; Kouidhi, Bochra; Chaabouni, Yassine; Ben Slama, Rihab; Bakhrouf, Amina; Mahdouani, Kacem; Chaieb, Kamel

    2016-12-01

    In this study the minimal inhibitory concentration (MICs) of tetracycline (Tet), erythromycin (Ery) and benzalkonium chloride (BC) in absence and in presence of a sub-MIC of juglone (Jug) were determined. In addition, the Ethidium bromide (EtBr) efflux assay was performed to assess the effect of Jug on EtBr cells accumulation. Our results showed a selective antimicrobial activity of Jug against the tested strains. A synergistic effect of Jug, drugs (Tet and Ery) and disinfectant (BC) was noticed with a reduction rate varied from 2 to 16-fold. In addition, the efflux of EtBr was inhibited depending on the Jug concentration. In the presence of Jug, a decrease in loss of EtBr from bacteria was observed. The concentration inducing 50 % of EtBr efflux inhibition after 15 min was about 182 μg ml -1 for S. aureus ATCC 25923, 236 μg ml -1 for S. aureus B193 and 195 μg ml -1  for S. aureus B456. It appears from this study that Jug may be used as a natural source for resistance-modifying activity in same bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Mortality among MDR-TB cases: comparison with drug-susceptible tuberculosis and associated factors.

    Directory of Open Access Journals (Sweden)

    Kocfa Chung-Delgado

    Full Text Available An increase in multidrug-resistant tuberculosis (MDR-TB cases is evident worldwide. Its management implies a complex treatment, high costs, more toxic anti-tuberculosis drug use, longer treatment time and increased treatment failure and mortality. The aims of this study were to compare mortality between MDR and drug-susceptible cases of tuberculosis, and to determine risk factors associated with mortality among MDR-TB cases.A retrospective cohort study was performed using data from clinical records of the National Strategy for Prevention and Control of Tuberculosis in Lima, Peru. In the first objective, MDR-TB, compared to drug-susceptible cases, was the main exposure variable and time to death, censored at 180 days, the outcome of interest. For the second objective, different variables obtained from clinical records were assessed as potential risk factors for death among MDR-TB cases. Cox regression analysis was used to determine hazard ratios (HR and 95% confidence intervals (95%CI. A total of 1,232 patients were analyzed: mean age 30.9 ±14.0 years, 60.0% were males. 61 patients (5.0% died during treatment, whereas the MDR-TB prevalence was 19.2%. MDR-TB increased the risk of death during treatment (HR = 7.5; IC95%: 4.1-13.4 when compared to presumed drug-susceptible cases after controlling for potential confounders. Education level (p = 0.01, previous TB episodes (p<0.001, diabetes history (p<0.001 and HIV infection (p = 0.04 were factors associated with mortality among MDR-TB cases.MDR-TB is associated with an increased risk of death during treatment. Lower education, greater number of previous TB episodes, diabetes history, and HIV infection were independently associated with mortality among MDR-TB cases. New strategies for appropriate MDR-TB detection and management should be implemented, including drug sensitivity tests, diabetes and HIV screening, as well as guarantee for a complete adherence to therapy.

  20. Significance of MDR1 and multiple drug resistance in refractory human epileptic brain

    Directory of Open Access Journals (Sweden)

    Dini Gabriele

    2004-10-01

    Full Text Available Abstract Background The multiple drug resistance protein (MDR1/P-glycoprotein is overexpressed in glia and blood-brain barrier (BBB endothelium in drug refractory human epileptic tissue. Since various antiepileptic drugs (AEDs can act as substrates for MDR1, the enhanced expression/function of this protein may increase their active extrusion from the brain, resulting in decreased responsiveness to AEDs. Methods Human drug resistant epileptic brain tissues were collected after surgical resection. Astrocyte cell cultures were established from these tissues, and commercially available normal human astrocytes were used as controls. Uptake of fluorescent doxorubicin and radioactive-labeled Phenytoin was measured in the two cell populations, and the effect of MDR1 blockers was evaluated. Frozen human epileptic brain tissue slices were double immunostained to locate MDR1 in neurons and glia. Other slices were exposed to toxic concentrations of Phenytoin to study cell viability in the presence or absence of a specific MDR1 blocker. Results MDR1 was overexpressed in blood vessels, astrocytes and neurons in human epileptic drug-resistant brain. In addition, MDR1-mediated cellular drug extrusion was increased in human 'epileptic' astrocytes compared to 'normal' ones. Concomitantly, cell viability in the presence of cytotoxic compounds was increased. Conclusions Overexpression of MDR1 in different cell types in drug-resistant epileptic human brain leads to functional alterations, not all of which are linked to drug pharmacokinetics. In particular, the modulation of glioneuronal MDR1 function in epileptic brain in the presence of toxic concentrations of xenobiotics may constitute a novel cytoprotective mechanism.

  1. Searching for Novel Inhibitors of the S. aureus NorA Efflux Pump: Synthesis and Biological Evaluation of the 3-Phenyl-1,4-benzothiazine Analogues.

    Science.gov (United States)

    Felicetti, Tommaso; Cannalire, Rolando; Burali, Maria Sole; Massari, Serena; Manfroni, Giuseppe; Barreca, Maria Letizia; Tabarrini, Oriana; Schindler, Bryan D; Sabatini, Stefano; Kaatz, Glenn W; Cecchetti, Violetta

    2017-08-22

    Bacterial resistance to antimicrobial agents has become an increasingly serious health problem in recent years. Among the strategies by which resistance can be achieved, overexpression of efflux pumps such as NorA of Staphylococcus aureus leads to a sub-lethal concentration of the antibacterial agent at the active site that in turn may predispose the organism to the development of high-level target-based resistance. With an aim to improve both the chemical stability and potency of our previously reported 3-phenyl-1,4-benzothiazine NorA inhibitors, we replaced the benzothiazine core with different nuclei. None of the new synthesized compounds showed any appreciable intrinsic antibacterial activity, and, in particular, 2-(3,4-dimethoxyphenyl)quinoline (6 c) was able to decrease, in a concentration-dependent manner, the ciprofloxacin MIC against the norA-overexpressing strains S. aureus SA-K2378 (norA++) and SA-1199B (norA+/A116E GrlA). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Structural characterization of Bacillus subtilis membrane protein Bmr: an in silico approach.

    Science.gov (United States)

    Nargotra, Amit; Rukmankesh; Ali, Shakir; Koul, Surrinder

    2014-01-01

    Efflux pump--a membrane protein belonging to Major Facilitator (MF) family and associated with Multi Drug Resistance (MDR) has been a major factor in drug resistance of bacteria. In the era when no new effective antibiotic had been reported for years, the detailed study of these membrane proteins became imperative in order to improve the efficacy of existing drugs. The Bacillus subtilis membrane protein Bmr belongs to the super family of major facilitator proteins and is one of the first-discovered bacterial multidrug-efflux transporters. Development of Bmr inhibitors (B. subtilis) for least resistance, better drug sustainability and effective cellular activity requires three dimensional structure of this protein which has not yet been determined. In this communication structural characterization of this important efflux pump has been attempted using in silico approaches. The modeled structure of Bmr has been found to have 12 main helical segments interspersed by loops of variable lengths at regular intervals with both N- and C-termini on the same side of membrane. Docking of the known inhibitor reserpine on to the predicted structure of Bmr and its mutants signified the importance of the residues Phe143, Val286 and Phe306 in the interaction with the ligand. Besides this, the role of Arg313 and Phe309 in the H-bond formation and π-π interaction respectively, with reserpine was the new significant finding based on the interaction studies. The structure elucidation of Bmr and the role of these residues in binding to the ligand are expected to have a great impact on the efflux pump inhibition studies around the world and hence in the efficiency of the existing antibiotic drugs.

  3. Pumping of drugs by P-glycoprotein

    DEFF Research Database (Denmark)

    Litman, Thomas; Skovsgaard, Torben; Stein, Wilfred D

    2003-01-01

    The apparent inhibition constant, Kapp, for the blockade of P-glycoprotein (P-gp) by four drugs, verapamil, cyclosporin A, XR9576 (tariquidar), and vinblastine, was measured by studying their ability to inhibit daunorubicin and calcein-AM efflux from four strains of Ehrlich cells with different...... levels of drug resistance and P-gp content. For daunorubicin as a transport substrate, Kapp was independent of [P-gp] for verapamil but increased strictly linearly with [P-gp] for vinblastine, cyclosporin A, and XR9576. A theoretical analysis of the kinetics of drug pumping and its reversal shows...... but rather, in serial, i.e., a drug that is pumped from the cytoplasmic phase has to pass the preemptive route upon leaving the cell. Our results are consistent with the Sauna-Ambudkar two-step model for pumping by P-gp. We suggest that the vinblastine/cyclosporin A/XR9576-binding site accepts daunorubicin...

  4. Relative Neurotoxicity of Ivermectin and Moxidectin in Mdr1ab (−/−) Mice and Effects on Mammalian GABA(A) Channel Activity

    Science.gov (United States)

    Ménez, Cécile; Sutra, Jean-François; Prichard, Roger; Lespine, Anne

    2012-01-01

    The anthelmintics ivermectin (IVM) and moxidectin (MOX) display differences in toxicity in several host species. Entrance into the brain is restricted by the P-glycoprotein (P-gp) efflux transporter, while toxicity is mediated through the brain GABA(A) receptors. This study compared the toxicity of IVM and MOX in vivo and their interaction with GABA(A) receptors in vitro. Drug toxicity was assessed in Mdr1ab(−/−) mice P-gp-deficient after subcutaneous administration of increasing doses (0.11–2.0 and 0.23–12.9 µmol/kg for IVM and MOX in P-gp-deficient mice and half lethal doses (LD50) in wild-type mice). Survival was evaluated over 14-days. In Mdr1ab(−/−) mice, LD50 was 0.46 and 2.3 µmol/kg for IVM and MOX, respectively, demonstrating that MOX was less toxic than IVM. In P-gp-deficient mice, MOX had a lower brain-to-plasma concentration ratio and entered into the brain more slowly than IVM. The brain sublethal drug concentrations determined after administration of doses close to LD50 were, in Mdr1ab(−/−) and wild-type mice, respectively, 270 and 210 pmol/g for IVM and 830 and 740–1380 pmol/g for MOX, indicating that higher brain concentrations are required for MOX toxicity than IVM. In rat α1β2γ2 GABA channels expressed in Xenopus oocytes, IVM and MOX were both allosteric activators of the GABA-induced response. The Hill coefficient was 1.52±0.45 for IVM and 0.34±0.56 for MOX (p<0.001), while the maximum potentiation caused by IVM and MOX relative to GABA alone was 413.7±66.1 and 257.4±40.6%, respectively (p<0.05), showing that IVM causes a greater potentiation of GABA action on this receptor. Differences in the accumulation of IVM and MOX in the brain and in the interaction of IVM and MOX with GABA(A) receptors account for differences in neurotoxicity seen in intact and Mdr1-deficient animals. These differences in neurotoxicity of IVM and MOX are important in considering their use in humans. PMID:23133688

  5. Global regulator SoxR is a negative regulator of efflux pump gene expression and affects antibiotic resistance and fitness in Acinetobacter baumannii.

    Science.gov (United States)

    Li, Henan; Wang, Qi; Wang, Ruobing; Zhang, Yawei; Wang, Xiaojuan; Wang, Hui

    2017-06-01

    SoxR is a global regulator contributing to multidrug resistance in Enterobacteriaceae. However, the contribution of SoxR to antibiotic resistance and fitness in Acinetobacter baumannii has not yet been studied. Comparisons of molecular characteristics were performed between 32 multidrug-resistant A. baumannii isolates and 11 susceptible isolates. A soxR overexpression mutant was constructed, and its resistance phenotype was analyzed. The impact of SoxR on efflux pump gene expression was measured at the transcription level. The effect of SoxR on the growth and fitness of A. baumannii was analyzed using a growth rate assay and an in vitro competition assay. The frequency of the Gly39Ser mutation in soxR was higher in multidrug-resistant A. baumannii, whereas the soxS gene was absent in all strains analyzed. SoxR overexpression led to increased susceptibility to chloramphenicol (4-fold), tetracycline (2-fold), tigecycline (2-fold), ciprofloxacin (2-fold), amikacin (2-fold), and trimethoprim (2-fold), but it did not influence imipenem susceptibility. Decreased expression of abeS (3.8-fold), abeM (1.3-fold), adeJ (2.4-fold), and adeG (2.5-fold) were correlated with soxR overexpression (P baumannii.

  6. Community-based MDR-TB care project improves treatment initiation in patients diagnosed with MDR-TB in Myanmar.

    Science.gov (United States)

    Wai, Pyae Phyo; Shewade, Hemant Deepak; Kyaw, Nang Thu Thu; Thein, Saw; Si Thu, Aung; Kyaw, Khine Wut Yee; Aye, Nyein Nyein; Phyo, Aye Mon; Maung, Htet Myet Win; Soe, Kyaw Thu; Aung, Si Thu

    2018-01-01

    The Union in collaboration with national TB programme (NTP) started the community-based MDR-TB care (CBMDR-TBC) project in 33 townships of upper Myanmar to improve treatment initiation and treatment adherence. Patients with MDR-TB diagnosed/registered under NTP received support through the project staff, in addition to the routine domiciliary care provided by NTP staff. Each township had a project nurse exclusively for MDR-TB and 30 USD per month (max. for 4 months) were provided to the patient as a pre-treatment support. To assess whether CBMDR-TBC project's support improved treatment initiation. In this cohort study (involving record review) of all diagnosed MDR-TB between January 2015 and June 2016 in project townships, CBMDR-TBC status was categorized as "receiving support" if date of project initiation in patient's township was before the date of diagnosis and "not receiving support", if otherwise. Cox proportional hazards regression (censored on 31 Dec 2016) was done to identify predictors of treatment initiation. Of 456 patients, 57% initiated treatment: 64% and 56% among patients "receiving support (n = 208)" and "not receiving support (n = 228)" respectively (CBMDR-TBC status was not known in 20 (4%) patients due to missing diagnosis dates). Among those initiated on treatment (n = 261), median (IQR) time to initiate treatment was 38 (20, 76) days: 31 (18, 50) among patients "receiving support" and 50 (26,101) among patients "not receiving support". After adjusting other potential confounders (age, sex, region, HIV, past history of TB treatment), patients "receiving support" had 80% higher chance of initiating treatment [aHR (0.95 CI): 1.8 (1.3, 2.3)] when compared to patients "not receiving support". In addition, age 15-54 years, previous history of TB and being HIV negative were independent predictors of treatment initiation. Receiving support under CBMDR-TBC project improved treatment initiation: it not only improved the proportion initiated but also

  7. Effect of dietary fat on hepatic liver X receptor expression in P-glycoprotein deficient mice: implications for cholesterol metabolism

    Directory of Open Access Journals (Sweden)

    Lee Stephen D

    2008-06-01

    Full Text Available Abstract Pgp (P-glycoprotein, MDR1, ABCB1 is an energy-dependent drug efflux pump that is a member of the ATP-binding cassette (ABC family of proteins. Preliminary studies have reported that nonspecific inhibitors of Pgp affect synthesis and esterification of cholesterol, putatively by blocking trafficking of cholesterol from the plasma membrane to the endoplasmic reticulum, and that relative increases in Pgp within a given cell type are associated with increased accumulation of cholesterol. Several key efflux proteins involved in the cholesterol metabolic pathway are transcriptionally regulated by the nuclear hormone liver X receptor (LXR. Therefore, to examine the interplay between P-glycoprotein and the cholesterol metabolic pathway, we utilized a high fat, normal cholesterol diet to upregulate LXRα without affecting dietary cholesterol. Our research has demonstrated that mice lacking in P-glycoprotein do not exhibit alterations in hepatic total cholesterol storage, circulating plasma total cholesterol levels, or total cholesterol concentration in the bile when compared to control animals on either a normal (25% calories from dietary fat or high fat (45% calories from dietary fat diet. However, p-glycoprotein deficient mice (Mdr1a-/-/1b-/- exhibit increased hepatic LXRα protein expression and an elevation in fecal cholesterol concentration when compared to controls.

  8. Antibacterial activities of the extracts, fractions and compounds from Dioscorea bulbifera

    Directory of Open Access Journals (Sweden)

    Kuete Victor

    2012-11-01

    Full Text Available Abstract Background Dioscorea bulbifera is an African medicinal plant used to treat microbial infections. In the present study, the methanol extract, fractions (DBB1 and DBB2 and six compounds isolated from the bulbils of D. bulbifera, namely bafoudiosbulbins A (1, B (2, C (3, F (4, G (5 and 2,7-dihydroxy-4-methoxyphenanthrene (6, were tested for their antimicrobial activities against Mycobacteria and Gram-negative bacteria involving multidrug resistant (MDR phenotypes expressing active efflux pumps. Methods The microplate alamar blue assay (MABA and the broth microdilution methods were used to determine the minimal inhibitory concentration (MIC and minimal bactericidal concentration (MBC of the above samples. Results The results of the MIC determinations indicated that when tested alone, the crude extract, fractions DBB1 and DBB2 as well as compounds 2 to 5 were able to prevent the growth of all the fifteen studied microorganisms, within the concentration range of 8 to 256 μg/mL. The lowest MIC value for the methanol extract and fractions (16 μg/mL was obtained with DBB1 and DBB2 on E, coli AG100A and DBB2 on Mycobacterium tuberculosis MTCS2. The lowest value for individual compounds (8 μg/mL was recorded with compound 3 on M. smegmatis and M. tuberculosis ATCC and MTCS2 strains respectively. The activity of the samples on many MDR bacteria such as Enterobacter aerogenes EA289, CM64, Klebsiella pneumoniae KP63 and Pseudomonas aeruginosa PA124 was better than that of chloramphenicol. When tested in the presence of the efflux pump inhibitor against MDR Gram-negative bacteria, the activity of most of the samples increased. MBC values not greater than 512 μg/mL were recorded on all studied microorganisms with fraction DBB2 and compounds 2 to 5. Conclusions The overall results of the present investigation provided evidence that the crude extract D. bulbifera as well as some of the compounds and mostly compounds 3 could be considered as potential

  9. FAM-MDR: a flexible family-based multifactor dimensionality reduction technique to detect epistasis using related individuals.

    Directory of Open Access Journals (Sweden)

    Tom Cattaert

    Full Text Available We propose a novel multifactor dimensionality reduction method for epistasis detection in small or extended pedigrees, FAM-MDR. It combines features of the Genome-wide Rapid Association using Mixed Model And Regression approach (GRAMMAR with Model-Based MDR (MB-MDR. We focus on continuous traits, although the method is general and can be used for outcomes of any type, including binary and censored traits. When comparing FAM-MDR with Pedigree-based Generalized MDR (PGMDR, which is a generalization of Multifactor Dimensionality Reduction (MDR to continuous traits and related individuals, FAM-MDR was found to outperform PGMDR in terms of power, in most of the considered simulated scenarios. Additional simulations revealed that PGMDR does not appropriately deal with multiple testing and consequently gives rise to overly optimistic results. FAM-MDR adequately deals with multiple testing in epistasis screens and is in contrast rather conservative, by construction. Furthermore, simulations show that correcting for lower order (main effects is of utmost importance when claiming epistasis. As Type 2 Diabetes Mellitus (T2DM is a complex phenotype likely influenced by gene-gene interactions, we applied FAM-MDR to examine data on glucose area-under-the-curve (GAUC, an endophenotype of T2DM for which multiple independent genetic associations have been observed, in the Amish Family Diabetes Study (AFDS. This application reveals that FAM-MDR makes more efficient use of the available data than PGMDR and can deal with multi-generational pedigrees more easily. In conclusion, we have validated FAM-MDR and compared it to PGMDR, the current state-of-the-art MDR method for family data, using both simulations and a practical dataset. FAM-MDR is found to outperform PGMDR in that it handles the multiple testing issue more correctly, has increased power, and efficiently uses all available information.

  10. Expression of the CDR1 efflux pump in clinical Candida albicans isolates is controlled by a negative regulatory element

    International Nuclear Information System (INIS)

    Gaur, Naseem Akhtar; Manoharlal, Raman; Saini, Preeti; Prasad, Tulika; Mukhopadhyay, Gauranga; Hoefer, Milan; Morschhaeuser, Joachim; Prasad, Rajendra

    2005-01-01

    Resistance to azole antifungal drugs in clinical isolates of the human fungal pathogen Candida albicans is often caused by constitutive overexpression of the CDR1 gene, which encodes a multidrug efflux pump of the ABC transporter superfamily. To understand the relevance of a recently identified negative regulatory element (NRE) in the CDR1 promoter for the control of CDR1 expression in the clinical scenario, we investigated the effect of mutation or deletion of the NRE on CDR1 expression in two matched pairs of azole-sensitive and resistant clinical isolates of C. albicans. Expression of GFP or lacZ reporter genes from the wild type CDR1 promoter was much higher in the azole-resistant C. albicans isolates than in the azole-susceptible isolates, reflecting the known differences in CDR1 expression in these strains. Deletion or mutation of the NRE resulted in enhanced reporter gene expression in azole-sensitive strains, but did not further increase the already high CDR1 promoter activity in the azole-resistant strains. In agreement with these findings, electrophoretic mobility shift assays showed a reduced binding to the NRE of nuclear extracts from the resistant C. albicans isolates as compared with extracts from the sensitive isolates. These results demonstrate that the NRE is involved in maintaining CDR1 expression at basal levels and that this repression is overcome in azole-resistant clinical C. albicans isolates, resulting in constitutive CDR1 overexpression and concomitant drug resistance

  11. Targeting glucosylceramide synthase induction of cell surface globotriaosylceramide (Gb3) in acquired cisplatin-resistance of lung cancer and malignant pleural mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, Andreas, E-mail: andreas.tyler@medbio.umu.se [Department of Medical Biosciences, Umeå University, S-901 85 Umea (Sweden); Johansson, Anders [Department of Odontology, Umeå University, S-901 85 Umea (Sweden); Karlsson, Terese [Department of Radiation Sciences, Oncology, S-901 85 Umea (Sweden); Gudey, Shyam Kumar; Brännström, Thomas; Grankvist, Kjell; Behnam-Motlagh, Parviz [Department of Medical Biosciences, Umeå University, S-901 85 Umea (Sweden)

    2015-08-01

    Background: Acquired resistance to cisplatin treatment is a caveat when treating patients with non-small cell lung cancer (NSCLC) and malignant pleural mesothelioma (MPM). Ceramide increases in response to chemotherapy, leading to proliferation arrest and apoptosis. However, a tumour stress activation of glucosylceramide synthase (GCS) follows to eliminate ceramide by formation of glycosphingolipids (GSLs) such as globotriaosylceramide (Gb3), the functional receptor of verotoxin-1. Ceramide elimination enhances cell proliferation and apoptosis blockade, thus stimulating tumor progression. GSLs transactivate multidrug resistance 1/P-glycoprotein (MDR1) and multidrug resistance-associated protein 1 (MRP1) expression which further prevents ceramide accumulation and stimulates drug efflux. We investigated the expression of Gb3, MDR1 and MRP1 in NSCLC and MPM cells with acquired cisplatin resistance, and if GCS activity or MDR1 pump inhibitors would reduce their expression and reverse cisplatin-resistance. Methods: Cell surface expression of Gb3, MDR1 and MRP1 and intracellular expression of MDR1 and MRP1 was analyzed by flow cytometry and confocal microscopy on P31 MPM and H1299 NSCLC cells and subline cells with acquired cisplatin resistance. The effect of GCS inhibitor PPMP and MDR1 pump inhibitor cyclosporin A for 72 h on expression and cisplatin cytotoxicity was tested. Results: The cisplatin-resistant cells expressed increased cell surface Gb3. Cell surface Gb3 expression of resistant cells was annihilated by PPMP whereas cyclosporin A decreased Gb3 and MDR1 expression in H1299 cells. No decrease of MDR1 by PPMP was noted in using flow cytometry, whereas a decrease of MDR1 in H1299 and H1299res was indicated with confocal microscopy. No certain co-localization of Gb3 and MDR1 was noted. PPMP, but not cyclosporin A, potentiated cisplatin cytotoxicity in all cells. Conclusions: Cell surface Gb3 expression is a likely tumour biomarker for acquired cisplatin

  12. P-glycoprotein targeted nanoscale drug carriers

    KAUST Repository

    Li, Wengang

    2013-02-01

    Multi-drug resistance (MDR) is a trend whereby tumor cells exposed to one cytotoxic agent develop cross-resistance to a range of structurally and functionally unrelated compounds. P -glycoprotein (P -gp) efflux pump is one of the mostly studied drug carrying processes that shuttle the drugs out of tumor cells. Thus, P -gp inhibitors have attracted a lot of attention as they can stop cancer drugs from being pumped out of target cells with the consumption of ATP. Using quantitive structure activity relationship (QSAR), we have successfully synthesized a series of novel P -gp inhibitors. The obtained dihydropyrroloquinoxalines series were fully characterized and then tested against bacterial and tumor assays with over-expressed P -gps. All compounds were bioactive especially compound 1c that had enhanced antibacterial activity. Furthermore, these compounds were utilized as targeting vectors to direct drug delivery vehicles such as silica nanoparticles (SNPs) to cancerous Hela cells with over expressed P -gps. Cell uptake studies showed a successful accumulation of these decorated SNPs in tumor cells compared to undecorated SNPs. The results obtained show that dihydropyrroloquinoxalines constitute a promising drug candidate for targeting cancers with MDR. Copyright © 2013 American Scientific Publishers All rights reserved.

  13. Differential contributions of five ABC transporters to mutidrug resistance, antioxidion and virulence of Beauveria bassiana, an entomopathogenic fungus.

    Directory of Open Access Journals (Sweden)

    Ting-Ting Song

    Full Text Available Multidrug resistance (MDR confers agrochemical compatibility to fungal cells-based mycoinsecticdes but mechanisms involved in MDR remain poorly understood for entomopathogenic fungi, which have been widely applied as biocontrol agents against arthropod pests. Here we characterized the functions of five ATP-binding cassette (ABC transporters, which were classified to the subfamilies ABC-B (Mdr1, ABC-C (Mrp1 and ABC-G (Pdr1, Pdr2 and Pdr5 and selected from 54 full-size ABC proteins of Beauveria bassiana based on their main domain architecture, membrane topology and transcriptional responses to three antifungal inducers. Disruption of each transporter gene resulted in significant reduction in resistance to four to six of eight fungicides or antifungal drugs tested due to their differences in structure and function. Compared with wild-type and complemented (control strains, disruption mutants of all the five transporter genes became significantly less tolerant to the oxidants menadione and H₂O₂ based on 22-41% and 10-31% reductions of their effective concentrations required for the suppression of 50% colony growth at 25°C. Under a standardized spray, the killing actions of ΔPdr5 and ΔMrp1 mutants against Spodoptera litura second-instar larvae were delayed by 59% and 33% respectively. However, no significant virulence change was observed in three other delta mutants. Taken together, the examined five ABC transporters contribute differentially to not only the fungal MDR but antioxidant capability, a phenotype rarely associated with ABC efflux pumps in previous reports; at least some of them are required for the full virulence of B. bassiana, thereby affecting the fungal biocontrol potential. Our results indicate that ABC pump-dependent MDR mechanisms exist in entomopathogenic fungi as do in yeasts and human and plant pathogenic fungi.

  14. Dioscin enhances methotrexate absorption by down-regulating MDR1 in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan, E-mail: jlwang1979@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Wang, Changyuan, E-mail: wangcyuan@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Peng, Jinyong, E-mail: jinyongpeng2005@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Liu, Qi, E-mail: llaqii@yahoo.com.cn [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Meng, Qiang, E-mail: mengq531@yahoo.cn [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Sun, Huijun, E-mail: sunhuijun@hotmail.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Huo, Xiaokui, E-mail: huoxiaokui@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); and others

    2014-06-01

    The purpose of this study was to investigate the enhancing effect of dioscin on the absorption of methotrexate (MTX) and clarify the molecular mechanism involved in vivo and in vitro. Dioscin increased MTX chemosensitivity and transepithelial flux in the absorptive direction, significantly inhibiting multidrug resistance 1 (MDR1) mRNA and protein expression and MDR1 promoter and nuclear factor κ-B (NF-κB) activities in Caco-2 cells. Moreover, inhibitor κB-α (IκB-α) degradation was inhibited by dioscin. Dioscin enhanced the intracellular concentration of MTX by down-regulating MDR1 expression through a mechanism that involves NF-κB signaling pathway inhibition in Caco-2 cells. Dioscin strengthened MTX absorption by inhibiting MDR1 expression in rat intestine. In addition, even though MTX is absorbed into the enterocytes, there was no increase in toxicity observed, and that, in fact, decreased toxicity was seen. - Highlights: • Dioscin raised MTX concentration by inhibiting MDR1 in Caco-2 cells. • Dioscin suppresses MDR1 by inhibiting NF-κB signaling pathway in Caco-2 cells. • Dioscin can enhance MTX absorption via inhibiting MDR1 in vivo and in vitro. • Dioscin did not increase MTX-induced gastrointestinal mucosal toxicity.

  15. ALT-I pump limiter experiments

    International Nuclear Information System (INIS)

    Goebel, D.M.; Conn, R.W.; Campbell, G.A.

    1987-09-01

    Results from the ALT-I pump limiter experiments in TEXTOR are presented. ALT-I has demonstrated control of the plasma density in a high recycling tokamak by pumping up to 15% of the core efflux. The closed pump limiter designs with restricted entrance geometries to reduce the backflow of neutral gas to the plasma remove over 50% of the ion flux incident on the collection slot. Up to 80% of the entrance ion flux is removed when the edge electron temperature is less than 10 eV and plasma-neutral gas interactions are minimized inside the limiter. Results from a 3-D Monte Carlo neutral gas transport code agree closely with these experimental results. The compound curvature of the head is found to distribute the heat over the surface as predicted in the original designs. Impurity removal experiments demonstrate that significant helium exhaust can be achieved with a pump limiter. During ohmic heating in TEXTOR, the energy and particle confinement times are proportional to the line averaged core density. With ICRH auxiliary heating, tau/sub E/ follow L-mode scaling independent of particle removal by the pump limiter. Pump limiter operation does not directly modify the SOL plasma density and electron temperature, but controls the core plasma density by changing the global recycling at the boundary. The global particle confinement, the particle flux to the limiter, and the edge electron temperature follow the changes in the core density and auxiliary heating power. 25 refs

  16. Construction of retrovirus vector taking MDR1/ACBC1 and its ...

    African Journals Online (AJOL)

    We successfully observed the expression of the reporter gene-GFP by using the green light fluorescence microscope and the p-glycoprotein (P-gp) expressed by exogenous gene MDR1 by Western Blotting. All these facts indicated that the retroviral vector PMX-flag-MDR1-GFP had successfully been transfected into ...

  17. Self-assembled Multifunctional DNA Nanoflowers for the Circumvention of Multidrug Resistance in Targeted Anticancer Drug Delivery.

    Science.gov (United States)

    Mei, Lei; Zhu, Guizhi; Qiu, Liping; Wu, Cuichen; Chen, Huapei; Liang, Hao; Cansiz, Sena; Lv, Yifan; Zhang, Xiaobing; Tan, Weihong

    2015-11-01

    Cancer chemotherapy has been impeded by side effects and multidrug resistance (MDR) partially caused by drug efflux from cancer cells, which call for targeted drug delivery systems additionally able to circumvent MDR. Here we report multifunctional DNA nanoflowers (NFs) for targeted drug delivery to both chemosensitive and MDR cancer cells and circumvent MDR in both leukemia and breast cancer cell models. NFs are self-assembled via liquid crystallization of DNA generated by Rolling Circle Replication, during which NFs are incorporated with aptamers for specific cancer cell recognition, fluorophores for bioimaging, and Doxorubicin (Dox)-binding DNA for drug delivery. NF sizes are tunable (down to ~200 nm in diameter), and the densely packed drug-binding motifs and porous intrastructures endow NFs with high drug loading capacity (71.4%, wt/wt). The Dox-loaded NFs (NF-Dox) are stable at physiological pH, yet drug release is facilitated in acidic or basic conditions. NFs deliver Dox into target chemosensitive and MDR cancer cells, preventing drug efflux and enhancing drug retention in MDR cells. Consequently, NF-Dox induces potent cytotoxicity in both target chemosensitive cells and MDR cells, but not nontarget cells, thus concurrently circumventing MDR and reducing side effects. Overall, these NFs are promising to circumvent MDR in targeted cancer therapy.

  18. Mechanisms of azole resistance in a clinical isolate of Candida tropicalis.

    Science.gov (United States)

    Vandeputte, Patrick; Larcher, Gérald; Bergès, Thierry; Renier, Gilles; Chabasse, Dominique; Bouchara, Jean-Philippe

    2005-11-01

    Azole resistance has been insufficiently investigated in the yeast Candida tropicalis. Here we determined the molecular mechanisms responsible for azole resistance in a clinical isolate of this pathogenic yeast. Antifungal susceptibility testing performed by a disk diffusion method showed resistance or markedly decreased susceptibility to azoles, which was confirmed by determination of MICs. Considering the relationship between azole susceptibility and the respiration reported for other yeast species, the respiratory activity of this isolate was investigated. Flow cytometry using rhodamine 123 and oxygraphy demonstrated an increased respiratory activity, which was not linked to an overexpression or increased number of copies of the mitochondrial genome. Among previously described resistance mechanisms, an increased activity of efflux pumps was investigated by flow cytometry using rhodamine 6G. However, the efflux of rhodamine 6G was lower in the resistant isolate than in susceptible ones. Likewise, real-time reverse transcription-PCR quantification of the expression of C. tropicalis MDR1 (CtMDR1), which encodes an efflux protein belonging to the major facilitator superfamily, did not show overexpression of this gene. In contrast, the resistant isolate overexpressed the CtERG11 gene coding for lanosterol 14alpha-demethylase. This was in agreement with the larger amount of ergosterol found in this isolate. Moreover, sequencing of CtERG11 showed a point mutation leading to a tyrosine substitution in the protein sequence, which might lead to decreased binding affinity for azoles. In conclusion, overexpression of CtERG11 associated with a missense mutation in this gene seemed to be responsible for the acquired azole resistance of this clinical isolate.

  19. The process behind the expression of mdr-1/P-gp and mrp/MRP in human leukemia/lymphoma.

    Science.gov (United States)

    Hirose, Masao

    2009-04-01

    There is a controversy over the link between phenotypes of multidrug resistance (MDR) and clinical outcome in leukemia/lymphoma patients. This may be because the process behind the induction and loss of expression of genotypes and phenotypes by which MDR develops and the role of MDR in fresh cells of human leukemia/lymphoma are not clearly defined. P-glycoprotein (P-gp) increased and decreased along with mdr-1 expression in three cell lines out of five vincristine (VCR)-resistant cell lines. MRP appeared with increased mrp expression in the other two cell lines. After the drug was removed from the culture system, mdr-1/P-gp changed in parallel with the level of VCR resistance, although mrp and MRP did not. It was concluded that P-gp is directly derived from mdr-1 and that mdr-1/P-gp supports the VCR-resistance but mrp/MRP is not directly linked to the VCR-resistance. These results should contribute to a better understanding of MDR phenomenon in cancer.

