WorldWideScience

Sample records for mcnp x-5 monte

  1. Monte Carlo parameter studies and uncertainty analyses with MCNP5

    International Nuclear Information System (INIS)

    Brown, F. B.; Sweezy, J. E.; Hayes, R.

    2004-01-01

    A software tool called mcnp p study has been developed to automate the setup, execution, and collection of results from a series of MCNP5 Monte Carlo calculations. This tool provides a convenient means of performing parameter studies, total uncertainty analyses, parallel job execution on clusters, stochastic geometry modeling, and other types of calculations where a series of MCNP5 jobs must be performed with varying problem input specifications. (authors)

  2. Obtaining of primary rays of spectrum X codes Penelope and MCNP5; Obtencion del espectro primario de Rayos X con los codigos Penelope y MCNP5

    Energy Technology Data Exchange (ETDEWEB)

    Pozuelo, F.; Querol, A.; Gallardo, S.; Rodenas, J.; Verdu, G.

    2012-07-01

    In this case, used codes PENELOPE MCNP5, based on the Monte Carlo method for x-ray spectrum taking into account the characteristics of the x-ray tube. In order to achieve a greater fit of simulated by the theoretical spectrum. It carried out a sensitivity analysis of the parameters available in both codes. The obtaining of the simulated spectrum could lead to an improvement in quality control of the x-ray tube to incorporate it as a method complementary to techniques.

  3. Wielandt acceleration for MCNP5 Monte Carlo eigenvalue calculations

    International Nuclear Information System (INIS)

    Brown, F.

    2007-01-01

    Monte Carlo criticality calculations use the power iteration method to determine the eigenvalue (k eff ) and eigenfunction (fission source distribution) of the fundamental mode. A recently proposed method for accelerating convergence of the Monte Carlo power iteration using Wielandt's method has been implemented in a test version of MCNP5. The method is shown to provide dramatic improvements in convergence rates and to greatly reduce the possibility of false convergence assessment. The method is effective and efficient, improving the Monte Carlo figure-of-merit for many problems. In addition, the method should eliminate most of the underprediction bias in confidence intervals for Monte Carlo criticality calculations. (authors)

  4. Convergence testing for MCNP5 Monte Carlo eigenvalue calculations

    International Nuclear Information System (INIS)

    Brown, F.; Nease, B.; Cheatham, J.

    2007-01-01

    Determining convergence of Monte Carlo criticality problems is complicated by the statistical noise inherent in the random, walks of the neutrons in each generation. The latest version of MCNP5 incorporates an important new tool for assessing convergence: the Shannon entropy of the fission source distribution, H src . Shannon entropy is a well-known concept from information theory and provides a single number for each iteration to help characterize convergence trends for the fission source distribution. MCNP5 computes H src for each iteration, and these values may be plotted to examine convergence trends. Convergence testing should include both k eff and H src , since the fission distribution will converge more slowly than k eff , especially when the dominance ratio is close to 1.0. (authors)

  5. Extensions of the MCNP5 and TRIPOLI4 Monte Carlo Codes for Transient Reactor Analysis

    Science.gov (United States)

    Hoogenboom, J. Eduard; Sjenitzer, Bart L.

    2014-06-01

    To simulate reactor transients for safety analysis with the Monte Carlo method the generation and decay of delayed neutron precursors is implemented in the MCNP5 and TRIPOLI4 general purpose Monte Carlo codes. Important new variance reduction techniques like forced decay of precursors in each time interval and the branchless collision method are included to obtain reasonable statistics for the power production per time interval. For simulation of practical reactor transients also the feedback effect from the thermal-hydraulics must be included. This requires coupling of the Monte Carlo code with a thermal-hydraulics (TH) code, providing the temperature distribution in the reactor, which affects the neutron transport via the cross section data. The TH code also provides the coolant density distribution in the reactor, directly influencing the neutron transport. Different techniques for this coupling are discussed. As a demonstration a 3x3 mini fuel assembly with a moving control rod is considered for MCNP5 and a mini core existing of 3x3 PWR fuel assemblies with control rods and burnable poisons for TRIPOLI4. Results are shown for reactor transients due to control rod movement or withdrawal. The TRIPOLI4 transient calculation is started at low power and includes thermal-hydraulic feedback. The power rises about 10 decades and finally stabilises the reactor power at a much higher level than initial. The examples demonstrate that the modified Monte Carlo codes are capable of performing correct transient calculations, taking into account all geometrical and cross section detail.

  6. Monte Carlo simulation of x-ray spectra in diagnostic radiology and mammography using MCNP4C

    Energy Technology Data Exchange (ETDEWEB)

    Ay, M R [Department of Physics and Nuclear Sciences, AmirKabir University of Technology, Tehran (Iran, Islamic Republic of); Shahriari, M [Department of Nuclear Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Sarkar, S [Department of Medical Physics, Tehran University of Medical Science, Tehran (Iran, Islamic Republic of); Adib, M [TPP Co., GE Medical Systems, Iran Authorized Distributor, Tehran (Iran, Islamic Republic of); Zaidi, H [Division of Nuclear Medicine, Geneva University Hospital, 1211 Geneva (Switzerland)

    2004-11-07

    The general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C) was used for the simulation of x-ray spectra in diagnostic radiology and mammography. The electrons were transported until they slow down and stop in the target. Both bremsstrahlung and characteristic x-ray production were considered in this work. We focus on the simulation of various target/filter combinations to investigate the effect of tube voltage, target material and filter thickness on x-ray spectra in the diagnostic radiology and mammography energy ranges. The simulated x-ray spectra were compared with experimental measurements and spectra calculated by IPEM report number 78. In addition, the anode heel effect and off-axis x-ray spectra were assessed for different anode angles and target materials and the results were compared with EGS4-based Monte Carlo simulations and measured data. Quantitative evaluation of the differences between our Monte Carlo simulated and comparison spectra was performed using student's t-test statistical analysis. Generally, there is a good agreement between the simulated x-ray and comparison spectra, although there are systematic differences between the simulated and reference spectra especially in the K-characteristic x-rays intensity. Nevertheless, no statistically significant differences have been observed between IPEM spectra and the simulated spectra. It has been shown that the difference between MCNP simulated spectra and IPEM spectra in the low energy range is the result of the overestimation of characteristic photons following the normalization procedure. The transmission curves produced by MCNP4C have good agreement with the IPEM report especially for tube voltages of 50 kV and 80 kV. The systematic discrepancy for higher tube voltages is the result of systematic differences between the corresponding spectra.

  7. Monte Carlo simulation of x-ray spectra in diagnostic radiology and mammography using MCNP4C

    Science.gov (United States)

    Ay, M. R.; Shahriari, M.; Sarkar, S.; Adib, M.; Zaidi, H.

    2004-11-01

    The general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C) was used for the simulation of x-ray spectra in diagnostic radiology and mammography. The electrons were transported until they slow down and stop in the target. Both bremsstrahlung and characteristic x-ray production were considered in this work. We focus on the simulation of various target/filter combinations to investigate the effect of tube voltage, target material and filter thickness on x-ray spectra in the diagnostic radiology and mammography energy ranges. The simulated x-ray spectra were compared with experimental measurements and spectra calculated by IPEM report number 78. In addition, the anode heel effect and off-axis x-ray spectra were assessed for different anode angles and target materials and the results were compared with EGS4-based Monte Carlo simulations and measured data. Quantitative evaluation of the differences between our Monte Carlo simulated and comparison spectra was performed using student's t-test statistical analysis. Generally, there is a good agreement between the simulated x-ray and comparison spectra, although there are systematic differences between the simulated and reference spectra especially in the K-characteristic x-rays intensity. Nevertheless, no statistically significant differences have been observed between IPEM spectra and the simulated spectra. It has been shown that the difference between MCNP simulated spectra and IPEM spectra in the low energy range is the result of the overestimation of characteristic photons following the normalization procedure. The transmission curves produced by MCNP4C have good agreement with the IPEM report especially for tube voltages of 50 kV and 80 kV. The systematic discrepancy for higher tube voltages is the result of systematic differences between the corresponding spectra.

  8. EchoSeed Model 6733 Iodine-125 brachytherapy source: Improved dosimetric characterization using the MCNP5 Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Mosleh-Shirazi, M. A.; Hadad, K.; Faghihi, R.; Baradaran-Ghahfarokhi, M.; Naghshnezhad, Z.; Meigooni, A. S. [Center for Research in Medical Physics and Biomedical Engineering and Physics Unit, Radiotherapy Department, Shiraz University of Medical Sciences, Shiraz 71936-13311 (Iran, Islamic Republic of); Radiation Research Center and Medical Radiation Department, School of Engineering, Shiraz University, Shiraz 71936-13311 (Iran, Islamic Republic of); Comprehensive Cancer Center of Nevada, Las Vegas, Nevada 89169 (United States)

    2012-08-15

    This study primarily aimed to obtain the dosimetric characteristics of the Model 6733 {sup 125}I seed (EchoSeed) with improved precision and accuracy using a more up-to-date Monte-Carlo code and data (MCNP5) compared to previously published results, including an uncertainty analysis. Its secondary aim was to compare the results obtained using the MCNP5, MCNP4c2, and PTRAN codes for simulation of this low-energy photon-emitting source. The EchoSeed geometry and chemical compositions together with a published {sup 125}I spectrum were used to perform dosimetric characterization of this source as per the updated AAPM TG-43 protocol. These simulations were performed in liquid water material in order to obtain the clinically applicable dosimetric parameters for this source model. Dose rate constants in liquid water, derived from MCNP4c2 and MCNP5 simulations, were found to be 0.993 cGyh{sup -1} U{sup -1} ({+-}1.73%) and 0.965 cGyh{sup -1} U{sup -1} ({+-}1.68%), respectively. Overall, the MCNP5 derived radial dose and 2D anisotropy functions results were generally closer to the measured data (within {+-}4%) than MCNP4c and the published data for PTRAN code (Version 7.43), while the opposite was seen for dose rate constant. The generally improved MCNP5 Monte Carlo simulation may be attributed to a more recent and accurate cross-section library. However, some of the data points in the results obtained from the above-mentioned Monte Carlo codes showed no statistically significant differences. Derived dosimetric characteristics in liquid water are provided for clinical applications of this source model.

  9. Shielding properties of 80TeO2–5TiO2–(15−x) WO3–xAnOm glasses using WinXCom and MCNP5 code

    International Nuclear Information System (INIS)

    Dong, M.G.; El-Mallawany, R.; Sayyed, M.I.; Tekin, H.O.

    2017-01-01

    Gamma ray shielding properties of 80TeO 2 –5TiO 2 –(15−x) WO 3 –xA n O m glasses, where A n O m is Nb 2 O 5 = 0.01, 5, Nd 2 O 3 = 3, 5 and Er 2 O 3 = 5 mol% have been achieved. Shielding parameters; mass attenuation coefficients, half value layers, and macroscopic effective removal cross section for fast neutrons have been computed by using WinXCom program and MCNP5 Monte Carlo code. In addition, by using Geometric Progression method (G-P), exposure buildup factor values were also calculated. Variations of shielding parameters are discussed for the effect of REO addition into the glasses and photon energy. - Highlights: • The shielding properties of 80TeO 2 –5TiO 2 –(15−x) WO 3 –xA n O m glasses were evaluated. • WinXCom program and MCNP simulation codes were used in the calculations. • Good agreement was noticed between the WinXCom and MCNP5 code results.

  10. MCNP trademark Monte Carlo: A precis of MCNP

    International Nuclear Information System (INIS)

    Adams, K.J.

    1996-01-01

    MCNP trademark is a general purpose three-dimensional time-dependent neutron, photon, and electron transport code. It is highly portable and user-oriented, and backed by stringent software quality assurance practices and extensive experimental benchmarks. The cross section database is based upon the best evaluations available. MCNP incorporates state-of-the-art analog and adaptive Monte Carlo techniques. The code is documented in a 600 page manual which is augmented by numerous Los Alamos technical reports which detail various aspects of the code. MCNP represents over a megahour of development and refinement over the past 50 years and an ongoing commitment to excellence

  11. MCNP(trademark) Version 5

    International Nuclear Information System (INIS)

    Cox, Lawrence J.; Barrett, Richard F.; Booth, Thomas Edward; Briesmeister, Judith F.; Brown, Forrest B.; Bull, Jeffrey S.; Giesler, Gregg Carl; Goorley, John T.; Mosteller, Russell D.; Forster, R. Arthur; Post, Susan E.; Prael, Richard E.; Selcow, Elizabeth Carol; Sood, Avneet

    2002-01-01

    The Monte Carlo transport workhorse, MCNP, is undergoing a massive renovation at Los Alamos National Laboratory (LANL) in support of the Eolus Project of the Advanced Simulation and Computing (ASCI) Program. MCNP Version 5 (V5) (expected to be released to RSICC in Spring, 2002) will consist of a major restructuring from FORTRAN-77 (with extensions) to ANSI-standard FORTRAN-90 with support for all of the features available in the present release (MCNP-4C2/4C3). To most users, the look-and-feel of MCNP will not change much except for the improvements (improved graphics, easier installation, better online documentation). For example, even with the major format change, full support for incremental patching will still be provided. In addition to the language and style updates, MCNP V5 will have various new user features. These include improved photon physics, neutral particle radiography, enhancements and additions to variance reduction methods, new source options, and improved parallelism support (PVM, MPI, OpenMP).

  12. DXRaySMCS: a user-friendly interface developed for prediction of diagnostic radiology X-ray spectra produced by Monte Carlo (MCNP-4C) simulation.

    Science.gov (United States)

    Bahreyni Toossi, M T; Moradi, H; Zare, H

    2008-01-01

    In this work, the general purpose Monte Carlo N-particle radiation transport computer code (MCNP-4C) was used for the simulation of X-ray spectra in diagnostic radiology. The electron's path in the target was followed until its energy was reduced to 10 keV. A user-friendly interface named 'diagnostic X-ray spectra by Monte Carlo simulation (DXRaySMCS)' was developed to facilitate the application of MCNP-4C code for diagnostic radiology spectrum prediction. The program provides a user-friendly interface for: (i) modifying the MCNP input file, (ii) launching the MCNP program to simulate electron and photon transport and (iii) processing the MCNP output file to yield a summary of the results (relative photon number per energy bin). In this article, the development and characteristics of DXRaySMCS are outlined. As part of the validation process, output spectra for 46 diagnostic radiology system settings produced by DXRaySMCS were compared with the corresponding IPEM78. Generally, there is a good agreement between the two sets of spectra. No statistically significant differences have been observed between IPEM78 reported spectra and the simulated spectra generated in this study.

  13. DXRaySMCS. First user friendly interface developed for prediction of diagnostic radiology X-ray spectra produced by Monte Carlo (MCNP-4C) simulation in Iran

    International Nuclear Information System (INIS)

    Bahreyni Toossi, M.T.; Zare, H.; Moradi Faradanbe, H.

    2008-01-01

    An accurate knowledge of the output energy spectra of an x-ray tube is essential in many areas of radiological studies. It forms the basis of almost all image quality simulations and enable system designers to predict patient dose more accurately. Many radiological physics problems that can be solved by Monte Carlo simulation methods require an x-ray spectra as input data. Computer simulation of x-ray spectra is one of the most important tools for investigation of patient dose and image quality in diagnostic radiology systems. In this work the general purpose Monte Carlo N-particle radiation transport computer code (MCNP-4C) was used for the simulation of x-ray spectra in diagnostic radiology, Electron's path in the target was followed until it's energy was reduced to 10 keV. A user friendly interface named 'Diagnostic X-ray Spectra by Monte Carlo Simulation (DXRaySMCS)' was developed to facilitate the application of MCNP-4C code for diagnostic radiology spectrum prediction. The program provides a user friendly interface for modifying the MCNP input file, launching the MCNP program to simulate electron and photon transport and processing the MCNP output file to yield a summary of the results (Relative Photon Number per Energy Bin). In this article the development and characteristics of DXRaySMCS are outlined. As part of the validation process, out put spectra for 46 diagnostic radiology system settings produced by DXRaySMCS were compared with the corresponding IPEM78. Generally, there is a good agreement between the two sets of spectra. No statistically significant differences have been observed between IPEM78 reported spectra and the simulated spectra generated in this study. (author)

  14. A review of radiation dosimetry applications using the MCNP Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Solberg, T.D.; DeMarco, J.J.; Chetty, I.J.; Mesa, A.V.; Cagnon, C.H.; Li, A.N.; Mather, K.K.; Medin, P.M.; Arellano, A.R.; Smathers, J.B. [California Univ., Los Angeles, CA (United States). Dept. of Radiation Oncology

    2001-07-01

    The Monte Carlo code MCNP (Monte Carlo N-Particle) has a significant history dating to the early years of the Manhattan Project. More recently, MCNP has been used successfully to solve many problems in the field of medical physics. In radiotherapy applications MCNP has been used successfully to calculate the bremsstrahlung spectra from medical linear accelerators, for modeling the dose distributions around high dose rate brachytherapy sources, and for evaluating the dosimetric properties of new radioactive sources used in intravascular irradiation for prevention of restenosis following angioplasty. MCNP has also been used for radioimmunotherapy and boron neutron capture therapy applications. It has been used to predict fast neutron activation of shielding and biological materials. One area that holds tremendous clinical promise is that of radiotherapy treatment planning. In diagnostic applications, MCNP has been used to model X-ray computed tomography and positron emission tomography scanners, to compute the dose delivered from CT procedures, and to determine detector characteristics of nuclear medicine devices. MCNP has been used to determine particle fluxes around radiotherapy treatment devices and to perform shielding calculations in radiotherapy treatment rooms. This manuscript is intended to provide to the reader a comprehensive summary of medical physics applications of the MCNP code. (orig.)

  15. A review of radiation dosimetry applications using the MCNP Monte Carlo code

    International Nuclear Information System (INIS)

    Solberg, T.D.; DeMarco, J.J.; Chetty, I.J.; Mesa, A.V.; Cagnon, C.H.; Li, A.N.; Mather, K.K.; Medin, P.M.; Arellano, A.R.; Smathers, J.B.

    2002-01-01

    The Monte Carlo code MCNP (Monte Carlo N-Particle) has a significant history dating to the early years of the Manhattan Project. More recently, MCNP has been used successfully to solve many problems in the field of medical physics. In radiotherapy applications MCNP has been used successfully to calculate the bremsstrahlung spectra from medical linear accelerators, for modeling the dose distributions around high dose rate brachytherapy sources, and for evaluating the dosimetric properties of new radioactive sources used in intravascular irradiation for prevention of restenosis following angioplasty. MCNP has also been used for radioimmunotherapy and boron neutron capture therapy applications. It has been used to predict fast neutron activation of shielding and biological materials. One area that holds tremendous clinical promise is that of radiotherapy treatment planning. In diagnostic applications, MCNP has been used to model X-ray computed tomography and positron emission tomography scanners, to compute the dose delivered from CT procedures, and to determine detector characteristics of nuclear medicine devices. MCNP has been used to determine particle fluxes around radiotherapy treatment devices and to perform shielding calculations in radiotherapy treatment rooms. This manuscript is intended to provide to the reader a comprehensive summary of medical physics applications of the MCNP code. (author)

  16. Physics and Algorithm Enhancements for a Validated MCNP/X Monte Carlo Simulation Tool, Phase VII

    International Nuclear Information System (INIS)

    McKinney, Gregg W.

    2012-01-01

    Currently the US lacks an end-to-end (i.e., source-to-detector) radiation transport simulation code with predictive capability for the broad range of DHS nuclear material detection applications. For example, gaps in the physics, along with inadequate analysis algorithms, make it difficult for Monte Carlo simulations to provide a comprehensive evaluation, design, and optimization of proposed interrogation systems. With the development and implementation of several key physics and algorithm enhancements, along with needed improvements in evaluated data and benchmark measurements, the MCNP/X Monte Carlo codes will provide designers, operators, and systems analysts with a validated tool for developing state-of-the-art active and passive detection systems. This project is currently in its seventh year (Phase VII). This presentation will review thirty enhancements that have been implemented in MCNPX over the last 3 years and were included in the 2011 release of version 2.7.0. These improvements include 12 physics enhancements, 4 source enhancements, 8 tally enhancements, and 6 other enhancements. Examples and results will be provided for each of these features. The presentation will also discuss the eight enhancements that will be migrated into MCNP6 over the upcoming year.

  17. Shielding properties of 80TeO2-5TiO2-(15-x) WO3-xAnOm glasses using WinXCom and MCNP5 code

    Science.gov (United States)

    Dong, M. G.; El-Mallawany, R.; Sayyed, M. I.; Tekin, H. O.

    2017-12-01

    Gamma ray shielding properties of 80TeO2-5TiO2-(15-x) WO3-xAnOm glasses, where AnOm is Nb2O5 = 0.01, 5, Nd2O3 = 3, 5 and Er2O3 = 5 mol% have been achieved. Shielding parameters; mass attenuation coefficients, half value layers, and macroscopic effective removal cross section for fast neutrons have been computed by using WinXCom program and MCNP5 Monte Carlo code. In addition, by using Geometric Progression method (G-P), exposure buildup factor values were also calculated. Variations of shielding parameters are discussed for the effect of REO addition into the glasses and photon energy.

  18. MCNP5 development, verification, and performance

    International Nuclear Information System (INIS)

    Forrest B, Brown

    2003-01-01

    MCNP is a well-known and widely used Monte Carlo code for neutron, photon, and electron transport simulations. During the past 18 months, MCNP was completely reworked to provide MCNP5, a modernized version with many new features, including plotting enhancements, photon Doppler broadening, radiography image tallies, enhancements to source definitions, improved variance reduction, improved random number generator, tallies on a superimposed mesh, and edits of criticality safety parameters. Significant improvements in software engineering and adherence to standards have been made. Over 100 verification problems have been used to ensure that MCNP5 produces the same results as before and that all capabilities have been preserved. Testing on large parallel systems shows excellent parallel scaling. (author)

  19. MCNP5 development, verification, and performance

    Energy Technology Data Exchange (ETDEWEB)

    Forrest B, Brown [Los Alamos National Laboratory (United States)

    2003-07-01

    MCNP is a well-known and widely used Monte Carlo code for neutron, photon, and electron transport simulations. During the past 18 months, MCNP was completely reworked to provide MCNP5, a modernized version with many new features, including plotting enhancements, photon Doppler broadening, radiography image tallies, enhancements to source definitions, improved variance reduction, improved random number generator, tallies on a superimposed mesh, and edits of criticality safety parameters. Significant improvements in software engineering and adherence to standards have been made. Over 100 verification problems have been used to ensure that MCNP5 produces the same results as before and that all capabilities have been preserved. Testing on large parallel systems shows excellent parallel scaling. (author)

  20. Parallel MCNP Monte Carlo transport calculations with MPI

    International Nuclear Information System (INIS)

    Wagner, J.C.; Haghighat, A.

    1996-01-01

    The steady increase in computational performance has made Monte Carlo calculations for large/complex systems possible. However, in order to make these calculations practical, order of magnitude increases in performance are necessary. The Monte Carlo method is inherently parallel (particles are simulated independently) and thus has the potential for near-linear speedup with respect to the number of processors. Further, the ever-increasing accessibility of parallel computers, such as workstation clusters, facilitates the practical use of parallel Monte Carlo. Recognizing the nature of the Monte Carlo method and the trends in available computing, the code developers at Los Alamos National Laboratory implemented the message-passing general-purpose Monte Carlo radiation transport code MCNP (version 4A). The PVM package was chosen by the MCNP code developers because it supports a variety of communication networks, several UNIX platforms, and heterogeneous computer systems. This PVM version of MCNP has been shown to produce speedups that approach the number of processors and thus, is a very useful tool for transport analysis. Due to software incompatibilities on the local IBM SP2, PVM has not been available, and thus it is not possible to take advantage of this useful tool. Hence, it became necessary to implement an alternative message-passing library package into MCNP. Because the message-passing interface (MPI) is supported on the local system, takes advantage of the high-speed communication switches in the SP2, and is considered to be the emerging standard, it was selected

  1. Development of a consistent Monte Carlo-deterministic transport methodology based on the method of characteristics and MCNP5

    International Nuclear Information System (INIS)

    Karriem, Z.; Ivanov, K.; Zamonsky, O.

    2011-01-01

    This paper presents work that has been performed to develop an integrated Monte Carlo- Deterministic transport methodology in which the two methods make use of exactly the same general geometry and multigroup nuclear data. The envisioned application of this methodology is in reactor lattice physics methods development and shielding calculations. The methodology will be based on the Method of Long Characteristics (MOC) and the Monte Carlo N-Particle Transport code MCNP5. Important initial developments pertaining to ray tracing and the development of an MOC flux solver for the proposed methodology are described. Results showing the viability of the methodology are presented for two 2-D general geometry transport problems. The essential developments presented is the use of MCNP as geometry construction and ray tracing tool for the MOC, verification of the ray tracing indexing scheme that was developed to represent the MCNP geometry in the MOC and the verification of the prototype 2-D MOC flux solver. (author)

  2. Extensions of the MCNP5 and TRIPOLI4 Monte Carlo codes for transient reactor analysis

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    2013-01-01

    To simulate reactor transients for safety analysis with the Monte Carlo method the generation and decay of delayed neutron precursors is implemented in the MCNP5 and TRIPOLI4 general purpose Monte Carlo codes. Important new variance reduction techniques like forced decay of precursors in each time interval and the branch-less collision method are included to obtain reasonable statistics for the power production per time interval. For simulation of practical reactor transients also the feedback effect from the thermal-hydraulics must be included. This requires the coupling of the Monte Carlo code with a thermal-hydraulics (TH) code, providing the temperature distribution in the reactor, which affects the neutron transport via the cross section data. The TH code also provides the coolant density distribution in the reactor, directly influencing the neutron transport. Different techniques for this coupling are discussed. As a demonstration a 3*3 mini fuel assembly with a moving control rod is considered for MCNP5 and a mini core existing of 3*3 PWR fuel assemblies with control rods and burnable poisons for TRIPOLI4. Results are shown for reactor transients due to control rod movement or withdrawal. The TRIPOLI4 transient calculation is started at low power and includes thermal-hydraulic feedback. The power rises about 10 decades and finally stabilises the reactor power at a much higher level than initial. The examples demonstrate that the modified Monte Carlo codes are capable of performing correct transient calculations, taking into account all geometrical and cross section detail. (authors)

  3. MCNP-REN a Monte Carlo tool for neutron detector design

    CERN Document Server

    Abhold, M E

    2002-01-01

    The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo code developed at Los Alamos National Laboratory, Monte Carlo N-Particle (MCNP), was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP-Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program, predicts neutron detector response without using the point reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of mixed oxide fresh fuel w...

  4. MCNP-X Monte Carlo Code Application for Mass Attenuation Coefficients of Concrete at Different Energies by Modeling 3 × 3 Inch NaI(Tl Detector and Comparison with XCOM and Monte Carlo Data

    Directory of Open Access Journals (Sweden)

    Huseyin Ozan Tekin

    2016-01-01

    Full Text Available Gamma-ray measurements in various research fields require efficient detectors. One of these research fields is mass attenuation coefficients of different materials. Apart from experimental studies, the Monte Carlo (MC method has become one of the most popular tools in detector studies. An NaI(Tl detector has been modeled, and, for a validation study of the modeled NaI(Tl detector, the absolute efficiency of 3 × 3 inch cylindrical NaI(Tl detector has been calculated by using the general purpose Monte Carlo code MCNP-X (version 2.4.0 and compared with previous studies in literature in the range of 661–2620 keV. In the present work, the applicability of MCNP-X Monte Carlo code for mass attenuation of concrete sample material as building material at photon energies 59.5 keV, 80 keV, 356 keV, 661.6 keV, 1173.2 keV, and 1332.5 keV has been tested by using validated NaI(Tl detector. The mass attenuation coefficients of concrete sample have been calculated. The calculated results agreed well with experimental and some other theoretical results. The results specify that this process can be followed to determine the data on the attenuation of gamma-rays with other required energies in other materials or in new complex materials. It can be concluded that data from Monte Carlo is a strong tool not only for efficiency studies but also for mass attenuation coefficients calculations.

  5. Shielding calculations for industrial 5/7.5MeV electron accelerators using the MCNP Monte Carlo Code

    Science.gov (United States)

    Peri, Eyal; Orion, Itzhak

    2017-09-01

    High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, and by that extend the shelf life of the products. The production of X-rays is done by accelerating 5 MeV electrons and bombarding them into a heavy target (high Z). Since 2004, the FDA has approved using 7.5 MeV energy, providing higher production rates with lower treatments costs. In this study we calculated all the essential data needed for a straightforward concrete shielding design of typical food accelerator rooms. The following evaluation is done using the MCNP Monte Carlo code system: (1) Angular dependence (0-180°) of photon dose rate for 5 MeV and 7.5 MeV electron beams bombarding iron, aluminum, gold, tantalum, and tungsten targets. (2) Angular dependence (0-180°) spectral distribution simulations of bremsstrahlung for gold, tantalum, and tungsten bombarded by 5 MeV and 7.5 MeV electron beams. (3) Concrete attenuation calculations in several photon emission angles for the 5 MeV and 7.5 MeV electron beams bombarding a tantalum target. Based on the simulation, we calculated the expected increase in dose rate for facilities intending to increase the energy from 5 MeV to 7.5 MeV, and the concrete width needed to be added in order to keep the existing dose rate unchanged.

  6. MCNP-REN: a Monte Carlo tool for neutron detector design

    International Nuclear Information System (INIS)

    Abhold, M.E.; Baker, M.C.

    2002-01-01

    The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo code developed at Los Alamos National Laboratory, Monte Carlo N-Particle (MCNP), was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP-Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program, predicts neutron detector response without using the point reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of mixed oxide fresh fuel were taken with the Underwater Coincidence Counter, and measurements of highly enriched uranium reactor fuel were taken with the active neutron interrogation Research Reactor Fuel Counter and compared to calculation. Simulations completed for other detector design applications are described. The method used in MCNP-REN is demonstrated to be fundamentally sound and shown to eliminate the need to use the point model for detector performance predictions

  7. Control of the Low-energy X-rays by Using MCNP5 and Numerical Analysis for a New Concept Intra-oral X-ray Imaging System

    Science.gov (United States)

    Huh, Jangyong; Ji, Yunseo; Lee, Rena

    2018-05-01

    An X-ray control algorithm to modulate the X-ray intensity distribution over the FOV (field of view) has been developed by using numerical analysis and MCNP5, a particle transport simulation code on the basis of the Monte Carlo method. X-rays, which are widely used in medical diagnostic imaging, should be controlled in order to maximize the performance of the X-ray imaging system. However, transporting X-rays, like a liquid or a gas is conveyed through a physical form such as pipes, is not possible. In the present study, an X-ray control algorithm and technique to uniformize the Xray intensity projected on the image sensor were developed using a flattening filter and a collimator in order to alleviate the anisotropy of the distribution of X-rays due to intrinsic features of the X-ray generator. The proposed method, which is combined with MCNP5 modeling and numerical analysis, aimed to optimize a flattening filter and a collimator for a uniform distribution of X-rays. Their size and shape were estimated from the method. The simulation and the experimental results both showed that the method yielded an intensity distribution over an X-ray field of 6×4 cm2 at SID (source to image-receptor distance) of 5 cm with a uniformity of more than 90% when the flattening filter and the collimator were mounted on the system. The proposed algorithm and technique are not only confined to flattening filter development but can also be applied for other X-ray related research and development efforts.

  8. A Monte Carlo burnup code linking MCNP and REBUS

    International Nuclear Information System (INIS)

    Hanan, N.A.; Olson, A.P.; Pond, R.B.; Matos, J.E.

    1998-01-01

    The REBUS-3 burnup code, used in the anl RERTR Program, is a very general code that uses diffusion theory (DIF3D) to obtain the fluxes required for reactor burnup analyses. Diffusion theory works well for most reactors. However, to include the effects of exact geometry and strong absorbers that are difficult to model using diffusion theory, a Monte Carlo method is required. MCNP, a general-purpose, generalized-geometry, time-dependent, Monte Carlo transport code, is the most widely used Monte Carlo code. This paper presents a linking of the MCNP code and the REBUS burnup code to perform these difficult analyses. The linked code will permit the use of the full capabilities of REBUS which include non-equilibrium and equilibrium burnup analyses. Results of burnup analyses using this new linked code are also presented. (author)

  9. A Monte Carlo burnup code linking MCNP and REBUS

    International Nuclear Information System (INIS)

    Hanan, N. A.

    1998-01-01

    The REBUS-3 burnup code, used in the ANL RERTR Program, is a very general code that uses diffusion theory (DIF3D) to obtain the fluxes required for reactor burnup analyses. Diffusion theory works well for most reactors. However, to include the effects of exact geometry and strong absorbers that are difficult to model using diffusion theory, a Monte Carlo method is required. MCNP, a general-purpose, generalized-geometry, time-dependent, Monte Carlo transport code, is the most widely used Monte Carlo code. This paper presents a linking of the MCNP code and the REBUS burnup code to perform these difficult burnup analyses. The linked code will permit the use of the full capabilities of REBUS which include non-equilibrium and equilibrium burnup analyses. Results of burnup analyses using this new linked code are also presented

  10. Features of MCNP6

    International Nuclear Information System (INIS)

    Goorley, T.; James, M.; Booth, T.; Brown, F.; Bull, J.; Cox, L.J.; Durkee, J.; Elson, J.; Fensin, M.; Forster, R.A.; Hendricks, J.; Hughes, H.G.; Johns, R.; Kiedrowski, B.; Martz, R.; Mashnik, S.; McKinney, G.; Pelowitz, D.; Prael, R.; Sweezy, J.

    2016-01-01

    Highlights: • MCNP6 is simply and accurately described as the merger of MCNP5 and MCNPX capabilities, but it is much more than the sum of these two computer codes. • MCNP6 is the result of six years of effort by the MCNP5 and MCNPX code development teams. • These groups of people, residing in Los Alamos National Laboratory’s X Computational Physics Division, Monte Carlo Codes Group (XCP-3) and Nuclear Engineering and Nonproliferation Division, Radiation Transport Modeling Team (NEN-5) respectively, have combined their code development efforts to produce the next evolution of MCNP. • While maintenance and major bug fixes will continue for MCNP5 1.60 and MCNPX 2.7.0 for upcoming years, new code development capabilities only will be developed and released in MCNP6. • In fact, the initial release of MCNP6 contains numerous new features not previously found in either code. • These new features are summarized in this document. • Packaged with MCNP6 is also the new production release of the ENDF/B-VII.1 nuclear data files usable by MCNP. • The high quality of the overall merged code, usefulness of these new features, along with the desire in the user community to start using the merged code, have led us to make the first MCNP6 production release: MCNP6 version 1. • High confidence in the MCNP6 code is based on its performance with the verification and validation test suites, comparisons to its predecessor codes, our automated nightly software debugger tests, the underlying high quality nuclear and atomic databases, and significant testing by many beta testers. - Abstract: MCNP6 can be described as the merger of MCNP5 and MCNPX capabilities, but it is much more than the sum of these two computer codes. MCNP6 is the result of six years of effort by the MCNP5 and MCNPX code development teams. These groups of people, residing in Los Alamos National Laboratory’s X Computational Physics Division, Monte Carlo Codes Group (XCP-3) and Nuclear Engineering and

  11. RBMK fuel channel blockage analysis by MCNP5, DRAGON and RELAP5-3D codes

    International Nuclear Information System (INIS)

    Parisi, C.; D'Auria, F.

    2007-01-01

    The aim of this work was to perform precise criticality analyses by Monte-Carlo code MCNP5 for a Fuel Channel (FC) flow blockage accident, considering as calculation domain a single FC and a 3x3 lattice of RBMK cells. Boundary conditions for MCNP5 input were derived by a previous transient calculation by state-of-the-art codes HELIOS/RELAP5-3D. In a preliminary phase, suitable MCNP5 models of a single cell and of a small lattice of RBMK cells were set-up; criticality analyses were performed at reference conditions for 2.0% and 2.4% enriched fuel. These analyses were compared with results obtained by University of Pisa (UNIPI) using deterministic transport code DRAGON and with results obtained by NIKIET Institute using MCNP4C. Then, the changes of the main physical parameters (e.g. fuel and water/steam temperature, water density, graphite temperature) at different time intervals of the FC blockage transient were evaluated by a RELAP5-3D calculation. This information was used to set up further MCNP5 inputs. Criticality analyses were performed for different systems (single channel and lattice) at those transient' states, obtaining global criticality versus transient time. Finally the weight of each parameter's change (fuel overheating and channel voiding) on global criticality was assessed. The results showed that reactivity of a blocked FC is always negative; nevertheless, when considering the effect of neighboring channels, the global reactivity trend reverts, becoming slightly positive or not changing at all, depending in inverse relation to the fuel enrichment. (author)

  12. Systems guide to MCNP (Monte Carlo Neutron and Photon Transport Code)

    International Nuclear Information System (INIS)

    Kirk, B.L.; West, J.T.

    1984-06-01

    The subject of this report is the implementation of the Los Alamos National Laboratory Monte Carlo Neutron and Photon Transport Code - Version 3 (MCNP) on the different types of computer systems, especially the IBM MVS system. The report supplements the documentation of the RSIC computer code package CCC-200/MCNP. Details of the procedure to follow in executing MCNP on the IBM computers, either in batch mode or interactive mode, are provided

  13. Comparison of TITAN hybrid deterministic transport code and MCNP5 for simulation of SPECT

    International Nuclear Information System (INIS)

    Royston, K.; Haghighat, A.; Yi, C.

    2010-01-01

    Traditionally, Single Photon Emission Computed Tomography (SPECT) simulations use Monte Carlo methods. The hybrid deterministic transport code TITAN has recently been applied to the simulation of a SPECT myocardial perfusion study. The TITAN SPECT simulation uses the discrete ordinates formulation in the phantom region and a simplified ray-tracing formulation outside of the phantom. A SPECT model has been created in the Monte Carlo Neutral particle (MCNP)5 Monte Carlo code for comparison. In MCNP5 the collimator is directly modeled, but TITAN instead simulates the effect of collimator blur using a circular ordinate splitting technique. Projection images created using the TITAN code are compared to results using MCNP5 for three collimator acceptance angles. Normalized projection images for 2.97 deg, 1.42 deg and 0.98 deg collimator acceptance angles had maximum relative differences of 21.3%, 11.9% and 8.3%, respectively. Visually the images are in good agreement. Profiles through the projection images were plotted to find that the TITAN results followed the shape of the MCNP5 results with some differences in magnitude. A timing comparison on 16 processors found that the TITAN code completed the calculation 382 to 2787 times faster than MCNP5. Both codes exhibit good parallel performance. (author)

  14. A graphical user interface for diagnostic radiology dosimetry using Monte Carlo (MCNP) simulation

    International Nuclear Information System (INIS)

    Collins, P.J.; Gorbatkov, D.; Schultz, F.W.

    2000-01-01

    Monte Carlo methods (for example, MCNP, EGGS4) are the 'gold standard' for both external and internal dosimetry in humans. These powerful simulation tools are, however, general-purpose codes and consequently do not provide a simple user interface for specific dosimetry tasks. We have developed a graphical user interface, for external radiation dosimetry (diagnostic radiology) using MCNP and an anthropomorphic mathematical phantom (Adam/Eva), which enables convenient modification and processing of the MCNP input and output files. The input form displays a colour coded, 3D representation of the phantom with a superimposed 'beam' for the required x-ray projection. The phantom can be rotated through 360 degrees and a transverse section at the level of the mid-point of the beam is also displayed. Text fields enable entry of input data (beam dimensions, source position, kVp, total filtration, focus-to-skin distance). A pull-down menu enables the user to select from 22 standard radiographic views. A standard projection can be modified, or new projection data entered if required. The input program modifies the MCNP input file and initiates processing. An output form displays the organ doses, normalised to unit skin entrance dose (with backscatter) (SED). The user can also enter the SED (calculated or measured) for a particular machine, to obtain the effective dose. To validate the program, the results for a PA Chest study (80 kVp, 2.5 mm Al total filtration) were compared with NRPB data (Jones and Wall, 1985). In conclusion, a convenient and reliable graphical user interface has been developed for MCNP, which enables dosimetry calculation for a full range of diagnostic radiological studies. (author)

  15. Monte Carlo importance sampling for the MCNP trademark general source

    International Nuclear Information System (INIS)

    Lichtenstein, H.

    1996-01-01

    Research was performed to develop an importance sampling procedure for a radiation source. The procedure was developed for the MCNP radiation transport code, but the approach itself is general and can be adapted to other Monte Carlo codes. The procedure, as adapted to MCNP, relies entirely on existing MCNP capabilities. It has been tested for very complex descriptions of a general source, in the context of the design of spent-reactor-fuel storage casks. Dramatic improvements in calculation efficiency have been observed in some test cases. In addition, the procedure has been found to provide an acceleration to acceptable convergence, as well as the benefit of quickly identifying user specified variance-reduction in the transport that effects unstable convergence

  16. Benchmark of Atucha-2 PHWR RELAP5-3D control rod model by Monte Carlo MCNP5 core calculation

    Energy Technology Data Exchange (ETDEWEB)

    Pecchia, M.; D' Auria, F. [San Piero A Grado Nuclear Research Group GRNSPG, Univ. of Pisa, via Diotisalvi, 2, 56122 - Pisa (Italy); Mazzantini, O. [Nucleo-electrica Argentina Societad Anonima NA-SA, Buenos Aires (Argentina)

    2012-07-01

    Atucha-2 is a Siemens-designed PHWR reactor under construction in the Republic of Argentina. Its geometrical complexity and peculiarities require the adoption of advanced Monte Carlo codes for performing realistic neutronic simulations. Therefore core models of Atucha-2 PHWR were developed using MCNP5. In this work a methodology was set up to collect the flux in the hexagonal mesh by which the Atucha-2 core is represented. The scope of this activity is to evaluate the effect of obliquely inserted control rod on neutron flux in order to validate the RELAP5-3D{sup C}/NESTLE three dimensional neutron kinetic coupled thermal-hydraulic model, applied by GRNSPG/UNIPI for performing selected transients of Chapter 15 FSAR of Atucha-2. (authors)

  17. MCNP: Photon benchmark problems

    International Nuclear Information System (INIS)

    Whalen, D.J.; Hollowell, D.E.; Hendricks, J.S.

    1991-09-01

    The recent widespread, markedly increased use of radiation transport codes has produced greater user and institutional demand for assurance that such codes give correct results. Responding to these pressing requirements for code validation, the general purpose Monte Carlo transport code MCNP has been tested on six different photon problem families. MCNP was used to simulate these six sets numerically. Results for each were compared to the set's analytical or experimental data. MCNP successfully predicted the analytical or experimental results of all six families within the statistical uncertainty inherent in the Monte Carlo method. From this we conclude that MCNP can accurately model a broad spectrum of photon transport problems. 8 refs., 30 figs., 5 tabs

  18. A Monte-Carlo Benchmark of TRIPOLI-4® and MCNP on ITER neutronics

    Science.gov (United States)

    Blanchet, David; Pénéliau, Yannick; Eschbach, Romain; Fontaine, Bruno; Cantone, Bruno; Ferlet, Marc; Gauthier, Eric; Guillon, Christophe; Letellier, Laurent; Proust, Maxime; Mota, Fernando; Palermo, Iole; Rios, Luis; Guern, Frédéric Le; Kocan, Martin; Reichle, Roger

    2017-09-01

    Radiation protection and shielding studies are often based on the extensive use of 3D Monte-Carlo neutron and photon transport simulations. ITER organization hence recommends the use of MCNP-5 code (version 1.60), in association with the FENDL-2.1 neutron cross section data library, specifically dedicated to fusion applications. The MCNP reference model of the ITER tokamak, the `C-lite', is being continuously developed and improved. This article proposes to develop an alternative model, equivalent to the 'C-lite', but for the Monte-Carlo code TRIPOLI-4®. A benchmark study is defined to test this new model. Since one of the most critical areas for ITER neutronics analysis concerns the assessment of radiation levels and Shutdown Dose Rates (SDDR) behind the Equatorial Port Plugs (EPP), the benchmark is conducted to compare the neutron flux through the EPP. This problem is quite challenging with regard to the complex geometry and considering the important neutron flux attenuation ranging from 1014 down to 108 n•cm-2•s-1. Such code-to-code comparison provides independent validation of the Monte-Carlo simulations, improving the confidence in neutronic results.

  19. MCNP: a general Monte Carlo code for neutron and photon transport. Version 3A. Revision 2

    International Nuclear Information System (INIS)

    Briesmeister, J.F.

    1986-09-01

    This manual is a practical guide for the use of our general-purpose Monte Carlo code MCNP. The first chapter is a primer for the novice user. The second chapter describes the mathematics, data, physics, and Monte Carlo simulation found in MCNP. This discussion is not meant to be exhaustive - details of the particular techniques and of the Monte Carlo method itself will have to be found elsewhere. The third chapter shows the user how to prepare input for the code. The fourth chapter contains several examples, and the fifth chapter explains the output. The appendices show how to use MCNP on particular computer systems at the Los Alamos National Laboratory and also give details about some of the code internals that those who wish to modify the code may find useful. 57 refs

  20. Analysis of the variation of the attenuation curve in function of the radiation field size for k Vp X-ray beams using the MCNP-5C code

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Marco A.R., E-mail: marco@cetea.com.b, E-mail: marfernandes@fmb.unesp.b [Universidade Estadual Paulista Julio de Mesquita Filho (FMB/UNESP), Botucatu, SP (Brazil). Fac. de Medicina; Ribeiro, Victor A.B. [Universidade Estadual Paulista Julio de Mesquita Filho (IBB/UNESP), Botucatu, SP (Brazil). Inst. de Biociencias; Viana, Rodrigo S.S.; Coelho, Talita S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The paper illustrates the use of the Monte Carlo method, MCNP-5C code, to analyze the attenuation curve behavior of the 50 kVp radiation beam from superficial radiotherapy equipment as Dermopan2 model. The simulations seek to verify the MCNP-5C code performance to study the variation of the attenuation curve - percentage depth dose (PDD) curve - in function of the radiation field dimension used at radiotherapy of skin tumors with 50 kVp X-ray beams. The PDD curve was calculated for six different radiation field sizes with circular geometry of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 cm in diameter. The radiation source was modeled considering a tungsten target with inclination 30 deg, focal point of 6.5 mm in diameter and energy beam of 50 kVp; the X-ray spectrum was calculated with the MCNP-5C code adopting total filtration (beryllium window of 1 mm and aluminum additional filter of 1 mm). The PDD showed decreasing behavior with the attenuation depth similar what is presented on the literature. There was not significant variation at the PDD values for the radiation field between 1.0 and 4.0 cm in diameter. The differences increased for fields of 5.0 and 6.0 cm and at attenuation depth higher than 1.0 cm. When it is compared the PDD values for fields of 3.0 and 6.0 cm in diameter, it verifies the greater difference (12.6 %) at depth of 5.7 cm, proving the scattered radiation effect. The MCNP-5C code showed as an appropriate procedure to analyze the attenuation curves of the superficial radiotherapy beams. (author)

  1. MCNP-DSP, Monte Carlo Neutron-Particle Transport Code with Digital Signal Processing

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Description of program or function: MCNP-DSP is recommended only for experienced MCNP users working with subcritical measurements. It is a modification of the Los Alamos National Laboratory's Monte Carlo code MCNP4a that is used to simulate a variety of subcritical measurements. The DSP version was developed to simulate frequency analysis measurements, correlation (Rossi-) measurements, pulsed neutron measurements, Feynman variance measurements, and multiplicity measurements. CCC-700/MCNP4C is recommended for general purpose calculations. 2 - Methods:MCNP-DSP performs calculations very similarly to MCNP and uses the same generalized geometry capabilities of MCNP. MCNP-DSP can only be used with the continuous-energy cross-section data. A variety of source and detector options are available. However, unlike standard MCNP, the source and detector options are limited to those described in the manual because these options are specified in the MCNP-DSP extra data file. MCNP-DSP is used to obtain the time-dependent response of detectors that are modeled in the simulation geometry. The detectors represent actual detectors used in measurements. These time-dependent detector responses are used to compute a variety of quantities such as frequency analysis signatures, correlation signatures, multiplicity signatures, etc., between detectors or sources and detectors. Energy ranges are 0-60 MeV for neutrons (data generally only available up to 20 MeV) and 1 keV - 1 GeV for photons and electrons. 3 - Restrictions on the complexity of the problem: None noted

  2. Comparison of MCNP5 and experimental results on neutron shielding effects for materials

    Energy Technology Data Exchange (ETDEWEB)

    Torres, D. A. (Daniel A.); Mosteller, R. D. (Russell D.); Sweezy, J. E. (Jeremy E.)

    2004-01-01

    The MCNP Radiation-Shielding Validation Suite was created to assess the impact on dose rates and attenuation factors of future improvements in the MCNP Monte Carlo code or its nuclear data libraries. However, it does not currently contain any deep-penetration cases. For this reason, a set of deep-penetration benchmarks has been investigated for possible inclusion in the Suite. Overall, the MCNP5 results match the measured values quite well. Furthermore, with the exception of Resin-F, there is no systematic trend in the ratio of calculated to measured results.