  20. Social, economic, and psychological impacts of MDR-TB treatment in Tijuana, Mexico: a patient's perspective.

    Science.gov (United States)

    Morris, M D; Quezada, L; Bhat, P; Moser, K; Smith, J; Perez, H; Laniado-Laborin, R; Estrada-Guzman, J; Rodwell, T C

    2013-07-01

    The State of Baja California, Mexico, had the highest prevalence of multidrug-resistant tuberculosis (MDR-TB) in Mexico in 2009. To understand the socio-economic burden of MDR-TB disease and its treatment on patients in Tijuana and Mexicali, Mexico. From July to November 2009, qualitative interviews were conducted with 12 patients enrolled in a US-Mexico binational MDR-TB treatment program, Puentes de Esperanza (Bridges of Hope), which was designed to support MDR-TB patients. In-depth interviews were coded to identify major themes in patient experiences of MDR-TB diagnosis and care. While some patients were able to maintain their pre-MDR-TB lives to a limited extent, most patients reported losing their sense of identity due to their inability to work, social isolation, and stigmatization from family and friends. The majority of participants expressed appreciation for Puentes' role in 'saving their lives'. Being diagnosed with MDR-TB and undergoing treatment imposes significant psychological, social and economic stress on patients. Strong social support elements within Puentes helped alleviate these burdens. Improvements to the program might include peer-support groups for patients undergoing treatment and transitioning back into the community after treatment.

  1. Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB.

    Science.gov (United States)

    Eicher, Thomas; Seeger, Markus A; Anselmi, Claudio; Zhou, Wenchang; Brandstätter, Lorenz; Verrey, François; Diederichs, Kay; Faraldo-Gómez, José D; Pos, Klaas M

    2014-09-19

    Membrane transporters of the RND superfamily confer multidrug resistance to pathogenic bacteria, and are essential for cholesterol metabolism and embryonic development in humans. We use high-resolution X-ray crystallography and computational methods to delineate the mechanism of the homotrimeric RND-type proton/drug antiporter AcrB, the active component of the major efflux system AcrAB-TolC in Escherichia coli, and one most complex and intriguing membrane transporters known to date. Analysis of wildtype AcrB and four functionally-inactive variants reveals an unprecedented mechanism that involves two remote alternating-access conformational cycles within each protomer, namely one for protons in the transmembrane region and another for drugs in the periplasmic domain, 50 Å apart. Each of these cycles entails two distinct types of collective motions of two structural repeats, coupled by flanking α-helices that project from the membrane. Moreover, we rationalize how the cross-talk among protomers across the trimerization interface might lead to a more kinetically efficient efflux system.

  2. 22Na and 86Rb effluxes from bull spermatozoa

    International Nuclear Information System (INIS)

    Petzoldt, R.; Steffens, T.; Bernhardt, I.

    1986-01-01

    Active transport of sodium and potassium has been postulated for bull sperms by various authors. In the present paper the sodium and rubidium efflux was determined by tracer kinetics. For uninhibited sodium and rubidium efflux a rate constant of 8.9 +- 2.13/min and 13.9 +- 3.89 min, respectively, was found for a bull sperm suspension (20 vol.%, 310 K). After ouabain treatment (0.1 mM), a reduction of the rate constant of sodium efflux to 5.1 +- 1.06/min was found. After cryopreserving (pelletizing process) the majority of samples investigated did not exhibit any inhibition of sodium and rubidium efflux as compared with fresh bull sperms. The inhibition of sodium efflux observed in some cases corresponds to the reduction of the rate constant of sodium efflux caused by ouabain. At storage in seminal plasma (24 h, 278 K) the rate constant of sodium efflux is reduced to 2.7 +- 0.25/min. Both after ouabain treatment and after cryopreserving of sperms having a reduced rate constant the motility of bull sperms is reduced. It is concluded from the results that in bull sperms there exists an ouabain-sensitive sodium efflux, the inhibition of which reduces the rate constant of sodium efflux by 42%. The ouabain-sensitive sodium efflux is related to the motility of the bull sperm cell. (author)

  3. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer

    Science.gov (United States)

    Yang, Xiaoqian; Lyer, Arun K.; Singh, Amit; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2015-02-01

    Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer.

  4. Molecular detection of multi drug resistant tuberculosis (mdr-tb) in mdr-tb patients' attendant in north western pakistan

    International Nuclear Information System (INIS)

    Shah, T.; Hayat, A.; Shah, Z.; Hayat, A.; Khan, S.B.

    2017-01-01

    Objective: To determine the drugs susceptibility pattern of mycobacterium tuberculosis (M.TB) in multi-drug resistant tuberculosis (MDR-TB) patients' attendants in North Western, Pakistan. Study Design: Cross sectional study. Place and Duration of Study: This study was conducted at Peshawar Tuberculosis Research Laboratory (PTRL), Provincial TB Control Program Hayatabad Medical Complex Peshawar, (KP) from August 2013 to March 2014. Material and Methods: A cross sectional study in which four hundred and eighty sputum samples from MDR-TB patients' attendants were processed for the detection of M.TB through Ziehl-Neelsen staining, Lowenstein-Jensen, BACTEC MGIT-960 culture and line probe assay. Results: Out of 480 samples, 06 (2.1%) were found positive for M.TB through Ziehl-Neelsen staining while 10 (2.8%) were positive through LJ and BACTEC MGIT-960 culture. The 10 positive samples were further subjected to drugs susceptibility testing and line probes assay test to find out rifampicin, isoniazid, streptomycin and ethambutol resistant and it was found that 6 M.TB isolates were resistant while 4 were sensitive to rifampicin and isoniazid. Among the 6 resistant M.TB strains, 4 showed mutation in rpoB gene at 531, 516 and 526 codons. Conclusion: Majority of MDR-TB patients' attendants had drug-resistant tuberculosis and the rate of drug susceptible TB was low. (author)

  5. Substrate Specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM Efflux Pumps in Pseudomonas aeruginosa

    Science.gov (United States)

    Masuda, Nobuhisa; Sakagawa, Eiko; Ohya, Satoshi; Gotoh, Naomasa; Tsujimoto, Hideto; Nishino, Takeshi

    2000-01-01

    To find the exact substrate specificities of three species of tripartite efflux systems of Pseudomonas aeruginosa, MexAB-OprM, MexCD-OprJ, and MexXY-OprM, we constructed a series of isogenic mutants, each of which constitutively overproduced one of the three efflux systems and lacked the other two, and their isogenic mutants, which lacked all these systems. Comparison of the susceptibilities of the constructed mutants to 52 antimicrobial agents belonging to various groups suggested the following substrate specificities. All of the efflux systems extrude a wide variety of antimicrobial agent groups, i.e., quinolones, macrolides, tetracyclines, lincomycin, chloramphenicol, most penicillins (all but carbenicillin and sulbenicillin), most cephems (all but cefsulodin and ceftazidime), meropenem, and S-4661, but none of them extrude polymyxin B or imipenem. Extrusion of aminoglycosides is specific to MexXY-OprM, and extrusion of a group of the β-lactams, i.e., carbenicillin, sulbenicillin, ceftazidime, moxalactam, and aztreonam, is specific to MexAB-OprM. Moreover, MexAB-OprM and MexCD-OprJ extrude novobiocin, cefsulodin, and flomoxef, while MexXY-OprM does not. These substrate specificities are distinct from those reported previously. PMID:11083635

  6. Listeria monocytogenes CadC Regulates Cadmium Efflux and Fine-tunes Lipoprotein Localization to Escape the Host Immune Response and Promote Infection.

    Science.gov (United States)

    Pombinho, Rita; Camejo, Ana; Vieira, Ana; Reis, Olga; Carvalho, Filipe; Almeida, Maria Teresa; Pinheiro, Jorge Campos; Sousa, Sandra; Cabanes, Didier

    2017-05-01

    Listeria monocytogenes is a major intracellular human foodborne bacterial pathogen. We previously revealed L. monocytogenes cadC as highly expressed during mouse infection. Here we show that L. monocytogenes CadC is a sequence-specific, DNA-binding and cadmium-dependent regulator of CadA, an efflux pump conferring cadmium resistance. CadC but not CadA is required for L. monocytogenes infection in vivo. Interestingly, CadC also directly represses lspB, a gene encoding a lipoprotein signal peptidase whose expression appears detrimental for infection. lspB overexpression promotes the release of the LpeA lipoprotein to the extracellular medium, inducing tumor necrosis factor α and interleukin 6 expression, thus impairing L. monocytogenes survival in macrophages. We propose that L. monocytogenes uses CadC to repress lspB expression during infection to avoid LpeA exposure to the host immune system, diminishing inflammatory cytokine expression and promoting intramacrophagic survival and virulence. CadC appears as the first metal efflux pump regulator repurposed during infection to fine-tune lipoprotein processing and host responses. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  7. Role of MRP-1 and GST-Pi in MDR and their inhibition by ...

    African Journals Online (AJOL)

    Samia A. Ebeed

    2016-08-16

    Aug 16, 2016 ... Various mechanisms were proposed that underlie MDR in malignant cells. ... the gene that confers MDR in lung cancer cells. MRP1 acts in order to protect ... the many physiological and pathophysiological processes influ-.

  8. Multimodal transfer of MDR by exosomes in human osteosarcoma.

    Science.gov (United States)

    Torreggiani, Elena; Roncuzzi, Laura; Perut, Francesca; Zini, Nicoletta; Baldini, Nicola

    2016-07-01

    Exosomes are extracellular vesicles released by both normal and tumour cells which are involved in a new intercellular communication pathway by delivering cargo (e.g., proteins, microRNAs, mRNAs) to recipient cells. Tumour-derived exosomes have been shown to play critical roles in different stages of tumour growth and progression. In this study, we investigated the potential role of exosomes to transfer the multidrug resistance (MDR) phenotype in human osteosarcoma cells. Exosomes were isolated by differential centrifugation of culture media from multidrug resistant human osteosarcoma MG-63DXR30 (Exo/DXR) and MG-63 parental cells (Exo/S). Exosome purity was examined by transmission electron microscopy and confirmed by immunoblot analysis for the expression of specific exosomal markers. Our data showed that exosomes derived from doxorubicin-resistant osteosarcoma cells could be taken up into secondary cells and induce a doxorubicin-resistant phenotype. The incubation of osteosarcoma cells with Exo/DXR decreased the sensitivity of parental cells to doxorubicin, while exposure with Exo/S was ineffective. In addition, we demonstrated that Exo/DXR expressed higher levels of MDR-1 mRNA and P-glycoprotein compared to Exo/S (p=0.03). Interestingly, both MDR-1 mRNA and P-gp increased in MG-63 cells after incubation with Exo/DXR, suggesting this as the main mechanism of exosome-mediated transfer of drug resistance. Our findings suggest that multidrug resistant osteosarcoma cells are able to spread their ability to resist the effects of doxorubicin treatment on sensitive cells by transferring exosomes carrying MDR-1 mRNA and its product P-glycoprotein.

  9. Splice form variant and amino acid changes in MDR49 confers DDT resistance in transgenic Drosophila.

    Science.gov (United States)

    Seong, Keon Mook; Sun, Weilin; Clark, John M; Pittendrigh, Barry R

    2016-03-22

    The ATP-binding cassette (ABC) transporters represent a superfamily of proteins that have important physiological roles in both prokaryotes and eukaryotes. In insects, ABC transporters have previously been implicated in insecticide resistance. The 91-R strain of Drosophila melanogaster has been intensely selected with DDT over six decades. A recent selective sweeps analysis of 91-R implicated the potential role of MDR49, an ABC transporter, in DDT resistance, however, to date the details of how MDR49 may play a role in resistance have not been elucidated. In this study, we investigated the impact of structural changes and an alternative splicing event in MDR49 on DDT-resistance in 91-R, as compared to the DDT susceptible strain 91-C. We observed three amino acid differences in MDR49 when 91-R was compared with 91-C, and only one isoform (MDR49B) was implicated in DDT resistance. A transgenic Drosophila strain containing the 91-R-MDR49B isoform had a significantly higher LD50 value as compared to the 91-C-MDR49B isoform at the early time points (6 h to 12 h) during DDT exposure. Our data support the hypothesis that the MDR49B isoform, with three amino acid mutations, plays a role in the early aspects of DDT resistance in 91-R.

  10. Single gold nanoparticle plasmonic spectroscopy for study of chemical-dependent efflux function of single ABC transporters of single live Bacillus subtilis cells.

    Science.gov (United States)

    Browning, Lauren M; Lee, Kerry J; Cherukuri, Pavan K; Huang, Tao; Songkiatisak, Preeyaporn; Warren, Seth; Xu, Xiao-Hong Nancy

    2018-03-26

    ATP-binding cassette (ABC) membrane transporters serve as self-defense transport apparatus in many living organisms and they can selectively extrude a wide variety of substrates, leading to multidrug resistance (MDR). The detailed molecular mechanisms remain elusive. Single nanoparticle plasmonic spectroscopy highly depends upon their sizes, shapes, chemical and surface properties. In our previous studies, we have used the size-dependent plasmonic spectra of single silver nanoparticles (Ag NPs) to study the real-time efflux kinetics of the ABC (BmrA) transporter and MexAB-OprM transporter in single live cells (Gram-positive and Gram-negative bacterium), respectively. In this study, we prepared and used purified, biocompatible and stable (non-aggregated) gold nanoparticles (Au NPs) (12.4 ± 0.9 nm) to study the efflux kinetics of single BmrA membrane transporters of single live Bacillus subtillis cells, aiming to probe chemical dependent efflux functions of BmrA transporters and their potential chemical sensing capability. Similar to those observed using Ag NPs, accumulation of the intracellular Au NPs in single live cells (WT and ΔBmrA) highly depends upon the cellular expression of BmrA and the NP concentration (0.7 and 1.4 nM). The lower accumulation of intracellular Au NPs in WT (normal expression of BmrA) than ΔBmrA (deletion of bmrA) indicates that BmrA extrudes the Au NPs out of the WT cells. The accumulation of Au NPs in the cells increases with NP concentration, suggesting that the Au NPs most likely passively diffuse into the cells, similar to antibiotics. The result demonstrates that such small Au NPs can serve as imaging probes to study the efflux function of the BmrA membrane transporter in single live cells. Furthermore, the dependence of the accumulation rate of intracellular Au NPs in single live cells upon the expression of BmrA and the concentration of the NPs is about twice higher than that of the same sized Ag NPs. This interesting finding

  11. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Matthias Kretschmer

    2009-12-01

    Full Text Available The grey mould fungus Botrytis cinerea causes losses of commercially important fruits, vegetables and ornamentals worldwide. Fungicide treatments are effective for disease control, but bear the risk of resistance development. The major resistance mechanism in fungi is target protein modification resulting in reduced drug binding. Multiple drug resistance (MDR caused by increased efflux activity is common in human pathogenic microbes, but rarely described for plant pathogens. Annual monitoring for fungicide resistance in field isolates from fungicide-treated vineyards in France and Germany revealed a rapidly increasing appearance of B. cinerea field populations with three distinct MDR phenotypes. All MDR strains showed increased fungicide efflux activity and overexpression of efflux transporter genes. Similar to clinical MDR isolates of Candida yeasts that are due to transcription factor mutations, all MDR1 strains were shown to harbor activating mutations in a transcription factor (Mrr1 that controls the gene encoding ABC transporter AtrB. MDR2 strains had undergone a unique rearrangement in the promoter region of the major facilitator superfamily transporter gene mfsM2, induced by insertion of a retrotransposon-derived sequence. MDR2 strains carrying the same rearranged mfsM2 allele have probably migrated from French to German wine-growing regions. The roles of atrB, mrr1 and mfsM2 were proven by the phenotypes of knock-out and overexpression mutants. As confirmed by sexual crosses, combinations of mrr1 and mfsM2 mutations lead to MDR3 strains with higher broad-spectrum resistance. An MDR3 strain was shown in field experiments to be selected against sensitive strains by fungicide treatments. Our data document for the first time the rising prevalence, spread and molecular basis of MDR populations in a major plant pathogen in agricultural environments. These populations will increase the risk of grey mould rot and hamper the effectiveness of

  12. Ecdysteroids Sensitize MDR and Non-MDR Cancer Cell Lines to Doxorubicin, Paclitaxel, and Vincristine but Tend to Protect Them from Cisplatin

    Directory of Open Access Journals (Sweden)

    Ana Martins

    2015-01-01

    Full Text Available Ecdysteroids, analogs of the insect molting hormone, are known for their various mild, nonhormonal bioactivities in mammals. Previously, we reported that less-polar ecdysteroids can modulate the doxorubicin resistance of a multidrug resistant (MDR mouse lymphoma cell line expressing the human ABCB1 transporter. Here, we describe the ability of 20-hydroxyecdysone (1 and its mono- (2 and diacetonide (3 derivatives to sensitize various MDR and non-MDR cancer cell lines towards doxorubicin, paclitaxel, vincristine, or cisplatin. Drug IC50 values with or without ecdysteroid were determined by MTT assay. Compound 3 significantly sensitized all cell lines to each chemotherapeutic except for cisplatin, whose activity was decreased. In order to overcome solubility and stability issues for the future in vivo administration of compound 3, liposomal formulations were developed. By means of their combination index values obtained via checkerboard microplate method, a formulation showed superior activity to that of compound 3 alone. Because ecdysteroids act also on non-ABCB1 expressing (sensitive cell lines, our results demonstrate that they do not or not exclusively exert their adjuvant anticancer activity as ABCB1 inhibitors, but other mechanisms must be involved, and they opened the way towards their in vivo bioactivity testing against various cancer xenografts.

  13. Isolation, Characterization and Anti-Multiple Drug Resistant (MDR ...

    African Journals Online (AJOL)

    (MDR) Bacterial Activity of Endophytic Fungi Isolated from ... Institute of Protection & Development of Beibu Wan Ocean Resources, Qinzhou University, Qinzhou, Guangxi Province, ..... isolated from secondary metabolites of the mangrove.

  14. Dual repression of the multidrug efflux pump CmeABC by CosR and CmeR in Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Tara Grinnage-Pulley

    2016-07-01

    Full Text Available During transmission and intestinal colonization, Campylobacter jejuni, a major foodborne human pathogen, experiences oxidative stress. CosR, a response regulator in C. jejuni, modulates the oxidative stress response and represses expression of the CmeABC multidrug efflux pump. CmeABC, a key component in resistance to toxic compounds including antimicrobials and bile salts, is also under negative regulation by CmeR, a TetR family transcriptional regulator. How CosR and CmeR interact in binding to the cmeABC promoter and how CosR senses oxidative stress are still unknown. To answer these questions, we conducted various experiments utilizing electrophoretic mobility shift assays and transcriptional fusion assays. CosR and CmeR bound independently to two separate sites of the cmeABC promoter, simultaneously repressing cmeABC expression. This dual binding of CosR and CmeR is optimal with a 17 base pair space between the two binding sites as mutations that shortened the distance between the binding sites decreased binding by CmeR and enhanced cmeABC expression. Additionally, the single cysteine residue (C218 of CosR was sensitive to oxidation, which altered the DNA-binding activity of CosR and dissociated CosR from the cmeABC promoter as determined by electrophoretic mobility shift assay. Replacement of C218 with serine rendered CosR insensitive to oxidation, suggesting a potential role of C218 in sensing oxidative stress and providing a possible mechanism for CosR-mediated response to oxidative stress. These findings reveal a dual regulatory role of CosR and CmeR in modulating cmeABC expression and suggest a potential mechanism that may explain overexpression of cmeABC in response to oxidative stress. Differential expression of cmeABC mediated by CmeR and CosR in response to different signals may facilitate adaptation of Campylobacter to various environmental conditions.

  15. Carcinogen-induced mdr overexpression is associated with xenobiotic resistance in rat preneoplastic liver nodules and hepatocellular carcinomas.

    Science.gov (United States)

    Fairchild, C R; Ivy, S P; Rushmore, T; Lee, G; Koo, P; Goldsmith, M E; Myers, C E; Farber, E; Cowan, K H

    1987-11-01

    We have previously reported the isolation of a human breast cancer cell line resistant to doxorubicin (adriamycin; AdrR MCF-7 cells) that has also developed the phenotype of multidrug resistance (MDR). MDR in this cell line is associated with increased expression of mdr (P glycoprotein) gene sequences. The development of MDR in AdrR MCF-7 cells is also associated with changes in the expression of several phase I and phase II drug-detoxifying enzymes. These changes are remarkably similar to those associated with development of xenobiotic resistance in rat hyperplastic liver nodules, a well-studied model system of chemical carcinogenesis. Using an mdr-encoded cDNA sequence isolated from AdrR MCF-7 cells, we have examined the expression of mdr sequences in rat livers under a variety of experimental conditions. The expression of mdr increased 3-fold in regenerating liver. It was also elevated (3- to 12-fold) in several different samples of rat hyperplastic nodules and in four of five hepatomas that developed in this system. This suggests that overexpression of mdr, a gene previously associated with resistance to antineoplastic agents, may also be involved in the development of resistance to xenobiotics in rat hyperplastic nodules. In addition, although the acute administration of 2-acetylaminofluorene induced an 8-fold increase in hepatic mdr-encoded RNA, performance of a partial hepatectomy either before or after administration of 2-acetylaminofluorene resulted in a greater than 80-fold increase in mdr gene expression over that in normal untreated livers. This represents an important in vivo model system in which to study the acute regulation of this drug resistance gene.

  16. The Blood-Brain Barrier Permeability of Six Indole Alkaloids from Uncariae Ramulus Cum Uncis in the MDCK-pHaMDR Cell Monolayer Model

    Directory of Open Access Journals (Sweden)

    Yi-Nan Zhang

    2017-11-01

    Full Text Available Uncariae Ramulus Cum Uncis (URCU is a widely used traditional Chinese medicine, and is reported to have various central nervous system effects. Alkaloids have been demonstrated to be the predominant pharmacological active components of URCU. In order to evaluate the blood-brain barrier (BBB permeability and transport mechanism of six typical indole alkaloids from URCU, the MDCK-pHaMDR cell monolayer model was used as an in vitro surrogate model for BBB. The samples were analyzed by high-performance liquid chromatography, and the apparent permeability coefficients (Papp were calculated. Among the six alkaloids, isorhynchophylline (2, isocorynoxeine (4, hirsutine (5 and hirsuteine (6 showed high permeability, with Papp values at 10−5 cm/s level in bidirectional transport. For rhynchophylline (1 and corynoxeine (3, they showed moderate permeability, with Papp values from the apical (AP side to the basolateral (BL side at 10−6 cm/s level and efflux ratio (Papp BL→AP/Papp AP→BL above 2. The time- and concentration-dependency experiments indicated that the main mechanism for 2, 4, 5 and 6 through BBB was passive diffusion. The efflux mechanism involved in the transports of compounds 1 and 3 could be reduced significantly by verapamil, and molecular docking screening also showed that 1 and 3 had strong bindings to P-glycoprotein. This study provides useful information for predicting the BBB permeability for 1–6, as well as better understanding of their central nervous system pharmacological activities.

  17. 8__Aisha_Detection ofMDR-TB

    African Journals Online (AJOL)

    User

    Among the MDR-TB cases rifampicin resistance was associated with rpoB WT gene and rpoB MUT gene in 100% and 62% of the ... diagnosis of TB patients, and proper treatment and management of the infected cases to minimize the spread and ..... in an amino acid change and concluded that this is one of the reasons ...

  18. Ion channels and transporters in the development of drug resistance in cancer cells

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Lambert, Ian Henry

    2014-01-01

    Multi-drug resistance (MDR) to chemotherapy is the major challenge in the treatment of cancer. MDR can develop by numerous mechanisms including decreased drug uptake, increased drug efflux and the failure to undergo drug-induced apoptosis. Evasion of drug-induced apoptosis through modulation of i...

  19. The Xenobiotic Transporter Mdr1 Enforces T Cell Homeostasis in the Presence of Intestinal Bile Acids.

    Science.gov (United States)

    Cao, Wei; Kayama, Hisako; Chen, Mei Lan; Delmas, Amber; Sun, Amy; Kim, Sang Yong; Rangarajan, Erumbi S; McKevitt, Kelly; Beck, Amanda P; Jackson, Cody B; Crynen, Gogce; Oikonomopoulos, Angelos; Lacey, Precious N; Martinez, Gustavo J; Izard, Tina; Lorenz, Robin G; Rodriguez-Palacios, Alex; Cominelli, Fabio; Abreu, Maria T; Hommes, Daniel W; Koralov, Sergei B; Takeda, Kiyoshi; Sundrud, Mark S

    2017-12-19

    CD4 + T cells are tightly regulated by microbiota in the intestine, but whether intestinal T cells interface with host-derived metabolites is less clear. Here, we show that CD4 + T effector (Teff) cells upregulated the xenobiotic transporter, Mdr1, in the ileum to maintain homeostasis in the presence of bile acids. Whereas wild-type Teff cells upregulated Mdr1 in the ileum, those lacking Mdr1 displayed mucosal dysfunction and induced Crohn's disease-like ileitis following transfer into Rag1 -/- hosts. Mdr1 mitigated oxidative stress and enforced homeostasis in Teff cells exposed to conjugated bile acids (CBAs), a class of liver-derived emulsifying agents that actively circulate through the ileal mucosa. Blocking ileal CBA reabsorption in transferred Rag1 -/- mice restored Mdr1-deficient Teff cell homeostasis and attenuated ileitis. Further, a subset of ileal Crohn's disease patients displayed MDR1 loss of function. Together, these results suggest that coordinated interaction between mucosal Teff cells and CBAs in the ileum regulate intestinal immune homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Effect of the mutation (C3435T) at exon 26 of the MDR1 gene on expression level of MDR1 messenger ribonucleic acid in duodenal enterocytes of healthy Japanese subjects.

    Science.gov (United States)

    Nakamura, Tsutomu; Sakaeda, Toshiyuki; Horinouchi, Masanori; Tamura, Takao; Aoyama, Nobuo; Shirakawa, Toshiro; Matsuo, Masafumi; Kasuga, Masato; Okumura, Katsuhiko

    2002-04-01

    The effect of the C3435T mutation at exon 26 of the MDR1 gene on the expression levels of MDR1 messenger ribonucleic acid (mRNA) was evaluated by means of real-time polymerase chain reaction in 51 biopsy specimens of duodenum obtained from 13 healthy Japanese subjects. The mRNA levels of MDR1 were 0.38 +/- 0.15, 0.56 +/- 0.14, and 1.13 +/- 0.42 (mean value +/- SE) in the subjects with the homozygote of wild-type allele (C/C), compound heterozygote with mutant T allele (C/T), and the homozygote of the mutant allele (T/T), respectively, reasonably explaining the lower digoxin serum concentration after administration of a single oral dose to subjects harboring a mutant T allele. Good correlation (r =.797; P CYP3A4 in the individual biopsy specimens. This finding suggested a lower plasma concentration of the substrates for CYP3A4 in subjects harboring the C3435T mutation of the MDR1 gene.

  1. Visualization of multidrug resistance in vivo

    International Nuclear Information System (INIS)

    Hendrikse, N.H.; Franssen, E.J.F.; Graaf, W.T.A. van der; Vries, E.G.E. de; Vaalburg, W.

    1999-01-01

    Various mechanisms are involved in multidrug resistance (MDR) for chemotherapeutic drugs, such as the drug efflux pumps, P-glycoprotein (Pgp) and multidrug resistance-associated protein (MRP). In this review the mechanisms involved in MDR are described and results are reviewed with particular attention to the in vivo imaging of Pgp and MRP. Various detection assays provide information about the presence of drug efflux pumps at the mRNA and protein levels. However, these methods do not yield information about the dynamic function of Pgp and MRP in vivo. For the study of Pgp- and MRP-mediated transport, single-photon emission tomography (SPET) and positron emission tomography (PET) are available. Technetium-99m sestamibi is a substrate for Pgp and MRP, and has been used in clinical studies for tumour imaging, and to visualize blockade of Pgp-mediated transport after modulation of the Pgp pump. Other 99m Tc radiopharmaceuticals, such as 99m Tc-tetrofosmin and several 99 Tc-Q complexes, are also substrates for Pgp, but to date only results from in vitro and animal studies are available for these compounds. Several agents, including [ 11 C]colchicine, [ 11 C]verapamil and [ 11 C]daunorubicin, have been evaluated for the quantification of Pgp-mediated transport with PET in vivo. The results suggest that radiolabelled colchicine, verapamil and daunorubicin are feasible substrates with which to image Pgp function in tumours. Uptake of [ 11 C]colchicine and [ 11 C]verapamil is relatively high in the chest area, reducing the value of both tracers for monitoring Pgp-mediated drug transport in tumours located in this region. In addition, it has to be borne in mind that only comparison of Pgp-mediated transport of radioalabelled substrates in the absence and in the presence of Pgp blockade gives quantitative information on Pgp-mediated pharmacokinetics. Leukotrienes are specific substrates for MRP. Therefore, N-[ 11 C]acetyl-leukotriene E 4 provides an opportunity to study MRP

  2. Breed distribution of the nt230(del4) MDR1 mutation in dogs.

    Science.gov (United States)

    Gramer, Irina; Leidolf, Regina; Döring, Barbara; Klintzsch, Stefanie; Krämer, Eva-Maria; Yalcin, Ebru; Petzinger, Ernst; Geyer, Joachim

    2011-07-01

    A 4-bp deletion mutation associated with multiple drug sensitivity exists in the canine multidrug resistance (MDR1) gene. This mutation has been detected in more than 10 purebred dog breeds as well as in mixed breed dogs. To evaluate the breed distribution of this mutation in Germany, 7378 dogs were screened, including 6999 purebred and 379 mixed breed dogs. The study included dog breeds that show close genetic relationship or share breeding history with one of the predisposed breeds but in which the occurrence of the MDR1 mutation has not been reported. The breeds comprised Bearded Collies, Anatolian Shepherd Dog, Greyhound, Belgian Tervuren, Kelpie, Borzoi, Australian Cattle Dog and the Irish Wolfhound. The MDR1 mutation was not detected is any of these breeds, although it was found as expected in the Collie, Longhaired Whippet, Shetland Sheepdog, Miniature Australian Shepherd, Australian Shepherd, Wäller, White Swiss Shepherd, Old English Sheepdog and Border Collie with varying allelic frequencies for the mutant MDR1 allele of 59%, 45%, 30%, 24%, 22%, 17%, 14%, 4% and 1%, respectively. Allelic frequencies of 8% and 2% were determined in herding breed mixes and unclassified mixed breeds, respectively. Because of its widespread breed distribution and occurrence in many mixed breed dogs, it is difficult for veterinarians and dog owners to recognise whether MDR1-related drug sensitivity is relevant for an individual animal. This study provides a comprehensive overview of all affected dog breeds and many dog breeds that are probably unaffected on the basis of ∼15,000 worldwide MDR1 genotyping data. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Subdivision of the MDR superfamily of medium-chain dehydrogenases/reductases through iterative hidden Markov model refinement

    Directory of Open Access Journals (Sweden)

    Persson Bengt

    2010-10-01

    Full Text Available Abstract Background The Medium-chain Dehydrogenases/Reductases (MDR form a protein superfamily whose size and complexity defeats traditional means of subclassification; it currently has over 15000 members in the databases, the pairwise sequence identity is typically around 25%, there are members from all kingdoms of life, the chain-lengths vary as does the oligomericity, and the members are partaking in a multitude of biological processes. There are profile hidden Markov models (HMMs available for detecting MDR superfamily members, but none for determining which MDR family each protein belongs to. The current torrential influx of new sequence data enables elucidation of more and more protein families, and at an increasingly fine granularity. However, gathering good quality training data usually requires manual attention by experts and has therefore been the rate limiting step for expanding the number of available models. Results We have developed an automated algorithm for HMM refinement that produces stable and reliable models for protein families. This algorithm uses relationships found in data to generate confident seed sets. Using this algorithm we have produced HMMs for 86 distinct MDR families and 34 of their subfamilies which can be used in automated annotation of new sequences. We find that MDR forms with 2 Zn2+ ions in general are dehydrogenases, while MDR forms with no Zn2+ in general are reductases. Furthermore, in Bacteria MDRs without Zn2+ are more frequent than those with Zn2+, while the opposite is true for eukaryotic MDRs, indicating that Zn2+ has been recruited into the MDR superfamily after the initial life kingdom separations. We have also developed a web site http://mdr-enzymes.org that provides textual and numeric search against various characterised MDR family properties, as well as sequence scan functions for reliable classification of novel MDR sequences. Conclusions Our method of refinement can be readily applied to

  4. Particle exhaust studies in Tore Supra with a pump limiter

    International Nuclear Information System (INIS)

    Klepper, C.C.; Haste, G.R.; Horton, L.D.; Mioduszewski, P.K.; Uckan, T.; Bonnel, P.; Bruneau, J.L.; Chatelier, M.; Gil, C.; Grisolia, C.; Loarer, T.; Martin, G.; Pegourie, B.; Rodriguez, L.; Watkins, J.G.

    1990-01-01

    The aim of the Tore Supra pump limiter program is to study particle exhaust with a pump limiter system in long-pulse discharges with continuous pellet fueling and strong auxiliary heating. The pump limiter system consists of six vertical modules, located at the bottom of the machine, and one horizontal module at the outer midplane. The results presented here were obtained with the horizontal module only. This module was equipped with two titanium pumps with a total pumping speed of 100000 L/s. The instrumentation of the limiter included pressure gauges, a residual gas analyzer, Langmuir probes, a spectrometer viewing the neutralizer plate for H α and impurity measurements, and water calorimeters. All diagnostics have been commissioned and are operational. Initial results were obtained in low-density discharges, with no gas puffing during the shot. While only a modest effect on the plasma density was observed, large exhaust fluxes were measured in the pump limiter. The most likely source of this gas was outgassing of the graphite walls. Straightforward particle balance between the plasma efflux and the pump limiter exhaust, as applied in previous pump limiter experiments, did not apply. The core plasma and the edge plasma seemed to be largely decoupled and a multi-layer model is being developed to explain the experimental results. (orig.)

  5. Functional Implications of an Intermeshing Cogwheel-like Interaction between TolC and MacA in the Action of Macrolide-specific Efflux Pump MacAB-TolC*

    Science.gov (United States)

    Xu, Yongbin; Song, Saemee; Moeller, Arne; Kim, Nahee; Piao, Shunfu; Sim, Se-Hoon; Kang, Mooseok; Yu, Wookyung; Cho, Hyun-Soo; Chang, Iksoo; Lee, Kangseok; Ha, Nam-Chul

    2011-01-01

    Macrolide-specific efflux pump MacAB-TolC has been identified in diverse Gram-negative bacteria including Escherichia coli. The inner membrane transporter MacB requires the outer membrane factor TolC and the periplasmic adaptor protein MacA to form a functional tripartite complex. In this study, we used a chimeric protein containing the tip region of the TolC α-barrel to investigate the role of the TolC α-barrel tip region with regard to its interaction with MacA. The chimeric protein formed a stable complex with MacA, and the complex formation was abolished by substitution at the functionally essential residues located at the MacA α-helical tip region. Electron microscopic study delineated that this complex was made by tip-to-tip interaction between the tip regions of the α-barrels of TolC and MacA, which correlated well with the TolC and MacA complex calculated by molecular dynamics. Taken together, our results demonstrate that the MacA hexamer interacts with TolC in a tip-to-tip manner, and implies the manner by which MacA induces opening of the TolC channel. PMID:21325274

  6. Functional implications of an intermeshing cogwheel-like interaction between TolC and MacA in the action of macrolide-specific efflux pump MacAB-TolC.

    Science.gov (United States)

    Xu, Yongbin; Song, Saemee; Moeller, Arne; Kim, Nahee; Piao, Shunfu; Sim, Se-Hoon; Kang, Mooseok; Yu, Wookyung; Cho, Hyun-Soo; Chang, Iksoo; Lee, Kangseok; Ha, Nam-Chul

    2011-04-15

    Macrolide-specific efflux pump MacAB-TolC has been identified in diverse gram-negative bacteria including Escherichia coli. The inner membrane transporter MacB requires the outer membrane factor TolC and the periplasmic adaptor protein MacA to form a functional tripartite complex. In this study, we used a chimeric protein containing the tip region of the TolC α-barrel to investigate the role of the TolC α-barrel tip region with regard to its interaction with MacA. The chimeric protein formed a stable complex with MacA, and the complex formation was abolished by substitution at the functionally essential residues located at the MacA α-helical tip region. Electron microscopic study delineated that this complex was made by tip-to-tip interaction between the tip regions of the α-barrels of TolC and MacA, which correlated well with the TolC and MacA complex calculated by molecular dynamics. Taken together, our results demonstrate that the MacA hexamer interacts with TolC in a tip-to-tip manner, and implies the manner by which MacA induces opening of the TolC channel.