  3. Modification to the Monte Carlo N-Particle (MCNP) Visual Editor (MCNPVised) to Read in Computer Aided Design (CAD) Files

    International Nuclear Information System (INIS)

    Randolph Schwarz; Leland L. Carter; Alysia Schwarz

    2005-01-01

    Monte Carlo N-Particle Transport Code (MCNP) is the code of choice for doing complex neutron/photon/electron transport calculations for the nuclear industry and research institutions. The Visual Editor for Monte Carlo N-Particle is internationally recognized as the best code for visually creating and graphically displaying input files for MCNP. The work performed in this grant was used to enhance the capabilities of the MCNP Visual Editor to allow it to read in both 2D and 3D Computer Aided Design (CAD) files, allowing the user to electronically generate a valid MCNP input geometry

  4. Modification to the Monte N-Particle (MCNP) Visual Editor (MCNPVised) to read in Computer Aided Design (CAD) files

    International Nuclear Information System (INIS)

    Schwarz, Randy A.; Carter, Leeland L.

    2004-01-01

    Monte Carlo N-Particle Transport Code (MCNP) (Reference 1) is the code of choice for doing complex neutron/photon/electron transport calculations for the nuclear industry and research institutions. The Visual Editor for Monte Carlo N-Particle (References 2 to 11) is recognized internationally as the best code for visually creating and graphically displaying input files for MCNP. The work performed in this grant enhanced the capabilities of the MCNP Visual Editor to allow it to read in a 2D Computer Aided Design (CAD) file, allowing the user to modify and view the 2D CAD file and then electronically generate a valid MCNP input geometry with a user specified axial extent

  5. Suitability study of MCNP Monte Carlo program for use in medical physics

    International Nuclear Information System (INIS)

    Jeraj, R.

    1998-01-01

    MCNP is widely used Monte Carlo program in reactor and nuclear physics. However, an option of simulating electrons was added into the code a few years ago. With this extension MCNP became a code, potentially applicable for applications in medical physics. In 1997, a new version of the code, named MCNP4B was released, which contains several improvements in electron transport modeling. To test suitability of the code, several important issues were considered and examined. Default sampling in MCNP electron transport was found to be inappropriate, because it gives wrong depth dose curves for electron energies of interest in radiotherapy (Me V range). The problem can be solved if ITS-style energy sampling is used instead. One of the most difficult problems in electron transport is simulation of electron backscattering, which MCNP predicts well for all, low and high Z materials. One of the potential drawbacks, if somebody wanted to use MCNP for dosimetry on real patient geometries is that MCNP lattice calculation (e.g. when calculating dose distributions) becomes very slow for large number of scoring voxels. However, if just one scoring voxel is used, the number of geometry voxels only slightly affects the speed. In the study it was found that MCNP could be reliability used for many applications in medical physics. However, the established limitations should be taken into account when MCNP is used for a particular application.(author)

  6. Improvement of Monte Carlo code A3MCNP for large-scale shielding problems

    International Nuclear Information System (INIS)

    Miyake, Y.; Ohmura, M.; Hasegawa, T.; Ueki, K.; Sato, O.; Haghighat, A.; Sjoden, G.E.

    2004-01-01

    A 3 MCNP (Automatic Adjoint Accelerated MCNP) is a revised version of the MCNP Monte Carlo code, that automatically prepares variance reduction parameters for the CADIS (Consistent Adjoint Driven Importance Sampling) methodology. Using a deterministic 'importance' (or adjoint) function, CADIS performs source and transport biasing within the weight-window technique. The current version of A 3 MCNP uses the 3-D Sn transport TORT code to determine a 3-D importance function distribution. Based on simulation of several real-life problems, it is demonstrated that A 3 MCNP provides precise calculation results with a remarkably short computation time by using the proper and objective variance reduction parameters. However, since the first version of A 3 MCNP provided only a point source configuration option for large-scale shielding problems, such as spent-fuel transport casks, a large amount of memory may be necessary to store enough points to properly represent the source. Hence, we have developed an improved version of A 3 MCNP (referred to as A 3 MCNPV) which has a volumetric source configuration option. This paper describes the successful use of A 3 MCNPV for a concrete cask streaming problem and a PWR dosimetry problem. (author)

  7. Verification and Validation of Monte Carlo n-Particle Code 6 (MCNP6) with Neutron Protection Factor Measurements of an Iron Box

    Science.gov (United States)

    2014-03-27

    Vehicle Code System (VCS), the Monte Carlo Adjoint SHielding (MASH), and the Monte Carlo n- Particle ( MCNP ) code. Of the three, the oldest and still most...widely utilized radiation transport code is MCNP . First created at Los Alamos National Laboratory (LANL) in 1957, the code simulated neutral...particle types, and previous versions of MCNP were repeatedly validated using both simple and complex 10 geometries [12, 13]. Much greater discussion and

  8. Installation of Monte Carlo neutron and photon transport code system MCNP4

    International Nuclear Information System (INIS)

    Takano, Makoto; Sasaki, Mikio; Kaneko, Toshiyuki; Yamazaki, Takao.

    1993-03-01

    The continuous energy Monte Carlo code MCNP-4 including its graphic functions has been installed on the Sun-4 sparc-2 work station with minor corrections. In order to validate the installed MCNP-4 code, 25 sample problems have been executed on the work station and these results have been compared with the original ones. And, the most of the graphic functions have been demonstrated by using 3 sample problems. Further, additional 14 nuclides have been included to the continuous cross section library edited from JENDL-3. (author)

  9. Monte Carlo model of diagnostic X-ray dosimetry

    International Nuclear Information System (INIS)

    Khrutchinsky, Arkady; Kutsen, Semion; Gatskevich, George

    2008-01-01

    Full text: A Monte Carlo simulation of absorbed dose distribution in patient's tissues is often used in a dosimetry assessment of X-ray examinations. The results of such simulations in Belarus are presented in the report based on an anthropomorphic tissue-equivalent Rando-like physical phantom. The phantom corresponds to an adult 173 cm high and of 73 kg and consists of a torso and a head made of tissue-equivalent plastics which model soft (muscular), bone, and lung tissues. It consists of 39 layers (each 25 mm thick), including 10 head and neck ones, 16 chest and 13 pelvis ones. A tomographic model of the phantom has been developed from its CT-scan images with a voxel size of 0.88 x 0.88 x 4 mm 3 . A necessary pixelization in Mathematics-based in-house program was carried out for the phantom to be used in the radiation transport code MCNP-4b. The final voxel size of 14.2 x 14.2 x 8 mm 3 was used for the reasonable computer consuming calculations of absorbed dose in tissues and organs in various diagnostic X-ray examinations. MCNP point detectors allocated through body slices obtained as a result of the pixelization were used to calculate the absorbed dose. X-ray spectra generated by the empirical TASMIP model were verified on the X-ray units MEVASIM and SIREGRAPH CF. Absorbed dose distributions in the phantom volume were determined by the corresponding Monte Carlo simulations with a set of point detectors. Doses in organs of the adult phantom computed from the absorbed dose distributions by another Mathematics-based in-house program were estimated for 22 standard organs for various standard X-ray examinations. The results of Monte Carlo simulations were compared with the results of direct measurements of the absorbed dose in the phantom on the X-ray unit SIREGRAPH CF with the calibrated thermo-luminescent dosimeter DTU-01. The measurements were carried out in specified locations of different layers in heart, lungs, liver, pancreas, and stomach at high voltage of

  10. Implementation of multileaf collimator in a LINAC MCNP5 simulation coupled with the radiation treatment planing system PLUNC

    International Nuclear Information System (INIS)

    Abella, Vicente; Miro, Rafael; Juste, Belen; Verdu, Gumersindo

    2010-01-01

    Multileaf collimators are used on linear accelerators to provide conformal shaping of radiotherapy treatment beams, being an important tool for radiation therapy dose delivery. In this work, a multileaf collimator has been designed and implemented in the MCNP model of an Elekta Precise Linear Accelerator and introduced in PLUNC, a set of software tools for radiotherapy treatment planning (RTP) which was coupled in previous works with MCNP5 (Monte Carlo N-Particle transport code), with the purpose of comparing its effect on deterministic and Monte Carlo dose calculations. A 3D Shepp-Logan phantom was utilized as the patient model for validation purposes. Once the multileaf collimator model is implemented in the PLUNC LINAC model, a series of Matlab interfaces extract phantom and beam information created with PLUNC during the treatment plan and write it in MCNP5 input deck format. After the Monte Carlo simulation is performed, results are input back again in PLUNC in order to continue with the plan evaluation. The comparison is made via mapping of dose distribution inside the phantom with different field sizes, utilizing the MCNP5 tool EMESH, superimposed mesh tally, which allows registering the results over the problem geometry. This work follows a valid methodology for multileaf LINAC MC calculations during radiation treatment plans. (author)

  11. The new MCNP6 depletion capability

    International Nuclear Information System (INIS)

    Fensin, M. L.; James, M. R.; Hendricks, J. S.; Goorley, J. T.

    2012-01-01

    The first MCNP based in-line Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. Both the MCNP5 and MCNPX codes have historically provided a successful combinatorial geometry based, continuous energy, Monte Carlo radiation transport solution for advanced reactor modeling and simulation. However, due to separate development pathways, useful simulation capabilities were dispersed between both codes and not unified in a single technology. MCNP6, the next evolution in the MCNP suite of codes, now combines the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. We describe here the new capabilities of the MCNP6 depletion code dating from the official RSICC release MCNPX 2.6.0, reported previously, to the now current state of MCNP6. NEA/OECD benchmark results are also reported. The MCNP6 depletion capability enhancements beyond MCNPX 2.6.0 reported here include: (1) new performance enhancing parallel architecture that implements both shared and distributed memory constructs; (2) enhanced memory management that maximizes calculation fidelity; and (3) improved burnup physics for better nuclide prediction. MCNP6 depletion enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code. The enhancements described here help provide a powerful capability as well as dictate a path forward for future development to improve the usefulness of the technology. (authors)

  12. The New MCNP6 Depletion Capability

    International Nuclear Information System (INIS)

    Fensin, Michael Lorne; James, Michael R.; Hendricks, John S.; Goorley, John T.

    2012-01-01

    The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. Both the MCNP5 and MCNPX codes have historically provided a successful combinatorial geometry based, continuous energy, Monte Carlo radiation transport solution for advanced reactor modeling and simulation. However, due to separate development pathways, useful simulation capabilities were dispersed between both codes and not unified in a single technology. MCNP6, the next evolution in the MCNP suite of codes, now combines the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. We describe here the new capabilities of the MCNP6 depletion code dating from the official RSICC release MCNPX 2.6.0, reported previously, to the now current state of MCNP6. NEA/OECD benchmark results are also reported. The MCNP6 depletion capability enhancements beyond MCNPX 2.6.0 reported here include: (1) new performance enhancing parallel architecture that implements both shared and distributed memory constructs; (2) enhanced memory management that maximizes calculation fidelity; and (3) improved burnup physics for better nuclide prediction. MCNP6 depletion enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code. The enhancements described here help provide a powerful capability as well as dictate a path forward for future development to improve the usefulness of the technology.

  13. Analysis of the design of an X-ray tube using Monte Carlo; Analisis del diseno de un tubo de rayos X mediante Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Pena V, J. D.; Sosa A, M. A.; Ceron, P. V.; Vallejo, M. A. [Universidad de Guanajuato, Division de Ciencias e Ingenierias, Loma del Bosque No. 103, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Vega C, H. R., E-mail: jd.penavidal@ugto.mx [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas, Zac. (Mexico)

    2017-10-15

    In this paper we present the Monte Carlo analysis of the X-rays produced by a rotating X-ray tube of the Siemens brand that is used in tomographs for clinical use. The work was done with the MCNP6 code with which the tube was modeled and the primary X-ray spectra produced during the interaction of monoenergetic electrons of 130 keV were calculated. The X-ray spectra were obtained by varying some parameters such as: the angle of the anode (15 to 20 degrees), the type of target (Tungsten, Molybdenum and Rhodium) and the thickness of the filter (3, 5, 10 and 15 mm). In order to have a good statistic 10{sup 7} stories were used. Though the estimators f2 and f5 the X-ray spectra and the total fluencies were estimated. This information will be used to calculate the dose absorbed in the lens and the thyroid gland in patients undergoing radio diagnosis procedures. (Author)

  14. Monte Carlo Simulation of Electron Beams for Radiotherapy - EGS4, MCNP4b and GEANT3 Intercomparison

    CERN Document Server

    Trindade, A; Alves, C M; Chaves, A; Lopes, C; Oliveira, C; Peralta, L

    2000-01-01

    In medical radiation physics, an increasing number of Monte Carlo codes are being used, which requires intercomparison between them to evaluated the accuracy of the simulated results against benchmark experiments. The Monte Carlo code EGS4, commonly used to simulate electron beams from medical linear accelerators, was compared with GEANT3 and MCNP4b. Intercomparison of electron energy spectra, angular and spatial distribution were carried out for the Siemens KD2 linear accelerator, at beam energies of 10 and 15 MeV for a field size of 10x10 cm2. Indirect validation was performed against electron depth doses curves and beam profiles measured in a MP3-PTW water phantom using a Markus planar chamber. Monte Carlo isodose lines were reconstructed and compared to those from commercial treatment planning systems (TPS's) and with experimental data.

  15. Benchmarking the MCNP code for Monte Carlo modelling of an in vivo neutron activation analysis system.

    Science.gov (United States)

    Natto, S A; Lewis, D G; Ryde, S J

    1998-01-01

    The Monte Carlo computer code MCNP (version 4A) has been used to develop a personal computer-based model of the Swansea in vivo neutron activation analysis (IVNAA) system. The model included specification of the neutron source (252Cf), collimators, reflectors and shielding. The MCNP model was 'benchmarked' against fast neutron and thermal neutron fluence data obtained experimentally from the IVNAA system. The Swansea system allows two irradiation geometries using 'short' and 'long' collimators, which provide alternative dose rates for IVNAA. The data presented here relate to the short collimator, although results of similar accuracy were obtained using the long collimator. The fast neutron fluence was measured in air at a series of depths inside the collimator. The measurements agreed with the MCNP simulation within the statistical uncertainty (5-10%) of the calculations. The thermal neutron fluence was measured and calculated inside the cuboidal water phantom. The depth of maximum thermal fluence was 3.2 cm (measured) and 3.0 cm (calculated). The width of the 50% thermal fluence level across the phantom at its mid-depth was found to be the same by both MCNP and experiment. This benchmarking exercise has given us a high degree of confidence in MCNP as a tool for the design of IVNAA systems.

  16. Considerations of MCNP Monte Carlo code to be used as a radiotherapy treatment planning tool.

    Science.gov (United States)

    Juste, B; Miro, R; Gallardo, S; Verdu, G; Santos, A

    2005-01-01

    The present work has simulated the photon and electron transport in a Theratron 780® (MDS Nordion)60Co radiotherapy unit, using the Monte Carlo transport code, MCNP (Monte Carlo N-Particle). This project explains mainly the different methodologies carried out to speedup calculations in order to apply this code efficiently in radiotherapy treatment planning.

  17. Radiation field characterization of a BNCT research facility using Monte Carlo method - code MCNP-4B

    International Nuclear Information System (INIS)

    Hernandez, Antonio Carlos

    2002-01-01

    Boron Neutron Capture Therapy - BNCT - is a selective cancer treatment and arises as an alternative therapy to treat cancer when usual techniques - surgery, chemotherapy or radiotherapy - show no satisfactory results. The main proposal of this work is to project a facility to BNCT studies. This facility relies on the use of an Am Be neutron source and on a set of moderators, filters and shielding which will provide the best neutron/gamma beam characteristic for these Becton studies, i.e., high intensity thermal and/or epithermal neutron fluxes and with the minimum feasible gamma rays and fast neutrons contaminants. A computational model of the experiment was used to obtain the radiation field in the sample irradiation position. The calculations have been performed with the MCNP 4B Monte Carlo Code and the results obtained can be regarded as satisfactory, i.e., a thermal neutron fluencyN T = 1,35x10 8 n/cm , a fast neutron dose of 5,86x10 -10 Gy/N T and a gamma ray dose of 8,30x10 -14 Gy/N T . (author)

  18. Radiation field characterization of a BNCT research facility using Monte Carlo Method - Code MCNP-4B

    International Nuclear Information System (INIS)

    Hernandes, Antonio Carlos

    2002-01-01

    Boron Neutron Capture Therapy - BNCT- is a selective cancer treatment and arises as an alternative therapy to treat cancer when usual techniques - surgery, chemotherapy or radiotherapy - show no satisfactory results. The main proposal of this work is to project a facility to BNCT studies. This facility relies on the use of an AmBe neutron source and on a set of moderators, filters and shielding which will provide the best neutron/gamma beam characteristic for these BNCT studies, i.e., high intensity thermal and/or epithermal neutron fluxes and with the minimum feasible gamma rays and fast neutrons contaminants. A computational model of the experiment was used to obtain the radiation field in the sample irradiation position. The calculations have been performed with the MCNP 4B Monte Carlo Code and the results obtained can be regarded as satisfactory, i.e., a thermal neutron fluency Ν Τ = 1,35x10 8 n/cm 2 , a fast neutron dose of 5,86x -1 0 Gy/Ν Τ and a gamma ray dose of 8,30x -14 Gy/Ν Τ . (author)

  19. Verification of the shift Monte Carlo code with the C5G7 reactor benchmark

    International Nuclear Information System (INIS)

    Sly, N. C.; Mervin, B. T.; Mosher, S. W.; Evans, T. M.; Wagner, J. C.; Maldonado, G. I.

    2012-01-01

    Shift is a new hybrid Monte Carlo/deterministic radiation transport code being developed at Oak Ridge National Laboratory. At its current stage of development, Shift includes a parallel Monte Carlo capability for simulating eigenvalue and fixed-source multigroup transport problems. This paper focuses on recent efforts to verify Shift's Monte Carlo component using the two-dimensional and three-dimensional C5G7 NEA benchmark problems. Comparisons were made between the benchmark eigenvalues and those output by the Shift code. In addition, mesh-based scalar flux tally results generated by Shift were compared to those obtained using MCNP5 on an identical model and tally grid. The Shift-generated eigenvalues were within three standard deviations of the benchmark and MCNP5-1.60 values in all cases. The flux tallies generated by Shift were found to be in very good agreement with those from MCNP. (authors)

  20. Tally and geometry definition influence on the computing time in radiotherapy treatment planning with MCNP Monte Carlo code.

    Science.gov (United States)

    Juste, B; Miro, R; Gallardo, S; Santos, A; Verdu, G

    2006-01-01

    The present work has simulated the photon and electron transport in a Theratron 780 (MDS Nordion) (60)Co radiotherapy unit, using the Monte Carlo transport code, MCNP (Monte Carlo N-Particle), version 5. In order to become computationally more efficient in view of taking part in the practical field of radiotherapy treatment planning, this work is focused mainly on the analysis of dose results and on the required computing time of different tallies applied in the model to speed up calculations.

  1. Implementation of 3D models in the Monte Carlo code MCNP

    International Nuclear Information System (INIS)

    Lopes, Vivaldo; Millian, Felix M.; Guevara, Maria Victoria M.; Garcia, Fermin; Sena, Isaac; Menezes, Hugo

    2009-01-01

    On the area of numerical dosimetry Applied to medical physics, the scientific community focuses on the elaboration of new hybrids models based on 3D models. But different steps of the process of simulation with 3D models needed improvement and optimization in order to expedite the calculations and accuracy using this methodology. This project was developed with the aim of optimize the process of introduction of 3D models within the simulation code of radiation transport by Monte Carlo (MCNP). The fast implementation of these models on the simulation code allows the estimation of the dose deposited on the patient organs on a more personalized way, increasing the accuracy with this on the estimates and reducing the risks to health, caused by ionizing radiations. The introduction o these models within the MCNP was made through a input file, that was constructed through a sequence of images, bi-dimensional in the 3D model, generated using the program '3DSMAX', imported by the program 'TOMO M C' and thus, introduced as INPUT FILE of the MCNP code. (author)

  2. MCNP5 CRITICALITY VALIDATION AND BIAS FOR INTERMEDIATE ENRICHED URANIUM SYSTEMS

    International Nuclear Information System (INIS)

    Finfrock, S.H.

    2009-01-01

    The purpose of this analysis is to validate the Monte Carlo N-Particle 5 (MCNP5) code Version 1.40 (LA-UR-03-1987, 2005) and its cross-section database for k-code calculations of intermediate enriched uranium systems on INTEL(reg s ign) processor based PC's running any version of the WINDOWS operating system. Configurations with intermediate enriched uranium were modeled with the moderator range of 39 (le) H/Fissile (le) 1438. See Table 2-1 for brief descriptions of selected cases and Table 3-1 for the range of applicability for this validation. A total of 167 input cases were evaluated including bare and reflected systems in a single body or arrays. The 167 cases were taken directly from the previous (Version 4C [Lan 2005]) validation database. Section 2.0 list data used to calculate k-effective (k eff ) for the 167 experimental criticality benchmark cases using the MCNP5 code v1.40 and its cross section database. Appendix B lists the MCNP cross-section database entries validated for use in evaluating the intermediate enriched uranium systems for criticality safety. The dimensions and atom densities for the intermediate enriched uranium experiments were taken from NEA/NSC/DOC(95)03, September 2005, which will be referred to as the benchmark handbook throughout the report. For these input values, the experimental benchmark k eff is approximately 1.0. The MCNP validation computer runs ran to an accuracy of approximately ± 0.001. For the cases where the reported benchmark k eff was not equal to 1.0000 the MCNP calculational results were normalized. The difference between the MCNP validation computer runs and the experimentally measured k eff is the MCNP5 v1.40 bias. The USLSTATS code (ORNL 1998) was utilized to perform the statistical analysis and generate an acceptable maximum k eff limit for calculations of the intermediate enriched uranium type systems.

  3. Processing and benchmarking of evaluated nuclear data file/b-viii.0β4 cross-section library by analysis of a series of critical experimental benchmark using the monte carlo code MCNP(X and NJOY2016

    Directory of Open Access Journals (Sweden)

    Kabach Ouadie

    2017-12-01

    Full Text Available To validate the new Evaluated Nuclear Data File (ENDF/B-VIII.0β4 library, 31 different critical cores were selected and used for a benchmark test of the important parameter keff. The four utilized libraries are processed using Nuclear Data Processing Code (NJOY2016. The results obtained with the ENDF/B-VIII.0β4 library were compared against those calculated with ENDF/B-VI.8, ENDF/B-VII.0, and ENDF/B-VII.1 libraries using the Monte Carlo N-Particle (MCNP(X code. All the MCNP(X calculations of keff values with these four libraries were compared with the experimentally measured results, which are available in the International Critically Safety Benchmark Evaluation Project. The obtained results are discussed and analyzed in this paper.

  4. Comparison of EGS4 and MCNP Monte Carlo codes when calculating radiotherapy depth doses.

    Science.gov (United States)

    Love, P A; Lewis, D G; Al-Affan, I A; Smith, C W

    1998-05-01

    The Monte Carlo codes EGS4 and MCNP have been compared when calculating radiotherapy depth doses in water. The aims of the work were to study (i) the differences between calculated depth doses in water for a range of monoenergetic photon energies and (ii) the relative efficiency of the two codes for different electron transport energy cut-offs. The depth doses from the two codes agree with each other within the statistical uncertainties of the calculations (1-2%). The relative depth doses also agree with data tabulated in the British Journal of Radiology Supplement 25. A discrepancy in the dose build-up region may by attributed to the different electron transport algorithims used by EGS4 and MCNP. This discrepancy is considerably reduced when the improved electron transport routines are used in the latest (4B) version of MCNP. Timing calculations show that EGS4 is at least 50% faster than MCNP for the geometries used in the simulations.

  5. General introduction to MCNP

    International Nuclear Information System (INIS)

    Naito, Yoshitaka

    2001-01-01

    To assist succeeding reports which will be presented in this research meeting, following items on the computer code MCNP developed in USA are presented: (1) history of development of MCNP, (2) meaning of the development, (3) progress of study on Monte Carlo codes in the nuclear code committee and (4) expectation to Monte Carlo codes. (author)

  6. SU-E-T-212: Comparison of TG-43 Dosimetric Parameters of Low and High Energy Brachytherapy Sources Obtained by MCNP Code Versions of 4C, X and 5

    Energy Technology Data Exchange (ETDEWEB)

    Zehtabian, M; Zaker, N; Sina, S [Shiraz University, Shiraz, Fars (Iran, Islamic Republic of); Meigooni, A Soleimani [Comprehensive Cancer Center of Nevada, Las Vegas, Nevada (United States)

    2015-06-15

    Purpose: Different versions of MCNP code are widely used for dosimetry purposes. The purpose of this study is to compare different versions of the MCNP codes in dosimetric evaluation of different brachytherapy sources. Methods: The TG-43 parameters such as dose rate constant, radial dose function, and anisotropy function of different brachytherapy sources, i.e. Pd-103, I-125, Ir-192, and Cs-137 were calculated in water phantom. The results obtained by three versions of Monte Carlo codes (MCNP4C, MCNPX, MCNP5) were compared for low and high energy brachytherapy sources. Then the cross section library of MCNP4C code was changed to ENDF/B-VI release 8 which is used in MCNP5 and MCNPX codes. Finally, the TG-43 parameters obtained using the MCNP4C-revised code, were compared with other codes. Results: The results of these investigations indicate that for high energy sources, the differences in TG-43 parameters between the codes are less than 1% for Ir-192 and less than 0.5% for Cs-137. However for low energy sources like I-125 and Pd-103, large discrepancies are observed in the g(r) values obtained by MCNP4C and the two other codes. The differences between g(r) values calculated using MCNP4C and MCNP5 at the distance of 6cm were found to be about 17% and 28% for I-125 and Pd-103 respectively. The results obtained with MCNP4C-revised and MCNPX were similar. However, the maximum difference between the results obtained with the MCNP5 and MCNP4C-revised codes was 2% at 6cm. Conclusion: The results indicate that using MCNP4C code for dosimetry of low energy brachytherapy sources can cause large errors in the results. Therefore it is recommended not to use this code for low energy sources, unless its cross section library is changed. Since the results obtained with MCNP4C-revised and MCNPX were similar, it is concluded that the difference between MCNP4C and MCNPX is their cross section libraries.

  7. MCNP: a general Monte Carlo code for neutron and photon transport

    International Nuclear Information System (INIS)

    1979-11-01

    The general-purpose Monte Carlo code MCNP ca be used for neutron, photon, or coupled neutron-photon transport, including the capability to calculate eigenvalues for critical systems. The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces (elliptical tori). Pointwise cross-section data are used. For neutrons, all reactions given in a particular cross-section evaluation are accounted for. Thermal neutrons are described by both the free-gas and S(α,β) models. For photons, the code takes account of incoherent and coherent scattering, the possibility of fluorescent emission following photoelectric absorption, and absorption in pair production with local emission of annihilation radiation. MCNP includes an elaborate, interactive plotting capability that allows the user to view his input geometry to help check for setup errors. Standard features which are available to improve computational efficiency include geometry splitting and Russian roulette, weight cutoff with Russian roulette, correlated sampling, analog capture or capture by weight reduction, the exponential transformation, energy splitting, forced collisions in designated cells, flux estimates at point or ring detectors, deterministically transporting pseudo-particles to designated regions, track-length estimators, source biasing, and several parameter cutoffs. Extensive summary information is provided to help the user better understand the physics and Monte Carlo simulation of his problem. The standard, user-defined output of MCNP includes two-way current as a function of direction across any set of surfaces or surface segments in the problem. Flux across any set of surfaces or surface segments is available. 58 figures, 28 tables

  8. Calculation of the X-Ray Spectrum of a Mammography System with Various Voltages and Different Anode-Filter Combinations Using MCNP Code

    Directory of Open Access Journals (Sweden)

    Lida Gholamkar

    2016-09-01

    Full Text Available Introduction One of the best methods in the diagnosis and control of breast cancer is mammography. The importance of mammography is directly related to its value in the detection of breast cancer in the early stages, which leads to a more effective treatment. The purpose of this article was to calculate the X-ray spectrum in a mammography system with Monte Carlo codes, including MCNPX and MCNP5. Materials and Methods The device, simulated using the MCNP code, was Planmed Nuance digital mammography device (Planmed Oy, Finland, equipped with an amorphous selenium detector. Different anode/filter materials, such as molybdenum-rhodium (Mo-Rh, molybdenum-molybdenum (Mo-Mo, tungsten-tin (W-Sn, tungsten-silver (W-Ag, tungsten-palladium (W-Pd, tungsten-aluminum (W-Al, tungsten-molybdenum (W-Mo, molybdenum-aluminum (Mo-Al, tungsten-rhodium (W-Rh, rhodium-aluminum (Rh-Al, and rhodium-rhodium (Rh-Rh, were simulated in this study. The voltage range of the X-ray tube was between 24 and 34 kV with a 2 kV interval. Results The charts of changing photon flux versus energy were plotted for different types of anode-filter combinations. The comparison with the findings reported by others indicated acceptable consistency. Also, the X-ray spectra, obtained from MCNP5 and MCNPX codes for W-Ag and W-Rh combinations, were compared. We compared the present results with the reported data of MCNP4C and IPEM report No. 78 for Mo-Mo, Mo-Rh, and W-Al combinations. Conclusion The MCNPX calculation outcomes showed acceptable results in a low-energy X-ray beam range (10-35 keV. The obtained simulated spectra for different anode/filter combinations were in good conformity with the finding of previous research.

  9. Development and Application of MCNP5 and KENO-VI Monte Carlo Models for the Atucha-2 PHWR Analysis

    Directory of Open Access Journals (Sweden)

    M. Pecchia

    2011-01-01

    Full Text Available The geometrical complexity and the peculiarities of Atucha-2 PHWR require the adoption of advanced Monte Carlo codes for performing realistic neutronic simulations. Core models of Atucha-2 PHWR were developed using both MCNP5 and KENO-VI codes. The developed models were applied for calculating reactor criticality states at beginning of life, reactor cell constants, and control rods volumes. The last two applications were relevant for performing successive three dimensional neutron kinetic analyses since it was necessary to correctly evaluate the effect of each oblique control rod in each cell discretizing the reactor. These corrective factors were then applied to the cell cross sections calculated by the two-dimensional deterministic lattice physics code HELIOS. These results were implemented in the RELAP-3D model to perform safety analyses for the licensing process.

  10. Parallel processing of Monte Carlo code MCNP for particle transport problem

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Kenji; Kawasaki, Takuji

    1996-06-01

    It is possible to vectorize or parallelize Monte Carlo codes (MC code) for photon and neutron transport problem, making use of independency of the calculation for each particle. Applicability of existing MC code to parallel processing is mentioned. As for parallel computer, we have used both vector-parallel processor and scalar-parallel processor in performance evaluation. We have made (i) vector-parallel processing of MCNP code on Monte Carlo machine Monte-4 with four vector processors, (ii) parallel processing on Paragon XP/S with 256 processors. In this report we describe the methodology and results for parallel processing on two types of parallel or distributed memory computers. In addition, we mention the evaluation of parallel programming environments for parallel computers used in the present work as a part of the work developing STA (Seamless Thinking Aid) Basic Software. (author)

  11. Performance of the improved version of Monte Carlo Code A3MCNP for cask shielding design

    International Nuclear Information System (INIS)

    Hasegawa, T.; Ueki, K.; Sato, O.; Sjoden, G.E.; Miyake, Y.; Ohmura, M.; Haghighat, A.

    2004-01-01

    A 3 MCNP (Automatic Adjoint Accelerated MCNP) is a revised version of the MCNP Monte Carlo code, that automatically prepares variance reduction parameters for the CADIS (Consistent Adjoint Driven Importance Sampling) methodology. Using a deterministic ''importance'' (or adjoint) function, CADIS performs source and transport biasing within the weight-window technique. The current version of A 3 MCNP uses the 3-D Sn transport TORT code to determine a 3-D importance function distribution. Based on simulation of several real-life problems, it is demonstrated that A3MCNP provides precise calculation results with a remarkably short computation time by using the proper and objective variance reduction parameters. However, since the first version of A 3 MCNP provided only a point source configuration option for large-scale shielding problems, such as spent-fuel transport casks, a large amount of memory may be necessary to store enough points to properly represent the source. Hence, we have developed an improved version of A 3 MCNP (referred to as A 3 MCNPV) which has a volumetric source configuration option. This paper describes the successful use of A 3 MCNPV for cask neutron and gamma-ray shielding problem

  12. Accuracy estimation for intermediate and low energy neutron transport calculation with Monte Carlo code MCNP

    International Nuclear Information System (INIS)

    Kotegawa, Hiroshi; Sasamoto, Nobuo; Tanaka, Shun-ichi

    1987-02-01

    Both ''measured radioactive inventory due to neutron activation in the shield concrete of JPDR'' and ''measured intermediate and low energy neutron spectra penetrating through a graphite sphere'' are analyzed using a continuous energy model Monte Carlo code MCNP so as to estimate calculational accuracy of the code for neutron transport in thermal and epithermal energy regions. Analyses reveal that MCNP calculates thermal neutron spectra fairly accurately, while it apparently over-estimates epithermal neutron spectra (of approximate 1/E distribution) as compared with the measurements. (author)

  13. Monte Carlo calculations of thermal neutron capture in gadolinium: a comparison of GEANT4 and MCNP with measurements.

    Science.gov (United States)

    Enger, Shirin A; Munck af Rosenschöld, Per; Rezaei, Arash; Lundqvist, Hans

    2006-02-01

    GEANT4 is a Monte Carlo code originally implemented for high-energy physics applications and is well known for particle transport at high energies. The capacity of GEANT4 to simulate neutron transport in the thermal energy region is not equally well known. The aim of this article is to compare MCNP, a code commonly used in low energy neutron transport calculations and GEANT4 with experimental results and select the suitable code for gadolinium neutron capture applications. To account for the thermal neutron scattering from chemically bound atoms [S(alpha,beta)] in biological materials a comparison of thermal neutron fluence in tissue-like poly(methylmethacrylate) phantom is made with MCNP4B, GEANT4 6.0 patch1, and measurements from the neutron capture therapy (NCT) facility at the Studsvik, Sweden. The fluence measurements agreed with MCNP calculated results considering S(alpha,beta). The location of the thermal neutron peak calculated with MCNP without S(alpha,beta) and GEANT4 is shifted by about 0.5 cm towards a shallower depth and is 25%-30% lower in amplitude. Dose distribution from the gadolinium neutron capture reaction is then simulated by MCNP and compared with measured data. The simulations made by MCNP agree well with experimental results. As long as thermal neutron scattering from chemically bound atoms are not included in GEANT4 it is not suitable for NCT applications.

  14. Criticality Calculations with MCNP6 - Practical Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Methods, Codes, and Applications (XCP-3); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Methods, Codes, and Applications (XCP-3); Alwin, Jennifer Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Methods, Codes, and Applications (XCP-3)

    2016-11-29

    These slides are used to teach MCNP (Monte Carlo N-Particle) usage to nuclear criticality safety analysts. The following are the lecture topics: course information, introduction, MCNP basics, criticality calculations, advanced geometry, tallies, adjoint-weighted tallies and sensitivities, physics and nuclear data, parameter studies, NCS validation I, NCS validation II, NCS validation III, case study 1 - solution tanks, case study 2 - fuel vault, case study 3 - B&W core, case study 4 - simple TRIGA, case study 5 - fissile mat. vault, criticality accident alarm systems. After completion of this course, you should be able to: Develop an input model for MCNP; Describe how cross section data impact Monte Carlo and deterministic codes; Describe the importance of validation of computer codes and how it is accomplished; Describe the methodology supporting Monte Carlo codes and deterministic codes; Describe pitfalls of Monte Carlo calculations; Discuss the strengths and weaknesses of Monte Carlo and Discrete Ordinants codes; The diffusion theory model is not strictly valid for treating fissile systems in which neutron absorption, voids, and/or material boundaries are present. In the context of these limitations, identify a fissile system for which a diffusion theory solution would be adequate.

  15. Criticality Calculations with MCNP6 - Practical Lectures

    International Nuclear Information System (INIS)

    Brown, Forrest B.; Rising, Michael Evan; Alwin, Jennifer Louise

    2016-01-01

    These slides are used to teach MCNP (Monte Carlo N-Particle) usage to nuclear criticality safety analysts. The following are the lecture topics: course information, introduction, MCNP basics, criticality calculations, advanced geometry, tallies, adjoint-weighted tallies and sensitivities, physics and nuclear data, parameter studies, NCS validation I, NCS validation II, NCS validation III, case study 1 - solution tanks, case study 2 - fuel vault, case study 3 - B&W core, case study 4 - simple TRIGA, case study 5 - fissile mat. vault, criticality accident alarm systems. After completion of this course, you should be able to: Develop an input model for MCNP; Describe how cross section data impact Monte Carlo and deterministic codes; Describe the importance of validation of computer codes and how it is accomplished; Describe the methodology supporting Monte Carlo codes and deterministic codes; Describe pitfalls of Monte Carlo calculations; Discuss the strengths and weaknesses of Monte Carlo and Discrete Ordinants codes; The diffusion theory model is not strictly valid for treating fissile systems in which neutron absorption, voids, and/or material boundaries are present. In the context of these limitations, identify a fissile system for which a diffusion theory solution would be adequate.

  16. Analysis of the design of an X-ray tube using Monte Carlo

    International Nuclear Information System (INIS)

    Pena V, J. D.; Sosa A, M. A.; Ceron, P. V.; Vallejo, M. A.; Vega C, H. R.

    2017-10-01

    In this paper we present the Monte Carlo analysis of the X-rays produced by a rotating X-ray tube of the Siemens brand that is used in tomographs for clinical use. The work was done with the MCNP6 code with which the tube was modeled and the primary X-ray spectra produced during the interaction of monoenergetic electrons of 130 keV were calculated. The X-ray spectra were obtained by varying some parameters such as: the angle of the anode (15 to 20 degrees), the type of target (Tungsten, Molybdenum and Rhodium) and the thickness of the filter (3, 5, 10 and 15 mm). In order to have a good statistic 10 7 stories were used. Though the estimators f2 and f5 the X-ray spectra and the total fluencies were estimated. This information will be used to calculate the dose absorbed in the lens and the thyroid gland in patients undergoing radio diagnosis procedures. (Author)

  17. Photopeak efficiency response function of an underwater gamma-ray NaI(Tl) detector using MCNP-X

    International Nuclear Information System (INIS)

    Salgado, William L.; Silva, Ademir X.; Salgado, Cesar M.

    2015-01-01

    This work presents a study to calculate the response function of a 1.5x 1″ NaI(Tl) scintillation detector when it is used in the marine environment in the energy range from 20 keV to 662 keV. The method takes into account both the scattering of photons in the water and the detection mechanism of the detector. In addition, the calculation of the response function of the whole system is essential for suppressing the background of the measurement and for estimating the concentration of the involved radionuclides, especially given the greater probability of primary gamma photons undergoing multiple scattering events before they interact with the detector. The experimental photopeak efficiency measurements for point sources were compared with the simulated results under the same conditions of the experimental setup to validate the simulation of the detector. Monte Carlo simulations were performed using the MCNP-X code for the investigation of gamma-ray absorption in water in different brines. The energy resolution curve was used to improve the response of the mathematical simulation of the detector. The detector’s simulation was based on information obtained from the gammagraphy technique. Both dimensions and materials were used for the calculation with the MCNP-X code. The photopeak efficiency of a NaI(Tl) detector for different radionuclides in the aquatic environment with different salinities was calculated. (author)

  18. Nuclear reactor multi-physics simulations with coupled MCNP5 and STAR-CCM+

    International Nuclear Information System (INIS)

    Cardoni, Jeffrey Neil; Rizwan-uddin

    2011-01-01

    The MCNP5 Monte Carlo particle transport code has been coupled to the computational fluid dynamics code, STAR-CCM+, to provide a high fidelity multi-physics simulation tool for pressurized water nuclear reactors. The codes are executed separately and coupled externally through a Perl script. The Perl script automates the exchange of temperature, density, and volumetric heating information between the codes using ASCII text data files. Fortran90 and Java utility programs assist job automation with data post-processing and file management. The MCNP5 utility code, MAKXSF, pre-generates temperature dependent cross section libraries for the thermal feedback calculations. The MCNP5–STAR-CCM+ coupled simulation tool, dubbed MULTINUKE, was applied to a steady state, PWR cell model to demonstrate its usage and capabilities. The demonstration calculation showed reasonable results that agree with PWR values typically reported in literature. Temperature and fission reaction rate distributions were realistic and intuitive. Reactivity coefficients were also deemed reasonable in comparison to historically reported data. The demonstration problem consisted of 9,984 CFD cells and 7,489 neutronic cells. MCNP5 tallied fission energy deposition over 3,328 UO_2 cells. The coupled solution converged within eight hours and in three MULTINUKE iterations. The simulation was carried out on a 64 bit, quad core, Intel 2.8 GHz microprocessor with 1 GB RAM. The simulations on a quad core machine indicated that a massively parallelized implementation of MULTINUKE can be used to assess larger multi-million cell models. (author)

  19. MCNP/X TRANSPORT IN THE TABULAR REGIME

    Energy Technology Data Exchange (ETDEWEB)

    HUGHES, H. GRADY [Los Alamos National Laboratory

    2007-01-08

    The authors review the transport capabilities of the MCNP and MCNPX Monte Carlo codes in the energy regimes in which tabular transport data are available. Giving special attention to neutron tables, they emphasize the measures taken to improve the treatment of a variety of difficult aspects of the transport problem, including unresolved resonances, thermal issues, and the availability of suitable cross sections sets. They also briefly touch on the current situation in regard to photon, electron, and proton transport tables.

  20. An MCNP-based model of a medical linear accelerator x-ray photon beam.

    Science.gov (United States)

    Ajaj, F A; Ghassal, N M

    2003-09-01

    The major components in the x-ray photon beam path of the treatment head of the VARIAN Clinac 2300 EX medical linear accelerator were modeled and simulated using the Monte Carlo N-Particle radiation transport computer code (MCNP). Simulated components include x-ray target, primary conical collimator, x-ray beam flattening filter and secondary collimators. X-ray photon energy spectra and angular distributions were calculated using the model. The x-ray beam emerging from the secondary collimators were scored by considering the total x-ray spectra from the target as the source of x-rays at the target position. The depth dose distribution and dose profiles at different depths and field sizes have been calculated at a nominal operating potential of 6 MV and found to be within acceptable limits. It is concluded that accurate specification of the component dimensions, composition and nominal accelerating potential gives a good assessment of the x-ray energy spectra.

  1. MCNP variance reduction overview

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Booth, T.E.

    1985-01-01

    The MCNP code is rich in variance reduction features. Standard variance reduction methods found in most Monte Carlo codes are available as well as a number of methods unique to MCNP. We discuss the variance reduction features presently in MCNP as well as new ones under study for possible inclusion in future versions of the code

  2. Using lattice tools and unfolding methods for hpge detector efficiency simulation with the Monte Carlo code MCNP5

    International Nuclear Information System (INIS)

    Querol, A.; Gallardo, S.; Ródenas, J.; Verdú, G.

    2015-01-01

    In environmental radioactivity measurements, High Purity Germanium (HPGe) detectors are commonly used due to their excellent resolution. Efficiency calibration of detectors is essential to determine activity of radionuclides. The Monte Carlo method has been proved to be a powerful tool to complement efficiency calculations. In aged detectors, efficiency is partially deteriorated due to the dead layer increasing and consequently, the active volume decreasing. The characterization of the radiation transport in the dead layer is essential for a realistic HPGe simulation. In this work, the MCNP5 code is used to calculate the detector efficiency. The F4MESH tally is used to determine the photon and electron fluence in the dead layer and the active volume. The energy deposited in the Ge has been analyzed using the ⁎F8 tally. The F8 tally is used to obtain spectra and to calculate the detector efficiency. When the photon fluence and the energy deposition in the crystal are known, some unfolding methods can be used to estimate the activity of a given source. In this way, the efficiency is obtained and serves to verify the value obtained by other methods. - Highlights: • The MCNP5 code is used to estimate the dead layer thickness of an HPGe detector. • The F4MESH tally is applied to verify where interactions occur into the Ge crystal. • PHD and the energy deposited are obtained with F8 and ⁎F8 tallies, respectively. • An average dead layer between 70 and 80 µm is obtained for the HPGe studied. • The efficiency is calculated applying the TSVD method to the response matrix.

  3. MCNP Perturbation Capability for Monte Carlo Criticality Calculations

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Carter, L.L.; McKinney, G.W.

    1999-01-01

    The differential operator perturbation capability in MCNP4B has been extended to automatically calculate perturbation estimates for the track length estimate of k eff in MCNP4B. The additional corrections required in certain cases for MCNP4B are no longer needed. Calculating the effect of small design changes on the criticality of nuclear systems with MCNP is now straightforward

  4. Characteristics of Multihole Collimator Gamma Camera Simulation Modeled Using MCNP5

    International Nuclear Information System (INIS)

    Saripan, M. I.; Mashohor, S.; Adnan, W. A. Wan; Marhaban, M. H.; Hashim, S.

    2008-01-01

    This paper describes the characteristics of the multihole collimator gamma camera that is simulated using the combination of the Monte Carlo N-Particles Code (MCNP) version 5 and in-house software. The model is constructed based on the GCA-7100A Toshiba Gamma Camera at the Royal Surrey County Hospital, Guildford, Surrey, UK. The characteristics are analyzed based on the spatial resolution of the images detected by the Sodium Iodide (NaI) detector. The result is recorded in a list-mode file referred to as a PTRAC file within MCNP5. All pertinent nuclear reaction mechanisms, such as Compton and Rayleigh scattering and photoelectric absorption are undertaken by MCNP5 for all materials encountered by each photon. The experiments were conducted on Tl-201, Co-57, Tc-99 m and Cr-51 radio nuclides. The comparison of full width half maximum value of each datasets obtained from experimental work, simulation and literature are also reported in this paper. The relationship of the simulated data is in agreement with the experimental results and data obtained in the literature. A careful inspection at each of the data points of the spatial resolution of Tc-99 m shows a slight discrepancy between these sets. However, the difference is very insignificant, i.e. less than 3 mm only, which corresponds to a size of less than 1 pixel only (of the segmented detector)

  5. A parallelization study of the general purpose Monte Carlo code MCNP4 on a distributed memory highly parallel computer

    International Nuclear Information System (INIS)

    Yamazaki, Takao; Fujisaki, Masahide; Okuda, Motoi; Takano, Makoto; Masukawa, Fumihiro; Naito, Yoshitaka

    1993-01-01

    The general purpose Monte Carlo code MCNP4 has been implemented on the Fujitsu AP1000 distributed memory highly parallel computer. Parallelization techniques developed and studied are reported. A shielding analysis function of the MCNP4 code is parallelized in this study. A technique to map a history to each processor dynamically and to map control process to a certain processor was applied. The efficiency of parallelized code is up to 80% for a typical practical problem with 512 processors. These results demonstrate the advantages of a highly parallel computer to the conventional computers in the field of shielding analysis by Monte Carlo method. (orig.)

  6. Simulation of dental intensifying screen for intraoral radiographic using MCNP5 code

    International Nuclear Information System (INIS)

    Ferreira, Vanessa M.; Oliveira, Renato C.M.; Barros, Graiciany P.; Oliveira, Arno H.; Veloso, M. Auxiliadora F.

    2011-01-01

    One of basic principles for radiological protection is the optimization of techniques for obtain radiographic images, in way that the dose in the patient is kept as low as reasonably achievable (ALARA). Intensifying screens are used in medical radiology, which reduce considerably the dose rates in the production of radiographic images, maintaining the quality of these, while in dental radiology, there is no a intensifying screen available for intraoral examinations. From this technological requirement, this paper evaluates a computational modeling of an intensifying screen for use in intraoral radiography. For this, it was used the Monte Carlo code MCNP5 that allows the radiography simulation through the transport of electrons and photons in the different materials present in this examination. The goal of an intensifying screen is the conversion of X-ray photons to photons in the visible spectrum, knowing that radiographic films are more sensitive to light photons than to X-ray photons. So the screen should be composed of an efficient material for converting x-rays photons in light photons, therefore was made simulations using different materials, thicknesses and positions possible for placing screen in radiographic film in order to find the way more technically feasible. (author)

  7. MCNP simulation of a Theratron 780 radiotherapy unit.

    Science.gov (United States)

    Miró, R; Soler, J; Gallardo, S; Campayo, J M; Díez, S; Verdú, G

    2005-01-01

    A Theratron 780 (MDS Nordion) 60Co radiotherapy unit has been simulated with the Monte Carlo code MCNP. The unit has been realistically modelled: the cylindrical source capsule and its housing, the rectangular collimator system, both the primary and secondary jaws and the air gaps between the components. Different collimator openings, ranging from 5 x 5 cm2 to 20 x 20 cm2 (narrow and broad beams) at a source-surface distance equal to 80 cm have been used during the study. In the present work, we have calculated spectra as a function of field size. A study of the variation of the electron contamination of the 60Co beam has also been performed.

  8. Performance of the improved version of Monte Carlo code A 3MCNP for large-scale shielding problems

    International Nuclear Information System (INIS)

    Omura, M.; Miyake, Y.; Hasegawa, T.; Ueki, K.; Sato, O.; Haghighat, A.; Sjoden, G. E.

    2005-01-01

    A 3MCNP (Automatic Adjoint Accelerated MCNP) is a revised version of the MCNP Monte Carlo code, which automatically prepares variance reduction parameters for the CADIS (Consistent Adjoint Driven Importance Sampling) methodology. Using a deterministic 'importance' (or adjoint) function, CADIS performs source and transport biasing within the weight-window technique. The current version of A 3MCNP uses the three-dimensional (3-D) Sn transport TORT code to determine a 3-D importance function distribution. Based on simulation of several real-life problems, it is demonstrated that A 3MCNP provides precise calculation results with a remarkably short computation time by using the proper and objective variance reduction parameters. However, since the first version of A 3MCNP provided only a point source configuration option for large-scale shielding problems, such as spent-fuel transport casks, a large amount of memory may be necessary to store enough points to properly represent the source. Hence, we have developed an improved version of A 3MCNP (referred to as A 3MCNPV) which has a volumetric source configuration option. This paper describes the successful use of A 3MCNPV for a concrete cask neutron and gamma-ray shielding problem, and a PWR dosimetry problem. (authors)

  9. MCNP capabilities for nuclear well logging calculations

    International Nuclear Information System (INIS)

    Forster, R.A.; Little, R.C.; Briesmeister, J.F.; Hendricks, J.S.

    1990-01-01

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. This paper discusses how the general-purpose continuous-energy Monte Carlo code MCNP (Monte Carlo neutron photon), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tally characteristics with standard MCNP features. The time-dependent capability of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data

  10. Introduction to the simulation with MCNP Monte Carlo code and its applications in Medical Physics; Introduccion a la simulacion con el codigo de Monte Carlo MCNP y sus aplicaciones en Fisica Medica

    Energy Technology Data Exchange (ETDEWEB)

    Parreno Z, F.; Paucar J, R.; Picon C, C. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, San Borja, Lima 41 (Peru)

    1998-12-31

    The simulation by Monte Carlo is tool which Medical Physics counts with it for the development of its research, the interest by this tool is growing, as we may observe in the main scientific journals for the years 1995-1997 where more than 27 % of the papers treat over Monte Carlo and/or its applications in the radiation transport.In the Peruvian Institute of Nuclear Energy we are implementing and making use of the MCNP4 and EGS4 codes. In this work are presented the general features of the Monte Carlo method and its more useful applications in Medical Physics. Likewise, it is made a simulation of the calculation of isodose curves in an interstitial treatment with Ir-192 wires in a mammary gland carcinoma. (Author)

  11. Status of Monte Carlo at Los Alamos

    International Nuclear Information System (INIS)

    Thompson, W.L.; Cashwell, E.D.; Godfrey, T.N.K.; Schrandt, R.G.; Deutsch, O.L.; Booth, T.E.

    1980-05-01

    Four papers were presented by Group X-6 on April 22, 1980, at the Oak Ridge Radiation Shielding Information Center (RSIC) Seminar-Workshop on Theory and Applications of Monte Carlo Methods. These papers are combined into one report for convenience and because they are related to each other. The first paper (by Thompson and Cashwell) is a general survey about X-6 and MCNP and is an introduction to the other three papers. It can also serve as a resume of X-6. The second paper (by Godfrey) explains some of the details of geometry specification in MCNP. The third paper (by Cashwell and Schrandt) illustrates calculating flux at a point with MCNP; in particular, the once-more-collided flux estimator is demonstrated. Finally, the fourth paper (by Thompson, Deutsch, and Booth) is a tutorial on some variance-reduction techniques. It should be required for a fledging Monte Carlo practitioner

  12. SU-C-209-05: Monte Carlo Model of a Prototype Backscatter X-Ray (BSX) Imager for Projective and Selective Object-Plane Imaging

    International Nuclear Information System (INIS)

    Rolison, L; Samant, S; Baciak, J; Jordan, K

    2016-01-01

    Purpose: To develop a Monte Carlo N-Particle (MCNP) model for the validation of a prototype backscatter x-ray (BSX) imager, and optimization of BSX technology for medical applications, including selective object-plane imaging. Methods: BSX is an emerging technology that represents an alternative to conventional computed tomography (CT) and projective digital radiography (DR). It employs detectors located on the same side as the incident x-ray source, making use of backscatter and avoiding ring geometry to enclose the imaging object. Current BSX imagers suffer from low spatial resolution. A MCNP model was designed to replicate a BSX prototype used for flaw detection in industrial materials. This prototype consisted of a 1.5mm diameter 60kVp pencil beam surrounded by a ring of four 5.0cm diameter NaI scintillation detectors. The imaging phantom consisted of a 2.9cm thick aluminum plate with five 0.6cm diameter holes drilled halfway. The experimental image was created using a raster scanning motion (in 1.5mm increments). Results: A qualitative comparison between the physical and simulated images showed very good agreement with 1.5mm spatial resolution in plane perpendicular to incident x-ray beam. The MCNP model developed the concept of radiography by selective plane detection (RSPD) for BSX, whereby specific object planes can be imaged by varying kVp. 10keV increments in mean x-ray energy yielded 4mm thick slice resolution in the phantom. Image resolution in the MCNP model can be further increased by increasing the number of detectors, and decreasing raster step size. Conclusion: MCNP modelling was used to validate a prototype BSX imager and introduce the RSPD concept, allowing for selective object-plane imaging. There was very good visual agreement between the experimental and MCNP imaging. Beyond optimizing system parameters for the existing prototype, new geometries can be investigated for volumetric image acquisition in medical applications. This material is

  13. SU-C-209-05: Monte Carlo Model of a Prototype Backscatter X-Ray (BSX) Imager for Projective and Selective Object-Plane Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rolison, L; Samant, S; Baciak, J; Jordan, K [University of Florida, Gainesville, FL (United States)

    2016-06-15

    Purpose: To develop a Monte Carlo N-Particle (MCNP) model for the validation of a prototype backscatter x-ray (BSX) imager, and optimization of BSX technology for medical applications, including selective object-plane imaging. Methods: BSX is an emerging technology that represents an alternative to conventional computed tomography (CT) and projective digital radiography (DR). It employs detectors located on the same side as the incident x-ray source, making use of backscatter and avoiding ring geometry to enclose the imaging object. Current BSX imagers suffer from low spatial resolution. A MCNP model was designed to replicate a BSX prototype used for flaw detection in industrial materials. This prototype consisted of a 1.5mm diameter 60kVp pencil beam surrounded by a ring of four 5.0cm diameter NaI scintillation detectors. The imaging phantom consisted of a 2.9cm thick aluminum plate with five 0.6cm diameter holes drilled halfway. The experimental image was created using a raster scanning motion (in 1.5mm increments). Results: A qualitative comparison between the physical and simulated images showed very good agreement with 1.5mm spatial resolution in plane perpendicular to incident x-ray beam. The MCNP model developed the concept of radiography by selective plane detection (RSPD) for BSX, whereby specific object planes can be imaged by varying kVp. 10keV increments in mean x-ray energy yielded 4mm thick slice resolution in the phantom. Image resolution in the MCNP model can be further increased by increasing the number of detectors, and decreasing raster step size. Conclusion: MCNP modelling was used to validate a prototype BSX imager and introduce the RSPD concept, allowing for selective object-plane imaging. There was very good visual agreement between the experimental and MCNP imaging. Beyond optimizing system parameters for the existing prototype, new geometries can be investigated for volumetric image acquisition in medical applications. This material is

  14. Monte Carlo simulation of dose enhancement effect of X-ray at Au/Si interface

    International Nuclear Information System (INIS)

    Wu Zhengxin; He Chengfa; Lu Wu; Guo Qi; Yu Xin; Zhang Lei; Deng Wei; Zheng Qiwen; ARKIN Abulim

    2013-01-01

    Background: The dose enhancement factor of X-ray was found in 1970s, because of its bad damage to electronic devices. Purpose: This paper is mainly to calculate the dose-enhancement factor at Au/Si interfaces. Methods: The gradient distribution of dose with X-rays has been studied at and near the interface of Au/Si by Monte-Carlo simulation of particle transportation. The mechanism of dose enhancement is discussed based on the principles of interaction of photon with matter. A 3D Au/Si model has been established by MCNP5 program and the dose-enhancement factors of different thicknesses Au/Si interfaces were calculated by Monte Carlo method. Results: The calculated results demonstrate that there exists a stronger dose-enhancement in the Si side near the interface when the energy of X-ray is 30-300 keV. Conclusions: When the thickness of Au is 0-10 μm, dose-enhancement factor of X-ray increases along with the increase of the thickness of Au, when the thickness of Au exceeds 10 μm, dose-enhancement factor of X-ray decreases along with the increase of the thickness of Au. (authors)

  15. Monte Carlo simulation applied to radiosurgery narrow beams using MCNP-4C

    International Nuclear Information System (INIS)

    Chaves, A.; Lopes, M.C.; Oliveira, C.

    2001-01-01

    Dose measurements for the narrow photon beams used in radiosurgery are complicated by the lack of electron equilibrium which is a requirement namely for ionometric methods. To overcome this difficulty the use of different dosimetric supports is strongly recommended in order to appreciate the influence of each type of detector. Monte Carlo simulation is another kind of tool to assess the details of the energy deposition phenomena in such narrow photon beams. In this study output factors and depth dose calculated by the Monte Carlo MCNP-4C code are presented and compared with experimental data measured with a diode, a Markus chamber, a 0.125 cc thimble chamber and a Pinpoint chamber. Simulated energy spectra for narrow beams are also presented in order to compare them with the reference 10 cm x 10 cm beam field size and thus discuss the different contributions of the absorbed energy in water, in each case. A detailed analysis on the photon energy spectra showed a slight decrease on the photon mean energy that can be explained by the increased scattering inside the additional collimators. Calculated and measured depth doses curves are in good agreement for most of the collimators. For the two smallest collimators some differences have been pointed and explained according to the characteristics of the detectors (author)

  16. Electron absorbed dose comparison between MCNP5 and Penelope Monte Carlo code for microdosimetry

    International Nuclear Information System (INIS)

    Cintra, Felipe B. de; Yoriyaz, Helio

    2009-01-01

    The objective of the present work was to compare electron absorbed dose results between two widespread used codes in international scientific community: MCNP5 and Penelope-2003. Individual water spheres with masses between 10 -9 g up to 10 -3 g immersed in an infinite water medium (density of 1g/cm 3 ) and monoenergetic electron sources with energy from 0.002 MeV to 0.1 MeV have been considered. The absorbed dose in the spheres was evaluated by both codes and the relative differences have been quantified. The results shown that Penelope gives, in general, higher results that, in some cases saturate or reach a maximum point and then rapidly drops. Particularly, for the 40 keV electron source we have done additional tests in three different scenarios: more points in the region of lower masses to a better definition of the curve behavior; MCNP used 200 substeps and Penelope was set to a full detail history methodology, and almost same parameters of case B but with the density of exterior medium increased to 10 g/cm 3 . The three cases show the influence of the backscattering that contribute with an important fraction of absorbed dose, finally we can infer a range of reliability to use the codes in this kind of simulations: both codes can calculate close results for up to 10 -4 g.Even though MCNP5 uses the condensed history method, if simulation parameters are chosen carefully it can reproduce results very close to those obtained using detailed history mode. In some cases, the use of higher number of electron substeps causes significant differences in the result. (author)

  17. Neutron reflector design with Californium 252 neutron for Boron neutron chapter therapy facility using MCNP5 simulation method

    International Nuclear Information System (INIS)

    Muhammad Fakhrurreza; Kusminanto; Y Sardjono

    2014-01-01

    In this research has made a reflector design to provide beams of Neutron for BNCT with Californium-252 radioactive source. This collimator is useful to obtain optimum epithermal neutron flux with the smallest impurity radiation (thermal neutron, fast neutron, and gamma). The design process is done using Monte Carlo N-Particle simulation version 5 (MCNP5) code to calculate the neutron flux tally form. The chosen reflector design is the reflectors which use material such as BeO ceramic with 13 cm thick. Moderator use sulfur material with the slope angle of the cone is 30°. From the calculation result, it is obtained that Reflector with 1 gram Californium-252 source can produce a neutron output thermal which has thermal neutron specification 2.23189 x 10 9 n/s.cm 2 , epithermal neutron 3.51548 x 10 9 n/s.cm 2 , and fast neutron 4.82241 x 10 9 n/s.cm 2 From the result, it needs additional collimator because the BNCT requirement. (author)

  18. MCNP Version 6.2 Release Notes

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bull, Jeffrey S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Solomon, C. J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McKinney, Gregg Walter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dixon, David A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martz, Roger Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hughes, Henry G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cox, Lawrence James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zukaitis, Anthony J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Armstrong, J. C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Forster, Robert Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Casswell, Laura [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-05

    Monte Carlo N-Particle or MCNP® is a general-purpose Monte Carlo radiation-transport code designed to track many particle types over broad ranges of energies. This MCNP Version 6.2 follows the MCNP6.1.1 beta version and has been released in order to provide the radiation transport community with the latest feature developments and bug fixes for MCNP. Since the last release of MCNP major work has been conducted to improve the code base, add features, and provide tools to facilitate ease of use of MCNP version 6.2 as well as the analysis of results. These release notes serve as a general guide for the new/improved physics, source, data, tallies, unstructured mesh, code enhancements and tools. For more detailed information on each of the topics, please refer to the appropriate references or the user manual which can be found at http://mcnp.lanl.gov. This release of MCNP version 6.2 contains 39 new features in addition to 172 bug fixes and code enhancements. There are still some 33 known issues the user should familiarize themselves with (see Appendix).

  19. MCNP calculation for calibration curve of X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Tan Chunming; Wu Zhifang; Guo Xiaojing; Xing Guilai; Wang Zhentao

    2011-01-01

    Due to the compositional variation of the sample, linear relationship between the element concentration and fluorescent intensity will not be well maintained in most X-ray fluorescence analysis. To overcome this, we use MCNP program to simulate fluorescent intensity of Fe (0∼100% concentration range) within binary mixture of Cr and O which represent typical strong absorption and weak absorption conditions respectively. The theoretic calculation shows that the relationship can be described as a curve determined by parameter p and value of p can be obtained with given absorption coefficient of substrate elements and element under detection. MCNP simulation results are consistent with theoretic calculation. Our research reveals that MCNP program can calculate the Calibration Curve of X-ray fluorescence very well. (authors)

  20. Evaluation of dose equivalent to the people accompanying patients in diagnostic radiology using MCNP4C Monte Carlo code

    International Nuclear Information System (INIS)

    Mehdizadeh, S.; Faghihi, R.; Sina, S.; Zehtabian, M.

    2007-01-01

    Complete text of publication follows. Objective: X rays used in diagnostic radiology contribute a major share to population doses from man-made sources of radiation. In some branches of radiology, it is necessary that another person stay in the imaging room and immobilize the patient to carry out radiological operation. ICRP 70 recommends that this should be done by parents or accompanying nursing or ancillary personnel and not in any case by radiation workers. Methods: Dose measurements were made previously using standard methods employing LiF TLD-100 dosimeters. A TLD card was installed on the main trunk of the body of the accompanying people where the maximum dose was probable. In this research the general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C) is used to calculate the equivalent dose to the people accompanying patients exposed to radiation scattered from the patient (Without protective clothing). To do the simulations, all components of the geometry are placed within an air-filled box. Two homogeneous water phantoms are used to simulate the patient and the accompanying person. The accompanying person leans against the table at one side of the patient. Finally in case of source specification, only the focus of the X-ray tube is modelled, i.e. as a standard MCNP point source emitting a cone of photons. Photon stopping material is used as a collimator model to reduce the circular cross section of the cone to a rectangle. The X-ray spectra to be used in the MCNP simulations are generated with spectrum generator software, taking the X-ray voltage and all filtration applied in the clinic as input parameters. These calculations are done for different patient sizes and for different radiological operations. Results: In case of TL dosimetry, for a group of 100 examinations, the dose equivalents ranged from 0.01 μsv to 0.13 msv with the average of 0.05 msv. The results are seen to be in close agreement with Monte Carlo simulations

  1. Recent MCNP developments

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Briesmeister, J.F.

    1991-01-01

    MCNP is a widely used and actively developed Monte Carlo radiation transport code. Many important features have recently been added and more are under development. Benchmark studies not only indicate that MCNP is accurate but also that modern computer codes can give answers basically as accurate as the physics data that goes in them. Even deep penetration problems can be correct to within a factor of two after 10 to 25 mean free paths of penetration. And finally, Monte Carlo calculations, once thought to be too expensive to run routinely, can now be run effectively on desktop computers which compete with the supercomputers of yesteryear. 21 refs., 3 tabs

  2. Coupling the MCNP Monte Carlo code and the FISPACT activation code with automatic visualization of the results of simulations

    International Nuclear Information System (INIS)

    Bourauel, Peter; Nabbi, Rahim; Biel, Wolfgang; Forrest, Robin

    2009-01-01

    The MCNP 3D Monte Carlo computer code is used not only for criticality calculations of nuclear systems but also to simulate transports of radiation and particles. The findings so obtained about neutron flux distribution and the associated spectra allow information about materials activation, nuclear heating, and radiation damage to be obtained by means of activation codes such as FISPACT. The stochastic character of particle and radiation transport processes normally links findings to the materials cells making up the geometry model of MCNP. Where high spatial resolution is required for the activation calculations with FISPACT, fine segmentation of the MCNP geometry becomes compulsory, which implies considerable expense for the modeling process. For this reason, an alternative simulation technique has been developed in an effort to automate and optimize data transfer between MCNP and FISPACT. (orig.)

  3. Monte Carlo dose calculations in homogeneous media and at interfaces: a comparison between GEPTS, EGSnrc, MCNP, and measurements.

    Science.gov (United States)

    Chibani, Omar; Li, X Allen

    2002-05-01

    Three Monte Carlo photon/electron transport codes (GEPTS, EGSnrc, and MCNP) are bench-marked against dose measurements in homogeneous (both low- and high-Z) media as well as at interfaces. A brief overview on physical models used by each code for photon and electron (positron) transport is given. Absolute calorimetric dose measurements for 0.5 and 1 MeV electron beams incident on homogeneous and multilayer media are compared with the predictions of the three codes. Comparison with dose measurements in two-layer media exposed to a 60Co gamma source is also performed. In addition, comparisons between the codes (including the EGS4 code) are done for (a) 0.05 to 10 MeV electron beams and positron point sources in lead, (b) high-energy photons (10 and 20 MeV) irradiating a multilayer phantom (water/steel/air), and (c) simulation of a 90Sr/90Y brachytherapy source. A good agreement is observed between the calorimetric electron dose measurements and predictions of GEPTS and EGSnrc in both homogeneous and multilayer media. MCNP outputs are found to be dependent on the energy-indexing method (Default/ITS style). This dependence is significant in homogeneous media as well as at interfaces. MCNP(ITS) fits more closely the experimental data than MCNP(DEF), except for the case of Be. At low energy (0.05 and 0.1 MeV), MCNP(ITS) dose distributions in lead show higher maximums in comparison with GEPTS and EGSnrc. EGS4 produces too penetrating electron-dose distributions in high-Z media, especially at low energy (MCNP results depend significantly on the electron energy-indexing method.

  4. Criticality safety analysis of spent fuel storage for NPP Mochovce using MCNP5

    International Nuclear Information System (INIS)

    Farkas, G.; Hascik, J.; Lueley, J.; Vrban, B.; Petriska, M.; Slugen, V.; Urban, P.

    2011-01-01

    The paper presents results of nuclear criticality safety analysis of spent fuel storage for the first and second unit of NPP Mochovce. The spent fuel storage pool (compact and reserve grid) was modeled using the Monte Carlo code MCNP5. Conservative approach was applied and calculation of k eff values was performed for normal and various postulated emergency conditions in order to evaluate the final maximal k eff values. The requirement of current safety regulations to ensure 5% subcriticality was met except one especially conservative case. (Authors)

  5. Numerical verification/validation of the theory of coupled reactors for deuterium critical assembly, using MCNP5 and Serpent codes

    International Nuclear Information System (INIS)

    Hussein, M.S; Lewis, B.J.; Bonin, H.W.

    2013-01-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5 and the continuous-energy Monte Carlo reactor physics burnup calculation Serpent code. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as the Deuterium Critical Assembly, DCA. The multiplication factors k eff calculated numerically and independently from simulations of the DCA by MCNP5 and Serpent codes are compared with the multiplication factors k eff calculated based on the coupled reactor theory. Excellent agreement was obtained between the multiplication factors k eff calculated with the Serpent code, with MCNP5, and from the coupled reactor theory. This analysis demonstrates that the Serpent code is valid for the multipoint coupled reactor calculations. (author)

  6. Numerical verification/validation of the theory of coupled reactors for deuterium critical assembly, using MCNP5 and Serpent codes

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M.S, E-mail: mohamed.hussein@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada); Lewis, B.J., E-mail: Brent.Lewis@uoit.ca [Univ. of Ontario Inst. of Technology, Faculty of Energy Systems and Nuclear Science, Oshawa, Ontario (Canada); Bonin, H.W., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2013-07-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5 and the continuous-energy Monte Carlo reactor physics burnup calculation Serpent code. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as the Deuterium Critical Assembly, DCA. The multiplication factors k{sub eff} calculated numerically and independently from simulations of the DCA by MCNP5 and Serpent codes are compared with the multiplication factors k{sub eff} calculated based on the coupled reactor theory. Excellent agreement was obtained between the multiplication factors k{sub eff} calculated with the Serpent code, with MCNP5, and from the coupled reactor theory. This analysis demonstrates that the Serpent code is valid for the multipoint coupled reactor calculations. (author)

  7. Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry.

    Science.gov (United States)

    Yoriyaz, H; Stabin, M G; dos Santos, A

    2001-04-01

    This study was intended to verify the capability of the Monte Carlo MCNP-4B code to evaluate spatial dose distribution based on information gathered from CT or SPECT. A new three-dimensional (3D) dose calculation approach for internal emitter use in radioimmunotherapy (RIT) was developed using the Monte Carlo MCNP-4B code as the photon and electron transport engine. It was shown that the MCNP-4B computer code can be used with voxel-based anatomic and physiologic data to provide 3D dose distributions. This study showed that the MCNP-4B code can be used to develop a treatment planning system that will provide such information in a time manner, if dose reporting is suitably optimized. If each organ is divided into small regions where the average energy deposition is calculated with a typical volume of 0.4 cm(3), regional dose distributions can be provided with reasonable central processing unit times (on the order of 12-24 h on a 200-MHz personal computer or modest workstation). Further efforts to provide semiautomated region identification (segmentation) and improvement of marrow dose calculations are needed to supply a complete system for RIT. It is envisioned that all such efforts will continue to develop and that internal dose calculations may soon be brought to a similar level of accuracy, detail, and robustness as is commonly expected in external dose treatment planning. For this study we developed a code with a user-friendly interface that works on several nuclear medicine imaging platforms and provides timely patient-specific dose information to the physician and medical physicist. Future therapy with internal emitters should use a 3D dose calculation approach, which represents a significant advance over dose information provided by the standard geometric phantoms used for more than 20 y (which permit reporting of only average organ doses for certain standardized individuals)

  8. MCNP4C2, Coupled Neutron, Electron Gamma 3-D Time-Dependent Monte Carlo Transport Calculations

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Description of program or function: MCNP is a general-purpose, continuous-energy, generalized geometry, time-dependent, coupled neutron-photon-electron Monte Carlo transport code system. MCNP4C2 is an interim release of MCNP4C with distribution restricted to the Criticality Safety community and attendees of the LANL MCNP workshops. The major new features of MCNP4C2 include: - Photonuclear physics; - Interactive plotting; - Plot superimposed weight window mesh; - Implement remaining macro-body surfaces; - Upgrade macro-bodies to surface sources and other capabilities; - Revised summary tables; - Weight window improvements. See the MCNP home page more information http://www-xdiv.lanl.gov/XCI/PROJECTS/MCNP with a link to the MCNP Forum. See the Electronic Notebook at http://www-rsicc.ornl.gov/rsic.html for information on user experiences with MCNP. 2 - Methods:MCNP treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces. Pointwise continuous-energy cross section data are used, although multigroup data may also be used. Fixed-source adjoint calculations may be made with the multigroup data option. For neutrons, all reactions in a particular cross-section evaluation are accounted for. Both free gas and S(alpha, beta) thermal treatments are used. Criticality sources as well as fixed and surface sources are available. For photons, the code takes account of incoherent and coherent scattering with and without electron binding effects, the possibility of fluorescent emission following photoelectric absorption, and absorption in pair production with local emission of annihilation radiation. A very general source and tally structure is available. The tallies have extensive statistical analysis of convergence. Rapid convergence is enabled by a wide variety of variance reduction methods. Energy ranges are 0-60 MeV for neutrons (data generally only available up to

  9. Introduction to the simulation with MCNP Monte Carlo code and its applications in Medical Physics

    International Nuclear Information System (INIS)

    Parreno Z, F.; Paucar J, R.; Picon C, C.

    1998-01-01

    The simulation by Monte Carlo is tool which Medical Physics counts with it for the development of its research, the interest by this tool is growing, as we may observe in the main scientific journals for the years 1995-1997 where more than 27 % of the papers treat over Monte Carlo and/or its applications in the radiation transport.In the Peruvian Institute of Nuclear Energy we are implementing and making use of the MCNP4 and EGS4 codes. In this work are presented the general features of the Monte Carlo method and its more useful applications in Medical Physics. Likewise, it is made a simulation of the calculation of isodose curves in an interstitial treatment with Ir-192 wires in a mammary gland carcinoma. (Author)

  10. Implementation of a Monte Carlo based inverse planning model for clinical IMRT with MCNP code

    International Nuclear Information System (INIS)

    He, Tongming Tony

    2003-01-01

    Inaccurate dose calculations and limitations of optimization algorithms in inverse planning introduce systematic and convergence errors to treatment plans. This work was to implement a Monte Carlo based inverse planning model for clinical IMRT aiming to minimize the aforementioned errors. The strategy was to precalculate the dose matrices of beamlets in a Monte Carlo based method followed by the optimization of beamlet intensities. The MCNP 4B (Monte Carlo N-Particle version 4B) code was modified to implement selective particle transport and dose tallying in voxels and efficient estimation of statistical uncertainties. The resulting performance gain was over eleven thousand times. Due to concurrent calculation of multiple beamlets of individual ports, hundreds of beamlets in an IMRT plan could be calculated within a practical length of time. A finite-sized point source model provided a simple and accurate modeling of treatment beams. The dose matrix calculations were validated through measurements in phantoms. Agreements were better than 1.5% or 0.2 cm. The beamlet intensities were optimized using a parallel platform based optimization algorithm that was capable of escape from local minima and preventing premature convergence. The Monte Carlo based inverse planning model was applied to clinical cases. The feasibility and capability of Monte Carlo based inverse planning for clinical IMRT was demonstrated. Systematic errors in treatment plans of a commercial inverse planning system were assessed in comparison with the Monte Carlo based calculations. Discrepancies in tumor doses and critical structure doses were up to 12% and 17%, respectively. The clinical importance of Monte Carlo based inverse planning for IMRT was demonstrated

  11. Applications guide to the RSIC-distributed version of the MCNP code (coupled Monte Carlo neutron-photon Code)

    International Nuclear Information System (INIS)

    Cramer, S.N.

    1985-09-01

    An overview of the RSIC-distributed version of the MCNP code (a soupled Monte Carlo neutron-photon code) is presented. All general features of the code, from machine hardware requirements to theoretical details, are discussed. The current nuclide cross-section and other libraries available in the standard code package are specified, and a realistic example of the flexible geometry input is given. Standard and nonstandard source, estimator, and variance-reduction procedures are outlined. Examples of correct usage and possible misuse of certain code features are presented graphically and in standard output listings. Finally, itemized summaries of sample problems, various MCNP code documentation, and future work are given

  12. MCNP code

    International Nuclear Information System (INIS)

    Cramer, S.N.

    1984-01-01

    The MCNP code is the major Monte Carlo coupled neutron-photon transport research tool at the Los Alamos National Laboratory, and it represents the most extensive Monte Carlo development program in the United States which is available in the public domain. The present code is the direct descendent of the original Monte Carlo work of Fermi, von Neumaum, and Ulam at Los Alamos in the 1940s. Development has continued uninterrupted since that time, and the current version of MCNP (or its predecessors) has always included state-of-the-art methods in the Monte Carlo simulation of radiation transport, basic cross section data, geometry capability, variance reduction, and estimation procedures. The authors of the present code have oriented its development toward general user application. The documentation, though extensive, is presented in a clear and simple manner with many examples, illustrations, and sample problems. In addition to providing the desired results, the output listings give a a wealth of detailed information (some optional) concerning each state of the calculation. The code system is continually updated to take advantage of advances in computer hardware and software, including interactive modes of operation, diagnostic interrupts and restarts, and a variety of graphical and video aids

  13. Potential MCNP enhancements for NCT

    International Nuclear Information System (INIS)

    Estes, G.P.; Taylor, W.M.

    1992-01-01

    MCNP a Monte Carlo radiation transport code, is currently widely used in the medical community for a variety of purposes including treatment planning, diagnostics, beam design, tomographic studies, and radiation protection. This is particularly true in the Neutron Capture Therapy (NCT) community. The current widespread medical use of MCNP after its general public distribution in about 1980 attests to the code's general versatility and usefulness, particularly since its development to date has not been influenced by medical applications. This paper discusses enhancements to MCNP that could be implemented at Los Alamos for the benefit of the NCT community. These enhancements generally fall into two categories, namely those that have already been developed to some extent but are not yet publicly available, and those that seem both needed based on our current understanding of NCT goals, and achievable based on our working knowledge of the MCNP code. MCNP is a general, coupled neutron/photon/electron Monte Carlo code developed and maintained by the Radiation Transport Group at Los Alamos. It has been used extensively for radiation shielding studies, reactor analysis, detector design, physics experiment interpretation, oil and gas well logging, radiation protection studies, accelerator design, etc. over the years. MCNP is a three-dimensional geometry, continuous energy physics code capable of modeling complex geometries, specifying material regions such as organs by the intersections of analytical surfaces

  14. MCNP and OMEGA criticality calculations

    International Nuclear Information System (INIS)

    Seifert, E.

    1998-04-01

    The reliability of OMEGA criticality calculations is shown by a comparison with calculations by the validated and widely used Monte Carlo code MCNP. The criticality of 16 assemblies with uranium as fissionable is calculated with the codes MCNP (Version 4A, ENDF/B-V cross sections), MCNP (Version 4B, ENDF/B-VI cross sections), and OMEGA. Identical calculation models are used for the three codes. The results are compared mutually and with the experimental criticality of the assemblies. (orig.)

  15. Lecture note on neutron and photon transport calculation with MCNP

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi

    2003-01-01

    This paper is a lecture note on the continuous energy Monte Carlo method. The contents are as follows; history of the Monte Carlo study, continuous energy Monte Carlo codes, libraries, evaluation method for calculation results, integral emergent particle density equation, pseudorandom number, random walk, variance reduction techniques, MCNP weight window method, MCNP weight window generator, exponential transform, estimators, criticality problem and research subjects. This paper is a textbook for beginners on the Monte Carlo calculation. (author)

  16. Criticality calculations with MCNP trademark: A primer

    International Nuclear Information System (INIS)

    Harmon, C.D. II; Busch, R.D.; Briesmeister, J.F.; Forster, R.A.

    1994-01-01

    With the closure of many experimental facilities, the nuclear criticality safety analyst increasingly is required to rely on computer calculations to identify safe limits for the handling and storage of fissile materials. However, in many cases, the analyst has little experience with the specific codes available at his/her facility. This primer will help you, the analyst, understand and use the MCNP Monte Carlo code for nuclear criticality safety analyses. It assumes that you have a college education in a technical field. There is no assumption of familiarity with Monte Carlo codes in general or with MCNP in particular. Appendix A gives an introduction to Monte Carlo techniques. The primer is designed to teach by example, with each example illustrating two or three features of MCNP that are useful in criticality analyses. Beginning with a Quickstart chapter, the primer gives an overview of the basic requirements for MCNP input and allows you to run a simple criticality problem with MCNP. This chapter is not designed to explain either the input or the MCNP options in detail; but rather it introduces basic concepts that are further explained in following chapters. Each chapter begins with a list of basic objectives that identify the goal of the chapter, and a list of the individual MCNP features that are covered in detail in the unique chapter example problems. It is expected that on completion of the primer you will be comfortable using MCNP in criticality calculations and will be capable of handling 80 to 90 percent of the situations that normally arise in a facility. The primer provides a set of basic input files that you can selectively modify to fit the particular problem at hand

  17. Status of Monte Carlo at Los Alamos

    International Nuclear Information System (INIS)

    Thompson, W.L.; Cashwell, E.D.

    1980-01-01

    At Los Alamos the early work of Fermi, von Neumann, and Ulam has been developed and supplemented by many followers, notably Cashwell and Everett, and the main product today is the continuous-energy, general-purpose, generalized-geometry, time-dependent, coupled neutron-photon transport code called MCNP. The Los Alamos Monte Carlo research and development effort is concentrated in Group X-6. MCNP treats an arbitrary three-dimensional configuration of arbitrary materials in geometric cells bounded by first- and second-degree surfaces and some fourth-degree surfaces (elliptical tori). Monte Carlo has evolved into perhaps the main method for radiation transport calculations at Los Alamos. MCNP is used in every technical division at the Laboratory by over 130 users about 600 times a month accounting for nearly 200 hours of CDC-7600 time

  18. Depleted Reactor Analysis With MCNP-4B

    International Nuclear Information System (INIS)

    Caner, M.; Silverman, L.; Bettan, M.

    2004-01-01

    Monte Carlo neutronics calculations are mostly done for fresh reactor cores. There is today an ongoing activity in the development of Monte Carlo plus burnup code systems made possible by the fast gains in computer processor speeds. In this work we investigate the use of MCNP-4B for the calculation of a depleted core of the Soreq reactor (IRR-1). The number densities as function of burnup were taken from the WIMS-D/4 cell code calculations. This particular code coupling has been implemented before. The Monte Carlo code MCNP-4B calculates the coupled transport of neutrons and photons for complicated geometries. We have done neutronics calculations of the IRR-1 core with the WIMS and CITATION codes in the past Also, we have developed an MCNP model of the IRR-1 standard fuel for a criticality safety calculation of a spent fuel storage pool

  19. NaI(Tl) detectors modeling in MCNP-X and Gate/Geant4 codes

    Energy Technology Data Exchange (ETDEWEB)

    Affonso, Renato Raoni Werneck; Silva, Ademir Xavier da, E-mail: raoniwa@yahoo.com.br, E-mail: ademir@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Salgado, Cesar Marques, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    NaI (Tl) detectors are widely used in gamma-ray densitometry, but their modeling in Monte Carlo codes, such as MCNP-X and Gate/Geant4, needs a lot of work and does not yield comparable results with experimental arrangements, possibly due to non-simulated physical phenomena, such as light transport within the scintillator. Therefore, it is necessary a methodology that positively impacts the results of the simulations while maintaining the real dimensions of the detectors and other objects to allow validating a modeling that matches up with the experimental arrangement. Thus, the objective of this paper is to present the studies conducted with the MCNPX and Gate/Geant4 codes, in which the comparisons of their results were satisfactory, showing that both can be used for the same purposes. (author)

  20. E language based on MCNP modeling software for autonomous

    International Nuclear Information System (INIS)

    Li Fei; Ge Liangquan; Zhang Qingxian

    2010-01-01

    MCNP (Monte Carlo N-Particle Code) is based on the Monte Carlo method for computing neutron, photon and other particles as the object of the movement simulation computer program. Because of its powerful computing simulation, flexible and universal features in many fields has been widely used, but due to a software professional in the operating area has been greatly restricted, so that in later development has been greatly hindered. E-language was used in order to develop the autonomy of MCNP modeling software, used to address users not familiar with MCNP and can not create object model, get rid of dull red tape 'notebook' type of program type and built a new MCNP modeling system. (authors)

  1. Comparative Criticality Analysis of Two Monte Carlo Codes on Centrifugal Atomizer: MCNPS and SCALE

    International Nuclear Information System (INIS)

    Kang, H-S; Jang, M-S; Kim, S-R; Park, J-M; Kim, K-N

    2015-01-01

    There are two well-known Monte Carlo codes for criticality analysis, MCNP5 and SCALE. MCNP5 is a general-purpose Monte Carlo N-Particle code that can be used for neutron, photon, electron or coupled neutron / photon / electron transport, including the capability to calculate eigenvalues for critical system as a main analysis code. SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor physics, radiation shielding, radioactive source term characterization, and sensitivity and uncertainty analysis. SCALE was conceived and funded by US NRC to perform standardized computer analysis for licensing evaluation and is used widely in the world. We performed a validation test of MCNP5 and a comparative analysis of Monte Carlo codes, MCNP5 and SCALE, in terms of the critical analysis of centrifugal atomizer. In the criticality analysis using MCNP5 code, we obtained the statistically reliable results by using a large number of source histories per cycle and performing of uncertainty analysis

  2. Comparative Criticality Analysis of Two Monte Carlo Codes on Centrifugal Atomizer: MCNPS and SCALE

    Energy Technology Data Exchange (ETDEWEB)

    Kang, H-S; Jang, M-S; Kim, S-R [NESS, Daejeon (Korea, Republic of); Park, J-M; Kim, K-N [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    There are two well-known Monte Carlo codes for criticality analysis, MCNP5 and SCALE. MCNP5 is a general-purpose Monte Carlo N-Particle code that can be used for neutron, photon, electron or coupled neutron / photon / electron transport, including the capability to calculate eigenvalues for critical system as a main analysis code. SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor physics, radiation shielding, radioactive source term characterization, and sensitivity and uncertainty analysis. SCALE was conceived and funded by US NRC to perform standardized computer analysis for licensing evaluation and is used widely in the world. We performed a validation test of MCNP5 and a comparative analysis of Monte Carlo codes, MCNP5 and SCALE, in terms of the critical analysis of centrifugal atomizer. In the criticality analysis using MCNP5 code, we obtained the statistically reliable results by using a large number of source histories per cycle and performing of uncertainty analysis.

  3. MCNP-DSP users manual

    International Nuclear Information System (INIS)

    Valentine, T.E.

    1997-01-01

    The Monte Carlo code MCNP-DSP was developed from the Los Alamos MCNP4a code to calculate the time and frequency response statistics obtained from the 252 Cf-source-driven frequency analysis measurements. This code can be used to validate calculational methods and cross section data sets from subcritical experiments. This code provides a more general model for interpretation and planning of experiments for nuclear criticality safety, nuclear safeguards, and nuclear weapons identification and replaces the use of point kinetics models for interpreting the measurements. The use of MCNP-DSP extends the usefulness of this measurement method to systems with much lower neutron multiplication factors

  4. Comparison between correlated sampling and the perturbation technique of MCNP5 for fixed-source problems

    International Nuclear Information System (INIS)

    He Tao; Su Bingjing

    2011-01-01

    Highlights: → The performance of the MCNP differential operator perturbation technique is compared with that of the MCNP correlated sampling method for three types of fixed-source problems. → In terms of precision, the MCNP perturbation technique outperforms correlated sampling for one type of problem but performs comparably with or even under-performs correlated sampling for the other two types of problems. → In terms of accuracy, the MCNP perturbation calculations may predict inaccurate results for some of the test problems. However, the accuracy can be improved if the midpoint correction technique is used. - Abstract: Correlated sampling and the differential operator perturbation technique are two methods that enable MCNP (Monte Carlo N-Particle) to simulate small response change between an original system and a perturbed system. In this work the performance of the MCNP differential operator perturbation technique is compared with that of the MCNP correlated sampling method for three types of fixed-source problems. In terms of precision of predicted response changes, the MCNP perturbation technique outperforms correlated sampling for the problem involving variation of nuclide concentrations in the same direction but performs comparably with or even underperforms correlated sampling for the other two types of problems that involve void or variation of nuclide concentrations in opposite directions. In terms of accuracy, the MCNP differential operator perturbation calculations may predict inaccurate results that deviate from the benchmarks well beyond their uncertainty ranges for some of the test problems. However, the accuracy of the MCNP differential operator perturbation can be improved if the midpoint correction technique is used.

  5. Evaluation of Geometric Progression (GP Buildup Factors using MCNP Codes (MCNP6.1 and MCNP5-1.60

    Directory of Open Access Journals (Sweden)

    Kim Kyung-O

    2016-01-01

    Full Text Available The gamma-ray buildup factors of three-dimensional point kernel code (QAD-CGGP are re-evaluated by using MCNP codes (MCNP6.1 and MCNPX5-1.60 and ENDF/B-VI.8 photoatomic data, which cover an energy range of 0.015–15 MeV and an iron thickness of 0.5–40 Mean Free Path (MFP. These new data are fitted to the Geometric Progression (GP fitting function and are then compared with ANS standard data equipped with QAD-CGGP. In addition, a simple benchmark calculation was performed to compare the QAD-CGGP results applied with new and existing buildup factors based on the MCNP codes. In the case of the buildup factors of low-energy gamma-rays, new data are evaluated to be about 5% higher than the existing data. In other cases, these new data present a similar trend based on the specific penetration depth, while existing data continuously increase beyond that depth. In a simple benchmark, the calculations using the existing data were slightly underestimated compared to the reference data at a deep penetration depth. On the other hand, the calculations with new data were stabilized with an increasing penetration depth, despite a slight overestimation at a shallow penetration depth.

  6. KENO2MCNP, Version 5L, Conversion of Input Data between KENOV.a and MCNP File Formats

    International Nuclear Information System (INIS)

    2008-01-01

    1 - Description of program or function: The KENO2MCNP program was written to convert KENO V.a input files to MCNP Format. This program currently only works with KENO Va geometries and will not work with geometries that contain more than a single array. A C++ graphical user interface was created that was linked to Fortran routines from KENO V.a that read the material library and Fortran routines from the MCNP Visual Editor that generate the MCNP input file. Either SCALE 5.0 or SCALE 5.1 cross section files will work with this release. 2 - Methods: The C++ binary executable reads the KENO V.a input file, the KENO V.a material library and SCALE data libraries. When an input file is read in, the input is stored in memory. The converter goes through and loads different sections of the input file into memory including parameters, composition, geometry information, array information and starting information. Many of the KENO V.a materials represent compositions that must be read from the KENO V.a material library. KENO2MCNP includes the KENO V.a FORTRAN routines used to read this material file for creating the MCNP materials. Once the file has been read in, the user must select 'Convert' to convert the file from KENO V.a to MCNP. This will generate the MCNP input file along with an output window that lists the KENO V.a composition information for the materials contained in the KENO V.a input file. The program can be run interactively by clicking on the executable or in batch mode from the command prompt. 3 - Restrictions on the complexity of the problem: Not all KENO V.a input files are supported. Only one array is allowed in the input file. Some of the more complex material descriptions also may not be converted

  7. An Advanced Neutronic Analysis Toolkit with Inline Monte Carlo capability for BHTR Analysis

    Energy Technology Data Exchange (ETDEWEB)

    William R. Martin; John C. Lee

    2009-12-30

    Monte Carlo capability has been combined with a production LWR lattice physics code to allow analysis of high temperature gas reactor configurations, accounting for the double heterogeneity due to the TRISO fuel. The Monte Carlo code MCNP5 has been used in conjunction with CPM3, which was the testbench lattice physics code for this project. MCNP5 is used to perform two calculations for the geometry of interest, one with homogenized fuel compacts and the other with heterogeneous fuel compacts, where the TRISO fuel kernels are resolved by MCNP5.

  8. An Advanced Neutronic Analysis Toolkit with Inline Monte Carlo capability for VHTR Analysis

    International Nuclear Information System (INIS)

    Martin, William R.; Lee, John C.

    2009-01-01

    Monte Carlo capability has been combined with a production LWR lattice physics code to allow analysis of high temperature gas reactor configurations, accounting for the double heterogeneity due to the TRISO fuel. The Monte Carlo code MCNP5 has been used in conjunction with CPM3, which was the testbench lattice physics code for this project. MCNP5 is used to perform two calculations for the geometry of interest, one with homogenized fuel compacts and the other with heterogeneous fuel compacts, where the TRISO fuel kernels are resolved by MCNP5.

  9. Monte Carlo simulation using MCNP4B for an optimal shielding design of a 252 Cf source

    International Nuclear Information System (INIS)

    Silva, Ademir X. da; Crispim, Verginia R.

    2001-01-01

    This study aim to investigate an optimum shielding design against neutrons and gamma-rays from a source of 252 Cf, using Monte Carlo simulation. The shielding materials studied were: borated polyethylene, borated-lead polyethylene and stainless steel. The Monte Carlo code MCNP, version 4B, was used to design shielding for 252 Cf based neutron irradiator systems. By normalizing the dose equivalent rate values presented to the neutron production rate of the source, the resulting calculations are independents of the intensity of actual 252 Cf source. The results shown what the total dose equivalent rates were reduced significantly by the shielding system optimization. (author)

  10. Importance sampling techniques and treatment of electron transport in MCNP 4A

    International Nuclear Information System (INIS)

    Ueki, K.

    1994-01-01

    The continuous energy Monte Carlo code MCNP was developed by the Radiation Transport Group at Los Alamos National Laboratory and the MCNP 4A version is available, now. The MCNP 4A is able to do the coupled neutron-secondary gamma-ray-electron-bremsstrahlung calculation. The calculated results, such as energy spectra, tally fluctuation chart, and geometrical input data can be displayed by using a work station. The document of the MCNP 4A code has no description on the subroutines, except few ones of 'SOURCE', 'TALLYX'. However, when we want to improve the MCNP Monte Carlo sampling techniques to get more accuracy or efficiency results for some problems, some subroutines are required or needed to revised. Three subroutines have been revised and built in the MCNP 4A code. (author)

  11. Lecture Notes on Criticality Safety Validation Using MCNP & Whisper

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Alwin, Jennifer Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    Training classes for nuclear criticality safety, MCNP documentation. The need for, and problems surrounding, validation of computer codes and data area considered first. Then some background for MCNP & Whisper is given--best practices for Monte Carlo criticality calculations, neutron spectra, S(α,β) thermal neutron scattering data, nuclear data sensitivities, covariance data, and correlation coefficients. Whisper is computational software designed to assist the nuclear criticality safety analyst with validation studies with the Monte Carlo radiation transport package MCNP. Whisper's methodology (benchmark selection – Ck's, weights; extreme value theory – bias, bias uncertainty; MOS for nuclear data uncertainty – GLLS) and usage are discussed.

  12. Parallelization of MCNP Monte Carlo neutron and photon transport code in parallel virtual machine and message passing interface

    International Nuclear Information System (INIS)

    Deng Li; Xie Zhongsheng

    1999-01-01

    The coupled neutron and photon transport Monte Carlo code MCNP (version 3B) has been parallelized in parallel virtual machine (PVM) and message passing interface (MPI) by modifying a previous serial code. The new code has been verified by solving sample problems. The speedup increases linearly with the number of processors and the average efficiency is up to 99% for 12-processor. (author)

  13. MCNP neutron benchmarks

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Whalen, D.J.; Cardon, D.A.; Uhle, J.L.

    1991-01-01

    Over 50 neutron benchmark calculations have recently been completed as part of an ongoing program to validate the MCNP Monte Carlo radiation transport code. The new and significant aspects of this work are as follows: These calculations are the first attempt at a validation program for MCNP and the first official benchmarking of version 4 of the code. We believe the chosen set of benchmarks is a comprehensive set that may be useful for benchmarking other radiation transport codes and data libraries. These calculations provide insight into how well neutron transport calculations can be expected to model a wide variety of problems

  14. Evaluation of the methodology for dose calculation in microdosimetry with electrons sources using the MCNP5 Code

    International Nuclear Information System (INIS)

    Cintra, Felipe Belonsi de

    2010-01-01

    This study made a comparison between some of the major transport codes that employ the Monte Carlo stochastic approach in dosimetric calculations in nuclear medicine. We analyzed in detail the various physical and numerical models used by MCNP5 code in relation with codes like EGS and Penelope. The identification of its potential and limitations for solving microdosimetry problems were highlighted. The condensed history methodology used by MCNP resulted in lower values for energy deposition calculation. This showed a known feature of the condensed stories: its underestimates both the number of collisions along the trajectory of the electron and the number of secondary particles created. The use of transport codes like MCNP and Penelope for micrometer scales received special attention in this work. Class I and class II codes were studied and their main resources were exploited in order to transport electrons, which have particular importance in dosimetry. It is expected that the evaluation of available methodologies mentioned here contribute to a better understanding of the behavior of these codes, especially for this class of problems, common in microdosimetry. (author)

  15. Au-coated X-ray Anti-scattering Grid Performance Test by MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Bae, JunWoo; Yoo, Dong Han; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    It is required to protect individual against the dangers of ionizing radiation from medical exposure. And increasing of resolution for x-ray radiography tools can give radiation protectoral benefits. Because the image device has higher resolution in same energy source, it requires low energy level source and it can reduce individual dose. The anti-scattering grid is sub-device that is attached in front of detector (direction of source). It is square lattice shape generally. It is composed of penetration parts and shielding parts. Penetration part is generally air (the void) and in some studies it uses wood or aluminum. Shielding part is composed of various materials such as lead or copper. In this study, it is focused on the gold as one of X-ray grid materials, where gold is generally known as excellent shielding material and the performance test on the gold coated anti-scattering grid is carried out by MCNP simulation. X-ray grid was simulated by using MCNP code and its performance was investigated. It was understood that glass based and Au-coated grid could lessen the scattered photons more where the reduction was about two third. In further study, geometry optimization or material selection will be conducted by MCNP simulation for giving benefits to design proper grid for various instruments.