  7. Mice heterozygous for the Mdr2 gene demonstrate decreased PEMT activity and diminished steatohepatitis on the MCD diet.

    Science.gov (United States)

    Igolnikov, Alexander C; Green, Richard M

    2006-03-01

    The administration of a methionine and choline deficient (MCD) diet to mice serves as an animal model of NASH. The multidrug resistant 2 (Mdr2) P-glycoprotein encodes for the canalicular phospholipid transporter, and Mdr2 (+/-) mice secrete 40% less phosphatidylcholine than wild-type mice. We have hypothesized that phosphatidylethanolamine-N-methyl transferase (PEMT) up-regulation is a consequence of MCD diet administration, and is important for the pathogenesis of steatohepatitis in this model. However, the effect of decreased phosphatidylcholine secretion and modulation of PEMT on the development of diet-induced steatohepatitis in Mdr2 (+/-) mice has not been explored. Thus, the purpose of the study is to examine the effects of the MCD diet on Mdr2 (+/-) mice. Mdr2 (+/-) and Mdr2 (+/+) mice were treated with an MCD or control diet for up to 30 days, and the severity of steatohepatitis, PEMT activity and hepatic S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) levels were measured. Serum ALT levels, hepatic inflammation, and PEMT activity were significantly lower, and hepatic SAM:SAH ratios were significantly higher in Mdr2 (+/-) mice at 7 and 30 days on the MCD diet. Mdr2 (+/-) mice have diminished susceptibility to MCD diet-induced NASH, which is associated with a relative decrease in PEMT activity and increased SAM:SAH ratios.

  8. Treatment outcomes of MDR-tuberculosis patients in Brazil: a retrospective cohort analysis

    Directory of Open Access Journals (Sweden)

    Mayara Lisboa Bastos

    2017-11-01

    Full Text Available Abstract Background Multidrug-resistant tuberculosis (MDR-TB is a threat for the global TB epidemic control. Despite existing evidence that individualized treatment of MDR-TB is superior to standardized regimens, the latter are recommended in Brazil, mainly because drug-susceptibility tests (DST are often restricted to first-line drugs in public laboratories. We compared treatment outcomes of MDR-TB patients using standardized versus individualized regimens in Brazil, a high TB-burden, low resistance setting. Methods The 2007–2013 cohort of the national electronic database (SITE-TB, which records all special treatments including drug-resistance, was analysed. Patients classified as MDR-TB in SITE-TB were eligible. Treatment outcomes were classified as successful (cure/treatment completed or unsuccessful (failure/relapse/death/loss to follow-up. The odds for successful treatment according to type of regimen were controlled for demographic and clinical variables. Results Out of 4029 registered patients, we included 1972 recorded from 2010 to 2012, who had more complete outcome data. The overall success proportion was 60%. Success was more likely in non-HIV patients, sputum-negative at baseline, with unilateral disease and without prior DR-TB. Adjusted for these variables, those receiving standardized regimens had 2.7-fold odds of success compared to those receiving individualized treatments when failure/relapse were considered, and 1.4-fold odds of success when death was included as an unsuccessful outcome. When loss to follow-up was added, no difference between types of treatment was observed. Patients who used levofloxacin instead of ofloxacin had 1.5-fold odds of success. Conclusion In this large cohort of MDR-TB patients with a low proportion of successful outcomes, standardized regimens had superior efficacy than individualized regimens, when adjusted for relevant variables. In addition to the limitations of any retrospective observational

  9. Efflux of inorganic substances from young barley roots. II. Movement in roots and efflux of sodium in plants with divided root systems

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, H; Kojima, S [Radiation Center of Osaka Prefecture, Sakai (Japan)

    1977-09-01

    The root system of young barley was almost halved, and the two portions were planted in culture grounds with different composition after severing the capillary connection between both root groups. With one portion in the acid medium solution of various compositions and the other in the /sup 22/Na-absorbing medium solution, the sodium absorbed from one root group moved to and flowed out from the other root group, and this state was observed. Also, the efflux of potassium from the root was observed. (1) The Na efflux was small in the culture ground with dilute hydrochloric acid, and larger in that with AlCl/sub 3/ or phosphate. (2) The K efflux was large under short-day condition. (3) Under short-day condition, in the culture ground with soluble Al, the K efflux was promoted by nitrogen-source addition, but the Na efflux was suppressed.

  10. Efflux of rhodamine from CD56+ cells as a surrogate marker for reversal of P-glycoprotein-mediated drug efflux by PSC 833

    DEFF Research Database (Denmark)

    Robey, R; Bakke, S; Stein, W

    1999-01-01

    minutes. A dose-response relationship was shown between the concentration of PSC 833 in the blood and the inhibition of rhodamine efflux, with an apparent plateau of the inhibition of rhodamine efflux at approximately 1,000 ng/mL. The Ki, defined as the concentration required for half-maximal inhibition...... of Pgp-mediated rhodamine efflux, was determined to be in the range of 29 to 181 ng/mL; although results in two patients were distinctly different, with Ki values of 914 and 916 ng/mL. MRK-16 staining was similar among all patients. We conclude that measurement of rhodamine efflux from CD56(+) cells...

  11. Conserved hydrogen bonds and water molecules in MDR HIV-1 protease substrate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhigang [Wayne State Univ., Detroit, MI (United States); Case Western Reserve Univ., Cleveland, OH (United States); Harbor Hospital Baltimore, MD (United States); Wang, Yong [Wayne State Univ., Detroit, MI (United States); Yedidi, Ravikiran S. [Wayne State Univ., Detroit, MI (United States); National Institutes of Health, Bethesda, MD (United States); Dewdney, Tamaria G. [Wayne State Univ., Detroit, MI (United States); Reiter, Samuel J. [Wayne State Univ., Detroit, MI (United States); Brunzelle, Joseph S. [Northwestern Univ. Feinberg School of Medicine, Chicago, IL (United States); Kovari, Iulia A. [Wayne State Univ., Detroit, MI (United States); Kovari, Ladislau C. [Wayne State Univ., Detroit, MI (United States)

    2012-12-19

    Success of highly active antiretroviral therapy (HAART) in anti-HIV therapy is severely compromised by the rapidly developing drug resistance. HIV-1 protease inhibitors, part of HAART, are losing their potency and efficacy in inhibiting the target. Multi-drug resistant (MDR) 769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, 90) was selected for the present study to understand the binding to its natural substrates. The nine crystal structures of MDR769 HIV-1 protease substrate hepta-peptide complexes were analyzed in order to reveal the conserved structural elements for the purpose of drug design against MDR HIV-1 protease. Our structural studies demonstrated that highly conserved hydrogen bonds between the protease and substrate peptides, together with the conserved crystallographic water molecules, played a crucial role in the substrate recognition, substrate stabilization and protease stabilization. Additionally, the absence of the key flap-ligand bridging water molecule might imply a different catalytic mechanism of MDR769 HIV-1 protease compared to that of wild type (WT) HIV-1 protease.

  12. Circumvention of multi-drug resistance of cancer cells by Chinese herbal medicines.

    Science.gov (United States)

    Chai, Stella; To, Kenneth Kw; Lin, Ge

    2010-07-25

    Multi-drug resistance (MDR) of cancer cells severely limits therapeutic outcomes. A proposed mechanism for MDR involves the efflux of anti-cancer drugs from cancer cells, primarily mediated by ATP-binding cassette (ABC) membrane transporters including P-glycoprotein. This article reviews the recent progress of using active ingredients, extracts and formulae from Chinese medicine (CM) in circumventing ABC transporters-mediated MDR. Among the ABC transporters, Pgp is the most extensively studied for its role in MDR reversal effects. While other MDR reversal mechanisms remain unclear, Pgp inhibition is a criterion for further mechanistic study. More mechanistic studies are needed to fully establish the pharmacological effects of potential MDR reversing agents.

  13. Genome sequencing and annotation of multidrug resistant Mycobacterium tuberculosis (MDR-TB PR10 strain

    Directory of Open Access Journals (Sweden)

    Mohd Zakihalani A. Halim

    2016-03-01

    Full Text Available Here, we report the draft genome sequence and annotation of a multidrug resistant Mycobacterium tuberculosis strain PR10 (MDR-TB PR10 isolated from a patient diagnosed with tuberculosis. The size of the draft genome MDR-TB PR10 is 4.34 Mbp with 65.6% of G + C content and consists of 4637 predicted genes. The determinants were categorized by RAST into 400 subsystems with 4286 coding sequences and 50 RNAs. The whole genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number CP010968. Keywords: Mycobacterium tuberculosis, Genome, MDR, Extrapulmonary

  14. P-glycoprotein activity and biological response

    International Nuclear Information System (INIS)

    Vaalburg, W.; Hendrikse, N.H.; Elsinga, P.H.; Bart, J.; Waarde, A. van

    2005-01-01

    P-glycoprotein (P-gp) is a transmembrane drug efflux pump encoded by the MDR-1 gene in humans. Most likely P-gp protects organs against endogenous and exogenous toxins by extruding toxic compounds such as chemotherapeutics and other drugs. Many drugs are substrates for P-gp. Since P-gp is also expressed in the blood-brain barrier, P-gp substrates reach lower concentrations in the brain than in P-gp-negative tissues. Failure of response to chemotherapy of malignancies can be due to intrinsic or acquired drug resistance. Many tumors are multidrug resistant (MDR); resistant to several structurally unrelated chemotherapeutic agents. Several mechanisms are involved in MDR of which P-gp is studied most extensively. P-gp extrudes drugs out of tumor cells resulting in decreased intracellular drug concentrations, leading to the MDR phenotype. Furthermore, the MDR-1 gene exhibits several single nucleotide polymorphisms, some of which result in different transport capabilities. P-gp functionality and the effect of P-gp modulation on the pharmacokinetics of novel and established drugs can be studied in vivo by positron emission tomography (PET) using carbon-11 and fluorine-18-labeled P-gp substrates and modulators. PET may demonstrate the consequences of genetic differences on tissue pharmacokinetics. Inhibitors such as calcium-channel blockers (verapamil), cyclosporin A, ONT-093, and XR9576 can modulate the P-gp functionality. With PET the effect of P-gp modulation on the bioavailability of drugs can be investigated in humans in vivo. PET also allows the measurement of the efficacy of newly developed P-gp modulators

  15. Antibacterial activities of selected Cameroonian spices and their synergistic effects with antibiotics against multidrug-resistant phenotypes

    Science.gov (United States)

    2011-01-01

    Background The emergence of multi-drug resistant (MDR) phenotypes is a major public health problem today in the treatment of bacterial infections. The present study was designed to evaluate the antibacterial activities of the methanol extracts of eleven Cameroonian spices on a panel of twenty nine Gram negative bacteria including MDR strains. Methods The phytochemical analysis of the extracts was carried out by standard tests meanwhile the liquid micro-broth dilution was used for all antimicrobial assays. Results Phytochemical analysis showed the presence of alkaloids, phenols and tannins in all plants extracts. The results of the antibacterial assays indicated that all tested extracts exert antibacterial activities, with the minimum inhibitory concentration (MIC) values varying from 32 to 1024 μg/ml. The extracts from Dichrostachys glomerata, Beilschmiedia cinnamomea, Aframomum citratum, Piper capense, Echinops giganteus, Fagara xanthoxyloïdes and Olax subscorpioïdea were the most active. In the presence of efflux pump inhibitor, PAßN, the activity of the extract from D. glomerata significantly increased on 69.2% of the tested MDR bacteria. At MIC/5, synergistic effects were noted with the extract of D. glomerata on 75% of the tested bacteria for chloramphenicol (CHL), tetracycline (TET) and norfloxacin (NOR). With B. cinnamomea synergy were observed on 62.5% of the studied MDR bacteria with CHL, cefepime (FEP), NOR and ciprofloxacin (CIP) and 75% with erythromycin (ERY). Conclusion The overall results provide information for the possible use of the studied extracts of the spices in the control of bacterial infections involving MDR phenotypes. PMID:22044718

  16. Commercial grade item (CGI) dedication of MDR relays for nuclear safety related applications

    Science.gov (United States)

    Das, Ranjit K.; Julka, Anil; Modi, Govind

    1994-08-01

    MDR relays manufactured by Potter & Brumfield (P&B) have been used in various safety related applications in commercial nuclear power plants. These include emergency safety features (ESF) actuation systems, emergency core cooling systems (ECCS) actuation, and reactor protection systems. The MDR relays manufactured prior to May 1990 showed signs of generic failure due to corrosion and outgassing of coil varnish. P&B has made design changes to correct these problems in relays manufactured after May 1990. However, P&B does not manufacture the relays under any 10CFR50 Appendix B quality assurance (QA) program. They manufacture the relays under their commercial QA program and supply these as commercial grade items. This necessitates CGI Dedication of these relays for use in nuclear-safety-related applications. This paper presents a CGI dedication program that has been used to dedicate the MDR relays manufactured after been used to dedicate the MDR relays manufactured after May 1990. The program is in compliance with current Nuclear Regulatory Commission (NRC) and Electric Power Research Institute (EPRI) guidelines and applicable industry standards; it specifies the critical characteristics of the relays, provides the tests and analysis required to verify the critical characteristics, the acceptance criteria for the test results, performs source verification to quality P&B for its control of the critical characteristics, and provides documentation. The program provides reasonable assurance that the new MDR relays will perform their intended safety functions.

  17. Beyond cellular detoxification: a plethora of physiological roles for MDR transporter homologs in plants

    Science.gov (United States)

    Remy, Estelle; Duque, Paula

    2014-01-01

    Higher plants possess a multitude of Multiple Drug Resistance (MDR) transporter homologs that group into three distinct and ubiquitous families—the ATP-Binding Cassette (ABC) superfamily, the Major Facilitator Superfamily (MFS), and the Multidrug And Toxic compound Extrusion (MATE) family. As in other organisms, such as fungi, mammals, and bacteria, MDR transporters make a primary contribution to cellular detoxification processes in plants, mainly through the extrusion of toxic compounds from the cell or their sequestration in the central vacuole. This review aims at summarizing the currently available information on the in vivo roles of MDR transporters in plant systems. Taken together, these data clearly indicate that the biological functions of ABC, MFS, and MATE carriers are not restricted to xenobiotic and metal detoxification. Importantly, the activity of plant MDR transporters also mediates biotic stress resistance and is instrumental in numerous physiological processes essential for optimal plant growth and development, including the regulation of ion homeostasis and polar transport of the phytohormone auxin. PMID:24910617

  18. Inhibition of ABCB1 (MDR1 expression by an siRNA nanoparticulate delivery system to overcome drug resistance in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Michiro Susa

    2010-05-01

    Full Text Available The use of neo-adjuvant chemotherapy in treating osteosarcoma has improved patients' average 5 year survival rate from 20% to 70% in the past 30 years. However, for patients who progress after chemotherapy, its effectiveness diminishes due to the emergence of multi-drug resistance (MDR after prolonged therapy.In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure resulting from MDR, we designed and evaluated a novel drug delivery system for MDR1 siRNA delivery. Novel biocompatible, lipid-modified dextran-based polymeric nanoparticles were used as the platform for MDR1 siRNA delivery; and the efficacy of combination therapy with this system was evaluated. In this study, multi-drug resistant osteosarcoma cell lines (KHOS(R2 and U-2OS(R2 were treated with the MDR1 siRNA nanocarriers and MDR1 protein (P-gp expression, drug retention, and immunofluoresence were analyzed. Combination therapy of the MDR1 siRNA loaded nanocarriers with increasing concentrations of doxorubicin was also analyzed. We observed that MDR1 siRNA loaded dextran nanoparticles efficiently suppresses P-gp expression in the drug resistant osteosarcoma cell lines. The results also demonstrated that this approach may be capable of reversing drug resistance by increasing the amount of drug accumulation in MDR cell lines.Lipid-modified dextran-based polymeric nanoparticles are a promising platform for siRNA delivery. Nanocarriers loaded with MDR1 siRNA are a potential treatment strategy for reversing MDR in osteosarcoma.

  19. Inhibition of Saccharomyces cerevisiae Pdr5p by a natural compound extracted from Brazilian Red Propolis

    Directory of Open Access Journals (Sweden)

    Cinzia Lotti

    2011-08-01

    Full Text Available Multidrug resistance of cancer cells and pathogenic microorganisms leading to the treatment failure of some forms of cancer or life-threatening bacterial or fungal infections is often caused by the overexpression of multidrug efflux pumps belonging to the ATP-binding cassette transporters superfamily. The multidrug resistance of fungal cells often involves the overexpression of efflux pumps belonging to the pleiotropic drug resistance (PDR family of ABC transporters. Possibly the best-studied fungal PDR transporter is the multidrug resistance transporter Pdr5p of Saccharomyces cerevisiae. Some research groups have been searching for new inhibitors of these efflux pumps in order to alleviate resistance. Natural products are a great source for the discovery of new compounds with biological activity. Propolis is a complex resinous material collected by honeybees from exudates and buds of certain plant sources and this material is thought to serve as a defense substance for bee hives. Propolis is widely used in traditional medicine and is reported to have a broad spectrum of pharmacological properties. Literature reported some biological functionalities of propolis, such as antibacterial, antiviral, fungicidal, anti-inflammatory and anti-carcinogenic activities. The chemical composition of propolis is qualitatively and quantitatively variable. Components isolated from methanolic extract of red Brazilian propolis (Alagoas, Northeast of Brazil are isoflavonoids (including pterocarpans, isoflavans, isoflavones, flavanones and polyprenylated benzophenones. In this work we demonstrated the effects of five different isolated compounds on the ATPase activity of Pdr5p. Out of all five substances tested, only BRP-1 was able to completely abolish the enzymatic activity while others worked as positive modulators of the enzyme activity. BRP-1also inhibited the efflux of Rhodamine 6G from yeast cells overexpressing Pdr5p. Taken together, these results

  20. Efflux of inorganic substances from young barley roots, (2)

    International Nuclear Information System (INIS)

    Fujimoto, Hiroshi; Kojima, Shigeru

    1977-01-01

    The root system of young barley was almost halved, and the two portions were planted in culture grounds with different composition after severing the capillary connection between both root groups. With one portion in the acid medium solution of various compositions and the other in the 22 Na-absorbing medium solution, the sodium absorbed from one root group moved to and flowed out from the other root group, and this state was observed. Also, the efflux of potassium from the root was observed. (1) The Na efflux was small in the culture ground with dilute hydrochloric acid, and larger in that with AlCl 3 or phosphate. (2) The K efflux was large under short-day condition. (3) Under short-day condition, in the culture ground with soluble Al, the K efflux was promoted by nitrogen-source addition, but the Na efflux was suppressed. (Mori, K.)

  1. Trans-Cinnamaldehyde and Eugenol Increase Acinetobacter baumannii Sensitivity to Beta-Lactam Antibiotics.

    Science.gov (United States)

    Karumathil, Deepti P; Nair, Meera Surendran; Gaffney, James; Kollanoor-Johny, Anup; Venkitanarayanan, Kumar

    2018-01-01

    Multi-drug resistant (MDR) Acinetobacter baumannii is a major nosocomial pathogen causing a wide range of clinical conditions with significant mortality rates. A. baumannii strains are equipped with a multitude of antibiotic resistance mechanisms, rendering them resistant to most of the currently available antibiotics. Thus, there is a critical need to explore novel strategies for controlling antibiotic resistance in A. baumannii . This study investigated the efficacy of two food-grade, plant-derived antimicrobials (PDAs), namely trans -cinnamaldehyde (TC) and eugenol (EG) in decreasing A. baumannii 's resistance to seven β-lactam antibiotics, including ampicillin, methicillin, meropenem, penicillin, aztreonam, amoxicillin, and piperacillin. Two MDR A. baumannii isolates (ATCC 17978 and AB 251847) were separately cultured in tryptic soy broth (∼6 log CFU/ml) containing the minimum inhibitory concentration (MIC) of TC or EG with or without the MIC of each antibiotic at 37°C for 18 h. A. baumannii strains not exposed to the PDAs or antibiotics served as controls. Following incubation, A. baumannii counts were determined by broth dilution assay. In addition, the effect of PDAs on the permeability of outer membrane and efflux pumps in A. baumannii was measured. Further, the effect of TC and EG on the expression of A. baumannii genes encoding resistance to β-lactam antibiotics ( blaP ), efflux pumps ( adeABC ), and multi-drug resistant protein ( mdrp ) was studied using real-time quantitative PCR (RT-qPCR). The experiment was replicated three times with duplicate samples of each treatment and control. The results from broth dilution assay indicated that both TC and EG in combination with antibiotics increased the sensitivity of A. baumannii to all the tested antibiotics ( P increase the permeability of its outer membrane. Moreover, RT-qPCR data revealed that TC and EG down-regulated the expression of majority of the genes associated with β-lactam antibiotic

  2. The Transcriptional Repressor, MtrR, of the mtrCDE Efflux Pump Operon of Neisseria gonorrhoeae Can Also Serve as an Activator of “off Target” Gene (glnE Expression

    Directory of Open Access Journals (Sweden)

    Paul J. T. Johnson

    2015-06-01

    Full Text Available MtrR is a well-characterized repressor of the Neisseria gonorrhoeae mtrCDE efflux pump operon. However, results from a previous transcriptional profiling study suggested that MtrR also represses or activates expression of at least sixty genes outside of the mtr locus. Evidence that MtrR can directly repress so-called “off target” genes has previously been reported; in particular, MtrR was shown to directly repress glnA, which encodes glutamine synthetase. In contrast, evidence for the ability of MtrR to directly activate expression of gonococcal genes has been lacking; herein, we provide such evidence. We now report that MtrR has the ability to directly activate expression of glnE, which encodes the dual functional adenyltransferase/deadenylase enzyme GlnE that modifies GlnA resulting in regulation of its role in glutamine biosynthesis. With its capacity to repress expression of glnA, the results presented herein emphasize the diverse and often opposing regulatory properties of MtrR that likely contributes to the overall physiology and metabolism of N. gonorrhoeae.

  3. CO2 efflux from cleared mangrove peat.

    Directory of Open Access Journals (Sweden)

    Catherine E Lovelock

    Full Text Available CO(2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils.We measured CO(2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO(2 efflux. CO(2 efflux from soils declines from time of clearing from ∼10,600 tonnes km(-2 year(-1 in the first year to 3000 tonnes km(2 year(-1 after 20 years since clearing. Disturbing peat leads to short term increases in CO(2 efflux (27 umol m(-2 s(-1, but this had returned to baseline levels within 2 days.Deforesting mangroves that grow on peat soils results in CO(2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks.

  4. A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization

    DEFF Research Database (Denmark)

    Schiøtt, Morten; Romanowsky, Shawn M; Bækgaard, Lone

    2004-01-01

    Ca(2+) signals are thought to play important roles in plant growth and development, including key aspects of pollen tube growth and fertilization. The dynamics of a Ca(2+) signal are largely controlled by influx (through channels) and efflux (through pumps and antiporters). The Arabidopsis genome...... and a high frequency of aborted fertilization, resulting in a >80% reduction in seed set. These findings identify a plasma membrane Ca(2+) transporter as a key regulator of pollen development and fertilization in flowering plants.......Ca(2+) signals are thought to play important roles in plant growth and development, including key aspects of pollen tube growth and fertilization. The dynamics of a Ca(2+) signal are largely controlled by influx (through channels) and efflux (through pumps and antiporters). The Arabidopsis genome......-inducing) plasmid that is transferred to plant cells] gene disruptions of ACA9 were found to result in partial male sterility. Complementation was observed by using a ACA9-yellow fluorescence protein (YFP) fusion that displayed plasma membrane localization. Mutant aca9 pollen displayed a reduced growth potential...

  5. Mechanisms of P-Glycoprotein Modulation by Semen Strychni Combined with Radix Paeoniae Alba

    Directory of Open Access Journals (Sweden)

    Li-Li Liu

    2017-01-01

    Full Text Available Semen Strychni has been extensively used as a Chinese herb, but its therapeutic window is narrowed by the strong toxicity of the compound, which limits its effectiveness. Radix Paeoniae Alba has been reported to reduce the toxic effects and increase the therapeutic effects of Semen Strychni, but the underlying mechanism remains unknown. This research aimed to explore the mechanism through which P-glycoprotein (P-gp is modulated by Semen Strychni combined with Radix Paeoniae Alba in vitro. An MTT assay was used to study cytotoxicity in an MDCK-MDR1 cell model. Rh123 efflux and accumulation were measured to assess P-gp function. The expression levels of MDR1 mRNA and P-gp protein in MDCK-MDR1 cells were investigated. A P-gp ATPase activity assay kit was applied to detect the effect on P-gp ATPase activity. Semen Strychni combined with Radix Paeoniae Alba could induce P-gp-mediated drug transport by inhibiting brucine and strychnine transport in MDCK-MDR1 cells, enhancing the P-gp efflux function, upregulating the P-gp expression and MDR1 mRNA levels, and stimulating P-gp ATPase activity.

  6. Blood-brain barrier permeability and neuroprotective effects of three main alkaloids from the fruits of Euodia rutaecarpa with MDCK-pHaMDR cell monolayer and PC12 cell line.

    Science.gov (United States)

    Zhang, Yi-Nan; Yang, Yan-Fang; Yang, Xiu-Wei

    2018-02-01

    The fruits of Euodia rutaecarpa (Euodiae Fructus, EF), the widely used traditional Chinese medicine, have various central nervous system effects. Alkaloids following as evodiamine (EDM), rutaecarpine (RCP) and dehydroevodiamine (DEDM) are the major substances in EF. The MDCK-pHaMDR cell monolayer model was utilized as a blood-brain barrier (BBB) surrogate model to study their BBB permeability. The transport samples were analyzed by high performance liquid chromatography and the apparent permeability coefficients (P app ) were calculated. EDM and RCP showed high permeability through BBB by passive diffusion, while DEDM showed moderate permeability with efflux mechanism related to P-glycoprotein (P-gp). EDM and RCP could also reduce the efflux of DEDM probably by inhibiting P-gp. The neuroprotective effects of the three alkaloids were then studied on the PC12 cell line injured by 1-methyl-4-phenylpyridinium ion (MPP + ) or hydrogen peroxide (H 2 O 2 ). EDM could significantly reduce MPP + or H 2 O 2 -induced cell injury dose-dependently. RCP could increase the cell viability in MPP + treated group while DEDM showed a protective effect against H 2 O 2 injury. This study predicted the permeability of EDM, RCP and DEDM through BBB and discovered the neuroprotective substance basis of EF as a potential encephalopathy drug. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Role of hypoxia-inducible factor-α in hepatitis-B-virus X protein-mediated MDR1 activation

    International Nuclear Information System (INIS)

    Han, Hyo-Kyung; Han, Chang Yeob; Cheon, Eun-Pa; Lee, Jaewon; Kang, Keon Wook

    2007-01-01

    The transition from chemotherapy-responsive cancer cells to chemotherapy-resistant cancer cells is mainly accompanied by the increased expression of multi-drug resistance 1 (MDR1). We found that hepatitis-B-virus X protein (HBx) increases the transcriptional activity and protein level of MDR1 in a hepatoma cell line, H4IIE. In addition, HBx overexpression made H4IIE cells more resistant to verapamil-uptake. HBx stabilized hypoxia-inducible factor-1α (HIF-1α) and induced the nuclear translocation of C/EBPβ. Reporter gene analyses showed that HBx increased the reporter activity in the cells transfected with the reporter containing MDR1 gene promoter. Moreover, the luciferase reporter gene activity was significantly inhibited by HIF-1α siRNA but not by overexpression of C/EBP dominant negative mutant. These results imply that HBx increases the MDR1 transporter activity through the transcriptional activation of the MDR1 gene with HIF-1α activation, and suggest HIF-1α for the therapeutic target of HBV-mediated chemoresistance

  8. Impact of BCRP/MXR, MRP1 and MDR1/P-Glycoprotein on thermoresistant variants of atypical and classical multidrug resistant cancer cells

    DEFF Research Database (Denmark)

    Stein, Ulrike; Lage, Hermann; Jordan, Andreas

    2002-01-01

    The impact of the ABC transporters breast cancer resistance protein/mitoxantrone resistance associated transporter (BCRP/MXR), multidrug resistance-associated protein 1 (MRP1) and multidrug resistance gene-1/P-glycoprotein (MDR1/PGP) on the multidrug resistance (MDR) phenotype in chemoresistance...... expression of BCRP/MXR and of MRP1 were clearly enhanced (vs. parental and classical MDR lines). MDR1/PGP expression was distinctly elevated in the classical MDR subline EPG85-257RDB (vs. parental and atypical MDR sublines). In all thermoresistant counterparts basal expression of BCRP/MXR, MRP1 and MDR1/PGP...... was increased relative to thermosensitive sublines. Although it could be shown that the overexpressed ABC transporters were functionally active, however, no decreased drug accumulations of doxorubicin, mitoxantrone and rhodamine 123 were observed. Thus, expression of BCRP/MXR, MRP1 and MDR1/PGP was found...

  9. Machine learning-, rule- and pharmacophore-based classification on the inhibition of P-glycoprotein and NorA.

    Science.gov (United States)

    Ngo, T-D; Tran, T-D; Le, M-T; Thai, K-M

    2016-09-01

    The efflux pumps P-glycoprotein (P-gp) in humans and NorA in Staphylococcus aureus are of great interest for medicinal chemists because of their important roles in multidrug resistance (MDR). The high polyspecificity as well as the unavailability of high-resolution X-ray crystal structures of these transmembrane proteins lead us to combining ligand-based approaches, which in the case of this study were machine learning, perceptual mapping and pharmacophore modelling. For P-gp inhibitory activity, individual models were developed using different machine learning algorithms and subsequently combined into an ensemble model which showed a good discrimination between inhibitors and noninhibitors (acctrain-diverse = 84%; accinternal-test = 92% and accexternal-test = 100%). For ligand promiscuity between P-gp and NorA, perceptual maps and pharmacophore models were generated for the detection of rules and features. Based on these in silico tools, hit compounds for reversing MDR were discovered from the in-house and DrugBank databases through virtual screening in an attempt to restore drug sensitivity in cancer cells and bacteria.

  10. Mutation-Induced Population Shift in the MexR Conformational Ensemble Disengages DNA Binding: A Novel Mechanism for MarR Family Derepression.

    Science.gov (United States)

    Anandapadamanaban, Madhanagopal; Pilstål, Robert; Andresen, Cecilia; Trewhella, Jill; Moche, Martin; Wallner, Björn; Sunnerhagen, Maria

    2016-08-02

    MexR is a repressor of the MexAB-OprM multidrug efflux pump operon of Pseudomonas aeruginosa, where DNA-binding impairing mutations lead to multidrug resistance (MDR). Surprisingly, the crystal structure of an MDR-conferring MexR mutant R21W (2.19 Å) presented here is closely similar to wild-type MexR. However, our extended analysis, by molecular dynamics and small-angle X-ray scattering, reveals that the mutation stabilizes a ground state that is deficient of DNA binding and is shared by both mutant and wild-type MexR, whereas the DNA-binding state is only transiently reached by the more flexible wild-type MexR. This population shift in the conformational ensemble is effected by mutation-induced allosteric coupling of contact networks that are independent in the wild-type protein. We propose that the MexR-R21W mutant mimics derepression by small-molecule binding to MarR proteins, and that the described allosteric model based on population shifts may also apply to other MarR family members. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Efficacy of moxifloxacin & econazole against multidrug resistant (MDR Mycobacterium tuberculosis in murine model

    Directory of Open Access Journals (Sweden)

    U D Gupta

    2015-01-01

    Full Text Available Background & objectives: Studies have shown the bactericidal potential of econazole and clotrimazole against Mycobacterium tuberculosis under in vitro and ex vivo conditions along with their synergism with conventional antituberculosis drugs. These molecules were also found to be effective against different multidrug resistant (MDR M. tuberculosis isolates in vitro. Hence the present study was designed to evaluate the in vivo antimycobacterial potential of moxifloxacin and econazole alone and in combination against multidrug resistant tuberculosis (MDR-TB in a mice model. Methods: Mice were infected with 2.5×10 [7] bacilli of MDR strain of M. tuberculosis by aerosol route of infection. After four weeks of infection, chemotherapy was started orally by moxifloxacin 8.0 mg/kg body wt and econazole 3.3 mg/kg alone and in combination, as well as with four first line anti-tuberculosis drugs as a positive control. The animals were sacrificed and the lungs and spleen were excised under aspetic conditions. The tissues were homogenized with sterile normal saline, an aliquot of the homogenate was plated on Middlebrook 7H11 agar supplemented with oleate albumin dextrose catalase (OADC and incubated at 37°C for four weeks. The number of visible and individual colonies were counted. Results: The first line anti-tuberculosis drugs (RIF+INH+EMB+PZA after eight weeks of therapy had no impact as the bacillary load in lungs and spleens remained unchanged. However, econazole, moxifloxacin alone as well as in combination significantly reduced the bacillary load in lungs as well as in spleens of MDR-TB bacilli infected mice. Interpretation & conclusions: Co-administration of the two drugs (econazole and moxifloxacin to MDR-TB strain JAL-7782 infected mice exhibited additive effect, the efficacy of the drugs in combination being higher as compared with ECZ or MOX alone. These results were substantiated by histopathological studies. This study suggests the utility of

  12. Psychiatric disorders in patients with multidrug resistant tuberculosis (MDR-TB in Sardjito Hospital, Yogyakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    Irwan Supriyanto

    2017-08-01

    Full Text Available Introduction: Tuberculosis has become a chronic debilitating disease in developing countries, particularly after the emergence of multidrug resistant tuberculosis (MDR-TB. Second line treatments for the disease which were subsequently developed were associated with psychiatric disorders among patients. Psychiatric disorder can either be induced by treatment regiments or psychosocial factors. Cycloserine administration is frequently reported to be associated with psychiatric disorders. In this study, we examined the prevalence and characteristics of psychiatric disorders among MDR-TB patients in Sardjito Hospital, Yogyakarta, Indonesia. Methods: In this descriptive study, we studied medical records of MDR-TB patients admitted for MDR-TB treatments to Sardjito Hospital from January 2014 to July 2016 and screened for psychiatric disorders. Results: We found that 32.8% of the patients had psychiatric disorders, some of which had multiple psychiatric diagnoses (14.1%. The diagnoses were medication induced delirium, substance/medication induced psychotic disorder, substance/medication use depressive disorder, depressive type schizoaffective disorder, bipolar I disorder current episode severe manic with psychotic features, mild depression, moderate depression, major depression without psychotic features, major depression with psychotic features, adjustment disorders with mixed anxiety and depressed mood, adjustment disorder with anxiety, acute stress disorder, and insomnia. Psychiatric disorders were significantly associated with cycloserine dose and sex. Psychotic symptoms were significantly associated with sex and level of education. Conclusion: The presence of psychiatric disorders might disturb MDR-TB treatment resulting in poor outcomes. Precaution and prompt managements are required for psychiatric disorders in patients receiving MDR-TB treatment regiments.

  13. Circumvention of multi-drug resistance of cancer cells by Chinese herbal medicines

    Directory of Open Access Journals (Sweden)

    Lin Ge

    2010-07-01

    Full Text Available Abstract Multi-drug resistance (MDR of cancer cells severely limits therapeutic outcomes. A proposed mechanism for MDR involves the efflux of anti-cancer drugs from cancer cells, primarily mediated by ATP-binding cassette (ABC membrane transporters including P-glycoprotein. This article reviews the recent progress of using active ingredients, extracts and formulae from Chinese medicine (CM in circumventing ABC transporters-mediated MDR. Among the ABC transporters, Pgp is the most extensively studied for its role in MDR reversal effects. While other MDR reversal mechanisms remain unclear, Pgp inhibition is a criterion for further mechanistic study. More mechanistic studies are needed to fully establish the pharmacological effects of potential MDR reversing agents.