  16. Validation suite for MCNP

    International Nuclear Information System (INIS)

    Mosteller, Russell D.

    2002-01-01

    Two validation suites, one for criticality and another for radiation shielding, have been defined and tested for the MCNP Monte Carlo code. All of the cases in the validation suites are based on experiments so that calculated and measured results can be compared in a meaningful way. The cases in the validation suites are described, and results from those cases are discussed. For several years, the distribution package for the MCNP Monte Carlo code1 has included an installation test suite to verify that MCNP has been installed correctly. However, the cases in that suite have been constructed primarily to test options within the code and to execute quickly. Consequently, they do not produce well-converged answers, and many of them are physically unrealistic. To remedy these deficiencies, sets of validation suites are being defined and tested for specific types of applications. All of the cases in the validation suites are based on benchmark experiments. Consequently, the results from the measurements are reliable and quantifiable, and calculated results can be compared with them in a meaningful way. Currently, validation suites exist for criticality and radiation-shielding applications.

  17. Monte Carlo modelling of large scale NORM sources using MCNP.

    Science.gov (United States)

    Wallace, J D

    2013-12-01

    The representative Monte Carlo modelling of large scale planar sources (for comparison to external environmental radiation fields) is undertaken using substantial diameter and thin profile planar cylindrical sources. The relative impact of source extent, soil thickness and sky-shine are investigated to guide decisions relating to representative geometries. In addition, the impact of source to detector distance on the nature of the detector response, for a range of source sizes, has been investigated. These investigations, using an MCNP based model, indicate a soil cylinder of greater than 20 m diameter and of no less than 50 cm depth/height, combined with a 20 m deep sky section above the soil cylinder, are needed to representatively model the semi-infinite plane of uniformly distributed NORM sources. Initial investigation of the effect of detector placement indicate that smaller source sizes may be used to achieve a representative response at shorter source to detector distances. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  18. Comparisons between MCNP, EGS4 and experiment for clinical electron beams.

    Science.gov (United States)

    Jeraj, R; Keall, P J; Ostwald, P M

    1999-03-01

    Understanding the limitations of Monte Carlo codes is essential in order to avoid systematic errors in simulations, and to suggest further improvement of the codes. MCNP and EGS4, Monte Carlo codes commonly used in medical physics, were compared and evaluated against electron depth dose data and experimental backscatter results obtained using clinical radiotherapy beams. Different physical models and algorithms used in the codes give significantly different depth dose curves and electron backscattering factors. The default version of MCNP calculates electron depth dose curves which are too penetrating. The MCNP results agree better with experiment if the ITS-style energy-indexing algorithm is used. EGS4 underpredicts electron backscattering for high-Z materials. The results slightly improve if optimal PRESTA-I parameters are used. MCNP simulates backscattering well even for high-Z materials. To conclude the comparison, a timing study was performed. EGS4 is generally faster than MCNP and use of a large number of scoring voxels dramatically slows down the MCNP calculation. However, use of a large number of geometry voxels in MCNP only slightly affects the speed of the calculation.

  19. Monte Carlo determination of the conversion coefficients Hp(3)/Ka in a right cylinder phantom with 'PENELOPE' code. Comparison with 'MCNP' simulations.

    Science.gov (United States)

    Daures, J; Gouriou, J; Bordy, J M

    2011-03-01

    This work has been performed within the frame of the European Union ORAMED project (Optimisation of RAdiation protection for MEDical staff). The main goal of the project is to improve standards of protection for medical staff for procedures resulting in potentially high exposures and to develop methodologies for better assessing and for reducing, exposures to medical staff. The Work Package WP2 is involved in the development of practical eye-lens dosimetry in interventional radiology. This study is complementary of the part of the ENEA report concerning the calculations with the MCNP-4C code of the conversion factors related to the operational quantity H(p)(3). In this study, a set of energy- and angular-dependent conversion coefficients (H(p)(3)/K(a)), in the newly proposed square cylindrical phantom made of ICRU tissue, have been calculated with the Monte-Carlo code PENELOPE and MCNP5. The H(p)(3) values have been determined in terms of absorbed dose, according to the definition of this quantity, and also with the kerma approximation as formerly reported in ICRU reports. At a low-photon energy (up to 1 MeV), the two results obtained with the two methods are consistent. Nevertheless, large differences are showed at a higher energy. This is mainly due to the lack of electronic equilibrium, especially for small angle incidences. The values of the conversion coefficients obtained with the MCNP-4C code published by ENEA quite agree with the kerma approximation calculations obtained with PENELOPE. We also performed the same calculations with the code MCNP5 with two types of tallies: F6 for kerma approximation and *F8 for estimating the absorbed dose that is, as known, due to secondary electrons. PENELOPE and MCNP5 results agree for the kerma approximation and for the absorbed dose calculation of H(p)(3) and prove that, for photon energies larger than 1 MeV, the transport of the secondary electrons has to be taken into account.

  20. Parallelization of MCNP4 code by using simple FORTRAN algorithms

    International Nuclear Information System (INIS)

    Yazid, P.I.; Takano, Makoto; Masukawa, Fumihiro; Naito, Yoshitaka.

    1993-12-01

    Simple FORTRAN algorithms, that rely only on open, close, read and write statements, together with disk files and some UNIX commands have been applied to parallelization of MCNP4. The code, named MCNPNFS, maintains almost all capabilities of MCNP4 in solving shielding problems. It is able to perform parallel computing on a set of any UNIX workstations connected by a network, regardless of the heterogeneity in hardware system, provided that all processors produce a binary file in the same format. Further, it is confirmed that MCNPNFS can be executed also on Monte-4 vector-parallel computer. MCNPNFS has been tested intensively by executing 5 photon-neutron benchmark problems, a spent fuel cask problem and 17 sample problems included in the original code package of MCNP4. Three different workstations, connected by a network, have been used to execute MCNPNFS in parallel. By measuring CPU time, the parallel efficiency is determined to be 58% to 99% and 86% in average. On Monte-4, MCNPNFS has been executed using 4 processors concurrently and has achieved the parallel efficiency of 79% in average. (author)

  1. Uncertainty analysis in the simulation of an HPGe detector using the Monte Carlo Code MCNP5

    International Nuclear Information System (INIS)

    Gallardo, Sergio; Pozuelo, Fausto; Querol, Andrea; Verdu, Gumersindo; Rodenas, Jose; Ortiz, J.; Pereira, Claubia

    2013-01-01

    A gamma spectrometer including an HPGe detector is commonly used for environmental radioactivity measurements. Many works have been focused on the simulation of the HPGe detector using Monte Carlo codes such as MCNP5. However, the simulation of this kind of detectors presents important difficulties due to the lack of information from manufacturers and due to loss of intrinsic properties in aging detectors. Some parameters such as the active volume or the Ge dead layer thickness are many times unknown and are estimated during simulations. In this work, a detailed model of an HPGe detector and a petri dish containing a certified gamma source has been done. The certified gamma source contains nuclides to cover the energy range between 50 and 1800 keV. As a result of the simulation, the Pulse Height Distribution (PHD) is obtained and the efficiency curve can be calculated from net peak areas and taking into account the certified activity of the source. In order to avoid errors due to the net area calculation, the simulated PHD is treated using the GammaVision software. On the other hand, it is proposed to use the Noether-Wilks formula to do an uncertainty analysis of model with the main goal of determining the efficiency curve of this detector and its associated uncertainty. The uncertainty analysis has been focused on dead layer thickness at different positions of the crystal. Results confirm the important role of the dead layer thickness in the low energy range of the efficiency curve. In the high energy range (from 300 to 1800 keV) the main contribution to the absolute uncertainty is due to variations in the active volume. (author)

  2. Uncertainty analysis in the simulation of an HPGe detector using the Monte Carlo Code MCNP5

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, Sergio; Pozuelo, Fausto; Querol, Andrea; Verdu, Gumersindo; Rodenas, Jose, E-mail: sergalbe@upv.es [Universitat Politecnica de Valencia, Valencia, (Spain). Instituto de Seguridad Industrial, Radiofisica y Medioambiental (ISIRYM); Ortiz, J. [Universitat Politecnica de Valencia, Valencia, (Spain). Servicio de Radiaciones. Lab. de Radiactividad Ambiental; Pereira, Claubia [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2013-07-01

    A gamma spectrometer including an HPGe detector is commonly used for environmental radioactivity measurements. Many works have been focused on the simulation of the HPGe detector using Monte Carlo codes such as MCNP5. However, the simulation of this kind of detectors presents important difficulties due to the lack of information from manufacturers and due to loss of intrinsic properties in aging detectors. Some parameters such as the active volume or the Ge dead layer thickness are many times unknown and are estimated during simulations. In this work, a detailed model of an HPGe detector and a petri dish containing a certified gamma source has been done. The certified gamma source contains nuclides to cover the energy range between 50 and 1800 keV. As a result of the simulation, the Pulse Height Distribution (PHD) is obtained and the efficiency curve can be calculated from net peak areas and taking into account the certified activity of the source. In order to avoid errors due to the net area calculation, the simulated PHD is treated using the GammaVision software. On the other hand, it is proposed to use the Noether-Wilks formula to do an uncertainty analysis of model with the main goal of determining the efficiency curve of this detector and its associated uncertainty. The uncertainty analysis has been focused on dead layer thickness at different positions of the crystal. Results confirm the important role of the dead layer thickness in the low energy range of the efficiency curve. In the high energy range (from 300 to 1800 keV) the main contribution to the absolute uncertainty is due to variations in the active volume. (author)

  3. Neutron-induced photon production in MCNP

    International Nuclear Information System (INIS)

    Little, R.C.; Seamon, R.E.

    1983-01-01

    An improved method of neutron-induced photon production has been incorporated into the Monte Carlo transport code MCNP. The new method makes use of all partial photon-production reaction data provided by ENDF/B evaluators including photon-production cross sections as well as energy and angular distributions of secondary photons. This faithful utilization of sophisticated ENDF/B evaluations allows more precise MCNP calculations for several classes of coupled neutron-photon problems

  4. MCNP application for the 21 century

    International Nuclear Information System (INIS)

    McKinney, G.W.

    2000-01-01

    The Los Alamos National Laboratory (LANL) Monte Carlo N-Particle radiation transport code, MCNP, has become an international standard for a wide spectrum of neutron, photon, and electron radiation transport applications. The latest version of the code, MCNP 4C, was released to the Radiation Safety Information Computational Center (RSICC) in February 2000. This paper describes the code development philosophy, new features and capabilities, applicability to various problems, and future directions

  5. Quantifying the effect of anode surface roughness on diagnostic x-ray spectra using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Mehranian, A.; Ay, M. R.; Alam, N. Riyahi; Zaidi, H. [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, P.O. Box 14155-6447, Tehran (Iran, Islamic Republic of) and Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, P.O. Box 14185-615, Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, P.O. Box 14155-6447, Tehran (Iran, Islamic Republic of); Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, P.O. Box 14185-615, Tehran (Iran, Islamic Republic of) and Research Institute for Nuclear Medicine, Tehran University of Medical Sciences, P.O. Box 14155-6447, Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, P.O. Box 14155-6447, Tehran (Iran, Islamic Republic of); Division of Nuclear Medicine, Geneva University Hospital, CH-1211 Geneva (Switzerland) and Geneva Neuroscience Center, Geneva University, CH-1205 Geneva (Switzerland)

    2010-02-15

    Purpose: The accurate prediction of x-ray spectra under typical conditions encountered in clinical x-ray examination procedures and the assessment of factors influencing them has been a long-standing goal of the diagnostic radiology and medical physics communities. In this work, the influence of anode surface roughness on diagnostic x-ray spectra is evaluated using MCNP4C-based Monte Carlo simulations. Methods: An image-based modeling method was used to create realistic models from surface-cracked anodes. An in-house computer program was written to model the geometric pattern of cracks and irregularities from digital images of focal track surface in order to define the modeled anodes into MCNP input file. To consider average roughness and mean crack depth into the models, the surface of anodes was characterized by scanning electron microscopy and surface profilometry. It was found that the average roughness (R{sub a}) in the most aged tube studied is about 50 {mu}m. The correctness of MCNP4C in simulating diagnostic x-ray spectra was thoroughly verified by calling its Gaussian energy broadening card and comparing the simulated spectra with experimentally measured ones. The assessment of anode roughness involved the comparison of simulated spectra in deteriorated anodes with those simulated in perfectly plain anodes considered as reference. From these comparisons, the variations in output intensity, half value layer (HVL), heel effect, and patient dose were studied. Results: An intensity loss of 4.5% and 16.8% was predicted for anodes aged by 5 and 50 {mu}m deep cracks (50 kVp, 6 deg. target angle, and 2.5 mm Al total filtration). The variations in HVL were not significant as the spectra were not hardened by more than 2.5%; however, the trend for this variation was to increase with roughness. By deploying several point detector tallies along the anode-cathode direction and averaging exposure over them, it was found that for a 6 deg. anode, roughened by 50 {mu}m deep

  6. On the effect of updated MCNP photon cross section data on the simulated response of the HPA TLD.

    Science.gov (United States)

    Eakins, Jonathan

    2009-02-01

    The relative response of the new Health Protection Agency thermoluminescence dosimeter (TLD) has been calculated for Narrow Series X-ray distribution and (137)Cs photon sources using the Monte Carlo code MCNP5, and the results compared with those obtained during its design stage using the predecessor code, MCNP4c2. The results agreed at intermediate energies (approximately 0.1 MeV to (137)Cs), but differed at low energies (<0.1 MeV) by up to approximately 10%. This disparity has been ascribed to differences in the default photon interaction data used by the two codes, and derives ultimately from the effect on absorbed dose of the recent updates to the photoelectric cross sections. The sources of these data have been reviewed.

  7. Reactor physics verification of the MCNP6 unstructured mesh capability

    International Nuclear Information System (INIS)

    Burke, T. P.; Kiedrowski, B. C.; Martz, R. L.; Martin, W. R.

    2013-01-01

    The Monte Carlo software package MCNP6 has the ability to transport particles on unstructured meshes generated from the Computed-Aided Engineering software Abaqus. Verification is performed using benchmarks with features relevant to reactor physics - Big Ten and the C5G7 computational benchmark. Various meshing strategies are tested and results are compared to reference solutions. Computational performance results are also given. The conclusions show MCNP6 is capable of producing accurate calculations for reactor physics geometries and the computational requirements for small lattice benchmarks are reasonable on modern computing platforms. (authors)

  8. Reactor physics verification of the MCNP6 unstructured mesh capability

    Energy Technology Data Exchange (ETDEWEB)

    Burke, T. P. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Kiedrowski, B. C.; Martz, R. L. [X-Computational Physics Division, Monte Carlo Codes Group, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Martin, W. R. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States)

    2013-07-01

    The Monte Carlo software package MCNP6 has the ability to transport particles on unstructured meshes generated from the Computed-Aided Engineering software Abaqus. Verification is performed using benchmarks with features relevant to reactor physics - Big Ten and the C5G7 computational benchmark. Various meshing strategies are tested and results are compared to reference solutions. Computational performance results are also given. The conclusions show MCNP6 is capable of producing accurate calculations for reactor physics geometries and the computational requirements for small lattice benchmarks are reasonable on modern computing platforms. (authors)

  9. Installation and validation of MCNP-4A

    International Nuclear Information System (INIS)

    Marks, N.A.

    1997-01-01

    MCNP-4A is a multi-purpose Monte Carlo program suitable for the modelling of neutron, photon, and electron transport problems. It is a particularly useful technique when studying systems containing irregular shapes. MCNP has been developed over the last 25 years by Los Alamos, and is distributed internationally via RSIC at Oak Ridge. This document describes the installation of MCNP-4A (henceforth referred to as MCNP) on the Silicon Graphics workstation (bluey.ansto.gov.au). A limited number of benchmarks pertaining to fast and thermal systems were performed to check the installation and validate the code. The results are compared to deterministic calculations performed using the AUS neutronics code system developed at ANSTO. (author)

  10. New developments enhancing MCNP for criticality safety

    International Nuclear Information System (INIS)

    Hendricks, J.S.; McKinney, G.W.; Forster, R.A.

    1993-01-01

    Since the early 80's MCNP has had three estimates of k eff : collision, absorption, and track length. MCNP has also had collision and absorption estimators of removal lifetime. These are calculated for every cycle and are averaged over the cycles as simple averages and covariance weighted averages. Correlation coefficients between estimators are also calculated. These criticality estimators are all in addition to the extensive summary information and tally edits used in shielding and other problems. A number of significant new developments have been made to enhance the MCNP Monte Carlo radiation transport code for criticality safety applications. These are available in the newly released MCNP4A version of the code

  11. Comparisons between MCNP, EGS4 and experiment for clinical electron beams

    International Nuclear Information System (INIS)

    Jeraj, R.; Keall, P.J.; Ostwald, P.M.

    1999-01-01

    Understanding the limitations of Monte Carlo codes is essential in order to avoid systematic errors in simulations, and to suggest further improvement of the codes. MCNP and EGS4, Monte Carlo codes commonly used in medical physics, were compared and evaluated against electron depth dose data and experimental backscatter results obtained using clinical radiotherapy beams. Different physical models and algorithms used in the codes give significantly different depth dose curves and electron backscattering factors. The default version of MCNP calculates electron depth dose curves which are too penetrating. The MCNP results agree better with experiment if the ITS-style energy-indexing algorithm is used. EGS4 underpredicts electron backscattering for high- Z materials. The results slightly improve if optimal PRESTA-I parameters are used. MCNP simulates backscattering well even for high- Z materials. To conclude the comparison, a timing study was performed. EGS4 is generally faster than MCNP and use of a large number of scoring voxels dramatically slows down the MCNP calculation. However, use of a large number of geometry voxels in MCNP only slightly affects the speed of the calculation. (author)

  12. Calculation of power density with MCNP in TRIGA reactor

    International Nuclear Information System (INIS)

    Snoj, L.; Ravnik, M.

    2006-01-01

    Modern Monte Carlo codes (e.g. MCNP) allow calculation of power density distribution in 3-D geometry assuming detailed geometry without unit-cell homogenization. To normalize MCNP calculation by the steady-state thermal power of a reactor, one must use appropriate scaling factors. The description of the scaling factors is not adequately described in the MCNP manual and requires detailed knowledge of the code model. As the application of MCNP for power density calculation in TRIGA reactors has not been reported in open literature, the procedure of calculating power density with MCNP and its normalization to the power level of a reactor is described in the paper. (author)

  13. GB - a preliminary linking code between MCNP4C and Origen2.1 - DEN/UFMG version

    International Nuclear Information System (INIS)

    Campolina, Daniel; Pereira, Claubia; Veloso, Maria Auxiliadora Fortini; Cavatoni, Andre

    2009-01-01

    Nowadays it is possible to perform burnup simulation in a detailed 3D geometry and a continuous energy description by the Monte Carlo method. This paper describes an initial project to create and verify a connection code to link Origen2.1 (Oak Ridge National Laboratory) and MCNP4C (Los Alamos National Laboratory). Essentially the code includes point depletion capability to the MCNP code. The incorporation of point depletion capability is explicit and can be summarized by three steps: 1-Monte Carlo determines reaction rates, 2-the reaction rates are used to determine microscopic cross sections for depletion equations, 3-solution of depletion equations (given by Origen2.1) determines number densities for next MCNP step. To evaluate the initial version of the program, we focused on comparing the results with one of the major Monte Carlo burnup codes: MCNPX version 2.6.0. The input files for all codes share the same MCNP geometry, nuclear data library and core thermal power. While simulating 75 time steps at 800 kw of a Heat Pipe Power System model, we have found that the codes generate very similar results. The neutron flux and criticality value of the core agree, especially in the begin of burnup when the influence of fission products are not very considerable. The small difference encountered was probably caused by the difference in the number of isotopes considered in the transport models (89 MCNPX x 25 GB (author)

  14. Voxel2MCNP: a framework for modeling, simulation and evaluation of radiation transport scenarios for Monte Carlo codes

    International Nuclear Information System (INIS)

    Pölz, Stefan; Laubersheimer, Sven; Eberhardt, Jakob S; Harrendorf, Marco A; Keck, Thomas; Benzler, Andreas; Breustedt, Bastian

    2013-01-01

    The basic idea of Voxel2MCNP is to provide a framework supporting users in modeling radiation transport scenarios using voxel phantoms and other geometric models, generating corresponding input for the Monte Carlo code MCNPX, and evaluating simulation output. Applications at Karlsruhe Institute of Technology are primarily whole and partial body counter calibration and calculation of dose conversion coefficients. A new generic data model describing data related to radiation transport, including phantom and detector geometries and their properties, sources, tallies and materials, has been developed. It is modular and generally independent of the targeted Monte Carlo code. The data model has been implemented as an XML-based file format to facilitate data exchange, and integrated with Voxel2MCNP to provide a common interface for modeling, visualization, and evaluation of data. Also, extensions to allow compatibility with several file formats, such as ENSDF for nuclear structure properties and radioactive decay data, SimpleGeo for solid geometry modeling, ImageJ for voxel lattices, and MCNPX’s MCTAL for simulation results have been added. The framework is presented and discussed in this paper and example workflows for body counter calibration and calculation of dose conversion coefficients is given to illustrate its application. (paper)

  15. Monte Carlo modeling of ion chamber performance using MCNP.

    Science.gov (United States)

    Wallace, J D

    2012-12-01

    Ion Chambers have a generally flat energy response with some deviations at very low (2 MeV) energies. Some improvements in the low energy response can be achieved through use of high atomic number gases, such as argon and xenon, and higher chamber pressures. This work looks at the energy response of high pressure xenon-filled ion chambers using the MCNP Monte Carlo package to develop geometric models of a commercially available high pressure ion chamber (HPIC). The use of the F6 tally as an estimator of the energy deposited in a region of interest per unit mass, and the underlying assumptions associated with its use are described. The effect of gas composition, chamber gas pressure, chamber wall thickness, and chamber holder wall thicknesses on energy response are investigated and reported. The predicted energy response curve for the HPIC was found to be similar to that reported by other investigators. These investigations indicate that improvements to flatten the overall energy response of the HPIC down to 70 keV could be achieved through use of 3 mm-thick stainless steel walls for the ion chamber.

  16. Estimation of subcriticality with the computed values analysis using MCNP of experiment on coupled cores

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi; Yamamoto, Toshihiro; Arakawa, Takuya; Naito, Yoshitaka

    1998-01-01

    Experiments on coupled cores performed at TCA were analysed using continuous energy Monte Carlo calculation code MCNP 4A. Errors of neutron multiplication factors are evaluated using Indirect Bias Estimation Method proposed by authors. Calculation for simulation of pulsed neutron method was performed for 17 X 17 + 5G + 17 x 17 core system and its of exponential experiment method was also performed for 16 x 9 + 3G + 16 x 9 and 16 x 9 + 5G + 16 x 9 core systems. Errors of neutron multiplication factors are estimated to be (-1.5) - (-0.6)% evaluated by Indirect Bias Estimation Method. Its errors evaluated by conventional pulsed neutron method and exponential experiment method are estimated to be 7%, but it is below 1% for estimation of subcriticality with the computed values by applying Indirect Bias Estimation Method. Feasibility of subcriticality management is higher by application of the method to full scale fuel strage facility. (author)

  17. Application of MCNP in the criticality calculation for reactors

    International Nuclear Information System (INIS)

    Zhong Zhaopeng; Shi Gong; Hu Yongming

    2003-01-01

    The criticality calculation is carried out with 3-D Monte Carlo code (MCNP). The author focuses on the introduction of modelling of the core and reflector. The core description is simplified by using repetition structure function of MCNP. k eff in different control rods positions are calculated for the case of JRR3, and the results is consistent with that of the reference. This work shows that MCNP is applicable for reactor criticality calculation

  18. Efficient Geometry and Data Handling for Large-Scale Monte Carlo - Thermal-Hydraulics Coupling

    Science.gov (United States)

    Hoogenboom, J. Eduard

    2014-06-01

    Detailed coupling of thermal-hydraulics calculations to Monte Carlo reactor criticality calculations requires each axial layer of each fuel pin to be defined separately in the input to the Monte Carlo code in order to assign to each volume the temperature according to the result of the TH calculation, and if the volume contains coolant, also the density of the coolant. This leads to huge input files for even small systems. In this paper a methodology for dynamical assignment of temperatures with respect to cross section data is demonstrated to overcome this problem. The method is implemented in MCNP5. The method is verified for an infinite lattice with 3x3 BWR-type fuel pins with fuel, cladding and moderator/coolant explicitly modeled. For each pin 60 axial zones are considered with different temperatures and coolant densities. The results of the axial power distribution per fuel pin are compared to a standard MCNP5 run in which all 9x60 cells for fuel, cladding and coolant are explicitly defined and their respective temperatures determined from the TH calculation. Full agreement is obtained. For large-scale application the method is demonstrated for an infinite lattice with 17x17 PWR-type fuel assemblies with 25 rods replaced by guide tubes. Again all geometrical detailed is retained. The method was used in a procedure for coupled Monte Carlo and thermal-hydraulics iterations. Using an optimised iteration technique, convergence was obtained in 11 iteration steps.

  19. Monte Carlo simulation of x-ray buildup factors of lead and its applications in shielding of diagnostic x-ray facilities

    International Nuclear Information System (INIS)

    Kharrati, Hedi; Agrebi, Amel; Karaoui, Mohamed-Karim

    2007-01-01

    X-ray buildup factors of lead in broad beam geometry for energies from 15 to 150 keV are determined using the general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C). The obtained buildup factors data are fitted to a modified three parameter Archer et al. model for ease in calculating the broad beam transmission with computer at any tube potentials/filters combinations in diagnostic energies range. An example for their use to compute the broad beam transmission at 70, 100, 120, and 140 kVp is given. The calculated broad beam transmission is compared to data derived from literature, presenting good agreement. Therefore, the combination of the buildup factors data as determined and a mathematical model to generate x-ray spectra provide a computationally based solution to broad beam transmission for lead barriers in shielding x-ray facilities

  20. Verification of the Monte Carlo differential operator technique for MCNP trademark

    International Nuclear Information System (INIS)

    McKinney, G.W.; Iverson, J.L.

    1996-02-01

    The differential operator perturbation technique has been incorporated into the Monte Carlo N-Particle transport code MCNP and will become a standard feature of future releases. This feature includes first and second order terms of the Taylor series expansion for response perturbations related to cross-section data (i.e., density, composition, etc.). Perturbation and sensitivity analyses can benefit from this technique in that predicted changes in one or more tally responses may be obtained for multiple perturbations in a single run. The user interface is intuitive, yet flexible enough to allow for changes in a specific microscopic cross section over a specified energy range. With this technique, a precise estimate of a small change in response is easily obtained, even when the standard deviation of the unperturbed tally is greater than the change. Furthermore, results presented in this report demonstrate that first and second order terms can offer acceptable accuracy, to within a few percent, for up to 20-30% changes in a response

  1. Characterization of an extrapolation chamber for low-energy X-rays: Experimental and Monte Carlo preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Lucio P., E-mail: lpneves@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil); Silva, Eric A.B., E-mail: ebrito@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil); Perini, Ana P., E-mail: aperini@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil); Maidana, Nora L., E-mail: nmaidana@if.usp.br [Universidade de Sao Paulo, Instituto de Fisica, Travessa R 187, 05508-900 Sao Paulo, SP (Brazil); Caldas, Linda V.E., E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil)

    2012-07-15

    The extrapolation chamber is a parallel-plate ionization chamber that allows variation of its air-cavity volume. In this work, an experimental study and MCNP-4C Monte Carlo code simulations of an ionization chamber designed and constructed at the Calibration Laboratory at IPEN to be used as a secondary dosimetry standard for low-energy X-rays are reported. The results obtained were within the international recommendations, and the simulations showed that the components of the extrapolation chamber may influence its response up to 11.0%. - Highlights: Black-Right-Pointing-Pointer A homemade extrapolation chamber was studied experimentally and with Monte Carlo. Black-Right-Pointing-Pointer It was characterized as a secondary dosimetry standard, for low energy X-rays. Black-Right-Pointing-Pointer Several characterization tests were performed and the results were satisfactory. Black-Right-Pointing-Pointer Simulation showed that its components may influence the response up to 11.0%. Black-Right-Pointing-Pointer This chamber may be used as a secondary standard at our laboratory.

  2. MCNP: a general Monte Carlo code for neutron and photon transport

    International Nuclear Information System (INIS)

    1978-07-01

    The general-purpose Monte Carlo code MCNP can be used for neutron, photon, or coupled neutron--photon transport. The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces (elliptical tori). Pointwise cross-section data are used. For neutrons, all reactions given in a particular cross-section evaluation (such as ENDF/B-IV) are accounted for. For photons, the code takes account of incoherent and coherent scattering, the possibility of fluorescent emission following photoelectric absorption, and absorption in pair production with local emission of annihilation radiation. Standard optional variance reduction schemes include geometry splitting and Russian roulette, the exponential transformation, energy splitting, forced collisions in designated cells, flux estimates at point detectors, track-length estimators, and source biasing. The standard output of MCNP includes two-way current as a function of energy, time, and angle with the normal, across any subset of bounding surfaces in the problem. Fluxes across any set of bounding surfaces are available as a function of time and energy. Similarly, the flux at designated points and the average flux in a cell (track length per unit volume) are standard tallies. Reactions such as fissions or absorptions may be obtained in a subset of geometric cells. The heating tallies give the energy deposition per starting particle. In addition, particles may be flagged when they cross specified surfaces or enter designated cells, and the contributions of these flagged particles to certain of the tallies are listed separately. All quantities printed out have their relative errors listed also. 11 figures, 27 tables

  3. Use of the MCNP Monte Carlo code for characterization of a pencil-type ionization chamber; Uso do código de Monte Carlo MCNP para caracterização de uma câmara de ionização tipo lápis

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça, Dalila Souza Costa; Santos, William S.; Perini, Ana Paula, E-mail: anapaula.perini@ufu.br [Universidade Federal de Uberlândia (INFIS/UFU), MG (Brazil). Instituto de Física; Neves, Lucio Pereira; Caldas, Linda V. E. [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Belinato, Walmir [Instituto Federal de Educação, Ciência e Tecnologia da Bahia (IFBA), Vitória da Conquista, BA (Brazil)

    2017-07-01

    Ionization chambers are widely used in diagnostic radiology dosimetry. In this work, a special pencil-type ionization chamber, with different dimensions, configuration and materials in relation to commercial ones, was studied computationally. For this, the MCNP-4C Monte Carlo code and different radiation spectra were used to determine the influence of its components on its response. It was possible to observe that the highest influence was for the PVC wall. (author)

  4. A new effective Monte Carlo Midway coupling method in MCNP applied to a well logging problem

    Energy Technology Data Exchange (ETDEWEB)

    Serov, I.V.; John, T.M.; Hoogenboom, J.E

    1998-12-01

    The background of the Midway forward-adjoint coupling method including the black absorber technique for efficient Monte Carlo determination of radiation detector responses is described. The method is implemented in the general purpose MCNP Monte Carlo code. The utilization of the method is fairly straightforward and does not require any substantial extra expertise. The method was applied to a standard neutron well logging porosity tool problem. The results exhibit reliability and high efficiency of the Midway method. For the studied problem the efficiency gain is considerably higher than for a normal forward calculation, which is already strongly optimized by weight-windows. No additional effort is required to adjust the Midway model if the position of the detector or the porosity of the formation is changed. Additionally, the Midway method can be used with other variance reduction techniques if extra gain in efficiency is desired.

  5. Performance Study of Monte Carlo Codes on Xeon Phi Coprocessors — Testing MCNP 6.1 and Profiling ARCHER Geometry Module on the FS7ONNi Problem

    Science.gov (United States)

    Liu, Tianyu; Wolfe, Noah; Lin, Hui; Zieb, Kris; Ji, Wei; Caracappa, Peter; Carothers, Christopher; Xu, X. George

    2017-09-01

    This paper contains two parts revolving around Monte Carlo transport simulation on Intel Many Integrated Core coprocessors (MIC, also known as Xeon Phi). (1) MCNP 6.1 was recompiled into multithreading (OpenMP) and multiprocessing (MPI) forms respectively without modification to the source code. The new codes were tested on a 60-core 5110P MIC. The test case was FS7ONNi, a radiation shielding problem used in MCNP's verification and validation suite. It was observed that both codes became slower on the MIC than on a 6-core X5650 CPU, by a factor of 4 for the MPI code and, abnormally, 20 for the OpenMP code, and both exhibited limited capability of strong scaling. (2) We have recently added a Constructive Solid Geometry (CSG) module to our ARCHER code to provide better support for geometry modelling in radiation shielding simulation. The functions of this module are frequently called in the particle random walk process. To identify the performance bottleneck we developed a CSG proxy application and profiled the code using the geometry data from FS7ONNi. The profiling data showed that the code was primarily memory latency bound on the MIC. This study suggests that despite low initial porting e_ort, Monte Carlo codes do not naturally lend themselves to the MIC platform — just like to the GPUs, and that the memory latency problem needs to be addressed in order to achieve decent performance gain.

  6. Image enhancement using MCNP5 code and MATLAB in neutron radiography.

    Science.gov (United States)

    Tharwat, Montaser; Mohamed, Nader; Mongy, T

    2014-07-01

    This work presents a method that can be used to enhance the neutron radiography (NR) image for objects with high scattering materials like hydrogen, carbon and other light materials. This method used Monte Carlo code, MCNP5, to simulate the NR process and get the flux distribution for each pixel of the image and determines the scattered neutron distribution that caused image blur, and then uses MATLAB to subtract this scattered neutron distribution from the initial image to improve its quality. This work was performed before the commissioning of digital NR system in Jan. 2013. The MATLAB enhancement method is quite a good technique in the case of static based film neutron radiography, while in neutron imaging (NI) technique, image enhancement and quantitative measurement were efficient by using ImageJ software. The enhanced image quality and quantitative measurements were presented in this work. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Semi-Analytical Benchmarks for MCNP6

    Energy Technology Data Exchange (ETDEWEB)

    Grechanuk, Pavel Aleksandrovi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-07

    Code verification is an extremely important process that involves proving or disproving the validity of code algorithms by comparing them against analytical results of the underlying physics or mathematical theory on which the code is based. Monte Carlo codes such as MCNP6 must undergo verification and testing upon every release to ensure that the codes are properly simulating nature. Specifically, MCNP6 has multiple sets of problems with known analytic solutions that are used for code verification. Monte Carlo codes primarily specify either current boundary sources or a volumetric fixed source, either of which can be very complicated functions of space, energy, direction and time. Thus, most of the challenges with modeling analytic benchmark problems in Monte Carlo codes come from identifying the correct source definition to properly simulate the correct boundary conditions. The problems included in this suite all deal with mono-energetic neutron transport without energy loss, in a homogeneous material. The variables that differ between the problems are source type (isotropic/beam), medium dimensionality (infinite/semi-infinite), etc.

  8. Whole core burnup calculations using `MCNP`

    Energy Technology Data Exchange (ETDEWEB)

    Haran, O; Shaham, Y [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev

    1996-12-01

    Core parameters such as the reactivity, the power distribution and different reactivity coefficients calculated in simulations play an important role in the nuclear reactor handling. Operational safety margins are decided upon, based on the calculated parameters. Thus, the ability to accurately calculate those parameters is of uppermost importance. Such ability exists for fresh cores, using the Monte-Carlo method. The change in the core parameters that results from the core burnup is nowadays calculated within transport codes that simplifies the transport process by using approximations such as the diffusion approximation. The inaccuracy in the burned core parameters arising from the use of such approximations is hard to quantify, leading to an increased gap between the operational routines and the safety limits. A Monte Carlo transport code that caries out accurate static calculations in three dimensional geometries using continuous-energy neutron cross-section data such as the MCNP can be used to generate accurate reaction rates for burnup purposes. Monte Carlo method is statistical by nature, so that the reaction rates calculated will be accurate only to a certain known extent. The purpose of this work was to create a burnup routine that uses the capabilities of the Monte Carlo based MCNP code. It should be noted that burnup using Monte Carlo has been reported in the literatures, but this work is the result of an independent effort (authors).

  9. Whole core burnup calculations using 'MCNP'

    International Nuclear Information System (INIS)

    Haran, O.; Shaham, Y.

    1996-01-01

    Core parameters such as the reactivity, the power distribution and different reactivity coefficients calculated in simulations play an important role in the nuclear reactor handling. Operational safety margins are decided upon, based on the calculated parameters. Thus, the ability to accurately calculate those parameters is of uppermost importance. Such ability exists for fresh cores, using the Monte-Carlo method. The change in the core parameters that results from the core burnup is nowadays calculated within transport codes that simplifies the transport process by using approximations such as the diffusion approximation. The inaccuracy in the burned core parameters arising from the use of such approximations is hard to quantify, leading to an increased gap between the operational routines and the safety limits. A Monte Carlo transport code that caries out accurate static calculations in three dimensional geometries using continuous-energy neutron cross-section data such as the MCNP can be used to generate accurate reaction rates for burnup purposes. Monte Carlo method is statistical by nature, so that the reaction rates calculated will be accurate only to a certain known extent. The purpose of this work was to create a burnup routine that uses the capabilities of the Monte Carlo based MCNP code. It should be noted that burnup using Monte Carlo has been reported in the literatures, but this work is the result of an independent effort (authors)

  10. Comparison study of photon attenuation characteristics of Lead-Boron Polyethylene by MCNP code, XCOM and experimental data

    Science.gov (United States)

    Zhang, Lei; Jia, Mingchun; Gong, Junjun; Xia, Wenming

    2017-08-01

    The linear attenuation coefficient, mass attenuation coefficient and mean free path of various Lead-Boron Polyethylene (PbBPE) samples which can be used as the photon shielding materials in marine reactor have been simulated using the Monte Carlo N-Particle (MCNP)-5 code. The MCNP simulation results are in good agreement with the XCOM values and the reported experimental data for source Cesium-137 and Cobalt-60. Thus, this method based on MCNP can be used to simulate the photon attenuation characteristics of various types of PbBPE materials.

  11. Estimation and interpretation of keff confidence intervals in MCNP

    International Nuclear Information System (INIS)

    Urbatsch, T.J.

    1995-01-01

    The Monte Carlo code MCNP has three different, but correlated, estimators for calculating k eff in nuclear criticality calculations: collision, absorption, and track length estimators. The combination of these three estimators, the three-combined k eff estimator, is shown to be the best k eff estimator available in MCNP for estimating k eff confidence intervals. Theoretically, the Gauss-Markov theorem provides a solid foundation for MCNP's three-combined estimator. Analytically, a statistical study, where the estimates are drawn using a known covariance matrix, shows that the three-combined estimator is superior to the estimator with the smallest variance. Empirically, MCNP examples for several physical systems demonstrate the three-combined estimator's superiority over each of the three individual estimators and its correct coverage rates. Additionally, the importance of MCNP's statistical checks is demonstrated

  12. Computation of a voxelized anthropomorphic phantom from Computer Tomography slices and 3D dose distribution calculation utilizing the MCNP5 Code

    International Nuclear Information System (INIS)

    Abella, V.; Miro, R.; Juste, B.; Verdu, G.

    2008-01-01

    Full text: The purpose of this work is to obtain the voxelization of a series of tomography slices in order to provide a voxelized human phantom throughout a MatLab algorithm, and the consequent simulation of the irradiation of such phantom with the photon beam generated in a Theratron 780 (MDS Nordion) 60 Co radiotherapy unit, using the Monte Carlo transport code MCNP (Monte Carlo N-Particle), version 5. The project provides as results dose mapping calculations inside the voxelized anthropomorphic phantom. Prior works have validated the cobalt therapy model utilizing a simple heterogeneous water cube-shaped phantom. The reference phantom model utilized in this work is the Zubal phantom, which consists of a group of pre-segmented CT slices of a human body. The CT slices are to be input into the Matlab program which computes the voxelization by means of two-dimensional pixel and material identification on each slice, and three-dimensional interpolation, in order to depict the phantom geometry via small cubic cells. Each slice is divided in squares with the size of the desired voxelization, and then the program searches for the pixel intensity with a predefined material at each square, making a subsequent three-dimensional interpolation. At the end of this process, the program produces a voxelized phantom in which each voxel defines the mixture of the different materials that compose it. In the case of the Zubal phantom, the voxels result in pure organ materials due to the fact that the phantom is presegmented. The output of this code follows the MCNP input deck format and is integrated in a full input model including the 60 Co radiotherapy unit. Dose rates are calculated using the MCNP5 tool FMESH, superimposed mesh tally. This feature allows to tally particles on an independent mesh over the problem geometry, and to obtain the length estimation of the particle flux, in units of particles/cm 2 (tally F4). Furthermore, the particle flux is transformed into dose by

  13. Determination of photon fluence spectra from a 60Co therapy unit based on PENELOPE and MCNP simulations

    International Nuclear Information System (INIS)

    Baumgartner, Andreas; Hranitzky, Christian; Stadtmann, Hannes; Maringer, Franz Josef

    2011-01-01

    Photon fluence spectra of the Seibersdorf Labor/BEV Picker 60 Co therapy unit were calculated using two generally recognised Monte Carlo codes, PENELOPE-2006 and MCNP5. The complexity of the simulation model was increased in three steps (from a pure source capsule and a simplified model using rotational symmetry to a realistic model of the facility). Photon fluence spectra of both codes generally agree within their statistical standard uncertainties for the case of identical geometry set-up and particle transport parameter settings. Resulting total fluence values were about 0.3% higher for MCNP as compared to PENELOPE. The verification of the simulated photon fluence spectra was based upon depth-dose measurements in water performed with a PTW 31003 ionisation chamber and a thick-walled chamber type CC01. The depth-dose curve calculated with PENELOPE agreed with the curve obtained from measurements within 0.4% across the available depth region in the 30 cm x 30 cm x 30 cm water phantom. The comparison of measured and simulated beam quality indices (TPR 20,10 ) revealed deviations of less than 0.2%.

  14. Simulation of reactor noise analysis measurement for light-water critical assembly TCA using MCNP-DSP

    International Nuclear Information System (INIS)

    Yamamoto, Toshihiro; Sakurai, Kiyoshi; Tonoike, Kotaro; Miyoshi, Yoshinori

    2001-01-01

    Reactor noise analysis methods using Monte Carlo technique have been proposed and developed in the field of nuclear criticality safety. The Monte Carlo simulation for noise analysis can be made by simulating physical phenomena in the course of neutron transport in a nuclear fuel as practically as possible. MCNP-DSP was developed by T. Valentine of ORNL for this purpose and it is a modified version of MCNP-4A. The authors applied this code to frequency analysis measurements performed in light-water critical assembly TCA. Prompt neutron generation times for critical and subcritical cores were measured by doing the frequency analysis of detector signals. The Monte Carlo simulations for these experiments were carried out using MCNP-DSP, and prompt neutron generation times were calculated. (author)

  15. Performance of scientific computing platforms with MCNP4B

    International Nuclear Information System (INIS)

    McLaughlin, H.E.; Hendricks, J.S.

    1998-01-01

    Several computing platforms were evaluated with the MCNP4B Monte Carlo radiation transport code. The DEC AlphaStation 500/500 was the fastest to run MCNP4B. Compared to the HP 9000-735, the fastest platform 4 yr ago, the AlphaStation is 335% faster, the HP C180 is 133% faster, the SGI Origin 2000 is 82% faster, the Cray T94/4128 is 1% faster, the IBM RS/6000-590 is 93% as fast, the DEC 3000/600 is 81% as fast, the Sun Sparc20 is 57% as fast, the Cray YMP 8/8128 is 57% as fast, the sun Sparc5 is 33% as fast, and the Sun Sparc2 is 13% as fast. All results presented are reproducible and allow for comparison to computer platforms not included in this study. Timing studies are seen to be very problem dependent. The performance gains resulting from advances in software were also investigated. Various compilers and operating systems were seen to have a modest impact on performance, whereas hardware improvements have resulted in a factor of 4 improvement. MCNP4B also ran approximately as fast as MCNP4A

  16. Use experiences of MCNP in nuclear energy study. 2. Review of variance reduction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Kiyoshi; Yamamoto, Toshihiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; eds.

    1998-03-01

    `MCNP Use Experience` Working Group was established in 1996 under the Special Committee on Nuclear Code Evaluation. This year`s main activity of the working group has been focused on the review of variance reduction techniques of Monte Carlo calculations. This working group dealt with the variance reduction techniques of (1) neutron and gamma ray transport calculation of fusion reactor system, (2) concept design of nuclear transmutation system using accelerator, (3) JMTR core calculation, (4) calculation of prompt neutron decay constant, (5) neutron and gamma ray transport calculation for exposure evaluation, (6) neutron and gamma ray transport calculation of shielding system, etc. Furthermore, this working group started an activity to compile `Guideline of Monte Carlo Calculation` which will be a standard in the future. The appendices of this report include this `Guideline`, the use experience of MCNP 4B and examples of Monte Carlo calculations of high energy charged particles. The 11 papers are indexed individually. (J.P.N.)

  17. Use experiences of MCNP in nuclear energy study. 2. Review of variance reduction techniques

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi; Yamamoto, Toshihiro

    1998-03-01

    ''MCNP Use Experience'' Working Group was established in 1996 under the Special Committee on Nuclear Code Evaluation. This year''s main activity of the working group has been focused on the review of variance reduction techniques of Monte Carlo calculations. This working group dealt with the variance reduction techniques of (1) neutron and gamma ray transport calculation of fusion reactor system, (2) concept design of nuclear transmutation system using accelerator, (3) JMTR core calculation, (4) calculation of prompt neutron decay constant, (5) neutron and gamma ray transport calculation for exposure evaluation, (6) neutron and gamma ray transport calculation of shielding system, etc. Furthermore, this working group started an activity to compile ''Guideline of Monte Carlo Calculation'' which will be a standard in the future. The appendices of this report include this ''Guideline'', the use experience of MCNP 4B and examples of Monte Carlo calculations of high energy charged particles. The 11 papers are indexed individually. (J.P.N.)

  18. An enhanced geometry-independent mesh weight window generator for MCNP

    International Nuclear Information System (INIS)

    Evans, T.M.; Hendricks, J.S.

    1997-01-01

    A new, enhanced, weight window generator suite has been developed for MCNP trademark. The new generator correctly estimates importances in either an user-specified, geometry-independent orthogonal grid or in MCNP geometric cells. The geometry-independent option alleviates the need to subdivide the MCNP cell geometry for variance reduction purposes. In addition, the new suite corrects several pathologies in the existing MCNP weight window generator. To verify the correctness of the new implementation, comparisons are performed with the analytical solution for the cell importance. Using the new generator, differences between Monte Carlo generated and analytical importances are less than 0.1%. Also, assumptions implicit in the original MCNP generator are shown to be poor in problems with high scattering media. The new generator is fully compatible with MCNP's AVATAR trademark automatic variance reduction method. The new generator applications, together with AVATAR, gives MCNP an enhanced suite of variance reduction methods. The flexibility and efficacy of this suite is demonstrated in a neutron porosity tool well-logging problem

  19. Monte Carlo dose calculations of beta-emitting sources for intravascular brachytherapy: a comparison between EGS4, EGSnrc, and MCNP.

    Science.gov (United States)

    Wang, R; Li, X A

    2001-02-01

    The dose parameters for the beta-particle emitting 90Sr/90Y source for intravascular brachytherapy (IVBT) have been calculated by different investigators. At a distant distance from the source, noticeable differences are seen in these parameters calculated using different Monte Carlo codes. The purpose of this work is to quantify as well as to understand these differences. We have compared a series of calculations using an EGS4, an EGSnrc, and the MCNP Monte Carlo codes. Data calculated and compared include the depth dose curve for a broad parallel beam of electrons, and radial dose distributions for point electron sources (monoenergetic or polyenergetic) and for a real 90Sr/90Y source. For the 90Sr/90Y source, the doses at the reference position (2 mm radial distance) calculated by the three code agree within 2%. However, the differences between the dose calculated by the three codes can be over 20% in the radial distance range interested in IVBT. The difference increases with radial distance from source, and reaches 30% at the tail of dose curve. These differences may be partially attributed to the different multiple scattering theories and Monte Carlo models for electron transport adopted in these three codes. Doses calculated by the EGSnrc code are more accurate than those by the EGS4. The two calculations agree within 5% for radial distance <6 mm.

  20. Dosimetric characterization of model Cs-1 Rev2 cesium-131 brachytherapy source in water phantoms and human tissues with MCNP5 Monte Carlo simulation

    International Nuclear Information System (INIS)

    Wang Jianhua; Zhang Hualin

    2008-01-01

    A recently developed alternative brachytherapy seed, Cs-1 Rev2 cesium-131, has begun to be used in clinical practice. The dosimetric characteristics of this source in various media, particularly in human tissues, have not been fully evaluated. The aim of this study was to calculate the dosimetric parameters for the Cs-1 Rev2 cesium-131 seed following the recommendations of the AAPM TG-43U1 report [Rivard et al., Med. Phys. 31, 633-674 (2004)] for new sources in brachytherapy applications. Dose rate constants, radial dose functions, and anisotropy functions of the source in water, Virtual Water, and relevant human soft tissues were calculated using MCNP5 Monte Carlo simulations following the TG-43U1 formalism. The results yielded dose rate constants of 1.048, 1.024, 1.041, and 1.044 cGy h -1 U -1 in water, Virtual Water, muscle, and prostate tissue, respectively. The conversion factor for this new source between water and Virtual Water was 1.02, between muscle and water was 1.006, and between prostate and water was 1.004. The authors' calculation of anisotropy functions in a Virtual Water phantom agreed closely with Murphy's measurements [Murphy et al., Med. Phys. 31, 1529-1538 (2004)]. Our calculations of the radial dose function in water and Virtual Water have good agreement with those in previous experimental and Monte Carlo studies. The TG-43U1 parameters for clinical applications in water, muscle, and prostate tissue are presented in this work

  1. Modeling and Simulation Monte Carlo by the MCNP code for determining neutron parameters of the nuclear reactor-subcritical assembly in CNSTN

    International Nuclear Information System (INIS)

    Romdhani, Ibtissem

    2014-01-01

    As part of developing its nuclear infrastructure base, the National Science and Technology Center Nuclear (CNSTN) examines the technical feasibility of setting up a new installation of subcritical assembly. Our study focuses on determining the neutron parameters of a nuclear zero power reactor based on Monte Carlo simulation MCNP. The objective of the simulation is to model the installation, determine the effective multiplication factor, and spatial distribution of neutron flux.

  2. ZZ MCNPDATA, Standard Neutron, Photon and Electron Data Libraries for MCNP-4C and MCB1C

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Description: These cross-section libraries are released by the Diagnostics Applications Group, X-5, at Los Alamos National Laboratory for use with the MCNP Monte Carlo code package. This release includes all of the X-5 distributed neutron data libraries, the photon libraries MCPLIB1 and MCPLIB02, the electron libraries EL1 and EL03, an updated XSDIR file, and information files Readme.txt and Readme e ndf60.txt. This release is intended to completely replace previous RSICC releases DLC-105, DLC-181, and DLC-189 as well as the cross sections previously included with CCC-200/MCNP4A, and will be updated as new libraries become available. The README file provides information regarding each data library of this release. Additional documentation for some of the individual libraries and example SPECS files for use with MAKXSF are also provided. The XSDIR file is specific to this release and may not work with previous packages. Currently the neutron data library ENDF60 (based on ENDF/B-VI, up through and including release 2) is the default library for continuous-energy neutron transport. Additionally, the libraries MCPLIB02 and EL03 are the default libraries for photon and electron transport respectively. More information on the data libraries contained in this release is available in Appendix G of the MCNP4C manual. 2 - Description of program or function: ZZ-MCB-DLC200 contains the same cross section tables as the DLC-0200/03 package for the MCNP-4C code, except that the installation procedures are adapted to the MCB1C code system (NEA 1643/01). 3 - Application of the data: DLC-200/MCNPDATA is for use with Version 4C and later of the MCNP transport code. This data library provides a comprehensive set of cross sections for a wide range of radiation transport applications using the Monte Carlo code package CCC-700/MCNP4C. See Appendix G of the MCNP report LA-13709-M for information on the libraries and how to select specific nuclides for use in MCNP. 4 - Source and scope

  3. A DRAGON-MCNP comparison of void reactivity calculations

    Energy Technology Data Exchange (ETDEWEB)

    Marleau, G [Ecole Polytechnique, Montreal, PQ (Canada). Inst. de Genie Nucleaire; Milgram, M S [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    The determination of the reactivity coefficients associated with coolant voiding in a CANDU reactor is a subject which has attracted a large amount of interest in the last few years both from the theoretical and experimental point of view. One expects that deterministic codes such as DRAGON and WIMS-AECL or the MCNP4 Monte Carlo code should be able to adequately simulate the cell behaviour upon coolant voiding. However, the absence of an experimental database at equilibrium and discharge burnups has not permitted the full validation of any of these lattice codes, although a partial validation through comparison of two different computer codes has been considered. Here we present a comparison between DRAGON and MCNP4 of the void reactivity evaluation for fresh fuel. (author). 16 refs., 5 tabs.

  4. A DRAGON-MCNP comparison of void reactivity calculations

    International Nuclear Information System (INIS)

    Marleau, G.

    1995-01-01

    The determination of the reactivity coefficients associated with coolant voiding in a CANDU reactor is a subject which has attracted a large amount of interest in the last few years both from the theoretical and experimental point of view. One expects that deterministic codes such as DRAGON and WIMS-AECL or the MCNP4 Monte Carlo code should be able to adequately simulate the cell behaviour upon coolant voiding. However, the absence of an experimental database at equilibrium and discharge burnups has not permitted the full validation of any of these lattice codes, although a partial validation through comparison of two different computer codes has been considered. Here we present a comparison between DRAGON and MCNP4 of the void reactivity evaluation for fresh fuel. (author). 16 refs., 5 tabs

  5. Use of McCad for the conversion of ITER CAD data to MCNP geometry

    International Nuclear Information System (INIS)

    Tsige-Tamirat, H.; Fischer, U.; Serikov, A.; Stickel, S.

    2008-01-01

    The program McCad provides a CAD interface for the Monte Carlo transport code MCNP. It is able to convert CAD data into MCNP input geometry description and provides GUI components for modeling, visualization, and data exchange. It performs sequences of tests on CAD data to check its validity and neutronics appropriateness including completion of the final MCNP model by void geometries. McCad has been used to convert a 40 deg. ITER torus sector CAD model to a suitable MCNP geometry model. Results of MCNP calculations performed to validate the converted geometry are presented

  6. Status of electron transport in MCNP trademark

    International Nuclear Information System (INIS)

    Hughes, H.G.

    1997-01-01

    The latest version of MCNP, the Los Alamos Monte Carlo transport code, has now been officially released. MCNP4B has been sent to the Radiation Safety Information Computational Center (RSICC), in Oak Ridge, Tennessee, which is responsible for the further distribution of the code within the US. International distribution of MCNP is done by the Nuclear Energy Agency (ECD/NEA), in Paris, France. Readers with access to the World-Wide-Web should consult the MCNP distribution site http://www-xdiv.lanl.gov/XTM/mcnp/about.html for specific information about contacting RSICC and OECD/NEA. A variety of new features are available in MCNP4B. Among these are differential operator perturbations, cross-section plotting capabilities, enhanced diagnostics for transport in repeated structures and lattices, improved efficiency in distributed-memory multiprocessing, corrected particle lifetime and lifespan estimators, and expanded software quality assurance procedures and testing, including testing of the multigroup Boltzmann-Fokker-Planck capability. New and improved cross section sets in the form of ENDF/B-VI evaluations have also been recently released and can be used in MCNP4B. Perhaps most significant for the interests of this special session, the electron transport algorithm has been improved, especially in the collisional energy-loss straggling and the angular-deflection treatments. In this paper, the author concentrates on a fairly complete documentation of the current status of the electron transport methods in MCNP

  7. Acceleration of the MCNP branch of the OCTOPUS depletion code system

    Energy Technology Data Exchange (ETDEWEB)

    Pijlgroms, B.J.; Hogenbirk, A.; Oppe, J. [Section Nuclear and Reactor Physics, ECN Nuclear Research, Petten (Netherlands)

    1998-09-01

    OCTOPUS depletion calculations using the 3D Monte Carlo spectrum code MCNP (Monte Carlo Code for Neutron and Photon Transport) require much computing time. In a former implementation, the time required by OCTOPUS to perform multi-zone calculations, increased roughly proportional to the number of burnable zones. By using a different method the situation has improved considerably. In the new implementation described here, the dependence of the computing time on the number of zones has been moved from the MCNP code to a faster postprocessing code. By this, the overall computing time will reduce substantially. 11 refs.

  8. Acceleration of the MCNP branch of the OCTOPUS depletion code system

    International Nuclear Information System (INIS)

    Pijlgroms, B.J.; Hogenbirk, A.; Oppe, J.

    1998-09-01

    OCTOPUS depletion calculations using the 3D Monte Carlo spectrum code MCNP (Monte Carlo Code for Neutron and Photon Transport) require much computing time. In a former implementation, the time required by OCTOPUS to perform multi-zone calculations, increased roughly proportional to the number of burnable zones. By using a different method the situation has improved considerably. In the new implementation described here, the dependence of the computing time on the number of zones has been moved from the MCNP code to a faster postprocessing code. By this, the overall computing time will reduce substantially. 11 refs

  9. MCNP load balancing and fault tolerance with PVM

    International Nuclear Information System (INIS)

    McKinney, G.W.

    1995-01-01

    Version 4A of the Monte Carlo neutron, photon, and electron transport code MCNP, developed by LANL (Los Alamos National Laboratory), supports distributed-memory multiprocessing through the software package PVM (Parallel Virtual Machine, version 3.1.4). Using PVM for interprocessor communication, MCNP can simultaneously execute a single problem on a cluster of UNIX-based workstations. This capability provided system efficiencies that exceeded 80% on dedicated workstation clusters, however, on heterogeneous or multiuser systems, the performance was limited by the slowest processor (i.e., equal work was assigned to each processor). The next public release of MCNP will provide multiprocessing enhancements that include load balancing and fault tolerance which are shown to dramatically increase multiuser system efficiency and reliability

  10. MCNP6 Simulation of Light and Medium Nuclei Fragmentation at Intermediate Energies

    Energy Technology Data Exchange (ETDEWEB)

    Mashnik, Stepan Georgievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kerby, Leslie Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-22

    MCNP6, the latest and most advanced LANL Monte Carlo transport code, representing a merger of MCNP5 and MCNPX, is actually much more than the sum of those two computer codes; MCNP6 is available to the public via RSICC at Oak Ridge, TN, USA. In the present work, MCNP6 was validated and verified (V&V) against different experimental data on intermediate-energy fragmentation reactions, and results by several other codes, using mainly the latest modifications of the Cascade-Exciton Model (CEM) and of the Los Alamos version of the Quark-Gluon String Model (LAQGSM) event generators CEM03.03 and LAQGSM03.03. It was found that MCNP6 using CEM03.03 and LAQGSM03.03 describes well fragmentation reactions induced on light and medium target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below, and can serve as a reliable simulation tool for different applications, like cosmic-ray-induced single event upsets (SEU’s), radiation protection, and cancer therapy with proton and ion beams, to name just a few. Future improvements of the predicting capabilities of MCNP6 for such reactions are possible, and are discussed in this work.

  11. Advanced local dose rate calculations with the Monte Carlo code MCNP for plutonium nitrate storage containers

    International Nuclear Information System (INIS)

    Quade, U.

    1994-01-01

    Neutron- und Gamma dose rate calculations were performed for the storage containers filled with plutonium nitrate of the MOX fabrication facility of Siemens. For the particle transport calculations the Monte Carlo Code MCNP 4.2 was used. The calculated results were compared with experimental dose rate measurements. It can be stated that the choice of the code system was appropriate since all aspects of the many facettes of the problem were well reproduced in the calculations. The position dependency as well as the influence of the shieldings, the reflections and the mutual influences of the sources were well described by the calculations for the gamma and for the neutron dose rates. However, good agreement with the experimental results on the gamma dose rates could only be reached when the lead shielding of the detector was integrated into the geometry modelling of the calculations. For some few cases of thick shieldings and soft gamma ray sources the statistics of the calculational results were not sufficient. In such cases more elaborate variance reduction methods must be applied in future calculations. Thus the MCNP code in connection with NGSRC has been proven as an effective tool for the solution of this type of problems. (orig./HP) [de

  12. Preliminary evaluation of pin power distribution for fuel assemblies of SMART by MCNP

    International Nuclear Information System (INIS)

    Kim, Kyo Youn

    1998-08-01

    Monte Carlo transport code MCNP can describe an object sophisticately by use of three-dimensional modelling and can adopt a continuous energy cross-section library. Therefore MCNP has been widely utilized in the field of radiation physics to estimate fluxes and dose rates for nuclear facilities and to review results from conventional methods such a as discrete ordinates method and point kernel method. The Monte Carlo method has recently been introduced to estimated the neutron multiplication factor and pin power distribution in the fuel assembly of a reactor core. The operating thermal power of SMART core is 330 MWt and there are 57 fuel assemblies in the core. In this study it was assumed that the core has 4 types of fuel assemblies. In this study, MCNP4a was used to perform to estimate criticality and normalized pin power distribution in a fuel assembly of SMART core. The results from MCNP4a calculations are able to be used review those from nuclear design/analysis code. It is very complicated to pick up interested data from MCNP output list and to normalize pin power distribution in a fuel assembly because MCNP is not only a nuclear design/analysis code. In this study a program FAPIN was developed to generated a generate a normalized pin power distribution from the MCNP output list. (author). 11 refs

  13. Characteristics of multiprocessing MCNP5 on small personal computer clusters

    International Nuclear Information System (INIS)

    Robinson, S M; Mc Conn, R J Jr; Pagh, R T; Schweppe, J E; Siciliano, E R

    2006-01-01

    The feasibility and efficiency of performing MCNP5 calculations with a small, heterogeneous computing cluster built from Microsoft ( R) Windows TM personal computers (PC) are explored. The performance increases that may be expected with such clusters are estimated for cases that typify general radiation-shielding calculations. Our results show that the speed increase from additional slave PCs is nearly linear up to 10 processors. Guidance is given as to the specific advantages of changing various parameters present in the system. Implementing load balancing, and reducing the overhead from the MCNP rendezvous mechanism add to heterogeneous cluster efficiency. Hyper-threading technology and matching the total number of slave processes to the total number of logical processors also yield modest speed increases in the range below 7 processors. Because of the ease of acquisition of heterogeneous desktop computers, and the peak in efficiency at the level of a few physical processors, a strong case is made for the use of small clusters as a tool for producing MCNP5 calculations rapidly, and detailed instructions for constructing such clusters are provided

  14. The comparison of MCNP perturbation technique with MCNP difference method in critical calculation

    International Nuclear Information System (INIS)

    Liu Bin; Lv Xuefeng; Zhao Wei; Wang Kai; Tu Jing; Ouyang Xiaoping

    2010-01-01

    For a nuclear fission system, we calculated Δk eff , which arise from system material composition changes, by two different approaches, the MCNP perturbation technique and the MCNP difference method. For every material composition change, we made four different runs, each run with different cycles or each cycle generating different neutrons, then we compared the two Δk eff that are obtained by two different approaches. As a material composition change in any particular cell of the nuclear fission system is small compared to the material compositions in the whole nuclear fission system, in other words, this composition change can be treated as a small perturbation, the Δk eff results obtained from the MCNP perturbation technique are much quicker, much more efficient and reliable than the results from the MCNP difference method. When a material composition change in any particular cell of the nuclear fission system is significant compared to the material compositions in the whole nuclear fission system, both the MCNP perturbation technique and the MCNP difference method can give satisfactory results. But for the run with the same cycles and each cycle generating the same neutrons, the results obtained from the MCNP perturbation technique are systemically less than the results obtained from the MCNP difference method. To further confirm our calculation results from the MCNP4C, we run the exact same MCNP4C input file in MCNP5, the calculation results from MCNP5 are the same as the calculation results from MCNP4C. We need caution when using the MCNP perturbation technique to calculate the Δk eff as the material composition change is large compared to the material compositions in the whole nuclear fission system, even though the material composition changes of any particular cell of the fission system still meet the criteria of MCNP perturbation technique.

  15. Parallelization of MCNP 4, a Monte Carlo neutron and photon transport code system, in highly parallel distributed memory type computer

    International Nuclear Information System (INIS)

    Masukawa, Fumihiro; Takano, Makoto; Naito, Yoshitaka; Yamazaki, Takao; Fujisaki, Masahide; Suzuki, Koichiro; Okuda, Motoi.

    1993-11-01

    In order to improve the accuracy and calculating speed of shielding analyses, MCNP 4, a Monte Carlo neutron and photon transport code system, has been parallelized and measured of its efficiency in the highly parallel distributed memory type computer, AP1000. The code has been analyzed statically and dynamically, then the suitable algorithm for parallelization has been determined for the shielding analysis functions of MCNP 4. This includes a strategy where a new history is assigned to the idling processor element dynamically during the execution. Furthermore, to avoid the congestion of communicative processing, the batch concept, processing multi-histories by a unit, has been introduced. By analyzing a sample cask problem with 2,000,000 histories by the AP1000 with 512 processor elements, the 82 % of parallelization efficiency is achieved, and the calculational speed has been estimated to be around 50 times as fast as that of FACOM M-780. (author)

  16. Monte Carlo Techniques for Nuclear Systems - Theory Lectures

    International Nuclear Information System (INIS)

    Brown, Forrest B.; Univ. of New Mexico, Albuquerque, NM

    2016-01-01

    These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. These lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations

  17. Monte Carlo Techniques for Nuclear Systems - Theory Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Methods, Codes, and Applications Group; Univ. of New Mexico, Albuquerque, NM (United States). Nuclear Engineering Dept.

    2016-11-29

    These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. These lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations

  18. Radiation shielding calculation using MCNP

    International Nuclear Information System (INIS)

    Masukawa, Fumihiro

    2001-01-01

    To verify the Monte Carlo code MCNP4A as a tool to generate the reference data in the shielding designs and the safety evaluations, various shielding benchmark experiments were analyzed using this code. These experiments were categorized in three types of the shielding subjects; bulk shielding, streaming, and skyshine. For the variance reduction technique, which is indispensable to get meaningful results with the Monte Carlo shielding calculation, we mainly used the weight window, the energy dependent Russian roulette and spitting. As a whole, our analyses performed enough small statistical errors and showed good agreements with these experiments. (author)

  19. Verification of tritium production evaluation procedure using Monte Carlo code MCNP for in-pile test of fusion blanket with JMTR

    International Nuclear Information System (INIS)

    Nagao, Y.; Nakamichi, K.; Tsuchiya, M.; Ishitsuka, E.; Kawamura, H.

    2000-01-01

    To evaluate exactly the total amount of tritium production in tritium breeding materials during in-pile test with JMTR, the 'tritium monitor' has been produced and evaluation of total tritium generation was done by using 'tritium monitor' in preliminary in-pile mock-up, and verification of procedure concerning tritium production evaluation was conducted by using Monte Carlo code MCNP and nuclear cross section library of FSXLIBJ3R2. Li-Al alloy (Li 3.4 wt.%, 95.5% enrichment of 6 Li) was selected as tritium monitor material for the evaluation on the total amount of tritium production in high 6 Li enriched materials. From the results of preliminary experiment, calculated amounts of total tritium production at each 'tritium monitor', which was installed in the preliminary in-pile mock-up, were about 50-290% higher than the measured values. Concerning tritium measurement, increase of measurement error in tritium leak form measuring system to measure small amount of tritium (0.2-0.7 mCi in tritium monitor) was found in the results of present experiment. The tendency for overestimation of calculated thermal neutron flux in the range of 1-6x10 13 n cm -2 per s was found in JMTR and the reason may be due to the beryllium cross section data base in JENDL3.2

  20. Verification of tritium production evaluation procedure using Monte Carlo code MCNP for in-pile test of fusion blanket with JMTR

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Y. E-mail: nagao@jmtr.oarai.jaeri.go.jp; Nakamichi, K.; Tsuchiya, M.; Ishitsuka, E.; Kawamura, H

    2000-11-01

    To evaluate exactly the total amount of tritium production in tritium breeding materials during in-pile test with JMTR, the 'tritium monitor' has been produced and evaluation of total tritium generation was done by using 'tritium monitor' in preliminary in-pile mock-up, and verification of procedure concerning tritium production evaluation was conducted by using Monte Carlo code MCNP and nuclear cross section library of FSXLIBJ3R2. Li-Al alloy (Li 3.4 wt.%, 95.5% enrichment of {sup 6}Li) was selected as tritium monitor material for the evaluation on the total amount of tritium production in high {sup 6}Li enriched materials. From the results of preliminary experiment, calculated amounts of total tritium production at each 'tritium monitor', which was installed in the preliminary in-pile mock-up, were about 50-290% higher than the measured values. Concerning tritium measurement, increase of measurement error in tritium leak form measuring system to measure small amount of tritium (0.2-0.7 mCi in tritium monitor) was found in the results of present experiment. The tendency for overestimation of calculated thermal neutron flux in the range of 1-6x10{sup 13} n cm{sup -2} per s was found in JMTR and the reason may be due to the beryllium cross section data base in JENDL3.2.

  1. Monte Carlo simulations of plutonium gamma-ray spectra

    International Nuclear Information System (INIS)

    Koenig, Z.M.; Carlson, J.B.; Wang, Tzu-Fang; Ruhter, W.D.

    1993-01-01

    Monte Carlo calculations were investigated as a means of simulating the gamma-ray spectra of Pu. These simulated spectra will be used to develop and evaluate gamma-ray analysis techniques for various nondestructive measurements. Simulated spectra of calculational standards can be used for code intercomparisons, to understand systematic biases and to estimate minimum detection levels of existing and proposed nondestructive analysis instruments. The capability to simulate gamma-ray spectra from HPGe detectors could significantly reduce the costs of preparing large numbers of real reference materials. MCNP was used for the Monte Carlo transport of the photons. Results from the MCNP calculations were folded in with a detector response function for a realistic spectrum. Plutonium spectrum peaks were produced with Lorentzian shapes, for the x-rays, and Gaussian distributions. The MGA code determined the Pu isotopes and specific power of this calculated spectrum and compared it to a similar analysis on a measured spectrum

  2. Particle Track Visualization using the MCNP Visual Editor

    International Nuclear Information System (INIS)

    Schwarz, Randolph A.; Carter, Lee; Brown, Wendi A.

    2001-01-01

    The Monte Carlo N-Particle (MCNP) visual editor1,2,3 is used throughout the world for displaying and creating complex MCNP geometries. The visual editor combines the Los Alamos MCNP Fortran code with a C front end to provide a visual interface. A big advantage of this approach is that the particle transport routines for MCNP are available to the visual front end. The latest release of the visual editor by Pacific Northwest National Laboratory enables the user to plot transport data points on top of a two-dimensional geometry plot. The user can plot source points, collisions points, surface crossings, and tally contributions. This capability can be used to show where particle collisions are occurring, verify the effectiveness of the particle biasing, or show which collisions contribute to a tally. For a KCODE (criticality source) calculation, the visual editor can be used to plot the source points for specific cycles

  3. Generating and verification of ACE-multigroup library for MCNP

    International Nuclear Information System (INIS)

    Chen Chaobin; Hu Zehua; Chen Yixue; Wu Jun; Yang Shouhai

    2012-01-01

    The Monte Carlo code MCNP can handle multigroup calculations and a sample multigroup set based on ENDF/B-V, MGXSNP, is available for MCNP for coupled neutron-photon transport. However, this library is not suit- able for all problems, and there is a need for users to be able to generate multigroup libraries tailored to their specific applications. For these purposes CSPT (cross section processing tool) is created to generate multigroup library for MCNP from deterministic multigroup cross sections (GENDF or ANISN format at present). Several ACE-multigroup libraries based on ENDF/B-VII.0 converted and verified in this work, we drawn the conclusion that the CSPT code works correctly and the libraries produced are credible. (authors)

  4. Verification of Compton scattering spectrum of a 662 keV photon beam scattered on a cylindrical steel target using MCNP5 code

    International Nuclear Information System (INIS)

    Thanh, Tran Thien; Nguyen, Vo Hoang; Chuong, Huynh Dinh; Tran, Le Bao; Tam, Hoang Duc; Binh, Nguyen Thi; Tao, Chau Van

    2015-01-01

    This article focuses on the possible application of a "1"3"7Cs low-radioactive source (5 mCi) and a NaI(Tl) detector for measuring the saturation thickness of solid cylindrical steel targets. In order to increase the reliability of the obtained experimental results and to verify the detector response function of Compton scattering spectrum, simulation using Monte Carlo N-particle (MCNP5) code is performed. The obtained results are in good agreement with the response functions of the simulation scattering and experimental scattering spectra. On the basis of such spectra, the saturation depth of a steel cylinder is determined by experiment and simulation at about 27 mm using gamma energy of 662 keV ("1"3"7Cs) at a scattering angle of 120°. This study aims at measuring the diameter of solid cylindrical objects by gamma-scattering technique. - Highlights: • This study aims a possible application a "1"3"7Cs low-radioactive source (5 mCi) and a NaI(Tl) detector for measuring the saturation thickness of solid cylindrical steel targets by gamma-scattering technique. • Monte Carlo N-particle (MCNP5) code is performed to verify on the detector response function of Compton scattering spectrum. • The results show a good agreement in response function of the experimental and simulation scattering spectra. • The saturation depth of a steel cylinder is determined by experiment and simulation at about 27 mm using gamma energy of 662 keV ("1"3"7Cs) at a scattering angle of 120°.

  5. Reactor physics simulations with coupled Monte Carlo calculation and computational fluid dynamics

    International Nuclear Information System (INIS)

    Seker, V.; Thomas, J.W.; Downar, T.J.

    2007-01-01

    A computational code system based on coupling the Monte Carlo code MCNP5 and the Computational Fluid Dynamics (CFD) code STAR-CD was developed as an audit tool for lower order nuclear reactor calculations. This paper presents the methodology of the developed computer program 'McSTAR'. McSTAR is written in FORTRAN90 programming language and couples MCNP5 and the commercial CFD code STAR-CD. MCNP uses a continuous energy cross section library produced by the NJOY code system from the raw ENDF/B data. A major part of the work was to develop and implement methods to update the cross section library with the temperature distribution calculated by STARCD for every region. Three different methods were investigated and implemented in McSTAR. The user subroutines in STAR-CD are modified to read the power density data and assign them to the appropriate variables in the program and to write an output data file containing the temperature, density and indexing information to perform the mapping between MCNP and STAR-CD cells. Preliminary testing of the code was performed using a 3x3 PWR pin-cell problem. The preliminary results are compared with those obtained from a STAR-CD coupled calculation with the deterministic transport code DeCART. Good agreement in the k eff and the power profile was observed. Increased computational capabilities and improvements in computational methods have accelerated interest in high fidelity modeling of nuclear reactor cores during the last several years. High-fidelity has been achieved by utilizing full core neutron transport solutions for the neutronics calculation and computational fluid dynamics solutions for the thermal-hydraulics calculation. Previous researchers have reported the coupling of 3D deterministic neutron transport method to CFD and their application to practical reactor analysis problems. One of the principal motivations of the work here was to utilize Monte Carlo methods to validate the coupled deterministic neutron transport

  6. First results of saturation curve measurements of heat-resistant steel using GEANT4 and MCNP5 codes

    International Nuclear Information System (INIS)

    Hoang, Duc-Tam; Tran, Thien-Thanh; Le, Bao-Tran; Vo, Hoang-Nguyen; Chau, Van-Tao; Tran, Kim-Tuyet; Huynh, Dinh-Chuong

    2015-01-01

    A gamma backscattering technique is applied to calculate the saturation curve and the effective mass attenuation coefficient of material. A NaI(Tl) detector collimated by collimator of large diameter is modeled by Monte Carlo technique using both MCNP5 and GEANT4 codes. The result shows a good agreement in response function of the scattering spectra for the two codes. Based on such spectra, the saturation curve of heat-resistant steel is determined. The results represent a strong confirmation that it is appropriate to use the detector collimator of large diameter to obtain the scattering spectra and this work is also the basis of experimental set-up for determining the thickness of material. (author)

  7. Estimation of coolant void reactivity for CANDU-NG lattice using DRAGON and validation using MCNP5 and TRIPOLI-4.3

    International Nuclear Information System (INIS)

    Karthikeyan, R.; Tellier, R. L.; Hebert, A.

    2006-01-01

    The Coolant Void Reactivity (CVR) is an important safety parameter that needs to be estimated at the design stage of a nuclear reactor. It helps to have an a priori knowledge of the behavior of the system during a transient initiated by the loss of coolant. In the present paper, we have attempted to estimate the CVR for a CANDU New Generation (CANDU-NG) lattice, as proposed at an early stage of the Advanced CANDU Reactor (ACR) development. We have attempted to estimate the CVR with development version of the code DRAGON, using the method of characteristics. DRAGON has several advanced self-shielding models incorporated in it, each of them compatible with the method of characteristics. This study will bring to focus the performance of these self-shielding models, especially when there is voiding of such a tight lattice. We have also performed assembly calculations in 2 x 2 pattern for the CANDU-NG fuel, with special emphasis on checkerboard voiding. The results obtained have been validated against Monte Carlo codes MCNP5 and TRIPOLI-4.3. (authors)

  8. Calculation of self–shielding factor for neutron activation experiments using GEANT4 and MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Romero–Barrientos, Jaime, E-mail: jaromero@ing.uchile.cl [Comisión Chilena de Energía Nuclear, Nueva Bilbao 12501, Las Condes, Santiago (Chile); Universidad de Chile, DFI, Facultad de Ciencias Físicas Y Matemáticas, Avenida Blanco Encalada 2008, Santiago (Chile); Molina, F. [Comisión Chilena de Energía Nuclear, Nueva Bilbao 12501, Las Condes, Santiago (Chile); Aguilera, Pablo [Comisión Chilena de Energía Nuclear, Nueva Bilbao 12501, Las Condes, Santiago (Chile); Universidad de Chile, Depto. de Física, Facultad de Ciencias, Las Palmeras 3425, Ñuñoa, Santiago (Chile); Arellano, H. F. [Universidad de Chile, DFI, Facultad de Ciencias Físicas Y Matemáticas, Avenida Blanco Encalada 2008, Santiago (Chile)

    2016-07-07

    The neutron self–shielding factor G as a function of the neutron energy was obtained for 14 pure metallic samples in 1000 isolethargic energy bins from 1·10{sup −5}eV to 2·10{sup 7}eV using Monte Carlo simulations in GEANT4 and MCNP6. The comparison of these two Monte Carlo codes shows small differences in the final self–shielding factor mostly due to the different cross section databases that each program uses.

  9. Treating voxel geometries in radiation protection dosimetry with a patched version of the Monte Carlo codes MCNP and MCNPX.

    Science.gov (United States)

    Burn, K W; Daffara, C; Gualdrini, G; Pierantoni, M; Ferrari, P

    2007-01-01

    The question of Monte Carlo simulation of radiation transport in voxel geometries is addressed. Patched versions of the MCNP and MCNPX codes are developed aimed at transporting radiation both in the standard geometry mode and in the voxel geometry treatment. The patched code reads an unformatted FORTRAN file derived from DICOM format data and uses special subroutines to handle voxel-to-voxel radiation transport. The various phases of the development of the methodology are discussed together with the new input options. Examples are given of employment of the code in internal and external dosimetry and comparisons with results from other groups are reported.

  10. Feasibility of a Monte Carlo-deterministic hybrid method for fast reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Heo, W.; Kim, W.; Kim, Y. [Korea Advanced Institute of Science and Technology - KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Yun, S. [Korea Atomic Energy Research Institute - KAERI, 989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2013-07-01

    A Monte Carlo and deterministic hybrid method is investigated for the analysis of fast reactors in this paper. Effective multi-group cross sections data are generated using a collision estimator in the MCNP5. A high order Legendre scattering cross section data generation module was added into the MCNP5 code. Both cross section data generated from MCNP5 and TRANSX/TWODANT using the homogeneous core model were compared, and were applied to DIF3D code for fast reactor core analysis of a 300 MWe SFR TRU burner core. For this analysis, 9 groups macroscopic-wise data was used. In this paper, a hybrid calculation MCNP5/DIF3D was used to analyze the core model. The cross section data was generated using MCNP5. The k{sub eff} and core power distribution were calculated using the 54 triangle FDM code DIF3D. A whole core calculation of the heterogeneous core model using the MCNP5 was selected as a reference. In terms of the k{sub eff}, 9-group MCNP5/DIF3D has a discrepancy of -154 pcm from the reference solution, 9-group TRANSX/TWODANT/DIF3D analysis gives -1070 pcm discrepancy. (authors)

  11. Shielding property of bismuth glass based on MCNP 5 and WINXCOM simulated calculation

    International Nuclear Information System (INIS)

    Zhang Zhicheng; Zhang Jinzhao; Liu Ze; Lu Chunhai; Chen Min

    2013-01-01

    Background: Currently, lead glass is widely used as observation window, while lead is toxic heavy metal. Purpose: Non-toxic materials and their shielding effects are researched in order to find a new material to replace lead containing material. Methods: The mass attenuation coefficients of bismuth silicate glass were investigated with gamma-ray's energy at 0.662 MeV, 1.17 MeV and 1.33 MeV, respectively, by MCNP 5 (Monte Carlo) and WINXCOM program, and compared with those of the lead glass. Results: With attenuation factor K, shielding and mechanical properties taken into consideration bismuth glass containing 50% bismuth oxide might be selected as the right material. Dose rate distributions of water phantom were calculated with 2-cm and 10-cm thick glass, respectively, irradiated by 137 Cs and 60 Co in turn. Conclusion: Results show that the bismuth glass may replace lead glass for radiation shielding with appropriate energy. (authors)

  12. Study of an extrapolation chamber in a standard diagnostic radiology beam by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Vedovato, Uly Pita; Silva, Rayre Janaina Vieira; Neves, Lucio Pereira; Santos, William S.; Perini, Ana Paula; Belinato, Walmir

    2016-01-01

    In this work, we studied the influence of the components of an extrapolation ionization chamber in its response. This study was undertaken using the MCNP-5 Monte Carlo code, and the standard diagnostic radiology quality for direct beams (RQR5). Using tally F6 and 2.1 x 10"9 simulated histories, the results showed that the chamber design and material not alter significantly the energy deposited in its sensitive volume. The collecting electrode and support board were the components with more influence on the chamber response. (author)

  13. Validation of a new midway forward-adjoint coupling option in MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Serov, I.V.; John, T.M.; Hoogenboom, J.E. [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.

    1996-09-01

    The new midway Monte Carlo is based on the coupling of scores from a forward and an adjoint Monte Carlo calculation on a surface in between the source and the detector. The method is implemented in MCNP. The utilization of the method is fairly straight-forward and does not require any substantial expertise. The midway Monte Carlo method was tested against the gamma-ray skyshine MCNP benchmark problem. This problem involves deep penetration and streaming along complicated paths. The midway method supplied results, which agree with the results of the reference calculation within the limits of the estimated statistical uncertainties. The efficiency of the easy-to-implement midway calculation is higher than the efficiency of the reference calculation which is already optimized by use of an importance function. The midway method proves to be efficient in problems with complicated streaming paths towards small detectors. (author)

  14. Validation of a new midway forward-adjoint coupling option in MCNP

    International Nuclear Information System (INIS)

    Serov, I.V.; John, T.M.; Hoogenboom, J.E.

    1996-01-01

    The new midway Monte Carlo is based on the coupling of scores from a forward and an adjoint Monte Carlo calculation on a surface in between the source and the detector. The method is implemented in MCNP. The utilization of the method is fairly straight-forward and does not require any substantial expertise. The midway Monte Carlo method was tested against the gamma-ray skyshine MCNP benchmark problem. This problem involves deep penetration and streaming along complicated paths. The midway method supplied results, which agree with the results of the reference calculation within the limits of the estimated statistical uncertainties. The efficiency of the easy-to-implement midway calculation is higher than the efficiency of the reference calculation which is already optimized by use of an importance function. The midway method proves to be efficient in problems with complicated streaming paths towards small detectors. (author)

  15. Modeling of LVRF critical experiments in ZED-2 using WIMS9A/PANTHER and MCNP5

    International Nuclear Information System (INIS)

    Sissaoui, M.T.; Carlson, P.A.; Lebenhaft, J.R.

    2009-01-01

    The accuracy of WIMS9A/PANTHER and MCNP5 in modeling D 2 O-moderated, and H 2 O-, D 2 O- or air-cooled, doubly heterogeneous lattices of fuel clusters was demonstrated using Low Void Reactivity Fuel (LVRF) substitution experiments in the ZED-2 critical facility. MCNP5 with ENDF/B-VI (Release 5) underpredicted k eff but gave excellent coolant void reactivity (CVR) bias values. WIMS9A/PANTHER with JEF-2.2 overpredicted k eff and underpredicted the CVR bias relative to MCNP5 by 100-200 pcm. Both codes reproduced the measured axial and radial flux shapes accurately

  16. A Validated MCNP(X) Cross Section Library based on JEFF 3.1

    International Nuclear Information System (INIS)

    Haeck, W.; Verboomen, B.

    2006-01-01

    ALEPH-LIB is a multi-temperature neutron transport library for standard use by MCNP(X) and ALEPH generated with ALEPH-DLG. This is an auxiliary computer code to ALEPH, the Monte Carlo burn-up code under development at SCK-CEN in collaboration with Ghent university. ALEPH-DLG automates the entire process of generating library files with NJOY and takes care of the first requirement of a validated application library: verify the processing. It produces tailor made NJOY input files using data from the original ENDF file (initial temperature, the fact if the nuclide is fissile or if it has unresolved resonances, etc.) When the library files have been generated, ALEPH-DLG will also process the output from NJOY by extracting all messages and warnings. If ALEPH-DLG finds anything out of the ordinary, it will either warn the user or perform corrective actions. The temperatures included in the ALEPH-LIB library are 300, 600, 900, 1200, 1500 and 1800 K. Library files were produced for the JEF 2.2, JEFF 3.0, JEFF 3.1, JENDL 3.3 and ENDF/B-VI.8 nuclear data libraries. This will be extended with ENDF/B-VII when it becomes available. This report deals with the JEFF 3.1 files included in ALEPH-LIB that are now released by the NEA-OECD.

  17. A Validated MCNP(X) Cross Section Library based on JEFF 3.1

    Energy Technology Data Exchange (ETDEWEB)

    Haeck, W; Verboomen, B

    2006-10-15

    ALEPH-LIB is a multi-temperature neutron transport library for standard use by MCNP(X) and ALEPH generated with ALEPH-DLG. This is an auxiliary computer code to ALEPH, the Monte Carlo burn-up code under development at SCK-CEN in collaboration with Ghent university. ALEPH-DLG automates the entire process of generating library files with NJOY and takes care of the first requirement of a validated application library: verify the processing. It produces tailor made NJOY input files using data from the original ENDF file (initial temperature, the fact if the nuclide is fissile or if it has unresolved resonances, etc.) When the library files have been generated, ALEPH-DLG will also process the output from NJOY by extracting all messages and warnings. If ALEPH-DLG finds anything out of the ordinary, it will either warn the user or perform corrective actions. The temperatures included in the ALEPH-LIB library are 300, 600, 900, 1200, 1500 and 1800 K. Library files were produced for the JEF 2.2, JEFF 3.0, JEFF 3.1, JENDL 3.3 and ENDF/B-VI.8 nuclear data libraries. This will be extended with ENDF/B-VII when it becomes available. This report deals with the JEFF 3.1 files included in ALEPH-LIB that are now released by the NEA-OECD.

  18. Adjoint acceleration of Monte Carlo simulations using TORT/MCNP coupling approach: A case study on the shielding improvement for the cyclotron room of the Buddhist Tzu Chi General Hospital

    International Nuclear Information System (INIS)

    Sheu, R. J.; Sheu, R. D.; Jiang, S. H.; Kao, C. H.

    2005-01-01

    Full-scale Monte Carlo simulations of the cyclotron room of the Buddhist Tzu Chi General Hospital were carried out to improve the original inadequate maze design. Variance reduction techniques are indispensable in this study to facilitate the simulations for testing a variety of configurations of shielding modification. The TORT/MCNP manual coupling approach based on the Consistent Adjoint Driven Importance Sampling (CADIS) methodology has been used throughout this study. The CADIS utilises the source and transport biasing in a consistent manner. With this method, the computational efficiency was increased significantly by more than two orders of magnitude and the statistical convergence was also improved compared to the unbiased Monte Carlo run. This paper describes the shielding problem encountered, the procedure for coupling the TORT and MCNP codes to accelerate the calculations and the calculation results for the original and improved shielding designs. In order to verify the calculation results and seek additional accelerations, sensitivity studies on the space-dependent and energy-dependent parameters were also conducted. (authors)

  19. Performance of MPI parallel processing implemented by MCNP5/ MCNPX for criticality benchmark problems

    International Nuclear Information System (INIS)

    Mark Dennis Usang; Mohd Hairie Rabir; Mohd Amin Sharifuldin Salleh; Mohamad Puad Abu

    2012-01-01

    MPI parallelism are implemented on a SUN Workstation for running MCNPX and on the High Performance Computing Facility (HPC) for running MCNP5. 23 input less obtained from MCNP Criticality Validation Suite are utilized for the purpose of evaluating the amount of speed up achievable by using the parallel capabilities of MPI. More importantly, we will study the economics of using more processors and the type of problem where the performance gain are obvious. This is important to enable better practices of resource sharing especially for the HPC facilities processing time. Future endeavours in this direction might even reveal clues for best MCNP5/ MCNPX coding practices for optimum performance of MPI parallelisms. (author)

  20. SWAT3.1 - the integrated burnup code system driving continuous energy Monte Carlo codes MVP and MCNP

    International Nuclear Information System (INIS)

    Suyama, Kenya; Mochizuki, Hiroki; Takada, Tomoyuki; Ryufuku, Susumu; Okuno, Hiroshi; Murazaki, Minoru; Ohkubo, Kiyoshi

    2009-05-01

    Integrated burnup calculation code system SWAT is a system that combines neutronics calculation code SRAC,which is widely used in Japan, and point burnup calculation code ORIGEN2. It has been used to evaluate the composition of the uranium, plutonium, minor actinides and the fission products in the spent nuclear fuel. Based on this idea, the integrated burnup calculation code system SWAT3.1 was developed by combining the continuous energy Monte Carlo code MVP and MCNP, and ORIGEN2. This enables us to treat the arbitrary fuel geometry and to generate the effective cross section data to be used in the burnup calculation with few approximations. This report describes the outline, input data instruction and several examples of the calculation. (author)

  1. Improvement of neutron collimator design for thermal neutron radiography using Monte Carlo N-particle transport code version 5

    International Nuclear Information System (INIS)

    Thiagu Supramaniam

    2007-01-01

    The aim of this research was to propose a new neutron collimator design for thermal neutron radiography facility using tangential beam port of PUSPATI TRIGA Mark II reactor, Malaysia Institute of Nuclear Technology Research (MINT). Best geometry and materials for neutron collimator were chosen in order to obtain a uniform beam with maximum thermal neutron flux, high L/ D ratio, high neutron to gamma ratio and low beam divergence with high resolution. Monte Carlo N-particle Transport Code version 5 (MCNP 5) was used to optimize six neutron collimator components such as beam port medium, neutron scatterer, neutron moderator, gamma filter, aperture and collimator wall. The reactor and tangential beam port setup in MCNP5 was plotted according to its actual sizes. A homogeneous reactor core was assumed and population control method of variance reduction technique was applied by using cell importance. The comparison between experimental results and simulated results of the thermal neutron flux measurement of the bare tangential beam port, shows that both graph obtained had similar pattern. This directly suggests the reliability of MCNP5 in order to obtained optimal neutron collimator parameters. The simulated results of the optimal neutron medium, shows that vacuum was the best medium to transport neutrons followed by helium gas and air. The optimized aperture component was boral with 3 cm thickness. The optimal aperture center hole diameter was 2 cm which produces 88 L/ D ratio. Simulation also shows that graphite neutron scatterer improves thermal neutron flux while reducing fast neutron flux. Neutron moderator was used to moderate fast and epithermal neutrons in the beam port. Paraffin wax with 90 cm thick was bound to be the best neutron moderator material which produces the highest thermal neutron flux at the image plane. Cylindrical shape high density polyethylene neutron collimator produces the highest thermal neutron flux at the image plane rather than divergent

  2. MCNP modelling of a combined neutron/gamma counter

    CERN Document Server

    Bourva, L C A; Ottmar, H; Weaver, D R

    1999-01-01

    A series of Monte Carlo neutron calculations for a combined gamma/passive neutron coincidence counter has been performed. This type of device, part of a suite of non-destructive assay instruments utilised for the enforcement of the Euratom nuclear safeguards within the European Union, is to be used for high accuracy measurements of the plutonium content of small samples of nuclear materials. The multi-purpose Monte Carlo N-particle (MCNP) code version 4B has been used to model in detail the neutron coincidence detector and to investigate the leakage self-multiplication of PuO sub 2 and mixed U-Pu oxide (MOX) reference samples used to calibrate the instrument. The MCNP calculations have been used together with a neutron coincidence counting interpretative model to determine characteristic parameters of the detector. A comparative study to both experimental and previous numerical results has been performed. Sensitivity curves of the variation of the detector's efficiency, epsilon, to, alpha, the ratio of (alpha...

  3. The MCNP simulation of the X-ray leakage of X-ray security inspection equipment

    International Nuclear Information System (INIS)

    Wang Kai; Liu Bin; Hu Wenchao; Zhao Wei

    2011-01-01

    Objective: To simulate the radiation leakage of the X-ray security inspection equipment used in the subways stations. Methods: We use the MCNP4C code to simulate the X-ray leakage of the equipment during the working process. Result: the biggest amount of radiation received by the body is 8.26 μSv/a, however, if the Lead screens of the X-ray security equipment is intact, the amount of radiation received by the body is only 0.0727 μSv/a. The final. Conclusions: When the baggage get in /out the X-ray security inspection equipment, the gas in Lead screens was made, and then the amount of radiation received by human body increased; The amount of radiation received by the body is close to but still below 10 μSv/a which is the exemption criteria set by the 'safety of radiation sources of ionizing radiation protection and basic standards'(GB18871-2002). (authors)

  4. Modeling of LVRF Critical Experiments in ZED-2 Using WIMS9A/PANTHER and MCNP5

    International Nuclear Information System (INIS)

    Sissaoui, M.T.; Lebenhaft, J.R; Carlson, P.A.

    2008-01-01

    The accuracy of WIMS9A/PANTHER and MCNP5 in modeling D 2 O-moderated, and H 2 O-, D 2 O- or air-cooled, doubly heterogeneous lattices of fuel clusters was demonstrated using Low Void Reactivity Fuel (LVRF) substitution experiments in the ZED-2 critical facility. MCNP5 with ENDF/B-VI (Release 5) under-predicted k eff but gave excellent coolant void reactivity (CVR) bias values. WIMS9A/PANTHER with JEF-2.2 over-predicted k eff and under-predicted the CVR bias relative to MCNP5 by 100 pcm to 200 pcm. Both codes reproduced the measured axial and radial flux shapes accurately. (authors)

  5. Impact of MCNP Unresolved Resonance Probability-Table Treatment on Uranium and Plutonium Benchmarks

    International Nuclear Information System (INIS)

    Mosteller, R.D.; Little, R.C.

    1999-01-01

    A probability-table treatment recently has been incorporated into an intermediate version of the MCNP Monte Carlo code named MCNP4XS. This paper presents MCNP4XS results for a variety of uranium and plutonium criticality benchmarks, calculated with and without the probability-table treatment. It is shown that the probability-table treatment can produce small but significant reactivity changes for plutonium and 233 U systems with intermediate spectra. More importantly, it can produce substantial reactivity increases for systems with large amounts of 238 U and intermediate spectra

  6. MCNP4A: Features and philosophy

    International Nuclear Information System (INIS)

    Hendricks, J.S.

    1993-01-01

    This paper describes MCNP, states its philosophy, introduces a number of new features becoming available with version MCNP4A, and answers a number of questions asked by participants in the workshop. MCNP is a general-purpose three-dimensional neutron, photon and electron transport code. Its philosophy is ''Quality, Value and New Features.'' Quality is exemplified by new software quality assurance practices and a program of benchmarking against experiments. Value includes a strong emphasis on documentation and code portability. New features are the third priority. MCNP4A is now available at Los Alamos. New features in MCNP4A include enhanced statistical analysis, distributed processor multitasking, new photon libraries, ENDF/B-VI capabilities, X-Windows graphics, dynamic memory allocation, expanded criticality output, periodic boundaries, plotting of particle tracks via SABRINA, and many other improvements. 23 refs

  7. Neutron flux measurement in the thermal column of the Malaysian TRIGA mark II reactor with MCNP verification

    International Nuclear Information System (INIS)

    Abdel Munem, E.; Shukri, A.; Tajuddin, A.A.

    2006-01-01

    A study of the thermal column of the Malaysian TRIGA Mark II reactor, forming part of a feasibility study for BNCT was proposed in 2001. In the current study, pure metals were used to measure the neutron flux at selected points in the thermal column and the neutron flux determined using SAND-II. Monte Carlo simulation of the thermal column was also carried out. The reactor core was homogenized and calculations of the neutron flux through the graphite stringers performed using MCNP5. The results show good agreement between the measured flux and the MCNP calculated flux. An obvious extension from this is that the MCNP neutron flux output can be utilized as an input spectrum for SAND-II for the flux iteration. (author)

  8. Reactor physics simulations with coupled Monte Carlo calculation and computational fluid dynamics

    International Nuclear Information System (INIS)

    Seker, V.; Thomas, J. W.; Downar, T. J.