  14. Single-step selection of drug resistant Acinetobacter baylyi ADP1 mutants reveals a functional redundancy in the recruitment of multidrug efflux systems.

    Directory of Open Access Journals (Sweden)

    Anthony J Brzoska

    Full Text Available Members of the genus Acinetobacter have been the focus recent attention due to both their clinical significance and application to molecular biology. The soil commensal bacterium Acinetobacter baylyi ADP1 has been proposed as a model system for molecular and genetic studies, whereas in a clinical environment, Acinetobacter spp. are of increasing importance due to their propensity to cause serious and intractable systemic infections. Clinically, a major factor in the success of Acinetobacter spp. as opportunistic pathogens can be attributed to their ability to rapidly evolve resistance to common antimicrobial compounds. Whole genome sequencing of clinical and environmental Acinetobacter spp. isolates has revealed the presence of numerous multidrug transporters within the core and accessory genomes, suggesting that efflux is an important host defense response in this genus. In this work, we used the drug-susceptible organism A. baylyi ADP1 as a model for studies into the evolution of efflux mediated resistance in genus Acinetobacter, due to the high level of conservation of efflux determinants across four diverse Acinetobacter strains, including clinical isolates. A single exposure of therapeutic concentrations of chloramphenicol to populations of A. baylyi ADP1 cells produced five individual colonies displaying multidrug resistance. The major facilitator superfamily pump craA was upregulated in one mutant strain, whereas the resistance nodulation division pump adeJ was upregulated in the remaining four. Within the adeJ upregulated population, two different levels of adeJ mRNA transcription were observed, suggesting at least three separate mutations were selected after single-step exposure to chloramphenicol. In the craA upregulated strain, a T to G substitution 12 nt upstream of the craA translation initiation codon was observed. Subsequent mRNA stability analyses using this strain revealed that the half-life of mutant craA mRNA was significantly

  15. [Polymorphisms of the multiple drug resistance gene (MDR1) in Mapuche, Mestizo and Maori populations in Chile].

    Science.gov (United States)

    Wielandt, Ana María; Vollrath, Valeska; Chianale, José

    2004-09-01

    There are significant differences in drug responses among different ethnic groups. The multidrug transporter P-gp, encoded by the MDR1 gene, plays a key role in determining drug bioavailability, and an association between a polymorphism in exon 26 (C3435T) and lower P-gp expression has been found. The co-segregation of this polymorphism with the polymorphism in exon 12 (C1236T) and in exon 21 (G2677T/A) determines several MDR1 haplotypes in humans. To characterize the polymorphisms of exons 26, 21 and 12 of the MDR1 gene in different Chilean populations. Using a polymerase chain reaction and restriction fragment length polymorphism technique, we studied the allelic frequencies and the distribution of MDR1 haplotypes in 3 Chilean populations: Mestizo (n=104), Mapuche (n=96, living in the National Reservation of the Huapi Island, Ranico Lake) and Maori (n=52, living in Eastern Island). The frequency of the normal MDR1*1 haplotype, without mutations, was lower in Mapuches than in Mestizos or Maoris (p0.0.5), but lower than the frequencies reported in Caucasians or Asians (p<0.05). We found significant differences in the frequencies of genetic polymorphisms of the MDR1 gene in Chilean populations, related to the ethnic origins of our ancestors.

  16. Development of Classification Models for Identifying “True” P-glycoprotein (P-gp Inhibitors Through Inhibition, ATPase Activation and Monolayer Efflux Assays

    Directory of Open Access Journals (Sweden)

    Anna Maria Bianucci

    2012-06-01

    Full Text Available P-glycoprotein (P-gp is an efflux pump involved in the protection of tissues of several organs by influencing xenobiotic disposition. P-gp plays a key role in multidrug resistance and in the progression of many neurodegenerative diseases. The development of new and more effective therapeutics targeting P-gp thus represents an intriguing challenge in drug discovery. P-gp inhibition may be considered as a valid approach to improve drug bioavailability as well as to overcome drug resistance to many kinds of tumours characterized by the over-expression of this protein. This study aims to develop classification models from a unique dataset of 59 compounds for which there were homogeneous experimental data on P-gp inhibition, ATPase activation and monolayer efflux. For each experiment, the dataset was split into a training and a test set comprising 39 and 20 molecules, respectively. Rational splitting was accomplished using a sphere-exclusion type algorithm. After a two-step (internal/external validation, the best-performing classification models were used in a consensus predicting task for the identification of compounds named as “true” P-gp inhibitors, i.e., molecules able to inhibit P-gp without being effluxed by P-gp itself and simultaneously unable to activate the ATPase function.

  17. ATP binding cassette G1-dependent cholesterol efflux during inflammation.

    Science.gov (United States)

    de Beer, Maria C; Ji, Ailing; Jahangiri, Anisa; Vaughan, Ashley M; de Beer, Frederick C; van der Westhuyzen, Deneys R; Webb, Nancy R

    2011-02-01

    ATP binding cassette transporter G1 (ABCG1) mediates the transport of cellular cholesterol to HDL, and it plays a key role in maintaining macrophage cholesterol homeostasis. During inflammation, HDL undergoes substantial remodeling, acquiring lipid changes and serum amyloid A (SAA) as a major apolipoprotein. In the current study, we investigated whether remodeling of HDL that occurs during acute inflammation impacts ABCG1-dependent efflux. Our data indicate that lipid free SAA acts similarly to apolipoprotein A-I (apoA-I) in mediating sequential efflux from ABCA1 and ABCG1. Compared with normal mouse HDL, acute phase (AP) mouse HDL containing SAA exhibited a modest but significant 17% increase in ABCG1-dependent efflux. Interestingly, AP HDL isolated from mice lacking SAA (SAAKO mice) was even more effective in promoting ABCG1 efflux. Hydrolysis with Group IIA secretory phospholipase A(2) (sPLA(2)-IIA) significantly reduced the ability of AP HDL from SAAKO mice to serve as a substrate for ABCG1-mediated cholesterol transfer, indicating that phospholipid (PL) enrichment, and not the presence of SAA, is responsible for alterations in efflux. AP human HDL, which is not PL-enriched, was somewhat less effective in mediating ABCG1-dependent efflux compared with normal human HDL. Our data indicate that inflammatory remodeling of HDL impacts ABCG1-dependent efflux independent of SAA.

  18. EXSPRESSION OF MDR-GENES AND MONORESISTANCE GENES IN NON-SMALL-CELL LUNG CANCER

    Directory of Open Access Journals (Sweden)

    E. L. Yumov

    2014-01-01

    Full Text Available We studied the expression of multidrug resistance genes (MDR and monoresistance genes in normal bronchial tissue and tumor tissue of the non-small cell lung cancer (NSCLC after neoadjuvant chemotherapy (NACT (vinorelbine-carboplatine. The study included 30 patients with NSCLC (Т2–4N0–3M0. Normal bronchial tissue, normal lung tissue and tumor tissue collected during surgery following neoadjuvant chemotherapy (NACT served as a material of the study. The expression levels of MDR genes (ABCB1, ABCB2, ABCC1, ABCC2, ABCС5, ABCG1, ABCG2, GSTP and MVP, and monoresistance genes (BRCA1, ERCC1, RRM1, TOP1, TOP2A, TUBB3 and TYMS were estimated by quantitative reverse transcriptase PCR (RT-qPCR. The expression levels of some MDR genes and monoresistance genes (АВСВ1, АВСВ2, ABCG1, ERCC1, GSTP1 and MVP were significantly higher in the bronchi than in tumor tissue. The expression of ABCG1, ABCG2 and ERCC1 genes was higher in patients with T1-2 cancer than in patients with T3-4 cancer. Patients with adenocarcinoma had higher expression of BRCA1, MVP and ABCB1 genes than patients with squamous cell lung cancer. A tendency towards reduction in the expression level of MDR-genes and monoresistance genes was observed in patients with partial tumor regression compared to that observed in patients with stable disease. These findings were consistent with the previous data on reduction in the MDR-gene expression after chemotherapy with a good response in breast cancer patients.

  19. Effects of ionizing scrape-off layers on local recycling in Tore Supra pump limiter experiments

    International Nuclear Information System (INIS)

    Owen, L.W.; Hogan, J.T.; Klepper, C.C.; Mioduszewski, P.K.; Uckan, T.; Chatelier, M.; Loarer, T.

    1992-01-01

    A series of ohmic discharges with active pumping in the Tore Supra outboard pump limiter has been analyzed with the DEGAS neutrals transport code and an analysis scrape-off layer (SOL) plasma model. Pumping speed and plenum pressure measurements indicated 5--10 torr-L/s throughput with only modest effects on density (dN core /dt + source rate from ionization and dissociation of wall-desorbed molecules is seen to peak very near the radial position of the limiter throat. Consequently, a strong recycling vortex is created in the region of the limiter, with the ion flux amplified by factors of ∼2 at the outer limiter surfaces and >3 within the limiter throat. The calculations indicate that less than 30% of the pump throughput is due to first-generation ions from the core efflux, with the balance from local recycling in the strongly ionizing scrape-off layer

  20. Importancia pronóstica de la expresión de MDR-1 en la leucemia mieloblástica aguda

    Directory of Open Access Journals (Sweden)

    J. Arbelbide

    2003-08-01

    Full Text Available Una proporción importante de pacientes con leucemia mieloblástica aguda (LMA presentan recaída o resistencia con el tratamiento. Uno de los mecanismos involucrados en la resistencia a drogas, es la presencia de la glicoproteína P 170 (gp-P 170 resultante de la expresión del gen MDR-1 sobre las células leucémicas. El objetivo de este trabajo es valorar el impacto pronóstico de la expresión de MDR-1 en una población de pacientes tratados por LMA. Se evaluó retrospectivamente la expresión de MDR-1 en una cohorte de 55 pacientes con LMA, mayores de 16 años, que recibieron tratamiento quimioterápico desde 1990 hasta el 2000. Se evaluó sobre biopsia de médula ósea, la expresión de MDR-1/gp-P 170 por inmunohistoquímica. Mediante una curva ROC, se estableció que una expresión de MDR-1 > 50% en células blásticas, resultó significativa para el logro de remisión completa. Esta expresión de MDR-1+ correlacionó con la presencia de leucocitosis: (p:0.002, expresion de células CD34+ (p:0.006, menor tasa de remisión completa (p:0.001, mayor tasa de recaída (p:0.02 y de estudios citogenéticos no favorables (p:0.02. La SLE fue de 21.2% ES:9.3 con un seguimiento de 22 meses para el grupo MDR-1+ versus 56.4% ES:12.5 con un seguimiento de 78 meses en los casos MDR-1- (p:0.007. Se puede concluir que la expresion de MDR-1 ha demostrado ser un factor pronóstico de resistencia a la quimioterapia. Estos pacientes presentan una menor tasa de remisión completa, una mayor tasa de recaída por persistencia de enfermedad residual post-tratamiento, lo que produce una menor sobrevida global.An important number of patients with Acute Myeloid Leukemia (AML experience relapse or resistance to chemotherapy. One of the mechanisms involved in this resistance is the presence of glycoprotein P170 (gp-P 170, which results of the MDR-1 gene in leukemic cells. The objective of this article is to assess the prognostic impact of the expression of MDR-1 in a

  1. Celastraceae sesquiterpenes as a new class of modulators that bind specifically to human P-glycoprotein and reverse cellular multidrug resistance.

    Science.gov (United States)

    Muñoz-Martínez, Francisco; Lu, Peihua; Cortés-Selva, Fernando; Pérez-Victoria, José María; Jiménez, Ignacio A; Ravelo, Angel G; Sharom, Frances J; Gamarro, Francisco; Castanys, Santiago

    2004-10-01

    Overexpression of ABCB1 (MDR1) P-glycoprotein, a multidrug efflux pump, is one mechanism by which tumor cells may develop multidrug resistance (MDR), preventing the successful chemotherapeutic treatment of cancer. Sesquiterpenes from Celastraceae family are natural compounds shown previously to reverse MDR in several human cancer cell lines and Leishmania strains. However, their molecular mechanism of reversion has not been characterized. In the present work, we have studied the ability of 28 dihydro-beta-agarofuran sesquiterpenes to reverse the P-glycoprotein-dependent MDR phenotype and elucidated their molecular mechanism of action. Cytotoxicity assays using human MDR1-transfected NIH-3T3 cells allowed us to select the most potent sesquiterpenes reversing the in vitro resistance to daunomycin and vinblastine. Flow cytometry experiments showed that the above active compounds specifically inhibited drug transport activity of P-glycoprotein in a saturable, concentration-dependent manner (K(i) down to 0.24 +/- 0.01 micromol/L) but not that of ABCC1 (multidrug resistance protein 1; MRP1), ABCC2 (MRP2), and ABCG2 (breast cancer resistance protein; BCRP) transporters. Moreover, sesquiterpenes inhibited at submicromolar concentrations the P-glycoprotein-mediated transport of [(3)H]colchicine and tetramethylrosamine in plasma membrane from CH(R)B30 cells and P-glycoprotein-enriched proteoliposomes, supporting that P-glycoprotein is their molecular target. Photoaffinity labeling in plasma membrane and fluorescence spectroscopy experiments with purified protein suggested that sesquiterpenes interact with transmembrane domains of P-glycoprotein. Finally, sesquiterpenes modulated P-glycoprotein ATPase-activity in a biphasic, concentration-dependent manner: they stimulated at very low concentrations but inhibited ATPase activity as noncompetitive inhibitors at higher concentrations. Sesquiterpenes from Celastraceae are promising P-glycoprotein modulators with potential

  2. Identification of antibiotic resistance genes in the multidrug-resistant Acinetobacter baumannii strain, MDR-SHH02, using whole-genome sequencing.

    Science.gov (United States)

    Wang, Hualiang; Wang, Jinghua; Yu, Peijuan; Ge, Ping; Jiang, Yanqun; Xu, Rong; Chen, Rong; Liu, Xuejie

    2017-02-01

    This study aimed to investigate antibiotic resistance genes in the multidrug-resistant (MDR) Acinetobacter baumannii (A. baumanii) strain, MDR-SHH02, using whole‑genome sequencing (WGS). The antibiotic resistance of MDR-SHH02 isolated from a patient with breast cancer to 19 types of antibiotics was determined using the Kirby‑Bauer method. WGS of MDR-SHH02 was then performed. Following quality control and transcriptome assembly, functional annotation of genes was conducted, and the phylogenetic tree of MDR-SHH02, along with another 5 A. baumanii species and 2 Acinetobacter species, was constructed using PHYLIP 3.695 and FigTree v1.4.2. Furthermore, pathogenicity islands (PAIs) were predicted by the pathogenicity island database. Potential antibiotic resistance genes in MDR-SHH02 were predicted based on the information in the Antibiotic Resistance Genes Database (ARDB). MDR-SHH02 was found to be resistant to all of the tested antibiotics. The total draft genome length of MDR-SHH02 was 4,003,808 bp. There were 74.25% of coding sequences to be annotated into 21 of the Clusters of Orthologous Groups (COGs) of protein terms, such as 'transcription' and 'amino acid transport and metabolism'. Furthermore, there were 45 PAIs homologous to the sequence MDRSHH02000806. Additionally, a total of 12 gene sequences in MDR-SHH02 were highly similar to the sequences of antibiotic resistance genes in ARDB, including genes encoding aminoglycoside‑modifying enzymes [e.g., aac(3)-Ia, ant(2'')‑Ia, aph33ib and aph(3')-Ia], β-lactamase genes (bl2b_tem and bl2b_tem1), sulfonamide-resistant dihydropteroate synthase genes (sul1 and sul2), catb3 and tetb. These results suggest that numerous genes mediate resistance to various antibiotics in MDR-SHH02, and provide a clinical guidance for the personalized therapy of A. baumannii-infected patients.

  3. HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Jianfang Chen

    Full Text Available Multidrug resistance (MDR is one of the major reasons chemotherapy-based treatments fail. Hypoxia is generally associated with tumor chemoresistance. However, the correlation between the heterodimeric hypoxia-inducible factor-1 (HIF-1 and the multidrug resistance (MDR1 gene/transporter P-glycoprotein (P-gp remains unclear. This study aims to explore the molecular mechanisms of reversing colon cancer MDR by focusing on the target gene HIF-1α.A chemotherapeutic sensitivity assay was used to observe the efficiency of MDR reversal in LoVo multicellular spheroids (MCS. The apoptotic level induced by different drugs was examined by flow cytometry (FCM. Binding of HIF-1α to the MDR1 gene promoter was evaluated by Chromatin immunoprecipitation (ChIP. The relationship between HIF-1α/P-gp expression and sensitivity to chemotherapy was analyzed.The sensitivity of LoVo MCS to all four chemotherapy drugs was decreased to varying degrees under hypoxic conditions. After silencing the HIF-1α gene, the sensitivities of LoVo MCS to all four chemotherapy drugs were restored. The apoptotic levels that all the drugs induced were all decreased to various extents in the hypoxic group. After silencing HIF-1α, the apoptosis level induced by all four chemotherapy drugs increased. The expression of HIF-1α and P-gp was significantly enhanced in LoVo MCS after treatment with hypoxia. Inhibiting HIF-1α significantly decreased the expression of MDR1/P-gp mRNA or protein in both the LoVo monolayers and LoVo MCS. The ChIP assay showed that HIF-1α was bound to the MDR1 gene promoter. Advanced colon carcinoma patients with expression of both HIF-1α and P-gp were more resistant to chemotherapy than that with non expression.HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-gp. The expression of HIF-1α and MDR1/P-gp can be used as a predictive marker for chemotherapy resistance in colon cancer.

  4. Low heritability in pharmacokinetics of talinolol

    DEFF Research Database (Denmark)

    Matthaei, Johannes; Tzvetkov, Mladen V; Gal, Valerie

    2016-01-01

    BACKGROUND: Efflux transporters like MDR1 and MRP2 may modulate the pharmacokinetics of about 50 % of all drugs. It is currently unknown how much of the variation in the activities of important drug membrane transporters like MDR1 or MRP2 is determined by genetic or by environmental factors...... of talinolol was predefined as the primary parameter. Heritability was analyzed by structural equation modeling and by within- and between-subject variance and talinolol clearance was correlated with polymorphisms in MDR1, MRP2, BCRP, MDR5, OATP1B1, and OCT1. RESULTS: Talinolol clearance varied approximately...

  5. Energetics of sodium efflux from Escherichia coli

    International Nuclear Information System (INIS)

    Borbolla, M.G.; Rosen, B.P.

    1984-01-01

    When energy-starved cells of Escherichia coli were passively loaded with 22 Na+, efflux of sodium could be initiated by addition of a source of metabolic energy. Conditions were established where the source of energy was phosphate bond energy, an electrochemical proton gradient, or both. Only an electrochemical proton gradient was required for efflux from intact cells. These results are consistent with secondary exchange of Na+ for H+ catalyzed by a sodium/proton antiporter

  6. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study.

    Science.gov (United States)

    Colen, Chaim B; Shen, Yimin; Ghoddoussi, Farhad; Yu, Pingyang; Francis, Todd B; Koch, Brandon J; Monterey, Michael D; Galloway, Matthew P; Sloan, Andrew E; Mathupala, Saroj P

    2011-07-01

    Glioblastoma multiforme (GBM) are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs). We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA), a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain) slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion). Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity.

  7. Metabolic Targeting of Lactate Efflux by Malignant Glioma Inhibits Invasiveness and Induces Necrosis: An In Vivo Study

    Directory of Open Access Journals (Sweden)

    Chaim B Colen

    2011-07-01

    Full Text Available Glioblastoma multiforme (GBM are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs. We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA, a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion. Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity.

  8. Comparative study of the active cadmium efflux systems operating at the plasma membrane and tonoplast of cucumber root cells.

    Science.gov (United States)

    Migocka, Magdalena; Papierniak, Anna; Kosatka, Ewelina; Klobus, Grazyna

    2011-10-01

    The strategies developed by plants to avoid the toxicity of cadmium (Cd) and other heavy metals involve active sequestration of metals into the apoplast and vacuoles. The protein systems excluding heavy metals from the cell cytosol localize to the plasma membrane and tonoplast and are energized either by ATP or by the electrochemical gradient generated by H(+)-ATPase or by V-ATPase and pyrophosphatase (PPase), respectively. In this work, a comparative study on the contribution of both the plasma membrane and tonoplast in the active detoxification of plant cells after treatment with Cd was performed. The studies using plants treated and untreated with Cd reveal that both, H(+)-coupled and MgATP-driven efflux of Cd across plasma membranes and tonoplast is markedly stimulated in the presence of Cd in the environment. Previous studies on plasma-membrane localized H(+)-coupled Cd efflux together with the present data demonstrating tonoplast H(+)/Cd(2+) antiport activity suggest that H(+)-coupled secondary transport of Cd displays a lower affinity for Cd when compared with Cd primary pumps driven by MgATP. In addition, it is shown that MgATP-energized Cd efflux across both membranes is significantly enhanced by cysteine, dithiothreitol, and glutathione. These results suggest that Cd is excluded from the cytosol through an energy-dependent system as a free ion as well as a complexed form. Although both membranes contribute in the active exclusion of ionized and complexed Cd from the cytosol, the overall calculation of Cd accumulation in the everted plasma membranes and vacuolar vesicles suggests that the tonoplast and vacuole have a major function in Cd efflux from the cytosol in the roots of cucumber subjected to Cd stress.

  9. Arsenic efflux from Microcystis aeruginosa under different phosphate regimes.

    Directory of Open Access Journals (Sweden)

    Changzhou Yan

    Full Text Available Phytoplankton plays an important role in arsenic speciation, distribution, and cycling in freshwater environments. Little information, however, is available on arsenic efflux from the cyanobacteria Microcystis aeruginosa under different phosphate regimes. This study investigated M. aeruginosa arsenic efflux and speciation by pre-exposing it to 10 µM arsenate or arsenite for 24 h during limited (12 h and extended (13 d depuration periods under phosphate enriched (+P and phosphate depleted (-P treatments. Arsenate was the predominant species detected in algal cells throughout the depuration period while arsenite only accounted for no greater than 45% of intracellular arsenic. During the limited depuration period, arsenic efflux occurred rapidly and only arsenate was detected in solutions. During the extended depuration period, however, arsenate and dimethylarsinic acid (DMA were found to be the two predominant arsenic species detected in solutions under -P treatments, but arsenate was the only species detected under +P treatments. Experimental results also suggest that phosphorus has a significant effect in accelerating arsenic efflux and promoting arsenite bio-oxidation in M. aeruginosa. Furthermore, phosphorus depletion can reduce arsenic efflux from algal cells as well as accelerate arsenic reduction and methylation. These findings can contribute to our understanding of arsenic biogeochemistry in aquatic environments and its potential environmental risks under different phosphorus levels.

  10. Management and treatment outcomes of patients enrolled in MDR-TB treatment in Viet Nam.

    Science.gov (United States)

    Phuong, N T M; Nhung, N V; Hoa, N B; Thuy, H T; Takarinda, K C; Tayler-Smith, K; Harries, A D

    2016-03-21

    The programmatic management of drug-resistant tuberculosis (TB) in Viet Nam has been rapidly scaled up since 2009. To document the annual numbers of patients enrolled for multidrug-resistant tuberculosis (MDR-TB) treatment during 2010-2014 and to determine characteristics and treatment outcomes of patients initiating treatment during 2010-2012. A retrospective cohort study using national reports and data from the national electronic data system for drug-resistant TB. The number of patients enrolled annually for MDR-TB treatment increased from 97 in 2010 to 1522 in 2014. The majority of patients were middle-aged men who had pulmonary disease and had failed a retreatment regimen; 77% had received ⩾2 courses of TB treatment. Favourable outcomes (cured and treatment completed) were attained in 73% of patients. Unfavourable outcomes included loss to follow-up (12.5%), death (8%) and failure (6.3%). Having had ⩾2 previous treatment courses and being human immunodeficiency virus-positive were associated with unfavourable outcomes. Increasing numbers of patients are being treated for MDR-TB each year with good treatment outcomes under national programme management in Viet Nam. However, there is a need to increase case detection-currently at 30% of the estimated 5100 MDR-TB cases per year, reduce adverse outcomes and improve monitoring and evaluation.

  11. Tet38 Efflux Pump Affects Staphylococcus aureus Internalization by Epithelial Cells through Interaction with CD36 and Contributes to Bacterial Escape from Acidic and Nonacidic Phagolysosomes.

    Science.gov (United States)

    Truong-Bolduc, Q C; Khan, N S; Vyas, J M; Hooper, D C

    2017-02-01

    We previously reported that the Tet38 efflux pump is involved in internalization of Staphylococcus aureus by A549 lung epithelial cells. A lack of tet38 reduced bacterial uptake by A549 cells to 36% of that of the parental strain RN6390. Using invasion assays coupled with confocal microscopy imaging, we studied the host cell receptor(s) responsible for bacterial uptake via interaction with Tet38. We also assessed the ability of S. aureus to survive following alkalinization of the phagolysosomes by chloroquine. Antibody to the scavenger receptor CD36 reduced the internalization of S. aureus RN6390 by A549 cells, but the dependence on CD36 was reduced in QT7 tet38, suggesting that an interaction between Tet38 and CD36 contributed to S. aureus internalization. Following fusion of the S. aureus-associated endosomes with lysosomes, alkalinization of the acidic environment with chloroquine led to a rapid increase in the number of S. aureus RN6390 bacteria in the cytosol, followed by a decrease shortly thereafter. This effect of chloroquine was not seen in the absence of intact Tet38 in mutant QT7. These data taken together suggest that Tet38 plays a role both in bacterial internalization via interaction with CD36 and in bacterial escape from the phagolysosomes. Copyright © 2017 American Society for Microbiology.

  12. Inducer expulsion in Streptococcus pyogenes: properties and mechanism of the efflux reaction

    International Nuclear Information System (INIS)

    Sutrina, S.L.; Reizer, J.; Saier, M.H Jr.

    1988-01-01

    Expulsion of preaccumulated methyl-β-D-thiogalactoside-phosphate (TMG-P) from Streptococcus pyogenes is a two-step process comprising intracellular dephosphorylation of TMG-P followed by rapid efflux of the intracellularly formed free galactoside. The present study identifies the mechanism and the order and characterizes the temperature dependency of the efflux step. Unidirectional efflux of the intracellularly formed [ 14 C]TMG was only slightly affected when measured in the presence of unlabeled TMG (25 to 400 mM) in the extracellular medium. In contrast, pronounced inhibition of net efflux was observed in the presence of relatively low concentrations (1 to 16 mM) of extracellular [ 14 C]TMG. Since net efflux was nearly arrested when the external concentration of [ 14 C]TMG approached the intracellular concentration of this sugar, we propose that a facilitated diffusion mechanism is responsible for efflux and equilibration of TMG between the intracellular and extracellular milieus. The exit reaction was markedly dependent upon temperature, exhibited a high energy of activation (23 kcal [ca. 96 kJ] per mol), and followed first-order kinetics, indicating that the permease mediating this efflux was not saturated under the conditions of expulsion employed

  13. Activity of yeast multidrug resistance pumps during growth is controlled by carbon source and the composition of growth-depleted medium: DiS-C3(3) fluorescence assay

    Czech Academy of Sciences Publication Activity Database

    Maláč, J.; Urbánková, E.; Sigler, Karel; Gášková, D.

    2005-01-01

    Roč. 37, - (2005), s. 2536-2543 ISSN 1357-2725 R&D Projects: GA ČR GD204/03/H066; GA ČR GP202/04/P110 Institutional research plan: CEZ:AV0Z50200510 Keywords : mdr- pump s * yeast * fluriometric assay Subject RIV: EE - Microbiology, Virology Impact factor: 3.871, year: 2005

  14. CO2 efflux from soils with seasonal water repellency

    Science.gov (United States)

    Urbanek, Emilia; Doerr, Stefan H.

    2017-10-01

    Soil carbon dioxide (CO2) emissions are strongly dependent on pore water distribution, which in turn can be modified by reduced wettability. Many soils around the world are affected by soil water repellency (SWR), which reduces infiltration and results in diverse moisture distribution. SWR is temporally variable and soils can change from wettable to water-repellent and vice versa throughout the year. Effects of SWR on soil carbon (C) dynamics, and specifically on CO2 efflux, have only been studied in a few laboratory experiments and hence remain poorly understood. Existing studies suggest soil respiration is reduced with increasing severity of SWR, but the responses of soil CO2 efflux to varying water distribution created by SWR are not yet known.Here we report on the first field-based study that tests whether SWR indeed reduces soil CO2 efflux, based on in situ measurements carried out over three consecutive years at a grassland and pine forest sites under the humid temperate climate of the UK.Soil CO2 efflux was indeed very low on occasions when soil exhibited consistently high SWR and low soil moisture following long dry spells. Low CO2 efflux was also observed when SWR was absent, in spring and late autumn when soil temperatures were low, but also in summer when SWR was reduced by frequent rainfall events. The highest CO2 efflux occurred not when soil was wettable, but when SWR, and thus soil moisture, was spatially patchy, a pattern observed for the majority of the measurement period. Patchiness of SWR is likely to have created zones with two different characteristics related to CO2 production and transport. Zones with wettable soil or low persistence of SWR with higher proportion of water-filled pores are expected to provide water with high nutrient concentration resulting in higher microbial activity and CO2 production. Soil zones with high SWR persistence, on the other hand, are dominated by air-filled pores with low microbial activity, but facilitating O2

  15. Exploring the HME and HAE1 efflux systems in the genus Burkholderia

    Directory of Open Access Journals (Sweden)

    Pasca Maria

    2010-06-01

    Full Text Available Abstract Background The genus Burkholderia includes a variety of species with opportunistic human pathogenic strains, whose increasing global resistance to antibiotics has become a public health problem. In this context a major role could be played by multidrug efflux pumps belonging to Resistance Nodulation Cell-Division (RND family, which allow bacterial cells to extrude a wide range of different substrates, including antibiotics. This study aims to i identify rnd genes in the 21 available completely sequenced Burkholderia genomes, ii analyze their phylogenetic distribution, iii define the putative function(s that RND proteins perform within the Burkholderia genus and iv try tracing the evolutionary history of some of these genes in Burkholderia. Results BLAST analysis of the 21 Burkholderia sequenced genomes, using experimentally characterized ceoB sequence (one of the RND family counterpart in the genus Burkholderia as probe, allowed the assembly of a dataset comprising 254 putative RND proteins. An extensive phylogenetic analysis revealed the occurrence of several independent events of gene loss and duplication across the different lineages of the genus Burkholderia, leading to notable differences in the number of paralogs between different genomes. A putative substrate [antibiotics (HAE1 proteins/heavy-metal (HME proteins] was also assigned to the majority of these proteins. No correlation was found between the ecological niche and the lifestyle of Burkholderia strains and the number/type of efflux pumps they possessed, while a relation can be found with genome size and taxonomy. Remarkably, we observed that only HAE1 proteins are mainly responsible for the different number of proteins observed in strains of the same species. Data concerning both the distribution and the phylogenetic analysis of the HAE1 and HME in the Burkholderia genus allowed depicting a likely evolutionary model accounting for the evolution and spreading of HME and HAE

  16. Rapid efflux of Ca2+ from heart mitochondria in the presence of inorganic pyrophosphate.

    Science.gov (United States)

    Vercesi, A; Lehninger, A L

    1984-01-13

    Inorganic pyrophosphate (PPi) in the intracellular concentration range causes rapid efflux of Ca2+ from rat heart mitochondria oxidizing pyruvate + malate in a low Na+ medium. Half-maximal rates of Ca2+ efflux were given by 20 microM PPi. During and after PPi-stimulated Ca2+ efflux the mitochondria retain their structural integrity and complete respiratory control. Carboxyatractyloside inhibits PPi-stimulated Ca2+ efflux, indicating PPi must enter the matrix in order to promote Ca2+ efflux. Heart mitochondria have a much higher affinity for PPi uptake and PPi-induced Ca2+ efflux than liver mitochondria.

  17. A novel curcumin derivative which inhibits P-glycoprotein, arrests cell cycle and induces apoptosis in multidrug resistance cells.

    Science.gov (United States)

    Lopes-Rodrigues, Vanessa; Oliveira, Ana; Correia-da-Silva, Marta; Pinto, Madalena; Lima, Raquel T; Sousa, Emília; Vasconcelos, M Helena

    2017-01-15

    Cancer multidrug resistance (MDR) is a major limitation to the success of cancer treatment and is highly associated with the overexpression of drug efflux pumps such as P-glycoprotein (P-gp). In order to achieve more effective chemotherapeutic treatments, it is important to develop P-gp inhibitors to block/decrease its activity. Curcumin (1) is a secondary metabolite isolated from the turmeric of Curcuma longa L.. Diverse biological activities have been identified for this compound, particularly, MDR modulation in various cancer cell models. However, curcumin (1) has low chemical stability, which severely limits its application. In order to improve stability and P-gp inhibitory effect, two potential more stable curcumin derivatives were synthesized as building blocks, followed by several curcumin derivatives. These compounds were then analyzed in terms of antitumor and anti-P-gp activity, in two MDR and sensitive tumor lines (from chronic myeloid leukemia and non-small cell lung cancer). We identified from a series of curcumin derivatives a novel curcumin derivative (1,7-bis(3-methoxy-4-(prop-2-yn-1-yloxy)phenyl)hepta-1,6-diene-3,5-dione, 10) with more potent antitumor and anti-P-gp activity than curcumin (1). This compound (10) was shown to promote cell cycle arrest (at the G2/M phase) and induce apoptosis in the MDR chronic myeloid leukemia cell line. Therefore it is a really interesting P-gp inhibitor due to its ability to inhibit both P-gp function and expression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. CO2 efflux from subterranean nests of ant communities in a seasonal tropical forest, Thailand.

    Science.gov (United States)

    Hasin, Sasitorn; Ohashi, Mizue; Yamada, Akinori; Hashimoto, Yoshiaki; Tasen, Wattanachai; Kume, Tomonori; Yamane, Seiki

    2014-10-01

    Many ant species construct subterranean nests. The presence of their nests may explain soil respiration "hot spots", an important factor in the high CO2 efflux from tropical forests. However, no studies have directly measured CO2 efflux from ant nests. We established 61 experimental plots containing 13 subterranean ant species to evaluate the CO2 efflux from subterranean ant nests in a tropical seasonal forest, Thailand. We examined differences in nest CO2 efflux among ant species. We determined the effects of environmental factors on nest CO2 efflux and calculated an index of nest structure. The mean CO2 efflux from nests was significantly higher than those from the surrounding soil in the wet and dry seasons. The CO2 efflux was species-specific, showing significant differences among the 13 ant species. The soil moisture content significantly affected nest CO2 efflux, but there was no clear relationship between nest CO2 efflux and nest soil temperature. The diameter of the nest entrance hole affected CO2 efflux. However, there was no significant difference in CO2 efflux rates between single-hole and multiple-hole nests. Our results suggest that in a tropical forest ecosystem the increase in CO2 efflux from subterranean ant nests is caused by species-specific activity of ants, the nest soil environment, and nest structure.