    2007-01-01

    The interest in high fidelity modeling of nuclear reactor cores has increased over the last few years and has become computationally more feasible because of the dramatic improvements in processor speed and the availability of low cost parallel platforms. In the research here high fidelity, multi-physics analyses was performed by solving the neutron transport equation using Monte Carlo methods and by solving the thermal-hydraulics equations using computational fluid dynamics. A computation tool based on coupling the Monte Carlo code MCNP5 and the Computational Fluid Dynamics (CFD) code STAR-CD was developed as an audit tool for lower order nuclear reactor calculations. This paper presents the methodology of the developed computer program 'McSTAR' along with the verification and validation efforts. McSTAR is written in PERL programming language and couples MCNP5 and the commercial CFD code STAR-CD. MCNP uses a continuous energy cross section library produced by the NJOY code system from the raw ENDF/B data. A major part of the work was to develop and implement methods to update the cross section library with the temperature distribution calculated by STAR-CD for every region. Three different methods were investigated and two of them are implemented in McSTAR. The user subroutines in STAR-CD are modified to read the power density data and assign them to the appropriate variables in the program and to write an output data file containing the temperature, density and indexing information to perform the mapping between MCNP and STAR-CD cells. The necessary input file manipulation, data file generation, normalization and multi-processor calculation settings are all done through the program flow in McSTAR. Initial testing of the code was performed using a single pin cell and a 3X3 PWR pin-cell problem. The preliminary results of the single pin-cell problem are compared with those obtained from a STAR-CD coupled calculation with the deterministic transport code De

  9. Development of a coupling scheme between MCNP5 and subchanflow for the PIN- and fuel Assembly-Wise simulation of LWR and innovative reactors

    International Nuclear Information System (INIS)

    Ivanov, A.; Sanchez, V.; Imke, U.

    2011-01-01

    In order to increase the accuracy and the degree of spatial resolution of core design studies, coupled 3D neutronic (deterministic and Monte Carlo) and 3D thermal hydraulics (CFD and subchannel) codes are being developed worldwide. At KIT both deterministic and Monte Carlo codes were coupled with subchannel codes and applied to predict the safety-related design parameters such as pin power, maximal cladding and fuel temperature, DNB. These coupling approaches were revised and improved based on the experience gained. One particular example is replacing COBRA-TF with SUBCHANFLOW, in-house development subchannel code, in the COBRA-TF/MCNP coupling, accompanied with new way of radial mapping between the neutronic and thermal hydraulic domains. The new coupled system MCNP5/SUBCHANFLOW makes it possible to investigate variety of fuel assembly types (BWR, PWR or SCFR). Key issues in such a coupled system are the way in which thermal-hydraulic/neutronic feedbacks, accuracy of the Monte Carlo solutions and observation of convergence during the iterative solution are handled. Another key issue that might be considered is the optimal application of parallel computing. Using multi-processor computer architectures, it is possible to reduce the Monte- Carlo running time and obtain converged results within reasonable time limit. In particular it is shown that by exploiting the capabilities of multi-processor calculation, it is possible to investigate large fuel assemblies in a pin-by-pin manner with a resolution at pin and subchannel level. One of the most important issues addressed in the current work is the temperature effects on nuclear data. For the particular studies pseudo material approach was used, which produces interpolated results for Doppler broadened cross sections from NJOY pre-generated nuclear data. (author)

  10. Monte Carlo codes and Monte Carlo simulator program

    International Nuclear Information System (INIS)

    Higuchi, Kenji; Asai, Kiyoshi; Suganuma, Masayuki.

    1990-03-01

    Four typical Monte Carlo codes KENO-IV, MORSE, MCNP and VIM have been vectorized on VP-100 at Computing Center, JAERI. The problems in vector processing of Monte Carlo codes on vector processors have become clear through the work. As the result, it is recognized that these are difficulties to obtain good performance in vector processing of Monte Carlo codes. A Monte Carlo computing machine, which processes the Monte Carlo codes with high performances is being developed at our Computing Center since 1987. The concept of Monte Carlo computing machine and its performance have been investigated and estimated by using a software simulator. In this report the problems in vectorization of Monte Carlo codes, Monte Carlo pipelines proposed to mitigate these difficulties and the results of the performance estimation of the Monte Carlo computing machine by the simulator are described. (author)

  11. UNR. A code for processing unresolved resonance data for MCNP

    International Nuclear Information System (INIS)

    Hogenbirk, A.

    1994-09-01

    In neutron transport problems the correct treatment of self-shielding is important for those nuclei present in large concentrations. Monte Carlo calculations using continuous-energy cross section data, such as calculations with the code MCNP, offer the advantage that neutron transport is calculated in a very accurate way. Self-shielding in the resolved resonance region is taken into account exactly in MCNP. However, self-shielding in the unresolved resonance region can not be taken into account by MCNP, although the effect of it may be important in many applications. In this report a description is given of the computer code UNR. With this code problem-dependent cross section libraries can be produced for MCNP. In these libraries self-shielded cross section data in the unresolved resonance range are given, which are produced by NJOY-module UNRESR. It is noted, that the treatment for resonance self-shielding presented in this report is approximate. However, the current version of MCNP does not allow the use of probability tables, which would be a general solution. (orig.)

  12. Simulation of irradiation X in human hand

    International Nuclear Information System (INIS)

    Amaya Falcon, F.

    2001-01-01

    Use of the Monte Carlo code MCNP to simulate a human hand irradiation with radiation X of radio diagnosis energy, in order to find the best range of energy to obtain a radiography with the smallest dose and the biggest contrast [es

  13. Benchmark of WIMS-IST against MCNP for CANDU pressure tube fast fluxes

    International Nuclear Information System (INIS)

    Donders, R.E.; Douglas, S.R.

    2002-01-01

    Pressure tube fast-flux data in CANDU are currently calculated using the multi-group neutron transport code WIMS-IST. In this study, the WIMS-IST fast flux calculations are benchmarked against MCNP calculations (a Monte Carlo particle transport code), over the range of fuel burnup and coolant density in CANDU. The comparison shows good agreement between WIMS and MCNP, with WIMS fast fluxes being 1.5% to 4% lower than the MCNP values. The difference is smallest for fresh fuel, and increases with burnup. The fast flux gradient across the pressure tube (factor of 1.23 from inner edge to outer edge) is accurately calculated by WIMS. When reporting fast fluxes in pressure tubes, these are generally given as >1.000 MeV fluxes. For WIMS, this requires an extra conversion step, since the WIMS ENDF/B libraries do not have a group boundary at 1 MeV. The conversion step is based on a fictitious isotope ONEMEV in the WIMS nuclear data library. The conversion factor in WIMS was found to be about one percent too high. When providing >1 MeV fluxes from WIMS, this partially compensates for the slight under prediction of the fast flux. Pressure tube >1 MeV fluxes from WIMS are therefore 0.5% to 3% lower than MCNP values. To obtain accurate fast flux data, neutron transport calculations must be performed on a critical cell. For this study, all calculations were performed with radial albedo boundary conditions giving a critical cell. This required the use of an albedo version of MCNP, developed at AECL. (author)

  14. Development and validation of a model TRIGA Mark III reactor with code MCNP5; Desarrollo y validacion de un modelo del reactor Triga Mark III con el codigo MCNP5

    Energy Technology Data Exchange (ETDEWEB)

    Galicia A, J.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Aguilar H, F., E-mail: blink19871@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    The main purpose of this paper is to obtain a model of the reactor core TRIGA Mark III that accurately represents the real operating conditions to 1 M Wth, using the Monte Carlo code MCNP5. To provide a more detailed analysis, different models of the reactor core were realized by simulating the control rods extracted and inserted in conditions in cold (293 K) also including an analysis for shutdown margin, so that satisfied the Operation Technical Specifications. The position they must have the control rods to reach a power equal to 1 M Wth, were obtained from practice entitled Operation in Manual Mode performed at Instituto Nacional de Investigaciones Nucleares (ININ). Later, the behavior of the K{sub eff} was analyzed considering different temperatures in the fuel elements, achieving calculate subsequently the values that best represent the actual reactor operation. Finally, the calculations in the developed model for to obtain the distribution of average flow of thermal, epithermal and fast neutrons in the six new experimental facilities are presented. (Author)

  15. SWAT4.0 - The integrated burnup code system driving continuous energy Monte Carlo codes MVP, MCNP and deterministic calculation code SRAC

    International Nuclear Information System (INIS)

    Kashima, Takao; Suyama, Kenya; Takada, Tomoyuki

    2015-03-01

    There have been two versions of SWAT depending on details of its development history: the revised SWAT that uses the deterministic calculation code SRAC as a neutron transportation solver, and the SWAT3.1 that uses the continuous energy Monte Carlo code MVP or MCNP5 for the same purpose. It takes several hours, however, to execute one calculation by the continuous energy Monte Carlo code even on the super computer of the Japan Atomic Energy Agency. Moreover, two-dimensional burnup calculation is not practical using the revised SWAT because it has problems on production of effective cross section data and applying them to arbitrary fuel geometry when a calculation model has multiple burnup zones. Therefore, SWAT4.0 has been developed by adding, to SWAT3.1, a function to utilize the deterministic code SARC2006, which has shorter calculation time, as an outer module of neutron transportation solver for burnup calculation. SWAT4.0 has been enabled to execute two-dimensional burnup calculation by providing an input data template of SRAC2006 to SWAT4.0 input data, and updating atomic number densities of burnup zones in each burnup step. This report describes outline, input data instruction, and examples of calculations of SWAT4.0. (author)

  16. Monte Carlo Simulation for Neptun 10 PC medical linear accelerator and calculations of electron beam parameters

    International Nuclear Information System (INIS)

    Bahreyni Toossi, M.T.; Hashemi, S.M.; Momen Nezhad, M.

    2008-01-01

    In recent decades, cancer has been one of the main ever increasing causes of death in developed countries. In order to fulfill the aforementioned considerations different techniques have been used, one of which is Monte Carlo simulation technique. High accuracy of the Monte Carlo simulation has been one of the main reason for its wide spread application. In this study, MCNP-4C code was employed to simulate electron mode of the Neptun 10 PC Linac, dosimetric quantities for conventional fields have also been both measured and calculated. Although Neptun 10 PC Linac is no longer licensed for installation in European and some other countries but regrettably nearly 10 of them have been installed in different centers around the country and are in operation. Therefore, in this circumstance, to improve the accuracy of treatment planning, Monte Carlo simulation for Neptun 10 PC was recognized as a necessity. Simulated and measured values of depth dose curves, off axis dose distributions for 6 , 8 and 10 MeV electrons applied for four different size fields, 6 x 6 cm 2 , 10 x 10 cm 2 , 15 x 15 cm 2 and 20 x 20 cm 2 were obtained. The measurements were carried out by a Welhofer-Scanditronix dose scanning system, Semiconductor Detector and Ionization Chamber. The results of this study have revealed that the values of two main dosimetric quantities depth dose curves and off axis dose distributions, acquired by MCNP-4C simulation and the corresponding values achieved by direct measurements are in a very good agreement (within 1% to 2% difference). In general, very good consistency of simulated and measured results, is a good proof that the goal of this work has been accomplished. In other word where measurements of some parameters are not practically achievable, MCNP-4C simulation can be implemented confidently. (author)

  17. Accelerating Pseudo-Random Number Generator for MCNP on GPU

    Science.gov (United States)

    Gong, Chunye; Liu, Jie; Chi, Lihua; Hu, Qingfeng; Deng, Li; Gong, Zhenghu

    2010-09-01

    Pseudo-random number generators (PRNG) are intensively used in many stochastic algorithms in particle simulations, artificial neural networks and other scientific computation. The PRNG in Monte Carlo N-Particle Transport Code (MCNP) requires long period, high quality, flexible jump and fast enough. In this paper, we implement such a PRNG for MCNP on NVIDIA's GTX200 Graphics Processor Units (GPU) using CUDA programming model. Results shows that 3.80 to 8.10 times speedup are achieved compared with 4 to 6 cores CPUs and more than 679.18 million double precision random numbers can be generated per second on GPU.

  18. An Electron/Photon/Relaxation Data Library for MCNP6

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, III, H. Grady [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-07

    The capabilities of the MCNP6 Monte Carlo code in simulation of electron transport, photon transport, and atomic relaxation have recently been significantly expanded. The enhancements include not only the extension of existing data and methods to lower energies, but also the introduction of new categories of data and methods. Support of these new capabilities has required major additions to and redesign of the associated data tables. In this paper we present the first complete documentation of the contents and format of the new electron-photon-relaxation data library now available with the initial production release of MCNP6.

  19. Estimation and interpretation of keff confidence intervals in MCNP

    International Nuclear Information System (INIS)

    Urbatsch, T.J.

    1995-11-01

    MCNP's criticality methodology and some basic statistics are reviewed. Confidence intervals are discussed, as well as how to build them and their importance in the presentation of a Monte Carlo result. The combination of MCNP's three k eff estimators is shown, theoretically and empirically, by statistical studies and examples, to be the best k eff estimator. The method of combining estimators is based on a solid theoretical foundation, namely, the Gauss-Markov Theorem in regard to the least squares method. The confidence intervals of the combined estimator are also shown to have correct coverage rates for the examples considered

  20. Experiment on neutron transmission through depleted uranium layers and analysis with DOT 3.5 and MCNP

    International Nuclear Information System (INIS)

    Oka, Y.; Kodama, T.; Akiyama, M.; Hashikura, H.; Kondo, S.

    1987-01-01

    The reaction rates in the multi-layers containing depleted uranium were measured by activation foils and micro-fission chambers. The analysis of the experiment was carried out by using the multi-group transport calculation code, DOT 3.5 and the continuous energy Monte Carlo code, MCNP. The multi-group calculation overpredicted the low energy reaction rates in the DU layers, while the continuous energy calculation agreed well. The multi-group and continuous energy calculation was compared for the one-dimensional transmission of iron spheres. The results revealed overprediction of the multi-group calculation near the fast neutron source. The averaging of the resonance shapes in generating the multi-group cross sections made minima of the resonance valleys higher than that of the pointwise cross section. This increased the scattering of the neutrons inside and caused the overprediction of the multi-group calculation

  1. MCNP analysis of the nine-cell LWR gadolinium benchmark

    International Nuclear Information System (INIS)

    Arkuszewski, J.J.

    1988-01-01

    The Monte Carlo results for a 9-cell fragment of the light water reactor square lattice with a central gadolinium-loaded pin are presented. The calculations are performed with the code MCNP-3A and the ENDF-B/5 library and compared with the results obtained from the BOXER code system and the JEF-1 library. The objective of this exercise is to study the feasibility of BOXER for the analysis of a Gd-loaded LWR lattice in the broader framework of GAP International Benchmark Analysis. A comparison of results indicates that, apart from unavoidable discrepancies originating from different data evaluations, the BOXER code overestimates the multiplication factor by 1.4 % and underestimates the power release in a Gd cell by 4.66 %. It is hoped that further similar studies with use of the JEF-1 library for both BOXER and MCNP will help to isolate and explain these discrepancies in a cleaner way. (author) 4 refs., 9 figs., 10 tabs

  2. Monte Carlo method for calculating the radiation skyshine produced by electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kong Chaocheng [Department of Engineering Physics, Tsinghua University Beijing 100084 (China)]. E-mail: kongchaocheng@tsinghua.org.cn; Li Quanfeng [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Chen Huaibi [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Du Taibin [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Cheng Cheng [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Tang Chuanxiang [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Zhu Li [Laboratory of Radiation and Environmental Protection, Tsinghua University, Beijing 100084 (China); Zhang Hui [Laboratory of Radiation and Environmental Protection, Tsinghua University, Beijing 100084 (China); Pei Zhigang [Laboratory of Radiation and Environmental Protection, Tsinghua University, Beijing 100084 (China); Ming Shenjin [Laboratory of Radiation and Environmental Protection, Tsinghua University, Beijing 100084 (China)

    2005-06-01

    Using the MCNP4C Monte Carlo code, the X-ray skyshine produced by 9 MeV, 15 MeV and 21 MeV electron linear accelerators were calculated respectively with a new two-step method combined with the split and roulette variance reduction technique. Results of the Monte Carlo simulation, the empirical formulas used for skyshine calculation and the dose measurements were analyzed and compared. In conclusion, the skyshine dose measurements agreed reasonably with the results computed by the Monte Carlo method, but deviated from computational results given by empirical formulas. The effect on skyshine dose caused by different structures of accelerator head is also discussed in this paper.

  3. 3D dose distribution calculation in a voxelized human phantom by means of Monte Carlo method

    International Nuclear Information System (INIS)

    Abella, V.; Miro, R.; Juste, B.; Verdu, G.

    2010-01-01

    The aim of this work is to provide the reconstruction of a real human voxelized phantom by means of a MatLab program and the simulation of the irradiation of such phantom with the photon beam generated in a Theratron 780 (MDS Nordion) 60 Co radiotherapy unit, by using the Monte Carlo transport code MCNP (Monte Carlo N-Particle), version 5. The project results in 3D dose mapping calculations inside the voxelized antropomorphic head phantom. The program provides the voxelization by first processing the CT slices; the process follows a two-dimensional pixel and material identification algorithm on each slice and three-dimensional interpolation in order to describe the phantom geometry via small cubic cells, resulting in an MCNP input deck format output. Dose rates are calculated by using the MCNP5 tool FMESH, superimposed mesh tally, which gives the track length estimation of the particle flux in units of particles/cm 2 . Furthermore, the particle flux is converted into dose by using the conversion coefficients extracted from the NIST Physical Reference Data. The voxelization using a three-dimensional interpolation technique in combination with the use of the FMESH tool of the MCNP Monte Carlo code offers an optimal simulation which results in 3D dose mapping calculations inside anthropomorphic phantoms. This tool is very useful in radiation treatment assessments, in which voxelized phantoms are widely utilized.

  4. Monte Carlo based radial shield design of typical PWR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gul, Anas; Khan, Rustam; Qureshi, M. Ayub; Azeem, Muhammad Waqar; Raza, S.A. [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan). Dept. of Nuclear Engineering; Stummer, Thomas [Technische Univ. Wien (Austria). Atominst.

    2016-11-15

    Neutron and gamma flux and dose equivalent rate distribution are analysed in radial and shields of a typical PWR type reactor based on the Monte Carlo radiation transport computer code MCNP5. The ENDF/B-VI continuous energy cross-section library has been employed for the criticality and shielding analysis. The computed results are in good agreement with the reference results (maximum difference is less than 56 %). It implies that MCNP5 a good tool for accurate prediction of neutron and gamma flux and dose rates in radial shield around the core of PWR type reactors.

  5. A voxel-based mouse for internal dose calculations using Monte Carlo simulations (MCNP).

    Science.gov (United States)

    Bitar, A; Lisbona, A; Thedrez, P; Sai Maurel, C; Le Forestier, D; Barbet, J; Bardies, M

    2007-02-21

    Murine models are useful for targeted radiotherapy pre-clinical experiments. These models can help to assess the potential interest of new radiopharmaceuticals. In this study, we developed a voxel-based mouse for dosimetric estimates. A female nude mouse (30 g) was frozen and cut into slices. High-resolution digital photographs were taken directly on the frozen block after each section. Images were segmented manually. Monoenergetic photon or electron sources were simulated using the MCNP4c2 Monte Carlo code for each source organ, in order to give tables of S-factors (in Gy Bq-1 s-1) for all target organs. Results obtained from monoenergetic particles were then used to generate S-factors for several radionuclides of potential interest in targeted radiotherapy. Thirteen source and 25 target regions were considered in this study. For each source region, 16 photon and 16 electron energies were simulated. Absorbed fractions, specific absorbed fractions and S-factors were calculated for 16 radionuclides of interest for targeted radiotherapy. The results obtained generally agree well with data published previously. For electron energies ranging from 0.1 to 2.5 MeV, the self-absorbed fraction varies from 0.98 to 0.376 for the liver, and from 0.89 to 0.04 for the thyroid. Electrons cannot be considered as 'non-penetrating' radiation for energies above 0.5 MeV for mouse organs. This observation can be generalized to radionuclides: for example, the beta self-absorbed fraction for the thyroid was 0.616 for I-131; absorbed fractions for Y-90 for left kidney-to-left kidney and for left kidney-to-spleen were 0.486 and 0.058, respectively. Our voxel-based mouse allowed us to generate a dosimetric database for use in preclinical targeted radiotherapy experiments.

  6. A detailed investigation of interactions within the shielding to HPGe detector response using MCNP code

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Tran Thien; Tao, Chau Van; Loan, Truong Thi Hong; Nhon, Mai Van; Chuong, Huynh Dinh; Au, Bui Hai [Vietnam National Univ., Ho Chi Minh City (Viet Nam). Dept. of Nuclear Physics

    2012-12-15

    The accuracy of the coincidence-summing corrections in gamma spectrometry depends on the total efficiency calibration that is hardly obtained over the whole energy as the required experimental conditions are not easily attained. Monte Carlo simulations using MCNP5 code was performed in order to estimate the affect of the shielding to total efficiency. The effect of HPGe response are also shown. (orig.)

  7. Reconstruction of Spectra Using X-ray Flat Panel Detector; Reconstruccion de Espectros de Rayos X Utilizando un Detector Flat Panel

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, S.; Querol, A.; Pozuelo, F.; Juste, B.; Rodenas, J.; Verdu, G.

    2013-07-01

    In this work, we used a flat panel detector with a wedge of PMMA for absorbed dose curve for given working conditions of X-ray tube The relationship between absorbed dose curve recorded by the flat panel and primary X-ray spectrum is defined by a response function that can be obtained using the Monte Carlo method, namely the MCNP5 code. However there are some problems that affect the applicability of this method such as: flat panel characteristics and the characteristics of the physical process (ill-conditioned problem). Both aspects are discussed in this paper.

  8. Potential of the MCNP computer code

    International Nuclear Information System (INIS)

    Kyncl, J.

    1995-01-01

    The MCNP code is designed for numerical solution of neutron, photon, and electron transport problems by the Monte Carlo method. The code is based on the linear transport theory of behavior of the differential flux of the particles. The code directly uses data from the cross section point data library for input. Experience is outlined, gained in the application of the code to the calculation of the effective parameters of fuel assemblies and of the entire reactor core, to the determination of the effective parameters of the elementary fuel cell, and to the numerical solution of neutron diffusion and/or transport problems of the fuel assembly. The agreement between the calculated and observed data gives evidence that the MCNP code can be used with advantage for calculations involving WWER type fuel assemblies. (J.B.). 4 figs., 6 refs

  9. Image enhancement using MCNP5 code and MATLAB in neutron radiography

    International Nuclear Information System (INIS)

    Tharwat, Montaser; Mohamed, Nader; Mongy, T.

    2014-01-01

    This work presents a method that can be used to enhance the neutron radiography (NR) image for objects with high scattering materials like hydrogen, carbon and other light materials. This method used Monte Carlo code, MCNP5, to simulate the NR process and get the flux distribution for each pixel of the image and determines the scattered neutron distribution that caused image blur, and then uses MATLAB to subtract this scattered neutron distribution from the initial image to improve its quality. This work was performed before the commissioning of digital NR system in Jan. 2013. The MATLAB enhancement method is quite a good technique in the case of static based film neutron radiography, while in neutron imaging (NI) technique, image enhancement and quantitative measurement were efficient by using ImageJ software. The enhanced image quality and quantitative measurements were presented in this work. - Highlights: • This work is applicable for static based film neutron radiography and digital neutron imaging. • MATLAB is a useful tool for imaging enhancement in radiographic film. • Advanced imaging processing is available in the ETRR-2 for imaging processing and data extraction. • The digital imaging system is suitable for complex shapes and sizes, while MATLAB technique is suitable for simple shapes and sizes. • Quantitative measurements are available

  10. Monte Carlo Simulation of Complete X-Ray Spectra for Use in Scanning Electron Microscopy Analysis

    International Nuclear Information System (INIS)

    Roet, David; Van Espen, Piet

    2003-01-01

    Full Text: The interactions of keV electrons and photons with matter can be simulated accurately with the aid of the Monte Carlo (MC) technique. In scanning electron microscopy x-ray analysis (SEM-EDX) such simulations can be used to perform quantitative analysis using a Reverse Monte Carlo method even if the samples have irregular geometry. Alternatively the MC technique can generate spectra of standards for use in quantization with partial least squares regression. The feasibility of these alternatives to the more classical ZAF or phi-rho-Z quantification methods has been proven already. In order to be applicable for these purposes the MC-code needs to generate accurately only the characteristic K and L x-ray lines, but also the Bremsstrahlung continuum, i.e. the complete x-ray spectrum need to be simulated. Currently two types of MC simulation codes are available. Programs like Electron Flight Simulator and CASINO simulate characteristic x-rays due to electron interaction in a fast and efficient way but lack provision for the simulation of the continuum. On the other hand, programs like EGS4, MCNP4 and PENELOPE, originally developed for high energy (MeV- GeV) applications, are more complete but difficult to use and still slow, even on todays fastest computers. We therefore started the development of a dedicated MC simulation code for use in quantitative SEM-EDX work. The selection of the most appropriate cross section for the different interactions will be discussed and the results obtained will be compared with those obtained with existing MC programs. Examples of the application of MC simulations for quantitative analysis of samples with various composition will be given

  11. Development and Implementation of Photonuclear Cross-Section Data for Mutually Coupled Neutron-Photon Transport Calculations in the Monte Carlo N-Particle (MCNP) Radiation Transport Code

    International Nuclear Information System (INIS)

    White, Morgan C.

    2000-01-01

    The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V and V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second, the ability to

  12. Development and Implementation of Photonuclear Cross-Section Data for Mutually Coupled Neutron-Photon Transport Calculations in the Monte Carlo N-Particle (MCNP) Radiation Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    White, Morgan C. [Univ. of Florida, Gainesville, FL (United States)

    2000-07-01

    The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V&V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second

  13. Experimental characterization and Monte Carlo simulation of Si(Li) detector efficiency by radioactive sources and PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Mesradi, M. [Institut Pluridisciplinaire Hubert-Curien, UMR 7178 CNRS/IN2P3 et Universite Louis Pasteur, 23 rue du Loess, BP 28, F-67037 Strasbourg Cedex 2 (France); Elanique, A. [Departement de Physique, FS/BP 8106, Universite Ibn Zohr, Agadir, Maroc (Morocco); Nourreddine, A. [Institut Pluridisciplinaire Hubert-Curien, UMR 7178 CNRS/IN2P3 et Universite Louis Pasteur, 23 rue du Loess, BP 28, F-67037 Strasbourg Cedex 2 (France)], E-mail: abdelmjid.nourreddine@ires.in2p3.fr; Pape, A.; Raiser, D.; Sellam, A. [Institut Pluridisciplinaire Hubert-Curien, UMR 7178 CNRS/IN2P3 et Universite Louis Pasteur, 23 rue du Loess, BP 28, F-67037 Strasbourg Cedex 2 (France)

    2008-06-15

    This work relates to the study and characterization of the response function of an X-ray spectrometry system. The intrinsic efficiency of a Si(Li) detector has been simulated with the Monte Carlo codes MCNP and GEANT4 in the photon energy range of 2.6-59.5 keV. After finding it necessary to take a radiograph of the detector inside its cryostat to learn the correct dimensions, agreement within 10% between the simulations and experimental measurements with several point-like sources and PIXE results was obtained.

  14. Validation of the MCNP-DSP Monte Carlo code for calculating source-driven noise parameters of subcritical systems

    International Nuclear Information System (INIS)

    Valentine, T.E.; Mihalczo, J.T.

    1995-01-01

    This paper describes calculations performed to validate the modified version of the MCNP code, the MCNP-DSP, used for: the neutron and photon spectra of the spontaneous fission of californium 252; the representation of the detection processes for scattering detectors; the timing of the detection process; and the calculation of the frequency analysis parameters for the MCNP-DSP code

  15. Simulation the spatial resolution of an X-ray imager based on zinc oxide nanowires in anodic aluminium oxide membrane by using MCNP and OPTICS Codes

    Science.gov (United States)

    Samarin, S. N.; Saramad, S.

    2018-05-01

    The spatial resolution of a detector is a very important parameter for x-ray imaging. A bulk scintillation detector because of spreading of light inside the scintillator does't have a good spatial resolution. The nanowire scintillators because of their wave guiding behavior can prevent the spreading of light and can improve the spatial resolution of traditional scintillation detectors. The zinc oxide (ZnO) scintillator nanowire, with its simple construction by electrochemical deposition in regular hexagonal structure of Aluminum oxide membrane has many advantages. The three dimensional absorption of X-ray energy in ZnO scintillator is simulated by a Monte Carlo transport code (MCNP). The transport, attenuation and scattering of the generated photons are simulated by a general-purpose scintillator light response simulation code (OPTICS). The results are compared with a previous publication which used a simulation code of the passage of particles through matter (Geant4). The results verify that this scintillator nanowire structure has a spatial resolution less than one micrometer.

  16. Spectral measurements in critical assemblies: MCNP specifications and calculated results

    Energy Technology Data Exchange (ETDEWEB)

    Stephanie C. Frankle; Judith F. Briesmeister

    1999-12-01

    Recently, a suite of 86 criticality benchmarks for the Monte Carlo N-Particle (MCNP) transport code was developed, and the results of testing the ENDF/B-V and ENDF/B-VI data (through Release 2) were published. In addition to the standard k{sub eff} measurements, other experimental measurements were performed on a number of these benchmark assemblies. In particular, the Cross Section Evaluation Working Group (CSEWG) specifications contain experimental data for neutron leakage and central-flux measurements, central-fission ratio measurements, and activation ratio measurements. Additionally, there exists another set of fission reaction-rate measurements performed at the National Institute of Standards and Technology (NIST) utilizing a {sup 252}Cf source. This report will describe the leakage and central-flux measurements and show a comparison of experimental data to MCNP simulations performed using the ENDF/B-V and B-VI (Release 2) data libraries. Central-fission and activation reaction-rate measurements will be described, and the comparison of experimental data to MCNP simulations using available data libraries for each reaction of interest will be presented. Finally, the NIST fission reaction-rate measurements will be described. A comparison of MCNP results published previously with the current MCNP simulations will be presented for the NIST measurements, and a comparison of the current MCNP simulations to the experimental measurements will be presented.

  17. Spectral measurements in critical assemblies: MCNP specifications and calculated results

    International Nuclear Information System (INIS)

    Frankle, Stephanie C.; Briesmeister, Judith F.

    1999-01-01

    Recently, a suite of 86 criticality benchmarks for the Monte Carlo N-Particle (MCNP) transport code was developed, and the results of testing the ENDF/B-V and ENDF/B-VI data (through Release 2) were published. In addition to the standard k eff measurements, other experimental measurements were performed on a number of these benchmark assemblies. In particular, the Cross Section Evaluation Working Group (CSEWG) specifications contain experimental data for neutron leakage and central-flux measurements, central-fission ratio measurements, and activation ratio measurements. Additionally, there exists another set of fission reaction-rate measurements performed at the National Institute of Standards and Technology (NIST) utilizing a 252 Cf source. This report will describe the leakage and central-flux measurements and show a comparison of experimental data to MCNP simulations performed using the ENDF/B-V and B-VI (Release 2) data libraries. Central-fission and activation reaction-rate measurements will be described, and the comparison of experimental data to MCNP simulations using available data libraries for each reaction of interest will be presented. Finally, the NIST fission reaction-rate measurements will be described. A comparison of MCNP results published previously with the current MCNP simulations will be presented for the NIST measurements, and a comparison of the current MCNP simulations to the experimental measurements will be presented

  18. Radiation calculations using LAHET/MCNP/CINDER90

    International Nuclear Information System (INIS)

    Waters, L.

    1994-01-01

    The LAHET monte carlo code system has recently been expanded to include high energy hadronic interactions via the FLUKA code, while retaining the original Los Alamos versions of HETC and ISABEL at lower energies. Electrons and photons are transported with EGS4 or ITS, while the MCNP coupled neutron/photon monte carlo code provides analysis of neutrons with kinetic energies less than 20 MeV. An interface with the CINDER activation code is now in common use. Various other changes have been made to facilitate analysis of high energy accelerator radiation environments and experimental physics apparatus, such as those found at SSC and RHIC. Current code developments and applications are reviewed

  19. Simulation of image detectors in radiology for determination of scatter-to-primary ratios using Monte Carlo radiation transport code MCNP/MCNPX.

    Science.gov (United States)

    Smans, Kristien; Zoetelief, Johannes; Verbrugge, Beatrijs; Haeck, Wim; Struelens, Lara; Vanhavere, Filip; Bosmans, Hilde

    2010-05-01

    The purpose of this study was to compare and validate three methods to simulate radiographic image detectors with the Monte Carlo software MCNP/MCNPX in a time efficient way. The first detector model was the standard semideterministic radiography tally, which has been used in previous image simulation studies. Next to the radiography tally two alternative stochastic detector models were developed: A perfect energy integrating detector and a detector based on the energy absorbed in the detector material. Validation of three image detector models was performed by comparing calculated scatter-to-primary ratios (SPRs) with the published and experimentally acquired SPR values. For mammographic applications, SPRs computed with the radiography tally were up to 44% larger than the published results, while the SPRs computed with the perfect energy integrating detectors and the blur-free absorbed energy detector model were, on the average, 0.3% (ranging from -3% to 3%) and 0.4% (ranging from -5% to 5%) lower, respectively. For general radiography applications, the radiography tally overestimated the measured SPR by as much as 46%. The SPRs calculated with the perfect energy integrating detectors were, on the average, 4.7% (ranging from -5.3% to -4%) lower than the measured SPRs, whereas for the blur-free absorbed energy detector model, the calculated SPRs were, on the average, 1.3% (ranging from -0.1% to 2.4%) larger than the measured SPRs. For mammographic applications, both the perfect energy integrating detector model and the blur-free energy absorbing detector model can be used to simulate image detectors, whereas for conventional x-ray imaging using higher energies, the blur-free energy absorbing detector model is the most appropriate image detector model. The radiography tally overestimates the scattered part and should therefore not be used to simulate radiographic image detectors.

  20. Evaluation of a 50-MV photon therapy beam from a racetrack microtron using MCNP4B Monte Carlo code

    International Nuclear Information System (INIS)

    Gudowska, I.; Svensson, R.

    2001-01-01

    High energy photon therapy beam from the 50 MV racetrack microtron has been evaluated using the Monte Carlo code MCNP4B. The spatial and energy distribution of photons, radial and depth dose distributions in the phantom are calculated for the stationary and scanned photon beams from different targets. The calculated dose distributions are compared to the experimental data using a silicon diode detector. Measured and calculated depth-dose distributions are in fairly good agreement, within 2-3% for the positions in the range 2-30 cm in the phantom, whereas the larger discrepancies up to 10% are observed in the dose build-up region. For the stationary beams the differences in the calculated and measured radial dose distributions are about 2-10%. (orig.)

  1. Guideline of Monte Carlo calculation. Neutron/gamma ray transport simulation by Monte Carlo method

    CERN Document Server

    2002-01-01

    This report condenses basic theories and advanced applications of neutron/gamma ray transport calculations in many fields of nuclear energy research. Chapters 1 through 5 treat historical progress of Monte Carlo methods, general issues of variance reduction technique, cross section libraries used in continuous energy Monte Carlo codes. In chapter 6, the following issues are discussed: fusion benchmark experiments, design of ITER, experiment analyses of fast critical assembly, core analyses of JMTR, simulation of pulsed neutron experiment, core analyses of HTTR, duct streaming calculations, bulk shielding calculations, neutron/gamma ray transport calculations of the Hiroshima atomic bomb. Chapters 8 and 9 treat function enhancements of MCNP and MVP codes, and a parallel processing of Monte Carlo calculation, respectively. An important references are attached at the end of this report.

  2. Improved response function calculations for scintillation detectors using an extended version of the MCNP code

    CERN Document Server

    Schweda, K

    2002-01-01

    The analysis of (e,e'n) experiments at the Darmstadt superconducting electron linear accelerator S-DALINAC required the calculation of neutron response functions for the NE213 liquid scintillation detectors used. In an open geometry, these response functions can be obtained using the Monte Carlo codes NRESP7 and NEFF7. However, for more complex geometries, an extended version of the Monte Carlo code MCNP exists. This extended version of the MCNP code was improved upon by adding individual light-output functions for charged particles. In addition, more than one volume can be defined as a scintillator, thus allowing the simultaneous calculation of the response for multiple detector setups. With the implementation of sup 1 sup 2 C(n,n'3 alpha) reactions, all relevant reactions for neutron energies E sub n <20 MeV are now taken into consideration. The results of these calculations were compared to experimental data using monoenergetic neutrons in an open geometry and a sup 2 sup 5 sup 2 Cf neutron source in th...

  3. A Patch to MCNP5 for Multiplication Inference: Description and User Guide

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Jr., Clell J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-05-05

    A patch to MCNP5 has been written to allow generation of multiple neutrons from a spontaneous-fission event and generate list-mode output. This report documents the implementation and usage of this patch.

  4. Development and validation of a model TRIGA Mark III reactor with code MCNP5

    International Nuclear Information System (INIS)

    Galicia A, J.; Francois L, J. L.; Aguilar H, F.

    2015-09-01

    The main purpose of this paper is to obtain a model of the reactor core TRIGA Mark III that accurately represents the real operating conditions to 1 M Wth, using the Monte Carlo code MCNP5. To provide a more detailed analysis, different models of the reactor core were realized by simulating the control rods extracted and inserted in conditions in cold (293 K) also including an analysis for shutdown margin, so that satisfied the Operation Technical Specifications. The position they must have the control rods to reach a power equal to 1 M Wth, were obtained from practice entitled Operation in Manual Mode performed at Instituto Nacional de Investigaciones Nucleares (ININ). Later, the behavior of the K eff was analyzed considering different temperatures in the fuel elements, achieving calculate subsequently the values that best represent the actual reactor operation. Finally, the calculations in the developed model for to obtain the distribution of average flow of thermal, epithermal and fast neutrons in the six new experimental facilities are presented. (Author)

  5. Monte Carlo calculation for the development of a BNCT neutron source (1eV-10KeV) using MCNP code.

    Science.gov (United States)

    El Moussaoui, F; El Bardouni, T; Azahra, M; Kamili, A; Boukhal, H

    2008-09-01

    Different materials have been studied in order to produce the epithermal neutron beam between 1eV and 10KeV, which are extensively used to irradiate patients with brain tumors such as GBM. For this purpose, we have studied three different neutrons moderators (H(2)O, D(2)O and BeO) and their combinations, four reflectors (Al(2)O(3), C, Bi, and Pb) and two filters (Cd and Bi). Results of calculation showed that the best obtained assembly configuration corresponds to the combination of the three moderators H(2)O, BeO and D(2)O jointly to Al(2)O(3) reflector and two filter Cd+Bi optimize the spectrum of the epithermal neutron at 72%, and minimize the thermal neutron to 4% and thus it can be used to treat the deep tumor brain. The calculations have been performed by means of the Monte Carlo N (particle code MCNP 5C). Our results strongly encourage further studying of irradiation of the head with epithermal neutron fields.

  6. Developing an interface between MCNP and McStas for simulation of neutron moderators

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Lauritzen, Bent; Nonbøl, Erik

    2012-01-01

    Simulations of target-moderator-reflector system at spallation sources are conventionally carried out using MCNP/X whereas simulations of neutron transport and instrument performance are carried out by neutron ray tracing codes such as McStas. The coupling between the two simulations suites...... typically consists of providing analytical fits from MCNP/X neutron spectra to McStas. This method is generally successful, but as will be discussed in the this paper, there are limitations and a more direct coupling between MCNP/X andMcStas could allow for more accurate simulations of e.g. complex...... moderator geometries, interference between beamlines as well as shielding requirements along the neutron guides. In this paper different possible interfaces between McStas and MCNP/X are discussed and first preliminary performance results are shown....

  7. New sampling method in continuous energy Monte Carlo calculation for pebble bed reactors

    International Nuclear Information System (INIS)

    Murata, Isao; Takahashi, Akito; Mori, Takamasa; Nakagawa, Masayuki.

    1997-01-01

    A pebble bed reactor generally has double heterogeneity consisting of two kinds of spherical fuel element. In the core, there exist many fuel balls piled up randomly in a high packing fraction. And each fuel ball contains a lot of small fuel particles which are also distributed randomly. In this study, to realize precise neutron transport calculation of such reactors with the continuous energy Monte Carlo method, a new sampling method has been developed. The new method has been implemented in the general purpose Monte Carlo code MCNP to develop a modified version MCNP-BALL. This method was validated by calculating inventory of spherical fuel elements arranged successively by sampling during transport calculation and also by performing criticality calculations in ordered packing models. From the results, it was confirmed that the inventory of spherical fuel elements could be reproduced using MCNP-BALL within a sufficient accuracy of 0.2%. And the comparison of criticality calculations in ordered packing models between MCNP-BALL and the reference method shows excellent agreement in neutron spectrum as well as multiplication factor. MCNP-BALL enables us to analyze pebble bed type cores such as PROTEUS precisely with the continuous energy Monte Carlo method. (author)

  8. Modeling dose-rate on/over the surface of cylindrical radio-models using Monte Carlo methods

    International Nuclear Information System (INIS)

    Xiao Xuefu; Ma Guoxue; Wen Fuping; Wang Zhongqi; Wang Chaohui; Zhang Jiyun; Huang Qingbo; Zhang Jiaqiu; Wang Xinxing; Wang Jun

    2004-01-01

    Objective: To determine the dose-rates on/over the surface of 10 cylindrical radio-models, which belong to the Metrology Station of Radio-Geological Survey of CNNC. Methods: The dose-rates on/over the surface of 10 cylindrical radio-models were modeled using the famous Monte Carlo code-MCNP. The dose-rates on/over the surface of 10 cylindrical radio-models were measured by a high gas pressurized ionization chamber dose-rate meter, respectively. The values of dose-rate modeled using MCNP code were compared with those obtained by authors in the present experimental measurement, and with those obtained by other workers previously. Some factors causing the discrepancy between the data obtained by authors using MCNP code and the data obtained using other methods are discussed in this paper. Results: The data of dose-rates on/over the surface of 10 cylindrical radio-models, obtained using MCNP code, were in good agreement with those obtained by other workers using the theoretical method. They were within the discrepancy of ±5% in general, and the maximum discrepancy was less than 10%. Conclusions: As if each factor needed for the Monte Carlo code is correct, the dose-rates on/over the surface of cylindrical radio-models modeled using the Monte Carlo code are correct with an uncertainty of 3%

  9. Comparison of TG-43 dosimetric parameters of brachytherapy sources obtained by three different versions of MCNP codes.

    Science.gov (United States)

    Zaker, Neda; Zehtabian, Mehdi; Sina, Sedigheh; Koontz, Craig; Meigooni, Ali S

    2016-03-08

    Monte Carlo simulations are widely used for calculation of the dosimetric parameters of brachytherapy sources. MCNP4C2, MCNP5, MCNPX, EGS4, EGSnrc, PTRAN, and GEANT4 are among the most commonly used codes in this field. Each of these codes utilizes a cross-sectional library for the purpose of simulating different elements and materials with complex chemical compositions. The accuracies of the final outcomes of these simulations are very sensitive to the accuracies of the cross-sectional libraries. Several investigators have shown that inaccuracies of some of the cross section files have led to errors in 125I and 103Pd parameters. The purpose of this study is to compare the dosimetric parameters of sample brachytherapy sources, calculated with three different versions of the MCNP code - MCNP4C, MCNP5, and MCNPX. In these simulations for each source type, the source and phantom geometries, as well as the number of the photons, were kept identical, thus eliminating the possible uncertainties. The results of these investigations indicate that for low-energy sources such as 125I and 103Pd there are discrepancies in gL(r) values. Discrepancies up to 21.7% and 28% are observed between MCNP4C and other codes at a distance of 6 cm for 103Pd and 10 cm for 125I from the source, respectively. However, for higher energy sources, the discrepancies in gL(r) values are less than 1.1% for 192Ir and less than 1.2% for 137Cs between the three codes.

  10. Program for the Generation of MCNP Inputs from State Files of CAREM

    International Nuclear Information System (INIS)

    Leszczynski, Francisco; Lopasso, Edmundo; Villarino, E

    2000-01-01

    The objective of this work is the development and tests of detailed input data for the Monte Carlo program MCNP, to be able of model the core of CAREM reactor, with the detail included on the updated models, for having available a calculation system that allow the production of confident results to be compared with results obtained with the system used today for designing the CAREM reactor core (CONDOR-CITVAP).The model includes the possibility of temperature and coolant density, and temperature and numeric densities of fuel.The detail consists of 21 different fuel elements (symmetry 3) and 14 axial zones.Results of comparisons of reactivity and power pick factors are presented, between MCNP and CONDOR-CITVAP.On average, these results show an acceptable agreement for all the compared parameters.It is described, also, the interface CONDOR-CITVAP-MCNP program, that has been developed for generating inputs of materials for MCNP, from outputs of CONDOR and CITVAP, for different reactor states

  11. Benchmark of PENELOPE code for low-energy photon transport: dose comparisons with MCNP4 and EGS4

    International Nuclear Information System (INIS)

    Ye, Sung-Joon; Brezovich, Ivan A; Pareek, Prem; Naqvi, Shahid A

    2004-01-01

    The expanding clinical use of low-energy photon emitting 125 I and 103 Pd seeds in recent years has led to renewed interest in their dosimetric properties. Numerous papers pointed out that higher accuracy could be obtained in Monte Carlo simulations by utilizing newer libraries for the low-energy photon cross-sections, such as XCOM and EPDL97. The recently developed PENELOPE 2001 Monte Carlo code is user friendly and incorporates photon cross-section data from the EPDL97. The code has been verified for clinical dosimetry of high-energy electron and photon beams, but has not yet been tested at low energies. In the present work, we have benchmarked the PENELOPE code for 10-150 keV photons. We computed radial dose distributions from 0 to 10 cm in water at photon energies of 10-150 keV using both PENELOPE and MCNP4C with either DLC-146 or DLC-200 cross-section libraries, assuming a point source located at the centre of a 30 cm diameter and 20 cm length cylinder. Throughout the energy range of simulated photons (except for 10 keV), PENELOPE agreed within statistical uncertainties (at worst ±5%) with MCNP/DLC-146 in the entire region of 1-10 cm and with published EGS4 data up to 5 cm. The dose at 1 cm (or dose rate constant) of PENELOPE agreed with MCNP/DLC-146 and EGS4 data within approximately ±2% in the range of 20-150 keV, while MCNP/DLC-200 produced values up to 9% lower in the range of 20-100 keV than PENELOPE or the other codes. However, the differences among the four datasets became negligible above 100 keV

  12. Benchmark of PENELOPE code for low-energy photon transport: dose comparisons with MCNP4 and EGS4.

    Science.gov (United States)

    Ye, Sung-Joon; Brezovich, Ivan A; Pareek, Prem; Naqvi, Shahid A

    2004-02-07

    The expanding clinical use of low-energy photon emitting 125I and 103Pd seeds in recent years has led to renewed interest in their dosimetric properties. Numerous papers pointed out that higher accuracy could be obtained in Monte Carlo simulations by utilizing newer libraries for the low-energy photon cross-sections, such as XCOM and EPDL97. The recently developed PENELOPE 2001 Monte Carlo code is user friendly and incorporates photon cross-section data from the EPDL97. The code has been verified for clinical dosimetry of high-energy electron and photon beams, but has not yet been tested at low energies. In the present work, we have benchmarked the PENELOPE code for 10-150 keV photons. We computed radial dose distributions from 0 to 10 cm in water at photon energies of 10-150 keV using both PENELOPE and MCNP4C with either DLC-146 or DLC-200 cross-section libraries, assuming a point source located at the centre of a 30 cm diameter and 20 cm length cylinder. Throughout the energy range of simulated photons (except for 10 keV), PENELOPE agreed within statistical uncertainties (at worst +/- 5%) with MCNP/DLC-146 in the entire region of 1-10 cm and with published EGS4 data up to 5 cm. The dose at 1 cm (or dose rate constant) of PENELOPE agreed with MCNP/DLC-146 and EGS4 data within approximately +/- 2% in the range of 20-150 keV, while MCNP/DLC-200 produced values up to 9% lower in the range of 20-100 keV than PENELOPE or the other codes. However, the differences among the four datasets became negligible above 100 keV.

  13. An approach to design a 90Sr radioisotope thermoelectric generator using analytical and Monte Carlo methods with ANSYS, COMSOL, and MCNP.

    Science.gov (United States)

    Khajepour, Abolhasan; Rahmani, Faezeh

    2017-01-01

    In this study, a 90 Sr radioisotope thermoelectric generator (RTG) with power of milliWatt was designed to operate in the determined temperature (300-312K). For this purpose, the combination of analytical and Monte Carlo methods with ANSYS and COMSOL software as well as the MCNP code was used. This designed RTG contains 90 Sr as a radioisotope heat source (RHS) and 127 coupled thermoelectric modules (TEMs) based on bismuth telluride. Kapton (2.45mm in thickness) and Cryotherm sheets (0.78mm in thickness) were selected as the thermal insulators of the RHS, as well as a stainless steel container was used as a generator chamber. The initial design of the RHS geometry was performed according to the amount of radioactive material (strontium titanate) as well as the heat transfer calculations and mechanical strength considerations. According to the Monte Carlo simulation performed by the MCNP code, approximately 0.35 kCi of 90 Sr is sufficient to generate heat power in the RHS. To determine the optimal design of the RTG, the distribution of temperature as well as the dissipated heat and input power to the module were calculated in different parts of the generator using the ANSYS software. Output voltage according to temperature distribution on TEM was calculated using COMSOL. Optimization of the dimension of the RHS and heat insulator was performed to adapt the average temperature of the hot plate of TEM to the determined hot temperature value. This designed RTG generates 8mW in power with an efficiency of 1%. This proposed approach of combination method can be used for the precise design of various types of RTGs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Monte Carlo simulations of the pulsed thermal neutron flux in two-region hydrogenous systems (using standard MCNP data libraries)

    International Nuclear Information System (INIS)

    Wiacek, U.; Krynicka, E.

    2005-02-01

    Monte Carlo simulations of the pulsed neutron experiment in two- region systems (two concentric spheres and two coaxial finite cylinders) are presented. The MCNP code is used. Aqueous solutions of H 3 BO 3 or KCl are used in the inner region. The outer region is the moderator of Plexiglas. Standard data libraries of the thermal neutron scattering cross-sections of hydrogen in hydrogenous substances are used. The time-dependent thermal neutron transport is simulated when the inner region has a constant size and the external size of the surrounding outer region is variable. The time decay constant of the thermal neutron flux in the system is found in each simulation. The results of the simulations are compared with results of real pulsed neutron experiments on the corresponding systems. (author)

  15. An improved algorithm to convert CAD model to MCNP geometry model based on STEP file

    International Nuclear Information System (INIS)

    Zhou, Qingguo; Yang, Jiaming; Wu, Jiong; Tian, Yanshan; Wang, Junqiong; Jiang, Hai; Li, Kuan-Ching

    2015-01-01

    Highlights: • Fully exploits common features of cells, making the processing efficient. • Accurately provide the cell position. • Flexible to add new parameters in the structure. • Application of novel structure in INP file processing, conveniently evaluate cell location. - Abstract: MCNP (Monte Carlo N-Particle Transport Code) is a general-purpose Monte Carlo N-Particle code that can be used for neutron, photon, electron, or coupled neutron/photon/electron transport. Its input file, the INP file, has the characteristics of complicated form and is error-prone when describing geometric models. Due to this, a conversion algorithm that can solve the problem by converting general geometric model to MCNP model during MCNP aided modeling is highly needed. In this paper, we revised and incorporated a number of improvements over our previous work (Yang et al., 2013), which was proposed and targeted after STEP file and INP file were analyzed. Results of experiments show that the revised algorithm is more applicable and efficient than previous work, with the optimized extraction of geometry and topology information of the STEP file, as well as the production efficiency of output INP file. This proposed research is promising, and serves as valuable reference for the majority of researchers involved with MCNP-related researches

  16. Shielding Calculations for Industrial 5/7.5MeV Electron Accelerators Using the MCNP Monte Carlo Code

    International Nuclear Information System (INIS)

    Peri, E.; Orion, I.

    2014-01-01

    High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, in order to extend the shelf life of products. High energy photons can cause food activation due to (D 3 ,n) reactions. Until 2004, to eliminate the possibility of food activation, the electron energy was limited to 5 MeV X-rays for food irradiation. In 2004, the FDA approved the usage of up to 7.5 MeV, but only with tantalum and gold targets (1). Higher X-ray energy results an increased flux of X-rays in the forward direction, increased penetration, and higher photon dose rate due to better electron-to-photon conversion. These improvements could decrease the irradiation time and allow irradiation of larger packages, thereby providing higher production rates with lower treatment cost. Medical accelerators usually work with 6-18 MV electron energy with tungsten target to convert the electron beam to X-rays. In order to protect the patients, the accelerator head is protected with a heavy lead shielding; therefore, the bremsstrahlung is emitted only in the forward direction. There are many publications and standards that guide how to design optimal shielding for medical accelerator rooms. The shielding data for medical accelerators is not applicable for industrial accelerators, since the data is for different conversion targets, different X-Ray energies, and only for the forward direction. Collimators are not always in use in industrial accelerators, and therefore bremsstrahlung photons can be emitted in all directions. The bremsstrahlung spectrum and dose rate change as a function of the emission angle. The dose rate decreases from maximum in the forward direction (0°) to minimum at 180° by 1-2 orders of magnitude. In order to design and calculate optimal shielding for food accelerator rooms, there is a need to have the bremsstrahlung spectrum data, dose rates and concrete attenuation data in all emission directions

  17. Comparison of penumbra regions produced by ancient Gamma knife model C and Gamma ART 6000 using Monte Carlo MCNP6 simulation.

    Science.gov (United States)

    Banaee, Nooshin; Asgari, Sepideh; Nedaie, Hassan Ali

    2018-07-01

    The accuracy of penumbral measurements in radiotherapy is pivotal because dose planning computers require accurate data to adequately modeling the beams, which in turn are used to calculate patient dose distributions. Gamma knife is a non-invasive intracranial technique based on principles of the Leksell stereotactic system for open deep brain surgeries, invented and developed by Professor Lars Leksell. The aim of this study is to compare the penumbra widths of Leksell Gamma Knife model C and Gamma ART 6000. Initially, the structure of both systems were simulated by using Monte Carlo MCNP6 code and after validating the accuracy of simulation, beam profiles of different collimators were plotted. MCNP6 beam profile calculations showed that the penumbra values of Leksell Gamma knife model C and Gamma ART 6000 for 18, 14, 8 and 4 mm collimators are 9.7, 7.9, 4.3, 2.6 and 8.2, 6.9, 3.6, 2.4, respectively. The results of this study showed that since Gamma ART 6000 has larger solid angle in comparison with Gamma Knife model C, it produces better beam profile penumbras than Gamma Knife model C in the direct plane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Use of silicon microstrip detectors in medical diagnostic x-rays

    International Nuclear Information System (INIS)

    Cabal Rodriguez, Ana Ester

    2004-11-01

    This work presents the development and characterization of a single photon counting system based on silicon microstrip detectors, used in High Energy Physics experiments, and on low noise multichannel readout electronics. The thesis evaluates the feasibility of dual energy X-ray imaging with silicon microstrip detectors to be applied on medical diagnosis. Dual energy mammographic and angiographic experimental tests have been performed using the developed counting systems proto types, properly phantoms and quasi-monochromatic X ray beams, obtained on a compact dichromatic source based on a conventional X-ray tube and a mosaic crystal. A Monte Carlo simulation of the performance of the experimental setup for dual X-ray imaging has also been carried out using MCNP-4C transport code. We obtained good agreement between MCNP results and the experimental data. (Author)

  19. Using MCNP-4C code for design of the thermal neutron beam for neutron radiography at the MNSR

    International Nuclear Information System (INIS)

    Shaaban, I.

    2009-11-01

    Studies were carried out for determination of the parameters of a thermal neutron beam at the MNSR reactor (MNSR-30 kW) for neutron radiography in the vertical beam port by using the MCNP-4C (Monte Carlo Neutron - Photon transport). Thermal, epithermal and fast neutron energy ranges were selected as 10 keV respectively. To produce a good neutron beam in terms of intensity and quality, several materials Lead (Pb), Bismuth (Bi), Borated polyethelyene and Alumina Oxide (Al 2 O 3 ) were used as neutron and photon filters. Based on the current design, the L/D of the facility ranges between 125, 110 and 90. The thermal neutron flux at the beam exit is 1.436x10 5 n/cm2 .s ,1.843x10 5 n/cm2 .s and 2.845x10 5 n/cm2 .s respectively, middots with a Cd-ratio of ∼ 2.829, 2.766, 3.191 for the L/D = 125, 110, 90 respectively. The estimated values for gamma doses are 6.705x10 -2 Rem/h and 1.275x10 -1 Rem/h and 2.678x10 -1 Rem/ h with bismuth. The divergent angle of the collimator is 1.348 degree - 2.021 degree. Such neutron beams, if built into the Syrian MNSR reactor, could support the application of NRG in Syria. (author)

  20. Development of automatic cross section compilation system for MCNP

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Sakurai, Kiyoshi

    1999-01-01

    A development of a code system to automatically convert cross-sections for MCNP is in progress. The NJOY code is, in general, used to convert the data compiled in the ENDF format (Evaluated Nuclear Data Files by BNL) into the cross-section libraries required by various reactor physics codes. While the cross-section library: FSXLIB-J3R2 was already converted from the JENDL-3.2 version of Japanese Evaluated Nuclear Data Library for a continuous energy Monte Carlo code MCNP, the library keeps only the cross-sections at room temperature (300 K). According to the users requirements which want to have cross-sections at higher temperature, say 600 K or 900 K, a code system named 'autonj' is under development to provide a set of cross-section library of arbitrary temperature for the MCNP code. This system can accept any of data formats adopted JENDL that may not be treated by NJOY code. The input preparation that is repeatedly required at every nuclide on NJOY execution is greatly reduced by permitting the conversion process of as many nuclides as the user wants in one execution. A few MCNP runs were achieved for verification purpose by using two libraries FSXLIB-J3R2 and the output of autonj'. The almost identical MCNP results within the statistical errors show the 'autonj' output library is correct. In FY 1998, the system will be completed, and in FY 1999, the user's manual will be published. (K. Tsuchihashi)

  1. Monte Carlo Simulations Validation Study: Vascular Brachytherapy Beta Sources

    International Nuclear Information System (INIS)

    Orion, I.; Koren, K.

    2004-01-01

    During the last decade many versions of angioplasty irradiation treatments have been proposed. The purpose of this unique brachytherapy is to administer a sufficient radiation dose into the vein walls in order to prevent restonosis, a clinical sequel to balloon angioplasty. The most suitable sources for this vascular brachytherapy are the β - emitters such as Re-188, P-32, and Sr-90/Y-90, with a maximum energy range of up to 2.1 MeV [1,2,3]. The radioactive catheters configurations offered for these treatments can be a simple wire [4], a fluid filled balloon or a coated stent. Each source is differently positioned inside the blood vessel, and the emitted electrons ranges therefore vary. Many types of sources and configurations were studied either experimentally or with the use of the Monte Carlo calculation technique, while most of the Monte Carlo simulations were carried out using EGS4 [5] or MCNP [6]. In this study we compared the beta-source absorbed-dose versus radial-distance of two treatment configurations using MCNP and EGS4 simulations. This comparison was aimed to discover the differences between the MCNP and the EGS4 simulation code systems in intermediate energies electron transport

  2. MCNP trademark directions

    International Nuclear Information System (INIS)

    Hendricks, J.S.

    1994-01-01

    The MCNP code development program is a relatively large and rapidly changing project in the small and highly-specialized field of radiation transport, specifically radiation protection and shielding. A number of major new MCNP initiatives are described in the subsequent papers in this session. The focus of this paper is the important new developments not described elsewhere and a number of recent developments that have been available since MCNP4A but have gone unnoticed. In particular, we report for the first time a new MCNP quality assurance initiative providing 97% test coverage, a new MCNP feature enabling plotting of nuclear data, and the other new features developed so far for MCNP4B. Finally, an attempt is made to articulate how all these fit together into the overall MCNP development program

  3. Calibration of neutron yield activation measurements at JET using MCNP and furnace neutron transport codes

    International Nuclear Information System (INIS)

    Pillon, M.; Martone, M.; Verschuur, K.A.; Jarvis, O.N.; Kaellne, J.

    1989-01-01

    Neutron transport calculations have been performed using fluence ray tracing (FURNACE code) and Monte Carlo particle trajectory sampling methods (MCNP code) in order to determine the neutron fluence and energy distributions at different locations in the JET tokamak. These calculations were used to calibrate the activation measurements used in the determination of the absolute fusion neutron yields from the JET plasma. We present here the neutron activation response coefficients calculated for three different materials. Comparison of the MCNP and FURNACE results helps identify the sources of error in these neutron transport calculations. The accuracy of these calculations was tested by comparing the total 2.5 MeV neutron yields derived from the activation measurements with those obtained with calibrated fission chambers; agreement at the ±15% level was demonstrate. (orig.)

  4. SU-E-T-521: Investigation of the Uncertainties Involved in Secondary Neutron/gamma Production in Geant4/MCNP6 Monte Carlo Codes for Proton Therapy Application

    International Nuclear Information System (INIS)

    Mirzakhanian, L; Enger, S; Giusti, V

    2015-01-01

    Purpose: A major concern in proton therapy is the production of secondary neutrons causing secondary cancers, especially in young adults and children. Most utilized Monte Carlo codes in proton therapy are Geant4 and MCNP. However, the default versions of Geant4 and MCNP6 do not have suitable cross sections or physical models to properly handle secondary particle production in proton energy ranges used for therapy. In this study, default versions of Geant4 and MCNP6 were modified to better handle production of secondaries by adding the TENDL-2012 cross-section library. Methods: In-water proton depth-dose was measured at the “The Svedberg Laboratory” in Uppsala (Sweden). The proton beam was mono-energetic with mean energy of 178.25±0.2 MeV. The measurement set-up was simulated by Geant4 version 10.00 (default and modified version) and MCNP6. Proton depth-dose, primary and secondary particle fluence and neutron equivalent dose were calculated. In case of Geant4, the secondary particle fluence was filtered by all the physics processes to identify the main process responsible for the difference between the default and modified version. Results: The proton depth-dose curves and primary proton fluence show a good agreement between both Geant4 versions and MCNP6. With respect to the modified version, default Geant4 underestimates the production of secondary neutrons while overestimates that of gammas. The “ProtonInElastic” process was identified as the main responsible process for the difference between the two versions. MCNP6 shows higher neutron production and lower gamma production than both Geant4 versions. Conclusion: Despite the good agreement on the proton depth dose curve and primary proton fluence, there is a significant discrepancy on secondary neutron production between MCNP6 and both versions of Geant4. Further studies are thus in order to find the possible cause of this discrepancy or more accurate cross-sections/models to handle the nuclear

  5. Comparison of TG‐43 dosimetric parameters of brachytherapy sources obtained by three different versions of MCNP codes

    Science.gov (United States)

    Zaker, Neda; Sina, Sedigheh; Koontz, Craig; Meigooni1, Ali S.

    2016-01-01

    Monte Carlo simulations are widely used for calculation of the dosimetric parameters of brachytherapy sources. MCNP4C2, MCNP5, MCNPX, EGS4, EGSnrc, PTRAN, and GEANT4 are among the most commonly used codes in this field. Each of these codes utilizes a cross‐sectional library for the purpose of simulating different elements and materials with complex chemical compositions. The accuracies of the final outcomes of these simulations are very sensitive to the accuracies of the cross‐sectional libraries. Several investigators have shown that inaccuracies of some of the cross section files have led to errors in  125I and  103Pd parameters. The purpose of this study is to compare the dosimetric parameters of sample brachytherapy sources, calculated with three different versions of the MCNP code — MCNP4C, MCNP5, and MCNPX. In these simulations for each source type, the source and phantom geometries, as well as the number of the photons, were kept identical, thus eliminating the possible uncertainties. The results of these investigations indicate that for low‐energy sources such as  125I and  103Pd there are discrepancies in gL(r) values. Discrepancies up to 21.7% and 28% are observed between MCNP4C and other codes at a distance of 6 cm for  103Pd and 10 cm for  125I from the source, respectively. However, for higher energy sources, the discrepancies in gL(r) values are less than 1.1% for  192Ir and less than 1.2% for  137Cs between the three codes. PACS number(s): 87.56.bg PMID:27074460

  6. Conversion of Input Data between KENO and MCNP File Formats for Computer Criticality Assessments

    International Nuclear Information System (INIS)

    Schwarz, Randolph A.; Carter, Leland L.; Schwarz Alysia L.

    2006-01-01

    KENO is a Monte Carlo criticality code that is maintained by Oak Ridge National Laboratory (ORNL). KENO is included in the SCALE (Standardized Computer Analysis for Licensing Evaluation) package. KENO is often used because it was specifically designed for criticality calculations. Because KENO has convenient geometry input, including the treatment of lattice arrays of materials, it is frequently used for production calculations. Monte Carlo N-Particle (MCNP) is a Monte Carlo transport code maintained by Los Alamos National Laboratory (LANL). MCNP has a powerful 3D geometry package and an extensive cross section database. It is a general-purpose code and may be used for calculations involving shielding or medical facilities, for example, but can also be used for criticality calculations. MCNP is becoming increasingly more popular for performing production criticality calculations. Both codes have their own specific advantages. After a criticality calculation has been performed with one of the codes, it is often desirable (or may be a safety requirement) to repeat the calculation with the other code to compare the important parameters using a different geometry treatment and cross section database. This manual conversion of input files between the two codes is labor intensive. The industry needs the capability of converting geometry models between MCNP and KENO without a large investment in manpower. The proposed conversion package will aid the user in converting between the codes. It is not intended to be used as a ''black box''. The resulting input file will need to be carefully inspected by criticality safety personnel to verify the intent of the calculation is preserved in the conversion. The purpose of this package is to help the criticality specialist in the conversion process by converting the geometry, materials, and pertinent data cards

  7. Development of an interface between MCNP and ORIGEN codes for calculations of fuel evolution in nuclear systems. Initial project

    International Nuclear Information System (INIS)

    Campolina, Daniel de Almeida Magalhaes

    2009-01-01

    In Many situations of nuclear system study, it is necessary to know the detailed particle flux in a geometry. Deterministic 1-D and 2-D methods aren't suitable to represent some strong 3-D behavior configurations, for example in cores where the neutron flux varies considerably in the space and Monte Carlo analysis are necessary. The majority of Monte Carlo transport calculation codes, performs time static simulations, in terms of fuel isotopic composition. This work is a initial project to incorporate depletion capability to the MCNP code, by means of a connection with ORIGEN2.1 burnup code. The method to develop the program proposed followed the methodology of other programs used to the same purpose. Essentially, MCNP data library are used to generate one group microscopic cross sections that override default ORIGEN libraries. To verify the actual implemented part, comparisons which MCNPX (version 2.6.0) results were made. The neutron flux and criticality value of core agree. The neutron flux and criticality value of the core agree, especially in beginning of burnup when the influence of fission products are not very considerable. The small difference encountered was probably caused by the difference in the number of isotopes considered in the transport models (89 MCNPX x 25 GB). Next step of this work is to adapt MCNP version 4C to work with a memory higher than its standard value (4MB), in order to allow a greater number of isotopes in the transport model. (author)

  8. Verification of MCNP6.2 for Nuclear Criticality Safety Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Alwin, Jennifer Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-10

    Several suites of verification/validation benchmark problems were run in early 2017 to verify that the new production release of MCNP6.2 performs correctly for nuclear criticality safety applications (NCS). MCNP6.2 results for several NCS validation suites were compared to the results from MCNP6.1 [1] and MCNP6.1.1 [2]. MCNP6.1 is the production version of MCNP® released in 2013, and MCNP6.1.1 is the update released in 2014. MCNP6.2 includes all of the standard features for NCS calculations that have been available for the past 15 years, along with new features for sensitivity-uncertainty based methods for NCS validation [3]. Results from the benchmark suites were compared with results from previous verification testing [4-8]. Criticality safety analysts should consider testing MCNP6.2 on their particular problems and validation suites. No further development of MCNP5 is planned. MCNP6.1 is now 4 years old, and MCNP6.1.1 is now 3 years old. In general, released versions of MCNP are supported only for about 5 years, due to resource limitations. All future MCNP improvements, bug fixes, user support, and new capabilities are targeted only to MCNP6.2 and beyond.

  9. Monte Carlo radiation transport: A revolution in science

    International Nuclear Information System (INIS)

    Hendricks, J.

    1993-01-01

    When Enrico Fermi, Stan Ulam, Nicholas Metropolis, John von Neuman, and Robert Richtmyer invented the Monte Carlo method fifty years ago, little could they imagine the far-flung consequences, the international applications, and the revolution in science epitomized by their abstract mathematical method. The Monte Carlo method is used in a wide variety of fields to solve exact computational models approximately by statistical sampling. It is an alternative to traditional physics modeling methods which solve approximate computational models exactly by deterministic methods. Modern computers and improved methods, such as variance reduction, have enhanced the method to the point of enabling a true predictive capability in areas such as radiation or particle transport. This predictive capability has contributed to a radical change in the way science is done: design and understanding come from computations built upon experiments rather than being limited to experiments, and the computer codes doing the computations have become the repository for physics knowledge. The MCNP Monte Carlo computer code effort at Los Alamos is an example of this revolution. Physicians unfamiliar with physics details can design cancer treatments using physics buried in the MCNP computer code. Hazardous environments and hypothetical accidents can be explored. Many other fields, from underground oil well exploration to aerospace, from physics research to energy production, from safety to bulk materials processing, benefit from MCNP, the Monte Carlo method, and the revolution in science

  10. MCNP evaluation of top node control rod depletion below the core in KKL

    International Nuclear Information System (INIS)

    Beran, Tâm; Seltborg, Per; Lindahl, Sten-Örjan; Bieli, Roger; Ledergerber, Guido

    2014-01-01

    In previous studies, there has been identified a significant discrepancy in the BWR control rod top node depletion between the two core simulator nodal codes POLCA7 and PRESTO-2, which indicates that there is a large general uncertainty in nodal codes in calculating the top node depletion of fully withdrawn control rods. In this study, the stochastic Monte Carlo code MCNP has been used to calculate the top node control rod depletion for benchmarking the nodal codes. By using the TIP signal obtained from an extended TIP campaign below the core performed in the KKL reactor, the MCNP model has been verified by comparing the axial profile between the TIP data and the gamma flux calculated by MCNP. The MCNP results have also been compared with calculations from POLCA7, which was found to yield slightly higher depletion rates than MCNP. It was also found that the 10 B depletion in the top node is very sensitive to the exact axial location of the control rod top when it is fully withdrawn. By using the MCNP results, the neutron flux model below the core in the nodal codes can be improved by implementing an exponential function for the neutron flux. (author)

  11. Monte Carlo simulation on nuclear energy study. Annual report of Nuclear Code Evaluation Committee

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi; Yamamoto, Toshihiro

    1999-03-01

    In this report, research results discussed in 1998 fiscal year at Nuclear Code Evaluation Special Committee of Nuclear Code Committee were summarised. Present status of Monte Carlo calculation in high energy region investigated / discussed at Monte Carlo simulation working-group and automatic compilation system for MCNP cross sections developed at MCNP high temperature library compilation working-group were described. The 6 papers are indexed individually. (J.P.N.)

  12. Application of Monte Carlo method in determination of air absorbed rate from a full γ-ray spectrum

    International Nuclear Information System (INIS)

    Zhang Jiangyun; Huang Ning; Tang Lili; Liu Yanfang; Zhang Guanghua

    2011-01-01

    The dosimetric properties of a gamma-radiation field can be measured by a dose-rate meter or by a gamma-spectrometer with spectrum-dose conversion. One of the spectrum dose conversion methods is to evaluate the radiation dose directly from integrating the observed pulse height spectrum weighted by a G(E) function, instead of making spectrum analysis.In this paper,energy spectra of 11 single energy point sources in 0.1-2.5 MeV are simulated by using Monte Carlo software MCNP5 for NaI(Tl) detectors of Φ 75 mm x 75 mm, Φ 50 mm x 50 mm and Φ 25 mm x 25 mm. The energy spectra are used as standard spectrum to calculate the G(E) value, so as to calculate corresponding doses. Comparing the results with theoretical value,the error is less than 1.5%. Finally, the G(E)-based γ dose rate of radiation field agreed well (within 5%) with the dose rate measured by a dosimeter. (authors)

  13. Analysis of JSI TRIGA MARK II reactor physical parameters calculated with TRIPOLI and MCNP.

    Science.gov (United States)

    Henry, R; Tiselj, I; Snoj, L

    2015-03-01

    New computational model of the JSI TRIGA Mark II research reactor was built for TRIPOLI computer code and compared with existing MCNP code model. The same modelling assumptions were used in order to check the differences of the mathematical models of both Monte Carlo codes. Differences between the TRIPOLI and MCNP predictions of keff were up to 100pcm. Further validation was performed with analyses of the normalized reaction rates and computations of kinetic parameters for various core configurations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. MCNP capabilities at the dawn of the 21st century: Neutron-gamma applications

    International Nuclear Information System (INIS)

    Selcow, E.C.; McKinney, G.W.

    2000-01-01

    The Los Alamos National Laboratory Monte Carlo N-Particle radiation transport code, MCNP, has become an international standard for a wide spectrum of neutron-gamma radiation transport applications. These include nuclear criticality safety, radiation shielding, nuclear safeguards, nuclear well-logging, fission and fusion reactor design, accelerator target design, detector design and analysis, health physics, medical radiation therapy and imaging, radiography, decontamination and decommissioning, and waste storage and disposal. The latest version of the code, MCNP4C, was released to the Radiation Safety Information Computational Center (RSICC) in February 2000.This paper described the new features and capabilities of the code, and discusses the specific applicability to neutron-gamma problems. We will also discuss the future directions for MCNP code development, including rewriting the code in Fortran 90

  15. Monte carlo calculation of the neutron effective dose rate at the outer surface of the biological shield of HTR-10 reactor

    International Nuclear Information System (INIS)

    Remetti, Romolo; Andreoli, Giulio; Keshishian, Silvina

    2012-01-01

    Highlights: ► We deal with HTR-10, that is a helium-cooled graphite-moderated pebble bed reactor. ► We carried out Monte Carlo simulation of the core by MCNP5. ► Extensive use of MCNP5 variance reduction methods has been done. ► We calculated the trend of neutron flux within the biological shield. ► We calculated neutron effective dose at the outer surface of biological shield. - Abstract: Research on experimental reactors, such as HTR-10, provide useful data about potentialities of very high temperature gas-cooled reactors (VHTR). The latter is today rated as one of the six nuclear reactor types involved in the Generation-IV International Forum (GIF) Initiative. In this study, the MCNP5 code has been employed to evaluate the neutron radiation trend vs. the biological shield's thickness and to calculate the neutron effective dose rate at the outer surface. The reactor's geometry has been completely modeled by means of lattices and universes provided by MCNP, even though some approximations were required. Monte Carlo calculations have been performed by means of a simple PC and, as a consequence, in order to obtain acceptable run times, it was made an extensive recourse to variance reduction methods.

  16. MCNP modelling of scintillation-detector gamma-ray spectra from natural radionuclides

    NARCIS (Netherlands)

    Hendriks, Peter; Maucec, M; de Meijer, RJ

    gamma-ray spectra of natural radionuclides are simulated for a BGO detector in a borehole geometry using the Monte Carlo code MCNP. All gamma-ray emissions of the decay of K-40 and the series of Th-232 and U-238 are used to describe the source. A procedure is proposed which excludes the

  17. Utilization of new 150-MeV neutron and proton evaluations in MCNP

    International Nuclear Information System (INIS)

    Little, R.C.; Frankle, S.C.; Hughes, H.G. III; Prael, R.E.

    1997-01-01

    MCNP trademark and LAHET trademark are two of the codes included in the LARAMIE (Los Alamos Radiation Modeling Interactive Environment) code system. Both MCNP and LAHET are three-dimensional continuous-energy Monte Carlo radiation transport codes. The capabilities of MCNP and LAHET are currently being merged into one code for the Accelerator Production of Tritium (APT) program at Los Alamos National Laboratory. Concurrently, a significant effort is underway to improve the accuracy of the physics in the merged code. In particular, full nuclear-data evaluations (in ENDF6 format) for many materials of importance to APT are being produced for incident neutrons and protons up to an energy of 150-MeV. After processing, cross-section tables based on these new evaluations will be available for use fin the merged code. In order to utilize these new cross-section tables, significant enhancements are required for the merged code. Neutron cross-section tables for MCNP currently specify emission data for neutrons and photons only; the new evaluations also include complete neutron-induced data for protons, deuterons, tritons, and alphas. In addition, no provision in either MCNP or LAHET currently exists for the use of incident charged-particle tables other than for electrons. To accommodate the new neutron-induced data, it was first necessary to expand the format definition of an MCNP neutron cross-section table. The authors have prepared a 150-MeV neutron cross-section library in this expanded format for 15 nuclides. Modifications to MCNP have been implemented so that this expanded neutron library can be utilized

  18. MatMCNP: A Code for Producing Material Cards for MCNP

    Energy Technology Data Exchange (ETDEWEB)

    DePriest, Kendall Russell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Saavedra, Karen C. [American Structurepoint, Inc., Indianapolis, IN (United States)

    2014-09-01

    A code for generating MCNP material cards (MatMCNP) has been written and verified for naturally occurring, stable isotopes. The program allows for material specification as either atomic or weight percent (fractions). MatMCNP also permits the specification of enriched lithium, boron, and/or uranium. In addition to producing the material cards for MCNP, the code calculates the atomic (or number) density in atoms/barn-cm as well as the multiplier that should be used to convert neutron and gamma fluences into dose in the material specified.

  19. Numerical verification of the theory of coupled reactors for a deuterium critical assembly using MCNP5

    International Nuclear Information System (INIS)

    Hussein, M.S.; Bonin, H.W.; Lewis, B.J.

    2013-01-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as Deuterium Critical Assembly, (DCA). The variations of the criticality factors and the coupling coefficients were investigated by changing of the water levels in the inner and outer cores. The numerical results of the model developed with MCNP5 code were validated and verified against published results and the mathematical model based on coupled reactor theory. (author)

  20. Numerical verification of the theory of coupled reactors for a deuterium critical assembly using MCNP5

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M.S.; Bonin, H.W.; Lewis, B.J., E-mail: mohamed.hussein@rmc.ca, E-mail: bonin-h@rmc.ca, E-mail: lewis-b@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2013-07-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as Deuterium Critical Assembly, (DCA). The variations of the criticality factors and the coupling coefficients were investigated by changing of the water levels in the inner and outer cores. The numerical results of the model developed with MCNP5 code were validated and verified against published results and the mathematical model based on coupled reactor theory. (author)

  1. SABRINA, Geometry Plot Program for MCNP

    International Nuclear Information System (INIS)

    SEIDL, Marcus

    2003-01-01

    1 - Description of program or function: SABRINA is an interactive, three-dimensional, geometry-modeling code system, primarily for use with CCC-200/MCNP. SABRINA's capabilities include creation, visualization, and verification of three-dimensional geometries specified by either surface- or body-base combinatorial geometry; display of particle tracks are calculated by MCNP; and volume fraction generation. 2 - Method of solution: Rendering is performed by ray tracing or an edge and intersection algorithm. Volume fraction calculations are made by ray tracing. 3 - Restrictions on the complexity of the problem: A graphics display with X Window capability is required

  2. Analysis of parallel computing performance of the code MCNP

    International Nuclear Information System (INIS)

    Wang Lei; Wang Kan; Yu Ganglin

    2006-01-01

    Parallel computing can reduce the running time of the code MCNP effectively. With the MPI message transmitting software, MCNP5 can achieve its parallel computing on PC cluster with Windows operating system. Parallel computing performance of MCNP is influenced by factors such as the type, the complexity level and the parameter configuration of the computing problem. This paper analyzes the parallel computing performance of MCNP regarding with these factors and gives measures to improve the MCNP parallel computing performance. (authors)

  3. Experimental and Monte Carlo simulated spectra of a liquid-metal-jet x-ray source

    International Nuclear Information System (INIS)

    Marziani, M.; Gambaccini, M.; Di Domenico, G.; Taibi, A.; Cardarelli, P.

    2014-01-01

    A prototype x-ray system based on a liquid-metal-jet anode was evaluated within the framework of the LABSYNC project. The generated spectrum was measured using a CZT-based spectrometer and was compared with spectra simulated by three Monte Carlo codes: MCNPX, PENELOPE and EGS5. Notable differences in the simulated spectra were found. These are mainly attributable to differences in the models adopted for the electron-impact ionization cross section. The simulation that more closely reproduces the experimentally measured spectrum was provided by PENELOPE. - Highlights: • The x-ray spectrum of a liquid-jet x-ray anode was measured with a CZT spectrometer. • Results were compared with Monte Carlo simulations using MCNPX, PENELOPE, EGS5. • Notable differences were found among the Monte Carlo simulated spectra. • The key role was played by the electron-impact ionization cross-section model used. • The experimentally measured spectrum was closely reproduced by the PENELOPE code

  4. Evaluation of computational models and cross sections used by MCNP6 for simulation of characteristic X-ray emission from thick targets bombarded by kiloelectronvolt electrons

    Energy Technology Data Exchange (ETDEWEB)

    Poškus, A., E-mail: andrius.poskus@ff.vu.lt

    2016-09-15

    This paper evaluates the accuracy of the single-event (SE) and condensed-history (CH) models of electron transport in MCNP6.1 when simulating characteristic K{sub α}, total K (=K{sub α} + K{sub β}) and L{sub α} X-ray emission from thick targets bombarded by electrons with energies from 5 keV to 30 keV. It is shown that the MCNP6.1 implementation of the CH model for the K-shell impact ionization leads to underestimation of the K yield by 40% or more for the elements with atomic numbers Z < 15 and overestimation of the K{sub α} yield by more than 40% for the elements with Z > 25. The L{sub α} yields are underestimated by more than an order of magnitude in CH mode, because MCNP6.1 neglects X-ray emission caused by electron-impact ionization of L, M and higher shells in CH mode (the L{sub α} yields calculated in CH mode reflect only X-ray fluorescence, which is mainly caused by photoelectric absorption of bremsstrahlung photons). The X-ray yields calculated by MCNP6.1 in SE mode (using ENDF/B-VII.1 library data) are more accurate: the differences of the calculated and experimental K yields are within the experimental uncertainties for the elements C, Al and Si, and the calculated K{sub α} yields are typically underestimated by (20–30)% for the elements with Z > 25, whereas the L{sub α} yields are underestimated by (60–70)% for the elements with Z > 49. It is also shown that agreement of the experimental X-ray yields with those calculated in SE mode is additionally improved by replacing the ENDF/B inner-shell electron-impact ionization cross sections with the set of cross sections obtained from the distorted-wave Born approximation (DWBA), which are also used in the PENELOPE code system. The latter replacement causes a decrease of the average relative difference of the experimental X-ray yields and the simulation results obtained in SE mode to approximately 10%, which is similar to accuracy achieved with PENELOPE. This confirms that the DWBA inner

  5. A comparison of lattice parameters for CANDU-type lattices obtained using MCNP, WIMS, and WIMS with resonance reaction rates from MCNP

    International Nuclear Information System (INIS)

    Craig, D.S.

    1989-03-01

    The Monte Carlo code MCNP was used to check the accuracy of the WIMS calculation of the resolved resonance capture rate in CANDU-type lattices. Reactivities, relative conversion ratios, and fast fission factors are compared with experiments. Values of ρ 28 and reaction rates for U-238 are given as a function of position in the fuel bundle. A check was made on the correction made in WIMS to allow for endcaps on the fuel bundles. (26 refs)

  6. MCNP6 fragmentation of light nuclei at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Mashnik, Stepan G., E-mail: mashnik@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Kerby, Leslie M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); University of Idaho, Moscow, ID 83844 (United States)

    2014-11-11

    Fragmentation reactions induced on light target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the latest Los Alamos Monte Carlo transport code MCNP6 and with its cascade-exciton model (CEM) and Los Alamos version of the quark-gluon string model (LAQGSM) event generators, version 03.03, used as stand-alone codes. Such reactions are involved in different applications, like cosmic-ray-induced single event upsets (SEU's), radiation protection, and cancer therapy with proton and ion beams, among others; therefore, it is important that MCNP6 simulates them as well as possible. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. Both CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to {sup 4}He from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes.

  7. LEU-fueled SLOWPOKE-2 modelling with MCNP4A

    International Nuclear Information System (INIS)

    Pierre, J.R.M.; Bonin, H.W.J.

    1996-01-01

    Following the commissioning of the Low Enrichment Uranium (LEU) Fueled SLOWPOKE-2 research reactor at Royal Military College,excess reactivity measurements were conducted over a range of temperature and power. Given the advance in computer technology, the use of Monte Carlo N-Particle Transport Code System MCNP 4A appeared possible for the simulation of the LEU-fueled SLOWPOKE-2 reactor core, and this work demonstrates that this is indeed the case. MCNP 4A is a full three dimensional program allowing the user to enter a large amount of complexity. The limit on the geometry complexity is the computing time required to achieve a reasonable standard deviation. To this point several models of the SLOWPOKE-2 have been developed giving some insight on the sensitivity of the code. MCNP4A can use various cross section libraries. The aim of this work is to calculate accurately the reactivity of the core and reproduce The temperature trend of the reactivity. The model preserved as much as possible the details of the core and facility in order to allow further study in the flux mapping

  8. Nuclear densimeter of soil simulated in MCNP-4C code

    International Nuclear Information System (INIS)

    Braga, Mario R.M.S.S.; Penna, Rodrigo; Vasconcelos, Danilo C.; Pereira, Claubia; Guerra, Bruno T.; Silva, Clemente J.G.C.

    2009-01-01

    The Monte Carlo code (MCNPX) was used to simulate a nuclear densimeter for measuring soil density. An Americium source (E = 60 keV) and a NaI (Tl) detector were placed on soil surface. Results from MCNP shown that scattered photon fluxes may be used to determining soil density. Linear regressions between scattered photons fluxes and soil density were calculated and shown correlation coefficients near unity. (author)

  9. Validation of MCNP: SPERT-D and BORAX-V fuel

    International Nuclear Information System (INIS)

    Crawford, C.; Palmer, B.

    1992-11-01

    This report discusses critical experiments involving SPERT-D 1,2 fuel elements and BORAX-V 3-8 fuel which have been modeled and calculations performed with MCNP. MCNP is a Monte Carlo based transport code. For this study continuous-energy nuclear data from the ENDF/B-V cross section library was used. The SPERT-D experiments consisted of various arrays of fuel elements moderated and reflected with either water or a uranyl nitrate solution. Some SPERT-D experiments used cadmium as a fixed neutron poison, while others were poisoned with various concentrations of boron in the moderating/reflecting solution. ne BORAX-V experiments were arrays of either boiling fuel rod assemblies or superheater assemblies, both types of arrays were moderated and reflected with water. In one boiling fuel experiment, two fuel rods were replaced with borated stainless steel poison rods

  10. MONTE CARLO ANALYSES OF THE YALINA THERMAL FACILITY WITH SERPENT STEREOLITHOGRAPHY GEOMETRY MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, Y.

    2015-01-01

    This paper analyzes the YALINA Thermal subcritical assembly of Belarus using two different Monte Carlo transport programs, SERPENT and MCNP. The MCNP model is based on combinatorial geometry and universes hierarchy, while the SERPENT model is based on Stereolithography geometry. The latter consists of unstructured triangulated surfaces defined by the normal and vertices. This geometry format is used by 3D printers and it has been created by: the CUBIT software, MATLAB scripts, and C coding. All the Monte Carlo simulations have been performed using the ENDF/B-VII.0 nuclear data library. Both MCNP and SERPENT share the same geometry specifications, which describe the facility details without using any material homogenization. Three different configurations have been studied with different number of fuel rods. The three fuel configurations use 216, 245, or 280 fuel rods, respectively. The numerical simulations show that the agreement between SERPENT and MCNP results is within few tens of pcms.

  11. Investigation of the applicability of MCNP code to complicated geometries

    International Nuclear Information System (INIS)

    Higuchi, Kenji; Yamaguchi, Yukichi

    1994-03-01

    Applicability of MCNP code, which is a general purpose Monte Carlo code for particle transport problems, to complicated geometries, has been investigated as a study in Human Acts Simulation Program (HASP), in which basic studies for intelligent robot for patrol and inspection of nuclear facilities are being performed. In HASP, basic software systems simulating the behavior of intelligent robot of human shape working in Japan Research Reactor No.3 are being developed. The aim of Dose Evaluation system in HASP is to establish the methodology to evaluate irradiation damage of the LSI/VLSI circuits embedded within a robot body and to give design criteria of intelligent robot. Monte Carlo method is used to solve particle transport problem in a complicated geometry such as robot body. Preliminary evaluation to establish the methodology has been conducted using continuous energy Monte Carlo code, MCNP with the anthropomorphic phantom. The phantom has the same degree of geometric complexity as robot body and is widely used for the calculation of the effective dose equivalent for radiological protection. It allowed us to verify the validity of the methodology by comparison of calculation results with the data in ICRP Pub. 51. In this report, the method used in the calculation of effective dose equivalent, visualization system supporting visualization of input data for complicated geometry and the results in the evaluation of validity of the method by the comparison of the calculated results with the data in the ICRP publication are described. (author)

  12. Criticality calculation in TRIGA MARK II PUSPATI Reactor using Monte Carlo code

    International Nuclear Information System (INIS)

    Rafhayudi Jamro; Redzuwan Yahaya; Abdul Aziz Mohamed; Eid Abdel-Munem; Megat Harun Al-Rashid; Julia Abdul Karim; Ikki Kurniawan; Hafizal Yazid; Azraf Azman; Shukri Mohd

    2008-01-01

    A Monte Carlo simulation of the Malaysian nuclear reactor has been performed using MCNP Version 5 code. The purpose of the work is the determination of the multiplication factor (k e ff) for the TRIGA Mark II research reactor in Malaysia based on Monte Carlo method. This work has been performed to calculate the value of k e ff for two cases, which are the control rod either fully withdrawn or fully inserted to construct a complete model of the TRIGA Mark II PUSPATI Reactor (RTP). The RTP core was modeled as close as possible to the real core and the results of k e ff from MCNP5 were obtained when the control fuel rods were fully inserted, the k e ff value indicates the RTP reactor was in the subcritical condition with a value of 0.98370±0.00054. When the control fuel rods were fully withdrawn the value of k e ff value indicates the RTP reactor is in the supercritical condition, that is 1.10773±0.00083. (Author)

  13. Monte Carlo Particle Lists: MCPL

    DEFF Research Database (Denmark)

    Kittelmann, Thomas; Klinkby, Esben Bryndt; Bergbäck Knudsen, Erik

    2017-01-01

    A binary format with lists of particle state information, for interchanging particles between various Monte Carlo simulation applications, is presented. Portable C code for file manipulation is made available to the scientific community, along with converters and plugins for several popular...... simulation packages. Program summary: Program Title: MCPL. Program Files doi: http://dx.doi.org/10.17632/cby92vsv5g.1 Licensing provisions: CC0 for core MCPL, see LICENSE file for details. Programming language: C and C++ External routines/libraries: Geant4, MCNP, McStas, McXtrace Nature of problem: Saving...

  14. TET_2MCNP: A conversion program to implement tetrahearal-mesh models in MCNP

    International Nuclear Information System (INIS)

    Han, Min Cheol; Yeom, Yeon Soo; Nguyen, Thng Tat; Choi, Chan Soo; Lee, Hyun Su; Kim, Chan Hyeong

    2016-01-01

    Tetrahedral-mesh geometries can be used in the MCNP code, but the MCNP code accepts only the geometry in the Abaqus input file format; hence, the existing tetrahedral-mesh models first need to be converted to the Abacus input file format to be used in the MCNP code. In the present study, we developed a simple but useful computer program, TET_2MCNP, for converting TetGen-generated tetrahedral-mesh models to the Abacus input file format. TET_2MCNP is written in C++ and contains two components: one for converting a TetGen output file to the Abacus input file and the other for the reverse conversion process. The TET_2MCP program also produces an MCNP input file. Further, the program provides some MCNP-specific functions: the maximum number of elements (i.e., tetrahedrons) per part can be limited, and the material density of each element can be transferred to the MCNP input file. To test the developed program, two tetrahedral-mesh models were generated using TetGen and converted to the Abaqus input file format using TET_2MCNP. Subsequently, the converted files were used in the MCNP code to calculate the object- and organ-averaged absorbed dose in the sphere and phantom, respectively. The results show that the converted models provide, within statistical uncertainties, identical dose values to those obtained using the PHITS code, which uses the original tetrahedral-mesh models produced by the TetGen program. The results show that the developed program can successfully convert TetGen tetrahedral-mesh models to Abacus input files. In the present study, we have developed a computer program, TET_2MCNP, which can be used to convert TetGen-generated tetrahedral-mesh models to the Abaqus input file format for use in the MCNP code. We believe this program will be used by many MCNP users for implementing complex tetrahedral-mesh models, including computational human phantoms, in the MCNP code

  15. Dose distribution and dosimetry parameters calculation of MED3633 Palladium-103 source in water phantom using MCNP

    International Nuclear Information System (INIS)

    Mowlavi, A. A.; Binesh, A.; Moslehitabar, H.

    2006-01-01

    Palladium-103 ( 103 Pd) is a brachytherapy source for cancer treatment. The Monte Carlo codes are usually applied for dose distribution and effect of shieldings. Monte Carlo calculation of dose distribution in water phantom due to a MED3633 103 Pd source is presented in this work. Materials and Methods: The dose distribution around the 10 3Pd Model MED3633 located in the center of 30*30*30 m 3 water phantom cube was calculated using MCNP code by the Monte Carlo method. The percentage depth dose variation along the different axis parallel and perpendicular to the source was also calculated. Then, the isodose curves for 100%, 75%, 50% and 25% percentage depth dose and dosimetry parameters of TG-43 protocol were determined. Results: The results show that the Monte Carlo Method could calculate dose deposition in high gradient region, near the source, accurately. The isodose curves and dosimetric characteristics obtained for MED3633 103 Pd source are in good agreement with published results. Conclusion: The isodose curves of the MED3633 103 Pd source have been derived form dose calculation by MCNP code. The calculated dosimetry parameters for the source agree quite well with their Monte Carlo calculated and experimental measurement values

  16. Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry

    International Nuclear Information System (INIS)

    Sohrabpour, M.; Hassanzadeh, M.; Shahriari, M.; Sharifzadeh, M.

    2002-01-01

    The Monte Carlo transport code, MCNP, has been applied in simulating dose rate distribution in the IR-136 gamma irradiator system. Isodose curves, cumulative dose values, and system design data such as throughputs, over-dose-ratios, and efficiencies have been simulated as functions of product density. Simulated isodose curves, and cumulative dose values were compared with dosimetry values obtained using polymethyle-methacrylate, Fricke, ethanol-chlorobenzene, and potassium dichromate dosimeters. The produced system design data were also found to agree quite favorably with those of the system manufacturer's data. MCNP has thus been found to be an effective transport code for handling of various dose mapping excercises for gamma irradiators

  17. Design of tallying function for general purpose Monte Carlo particle transport code JMCT

    International Nuclear Information System (INIS)

    Shangguan Danhua; Li Gang; Deng Li; Zhang Baoyin

    2013-01-01

    A new postponed accumulation algorithm was proposed. Based on JCOGIN (J combinatorial geometry Monte Carlo transport infrastructure) framework and the postponed accumulation algorithm, the tallying function of the general purpose Monte Carlo neutron-photon transport code JMCT was improved markedly. JMCT gets a higher tallying efficiency than MCNP 4C by 28% for simple geometry model, and JMCT is faster than MCNP 4C by two orders of magnitude for complicated repeated structure model. The available ability of tallying function for JMCT makes firm foundation for reactor analysis and multi-step burnup calculation. (authors)

  18. MCOR - Monte Carlo depletion code for reference LWR calculations

    Energy Technology Data Exchange (ETDEWEB)

    Puente Espel, Federico, E-mail: fup104@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Tippayakul, Chanatip, E-mail: cut110@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Ivanov, Kostadin, E-mail: kni1@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Misu, Stefan, E-mail: Stefan.Misu@areva.com [AREVA, AREVA NP GmbH, Erlangen (Germany)

    2011-04-15

    Research highlights: > Introduction of a reference Monte Carlo based depletion code with extended capabilities. > Verification and validation results for MCOR. > Utilization of MCOR for benchmarking deterministic lattice physics (spectral) codes. - Abstract: The MCOR (MCnp-kORigen) code system is a Monte Carlo based depletion system for reference fuel assembly and core calculations. The MCOR code is designed as an interfacing code that provides depletion capability to the LANL Monte Carlo code by coupling two codes: MCNP5 with the AREVA NP depletion code, KORIGEN. The physical quality of both codes is unchanged. The MCOR code system has been maintained and continuously enhanced since it was initially developed and validated. The verification of the coupling was made by evaluating the MCOR code against similar sophisticated code systems like MONTEBURNS, OCTOPUS and TRIPOLI-PEPIN. After its validation, the MCOR code has been further improved with important features. The MCOR code presents several valuable capabilities such as: (a) a predictor-corrector depletion algorithm, (b) utilization of KORIGEN as the depletion module, (c) individual depletion calculation of each burnup zone (no burnup zone grouping is required, which is particularly important for the modeling of gadolinium rings), and (d) on-line burnup cross-section generation by the Monte Carlo calculation for 88 isotopes and usage of the KORIGEN libraries for PWR and BWR typical spectra for the remaining isotopes. Besides the just mentioned capabilities, the MCOR code newest enhancements focus on the possibility of executing the MCNP5 calculation in sequential or parallel mode, a user-friendly automatic re-start capability, a modification of the burnup step size evaluation, and a post-processor and test-matrix, just to name the most important. The article describes the capabilities of the MCOR code system; from its design and development to its latest improvements and further ameliorations. Additionally

  19. MCOR - Monte Carlo depletion code for reference LWR calculations

    International Nuclear Information System (INIS)

    Puente Espel, Federico; Tippayakul, Chanatip; Ivanov, Kostadin; Misu, Stefan

    2011-01-01

    Research highlights: → Introduction of a reference Monte Carlo based depletion code with extended capabilities. → Verification and validation results for MCOR. → Utilization of MCOR for benchmarking deterministic lattice physics (spectral) codes. - Abstract: The MCOR (MCnp-kORigen) code system is a Monte Carlo based depletion system for reference fuel assembly and core calculations. The MCOR code is designed as an interfacing code that provides depletion capability to the LANL Monte Carlo code by coupling two codes: MCNP5 with the AREVA NP depletion code, KORIGEN. The physical quality of both codes is unchanged. The MCOR code system has been maintained and continuously enhanced since it was initially developed and validated. The verification of the coupling was made by evaluating the MCOR code against similar sophisticated code systems like MONTEBURNS, OCTOPUS and TRIPOLI-PEPIN. After its validation, the MCOR code has been further improved with important features. The MCOR code presents several valuable capabilities such as: (a) a predictor-corrector depletion algorithm, (b) utilization of KORIGEN as the depletion module, (c) individual depletion calculation of each burnup zone (no burnup zone grouping is required, which is particularly important for the modeling of gadolinium rings), and (d) on-line burnup cross-section generation by the Monte Carlo calculation for 88 isotopes and usage of the KORIGEN libraries for PWR and BWR typical spectra for the remaining isotopes. Besides the just mentioned capabilities, the MCOR code newest enhancements focus on the possibility of executing the MCNP5 calculation in sequential or parallel mode, a user-friendly automatic re-start capability, a modification of the burnup step size evaluation, and a post-processor and test-matrix, just to name the most important. The article describes the capabilities of the MCOR code system; from its design and development to its latest improvements and further ameliorations

  20. Practice of calculation of neutron-physical characteristics of reactors and radiating shielding in structure SNPS with program complex MCNP

    International Nuclear Information System (INIS)

    Krotov, A.D.; Son'ko, A.V.