  19. Frequency of the MDR1 mutant allele associated with multidrug sensitivity in dogs from Brazil

    Directory of Open Access Journals (Sweden)

    Monobe MM

    2015-04-01

    Full Text Available Marina M Monobe,1 João P Araujo Junior,2 Kari V Lunsford,3 Rodrigo C Silva,4 Camilo Bulla41Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, 2Department of Microbiology and Immunology, Biosciences Institute, Sao Paulo State University (UNESP, Botucatu, Brazil; 3Department of Clinical Sciences and Animal Health Center, 4Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi, MS, USAAbstract: To date, a 4-bp deletion in the MDR1 gene has been detected in more than ten dog breeds, as well as in mixed breed dogs, in several countries, however information regarding this mutation in dogs from Brazil is lacking. For this reason, 103 Collies, 77 Border Collies, 76 Shetland Sheepdogs, 20 Old English Sheepdogs, 55 German Shepherds, 16 Australian Shepherds, and 53 Whippets from Brazil were screened for the presence of the mutation. The heterozygous mutated genotype, MDR1 (+/−, frequency found for Collies, Australian Shepherd, and Shetland Sheepdog was 50.5% (95% CI =41.1%–59.9%, 31.3% (95% CI =8.6%–53.2%, and 15.8% (95% CI =7.7%–23.9%, respectively. Homozygous mutated genotype, MDR1 (−/−, was detected only in Collies 35.9%. The MDR1 allele mutant frequency found for Collies, Australian Shepherd, and Shetland Sheepdog was 61.2% (95% CI =54.8%–67.5%, 15.6% (95% CI =3.1%–28.2%, and 7.9% (95% CI =3.7%–12.1%, respectively. Additionally, even free of the mutant allele, the maximum mutant prevalence (MMP in that population, with 95% CI, was 3.8%, 5.2%, 5.4%, and 13.8% for Border Collies, German Shepherds, Whippets, and Old English Sheepdogs, respectively. In this way, this information is important, not only for MDR1 genotype-based breeding programs and international exchange of breeding animals of predisposed breeds, but also for modification of drug therapy for breeds at risk.Keywords: P-glycoprotein, MDR1 mutation, ivermectin, dog, drug

  20. Metabolic Targeting of Lactate Efflux by Malignant Glioma Inhibits Invasiveness and Induces Necrosis: An In Vivo Study1

    Science.gov (United States)

    Colen, Chaim B; Shen, Yimin; Ghoddoussi, Farhad; Yu, Pingyang; Francis, Todd B; Koch, Brandon J; Monterey, Michael D; Galloway, Matthew P; Sloan, Andrew E; Mathupala, Saroj P

    2011-01-01

    Glioblastoma multiforme (GBM) are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs). We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA), a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain) slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion). Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity. PMID:21750656

  1. New saliva secretion model based on the expression of Na+-K+ pump and K+ channels in the apical membrane of parotid acinar cells.

    Science.gov (United States)

    Almássy, János; Siguenza, Elias; Skaliczki, Marianna; Matesz, Klara; Sneyd, James; Yule, David I; Nánási, Péter P

    2018-04-01

    The plasma membrane of parotid acinar cells is functionally divided into apical and basolateral regions. According to the current model, fluid secretion is driven by transepithelial ion gradient, which facilitates water movement by osmosis into the acinar lumen from the interstitium. The osmotic gradient is created by the apical Cl - efflux and the subsequent paracellular Na + transport. In this model, the Na + -K + pump is located exclusively in the basolateral membrane and has essential role in salivary secretion, since the driving force for Cl - transport via basolateral Na + -K + -2Cl - cotransport is generated by the Na + -K + pump. In addition, the continuous electrochemical gradient for Cl - flow during acinar cell stimulation is maintained by the basolateral K + efflux. However, using a combination of single-cell electrophysiology and Ca 2+ -imaging, we demonstrate that photolysis of Ca 2+ close to the apical membrane of parotid acinar cells triggered significant K + current, indicating that a substantial amount of K + is secreted into the lumen during stimulation. Nevertheless, the K + content of the primary saliva is relatively low, suggesting that K + might be reabsorbed through the apical membrane. Therefore, we investigated the localization of Na + -K + pumps in acinar cells. We show that the pumps appear evenly distributed throughout the whole plasma membrane, including the apical pole of the cell. Based on these results, a new mathematical model of salivary fluid secretion is presented, where the pump reabsorbs K + from and secretes Na + to the lumen, which can partially supplement the paracellular Na + pathway.

  2. Doxorubicin-loaded micelles of reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) block copolymers as efficient "active" chemotherapeutic agents.

    Science.gov (United States)

    Cambón, A; Rey-Rico, A; Mistry, D; Brea, J; Loza, M I; Attwood, D; Barbosa, S; Alvarez-Lorenzo, C; Concheiro, A; Taboada, P; Mosquera, V

    2013-03-10

    Five reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) block copolymers, BOnEOmBOn, with BO ranging from 8 to 21 units and EO from 90 to 411 were synthesized and evaluated as efficient chemotherapeutic drug delivery nanocarriers and inhibitors of the P-glycoprotein (P-gp) efflux pump in a multidrug resistant (MDR) cell line. The copolymers were obtained by reverse polymerization of poly(butylene oxide), which avoids transfer reaction and widening of the EO block distribution, commonly found in commercial poly(ethylene oxide)-poly(propylene oxide) block copolymers (poloxamers). BOnEOmBOn copolymers formed spherical micelles of 10-40 nm diameter at lower concentrations (one order of magnitude) than those of equivalent poloxamers. The influence of copolymer block lengths and BO/EO ratios on the solubilization capacity and protective environment for doxorubicin (DOXO) was investigated. Micelles showed drug loading capacity ranging from ca. 0.04% to 1.5%, more than 150 times the aqueous solubility of DOXO, and protected the cargo from hydrolysis for more than a month due to their greater colloidal stability in solution. Drug release profiles at various pHs, and the cytocompatibility and cytotoxicity of the DOXO-loaded micelles were assessed in vitro. DOXO loaded in the polymeric micelles accumulated more slowly inside the cells than free DOXO due to its sustained release. All copolymers were found to be cytocompatible, with viability extents larger than 95%. In addition, the cytotoxicity of DOXO-loaded micelles was higher than that observed for free drug solutions in a MDR ovarian NCI-ADR-RES cell line which overexpressed P-gp. The inhibition of the P-gp efflux pump by some BOnEOmBOn copolymers, similar to that measured for the common P-gp inhibitor verapamil, favored the retention of DOXO inside the cell increasing its cytotoxic activity. Therefore, poly(butylene oxide)-poly(ethylene oxide) block copolymers offer interesting features as cell

  3. Candida albicans AGE3, the ortholog of the S. cerevisiae ARF-GAP-encoding gene GCS1, is required for hyphal growth and drug resistance.

    Directory of Open Access Journals (Sweden)

    Thomas Lettner

    Full Text Available BACKGROUND: Hyphal growth and multidrug resistance of C. albicans are important features for virulence and antifungal therapy of this pathogenic fungus. METHODOLOGY/PRINCIPAL FINDINGS: Here we show by phenotypic complementation analysis that the C. albicans gene AGE3 is the functional ortholog of the yeast ARF-GAP-encoding gene GCS1. The finding that the gene is required for efficient endocytosis points to an important functional role of Age3p in endosomal compartments. Most C. albicans age3Delta mutant cells which grew as cell clusters under yeast growth conditions showed defects in filamentation under different hyphal growth conditions and were almost completely disabled for invasive filamentous growth. Under hyphal growth conditions only a fraction of age3Delta cells shows a wild-type-like polarization pattern of the actin cytoskeleton and lipid rafts. Moreover, age3Delta cells were highly susceptible to several unrelated toxic compounds including antifungal azole drugs. Irrespective of the AGE3 genotype, C-terminal fusions of GFP to the drug efflux pumps Cdr1p and Mdr1p were predominantly localized in the plasma membrane. Moreover, the plasma membranes of wild-type and age3Delta mutant cells contained similar amounts of Cdr1p, Cdr2p and Mdr1p. CONCLUSIONS/SIGNIFICANCE: The results indicate that the defect in sustaining filament elongation is probably caused by the failure of age3Delta cells to polarize the actin cytoskeleton and possibly of inefficient endocytosis. The high susceptibility of age3Delta cells to azoles is not caused by inefficient transport of efflux pumps to the cell membrane. A possible role of a vacuolar defect of age3Delta cells in drug susceptibility is proposed and discussed. In conclusion, our study shows that the ARF-GAP Age3p is required for hyphal growth which is an important virulence factor of C. albicans and essential for detoxification of azole drugs which are routinely used for antifungal therapy. Thus, it

  4. Volume-activated trimethylamine oxide efflux in red blood cells of spiny dogfish (Squalus acanthias).

    Science.gov (United States)

    Koomoa, D L; Musch, M W; MacLean, A V; Goldstein, L

    2001-09-01

    The aims of this study were to determine the pathway of swelling-activated trimethylamine oxide (TMAO) efflux and its regulation in spiny dogfish (Squalus acanthias) red blood cells and compare the characteristics of this efflux pathway with the volume-activated osmolyte (taurine) channel present in erythrocytes of fishes. The characteristics of the TMAO efflux pathway were similar to those of the taurine efflux pathway. The swelling-activated effluxes of both TMAO and taurine were significantly inhibited by known anion transport inhibitors (DIDS and niflumic acid) and by the general channel inhibitor quinine. Volume expansion by hypotonicity, ethylene glycol, and diethyl urea activated both TMAO and taurine effluxes similarly. Volume expansion by hypotonicity, ethylene glycol, and diethyl urea also stimulated the activity of tyrosine kinases p72syk and p56lyn, although the stimulations by the latter two treatments were less than by hypotonicity. The volume activations of both TMAO and taurine effluxes were inhibited by tyrosine kinase inhibitors, suggesting that activation of tyrosine kinases may play a role in activating the osmolyte effluxes. These results indicate that the volume-activated TMAO efflux occurs via the organic osmolyte (taurine) channel and may be regulated by the volume activation of tyrosine kinases.

  5. Expression of the marA, soxS, acrB and ramA genes related to the AcrAB/TolC efflux pump in Salmonella entérica strains with and without quinolone resistance-determining regions gyrA gene mutations

    Directory of Open Access Journals (Sweden)

    Rafaela Gomes Ferrari

    2013-04-01

    Full Text Available Several studies have been conducted in recent years to elucidate the structure, function and significance of AcrB, MarA, SoxS and RamA in Salmonella enterica. In this study, the relative quantification of acrB, soxS, marA and ramA genes expression was evaluated in 14 strains of S. enterica, with or without accompanying mutations in the quinolone resistance-determining regions of the gyrA gene, that were exposed to ciprofloxacin during the exponential growth phase. The presence of ciprofloxacin during the log phase of bacterial growth activated the genes marA, soxS, ramA and acrB in all S. enterica strains analyzed in this study. The highest expression levels for acrB were observed in strains with gyrA mutation, and marA showed the highest expression in the strains without mutation. Considering only the strains with ciprofloxacin minimum inhibitory concentration values 0.125 [1]g/mL (low susceptibility, with and without mutations in gyrA, the most expressed gene was marA. In this study, we observed that strains resistant to nalidixic acid may express genes associated with the efflux pump and the expression of the AcrAB-TolC pump genes seems to occur independently of mutations in gyrA.

  6. Expression of the marA, soxS, acrB and ramA genes related to the AcrAB/TolC efflux pump in Salmonella entérica strains with and without quinolone resistance-determining regions gyrA gene mutations

    Directory of Open Access Journals (Sweden)

    Rafaela Gomes Ferrari

    Full Text Available Several studies have been conducted in recent years to elucidate the structure, function and significance of AcrB, MarA, SoxS and RamA in Salmonella enterica. In this study, the relative quantification of acrB, soxS, marA and ramA genes expression was evaluated in 14 strains of S. enterica, with or without accompanying mutations in the quinolone resistance-determining regions of the gyrA gene, that were exposed to ciprofloxacin during the exponential growth phase. The presence of ciprofloxacin during the log phase of bacterial growth activated the genes marA, soxS, ramA and acrB in all S. enterica strains analyzed in this study. The highest expression levels for acrB were observed in strains with gyrA mutation, and marA showed the highest expression in the strains without mutation. Considering only the strains with ciprofloxacin minimum inhibitory concentration values 0.125 [1]g/mL (low susceptibility, with and without mutations in gyrA, the most expressed gene was marA. In this study, we observed that strains resistant to nalidixic acid may express genes associated with the efflux pump and the expression of the AcrAB-TolC pump genes seems to occur independently of mutations in gyrA.

  7. Substrate binding accelerates the conformational transitions and substrate dissociation in multidrug efflux transporter AcrB

    Directory of Open Access Journals (Sweden)

    Beibei eWang

    2015-04-01

    Full Text Available The tripartite efflux pump assembly AcrAB-TolC is the major multidrug resistance transporter in E. coli. The inner membrane transporter AcrB is a homotrimer, energized by the proton movement down the transmembrane electrochemical gradient. The asymmetric crystal structures of AcrB with three monomers in distinct conformational states (access (A, binding (B and extrusion (E support a functional rotating mechanism, in which each monomer of AcrB cycles among the three states in a concerted way. However, the relationship between the conformational changes during functional rotation and drug translocation has not been totally understood. Here, we explored the conformational changes of the AcrB homotrimer during the ABE→BEA transition in different substrate-binding states using targeted MD simulations. It was found that the dissociation of substrate from the distal binding pocket of B monomer is closely related to the concerted conformational changes in the translocation pathway, especially the side chain reorientation of Phe628 and Tyr327. A second substrate binding at the proximal binding pocket of A monomer evidently accelerates the conformational transitions as well as substrate dissociation in B monomer. The acceleration effect of the multi-substrate binding mode provides a molecular explanation for the positive cooperativity observed in the kinetic studies of substrate efflux and deepens our understanding of the functional rotating mechanism of AcrB.

  8. Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine.

    Directory of Open Access Journals (Sweden)

    Takanari Nakano

    Full Text Available Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1, an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to

  9. Inhibitory Effect of Flavonoids on the Efflux of -Acetyl 5-Aminosalicylic Acid Intracellularly Formed in Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Shin Yoshimura

    2009-01-01

    Full Text Available -acetyl 5-aminosalicylic acid (5-AcASA that was intracellularly formed from 5-aminosalicylic acid (5-ASA at 200 M was discharged 5.3, 7.1, and 8.1-fold higher into the apical site than into the basolateral site during 1, 2, and 4-hour incubations, respectively, in Caco-2 cells grown in Transwells. The addition of flavonols (100 M such as fisetin and quercetin with 5-ASA remarkably decreased the apically directed efflux of 5-AcASA. When 5-ASA (200 M was added to Caco-2 cells grown in tissue culture dishes, the formation of 5-AcASA decreased, and, in addition, the formed 5-AcASA was found to be accumulated within the cells in the presence of such flavonols. Thus, the decrease in 5-AcASA efflux by such flavonols was attributed not only to the inhibition of -acetyl-conjugation of 5-ASA but to the predominant cellular accumulation of 5-AcASA. Various flavonoids also had both of the effects with potencies that depend on their specific structures. The essential structure of flavonoids was an absence of a hydroxyl substitution at the C5 position on the A-ring of flavone structure for the inhibitory effect on the -acetyl-conjugation of 5-ASA, and a presence of hydroxyl substitutions at the C3 or C4 position on the B-ring of flavone structure for the promoting effect on the cellular accumulation of 5-AcASA. Both the decrease in 5-AcASA apical efflux and the increase in 5-AcASA cellular accumulation were also caused by MK571 and indomethacin, inhibitors of MRPs, but not by quinidine, cyclosporin A, P-glycoprotein inhibitors, and mitoxantrone, a BCRP substrate. These results suggest that certain flavonoids suppress the apical efflux of 5-AcASA possibly by inhibiting MRPs pumps located on apical membranes in Caco-2 cells.

  10. Vertical variations in wood CO2 efflux for live emergent trees in a Bornean tropical rainforest.

    Science.gov (United States)

    Katayama, Ayumi; Kume, Tomonori; Komatsu, Hikaru; Ohashi, Mizue; Matsumoto, Kazuho; Ichihashi, Ryuji; Kumagai, Tomo'omi; Otsuki, Kyoichi

    2014-05-01

    Difficult access to 40-m-tall emergent trees in tropical rainforests has resulted in a lack of data related to vertical variations in wood CO2 efflux, even though significant variations in wood CO2 efflux are an important source of errors when estimating whole-tree total wood CO2 efflux. This study aimed to clarify vertical variations in wood CO2 efflux for emergent trees and to document the impact of the variations on the whole-tree estimates of stem and branch CO2 efflux. First, we measured wood CO2 efflux and factors related to tree morphology and environment for seven live emergent trees of two dipterocarp species at four to seven heights of up to ∼ 40 m for each tree using ladders and a crane. No systematic tendencies in vertical variations were observed for all the trees. Wood CO2 efflux was not affected by stem and air temperature, stem diameter, stem height or stem growth. The ratios of wood CO2 efflux at the treetop to that at breast height were larger in emergent trees with relatively smaller diameters at breast height. Second, we compared whole-tree stem CO2 efflux estimates using vertical measurements with those based on solely breast height measurements. We found similar whole-tree stem CO2 efflux estimates regardless of the patterns of vertical variations in CO2 efflux because the surface area in the canopy, where wood CO2 efflux often differed from that at breast height, was very small compared with that at low stem heights, resulting in little effect of the vertical variations on the estimate. Additionally, whole-tree branch CO2 efflux estimates using measured wood CO2 efflux in the canopy were considerably different from those measured using only breast height measurements. Uncertainties in wood CO2 efflux in the canopy did not cause any bias in stem CO2 efflux scaling, but affected branch CO2 efflux. © The Author 2014. Published by Oxford University Press. All rights reserved.

  11. Management of MDR-TB in HIV co-infected patients in Eastern Europe

    DEFF Research Database (Denmark)

    Efsen, A M W; Schultze, A; Miller, R F

    2018-01-01

    below the target of 90%, reflecting the challenging patient population and the environment in which health care is provided. Urgent improvement of management of patients with TB/HIV in EE, in particular for those with MDR-TB, is needed and includes widespread access to rapid TB diagnostics, better......OBJECTIVES: Mortality among HIV patients with tuberculosis (TB) remains high in Eastern Europe (EE), but details of TB and HIV management remain scarce. METHODS: In this prospective study, we describe the TB treatment regimens of patients with multi-drug resistant (MDR) TB and use of antiretroviral...... access to and use of second-line TB drugs, timely ART initiation with viral load monitoring, and integration of TB/HIV care....

  12. C2 Arylated Benzo[b]thiophene Derivatives as Staphylococcus aureus NorA Efflux Pump Inhibitors.

    Science.gov (United States)

    Liger, François; Bouhours, Pascale; Ganem-Elbaz, Carine; Jolivalt, Claude; Pellet-Rostaing, Stéphane; Popowycz, Florence; Paris, Jean-Marc; Lemaire, Marc

    2016-02-04

    An innovative and straightforward synthesis of second-generation 2-arylbenzo[b]thiophenes as structural analogues of INF55 and the first generation of our laboratory-made molecules was developed. The synthesis of C2-arylated benzo[b]thiophene derivatives was achieved through a method involving direct arylation, followed by simple structural modifications. Among the 34 compounds tested, two of them were potent NorA pump inhibitors, which led to a 16-fold decrease in the ciprofloxacin minimum inhibitory concentration (MIC) against the SA-1199B strain at concentrations of 0.25 and 0.5 μg mL(-1) (1 and 1.5 μm, respectively). This is a promising result relative to that obtained for reserpine (MIC=20 μg mL(-1)), a reference compound amongst NorA pump inhibitors. These molecules thus represent promising candidates to be used in combination with ciprofloxacin against fluoroquinolone-resistant strains. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Depolarization-stimulated 42K+ efflux in rat aorta is calcium- and cellular volume-dependent

    International Nuclear Information System (INIS)

    Magliola, L.; Jones, A.W.

    1987-01-01

    The purpose of this study was to investigate the factors controlling membrane permeability to potassium of smooth muscle cells from rat aorta stimulated by depolarization. The increase 42 K+ efflux (change in the rate constant) induced by depolarization (application of high concentrations of potassium chloride) was inhibited significantly by the calcium antagonists diltiazem and nisoldipine. Parallel inhibitory effects on contraction were observed. Diltiazem also inhibited potassium-stimulated 36 Cl- efflux. The addition of 25-150 mM KCl to normal physiologic solution stimulated 42 K+ efflux in a concentration-dependent manner. Diltiazem suppressed potassium-stimulated 42 K+ efflux approximately 90% at 25 mM KCl and approximately 40% at 150 mM KCl. The ability of nisoldipine to inhibit 42 K+ efflux also diminished as the potassium chloride concentration was elevated. The component of efflux that was resistant to calcium antagonists probably resulted from a decrease in the electrochemical gradient for potassium. Cellular water did not change during potassium addition. Substitution of 80 and 150 mM KCl for sodium chloride produced cellular swelling and enhanced potassium-stimulated 42 K+ efflux compared with potassium chloride addition. The addition of sucrose to prevent cellular swelling reduced efflux response to potassium substitution toward that of potassium addition. A hypoosmolar physiologic solution produced an increase in the 42 K+ efflux and a contracture that were both prevented by the addition of sucrose. We concluded that the depolarization-mediated 42 K+ efflux has three components: one is calcium dependent; a second is dependent on cellular volume; and a third is resistant to inhibition by calcium antagonists

  14. Multidrug efflux systems in Escherichia coli and Enterobacter cloacae obtained from wholesome broiler carcasses Sistemas de efluxo multidroga em Escherichia coli e Enterobacter cloacae obtidas de carcaças de frangos sadios

    Directory of Open Access Journals (Sweden)

    Maria Aparecida S. Moreira

    2009-06-01

    Full Text Available Members of the Enterobacteriaceae family are present in the intestines of man and animals as commensals or are important disease causing agents. Bacteria bearing multidrug efflux systems (MDR are able to survive adverse ecological niches. Multiresistant Escherichia coli and Enterobacter cloacae isolates from wholesome broiler carcasses were investigated for the presence of MDR. Lowering of Minimal Inhibitory Concentration for antimicrobials in the presence of a proton-motive force (PMF uncoupler was tested as a potential display of the MDR phenotype. PCR amplification of the genes encoding AcrA and AcrB, components of a MDR system was performed. Diversity of each species was ascertained by Pulsed-Field Gel Electrophoresis (PFGE of DNA digested with endonuclease XbaI. For all the isolates, except E. coli 1 and E. cloacae 9, lowering of MIC or of the growth rate in the presence of antimicrobials was observed, indicating a PMF dependent resistance mechanism. Expected products of DNA amplification with acrAB derived primers was obtained with all E. coli strains and with two of the five E. cloacae strains. Dendrogram generated shows diverse pulsetypes, confirming the genetic diversity among the strains. An important issue and related public health is the fact that different models and mechanisms of antimicrobial resistance are present in a small number of non-pathogenic strains and isolated from the same origin. These may be sources of resistance genes to others microorganisms, among them, pathogenic strains.Os membros da família Enterobacteriaceae estão presentes no intestino do homem e dos animais como comensais ou agentes causadores de doença importantes. Bactérias multirresistentes podem possuir sistemas de efluxo multidrogas (MDR sendo capazes de sobreviver em nichos ecológicos adversos. Escherichia coli e Enterobacter cloacae, multirresistentes, isoladas de frangos sadios foram investigadas quanto à presença de MDR. A diminuição da

  15. Phagocytosis-induced /sup 45/calcium efflux in polymorphonuclear leucocytes

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, A; Schell-Frederick, E [Brussels Univ. (Belgium). Institut de Recherche Interdisciplinaire; Paridaens, R [Brussels Univ. (Belgium). Faculte de Medicine

    1977-10-15

    The role of calcium ions in regulating the structure and function of non-muscle cells is a subject of intense study. Several lines of evidence that calcium may be essential in the function of polymorphonuclear leuocytes (PMNL) and an important control element in the process of phagocytosis. Direct studies of calcium distribution and fluxes have only recently been undertaken. To our knowledge, no report of calcium movements during normal phagocytosis has been published. In the context of an overall study of calcium dynamics in the PMNL, we report here initial studies on /sup 45/Ca efflux in prelabelled guinea pig PMNL. The results demonstrate the energy-dependence of resting calcium efflux and an increased efflux upon addition of phagocytic particles which is not dependent on particle internalization.

  16. Transintestinal transport of the anti-inflammatory drug 4F and the modulation of transintestinal cholesterol efflux[S

    Science.gov (United States)

    Meriwether, David; Sulaiman, Dawoud; Wagner, Alan; Grijalva, Victor; Kaji, Izumi; Williams, Kevin J.; Yu, Liqing; Fogelman, Spencer; Volpe, Carmen; Bensinger, Steven J.; Anantharamaiah, G. M.; Shechter, Ishaiahu; Fogelman, Alan M.; Reddy, Srinivasa T.

    2016-01-01

    The site and mechanism of action of the apoA-I mimetic peptide 4F are incompletely understood. Transintestinal cholesterol efflux (TICE) is a process involved in the clearance of excess cholesterol from the body. While TICE is responsible for at least 30% of the clearance of neutral sterols from the circulation into the intestinal lumen, few pharmacological agents have been identified that modulate this pathway. We show first that circulating 4F selectively targets the small intestine (SI) and that it is predominantly transported into the intestinal lumen. This transport of 4F into the SI lumen is transintestinal in nature, and it is modulated by TICE. We also show that circulating 4F increases reverse cholesterol transport from macrophages and cholesterol efflux from lipoproteins via the TICE pathway. We identify the cause of this modulation of TICE either as 4F being a cholesterol acceptor with respect to enterocytes, from which 4F enhances cholesterol efflux, or as 4F being an intestinal chaperone with respect to TICE. Our results assign a novel role for 4F as a modulator of the TICE pathway and suggest that the anti-inflammatory functions of 4F may be a partial consequence of the codependent intestinal transport of both 4F and cholesterol. PMID:27199144

  17. A new tetracycline efflux gene, tet(40), is located in tandem with tet(O/32/O) in a human gut firmicute bacterium and in metagenomic library clones.

    Science.gov (United States)

    Kazimierczak, Katarzyna A; Rincon, Marco T; Patterson, Andrea J; Martin, Jennifer C; Young, Pauline; Flint, Harry J; Scott, Karen P

    2008-11-01

    The bacterium Clostridium saccharolyticum K10, isolated from a fecal sample obtained from a healthy donor who had received long-term tetracycline therapy, was found to carry three tetracycline resistance genes: tet(W) and the mosaic tet(O/32/O), both conferring ribosome protection-type resistance, and a novel, closely linked efflux-type resistance gene designated tet(40). tet(40) encodes a predicted membrane-associated protein with 42% amino acid identity to tetA(P). Tetracycline did not accumulate in Escherichia coli cells expressing the Tet(40) efflux protein, and resistance to tetracycline was reduced when cells were incubated with an efflux pump inhibitor. E. coli cells carrying tet(40) had a 50% inhibitory concentration of tetracycline of 60 microg/ml. Analysis of a transconjugant from a mating between donor strain C. saccharolyticum K10 and the recipient human gut commensal bacterium Roseburia inulinivorans suggested that tet(O/32/O) and tet(40) were cotransferred on a mobile element. Sequence analysis of a 37-kb insert identified on the basis of tetracycline resistance from a metagenomic fosmid library again revealed a tandem arrangement of tet(O/32/O) and tet(40), flanked by regions with homology to parts of the VanG operon previously identified in Enterococcus faecalis. At least 10 of the metagenomic inserts that carried tet(O/32/O) also carried tet(40), suggesting that tet(40), although previously undetected, may be an abundant efflux gene.

  18. MDR-TB Outbreak among HIV-Negative Tunisian Patients followed during 11 Years.

    Directory of Open Access Journals (Sweden)

    Naira Dekhil

    Full Text Available Multidrug-resistant tuberculosis (MDR-TB outbreaks that evolve, from the outset, in a context strictly negative for HIV infection deserve special consideration since they reflect the true intrinsic epidemic potential of the causative strain. To our knowledge, the long-term evolution of such exceptional outbreaks and the treatment outcomes for the involved patients has never been reported hitherto. Here we provide a thorough description, over an 11-year period, of an MDR-TB outbreak that emerged and expanded in an HIV-negative context, Northern Tunisia.From October 2001 to June 2011, the MDR-TB outbreak involved 48 HIV-negative individuals that are mainly young (mean age 31.09 yrs; 89.6% male and noninstitutionalized. Drug susceptibility testing coupled to mutational analysis revealed that initial transmission involved an isolate that was simultaneously resistant to isoniazid, rifampicin, ethambutol, and streptomycin. The causative Haarlem3-ST50 outbreak strain expanded mainly as an 11-banded IS6110 RFLP profile (77.1%, from which a 12-banded subclone evolved. After undergoing a 2-year treatment with second-line drugs, 22 (45.8% patients were cured and 3 (6.2% completed treatment, thus yielding an overall treatment success rate of 52.1%. Among the patients that experienced unfavorable treatment outcomes, 10 (20.8% failed treatment, 3 (6.2% were lost to follow-up, 5 (10.4% died, and 5 (10.4% could not be evaluated. Poor adherence to treatment was found to be the main independent predictor of unfavorable outcomes (HR: 9.15; 95% CI 1.72-48.73; P = 0.014. Intriguingly, the evolved 12-banded subclone proved significantly associated with unfavorable outcomes (HR: 4.90; 95% CI 1.04-23.04, P = 0.044. High rate of fatality and relapse was further demonstrated at the long-term, since 70% of those whose treatment failed have died, and 24% among those deemed successfully treated have relapsed.Taken together, the data obtained in this study indicate that MDR

  19. Effects of ionizing scrape-off layers on local recycling in Tore Supra pump limiter experiments

    International Nuclear Information System (INIS)

    Chatelier, M.; Loarer, T.

    1992-01-01

    A series of ohmic discharges with active pumping in the Tore Supra outboard pump limiter has been analyzed with the DEGAS neutrals transport code and an analytic scrape-off layer (SOL) plasma model. Pumping speed and plenum pressure measurements indicated 5-10 torr.L/s throughput with only modest effects on density. A model is developed in which large exhaust fluxes, with little attendant effect on core plasma density, are explained in terms of SOL ionization of recycled and wall-desorbed neutrals. Particle balance with active pumping and constant line density requires that the wall return flux exceed the incident flux by approximately the pump throughput in the absence of external fueling. The radial profile of the H + source rate from ionization and dissociation of wall-desorbed molecules is seen to peak very near the radial position of the limiter throat. Consequently, a strong recycling vortex is created in the region of the limiter, with the ion flux amplified by factors of 2 at the outer limiter surfaces and > 3 within the limiter throat. The calculations indicate that less than 30% of the pump throughput is due to first-generation ions from the core efflux, with the balance from local recycling in the strongly ionizing SOL

  20. Isolation, Identification And Screening Antibacterial Activity from Marine Sponge-Associated Fungi Against Multidrug-Resistant (MDR) Escherichia coli

    Science.gov (United States)

    Triandala Sibero, Mada; Sabdaningsih, Aninditia; Cristianawati, Olvi; Nuryadi, Handung; Karna Radjasa, Ocky; Sabdono, Agus; Trianto, Agus

    2017-02-01

    Irrational used of antibiotic in several decades ago causing resistant in bacteria and decreasing the cure rate of infectious diseases. Multidrug-resistant (MDR) Escherichia coli is known to cause various of infectious diseases such as urinary tract infection, nosocomial bloodstream infection, meningitis, bacteraemia, and gastrointestinal disease. Marine sponge-associated fungi have potential as source of new compound to combat MDR E. coli. The aims of this research were to isolate marine sponge-assosiated fungi, to screen potential fungi against MDR E. coli, to identify the potential fungi and its host sponge. There were 29 marine sponge-associated fungi successfully isolated from 9 sponges. Among 29 sponge-associated fungi screened, there were 7 isolates showed antibacterial activity against MDR E. coli. The best inhibition zone produced by MPS 14.1/MT 02 and MPS 14.3/MT 04 from sponge PP.SP.16.14. According to fungi identification result fungus MPS 14.1/MT 02 was identified as Trichoderma asperellum while MPS 14.3/MT 04 was identified as Trichoderma reesei. Sponge identification leaded the PP.SP.16.14 as Cinachyrella sp.

  1. Screening of Antibacterial MDR derived from Sponge Associated Fungus of Riung Water, Nusa Tenggara Timur

    OpenAIRE

    Khoeruddin Wittriansyah; Agus Trianto; Sekar Widyaningsih; Ocky Karna Radjasa; Rudhi Pribadi

    2016-01-01

    Marine sponge-associated fungi are the sources of bioactive compounds with various pharmacologicals potency. This study aimed to isolate the sponge-associated fungi as the producer of the MDR anti-bacterial compounds.  The associated fungi were isolated from the sponges collected from Riung water, Nusa Tenggara Timur. Five of the best isolates were cultured on MEA to obtain the methanolic extract for further studies.  The antagonistic test was conducted using overlay method towards the MDR St...

  2. Association between MDR1 gene polymorphisms and the risk of Crohn's disease in a cohort of Algerian pediatric patients.

    Science.gov (United States)

    Bouzidi, Amira; Mesbah-Amroun, Hamida; Boukercha, Aziza; Benhassine, Fadila; Belboueb, Réda; Berkouk, Karima; Messadi, Wassila; Touil-Boukoffa, Chafia

    2016-12-01

    The multi-drug resistance gene (MDR1) has raised increasing interest as a susceptibility gene for Crohn's disease (CD). The role of MDR1 single-nucleotide polymorphisms (SNPs) in the predisposition and behavior of CD in the pediatric population is still elusive. Here, we investigated whether SNPs in MDR1 are associated with CD in Algerian pediatric patients. A case-control study was conducted enrolling 47 pediatric CD patients and 100 controls. All subjects were genotyped for the most common MDR1 SNPs (C3434T, C1236T, and G2677A/T) using PCR-RFLP method. We also explored the association between polymorphisms and clinical sub-phenotypes. We have detected no significant association of C3435T SNP and pediatric CD. However, we observed a significantly higher frequency of the risk alleles, 1236T and 2677T/A among the CD patients compared to controls. Moreover, the risk allele 1236T was associated to a higher risk for resective surgery. Our data suggest that the C1236T and G2677A/T SNPs in the MDR1 gene are associated with CD and the C1236T risk allele with a more severe course of disease in Algerian pediatric patients. Further analysis using larger patients group and functional studies would be interesting to elucidate the role of MDR1 gene in pediatric CD.Pediatric Research (2016); doi:10.1038/pr.2016.163.

  3. Collateral sensitivity between aminoglycosides and beta-lactam antibiotics depends on active proton pumps.

    Science.gov (United States)

    Azimi, Leila; Rastegar Lari, Abdolaziz

    2017-11-01

    Selection inversion is the hypothesis for antibiotic resistant inhabitation in bacteria and collateral sensitivity is one of the proposed phenomena for achievement of this hypothesis. The presence of collateral sensitivity associated with the proton motivation pump between the aminoglycosides and beta-lactam group of antibiotics is one of the examples of collateral sensitivity in some studies. The aim of this study was to demonstrate that collateral sensitivity between aminoglycosides and beta-lactam antibiotics associated with proton motivation pump may not be true in all cases. In this study, 100 Pseudomonas aeruginosa were surveyed. Gentamicin and imipenem-resistant strains were confirmed by disc diffusion method and MIC. Active proton motivation pumps were screened by pumps inhibitor. Semi-quantitative Real-Time PCR assay was used to confirm gene overexpression. Seventy-six and 79 out of 100 strains were resistant to gentamicin and imipenem, respectively. Seventy-five strains were resistant to both gentamicin and imipenem. The results of proton pump inhibitor test showed the involvement of active proton motivation pump in 22 of 75 imipenem- and gentamicin-resistant strains. According to Real - Time PCR assay, mexX efflux gene was overexpressed in the majority of isolates tested. The collateral sensitivity effect cannot explain the involvement of active proton motivation pumps in both imipenem and gentamicin-resistant strains simultaneously. Active and/or inactive proton pump in gentamicin-sensitive and/or resistant strains cannot be a suitable example for explanation of collateral sensitivity between aminoglycosides and beta-lactam antibiotics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. 75 FR 59176 - DoD Mandatory Declassification Review (MDR) Program

    Science.gov (United States)

    2010-09-27

    ..., VA 22060-6201. (13) Missile Defense Agency. Missile Defense Agency, Attention: MDA/DS, 7100 Defense... DEPARTMENT OF DEFENSE Office of the Secretary 32 CFR Part 222 [DoD-2010-OS-0043; RIN 0790-AI62] DoD Mandatory Declassification Review (MDR) Program AGENCY: Department of Defense. ACTION: Proposed...

  5. Development of a Patient-Centred, Psychosocial Support Intervention for Multi-Drug-Resistant Tuberculosis (MDR-TB Care in Nepal.

    Directory of Open Access Journals (Sweden)

    Sudeepa Khanal

    Full Text Available Multi-drug-resistant tuberculosis (MDR-TB poses a major threat to public health worldwide, particularly in low-income countries. The current long (20 month and arduous treatment regime uses powerful drugs with side-effects that include mental ill-health. It has a high loss-to-follow-up (25% and higher case fatality and lower cure-rates than those with drug sensitive tuberculosis (TB. While some national TB programmes provide small financial allowances to patients, other aspects of psychosocial ill-health, including iatrogenic ones, are not routinely assessed or addressed. We aimed to develop an intervention to improve psycho-social well-being for MDR-TB patients in Nepal. To do this we conducted qualitative work with MDR-TB patients, health professionals and the National TB programme (NTP in Nepal. We conducted semi-structured interviews (SSIs with 15 patients (10 men and 5 women, aged 21 to 68, four family members and three frontline health workers. In addition, three focus groups were held with MDR-TB patients and three with their family members. We conducted a series of meetings and workshops with key stakeholders to design the intervention, working closely with the NTP to enable government ownership. Our findings highlight the negative impacts of MDR-TB treatment on mental health, with greater impacts felt among those with limited social and financial support, predominantly married women. Michie et al's (2011 framework for behaviour change proved helpful in identifying corresponding practice- and policy-level changes. The findings from this study emphasise the need for tailored psycho-social support. Recent work on simple psychological support packages for the general population can usefully be adapted for use with people with MDR-TB.

  6. ASSESSMENT OF EFFECT OF MDR - TB/TB ON SOCIAL, FUNCTIONAL AND ECONOMIC WELL BEING OF PATIENTS – A CROSS SECTIONAL STUDY

    Directory of Open Access Journals (Sweden)

    Shiv Kumar

    2015-06-01

    Full Text Available CONTEXT : Tuberculosis is a contagious disease with social stigma attached to it. Various problems which are social and economic in nature are faced by TB patient. Therefore , it is essential to explore the overall effect of MDR - TB/TB on health and patients perception of Well - being. AIMS : To Document the effect of MDR - TB/TB on social , functional and economic well - being of patients. SETTINGS AND DESIGN : A Cross - sectional study , Conveniently Recruited 68 MDR - TB Patients and 136 non - MDR - TB Patients (from Rural as well as urban Area of Surat District diagnosed by CBNAAT were interviewed for investigating the effect of Tuberculosis. METHODS AND MATERIAL : A pre - tested standardized semi - structured questionnaire was used. Data was collected about socio - demographic profile of patients and interpreted in table. Data about effect of MDR - TB/TB was collected on Likert Scale and Frequency was calculated and Data wa s plotted on multiple bar charts. RESULTS : As compared to healthy status in the past , 93% MDR - TB and 82% TB patients have decreased ability to do work , about half of MDR - TB Patients and TB Patients have detiorated relations with family members , 67% of stud y participants have developed disharmonious relations with neighbor’s , 55% of Study participants have decreased income , 88% of study participants have decreased performance in day to day activities and 78% of study participants have faced discordial and di srespectful behavior from co - workers. CONCLUSION : Working ability more detiorated in MDR - TB patients while rest of the effect on social , functional and economic well - being is same in both TB and Multi Drug Resistant TB patients. This study emphasizes very clearly that social stigma still persist in community about Tuberculosis which needs to be eliminated in community by behavior change communication by health workers at all levels of health care.

  7. Epigenetic mechanisms involved in differential MDR1 mRNA expression between gastric and colon cancer cell lines and rationales for clinical chemotherapy

    Directory of Open Access Journals (Sweden)

    Kim Kyung-Jong

    2008-08-01

    Full Text Available Abstract Background The membrane transporters such as P-glycoprotein (Pgp, the MDR1 gene product, are one of causes of treatment failure in cancer patients. In this study, the epigenetic mechanisms involved in differential MDR1 mRNA expression were compared between 10 gastric and 9 colon cancer cell lines. Methods The MDR1 mRNA levels were determined using PCR and real-time PCR assays after reverse transcription. Cytotoxicity was performed using the MTT assay. Methylation status was explored by quantification PCR-based methylation and bisulfite DNA sequencing analyses. Results The MDR1 mRNA levels obtained by 35 cycles of RT-PCR in gastric cancer cells were just comparable to those obtained by 22 cycles of RT-PCR in colon cancer cells. Real-time RT-PCR analysis revealed that MDR1 mRNA was not detected in the 10 gastric cancer cell lines but variable MDR1 mRNA levels in 7 of 9 colon cancer cell lines except the SNU-C5 and HT-29 cells. MTT assay showed that Pgp inhibitors such as cyclosporine A, verapamil and PSC833 sensitized Colo320HSR (colon, highest MDR1 expression but not SNU-668 (gastric, highest and SNU-C5 (gastric, no expression to paclitaxel. Quantification PCR-based methylation analysis revealed that 90% of gastric cancer cells, and 33% of colon cancer cells were methylated, which were completely matched with the results obtained by bisulfite DNA sequencing analysis. 5-aza-2'-deoxcytidine (5AC, a DNA methyltransferase inhibitor increased the MDR1 mRNA levels in 60% of gastric cells, and in 11% of colon cancer cells. Trichostatin A (TSA, histone deacetylase inhibitor increased the MDR1 mRNA levels in 70% of gastric cancer cells and 55% of colon cancer cells. The combined treatment of 5AC with TSA increased the MDR1 mRNA levels additively in 20% of gastric cancer cells, but synergistically in 40% of gastric and 11% of colon cancer cells. Conclusion These results indicate that the MDR1 mRNA levels in gastric cancer cells are significantly

  8. Tolerance to biodegraded crude oil in marine invertebrate embryos and larvae is associated with expression of a multixenobiotic resistance transporter.

    Science.gov (United States)

    Hamdoun, Amro M; Griffin, Fred J; Cherr, Gary N

    2002-11-13

    The toxicity of water-soluble fractions of biodegraded crude oil (BWSF) to embryos and larvae of two marine invertebrates, the white sea urchin (Lytechinus anamesus) and the fat innkeeper (Urechis caupo), was studied. Santa Barbara Channel crude oil was artificially weathered and subjected to biodegradation using a mixed microbe culture obtained from natural oil seep sites. The degradation culture inoculated with seep sediment microbes accumulated 43.7 microg/l water-soluble hydrocarbons. In contrast water-soluble fractions from the non-degraded cultures (NWSF) only accumulated 3.05 microg/l. BWSF proved deleterious to Lytechinus embryo development at low concentrations (EC50 = 0.33 mg/l) but was essentially non-toxic to Urechis embryos/larvae up to 3.0 mg/l. An established mechanism for handling of a wide array of xenobiotics in Urechis embryos is the multixenobiotoic resistance transporter multixenobiotic response (MXR, also known as multidrug resistance, MDR). This mechanism is primarily mediated by ATP-dependent, efflux pumps that extrude a wide array of xenobiotic compounds. In this study, we show that Lytechinus larvae do not appear to express MXR efflux protein nor MXR mediated dye efflux capacity. In contrast, BWSF acts as a competitive inhibitor of MXR transport-mediated dye efflux in Urechis larvae. These results suggest that MXR may be an important mechanism for extrusion of the by-products of crude oil degradation by microbes, and that the level of its expression may determine the susceptibility of organisms to degraded oil hydrocarbons. Copyright 2002 Elsevier Science B.V.

  9. Soil carbon dioxide (CO 2 ) efflux of two shrubs in response to plant ...

    African Journals Online (AJOL)

    Although plant density should affect soil carbon dioxide (CO2) efflux and carbon cycling in semi-arid regions, the effects of plant density on soil CO2 efflux are not well known. This study was performed to investigate the responses of soil CO2 efflux of two dominant shrubs (Caragana korshinkii and Salix psammophila) to ...

  10. Reversal of multidrug resistance by surfactants.

    Science.gov (United States)

    Woodcock, D. M.; Linsenmeyer, M. E.; Chojnowski, G.; Kriegler, A. B.; Nink, V.; Webster, L. K.; Sawyer, W. H.

    1992-01-01

    Cremophor EL, a pharmacologically inactive solubilising agent, has been shown to reverse multidrug resistance (MDR). Using flow cytometric evaluation of equilibrium intracellular levels of daunorubicin (DNR), we found that eight other surface active agents will also reverse MDR. All the active detergents contain polyethoxylated moieties but have no similarities in their hydrophobic components. The properties of three polyethoxylated surfactants that showed the lowest toxicities, Cremophor, Tween 80 and Solutol HS15, were examined in more detail. The concentrations of Tween 80 and Solutol required to reverse DNR exclusion were 10-fold lower than for Cremophor. However while concentrations greater than or equal to 1:10(2) of the former two surfactants resulted in breakdown of cells, even 1:10 of Cremophor did not lyse cells. Studies of the effects of Cremophor on the uptake and efflux of DNR in normal and MDR cell types showed that Cremophor increases intracellular DNR primarily by locking the rapid efflux from the cells. This blockage of drug efflux may be mediated by a substantial alteration in the fluidity of cell membranes induced by Cremophor, as shown by decreased fluorescence anisotropy of a membrane probe. Consistent with these data, coinjection of adriamycin plus Cremophor into mice carrying a multidrug resistant P388 transplantable tumour significantly increased the survival time of the mice compared with adriamycin treatment alone. PMID:1637678

  11. Pharmacological modification of multi-drug resistance (MDR) in vitro detected by a novel fluorometric microculture cytotoxicity assay. Reversal of resistance and selective cytotoxic actions of cyclosporin A and verapamil on MDR leukemia T-cells.

    Science.gov (United States)

    Larsson, R; Nygren, P

    1990-07-15

    A novel fluorometric microculture cytotoxicity assay (FMCA), based on measurements of fluorescein diacetate (FDA) hydrolysis and DNA staining by Hoechst 33342, was used for drug sensitivity testing and detection of resistance reversal in acute lymphoblastic leukemia (ALL) cell lines. The 72-hr assay was found to be sensitive, reproducible and linearly related to the number of viable cells within a broad range of cell concentrations. At clinically achievable drug concentrations, the calcium channel blocker Verapamil (ver) and the immunosuppressant Cyclosporin A (csA) were found to partly reverse acquired Vincristine (vcr) resistance in multi-drug resistant (MDR) T-ALL L100 cells with little or no effect on the drug-sensitive parental L0 cell line. By combining the fluorometric indices, we found that low concentrations of csA were growth-inhibitory, whereas higher concentrations (greater than 10 micrograms/ml) were progressively cytotoxic for drug-sensitive L0 cells. In MDR L100 cells, on the other hand, csA produced significant cell kill even at low drug concentrations. Ver had no effects on sensitive L0 cells but showed considerable cytotoxic action towards MDR L100 cells. There was no apparent relationship between drug reversal of vcr resistance and the cytotoxic actions of the drug per se since the calcium channel blocker diltiazem (dil) significantly potentiated the actions of vcr on MDR L100 cells without being more toxic to these cells (compared to vcr-sensitive L0 cells).

  12. Regorafenib overcomes chemotherapeutic multidrug resistance mediated by ABCB1 transporter in colorectal cancer: In vitro and in vivo study.

    Science.gov (United States)

    Wang, Yi-Jun; Zhang, Yun-Kai; Zhang, Guan-Nan; Al Rihani, Sweilem B; Wei, Meng-Ning; Gupta, Pranav; Zhang, Xiao-Yu; Shukla, Suneet; Ambudkar, Suresh V; Kaddoumi, Amal; Shi, Zhi; Chen, Zhe-Sheng

    2017-06-28

    Chemotherapeutic multidrug resistance (MDR) is a significant challenge to overcome in clinic practice. Several mechanisms contribute to MDR, one of which is the augmented drug efflux induced by the upregulation of ABCB1 in cancer cells. Regorafenib, a multikinase inhibitor targeting the RAS/RAF/MEK/ERK pathway, was approved by the FDA to treat metastatic colorectal cancer and gastrointestinal stromal tumors. We investigated whether and how regorafenib overcame MDR mediated by ABCB1. The results showed that regorafenib reversed the ABCB1-mediated MDR and increased the accumulation of [ 3 H]-paclitaxel in ABCB1-overexpressing cells by suppressing efflux activity of ABCB1, but not altering expression level and localization of ABCB1. Regorafenib inhibited ATPase activity of ABCB1. In mice bearing resistant colorectal tumors, regorafenib raised the intratumoral concentration of paclitaxel and suppressed the growth of resistant colorectal tumors. But regorafenib did not induce cardiotoxicity/myelosuppression of paclitaxel in mice. Strategy to reposition one FDA-approved anticancer drug regorafenib to overcome the resistance of another FDA-approved, widely used chemotherapeutic paclitaxel, may be a promising direction for the field of adjuvant chemotherapy. This study provides clinical rationale for combination of conventional chemotherapy and targeted anticancer agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Expression of multi-drug resistance-related genes MDR3 and MRP as prognostic factors in clinical liver cancer patients.

    Science.gov (United States)

    Yu, Zheng; Peng, Sun; Hong-Ming, Pan; Kai-Feng, Wang

    2012-01-01

    To investigate the expression of multi-drug resistance-related genes, MDR3 and MRP, in clinical specimens of primary liver cancer and their potential as prognostic factors in liver cancer patients. A total of 26 patients with primary liver cancer were enrolled. The expression of MDR3 and MRP genes was measured by real-time PCR and the association between gene expression and the prognosis of patients was analyzed by the Kaplan-Meier method and COX regression model. This study showed that increases in MDR3 gene expression were identified in cholangiocellular carcinoma, cirrhosis and HBsAg-positive patients, while MRP expression increased in hepatocellular carcinoma, non-cirrhosis and HBsAg-negative patients. Moreover, conjugated bilirubin and total bile acid in the serum were significantly reduced in patients with high MRP expression compared to patients with low expression. The overall survival tended to be longer in patients with high MDR3 and MRP expression compared to the control group. MRP might be an independent prognostic factor in patients with liver cancer by COX regression analysis. MDR3 and MRP may play important roles in liver cancer patients as prognostic factors and their underlying mechanisms in liver cancer are worthy of further investigation.

  14. Sensitive and specific fluorescent probes for functional analysis of the three major types of mammalian ABC transporters.

    Science.gov (United States)

    Lebedeva, Irina V; Pande, Praveen; Patton, Wayne F

    2011-01-01

    An underlying mechanism for multi drug resistance (MDR) is up-regulation of the transmembrane ATP-binding cassette (ABC) transporter proteins. ABC transporters also determine the general fate and effect of pharmaceutical agents in the body. The three major types of ABC transporters are MDR1 (P-gp, P-glycoprotein, ABCB1), MRP1/2 (ABCC1/2) and BCRP/MXR (ABCG2) proteins. Flow cytometry (FCM) allows determination of the functional expression levels of ABC transporters in live cells, but most dyes used as indicators (rhodamine 123, DiOC(2)(3), calcein-AM) have limited applicability as they do not detect all three major types of ABC transporters. Dyes with broad coverage (such as doxorubicin, daunorubicin and mitoxantrone) lack sensitivity due to overall dimness and thus may yield a significant percentage of false negative results. We describe two novel fluorescent probes that are substrates for all three common types of ABC transporters and can serve as indicators of MDR in flow cytometry assays using live cells. The probes exhibit fast internalization, favorable uptake/efflux kinetics and high sensitivity of MDR detection, as established by multidrug resistance activity factor (MAF) values and Kolmogorov-Smirnov statistical analysis. Used in combination with general or specific inhibitors of ABC transporters, both dyes readily identify functional efflux and are capable of detecting small levels of efflux as well as defining the type of multidrug resistance. The assay can be applied to the screening of putative modulators of ABC transporters, facilitating rapid, reproducible, specific and relatively simple functional detection of ABC transporter activity, and ready implementation on widely available instruments.

  15. Comparison of bacteriological conversion and treatment outcomes among MDR-TB patients with and without diabetes in Mexico: Preliminary data

    Directory of Open Access Journals (Sweden)

    M. Muñoz-Torrico

    2017-01-01

    Full Text Available Diabetes mellitus (DM is a well-known risk factor for tuberculosis (TB. However, it is not known to what extent DM affects the outcome in patients with multidrug-resistant (MDR-TB and extensively drug-resistant TB (XDR-TB treated with second-line anti-TB drugs.The objective of this study was to compare the microbiological evolution (sputum smear and culture conversion and final outcomes of MDR/XDR-TB patients with and without DM, managed at the national TB reference centre in Mexico City. Results: Ninety patients were enrolled between 2010 and 2015: 73 with MDR-TB (81.1%, 11 with pre-XDR-TB (e.g. MDR-TB with additional resistance to one injectable drug or a fluoroquinolone, 12.2% and 6 (6.7% with XDR-TB. Out of these, 49 (54.4% had DM and 42 (86% were undergoing insulin treatment.No statistically significant differences were found in treatment outcomes comparing DM vs. non-DM MDR-TB cases: 18/32 (56.3% of DM cases and 19/24 (79.2% non DM patients achieved treatment success (p = 0.07. The time to sputum smear and culture conversion was longer (although not statistically in patients without DM, as follows: the mean (±SD time to sputum smear conversion was 53.9 (±31.4 days in DM patients and 65.2 (±34.8 days in non-DM ones (p = 0.15, while the time to culture conversion was 66.2 (±27.6 days for DM and 81.4 (±37.7 days for non-DM MDR-TB cases (p = 0.06. Conclusions: The study results support the Mexican National TB programme to strengthen its collaboration with the DM programme, as an entry point for TB (and latent TB infection screening and management. Keywords: Diabetes mellitus, Delay, Sputum and culture conversion, MDR-TB, High treatment adherence

  16. Mind the gap: non-biological processes contributing to soil CO2 efflux.

    Science.gov (United States)

    Rey, Ana

    2015-05-01

    Widespread recognition of the importance of soil CO2 efflux as a major source of CO2 to the atmosphere has led to active research. A large soil respiration database and recent reviews have compiled data, methods, and current challenges. This study highlights some deficiencies for a proper understanding of soil CO2 efflux focusing on processes of soil CO2 production and transport that have not received enough attention in the current soil respiration literature. It has mostly been assumed that soil CO2 efflux is the result of biological processes (i.e. soil respiration), but recent studies demonstrate that pedochemical and geological processes, such as geothermal and volcanic CO2 degassing, are potentially important in some areas. Besides the microbial decomposition of litter, solar radiation is responsible for photodegradation or photochemical degradation of litter. Diffusion is considered to be the main mechanism of CO2 transport in the soil, but changes in atmospheric pressure and thermal convection may also be important mechanisms driving soil CO2 efflux greater than diffusion under certain conditions. Lateral fluxes of carbon as dissolved organic and inorganic carbon occur and may cause an underestimation of soil CO2 efflux. Traditionally soil CO2 efflux has been measured with accumulation chambers assuming that the main transport mechanism is diffusion. New techniques are available such as improved automated chambers, CO2 concentration profiles and isotopic techniques that may help to elucidate the sources of carbon from soils. We need to develop specific and standardized methods for different CO2 sources to quantify this flux on a global scale. Biogeochemical models should include biological and non-biological CO2 production processes before we can predict the response of soil CO2 efflux to climate change. Improving our understanding of the processes involved in soil CO2 efflux should be a research priority given the importance of this flux in the global

  17. Contribution of different mechanisms to the resistance to fluoroquinolones in clinical isolates of Salmonella enterica

    Directory of Open Access Journals (Sweden)

    Abeer Ahmed Rushdy

    Full Text Available OBJECTIVES: To study the potential factors include gene mutation, efflux pump and alteration of permeability associated with quinolone-resistance of Salmonella enterica strains isolated from patients with acute gastroenteritis and to evaluate the degree of synergistic activity of efflux pump inhibitors when combined with ciprofloxacin against resistant isolates. METHODS: Antimicrobial resistance patterns of fifty-eight Salmonella isolates were tested. Five isolates were selected to study the mechanism of resistance associated with quinolone group, including mutation in topoisomerase-encoding gene, altered cell permeability, and expression of an active efflux system. In addition, the combination between antibiotics and efflux pump inhibitors to overcome the microbial resistance was evaluated. RESULTS: Five Salmonella isolates totally resistant to all quinolones were studied. All isolates showed alterations in outer membrane proteins including disappearance of some or all of these proteins (Omp-A, Omp-C, Omp-D and Omp-F. Minimum inhibitory concentration values of ciprofloxacin were determined in the presence/absence of the efflux pump inhibitors: carbonyl cyanide m-chlorophenylhydrazone, norepinephrin and trimethoprim. Minimum inhibitory concentration values for two of the isolates were 2-4 fold lower with the addition of efflux pump inhibitors. All five Salmonella isolates were amplified for gyrA and parC genes and only two isolates were sequenced. S. Enteritidis 22 had double mutations at codon 83 and 87 in addition to three mutations at parC at codons 67, 76 and 80 whereas S. Typhimurium 57 had three mutations at codons 83, 87 and 119, but no mutations at parC. CONCLUSIONS: Efflux pump inhibitors may inhibit the major AcrAB-TolC in Salmonella efflux systems which are the major efflux pumps responsible for multidrug resistance in Gramnegative clinical isolates.

  18. Evolutionarily Conserved Roles for Blood-Brain Barrier Xenobiotic Transporters in Endogenous Steroid Partitioning and Behavior.

    Science.gov (United States)

    Hindle, Samantha J; Munji, Roeben N; Dolghih, Elena; Gaskins, Garrett; Orng, Souvinh; Ishimoto, Hiroshi; Soung, Allison; DeSalvo, Michael; Kitamoto, Toshihiro; Keiser, Michael J; Jacobson, Matthew P; Daneman, Richard; Bainton, Roland J

    2017-10-31

    Central nervous system (CNS) chemical protection depends upon discrete control of small-molecule access by the blood-brain barrier (BBB). Curiously, some drugs cause CNS side-effects despite negligible transit past the BBB. To investigate this phenomenon, we asked whether the highly BBB-enriched drug efflux transporter MDR1 has dual functions in controlling drug and endogenous molecule CNS homeostasis. If this is true, then brain-impermeable drugs could induce behavioral changes by affecting brain levels of endogenous molecules. Using computational, genetic, and pharmacologic approaches across diverse organisms, we demonstrate that BBB-localized efflux transporters are critical for regulating brain levels of endogenous steroids and steroid-regulated behaviors (sleep in Drosophila and anxiety in mice). Furthermore, we show that MDR1-interacting drugs are associated with anxiety-related behaviors in humans. We propose a general mechanism for common behavioral side effects of prescription drugs: pharmacologically challenging BBB efflux transporters disrupts brain levels of endogenous substrates and implicates the BBB in behavioral regulation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Risk factors associated with multidrug-resistant tuberculosis (MDR-TB) in a tertiary armed force referral and teaching hospital, Ethiopia.

    Science.gov (United States)

    Demile, Biresaw; Zenebu, Amare; Shewaye, Haile; Xia, Siqing; Guadie, Awoke

    2018-05-31

    Ethiopia is one of the world health organization defined higher tuberculosis (TB) burden countries where the disease remains a massive public health threat. This study aimed to identify the prevalence and associated factors of multidrug-resistant tuberculosis (MDR-TB) using all armed force and civilian TB attendants in a tertiary level armed force hospital, where data for MDR-TB are previously unpublished. Cross-sectional study was conducted from September 2014 to August 2015 in a tertiary level Armed Force Referral and Teaching Hospital (AFRTH), Ethiopia. Armed force members (n = 251) and civilians (n = 130) which has been undergone TB diagnosis at AFRTH were included. All the specimens collected were subjected to microscopic smear observation, culture growth and drug susceptibility testing. Data were analyzed using statistical package for social sciences following binary logistic regression and Chi-square. P-values < 0.05 were considered statistically significant. Among 381 TB patients, 355 (93.2%) new and 26 (6.8%) retreatment cases were identified. Culture and smear positive TB cases were identified in 297 (77.9%) and 252 (66.1%) patients, respectively. The overall prevalence of MDR-TB in AFRTH was found 1.8% (1.3% for armed force members and 0.5% for civilian patients) all of which were previously TB treated cases. The entire treatment success rates were 92.6% achieved highest in the armed force (active and pension) than the civilian patients. The failure and dead cases were also found 2.5 and 4.6%, respectively. Using bivariate analysis, category of attendants and TB contact history were strong predictors of MDR-TB in armed force and civilian patients. Moreover, human immunodeficiency virus (HIV) infection also identified a significant (OR = 14.6; 95% CI = 2.3-92.1; p = 0.004) predicting factor for MDR-TB in armed force members. However, sex, age and body mass index were not associated factor for MDR-TB. In AFRTH, lower prevalence of

  20. Rapid sediment accumulation results in high methane effluxes from coastal sediments

    NARCIS (Netherlands)

    Egger, M.J.|info:eu-repo/dai/nl/372629199; Lenstra, W.K.|info:eu-repo/dai/nl/411295977; Jong, Dirk; Meysman, Filip; Sapart, C.J.|info:eu-repo/dai/nl/31400596X; van der Veen, C.; Röckmann, Thomas|info:eu-repo/dai/nl/304838233; Gonzalez, Santiago; Slomp, C.P.|info:eu-repo/dai/nl/159424003

    2016-01-01

    Globally, the methane (CH4) efflux from the ocean to the atmosphere is small, despite high rates of CH4 production in continental shelf and slope environments. This low efflux results from the biological removal of CH4 through anaerobic oxidation with sulfate in marine sediments. In some settings,

  1. CO₂ efflux from shrimp ponds in Indonesia.

    Science.gov (United States)

    Sidik, Frida; Lovelock, Catherine E

    2013-01-01

    The conversion of mangrove forest to aquaculture ponds has been increasing in recent decades. One of major concerns of this habitat loss is the release of stored 'blue' carbon from mangrove soils to the atmosphere. In this study, we assessed carbon dioxide (CO₂) efflux from soil in intensive shrimp ponds in Bali, Indonesia. We measured CO₂ efflux from the floors and walls of shrimp ponds. Rates of CO₂ efflux within shrimp ponds were 4.37 kg CO₂ m⁻² y⁻¹ from the walls and 1.60 kg CO₂ m⁻² y⁻¹ from the floors. Combining our findings with published data of aquaculture land use in Indonesia, we estimated that shrimp ponds in this region result in CO₂ emissions to the atmosphere between 5.76 and 13.95 Tg y⁻¹. The results indicate that conversion of mangrove forests to aquaculture ponds contributes to greenhouse gas emissions that are comparable to peat forest conversion to other land uses in Indonesia. Higher magnitudes of CO₂ emission may be released to atmosphere where ponds are constructed in newly cleared mangrove forests. This study indicates the need for incentives that can meet the target of aquaculture industry without expanding the converted mangrove areas, which will lead to increased CO₂ released to atmosphere.

  2. CO₂ efflux from shrimp ponds in Indonesia.

    Directory of Open Access Journals (Sweden)

    Frida Sidik

    Full Text Available The conversion of mangrove forest to aquaculture ponds has been increasing in recent decades. One of major concerns of this habitat loss is the release of stored 'blue' carbon from mangrove soils to the atmosphere. In this study, we assessed carbon dioxide (CO₂ efflux from soil in intensive shrimp ponds in Bali, Indonesia. We measured CO₂ efflux from the floors and walls of shrimp ponds. Rates of CO₂ efflux within shrimp ponds were 4.37 kg CO₂ m⁻² y⁻¹ from the walls and 1.60 kg CO₂ m⁻² y⁻¹ from the floors. Combining our findings with published data of aquaculture land use in Indonesia, we estimated that shrimp ponds in this region result in CO₂ emissions to the atmosphere between 5.76 and 13.95 Tg y⁻¹. The results indicate that conversion of mangrove forests to aquaculture ponds contributes to greenhouse gas emissions that are comparable to peat forest conversion to other land uses in Indonesia. Higher magnitudes of CO₂ emission may be released to atmosphere where ponds are constructed in newly cleared mangrove forests. This study indicates the need for incentives that can meet the target of aquaculture industry without expanding the converted mangrove areas, which will lead to increased CO₂ released to atmosphere.

  3. Antibacterial and antibiotic-potentiation activities of the methanol extract of some cameroonian spices against Gram-negative multi-drug resistant phenotypes

    Science.gov (United States)

    2012-01-01

    Background The present work was designed to evaluate the antibacterial properties of the methanol extracts of eleven selected Cameroonian spices on multi-drug resistant bacteria (MDR), and their ability to potentiate the effect of some common antibiotics used in therapy. Results The extract of Cinnamomum zeylanicum against Escherichia coli ATCC 8739 and AG100 strains showed the best activities, with the lowest minimal inhibitory concentration (MIC) of 64 μg/ml. The extract of Dorstenia psilurus was the most active when tested in the presence of an efflux pump inhibitor, phenylalanine Arginine-β- Naphtylamide (PAβN), a synergistic effect being observed in 56.25 % of the tested bacteria when it was combined with Erythromycin (ERY). Conclusion The present work evidently provides information on the role of some Cameroonian spices in the fight against multi-resistant bacteria. PMID:22709668

  4. Antibacterial and antibiotic-potentiation activities of the methanol extract of some cameroonian spices against Gram-negative multi-drug resistant phenotypes

    Directory of Open Access Journals (Sweden)

    Voukeng Igor K

    2012-06-01

    Full Text Available Abstract Background The present work was designed to evaluate the antibacterial properties of the methanol extracts of eleven selected Cameroonian spices on multi-drug resistant bacteria (MDR, and their ability to potentiate the effect of some common antibiotics used in therapy. Results The extract of Cinnamomum zeylanicum against Escherichia coli ATCC 8739 and AG100 strains showed the best activities, with the lowest minimal inhibitory concentration (MIC of 64 μg/ml. The extract of Dorstenia psilurus was the most active when tested in the presence of an efflux pump inhibitor, phenylalanine Arginine-β- Naphtylamide (PAβN, a synergistic effect being observed in 56.25 % of the tested bacteria when it was combined with Erythromycin (ERY. Conclusion The present work evidently provides information on the role of some Cameroonian spices in the fight against multi-resistant bacteria.

  5. Qualitative analysis of MDR-reversing Anastasia Black (Russian black sweet pepper, Capsicum annuum, Solanaceae) extracts and fractions by HPLC and LC-MS-MS methods.

    Science.gov (United States)

    Schelz, Zsuzsanna; Molnár, Joseph; Fogliano, Vincenzo; Ferracane, Rosalia; Pernice, Rita; Shirataki, Yoshiaki; Motohashi, Noboru

    2006-01-01

    In earlier experiments, the MDR (multidrug resistance)-reversal activities of Anastasia Black (Russian black sweet pepper) extracts had been analysed. Recently, the most effective MDR reversing extracts and fractions have been separated by HPLC (high-performance liquid chromatography, for carotenoids) and LC-MS-MS (HPLC combined with mass spectrometry, for phenolic compounds) methods. As a result of the analytical studies, the following flavonoids had been identified: feruloyl glucopyranoside, quercetin rhamnopyranoside glucopyranoside, luteolin glucopyranoside arabinopyranoside, apigenin glucopyranoside arabinopyranoside, quercetin rhamnopyranoside, luteolin arabinopyranoside diglucopy-ranoside, hesperidine and luteolin glucuronide. According to the literature, the aglycones of these phenolic compounds exhibit MDR-reversal activity in vitro, and the connection between the phenolic content of Anastasia Black and MDR-reversal action was therefore studied by different analytical methods. The results of this study revealed that the identified flavonoids of Anastasia Black may be only partially responsible for the modulation of the MDR of mouse lymphoma cells. Other lipophilic compounds, most probably carotenoids, present in Russian black sweet pepper may act as inhibitors of MDR reversal.

  6. In Vivo Exposure of Kaempferol Is Driven by Phase II Metabolic Enzymes and Efflux Transporters.

    Science.gov (United States)

    Zheng, Liang; Zhu, Lijun; Zhao, Min; Shi, Jian; Li, Yuhuan; Yu, Jia; Jiang, Huangyu; Wu, Jinjun; Tong, Yunli; Liu, Yuting; Hu, Ming; Lu, Linlin; Liu, Zhongqiu

    2016-09-01

    Kaempferol is a well-known flavonoid; however, it lacks extensive pharmacokinetic studies. Phase II metabolic enzymes and efflux transporters play an important role in the disposition of flavonoids. This study aimed to investigate the mechanism by which phase II metabolic enzymes and efflux transporters determine the in vivo exposure of kaempferol. Pharmacokinetic analysis in Sprague-Dawley rats revealed that kaempferol was mostly biotransformed to conjugates, namely, kaempferol-3-glucuronide (K-3-G), kaempferol-7-glucuronide (K-7-G), and kaempferol-7-sulfate, in plasma. K-3-G represented the major metabolite. Compared with that in wild-type mice, pharmacokinetics in knockout FVB mice demonstrated that the absence of multidrug resistance protein 2 (MRP2) and breast cancer resistance protein (BCRP) significantly increased the area under the curve (AUC) of the conjugates. The lack of MRP1 resulted in a much lower AUC of the conjugates. Intestinal perfusion in rats revealed that the glucuronide conjugates were mainly excreted in the small intestine, but 7-sulfate was mainly excreted in the colon. In Caco-2 monolayers, K-7-G efflux toward the apical (AP) side was significantly higher than K-3-G efflux. In contrast, K-3-G efflux toward the basolateral (BL) side was significantly higher than K-7-G efflux. The BL-to-AP efflux was significantly reduced in the presence of the MRP2 inhibitor LTC4. The AP-to-BL efflux was significantly decreased in the presence of the BL-side MRPs inhibitor MK571. The BCRP inhibitor Ko143 decreased the glucuronide conjugate efflux. Therefore, kaempferol is mainly exposed as K-3-G in vivo, which is driven by phase II metabolic enzymes and efflux transporters (i.e., BCRP and MRPs).

  7. Association of ACE and MDR1 Gene Polymorphisms with Steroid Resistance in Children with Idiopathic Nephrotic Syndrome.

    Science.gov (United States)

    Dhandapani, Mohanapriya Chinambedu; Venkatesan, Vettriselvi; Rengaswamy, Nammalwar Bollam; Gowrishankar, Kalpana; Nageswaran, Prahlad; Perumal, Venkatachalam

    2015-08-01

    The purpose of the study was to investigate the distribution of insertion/deletion (I/D) polymorphisms of the angiotensin-converting enzyme (ACE) gene and three exonic polymorphisms of the multidrug resistance 1 (MDR1) gene (C3435T, C1236T, and G2677T) in children diagnosed with idiopathic nephrotic syndrome (INS). The study group consisted of 100 healthy controls and 150 INS patients, of which 50 were steroid resistant. Genomic DNA from blood samples was isolated from both of these groups and genotyping of the ACE and MDR1 genes was performed by polymerase chain reaction (PCR) using specific primers. There was no significant difference observed in the genotypic distribution and D allele frequency of the ACE gene. The two single-nucleotide polymorphisms (SNPs), C1236T and C3435T, of the MDR1 gene showed no significance, whereas the SNP G2677T/A was significantly associated with the genotypes GT and GA of the MDR1 gene, indicating it may be a potential marker to detect drug resistance. Screening these polymorphisms will pave the way to better understand the molecular mechanisms of the disease, which may be useful in developing targeted therapies for INS patients.

  8. Organic carbon efflux from a deciduous forest catchment in Korea

    Directory of Open Access Journals (Sweden)

    S. J. Kim

    2010-04-01

    Full Text Available Soil infiltration and surface discharge of precipitation are critical processes that affect the efflux of Dissolved Organic Carbon (DOC and Particulate Organic Carbon (POC in forested catchments. Concentrations of DOC and POC can be very high in the soil surface in most forest ecosystems and their efflux may not be negligible particularly under the monsoon climate. In East Asia, however, there are little data available to evaluate the role of such processes in forest carbon budget. In this paper, we address two basic questions: (1 how does stream discharge respond to storm events in a forest catchment? and (2 how much DOC and POC are exported from the catchment particularly during the summer monsoon period? To answer these questions, we collected hydrological data (e.g., precipitation, soil moisture, runoff discharge, groundwater level and conducted hydrochemical analyses (including DOC, POC, and six tracers in a deciduous forest catchment in Gwangneung National Arboretum in west-central Korea. Based on the end-member mixing analysis of the six storm events during the summer monsoon in 2005, the surface discharge was estimated as 30 to 80% of the total runoff discharge. The stream discharge responded to precipitation within 12 h during these storm events. The annual efflux of DOC and POC from the catchment was estimated as 0.04 and 0.05 t C ha−1 yr−1, respectively. Approximately 70% of the annual organic carbon efflux occurred during the summer monsoon period. Overall, the annual efflux of organic carbon was estimated to be about 10% of the Net Ecosystem carbon Exchange (NEE obtained by eddy covariance measurement at the same site. Considering the current trends of increasing intensity and amount of summer rainfall and the large interannual variability in NEE, ignoring the organic carbon efflux from forest catchments would result in an inaccurate estimation of the carbon sink strength of forest ecosystems in the monsoon

  9. Clinical and programmatic considerations in the treatment of MDR-TB in children: a series of 16 patients from Lima, Peru.

    Science.gov (United States)

    Mukherjee, J S; Joseph, J K; Rich, M L; Shin, S S; Furin, J J; Seung, K J; Sloutsky, A; Socci, A R; Vanderwarker, C; Vasquez, L; Palacios, E; Guerra, D; Viru, F A; Farmer, P; Del Castillo, H E

    2003-07-01

    Since 2000, the directly observed treatment, short-course (DOTS) strategy has been expanded in several countries to include treatment of multidrug-resistant tuberculosis (MDR-TB). This strategy is known as DOTS-Plus. Tuberculosis is a common cause of morbidity and mortality for children throughout the developing world. Children may also be infected with MDR-TB, yet most developing countries do not specifically address pediatric MDR-TB. To present the intermediate outcomes of the first 16 children enrolled in the Peruvian DOTS-Plus program and to demonstrate the tolerability of second-line anti-tuberculosis drugs. Three children completed therapy and are cured, one child had bacteriologic and clinical failure after 12 months of therapy and died of respiratory insufficiency, and 12 have intermediate outcomes demonstrating favorable clinical, bacteriologic, and radiographic evidence of improvement after 9-19 months of therapy. Of the 16 pediatric DOTS-Plus patients, 15 have tolerated therapy well and have had favorable clinical evolution. However, the diagnosis of pediatric MDR-TB is often extremely delayed due to reliance on the adult case definition and should be changed to prevent progressive, chronic illness in such children. Programmatic changes could facilitate earlier diagnosis and treatment of pediatric MDR-TB in Peru and in other DOTS-Plus programs.

  10. Wood CO2 efflux and foliar respiration for Eucalyptus in Hawaii and Brazil

    Science.gov (United States)

    Michael G. Ryan; Molly A. Cavaleri; Auro C. Almeida; Ricardo Penchel; Randy S. Senock; Jose Luiz Stape

    2009-01-01

    We measured CO2 efflux from wood for Eucalyptus in Hawaii for 7 years and compared these measurements with those on three- and four-and-a-halfyear- old Eucalyptus in Brazil. In Hawaii, CO2 efflux from wood per unit biomass declined ~10x from age two to age five, twice as much as the decline in tree growth. The CO2 efflux from wood in Brazil was 8-10· lower than that...

  11. Sodium Is Not Required for Chloride Efflux via Chloride/Bicarbonate Exchanger from Rat Thymic Lymphocytes

    Directory of Open Access Journals (Sweden)

    Donatas Stakišaitis

    2014-01-01

    Full Text Available Sodium-dependent Cl−/HCO3- exchanger acts as a chloride (Cl− efflux in lymphocytes. Its functional characterization had been described when Cl− efflux was measured upon substituting extracellular sodium (Na+ by N-methyl-D-glucamine (NMDG. For Na+ and Cl− substitution, we have used D-mannitol or NMDG. Thymocytes of male Wistar rats aged 7–9 weeks were used and intracellular Cl− was measured by spectrofluorimetry using MQAE dye in bicarbonate buffers. Chloride efflux was measured in a Cl−-free buffer (Cl− substituted with isethionate acid and in Na+ and Cl−-free buffer with D-mannitol or with NMDG. The data have shown that Cl− efflux is mediated in the absence of Na+ in a solution containing D-mannitol and is inhibited by H2DIDS. Mathematical modelling has shown that Cl− efflux mathematical model parameters (relative membrane permeability, relative rate of exchanger transition, and exchanger efficacy were the same in control and in the medium in which Na+ had been substituted by D-mannitol. The net Cl− efflux was completely blocked in the NMDG buffer. The same blockage of Cl− efflux was caused by H2DIDS. The study results allow concluding that Na+ is not required for Cl− efflux via Cl−/HCO3- exchanger. NMDG in buffers cannot be used for substituting Na+ because NMDG inhibits the exchanger.

  12. CO2 efflux from subterranean nests of ant communities in a seasonal tropical forest, Thailand

    OpenAIRE

    Hasin, Sasitorn; Ohashi, Mizue; Yamada, Akinori; Hashimoto, Yoshiaki; Tasen, Wattanachai; Kume, Tomonori; Yamane, Seiki

    2014-01-01

    Many ant species construct subterranean nests. The presence of their nests may explain soil respiration “hot spots”, an important factor in the high CO2 efflux from tropical forests. However, no studies have directly measured CO2 efflux from ant nests. We established 61 experimental plots containing 13 subterranean ant species to evaluate the CO2 efflux from subterranean ant nests in a tropical seasonal forest, Thailand. We examined differences in nest CO2 efflux among ant species. We determi...

  13. A mutation within the extended X loop abolished substrate-induced ATPase activity of the human liver ATP-binding cassette (ABC) transporter MDR3.

    Science.gov (United States)

    Kluth, Marianne; Stindt, Jan; Dröge, Carola; Linnemann, Doris; Kubitz, Ralf; Schmitt, Lutz

    2015-02-20

    The human multidrug resistance protein 3 (MDR3/ABCB4) belongs to the ubiquitous family of ATP-binding cassette (ABC) transporters and is located in the canalicular membrane of hepatocytes. There it flops the phospholipids of the phosphatidylcholine (PC) family from the inner to the outer leaflet. Here, we report the characterization of wild type MDR3 and the Q1174E mutant, which was identified previously in a patient with progressive familial intrahepatic cholestasis type 3 (PFIC-3). We expressed different variants of MDR3 in the yeast Pichia pastoris, purified the proteins via tandem affinity chromatography, and determined MDR3-specific ATPase activity in the presence or absence of phospholipids. The ATPase activity of wild type MDR3 was stimulated 2-fold by liver PC or 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine lipids. Furthermore, the cross-linking of MDR3 with a thiol-reactive fluorophore blocked ATP hydrolysis and exhibited no PC stimulation. Similarly, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin lipids did not induce an increase of wild type MDR3 ATPase activity. The phosphate analogues beryllium fluoride and aluminum fluoride led to complete inhibition of ATPase activity, whereas orthovanadate inhibited exclusively the PC-stimulated ATPase activity of MDR3. The Q1174E mutation is located in the nucleotide-binding domain in direct proximity of the leucine of the ABC signature motif and extended the X loop, which is found in ABC exporters. Our data on the Q1174E mutant demonstrated basal ATPase activity, but PC lipids were incapable of stimulating ATPase activity highlighting the role of the extended X loop in the cross-talk of the nucleotide-binding domain and the transmembrane domain. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach.

    Science.gov (United States)

    Taylor, Sophie; Spugnini, Enrico Pierluigi; Assaraf, Yehuda G; Azzarito, Tommaso; Rauch, Cyril; Fais, Stefano

    2015-11-01

    Despite the major progresses in biomedical research and the development of novel therapeutics and treatment strategies, cancer is still among the dominant causes of death worldwide. One of the crucial challenges in the clinical management of cancer is primary (intrinsic) and secondary (acquired) resistance to both conventional and targeted chemotherapeutics. Multiple mechanisms have been identifiedthat underlie intrinsic and acquired chemoresistance: these include impaired drug uptake, increased drug efflux, deletion of receptors, altered drug metabolism, quantitative and qualitative alterations in drug targets, increased DNA damage repair and various mechanisms of anti-apoptosis. The fast efflux of anticancer drugs mediated by multidrug efflux pumps and the partial or complete reversibility of chemoresistance combined with the absence of genetic mutations suggests a multifactorial process. However, a growing body of recent evidence suggests that chemoresistance is often triggered by the highly acidic microenvironment of tumors. The vast majority of drugs, including conventional chemotherapeutics and more recent biological agents, are weak bases that are quickly protonated and neutralized in acidic environments, such as the extracellular microenvironment and the acidic organelles of tumor cells. It is therefore essential to develop new strategies to overcome the entrapment and neutralization of weak base drugs. One such strategy is the use of proton pump inhibitors which can enhance tumor chemosensitivity by increasing the pH of the tumor microenvironment. Recent clinical trials in animals with spontaneous tumors have indicated that patient alkalization is capable of reversing acquired chemoresistance in a large percentage of tumors that are refractory to chemotherapy. Of particular interest was the benefit of alkalization for patients undergoing metronomic regimens which are becoming more widely used in veterinary medicine. Overall, these results provide

  15. Antimicrobial resistance (AMR) nanomachines-mechanisms for fluoroquinolone and glycopeptide recognition, efflux and/or deactivation.

    Science.gov (United States)

    Phillips-Jones, Mary K; Harding, Stephen E

    2018-04-01

    In this review, we discuss mechanisms of resistance identified in bacterial agents Staphylococcus aureus and the enterococci towards two priority classes of antibiotics-the fluoroquinolones and the glycopeptides. Members of both classes interact with a number of components in the cells of these bacteria, so the cellular targets are also considered. Fluoroquinolone resistance mechanisms include efflux pumps (MepA, NorA, NorB, NorC, MdeA, LmrS or SdrM in S. aureus and EfmA or EfrAB in the enterococci) for removal of fluoroquinolone from the intracellular environment of bacterial cells and/or protection of the gyrase and topoisomerase IV target sites in Enterococcus faecalis by Qnr-like proteins. Expression of efflux systems is regulated by GntR-like (S. aureus NorG), MarR-like (MgrA, MepR) regulators or a two-component signal transduction system (TCS) (S. aureus ArlSR). Resistance to the glycopeptide antibiotic teicoplanin occurs via efflux regulated by the TcaR regulator in S. aureus. Resistance to vancomycin occurs through modification of the D-Ala-D-Ala target in the cell wall peptidoglycan and removal of high affinity precursors, or by target protection via cell wall thickening. Of the six Van resistance types (VanA-E, VanG), the VanA resistance type is considered in this review, including its regulation by the VanSR TCS. We describe the recent application of biophysical approaches such as the hydrodynamic technique of analytical ultracentrifugation and circular dichroism spectroscopy to identify the possible molecular effector of the VanS receptor that activates expression of the Van resistance genes; both approaches demonstrated that vancomycin interacts with VanS, suggesting that vancomycin itself (or vancomycin with an accessory factor) may be an effector of vancomycin resistance. With 16 and 19 proteins or protein complexes involved in fluoroquinolone and glycopeptide resistances, respectively, and the complexities of bacterial sensing mechanisms that

  16. In vitro detection of mdr1 mRNA in murine leukemia cells with 111In-labeled oligonucleotide

    International Nuclear Information System (INIS)

    Bai Jingming; Yokoyama, Kunihiko; Kinuya, Seigo; Michigishi, Takatoshi; Tonami, Norihisa; Shiba, Kazuhiro; Matsushita, Ryo; Nomura, Masaaki

    2004-01-01

    The feasibility of intracellular mdr1 mRNA expression detection with radiolabeled antisense oligonucleotide (ODN) was investigated in the murine leukemia cell line, P388/S, and its subclonal, adriamycin-resistant cell line, P388/R. The expression level of mdr1 mRNA was analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Existence of the multidrug resistance (MDR) phenomenon was assessed via cellular uptake of 99m Tc-sestamibi (MIBI), a known substrate for P-glycoprotein. A 15-mer phosphorothioate antisense ODN complementary to the sequences located at -1 to 14 of mdr1 mRNA and its corresponding sense ODN were conjugated with the cyclic anhydride of diethylene triamine penta-acetic acid (cDTPA) via an amino group linked to the terminal phosphate at the 5' end at pH 8-9. The DTPA-ODN complexes at concentrations of 0.1-17.4 μMwere reacted with 111 InCl 3 at pH 5 for 1 h. The hybridization affinity of labeled ODN was evaluated with size-exclusion high-performance liquid chromatography following incubation with the complementary sequence. Cellular uptake of labeled ODN was examined in vitro. Furthermore, enhancing effects of synthetic lipid carriers (Transfast) on transmembrane delivery of ODN were assessed. P388/R cells displayed intense mdr1 mRNA expression in comparison with P388/S cells. 99m Tc-MIBI uptake in P388/S cells was higher than that in P388/R cells. Specific radioactivity up to 1,634 MBq/nmol was achieved via elevation of added radioactivity relative to ODN molar amount. The hybridization affinity of antisense 111 In-ODN was preserved at approximately 85% irrespective of specific activity. Cellular uptake of antisense 111 In-ODN did not differ from that of sense 111 In-ODN in either P388/S cells or P388/R cells. However, lipid carrier incorporation significantly increased transmembrane delivery of 111 In-ODN; moreover, specific uptake of antisense 111 In-ODN was demonstrated in P388/R cells. Radiolabeling of ODN at high specific

  17. A Resistance-Nodulation-Cell Division Family Xenobiotic Efflux Pump in an Obligate Anaerobe, Porphyromonas gingivalis

    OpenAIRE

    Ikeda, Takeshi; Yoshimura, Fuminobu

    2002-01-01

    Porphyromonas gingivalis, a gram-negative obligate anaerobe, contains two homologs of an Escherichia coli resistance-nodulation-cell division-type multidrug exporter gene, acrB, in putative operons, together with homologs of membrane fusion protein gene acrA and outer membrane channel gene tolC. MIC determination and accumulation assays with mutants with disruptions of one or more genes showed that one cluster, named xepCAB, pumped out multiple agents including rifampin, puromycin, and ethidi...

  18. Computational model for speed of efflux in liquids | Ikata | Journal of ...

    African Journals Online (AJOL)

    We have looked at the efflux of a viscous liquid from an orifice. Assuming the steady flow of a Newtonian fluid, a model for the energy loss due to viscous shearing stress is derived, and a first-order non-linear ordinary differential equation of second degree is obtained for the speed of efflux. Numerically, the equation is ...

  19. The Role of Adjunctive Therapies in Septic Shock by Gram Negative MDR/XDR Infections.

    Science.gov (United States)

    Busani, Stefano; Roat, Erika; Serafini, Giulia; Mantovani, Elena; Biagioni, Emanuela; Girardis, Massimo

    2017-01-01

    Patients with septic shock by multidrug resistant microorganisms (MDR) are a specific sepsis population with a high mortality risk. The exposure to an initial inappropriate empiric antibiotic therapy has been considered responsible for the increased mortality, although other factors such as immune-paralysis seem to play a pivotal role. Therefore, beyond conventional early antibiotic therapy and fluid resuscitation, this population may benefit from the use of alternative strategies aimed at supporting the immune system. In this review we present an overview of the relationship between MDR infections and immune response and focus on the rationale and the clinical data available on the possible adjunctive immunotherapies, including blood purification techniques and different pharmacological approaches.

  20. The Role of Adjunctive Therapies in Septic Shock by Gram Negative MDR/XDR Infections

    Directory of Open Access Journals (Sweden)

    Stefano Busani

    2017-01-01

    Full Text Available Patients with septic shock by multidrug resistant microorganisms (MDR are a specific sepsis population with a high mortality risk. The exposure to an initial inappropriate empiric antibiotic therapy has been considered responsible for the increased mortality, although other factors such as immune-paralysis seem to play a pivotal role. Therefore, beyond conventional early antibiotic therapy and fluid resuscitation, this population may benefit from the use of alternative strategies aimed at supporting the immune system. In this review we present an overview of the relationship between MDR infections and immune response and focus on the rationale and the clinical data available on the possible adjunctive immunotherapies, including blood purification techniques and different pharmacological approaches.

  1. Computer simulation and interpretation of 45Ca efflux profile patterns

    International Nuclear Information System (INIS)

    Borle, A.B.; Uchikawa, T.; Anderson, J.H.

    1982-01-01

    Stimulations or inhibitions by various agents of 45 Ca efflux from prelabeled cells or tissues display distinct and reproducible profile patterns when the results are plotted against time as fractional efflux ratios (FER). FER is the fractional efflux of 45 Ca from stimulated cells divided by the fractional efflux from a control unstimulated group. These profile patterns fall into three categories: peak patterns, exponential patterns, and mixed patterns. Each category can be positive (stimulation) or negative (inhibition). The interpretation of these profiles is difficult because 45 Ca efflux depends on three variables: the rate of calcium transport out of the cell, the specific activity of the cell compartment from which the calcium originates, and the concentration of free calcium in this compartment. A computer model based on data obtained by kinetic analyses of 45 Ca desaturation curves and consisting of two distinct intracellular pools was designed to follow the concentration of the traced substance ( 40 Ca), the tracer ( 45 Ca), and the specific activity of each compartment before, during, and after the stimulation or the inhibition of calcium fluxes at various pool boundaries. The computer model can reproduce all the FER profiles obtained experimentally and bring information which may be helpful to the interpretation of this type of data. Some predictions of the model were tested experimentally, and the results support the views that a peak pattern may reflect a sustained change in calcium transport across the plasma membrane, that an exponential pattern arises from calcium mobilization from an internal subcellular pool, and that a mixed pattern may be caused by a simultaneous change in calcium fluxes at both compartment boundaries

  2. A co-delivery nanosystem of chemotherapeutics and DNAzyme overcomes cancer drug resistance and metastasis

    Science.gov (United States)

    Sun, Shu-Pin; Liu, Ching-Ping; Huang, I.-Ping; Chu, Chia-Hui; Chung, Ming-Fang; Cheng, Shih-Hsun; Lin, Shu-Yi; Lo, Leu-Wei

    2017-12-01

    Multidrug resistance (MDR) constitutes a major problem in the management of cancer and cancer metastasized from primary-source tumor causes cancer-related deaths. Our new approach is the co-delivery of chemotherapy drugs with a transcription-factor-targeting genetic agent to simultaneously inhibit the growth and metastasis of cancer cells. C-Jun is a transcription factor that regulates multidrug resistance-associated protein 1 (MRP1) pump efflux transcription and tumor metastasis. In this work, we reported that mesoporous silica nanoparticles (MSNs) can be functionalized to co-deliver doxorubicin (Dox) and DNAzyme (Dz) to increase cancer cell killing in an additive fashion. The MSNs were sequentially conjugated with Dox into the MSNs’ nanochannels and Dz onto the MSNs’ outermost surface to target c-Jun as the Dox@MSN-Dz co-delivery system. The Dox-resistant PC-3 cells treated with Dox@MSN-Dz efficiently enhanced the intracellular Dox concentration due to the abrogation of Dox-induced MRP1 expression through the downregulation of c-Jun expression by Dz. Additionally, significant reductions in invasion and migration related to metastasis were also observed in cells treated with Dox@MSN-Dz. Therefore, our results contribute new insight to the treatment of MDR combined metastatic cancer cells, worthwhile for studying its potential for development in clinical translation.

  3. The importance of protoporphyrin IX efflux for ALA-PDT dosimetry

    International Nuclear Information System (INIS)

    Milanetto, M C; Imasato, H; Perussi, J R

    2009-01-01

    One of the major advances in PDT is the use of 5-aminolevulinic acid (ALA) to induce the production of an endogenous photosensitizer inside the cells using intracellular enzymatic pathways. ALA is the first intermediate in heme biosynthesis and a precursor of the protoporphyrin IX (PpIX). When activated by light, this efficient photosensitizer accumulated in the target cells can produce cytotoxicity. The aim of this study was to find the best conditions for cell killing using ALA to temporarily increase the concentration of PpIX in two cell lines. It was shown that a considerable efflux of synthesized PpIX occurs. Since this efflux is time-dependent, it is essential to know the optimum time for irradiation after ALA administration. So, the efflux of PpIX from the cells is an important parameter to be considered for ALA-PDT dosimetry

  4. Antibacterial activity of berberine-NorA pump inhibitor hybrids with a methylene ether linking group.

    Science.gov (United States)

    Samosorn, Siritron; Tanwirat, Bongkot; Muhamad, Nussara; Casadei, Gabriele; Tomkiewicz, Danuta; Lewis, Kim; Suksamrarn, Apichart; Prammananan, Therdsak; Gornall, Karina C; Beck, Jennifer L; Bremner, John B

    2009-06-01

    Conjugation of the NorA substrate berberine and the NorA inhibitor 5-nitro-2-phenyl-1H-indole via a methylene ether linking group gave the 13-substituted berberine-NorA inhibitor hybrid, 3. A series of simpler arylmethyl ether hybrid structures were also synthesized. The hybrid 3 showed excellent antibacterial activity (MIC Staphylococcus aureus, 1.7 microM), which was over 382-fold more active than the parent antibacterial berberine, against this bacterium. This compound was also shown to block the NorA efflux pump in S. aureus.

  5. Efflux of hydraulically lifted water from mycorrhizal fungal hyphae during imposed drought

    Science.gov (United States)

    Querejeta, José Ignacio; Allen, Michael F

    2008-01-01

    Apart from improving plant and soil water status during drought, it has been suggested that hydraulic lift (HL) could enhance plant nutrient capture through the flow of mineral nutrients directly from the soil to plant roots, or by maintaining the functioning of mycorrhizal fungi. We evaluated the extent to which the diel cycle of water availability created by HL covaries with the efflux of HL water from the tips of extramatrical (external) mycorrhizal hyphae, and the possible effects on biogeochemical processes. Phenotypic mycorrhizal fungal variables, such as total and live hyphal lengths, were positively correlated with HL efflux from hyphae, soil water potential (dawn), and plant response variables (foliar 15N). The efflux of HL water from hyphae was also correlated with bacterial abundance and soil enzyme activity (P), and the moistening of soil organic matter. Such findings indicate that the efflux of HL water from the external mycorrhizal mycelia may be a complementary explanation for plant nutrient acquisition and survival during drought. PMID:19704776

  6. Rapid Screening of MDR-TB in Cases of Extra Pulmonary Tuberculosis Using Geno Type MTBDRplus.

    Directory of Open Access Journals (Sweden)

    Richa Kumari

    Full Text Available Drug resistance in tuberculosis is a major public health challenge in developing countries. The limited data available on drug resistance in extra pulmonary tuberculosis stimulated us to design our study on anti-tuberculosis drug resistance pattern in cases of extra pulmonary tuberculosis in a tertiary referral hospital of North India. We performed Geno Type MTBDRplus assay in comparison with conventional drug susceptibility testing by proportion method to study the mutation patterns in rpoB, katG and inhA genes.A total of 510 extra pulmonary samples were included in this study. After the smear microscopy, all the specimens were subjected for culture on Lowenstein Jensen (LJ media. Phenotypic drug susceptibility testing (DST was performed on LJ media for all the MTB isolates and compared with the results of Geno Type MTBDRplus assay which was performed with the DNA isolated from the culture by conventional method.Of 510 specimens cultured, the total culture positivity obtained was 11.8% (60 encompassing 54 (10.6% Mycobacterium tuberculosis and 6 (1.2% non-tubercular mycobacteria (NTM. DST results by Geno Type MTBDRplus assay and solid culture methods were compared in 51 MTB isolates excluding the two Rif indeterminate and one invalid test. Geno Type MTBDRplus accurately identified 13 of 14 rifampicin-resistant strains, 14 of 15 isoniazid-resistant strains and 13 of 14 as multi drug resistant tuberculosis (MDR-TB in comparison with conventional method. Sensitivity and specificity were 92.86% and 97.30% respectively for detection of RIF resistance, 93.33% and 94.44% respectively for detection of INH resistance, 92.86% and 97.30% respectively for detection of MDR-TB, while the overall concordance of Geno Type MTBDRplus assay with conventional DST was 94.11%. The turn-around time for performing Geno Type MTBDRplus assay test was 48 hours.The problem of MDR in extra pulmonary tuberculosis (EPTB cannot be overlooked and due attention on patients

  7. Effects of extracellular pH on UV-induced K+ efflux from cultured rose cells

    International Nuclear Information System (INIS)

    Huerta, A.J.; Murphy, T.M.

    1989-01-01

    Ultraviolet (UV) light causes a specific leakage of K + from cultured rose cells (Rosa damascena). During K + efflux, there is also an increase in extracellular HCO 3 - and acidification of the cell interior. We hypothesized that the HCO 3 - originated from intracellular hydration of respiratory CO 2 and served as a charge balancing mechanism during K + efflux, the K + and HCO 3 - being co transported out of the cell through specific channels. An alternative hypothesis which would yield similar results would be the counter transport of K + and H + . To test these hypotheses, we studied the effect of a range of external pH values (pH 5-9), regulated by various methods (pH-stat, 100 millimolar Tris-Mes buffer, or CO 2 partial pressure), on the UV-induced K + efflux. Both UV-C (less than 290 nanometers) and UV-B (290-310 nanometers) induced K + efflux with a minimum at about pH 6 to 7, and greater efflux at pH values of 5, 8, and 9. Since pH values of 8 and 9 increased instead of reduced the efflux of K + , these data are not consistent with notion that the efflux of K + is dependent on an influx of H + , a process that would be sensitive to external H + concentration. We suggest that the effect of pH on K + efflux may be mediated through the titration of specific K + -transporting proteins or channels in the plasma membrane. Since we could not detect the presence of carbonic anhydrase activity in cell extracts, we could not use the location of this enzyme to aid in our interpretation regarding the site of hydration of CO 2 . (author)

  8. Vertical profile of branch CO2 efflux in a Norway spruce tree: a case study

    Science.gov (United States)

    Acosta, M.; Pavelka, M.

    2012-04-01

    Despite woody-tissue CO2 effluxes having been recognized as an important component of forest carbon budget due to the fraction of assimilates used and the dramatic increase in woody with stand development, there is limited research to determine the CO2 efflux vertical variability of woody-tissue components. For a better understanding and quantification of branch woody-tissue CO2 efflux in forest ecosystems, it is necessary to identify the environmental factors influencing it and the role of the branch distribution within the canopy. The proper assessment of this forest component will improve the knowledge of the ratio between ecosystem respiration and gross primary production at forest ecosystem. In order to achieve this goal, branch CO2 efflux of Norway spruce tree was measured in ten branches at five different whorls during the growing season 2004 (from June till October) in campaigns of 3-4 times per month at the Beskydy Mts., the Czech Republic, using a portable infrared gas analyzer operating as a closed system. Branch woody tissue temperature was measured continuously in ten minutes intervals for each sample position during the whole experiment period. On the basis of relation between CO2 efflux rate and woody tissue temperature a value of Q10 and normalized CO2 efflux rate (E10 - CO2 efflux rate at 10° C) were calculated for each sampled position. Estimated Q10 values ranged from 2.12 to 2.89 and E10 ranged from 0.41 to 1.19 ?molCO2m-2 s-1. Differences in branch CO2 efflux were found between orientations; East side branches presented higher efflux rate than west side branches. The highest branch CO2 efflux rate values were measured in August and the lowest in October, which were connected with woody tissue temperature and ontogenetic processes during these periods. Branch CO2 efflux was significantly and positively correlated with branch position within canopy and woody tissue temperature. Branches from the upper whorls showed higher respiration activity

  9. Screening of Antibacterial MDR derived from Sponge Associated Fungus of Riung Water, Nusa Tenggara Timur

    Directory of Open Access Journals (Sweden)

    Khoeruddin Wittriansyah

    2016-12-01

    Full Text Available Marine sponge-associated fungi are the sources of bioactive compounds with various pharmacologicals potency. This study aimed to isolate the sponge-associated fungi as the producer of the MDR anti-bacterial compounds.  The associated fungi were isolated from the sponges collected from Riung water, Nusa Tenggara Timur. Five of the best isolates were cultured on MEA to obtain the methanolic extract for further studies.  The antagonistic test was conducted using overlay method towards the MDR Staphylococcus aureus and Escherichia coli. A total of 33 fungi were isolated from 19 sponge specimens. The antagonistic test showed that 19 isolates were active against both S. aureus and E. coli, and 13 of them were merely active against one of the bacteria. However, only five isolates have strong activity against one or both of the bacteria.  The KN-15-3 had the strongest activity against S. aureus (18.75±0.777mm and E. coli (15.10±0.141mm at the concentration of 400 μg.disc-1 so it can be developed further as a source of drug candicate.   Keywords: Fungi symbiont, Sponges, MDR Antibacterial, Staphylococcus aureus,  Escherichia coli.

  10. TTFields alone and in combination with chemotherapeutic agents effectively reduce the viability of MDR cell sub-lines that over-express ABC transporters

    International Nuclear Information System (INIS)

    Schneiderman, Rosa S; Shmueli, Esther; Kirson, Eilon D; Palti, Yoram

    2010-01-01

    Exposure of cancer cells to chemotherapeutic agents may result in reduced sensitivity to structurally unrelated agents, a phenomenon known as multidrug resistance, MDR. The purpose of this study is to investigate cell growth inhibition of wild type and the corresponding MDR cells by Tumor Treating Fields - TTFields, a new cancer treatment modality that is free of systemic toxicity. The TTFields were applied alone and in combination with paclitaxel and doxorubicin. Three pairs of wild type/MDR cell lines, having resistivity resulting from over-expression of ABC transporters, were studied: a clonal derivative (C11) of parental Chinese hamster ovary AA8 cells and their emetine-resistant sub-line Emt R1 ; human breast cancer cells MCF-7 and their mitoxantrone-resistant sub lines MCF-7/Mx and human breast cancer cells MDA-MB-231 and their doxorubicin resistant MDA-MB-231/Dox cells. TTFields were applied for 72 hours with and without the chemotherapeutic agents. The numbers of viable cells in the treated cultures and the untreated control groups were determined using the XTT assay. Student t-test was applied to asses the significance of the differences between results obtained for each of the three cell pairs. TTFields caused a similar reduction in the number of viable cells of wild type and MDR cells. Treatments by TTFields/drug combinations resulted in a similar increased reduction in cell survival of wild type and MDR cells. TTFields had no effect on intracellular doxorubicin accumulation in both wild type and MDR cells. The results indicate that TTFields alone and in combination with paclitaxel and doxorubicin effectively reduce the viability of both wild type and MDR cell sub-lines and thus can potentially be used as an effective treatment of drug resistant tumors

  11. Relationship between insulin release and 65zinc efflux from rat pancreatic islets maintained in tissue culture

    International Nuclear Information System (INIS)

    Formby, B.; Schmid-Formby, F.; Grodsky, G.M.

    1984-01-01

    In short-term batch-incubation or perfusion experiments, we studied insulin release and associated 65 Zn efflux from rat pancreatic islets loaded with 65 Zn by 24-h tissue culture in low-glucose medium. The fractional basal insulin release and 65 Zn efflux were 0.4% and 3% of total content/h/islet, respectively. Thus, basal 65 Zn efflux was much greater than that to be accounted for if zinc was released proportionally with insulin release only; extragranular zinc flux was suggested. Two millimolar glucose, with or without 1 mM 3-isobutyl-1-methylxanthine (IBMX), affected neither insulin release nor associated 65 Zn efflux. Twenty-five millimolar glucose produced a significant threefold increase in insulin release above baseline, but somewhat decreased 65 Zn efflux at marginal significance. Glucose (25 mM) plus 1 mM IBMX provoked a high increase in insulin release and an associated 30% increase in fractional 65 Zn efflux over basal. Calculations based on previous estimations of 65 Zn distribution and equilibrium with islet zinc indicated that molar zinc efflux was more than sufficient to account for a 2-zinc-insulin hexamer. L-Leucine (2 or 20 mM) plus 1 mM IBMX caused far greater 65 Zn efflux for the amount of insulin released, indicating additional 65 Zn mobilization not directly related to insulin secretion. To evaluate 65 Zn efflux during inhibited insulin secretion, batch incubations were performed in 100% D 2 O or at 27 degrees C, conditions that inhibited insulin release stimulated by high glucose plus IBMX. These agents decreased the 65 Zn efflux far below the basal value (35% and 50%, respectively) and greater than could be accounted for by the attendent inhibition of insulin secretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Calibration and analysis of soil carbon efflux estimates with closed chambers at Forsmark and Laxemar

    International Nuclear Information System (INIS)

    Tagesson, Torbern

    2006-08-01

    The Forsmark and the Laxemar investigation areas are examined by the Swedish Nuclear Fuel and Waste Management Co. for a possible construction of a deep repository for nuclear waste. In the case of a future leakage of waste, the radioactive isotopes could end up in the ecosystems above the repository. The fate of the radionuclides and their possible radiological impacts are then highly determined by ecosystem carbon cycling. An important part of the carbon cycling is the soil carbon effluxes, and in the investigation areas soil carbon effluxes have been examined with the closed chamber technique. This paper is divided into two parts. Firstly, there were problems with the equipment measuring the soil carbon dioxide efflux, and the first part is a description of the problem, how it was corrected and its possible causes. The second part is a manual in how to analyse data and calculate annual estimates of soil carbon efflux. The field measurement by the EGM-4 is just an occasional estimate of the soil carbon efflux at a certain spot and at a certain point in time. To make an interpretation of the measurements, it is essential to analyse the data and to temporally extrapolate them. It is necessary to prepare the raw data for the analysis. The problems with the EGM-4 doing the measurements at the Forsmark and the Laxemar investigation area makes it necessary to correct the data taken up by this EGM-4. The data should also be separated into soil respiration and gross primary production (GPP). Soil carbon dioxide effluxes should be changed to soil carbon effluxes. Soil carbon effluxes are strongly controlled by abiotic factors; temperature is the main factor to influence soil respiration and photosynthetically active radiation (PAR) and air temperature are the main factors to influence GPP. Regression with soil respiration against temperature and with GPP against PAR or temperature can therefore be done. These equations can then be used on datasets with temperature and PAR

  13. Calibration and analysis of soil carbon efflux estimates with closed chambers at Forsmark and Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern (Dept. of Physical Geography and Ecosystem Analysis, Lund Univ., Lund (SE))

    2006-08-15

    The Forsmark and the Laxemar investigation areas are examined by the Swedish Nuclear Fuel and Waste Management Co. for a possible construction of a deep repository for nuclear waste. In the case of a future leakage of waste, the radioactive isotopes could end up in the ecosystems above the repository. The fate of the radionuclides and their possible radiological impacts are then highly determined by ecosystem carbon cycling. An important part of the carbon cycling is the soil carbon effluxes, and in the investigation areas soil carbon effluxes have been examined with the closed chamber technique. This paper is divided into two parts. Firstly, there were problems with the equipment measuring the soil carbon dioxide efflux, and the first part is a description of the problem, how it was corrected and its possible causes. The second part is a manual in how to analyse data and calculate annual estimates of soil carbon efflux. The field measurement by the EGM-4 is just an occasional estimate of the soil carbon efflux at a certain spot and at a certain point in time. To make an interpretation of the measurements, it is essential to analyse the data and to temporally extrapolate them. It is necessary to prepare the raw data for the analysis. The problems with the EGM-4 doing the measurements at the Forsmark and the Laxemar investigation area makes it necessary to correct the data taken up by this EGM-4. The data should also be separated into soil respiration and gross primary production (GPP). Soil carbon dioxide effluxes should be changed to soil carbon effluxes. Soil carbon effluxes are strongly controlled by abiotic factors; temperature is the main factor to influence soil respiration and photosynthetically active radiation (PAR) and air temperature are the main factors to influence GPP. Regression with soil respiration against temperature and with GPP against PAR or temperature can therefore be done. These equations can then be used on datasets with temperature and PAR

  14. Switch loop flexibility affects substrate transport of the AcrB efflux pump

    International Nuclear Information System (INIS)

    Muller, Reinke T.; Travers, Timothy; Cha, Hi-jea; Phillips, Joshua L.

    2017-01-01

    The functionally important switch-loop of the trimeric multidrug transporter AcrB separates the access and deep drug binding pockets in every protomer. This loop, comprising 11 amino acid residues, has been shown to be crucial for substrate transport, as drugs have to travel past the loop to reach the deep binding pocket and from there are transported outside the cell via the connected AcrA and TolC channels. It contains four symmetrically arranged glycine residues suggesting that flexibility is a key feature for pump activity. Upon combinatorial substitution of these glycine residues to proline, functional and structural asymmetry was observed. Proline substitutions on the PC1 proximal side completely abolished transport and reduced backbone flexibility of the switch loop, which adopted a conformation restricting the pathway towards the deep binding pocket. Here, two phenylalanine residues located adjacent to the substitution sensitive glycine residues play a role in blocking the pathway upon rigidification of the loop, since the removal of the phenyl rings from the rigid loop restores drug transport activity.

  15. Cholesterol efflux is differentially regulated in neurons and astrocytes: implications for brain cholesterol homeostasis

    Science.gov (United States)

    Chen, Jing; Zhang, Xiaolu; Kusumo, Handojo; Costa, Lucio G.; Guizzetti, Marina

    2012-01-01

    Disruption of cholesterol homeostasis in the central nervous system (CNS) has been associated with neurological, neurodegenerative, and neurodevelopmental disorders. The CNS is a closed system with regard to cholesterol homeostasis, as cholesterol-delivering lipoproteins from the periphery cannot pass the blood-brain-barrier and enter the brain. Different cell types in the brain have different functions in the regulation of cholesterol homeostasis, with astrocytes producing and releasing apolipoprotein E and lipoproteins, and neurons metabolizing cholesterol to 24(S)-hydroxycholesterol. We present evidence that astrocytes and neurons adopt different mechanisms also in regulating cholesterol efflux. We found that in astrocytes cholesterol efflux is induced by both lipid-free apolipoproteins and lipoproteins, while cholesterol removal from neurons is triggered only by lipoproteins. The main pathway by which apolipoproteins induce cholesterol efflux is through ABCA1. By upregulating ABCA1 levels and by inhibiting its activity and silencing its expression, we show that ABCA1 is involved in cholesterol efflux from astrocytes but not from neurons. Furthermore, our results suggest that ABCG1 is involved in cholesterol efflux to apolipoproteins and lipoproteins from astrocytes but not from neurons, while ABCG4, whose expression is much higher in neurons than astrocytes, is involved in cholesterol efflux from neurons but not astrocytes. These results indicate that different mechanisms regulate cholesterol efflux from neurons and astrocytes, reflecting the different roles that these cell types play in brain cholesterol homeostasis. These results are important in understanding cellular targets of therapeutic drugs under development for the treatments of conditions associated with altered cholesterol homeostasis in the CNS. PMID:23010475

  16. Receptor kinase-mediated control of primary active proton pumping at the plasma membrane

    DEFF Research Database (Denmark)

    Fuglsang, Anja Thoe; Kristensen, Astrid; Cuin, Tracey A.

    2014-01-01

    Acidification of the cell wall space outside the plasma membrane is required for plant growth and is the result of proton extrusion by the plasma membrane-localized H+-ATPases. Here we show that the major plasma membrane proton pumps in Arabidopsis, AHA1 and AHA2, interact directly in vitro...... and in planta with PSY1R, a receptor kinase of the plasma membrane that serves as a receptor for the peptide growth hormone PSY1. The intracellular protein kinase domain of PSY1R phosphorylates AHA2/AHA1 at Thr-881, situated in the autoinhibitory region I of the C-terminal domain. When expressed in a yeast...... heterologous expression system, the introduction of a negative charge at this position caused pump activation. Application of PSY1 to plant seedlings induced rapid in planta phosphorylation at Thr-881, concomitant with an instantaneous increase in proton efflux from roots. The direct interaction between AHA2...

  17. ANTIBACTERIAL ACTIVITY OF DRACONTOMELON DAO EXTRACTS ON METHICILLIN-RESISTANT S. AUREUS (MRSA) AND E. COLI MULTIPLE DRUG RESISTANCE (MDR).

    Science.gov (United States)

    Yuniati, Yuniati; Hasanah, Nurul; Ismail, Sjarif; Anitasari, Silvia; Paramita, Swandari

    2018-01-01

    Staphylococcus aureus , methicillin-resistant and Escherichia coli , multidrug-resistant included in the list of antibiotic-resistant priority pathogens from WHO. As multidrug-resistant bacteria problem is increasing, it is necessary to probe new sources for identifying antimicrobial compounds. Medicinal plants represent a rich source of antimicrobial agents. One of the potential plants for further examined as antibacterial is Dracontomelon dao (Blanco) Merr. & Rolfe. The present study designed to find the antibacterial activity of D. dao stem bark extracts on Methicillin-resistant S. aureus (MRSA) and E. coli Multiple Drug Resistance (MDR), followed by determined secondary metabolites with antibacterial activity and determined the value of MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration). D. dao stem bark extracted using 60% ethanol. Disc diffusion test methods used to find the antibacterial activity, following by microdilution methods to find the value of MIC and MBC. Secondary metabolites with antibacterial activity determined by bioautography using TLC (thin layer chromatography) methods. D. dao stem bark extracts are sensitive to MSSA, MRSA and E.coli MDR bacteria. The inhibition zone is 16.0 mm in MSSA, 11.7 mm in MRSA and 10.7 mm in E. coli MDR. The entire MBC/MIC ratios for MSSA, MRSA and E.coli MDR is lower than 4. The ratio showed bactericidal effects of D. dao stem bark extracts. In TLC results, colorless bands found to be secondary metabolites with antibacterial activity. D. dao stem bark extracts are potential to develop as antibacterial agent especially against MRSA and E. coli MDR strain.

  18. P-glycoprotein Inhibition by the Agricultural Pesticide Propiconazole and Its Hydroxylated Metabolites: Implications for Pesticide-Drug Interactions.

    Science.gov (United States)

    The human efflux transporter P-glycoprotein (P-gp; MDR1) functions an important cellular defense system against a variety of xenobiotics; however, little information exists on whether environmental chemicals interact with P-gp. Conazoles provide a unique challenge to exposure ass...

  19. Distribution and physiology of ABC-Type transporters contributing to multidrug resistance in bacteria

    NARCIS (Netherlands)

    Lubelski, Jacek; Konings, Wil N.; Driessen, Arnold J. M.

    Membrane proteins responsible for the active efflux of structurally and functionally unrelated drugs were first characterized in higher eukalyotes. To date, a vast number of transporters contributing to multidrug resistance (MDR transporters) have been reported for a large variety of organisms.

  20. Alcohols are inhibitors of Saccharomyces cerevisiae multidrug-resistance pumps Pdr5p and Snq2p.

    Science.gov (United States)

    Gášková, Dana; Plášek, Jaromír; Zahumenský, Jakub; Benešová, Ivana; Buriánková, Luboslava; Sigler, Karel

    2013-12-01

    The effect of alcohols on cell membrane proteins has originally been assumed to be mediated by their primary action on membrane lipid matrix. Many studies carried out later on both animal and yeast cells have revealed that ethanol and other alcohols inhibit the functions of various membrane channels, receptors and solute transport proteins, and a direct interaction of alcohols with these membrane proteins has been proposed. Using our fluorescence diS-C3 (3) diagnostic assay for multidrug-resistance pump inhibitors in a set of isogenic yeast Pdr5p and Snq2p mutants, we found that n-alcohols (from ethanol to hexanol) variously affect the activity of both pumps. Beginning with propanol, these alcohols have an inhibitory effect that increases with increasing length of the alcohol acyl chain. While ethanol does not exert any inhibitory effect at any of the concentration used (up to 3%), hexanol exerts a strong inhibition at 0.1%. The alcohol-induced inhibition of MDR pumps was detected even in cells whose membrane functional and structural integrity were not compromised. This supports a notion that the inhibitory action does not necessarily involve only changes in the lipid matrix of the membrane but may entail a direct interaction of the alcohols with the pump proteins. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Soil CO2 efflux of a larch forest in northern Japan

    Directory of Open Access Journals (Sweden)

    Y. Fujinuma

    2010-11-01

    Full Text Available We had continuously measured soil CO2 efflux (Rs in a larch forest in northern Japan at hourly intervals for the snow-free period in 2003 with an automated chamber system and partitioned Rs into heterotrophic respiration (Rh and autotrophic respiration (Rr by using the trench method. In addition, we applied the soil CO2 concentration gradients method to continuously measure soil CO2 profiles under snowpack in the snowy period and to partition Rs into topsoil (Oa and A horizons CO2 efflux (Ft with a depth of 0.13 m and sub-soil (C horizon CO2 efflux (Fc. We found that soil CO2 effluxes were strongly affected by the seasonal variation of soil temperature but weakly correlated with soil moisture, probably because the volumetric soil moisture (30–40% at 95% confidence interval was within a plateau region for root and microbial activities. The soil CO2 effluxes changed seasonally in parallel with soil temperature in topsoil with the peak in late summer. On the other hand, the contribution of Rr to Rs was the largest at about 50% in early summer, when canopy photosynthesis and plant growth were more active. The temperature sensitivity (Q10 of Rr peaked in June. Under snowpack, Rs was stable until mid-March and then gradually increased with snow melting. Rs summed up to 79 gC m−2 during the snowy season for 4 months. The annual Rs was determined at 934 gC m−2 y−1 in 2003, which accounted for 63% of ecosystem respiration. The annual contributions of Rh and Rs to Rs were 57% and 43%, respectively. Based on the gradient approach, Rs was partitioned vertically into litter (Oi and Oe horizons with a depth of 0.01–0.02 m, topsoil and sub-soil respirations with proportions of 6, 72 and 22%, respectively, on an annual basis. The vertical distribution of CO2 efflux was consistent with those of soil carbon and root biomass.

  2. Influence of multidrug resistance on 18F-FCH cellular uptake in a glioblastoma model

    International Nuclear Information System (INIS)

    Vanpouille, Claire; Jeune, Nathalie le; Clotagatide, Anthony; Dubois, Francis; Kryza, David; Janier, Marc; Perek, Nathalie

    2009-01-01

    Multidrug resistance, aggressiveness and accelerated choline metabolism are hallmarks of malignancy and have motivated the development of new PET tracers like 18 F-FCH, an analogue of choline. Our aim was to study the relationship of multidrug resistance of cultured glioma cell lines and 18 F-FCH tracer uptake. We used an in vitro multidrug-resistant (MDR) glioma model composed of sensitive parental U87MG and derived resistant cells U87MG-CIS and U87MG-DOX. Aggressiveness, choline metabolism and transport were studied, particularly the expression of choline kinase (CK) and high-affinity choline transporter (CHT1). FCH transport studies were assessed in our glioblastoma model. As expected, the resistant cell lines express P-glycoprotein (Pgp), multidrug resistance-associated protein isoform 1 (MRP1) and elevated glutathione (GSH) content and are also more mobile and more invasive than the sensitive U87MG cells. Our results show an overexpression of CK and CHT1 in the resistant cell lines compared to the sensitive cell lines. We found an increased uptake of FCH (in % of uptake per 200,000 cells) in the resistant cells compared to the sensitive ones (U87MG: 0.89±0.14; U87MG-CIS: 1.27±0.18; U87MG-DOX: 1.33±0.13) in line with accelerated choline metabolism and aggressive phenotype. FCH uptake is not influenced by the two ATP-dependant efflux pumps: Pgp and MRP1. FCH would be an interesting probe for glioma imaging which would not be effluxed from the resistant cells by the classic MDR ABC transporters. Our results clearly show that FCH uptake reflects accelerated choline metabolism and is related to tumour aggressiveness and drug resistance. (orig.)

  3. Glutamate Efflux at the Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Cederberg-Helms, Hans Christian; Uhd-Nielsen, Carsten; Brodin, Birger

    2014-01-01

    is well known, however endothelial cells may also play an important role through mediating brain-to-blood L-glutamate efflux. Expression of excitatory amino acid transporters has been demonstrated in brain endothelial cells of bovine, human, murine, rat and porcine origin. These can account for high...... affinity concentrative uptake of L-glutamate from the brain interstitial fluid into the capillary endothelial cells. The mechanisms in between L-glutamate uptake in the endothelial cells and L-glutamate appearing in the blood are still unclear and may involve a luminal transporter for L......-glutamate, metabolism of L-glutamate and transport of metabolites or a combination of the two. However, both in vitro and in vivo studies have demonstrated blood-to-brain transport of L-glutamate, at least during pathological events. This review summarizes the current knowledge on the brain-to-blood L-glutamate efflux...

  4. Hydrodynamic Controls on Carbon Dioxide Efflux from Inland Waters

    Science.gov (United States)

    Long, H. E.; Waldron, S.; Hoey, T.; Newton, J.; Quemin, S.

    2013-12-01

    Intensive research has been undertaken on carbon dioxide efflux from lakes, estuaries and oceans, but much less attention has been given to rivers and streams, especially lower order streams. River systems are often over-saturated with carbon dioxide and so tend to act as sources of carbon dioxide to the atmosphere. It has been thought that rivers act as pipes carrying this terrestrial carbon to the oceans. However, recent studies have shown that a significant amount of the carbon is reprocessed within the system in a series of transformations and losses. Fluvial evasion of carbon dioxide is now recognised to be a significant component of carbon cycles, however the factors controlling carbon dioxide efflux and its magnitude remain poorly understood and quantified. This research aims to quantify, and better understand the controls on, freshwater carbon dioxide evasion. Data are presented here from field measurements that commenced in Sept 2013 in two contrasting Scottish rivers: the River Kelvin which has a large (335 km.sq) part-urban catchment with predominantly non-peat soils and Drumtee Water, a small (9.6 km.sq) rural catchment of peat soils and agricultural land. Using a floating chamber with the headspace connected to an infrared gas analyser to measure changes in carbon dioxide concentration, efflux rates from 0.22 - 47.4 μmol CO2/m.sq/sec were measured, these close to the middle of the range of previously reported values. At one site on the River Kelvin in May 2013 an influx of -0.61 - -3.53 μmol CO2/m.sq/sec was recorded. Whereas previous research finds carbon dioxide efflux to increase with decreasing river size and a more organic-rich soil catchment, here the controls on carbon dioxide evasion are similar across the contrasting catchments. Carbon dioxide evasion shows seasonality, with maximum fluxes in the summer months being up to twice as high as the winter maxima. Linear regression demonstrates that evasion increases with increased flow velocity

  5. Is the Ca2+-ATPase from sarcoplasmic reticulum also a heat pump?

    Science.gov (United States)

    Kjelstrup, Signe; de Meis, Leopoldo; Bedeaux, Dick; Simon, Jean-Marc

    2008-11-01

    We calculate, using the first law of thermodynamics, the membrane heat fluxes during active transport of Ca(2+) in the Ca(2+)-ATPase in leaky and intact vesicles, during ATP hydrolysis or synthesis conditions. The results show that the vesicle interior may cool down during hydrolysis and Ca(2+)-uptake, and heat up during ATP synthesis and Ca(2+)-efflux. The heat flux varies with the SERCA isoform. Electroneutral processes and rapid equilibration of water were assumed. The results are consistent with the second law of thermodynamics for the overall processes. The expression for the heat flux and experimental data, show that important contributions come from the enthalpy of hydrolysis for the medium in question, and from proton transport between the vesicle interior and exterior. The analysis give quantitative support to earlier proposals that certain, but not all, Ca(2+)-ATPases, not only act as Ca(2+)-pumps, but also as heat pumps. It can thus help explain why SERCA 1 type enzymes dominate in tissues where thermal regulation is important, while SERCA 2 type enzymes, with their lower activity and better ability to use the energy from the reaction to pump ions, dominate in tissues where this is not an issue.

  6. Altered agonist-activated 86Rb+ efflux from arteries in canine renal hypertension

    International Nuclear Information System (INIS)

    Cox, R.H.; Bagshaw, R.J.

    1989-01-01

    Basal rate constants for 86 Rb+ efflux from renal arteries of renal hypertensive dogs were lower than those of control animals whereas no differences were found for coronary arteries. Norepinephrine produced parallel increases in efflux rate constants for hypertensive and control renal arteries, but serotonin produced smaller responses in hypertensive compared to control coronary arteries

  7. A multichannel automated chamber system for continuous measurement of forest soil CO2 efflux

    International Nuclear Information System (INIS)

    Liang, N.; Inoue, G.; Fujinuma, Y.

    2003-01-01

    Development of a fast-response multi-chamber system for measuring soil-surface carbon dioxide efflux is described. The sixteen-chamber automated system continuously monitors surface carbon dioxide efflux at different locations within a forest ecosystem using a single infrared gas analyzer that successively measures gas samples from each of the sixteen chambers. The chambers have lids that open and close automatically, and are connected in parallel to the single carbon dioxide analyzer which is equipped with a sixteen-channel gas sampler. Air is withdrawn continuously from the inlets and outlets of each chamber and fed sequentially to the gas analyzer. Using this instrument, surface carbon dioxide efflux was measured in a 40-year old pine forest during a three-month period (February to May) in 2001. Results showed a steady increase in mean carbon dioxide efflux during the period. A statistically significant correlation between soil-surface carbon dioxide efflux and surface temperature was also established. Spatial variation of carbon dioxide efflux was found to be higher in the non-growing season than in the growing season. It was concluded that the multi-channel automated chamber system can provide large amounts of high quality data on soil carbon dioxide efflux over a large surface area and simultaneously evaluate both spatial and temporal variation. The system uses a relatively small amount of power (70 W maximum) which can be further reduced (to 15 W) by minimizing the pressure difference between inside and outside the chamber. The system requires no maintenance other than the calibration of the gas analyzer and measurement of the flow rate through the chambers. 34 refs., 8 figs

  8. Pharmacokinetic compatibility of ginsenosides and Schisandra Lignans in Shengmai-san: from the perspective of p-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Yan Liang

    Full Text Available Phytochemical-mediated alterations in P-glycoprotein (P-gp activity may result in herb-drug interactions by altering drug pharmacokinetics. Shengmai-san, a traditional Chinese herbal medicine composed by Panax Ginseng, Ophiopogon Japonicus, and Schisandra Chinensis, is routinely being used for treating various coronary heart diseases. In our previous studies, Schisandra Lignans Extract (SLE was proved as a strong P-gp inhibitor, and herein, the compatibility of Shengmai-san was studied by investigating the influence of SLE on the pharmacokinetics of the ginsenosides from the perspective of P-gp.Pharmacokinetic experiments were firstly performed based on in vitro uptake, efflux and transport experiments in Caco-2, LLC-PK1 wild-type and MDR1-overexpressing L-MDR1 cells. During the whole experiment, digoxin, a classical P-gp substrate, was used as a positive control drug to verify the cells used are the valid models. Meanwhile, the effects of SLE on the pharmacokinetics of ginsenosides were further investigated in rats after single-dose and multi-dose of SLE.The efflux ratios of ginsenoside Rb2, Rc, Rg2, Rg3, Rd and Rb1 were found more than 3.5 in L-MDR1 cells and can be decreased significantly by verapamil (a classical P-gp inhibitor. Contrarily, the efflux ratios of other ginsenosides (Rh1, F1, Re, and Rg1 were lower than 2.0 and not affected by verapamil. Then, the effects of SLE on the uptake and transport of ginsenosides were investigated, and SLE was found can significantly enhance the uptake and inhibit the efflux ratio of ginsenoside Rb2, Rc, Rg2, Rg3, Rd and Rb1 in Caco-2 and L-MDR1 cells. Besides, In vivo experiments showed that single-dose and multi-dose of SLE at 500 mg/kg could increase the area under the plasma concentration time curve of Rb2, Rc and Rd significantly without affecting terminal elimination half-time. In conclusion, SLE could enhance the exposure of ginsenosides Rb2, Rc, Rg2, Rg3, Rd and Rb1 significantly.

  9. Membrane fusion proteins of type I secretion system and tripartite efflux pumps share a binding motif for TolC in gram-negative bacteria.

    Directory of Open Access Journals (Sweden)

    Minho Lee

    Full Text Available The Hly translocator complex of Escherichia coli catalyzes type I secretion of the toxin hemolysin A (HlyA. In this complex, HlyB is an inner membrane ABC (ATP Binding Cassette-type transporter, TolC is an outer membrane channel protein, and HlyD is a periplasmic adaptor anchored in the inner membrane that bridges HlyB to TolC. This tripartite organization is reminiscent of that of drug efflux systems such as AcrA-AcrB-TolC and MacA-MacB-TolC of E. coli. We have previously shown the crucial role of conserved residues located at the hairpin tip region of AcrA and MacA adaptors during assembly of their cognate systems. In this study, we investigated the role of the putative tip region of HlyD using HlyD mutants with single amino acid substitutions at the conserved positions. In vivo and in vitro data show that all mutations abolished HlyD binding to TolC and resulted in the absence of HlyA secretion. Together, our results suggest that, similarly to AcrA and MacA, HlyD interacts with TolC in a tip-to-tip manner. A general model in which these conserved interactions induce opening of TolC during drug efflux and type I secretion is discussed.

  10. In vitro antibacterial activity of crude extracts of 9 selected medicinal plants against UTI causing MDR bacteria

    Directory of Open Access Journals (Sweden)

    Monali P. Mishra

    2017-01-01

    Full Text Available Urinary tract infection (UTI has become a more grievous problem today, due to multidrug resistance of infecting Gram-positive (GP and Gram-negative (GN bacteria, sometimes even with multiple infections. This study examines effectivity of 9 tropical flowering plants (Anogeissus acuminata, Azadirachta indica, Bauhinia variegata, Boerhaavia diffusa, Punica granatum, Soymida febrifuga, Terminalia chebula, Tinospora cordifolia and Tribulus terrestris for possible use as source of antimicrobials for multidrug resistant (MDR bacteria, along with main-stream antibiotics. Pathogenic bacteria were isolated from urine samples of patients attending and admitted in the hospital. Antibiograms of 11 isolated bacteria (GPs, Enterococcus faecalis and Staphylococcus aureus; and GNs, Acinetobacter baumannii, Citrobacter freundii, Enterobacter aerogenes, Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Proteus mirabilis, Proteus vulgaris and Pseudomonas aeruginosa were ascertained by the disc-diffusion method, and antibacterial effectivity of plant extracts was monitored by the agar-well diffusion method. Isolated bacteria were floridly MDR to most antibiotics of the day. Methanol extracts of 9 plants were used, and extracts of 3 plants, A. acuminata, P. granatum and S. febrifuga at least caused 25–29 mm as the maximum size of zone of inhibition on bacterial lawns. Minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC values of methanol extracts of 9 plants were recorded. The methanol extract of A. acuminata had 0.29 mg/ml as the lowest MIC value and 0.67 mg/ml as the lowest MBC value, against MDR S. aureus, signifying effectivity; but, it had the highest MIC value of 3.41 mg/ml. and the highest MBC value of 4.27 mg/ml for most other MDR bacteria including E. coli. Qualitative phytochemical analysis was done for these 9 plants and information on leading phytochemicals was presented retrieved from PubChem database. Thus

  11. Measurements of low energy neutral hydrogen efflux during ICRF heating

    International Nuclear Information System (INIS)

    Cohen, S.A.; Ruzic, D.; Voss, D.E.

    1984-09-01

    Using the Low Energy Neutral Atom Spectrometer, measurements were made of the H 0 and D 0 efflux from PLT during ion cyclotron heating experiments. The application of rf power at frequencies appropriate to fundamental and 2nd-harmonic heating results in a rapid, toroidally uniform rise in the charge-exchange efflux at a rate of about 10 15 cm -2 s -1 MW -1 . This flux increase is larger at lower plasma currents. The cause of this flux and its impact on plasma behavior are discussed

  12. Fitting the elementary rate constants of the P-gp transporter network in the hMDR1-MDCK confluent cell monolayer using a particle swarm algorithm.

    Directory of Open Access Journals (Sweden)

    Deep Agnani

    Full Text Available P-glycoprotein, a human multidrug resistance transporter, has been extensively studied due to its importance to human health and disease. In order to understand transport kinetics via P-gp, confluent cell monolayers overexpressing P-gp are widely used. The purpose of this study is to obtain the mass action elementary rate constants for P-gp's transport and to functionally characterize members of P-gp's network, i.e., other transporters that transport P-gp substrates in hMDR1-MDCKII confluent cell monolayers and are essential to the net substrate flux. Transport of a range of concentrations of amprenavir, loperamide, quinidine and digoxin across the confluent monolayer of cells was measured in both directions, apical to basolateral and basolateral to apical. We developed a global optimization algorithm using the Particle Swarm method that can simultaneously fit all datasets to yield accurate and exhaustive fits of these elementary rate constants. The statistical sensitivity of the fitted values was determined by using 24 identical replicate fits, yielding simple averages and standard deviations for all of the kinetic parameters, including the efflux active P-gp surface density. Digoxin required additional basolateral and apical transporters, while loperamide required just a basolateral tranporter. The data were better fit by assuming bidirectional transporters, rather than active importers, suggesting that they are not MRP or active OATP transporters. The P-gp efflux rate constants for quinidine and digoxin were about 3-fold smaller than reported ATP hydrolysis rate constants from P-gp proteoliposomes. This suggests a roughly 3∶1 stoichiometry between ATP hydrolysis and P-gp transport for these two drugs. The fitted values of the elementary rate constants for these P-gp substrates support the hypotheses that the selective pressures on P-gp are to maintain a broad substrate range and to keep xenobiotics out of the cytosol, but not out of the

  13. Prolonged exposure of methicillin-resistant Staphylococcus aureus (MRSA) COL strain to increasing concentrations of oxacillin results in a multidrug-resistant phenotype

    DEFF Research Database (Denmark)

    Martins, Ana; Couto, Isabel; Aagaard, Lone

    2007-01-01

    Our previous studies demonstrated that exposure of a bacterium to increasing concentrations of an antibiotic would increase resistance to that antibiotic as a consequence of activating efflux pumps. This study utilises the same approach; however, it employs the methicillin-resistant Staphylococcus...... aureus (MRSA) COL strain, which is highly resistant to oxacillin (OXA). MRSA COL was adapted to 3200 mg/L of OXA. Changes in resistance to other antibiotics were evaluated and efflux pump activity during the adaptation process was determined. MRSA COL was exposed to stepwise two-fold increases of OXA....... At the end of each step, minimum inhibitory concentration determination for erythromycin (ERY) and other antibiotics was conducted. Reserpine (RES) was employed to evaluate whether resistance to ERY was dependent on efflux pump activity. Efflux pump activity was also evaluated using the ethidium bromide (EB...

  14. Novel insight into antimicrobial resistance and sensitivity phenotypes associated to qac and norA genotypes in Staphylococcus aureus.

    Science.gov (United States)

    Marchi, Emmanuela; Furi, Leonardo; Arioli, Stefania; Morrissey, Ian; Di Lorenzo, Valeria; Mora, Diego; Giovannetti, Luciana; Oggioni, Marco Rinaldo; Viti, Carlo

    2015-01-01

    Staphylococcus aureus strains harboring QacA, QacB, QacC, QacG transporters and norA promoter up-regulating mutations were characterized by phenotype microarray (PM), standard methods for susceptibility testing, and ethidium bromide efflux assays, in order to increase knowledge on phenotypes associated to efflux pumps and their substrates. PM data and standard susceptibility testing lead to the identification of new potential efflux targets, such as guanidine hydrochloride or 8-hydroxyquinoline for QacA and QacC pumps, respectively. The identification of compounds to which the presence of efflux pumps induced increased susceptibility opens new perspectives for potential adjunct anti-resistance treatment (i.e. strains bearing QacB transporters showed increased susceptibility to thioridazine, amitriptyline and orphenadrine). Although the tested isolates were characterized by high degree of heterogeneity, a hallmark of clinical isolates, direct ethidium bromide efflux assays were effective in highlighting differences in efflux efficiency among strains. These data add to characterization of substrate specificity in the different classes of staphylococcal multidrug efflux systems conferring specific substrate profiles and efflux features to each of them. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Bilirubin Decreases Macrophage Cholesterol Efflux and ATP-Binding Cassette Transporter A1 Protein Expression.

    Science.gov (United States)

    Wang, Dongdong; Tosevska, Anela; Heiß, Elke H; Ladurner, Angela; Mölzer, Christine; Wallner, Marlies; Bulmer, Andrew; Wagner, Karl-Heinz; Dirsch, Verena M; Atanasov, Atanas G

    2017-04-28

    Mild but chronically elevated circulating unconjugated bilirubin is associated with reduced total and low-density lipoprotein cholesterol concentration, which is associated with reduced cardiovascular disease risk. We aimed to investigate whether unconjugated bilirubin influences macrophage cholesterol efflux, as a potential mechanism for the altered circulating lipoprotein concentrations observed in hyperbilirubinemic individuals. Cholesterol efflux from THP-1 macrophages was assessed using plasma obtained from normo- and hyperbilirubinemic (Gilbert syndrome) humans (n=60 per group) or (heterozygote/homozygote Gunn) rats (n=20 per group) as an acceptor. Hyperbilirubinemic plasma from patients with Gilbert syndrome and Gunn rats induced significantly reduced cholesterol efflux compared with normobilirubinemic plasma. Unconjugated bilirubin (3-17.1 μmol/L) exogenously added to plasma- or apolipoprotein A1-supplemented media also decreased macrophage cholesterol efflux in a concentration- and time-dependent manner. We also showed reduced protein expression of the ATP-binding cassette transporter A1 (ABCA1), a transmembrane cholesterol transporter involved in apolipoprotein A1-mediated cholesterol efflux, in THP-1 macrophages treated with unconjugated bilirubin and in peripheral blood mononuclear cells obtained from hyperbilirubinemic individuals. Furthermore, we demonstrated that bilirubin accelerates the degradation rate of the ABCA1 protein in THP-1 macrophages. Cholesterol efflux from THP-1 macrophages is decreased in the presence of plasma obtained from humans and rats with mild hyperbilirubinemia. A direct effect of unconjugated bilirubin on cholesterol efflux was demonstrated and is associated with decreased ABCA1 protein expression. These data improve our knowledge concerning bilirubin's impact on cholesterol transport and represent an important advancement in our understanding of bilirubin's role in cardiovascular disease. © 2017 The Authors. Published on

  16. Transcriptional Modulation of Penicillin-Binding Protein 1b, Outer Membrane Protein P2 and Efflux Pump (AcrAB-TolC during Heat Stress Is Correlated to Enhanced Bactericidal Action of Imipenem on Non-typeable Haemophilus influenzae

    Directory of Open Access Journals (Sweden)

    Abdessalam Cherkaoui

    2018-01-01

    Full Text Available Objective: The purpose of the present study was to investigate the penicillin binding proteins (PBPs, drug influx and efflux modulations during heat stress and their effects on the bactericidal action of imipenem on non-typeable Haemophilus influenzae (NTHi.Methods: The two NTHi clinical isolates (GE47 and GE88, imipenem MICs by E-test > 32 μg/mL examined in this study were collected at Geneva University Hospitals. The imipenem killing activity was assessed after incubation of the NTHi strains at either 37 or 42°C for 3 h with increasing concentrations of imipenem. The detection of PBPs was carried out by Bocillin-FL. Global transcriptional changes were monitored by RNA-seq after pre-incubation of bacterial cells at either 37 or 42°C, and the expression levels of relevant target genes were confirmed by qRT-PCR.Results: Quantitation of NTHi viable cells after incubation with 0.25 μg/mL of imipenem for 3 h revealed more than a twofold decrease in GE47 and GE88 viable cells at 42°C as compared to 37°C. Transcriptome analysis showed that under heat stress conditions, there were 141 differentially expressed genes with a | log2(fold change| > 1, including 67 up-regulated and 74 down-regulated genes. The expression levels of ponB (encoding PBP1b and acrR (regulator of AcrAB-TolC efflux pump were significantly increased at 42°C. In contrast, the transcript levels of ompP2 (encoding the outer membrane protein P2 and acrB gene (encoding AcrB were significantly lower under heat stress condition.Conclusion: This study shows that the transcriptional modulation of ponB, ompP2, acrR, and acrB in the heat stress response is correlated to enhanced antimicrobial effects of imipenem on non-typeable H. influenzae.

  17. Peptide mediators of cholesterol efflux

    Energy Technology Data Exchange (ETDEWEB)

    Bielicki, John K.; Johansson, Jan

    2013-04-09

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  18. Drug efflux proteins in multidrug resistant bacteria

    NARCIS (Netherlands)

    vanVeen, HW; Konings, WN

    Bacteria contain an array of transport proteins in their cytoplasmic membrane. Many of these proteins play an important role in conferring resistance to toxic compounds. The multidrug efflux systems encountered in prokaryotic cells are very similar to those observed in eukaryotic cells. Therefore, a

  19. Sodium pumping: pump problems

    International Nuclear Information System (INIS)

    Guer, M.; Guiton, P.

    Information on sodium pumps for LMFBR type reactors is presented concerning ring pump design, pool reactor pump design, secondary pumps, sodium bearings, swivel joints of the oscillating annulus, and thermal shock loads

  20. Antibacterial effect of silver nanoparticles and capsaicin against MDR-ESBL producing Escherichia coli: An in vitro study

    Directory of Open Access Journals (Sweden)

    Debasish Kar

    2016-10-01

    Full Text Available Objective: To evaluate the antibacterial property of silver nanoparticles (AgNPs and capsaicin against multidrug resistant (MDR and extended spectrum beta-lactamase (ESBL producing Escherichia coli of bovine and poultry origin. Methods: Antibacterial efficacy of AgNPs and capsaicin was measured using broth dilution method. Five MDR-ESBL producing E. coli isolates of poultry (PEC4, PEC6, PEC15 and PEC16 and cattle mastitis origin (MEC2 were taken to evaluate the antibacterial effect of AgNPs and capsaicin. Results: At 50 mmol/L AgNPs, the viability of MDR of bacterial pathogens was reduced to almost 80%–90% and at 1000 mmol/L, the viability went down to 0%–3%. The minimum inhibitory concentration (MIC50 of AgNPs against these MDR-ESBL producing isolates was found to vary between 172–218 mmol/L whereas the MIC80 varied between 450–640 mmol/L. Capsaicin showed more prominent bactericidal effect and only at 2.5 mmol/L concentration, the viability was shown to be reduced by 20%–35% whereas at 7.5 mmol/L concentration, there was approximately 60% reduction in viability. Further at 25 mmol/L concentration, the viability was reduced to 0%–8%. The MIC50 and MIC80 of capsaicin against these MDRESBL producing isolates were found to vary between 4.6–7.5 mmol/L and 10.9–16.9 mmol/L, respectively. Conclusions: The results point out that capsaicin and AgNPs could be of use in treating ESBL infection.