    2009-01-01

    Calculation of neutron-physical properties and radiation protection of space power reactor was made by means of the MCNP code allowing simulation of neutron, γ- and electron transport by the Monte Carlo method in the systems with combined geometry. Universality of the MCNP code has been demonstrated both for the calculation of reactor-converter so for the optimization of radiation protection that allows to reserve a new level of complex simulation of SNPS [ru

  1. Study of the radioactive particle tracking technique using gamma-ray attenuation and MCNP-X code to evaluate industrial agitators

    Energy Technology Data Exchange (ETDEWEB)

    Dam, Roos Sophia de F.; Salgado, César M., E-mail: rsophia.dam@gmail.com, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Agitators or mixers are highly used in the chemical, food, pharmaceutical and cosmetic industries. During the fabrication process, the equipment may fail and compromise the appropriate stirring or mixing procedure. Besides that, it is also important to determine the right point of homogeneity of the mixture. Thus, it is very important to have a diagnosis tool for these industrial units to assure the quality of the product and to keep the market competitiveness. The radioactive particle tracking (RPT) technique is widely used in the nuclear field. In this paper, a method based on the principles of the RPT technique is presented. Counts obtained by an array of detectors properly positioned around the unit will be correlated to predict the instantaneous positions occupied by the radioactive particle by means of an appropriate mathematical search location algorithm. Detection geometry developed employs eight NaI(Tl) scintillator detectors and a Cs-137 (662 keV) source with isotropic emission of gamma-rays. The modeling of the detection system is performed using the Monte Carlo Method, by means of the MCNP-X code. In this work a methodology is presented to predict the position of a radioactive particle to evaluate the performance of agitators in industrial units by means of an Artificial Neural Network (ANN). (author)

  2. The development of depletion program coupled with Monte Carlo computer code

    International Nuclear Information System (INIS)

    Nguyen Kien Cuong; Huynh Ton Nghiem; Vuong Huu Tan

    2015-01-01

    The paper presents the development of depletion code for light water reactor coupled with MCNP5 code called the MCDL code (Monte Carlo Depletion for Light Water Reactor). The first order differential depletion system equations of 21 actinide isotopes and 50 fission product isotopes are solved by the Radau IIA Implicit Runge Kutta (IRK) method after receiving neutron flux, reaction rates in one group energy and multiplication factors for fuel pin, fuel assembly or whole reactor core from the calculation results of the MCNP5 code. The calculation for beryllium poisoning and cooling time is also integrated in the code. To verify and validate the MCDL code, high enriched uranium (HEU) and low enriched uranium (LEU) fuel assemblies VVR-M2 types and 89 fresh HEU fuel assemblies, 92 LEU fresh fuel assemblies cores of the Dalat Nuclear Research Reactor (DNRR) have been investigated and compared with the results calculated by the SRAC code and the MCNP R EBUS linkage system code. The results show good agreement between calculated data of the MCDL code and reference codes. (author)

  3. Comparative Analysis of the Dalat Nuclear Research Reactor with HEU Fuel Using SRAC and MCNP5

    Directory of Open Access Journals (Sweden)

    Giang Phan

    2017-01-01

    Full Text Available Neutronics analysis has been performed for the 500 kW Dalat Nuclear Research Reactor loaded with highly enriched uranium fuel using the SRAC code system. The effective multiplication factors, keff, were analyzed for the core at criticality conditions and in two cases corresponding to the complete withdrawal and the full insertion of control rods. MCNP5 calculations were also conducted and compared to that obtained with the SRAC code. The results show that the difference of the keff values between the codes is within 55 pcm. Compared to the criticality conditions established in the experiments, the maximum differences of the keff values obtained from the SRAC and MCNP5 calculations are 119 pcm and 64 pcm, respectively. The radial and axial power peaking factors are 1.334 and 1.710, respectively, in the case of no control rod insertion. At the criticality condition these values become 1.445 and 1.832 when the control rods are partially inserted. Compared to MCNP5 calculations, the deviation of the relative power densities is less than 4% at the fuel bundles in the middle of the core, while the maximum deviation is about 7% appearing at some peripheral bundles. This agreement indicates the verification of the analysis models.

  4. TET{sub 2}MCNP: A conversion program to implement tetrahearal-mesh models in MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min Cheol; Yeom, Yeon Soo; Nguyen, Thng Tat; Choi, Chan Soo; Lee, Hyun Su; Kim, Chan Hyeong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2016-12-15

    Tetrahedral-mesh geometries can be used in the MCNP code, but the MCNP code accepts only the geometry in the Abaqus input file format; hence, the existing tetrahedral-mesh models first need to be converted to the Abacus input file format to be used in the MCNP code. In the present study, we developed a simple but useful computer program, TET{sub 2}MCNP, for converting TetGen-generated tetrahedral-mesh models to the Abacus input file format. TET{sub 2}MCNP is written in C++ and contains two components: one for converting a TetGen output file to the Abacus input file and the other for the reverse conversion process. The TET{sub 2}MCP program also produces an MCNP input file. Further, the program provides some MCNP-specific functions: the maximum number of elements (i.e., tetrahedrons) per part can be limited, and the material density of each element can be transferred to the MCNP input file. To test the developed program, two tetrahedral-mesh models were generated using TetGen and converted to the Abaqus input file format using TET{sub 2}MCNP. Subsequently, the converted files were used in the MCNP code to calculate the object- and organ-averaged absorbed dose in the sphere and phantom, respectively. The results show that the converted models provide, within statistical uncertainties, identical dose values to those obtained using the PHITS code, which uses the original tetrahedral-mesh models produced by the TetGen program. The results show that the developed program can successfully convert TetGen tetrahedral-mesh models to Abacus input files. In the present study, we have developed a computer program, TET{sub 2}MCNP, which can be used to convert TetGen-generated tetrahedral-mesh models to the Abaqus input file format for use in the MCNP code. We believe this program will be used by many MCNP users for implementing complex tetrahedral-mesh models, including computational human phantoms, in the MCNP code.

  5. Monte Carlo calculations of neutron and gamm-ray energy spectra for fusion-reactor shield design: comparison with experiment

    International Nuclear Information System (INIS)

    Santoro, R.T.; Barnes, J.M.

    1983-08-01

    Neutron and gamma-ray spectra resulting from the interactions of approx. 14-MeV neutrons in laminated slabs of stainless steel type-304 and borated polyethylene have been calculated using the Monte Carlo code MCNP. The calculated spectra are compared with measured data as a function of slab thickness and material composition and as a function of detector location behind the slabs. Comparisons of the differential energy spectra are made for neutrons with energies above 850 keV and for gamma rays with energies above 750 keV. The measured neutron spectra and those calculated using Monte Carlo methods agree within 5% to 50% depending on the slab thickness and composition and neutron energy. The agreement between the measured and calculated gamma-ray energy spectra is also within this range. The MCNP data are also in favorable agreement with attenuated data calculated previously by discrete ordinates transport methods and the Monte Carlo code SAM-CE

  6. New Tools to Prepare ACE Cross-section Files for MCNP Analytic Test Problems

    International Nuclear Information System (INIS)

    Brown, Forrest B.

    2016-01-01

    Monte Carlo calculations using one-group cross sections, multigroup cross sections, or simple continuous energy cross sections are often used to: (1) verify production codes against known analytical solutions, (2) verify new methods and algorithms that do not involve detailed collision physics, (3) compare Monte Carlo calculation methods with deterministic methods, and (4) teach fundamentals to students. In this work we describe 2 new tools for preparing the ACE cross-section files to be used by MCNP ® for these analytic test problems, simple a ce.pl and simple a ce m g.pl.

  7. Contributon Monte Carlo

    International Nuclear Information System (INIS)

    Dubi, A.; Gerstl, S.A.W.

    1979-05-01

    The contributon Monte Carlo method is based on a new recipe to calculate target responses by means of volume integral of the contributon current in a region between the source and the detector. A comprehensive description of the method, its implementation in the general-purpose MCNP code, and results of the method for realistic nonhomogeneous, energy-dependent problems are presented. 23 figures, 10 tables

  8. Application of Monte-Carlo Code to dose distribution calculation in a case of lung cancer by the emitted photon beams from linear accelerator

    International Nuclear Information System (INIS)

    Le Thanh Xuan; Nguyen Thi Cam Thu; Tran Van Nghia; Truong Thi Hong Loan; Vo Thanh Nhon

    2015-01-01

    The dose distribution calculation is one of the major steps in radiotherapy. In this paper the Monte Carlo code MCNP5 has been applied for simulation 15 MV photon beams emitted from linear accelerator in a case of lung cancer of the General Hospital of Kien Giang. The settings for beam directions, field sizes and isocenter position used in MCNP5 must be the same as those in treatment plan at the hospital to ensure the results from MCNP5 are accurate. We also built a program CODIM by using MATLAB® programming software. This program was used to construct patient model from lung CT images obtained from cancer treatment cases at the General Hospital of Kien Giang and then MCNP5 code was used to simulate the delivered dose in the patient. The results from MCNP5 show that there is a difference of 5% in comparison with Prowess Panther program - a semi-empirical simulation program which is being used for treatment planning in the General Hospital of Kien Giang. The success of the work will help the planners to verify the patient dose distribution calculated from the treatment planning program being used at the hospital. (author)

  9. Study of salinity in aqueous medium using X-Ray beam with MCNP-X code

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Caroline M.; Braz, Delson [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Salgado, César M., E-mail: cbarbosa@nuclear.ufrj.br, E-mail: delson@nuclear.ufrj.br, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    In offshore production, it is possible that the produced water presents geochemical characteristics that correspond to the mixture of formation water (connate water) and the sea water (injection water), and the physical-chemical behavior of the injected water allows a considerable variation in the index of salinity altering the water/oil ratio during transportation and/or extraction. Injection water is generally used to raise the reservoir pressure, increasing the percentage of extracted oil. This water has a significant amount of salts that generate some difficulties, such as measuring fractions of volume in multiphase systems. One way to check the effects of salinity would be to regularly measure the amount of salt present in the water. In this way, this work presents a methodology to measure the concentration and the types of salts using nuclear techniques through the MCNP-X computational code. The measurement geometry uses an X-ray beam (40-100 keV) and NaI(Tl) scintillation detector positioned diametrically opposed to the source. The studied samples were the NaCl, KCl and MgCl{sub 2} salts in aqueous solution. The results present the possibility of differentiating the formation and injection waters due to differences in the salt concentrations. (author)

  10. Simulation and study on the γ response spectrum of BGO detector by the application of monte carlo code MOCA

    International Nuclear Information System (INIS)

    Jia Wenbao; Chen Xiaowen; Xu Aiguo; Li Anmin

    2010-01-01

    Application of Monte Carlo method to build spectra library is useful to reduce experiment workload in Prompt Gamma Neutron Activation Analysis (PGNAA). The new Monte Carlo Code MOCA was used to simulate the response spectra of BGO detector for gamma rays from 137 Cs, 60 Co and neutron induced gamma rays from S and Ti. The results were compared with general code MCNP, show that the agreement of MOCA between simulation and experiment is better than MCNP. This research indicates that building spectra library by Monte Carlo method is feasible. (authors)

  11. A comparison of the COG and MCNP codes in computational neutron capture therapy modeling, Part I: boron neutron capture therapy models.

    Science.gov (United States)

    Culbertson, C N; Wangerin, K; Ghandourah, E; Jevremovic, T

    2005-08-01

    The goal of this study was to evaluate the COG Monte Carlo radiation transport code, developed and tested by Lawrence Livermore National Laboratory, for neutron capture therapy related modeling. A boron neutron capture therapy model was analyzed comparing COG calculational results to results from the widely used MCNP4B (Monte Carlo N-Particle) transport code. The approach for computing neutron fluence rate and each dose component relevant in boron neutron capture therapy is described, and calculated values are shown in detail. The differences between the COG and MCNP predictions are qualified and quantified. The differences are generally small and suggest that the COG code can be applied for BNCT research related problems.

  12. A flexible coupling scheme for Monte Carlo and thermal-hydraulics codes

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J. Eduard, E-mail: J.E.Hoogenboom@tudelft.nl [Delft University of Technology (Netherlands); Ivanov, Aleksandar; Sanchez, Victor, E-mail: Aleksandar.Ivanov@kit.edu, E-mail: Victor.Sanchez@kit.edu [Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology, Eggenstein-Leopoldshafen (Germany); Diop, Cheikh, E-mail: Cheikh.Diop@cea.fr [CEA/DEN/DANS/DM2S/SERMA, Commissariat a l' Energie Atomique, Gif-sur-Yvette (France)

    2011-07-01

    A coupling scheme between a Monte Carlo code and a thermal-hydraulics code is being developed within the European NURISP project for comprehensive and validated reactor analysis. The scheme is flexible as it allows different Monte Carlo codes and different thermal-hydraulics codes to be used. At present the MCNP and TRIPOLI4 Monte Carlo codes can be used and the FLICA4 and SubChanFlow thermal-hydraulics codes. For all these codes only an original executable is necessary. A Python script drives the iterations between Monte Carlo and thermal-hydraulics calculations. It also calls a conversion program to merge a master input file for the Monte Carlo code with the appropriate temperature and coolant density data from the thermal-hydraulics calculation. Likewise it calls another conversion program to merge a master input file for the thermal-hydraulics code with the power distribution data from the Monte Carlo calculation. Special attention is given to the neutron cross section data for the various required temperatures in the Monte Carlo calculation. Results are shown for an infinite lattice of PWR fuel pin cells and a 3 x 3 fuel BWR pin cell cluster. Various possibilities for further improvement and optimization of the coupling system are discussed. (author)

  13. A flexible coupling scheme for Monte Carlo and thermal-hydraulics codes

    International Nuclear Information System (INIS)

    Hoogenboom, J. Eduard; Ivanov, Aleksandar; Sanchez, Victor; Diop, Cheikh

    2011-01-01

    A coupling scheme between a Monte Carlo code and a thermal-hydraulics code is being developed within the European NURISP project for comprehensive and validated reactor analysis. The scheme is flexible as it allows different Monte Carlo codes and different thermal-hydraulics codes to be used. At present the MCNP and TRIPOLI4 Monte Carlo codes can be used and the FLICA4 and SubChanFlow thermal-hydraulics codes. For all these codes only an original executable is necessary. A Python script drives the iterations between Monte Carlo and thermal-hydraulics calculations. It also calls a conversion program to merge a master input file for the Monte Carlo code with the appropriate temperature and coolant density data from the thermal-hydraulics calculation. Likewise it calls another conversion program to merge a master input file for the thermal-hydraulics code with the power distribution data from the Monte Carlo calculation. Special attention is given to the neutron cross section data for the various required temperatures in the Monte Carlo calculation. Results are shown for an infinite lattice of PWR fuel pin cells and a 3 x 3 fuel BWR pin cell cluster. Various possibilities for further improvement and optimization of the coupling system are discussed. (author)

  14. Monte Carlo applications to core-following of the National Research Universal reactor (NRU)

    International Nuclear Information System (INIS)

    Nguyen, T.S.; Wang, X.; Leung, T.

    2014-01-01

    Reactor code TRIAD, relying on a two-group neutron diffusion model, is currently used for core-following of NRU - to track reactor assembly locations and burnups. The Monte Carlo (MCNP or SERPENT) full-reactor models of NRU can be used to provide the core power distribution for calculating fuel burnups, with WIMS-AECL providing fuel depletion calculations. The MCNP/WIMS core-following results were in good agreement with the measured data, within the expected biases. The Monte Carlo methods, still very time-consuming, need to be able to run faster before they can replace TRIAD for timely support of NRU operations. (author)

  15. Physical models, cross sections, and numerical approximations used in MCNP and GEANT4 Monte Carlo codes for photon and electron absorbed fraction calculation.

    Science.gov (United States)

    Yoriyaz, Hélio; Moralles, Maurício; Siqueira, Paulo de Tarso Dalledone; Guimarães, Carla da Costa; Cintra, Felipe Belonsi; dos Santos, Adimir

    2009-11-01

    Radiopharmaceutical applications in nuclear medicine require a detailed dosimetry estimate of the radiation energy delivered to the human tissues. Over the past years, several publications addressed the problem of internal dose estimate in volumes of several sizes considering photon and electron sources. Most of them used Monte Carlo radiation transport codes. Despite the widespread use of these codes due to the variety of resources and potentials they offered to carry out dose calculations, several aspects like physical models, cross sections, and numerical approximations used in the simulations still remain an object of study. Accurate dose estimate depends on the correct selection of a set of simulation options that should be carefully chosen. This article presents an analysis of several simulation options provided by two of the most used codes worldwide: MCNP and GEANT4. For this purpose, comparisons of absorbed fraction estimates obtained with different physical models, cross sections, and numerical approximations are presented for spheres of several sizes and composed as five different biological tissues. Considerable discrepancies have been found in some cases not only between the different codes but also between different cross sections and algorithms in the same code. Maximum differences found between the two codes are 5.0% and 10%, respectively, for photons and electrons. Even for simple problems as spheres and uniform radiation sources, the set of parameters chosen by any Monte Carlo code significantly affects the final results of a simulation, demonstrating the importance of the correct choice of parameters in the simulation.

  16. Toolkit for high performance Monte Carlo radiation transport and activation calculations for shielding applications in ITER

    International Nuclear Information System (INIS)

    Serikov, A.; Fischer, U.; Grosse, D.; Leichtle, D.; Majerle, M.

    2011-01-01

    The Monte Carlo (MC) method is the most suitable computational technique of radiation transport for shielding applications in fusion neutronics. This paper is intended for sharing the results of long term experience of the fusion neutronics group at Karlsruhe Institute of Technology (KIT) in radiation shielding calculations with the MCNP5 code for the ITER fusion reactor with emphasizing on the use of several ITER project-driven computer programs developed at KIT. Two of them, McCad and R2S, seem to be the most useful in radiation shielding analyses. The McCad computer graphical tool allows to perform automatic conversion of the MCNP models from the underlying CAD (CATIA) data files, while the R2S activation interface couples the MCNP radiation transport with the FISPACT activation allowing to estimate nuclear responses such as dose rate and nuclear heating after the ITER reactor shutdown. The cell-based R2S scheme was applied in shutdown photon dose analysis for the designing of the In-Vessel Viewing System (IVVS) and the Glow Discharge Cleaning (GDC) unit in ITER. Newly developed at KIT mesh-based R2S feature was successfully tested on the shutdown dose rate calculations for the upper port in the Neutral Beam (NB) cell of ITER. The merits of McCad graphical program were broadly acknowledged by the neutronic analysts and its continuous improvement at KIT has introduced its stable and more convenient run with its Graphical User Interface. Detailed 3D ITER neutronic modeling with the MCNP Monte Carlo method requires a lot of computation resources, inevitably leading to parallel calculations on clusters. Performance assessments of the MCNP5 parallel runs on the JUROPA/HPC-FF supercomputer cluster permitted to find the optimal number of processors for ITER-type runs. (author)

  17. A new MCNP trademark test set

    International Nuclear Information System (INIS)

    Brockhoff, R.C.; Hendricks, J.S.

    1994-09-01

    The MCNP test set is used to test the MCNP code after installation on various computer platforms. For MCNP4 and MCNP4A this test set included 25 test problems designed to test as many features of the MCNP code as possible. A new and better test set has been devised to increase coverage of the code from 85% to 97% with 28 problems. The new test set is as fast as and shorter than the MCNP4A test set. The authors describe the methodology for devising the new test set, the features that were not covered in the MCNP4A test set, and the changes in the MCNP4A test set that have been made for MCNP4B and its developmental versions. Finally, new bugs uncovered by the new test set and a compilation of all known MCNP4A bugs are presented

  18. Study of TXRF experimental system by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Costa, Ana Cristina M.; Leitao, Roberta G.; Lopes, Ricardo T.; Anjos, Marcelino J.; Conti, Claudio C.

    2011-01-01

    The Total-Reflection X-ray Fluorescence (TXRF) technique offers unique possibilities to study the concentrations of a wide range of trace elements in various types of samples. Besides that, the TXRF technique is widely used to study the trace elements in biological, medical and environmental samples due to its multielemental character as well as simplicity of sample preparation and quantification methods used. In general the TXRF experimental setup is not simple and might require substantial experimental efforts. On the other hand, in recent years, experimental TXRF portable systems have been developed. It has motivated us to develop our own TXRF portable system. In this work we presented a first step in order to optimize a TXRF experimental setup using Monte Carlo simulation by MCNP code. The results found show that the Monte Carlo simulation method can be used to investigate the development of a TXRF experimental system before its assembly. (author)

  19. Monte Carlo electron/photon transport

    International Nuclear Information System (INIS)

    Mack, J.M.; Morel, J.E.; Hughes, H.G.

    1985-01-01

    A review of nonplasma coupled electron/photon transport using Monte Carlo method is presented. Remarks are mainly restricted to linerarized formalisms at electron energies from 1 keV to 1000 MeV. Applications involving pulse-height estimation, transport in external magnetic fields, and optical Cerenkov production are discussed to underscore the importance of this branch of computational physics. Advances in electron multigroup cross-section generation is reported, and its impact on future code development assessed. Progress toward the transformation of MCNP into a generalized neutral/charged-particle Monte Carlo code is described. 48 refs

  20. MCNP6 simulation of radiographs generated from megaelectron volt X-rays for characterizing a computed tomography system

    Science.gov (United States)

    Dooraghi, Alex A.; Tringe, Joseph W.

    2018-04-01

    To evaluate conventional munition, we simulated an x-ray computed tomography (CT) system for generating radiographs from nominal x-ray energies of 6 or 9 megaelectron volts (MeV). CT simulations, informed by measured data, allow for optimization of both system design and acquisition techniques necessary to enhance image quality. MCNP6 radiographic simulation tools were used to model ideal detector responses (DR) that assume either (1) a detector response proportional to photon flux (N) or (2) a detector response proportional to energy flux (E). As scatter may become significant with MeV x-ray systems, simulations were performed with and without the inclusion of object scatter. Simulations were compared against measurements of a cylindrical munition component principally composed of HMX, tungsten and aluminum encased in carbon fiber. Simulations and measurements used a 6 MeV peak energy x-ray spectrum filtered with 3.175 mm of tantalum. A detector response proportional to energy which includes object scatter agrees to within 0.6 % of the measured line integral of the linear attenuation coefficient. Exclusion of scatter increases the difference between measurement and simulation to 5 %. A detector response proportional to photon flux agrees to within 20 % when object scatter is included in the simulation and 27 % when object scatter is excluded.

  1. Analysis of Topaz-II reactor performance using MCNP and TFEHX

    International Nuclear Information System (INIS)

    Lee, H.H.; Klein, A.C.

    1993-01-01

    Data reported by Russian scientist and engineers for the TOPAZ-II Space Nuclear Power is compared with analytical results calculated using the Monte Carlo Neutron and Photon (MCNP) and TFEHX computer codes. The results of these comparisons show good agreement with the TOPAZ-II neutronics, thermionic and thermal hydraulics performance. A detailed description of the TOPAZ-II reactor and of the TFE should enhance the performance of the both codes in modeling the reactor and TFE performances

  2. CTEx Beowulf cluster for MCNP performance

    International Nuclear Information System (INIS)

    Gonzaga, Roberto N.; Amorim, Aneuri S. de; Balthar, Mario Cesar V.

    2011-01-01

    This work is an introduction to the CTEx Nuclear Defense Department's Beowulf Cluster. Building a Beowulf Cluster is a complex learning process that greatly depends upon your hardware and software requirements. The feasibility and efficiency of performing MCNP5 calculations with a small, heterogeneous computing cluster built in Red Hat's Fedora Linux operating system personal computers (PC) are explored. The performance increases that may be expected with such clusters are estimated for cases that typify general radiation transport calculations. Our results show that the speed increase from additional slave PCs is nearly linear up to 10 processors. The pre compiled parallel binary version of MCNP uses the Message-Passing Interface (MPI) protocol. The use of this pre compiled parallel version of MCNP5 with the MPI protocol on a small, heterogeneous computing cluster built from Red Hat's Fedora Linux operating system PCs is the subject of this work. (author)

  3. Scattered dose to thyroid from prophylactic cranial irradiation during childhood: a Monte Carlo study

    International Nuclear Information System (INIS)

    Mazonakis, Michalis; Tzedakis, Antonis; Damilakis, John; Varveris, Haris; Kachris, Stefanos; Gourtsoyiannis, Nicholas

    2006-01-01

    The purpose of this study was to estimate the scattered dose to thyroid from prophylactic cranial irradiation during childhood. The MCNP transport code and mathematical phantoms representing the average individual at ages 3, 5, 10, 15 and 18 years old were employed to simulate cranial radiotherapy using two lateral opposed fields. The mean radiation dose received by the thyroid gland was calculated. A 10 cm thick lead block placed on the patient's couch to shield the thyroid was simulated by MCNP code. The Monte Carlo model was validated by measuring the scattered dose to the unshielded and shielded thyroid using three different humanoid phantoms and thermoluminescense dosimetry. For a cranial dose of 18 Gy, the thyroid dose obtained by Monte Carlo calculations varied from 47 to 79 cGy depending upon the age of the child. Appropriate placement of the couch block resulted in a thyroid dose reduction by 39 to 54%. Thyroid dose values at all possible positions of the radiosensitive gland with respect to the inferior field edge at five different patient ages were found. The mean difference between Monte Carlo results and thyroid dose measurements was 9.6%. (note)

  4. Thermal lattice benchmarks for testing basic evaluated data files, developed with MCNP4B

    International Nuclear Information System (INIS)

    Maucec, M.; Glumac, B.

    1996-01-01

    The development of unit cell and full reactor core models of DIMPLE S01A and TRX-1 and TRX-2 benchmark experiments, using Monte Carlo computer code MCNP4B is presented. Nuclear data from ENDF/B-V and VI version of cross-section library were used in the calculations. In addition, a comparison to results obtained with the similar models and cross-section data from the EJ2-MCNPlib library (which is based upon the JEF-2.2 evaluation) developed in IRC Petten, Netherlands is presented. The results of the criticality calculation with ENDF/B-VI data library, and a comparison to results obtained using JEF-2.2 evaluation, confirm the MCNP4B full core model of a DIMPLE reactor as a good benchmark for testing basic evaluated data files. On the other hand, the criticality calculations results obtained using the TRX full core models show less agreement with experiment. It is obvious that without additional data about the TRX geometry, our TRX models are not suitable as Monte Carlo benchmarks. (author)

  5. Monte Carlo N-particle simulation of neutron-based sterilisation of anthrax contamination.

    Science.gov (United States)

    Liu, B; Xu, J; Liu, T; Ouyang, X

    2012-10-01

    To simulate the neutron-based sterilisation of anthrax contamination by Monte Carlo N-particle (MCNP) 4C code. Neutrons are elementary particles that have no charge. They are 20 times more effective than electrons or γ-rays in killing anthrax spores on surfaces and inside closed containers. Neutrons emitted from a (252)Cf neutron source are in the 100 keV to 2 MeV energy range. A 2.5 MeV D-D neutron generator can create neutrons at up to 10(13) n s(-1) with current technology. All these enable an effective and low-cost method of killing anthrax spores. There is no effect on neutron energy deposition on the anthrax sample when using a reflector that is thicker than its saturation thickness. Among all three reflecting materials tested in the MCNP simulation, paraffin is the best because it has the thinnest saturation thickness and is easy to machine. The MCNP radiation dose and fluence simulation calculation also showed that the MCNP-simulated neutron fluence that is needed to kill the anthrax spores agrees with previous analytical estimations very well. The MCNP simulation indicates that a 10 min neutron irradiation from a 0.5 g (252)Cf neutron source or a 1 min neutron irradiation from a 2.5 MeV D-D neutron generator may kill all anthrax spores in a sample. This is a promising result because a 2.5 MeV D-D neutron generator output >10(13) n s(-1) should be attainable in the near future. This indicates that we could use a D-D neutron generator to sterilise anthrax contamination within several seconds.

  6. Parallel processing Monte Carlo radiation transport codes

    International Nuclear Information System (INIS)

    McKinney, G.W.

    1994-01-01

    Issues related to distributed-memory multiprocessing as applied to Monte Carlo radiation transport are discussed. Measurements of communication overhead are presented for the radiation transport code MCNP which employs the communication software package PVM, and average efficiency curves are provided for a homogeneous virtual machine

  7. The feasibility of polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticle-loaded objects: a Monte Carlo study.

    Science.gov (United States)

    Jones, Bernard L; Cho, Sang Hyun

    2011-06-21

    A recent study investigated the feasibility to develop a bench-top x-ray fluorescence computed tomography (XFCT) system capable of determining the spatial distribution and concentration of gold nanoparticles (GNPs) in vivo using a diagnostic energy range polychromatic (i.e. 110 kVp) pencil-beam source. In this follow-up study, we examined the feasibility of a polychromatic cone-beam implementation of XFCT by Monte Carlo (MC) simulations using the MCNP5 code. In the current MC model, cylindrical columns with various sizes (5-10 mm in diameter) containing water loaded with GNPs (0.1-2% gold by weight) were inserted into a 5 cm diameter cylindrical polymethyl methacrylate phantom. The phantom was then irradiated by a lead-filtered 110 kVp x-ray source, and the resulting gold fluorescence and Compton-scattered photons were collected by a series of energy-sensitive tallies after passing through lead parallel-hole collimators. A maximum-likelihood iterative reconstruction algorithm was implemented to reconstruct the image of GNP-loaded objects within the phantom. The effects of attenuation of both the primary beam through the phantom and the gold fluorescence photons en route to the detector were corrected during the image reconstruction. Accurate images of the GNP-containing phantom were successfully reconstructed for three different phantom configurations, with both spatial distribution and relative concentration of GNPs well identified. The pixel intensity of regions containing GNPs was linearly proportional to the gold concentration. The current MC study strongly suggests the possibility of developing a bench-top, polychromatic, cone-beam XFCT system for in vivo imaging.

  8. Performance assessment of new neutron cross section libraries using MCNP code and some critical benchmarks

    International Nuclear Information System (INIS)

    Bakkari, B El; Bardouni, T El.; Erradi, L.; Chakir, E.; Meroun, O.; Azahra, M.; Boukhal, H.; Khoukhi, T El.; Htet, A.

    2007-01-01

    Full text: New releases of nuclear data files made available during the few recent years. The reference MCNP5 code (1) for Monte Carlo calculations is usually distributed with only one standard nuclear data library for neutron interactions based on ENDF/B-VI. The main goal of this work is to process new neutron cross sections libraries in ACE continuous format for MCNP code based on the most recent data files recently made available for the scientific community : ENDF/B-VII.b2, ENDF/B-VI (release 8), JEFF3.0, JEFF-3.1, JENDL-3.3 and JEF2.2. In our data treatment, we used the modular NJOY system (release 99.9) (2) in conjunction with its most recent upadates. Assessment of the processed point wise cross sections libraries performances was made by means of some criticality prediction and analysis of other integral parameters for a set of reactor benchmarks. Almost all the analyzed benchmarks were taken from the international handbook of Evaluated criticality safety benchmarks experiments from OECD (3). Some revised benchmarks were taken from references (4,5). These benchmarks use Pu-239 or U-235 as the main fissionable materiel in different forms, different enrichments and cover various geometries. Monte Carlo calculations were performed in 3D with maximum details of benchmark description and the S(α,β) cross section treatment was adopted in all thermal cases. The resulting one standard deviation confidence interval for the eigenvalue is typically +/-13% to +/-20 pcm [fr

  9. Validation of MCNP6 Version 1.0 with the ENDF/B-VII.1 Cross Section Library for Uranium Metal, Oxide, and Solution Systems on the High Performance Computing Platform Moonlight

    International Nuclear Information System (INIS)

    Chapman, Bryan Scott; MacQuigg, Michael Robert; Wysong, Andrew Russell

    2016-01-01

    In this document, the code MCNP is validated with ENDF/B-VII.1 cross section data under the purview of ANSI/ANS-8.24-2007, for use with uranium systems. MCNP is a computer code based on Monte Carlo transport methods. While MCNP has wide reading capability in nuclear transport simulation, this validation is limited to the functionality related to neutron transport and calculation of criticality parameters such as k eff .

  10. Development of a Fully-Automated Monte Carlo Burnup Code Monteburns

    International Nuclear Information System (INIS)

    Poston, D.I.; Trellue, H.R.

    1999-01-01

    Several computer codes have been developed to perform nuclear burnup calculations over the past few decades. In addition, because of advances in computer technology, it recently has become more desirable to use Monte Carlo techniques for such problems. Monte Carlo techniques generally offer two distinct advantages over discrete ordinate methods: (1) the use of continuous energy cross sections and (2) the ability to model detailed, complex, three-dimensional (3-D) geometries. These advantages allow more accurate burnup results to be obtained, provided that the user possesses the required computing power (which is required for discrete ordinate methods as well). Several linkage codes have been written that combine a Monte Carlo N-particle transport code (such as MCNP TM ) with a radioactive decay and burnup code. This paper describes one such code that was written at Los Alamos National Laboratory: monteburns. Monteburns links MCNP with the isotope generation and depletion code ORIGEN2. The basis for the development of monteburns was the need for a fully automated code that could perform accurate burnup (and other) calculations for any 3-D system (accelerator-driven or a full reactor core). Before the initial development of monteburns, a list of desired attributes was made and is given below. o The code should be fully automated (that is, after the input is set up, no further user interaction is required). . The code should allow for the irradiation of several materials concurrently (each material is evaluated collectively in MCNP and burned separately in 0RIGEN2). o The code should allow the transfer of materials (shuffling) between regions in MCNP. . The code should allow any materials to be added or removed before, during, or after each step in an automated fashion. . The code should not require the user to provide input for 0RIGEN2 and should have minimal MCNP input file requirements (other than a working MCNP deck). . The code should be relatively easy to use

  11. Development of interface between MCNP-FISPACT-MCNP (IPR-MFM) based on rigorous two step method

    International Nuclear Information System (INIS)

    Shaw, A.K.; Swami, H.L.; Danani, C.

    2015-01-01

    In this work we present the development of interface tool between MCNP-FISPACT-MCNP (MFM) based on Rigorous Two Step method for the shutdown dose rate (SDDR) calculation. The MFM links MCNP radiation transport and the FISPACT inventory code through a suitable coupling scheme. MFM coupling scheme has three steps. In first step it picks neutron spectrum and total flux from MCNP output file to use as input parameter for FISPACT. It prepares the FISPACT input files by using irradiation history, neutron flux and neutron spectrum and then execute the FISPACT input file in the second step. Third step of MFM coupling scheme extracts the decay gammas from the FISPACT output file and prepares MCNP input file for decay gamma transport followed by execution of MCNP input file and estimation of SDDR. Here detailing of MFM methodology and flow scheme has been described. The programming language PYTHON has been chosen for this development of the coupling scheme. A complete loop of MCNP-FISPACT-MCNP has been developed to handle the simplified geometrical problems. For validation of MFM interface a manual cross-check has been performed which shows good agreements. The MFM interface also has been validated with exiting MCNP-D1S method for a simple geometry with 14 MeV cylindrical neutron source. (author)

  12. An analysis of MCNP cross-sections and tally methods for low-energy photon emitters.

    Science.gov (United States)

    Demarco, John J; Wallace, Robert E; Boedeker, Kirsten

    2002-04-21

    Monte Carlo calculations are frequently used to analyse a variety of radiological science applications using low-energy (10-1000 keV) photon sources. This study seeks to create a low-energy benchmark for the MCNP Monte Carlo code by simulating the absolute dose rate in water and the air-kerma rate for monoenergetic point sources with energies between 10 keV and 1 MeV. The analysis compares four cross-section datasets as well as the tally method for collision kerma versus absorbed dose. The total photon attenuation coefficient cross-section for low atomic number elements has changed significantly as cross-section data have changed between 1967 and 1989. Differences of up to 10% are observed in the photoelectric cross-section for water at 30 keV between the standard MCNP cross-section dataset (DLC-200) and the most recent XCOM/NIST tabulation. At 30 keV, the absolute dose rate in water at 1.0 cm from the source increases by 7.8% after replacing the DLC-200 photoelectric cross-sections for water with those from the XCOM/NIST tabulation. The differences in the absolute dose rate are analysed when calculated with either the MCNP absorbed dose tally or the collision kerma tally. Significant differences between the collision kerma tally and the absorbed dose tally can occur when using the DLC-200 attenuation coefficients in conjunction with a modern tabulation of mass energy-absorption coefficients.

  13. MCNP and MATXS cross section libraries based on JENDL-3.3

    International Nuclear Information System (INIS)

    Kosako, Kazuaki; Konno, Chikara; Fukahori, Tokio; Shibata, Keiichi

    2003-01-01

    The continuous energy cross section library for the Monte Carlo transport code MCNP-4C, FSXLIB-J33, has been generated from the latest version of JENDL-3.3. The multigroup cross section library with the MATXS format, MATXS-J33, has been generated also from JENDL-3.3. Both libraries contain all nuclides in JENDL-3.3 and are processed at 300 K by the nuclear data processing system NJOY99. (author)

  14. MCNP modelling of scintillation-detector gamma-ray spectra from natural radionuclides.

    Science.gov (United States)

    Hendriks, P H G M; Maucec, M; de Meijer, R J

    2002-09-01

    gamma-ray spectra of natural radionuclides are simulated for a BGO detector in a borehole geometry using the Monte Carlo code MCNP. All gamma-ray emissions of the decay of 40K and the series of 232Th and 238U are used to describe the source. A procedure is proposed which excludes the time-consuming electron tracking in less relevant areas of the geometry. The simulated gamma-ray spectra are benchmarked against laboratory data.

  15. Calculation of age-dependent effective doses for external exposure using the MCNP code

    International Nuclear Information System (INIS)

    Hung, Tran Van

    2013-01-01

    Age-dependent effective dose for external exposure to photons uniformly distributed in air were calculated. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using the Monte Carlo code MCNP. The calculations were performed for mono-energetic photon sources with source energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10, and 15 years-old and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. From the calculated results, it is shown that the effective doses depend on the body size; the effective doses in younger phantoms are higher than those in the older phantoms, especially below 100 keV. (orig.)

  16. Calculation of age-dependent effective doses for external exposure using the MCNP code

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Tran Van [Research and Development Center for Radiation Technology, ThuDuc, HoChiMinh City (VT)

    2013-07-15

    Age-dependent effective dose for external exposure to photons uniformly distributed in air were calculated. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using the Monte Carlo code MCNP. The calculations were performed for mono-energetic photon sources with source energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10, and 15 years-old and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. From the calculated results, it is shown that the effective doses depend on the body size; the effective doses in younger phantoms are higher than those in the older phantoms, especially below 100 keV. (orig.)

  17. Benchmarking comparison and validation of MCNP photon interaction data

    Directory of Open Access Journals (Sweden)

    Colling Bethany

    2017-01-01

    Full Text Available The objective of the research was to test available photoatomic data libraries for fusion relevant applications, comparing against experimental and computational neutronics benchmarks. Photon flux and heating was compared using the photon interaction data libraries (mcplib 04p, 05t, 84p and 12p. Suitable benchmark experiments (iron and water were selected from the SINBAD database and analysed to compare experimental values with MCNP calculations using mcplib 04p, 84p and 12p. In both the computational and experimental comparisons, the majority of results with the 04p, 84p and 12p photon data libraries were within 1σ of the mean MCNP statistical uncertainty. Larger differences were observed when comparing computational results with the 05t test photon library. The Doppler broadening sampling bug in MCNP-5 is shown to be corrected for fusion relevant problems through use of the 84p photon data library. The recommended libraries for fusion neutronics are 84p (or 04p with MCNP6 and 84p if using MCNP-5.

  18. Benchmarking comparison and validation of MCNP photon interaction data

    Science.gov (United States)

    Colling, Bethany; Kodeli, I.; Lilley, S.; Packer, L. W.

    2017-09-01

    The objective of the research was to test available photoatomic data libraries for fusion relevant applications, comparing against experimental and computational neutronics benchmarks. Photon flux and heating was compared using the photon interaction data libraries (mcplib 04p, 05t, 84p and 12p). Suitable benchmark experiments (iron and water) were selected from the SINBAD database and analysed to compare experimental values with MCNP calculations using mcplib 04p, 84p and 12p. In both the computational and experimental comparisons, the majority of results with the 04p, 84p and 12p photon data libraries were within 1σ of the mean MCNP statistical uncertainty. Larger differences were observed when comparing computational results with the 05t test photon library. The Doppler broadening sampling bug in MCNP-5 is shown to be corrected for fusion relevant problems through use of the 84p photon data library. The recommended libraries for fusion neutronics are 84p (or 04p) with MCNP6 and 84p if using MCNP-5.

  19. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: a Monte Carlo study.

    Science.gov (United States)

    Manohar, Nivedh; Jones, Bernard L; Cho, Sang Hyun

    2014-10-01

    To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the investigated range of 81-100 ke

  20. Monte-Carlo error analysis in x-ray spectral deconvolution

    International Nuclear Information System (INIS)

    Shirk, D.G.; Hoffman, N.M.

    1985-01-01

    The deconvolution of spectral information from sparse x-ray data is a widely encountered problem in data analysis. An often-neglected aspect of this problem is the propagation of random error in the deconvolution process. We have developed a Monte-Carlo approach that enables us to attach error bars to unfolded x-ray spectra. Our Monte-Carlo error analysis has been incorporated into two specific deconvolution techniques: the first is an iterative convergent weight method; the second is a singular-value-decomposition (SVD) method. These two methods were applied to an x-ray spectral deconvolution problem having m channels of observations with n points in energy space. When m is less than n, this problem has no unique solution. We discuss the systematics of nonunique solutions and energy-dependent error bars for both methods. The Monte-Carlo approach has a particular benefit in relation to the SVD method: It allows us to apply the constraint of spectral nonnegativity after the SVD deconvolution rather than before. Consequently, we can identify inconsistencies between different detector channels

  1. Comparison and physical interpretation of MCNP and TART neutron and γ Monte Carlo shielding calculations for a heavy-ion ICF system

    International Nuclear Information System (INIS)

    Mainardi, E.; Premuda, F.; Lee, E.

    2004-01-01

    Livermore National Laboratory, UCRL-ID-126455, Rev. 1, November, 1997] and MCNP4B [MCNP - A General Monte Carlo N-Particle Transport Code, Version 4B, La-12625-m, March 1997, Los Alamos National Laboratory] for two different configurations of the system is discussed, separating the n and γ contributions, in the light of the physical interpretation of the results in terms of first flight and of scattered neutron fluxes, of primary γ and of secondary γ generated by inelastically scattered or radiatively captured neutrons. The final conclusions indicate some guidelines and suggest possible improvements for the future neutronic shielding design for a HIF facility

  2. Calculated organ doses for Mayak production association central hall using ICRP and MCNP.

    Science.gov (United States)

    Choe, Dong-Ok; Shelkey, Brenda N; Wilde, Justin L; Walk, Heidi A; Slaughter, David M

    2003-03-01

    As part of an ongoing dose reconstruction project, equivalent organ dose rates from photons and neutrons were estimated using the energy spectra measured in the central hall above the graphite reactor core located in the Russian Mayak Production Association facility. Reconstruction of the work environment was necessary due to the lack of personal dosimeter data for neutrons in the time period prior to 1987. A typical worker scenario for the central hall was developed for the Monte Carlo Neutron Photon-4B (MCNP) code. The resultant equivalent dose rates for neutrons and photons were compared with the equivalent dose rates derived from calculations using the conversion coefficients in the International Commission on Radiological Protection Publications 51 and 74 in order to validate the model scenario for this Russian facility. The MCNP results were in good agreement with the results of the ICRP publications indicating the modeling scenario was consistent with actual work conditions given the spectra provided. The MCNP code will allow for additional orientations to accurately reflect source locations.

  3. Igo - A Monte Carlo Code For Radiotherapy Planning

    International Nuclear Information System (INIS)

    Goldstein, M.; Regev, D.

    1999-01-01

    The goal of radiation therapy is to deliver a lethal dose to the tumor, while minimizing the dose to normal tissues and vital organs. To carry out this task, it is critical to calculate correctly the 3-D dose delivered. Monte Carlo transport methods (especially the Adjoint Monte Carlo have the potential to provide more accurate predictions of the 3-D dose the currently used methods. IG0 is a Monte Carlo code derived from the general Monte Carlo Program - MCNP, tailored specifically for calculating the effects of radiation therapy. This paper describes the IG0 transport code, the PIG0 interface and some preliminary results

  4. Criticality safety validation of MCNP5 using continuous energy libraries

    International Nuclear Information System (INIS)

    Salome, Jean A.D.; Pereira, Claubia; Assuncao, Jonathan B.A.; Veloso, Maria Auxiliadora F.; Costa, Antonella L.; Silva, Clarysson A.M. da

    2013-01-01

    The study of subcritical systems is very important in the design, installation and operation of various devices, mainly nuclear reactors and power plants. The information generated by these systems guide the decisions to be taken in the executive project, the economic viability and the safety measures to be employed in a nuclear facility. Simulating some experiments from the International Handbook of Evaluated Criticality Safety Benchmark Experiments, the code MCNP5 was validated to nuclear criticality analysis. Its continuous libraries were used. The average values and standard deviation (SD) were evaluated. The results obtained with the code are very similar to the values obtained by the benchmark experiments. (author)

  5. Validation of MCNP6 Version 1.0 with the ENDF/B-VII.1 Cross Section Library for Uranium Metal, Oxide, and Solution Systems on the High Performance Computing Platform Moonlight

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Bryan Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); MacQuigg, Michael Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wysong, Andrew Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-21

    In this document, the code MCNP is validated with ENDF/B-VII.1 cross section data under the purview of ANSI/ANS-8.24-2007, for use with uranium systems. MCNP is a computer code based on Monte Carlo transport methods. While MCNP has wide reading capability in nuclear transport simulation, this validation is limited to the functionality related to neutron transport and calculation of criticality parameters such as keff.

  6. Monte Carlo simulations for stereotactic radiotherapy system with various kilo-voltage x-ray energy

    International Nuclear Information System (INIS)

    Deloar, H.M.; Kunieda, E.; Kawase, T.; Kubo, Atsushi; Saitoh, H.; Myojoyama, A.; Ozaki, M.; Fujisaki, T.; Saito, K.

    2005-01-01

    Stereotactic radiotherapy (SRT) of lung tumors with a narrow and precise medium energy x-ray beam where the homogeneous high dose area will be confined within the tumors are desirable. A conventional x-ray CT with medium energy x-ray has been modified to develop a radiotherapy system for lung SRT. A cylindrical collimator (0.3 cm φ) made of tungsten was introduced to collimate the X-ray beam. The system was simulated with BEAMnrc(EGS4) Monte Carlo code and various x-ray energy spectra were generated to investigate the dose distributions with our kilo-voltage SRT system. Experiments were performed to acquire the energy spectra of 100, 120 and 135 kVp (kilo-voltage peak) from CT measurements and those results were compared with the spectra obtained from Monte Carlo simulations. Verifications of percentage of dose depth (PDD) for 120 and 147.5 kVp were investigated in a water phantom with experiments and Monte Carlo simulations. Finally dose distributions of 120, 135, 147.5, 200, 250, 300, 350, 400, 500 kVp spectra were investigated with lung phantom and human lung. The Percentage of Depth Dose (PDD) in the water phantom calculated from the experimental and simulated spectra of 120 and 147.5 kVp show good agreement with each other. The PDD of 147.5 and 120 kVp spectra at 9 cm depth was approximately 10% and 9%, respectively. Dose distributions around the lung tumor in the phantom and human for all x-ray energies were almost uniform but in the case of the human lung absorptions of dose at ribs for the energy lower than 135 kVp was more than 35% and those absorptions for the energy spectra of 147.5 kVp and above was less than 30%. This absorption gradually decreases with increasing x-ray energies. Uniform dose distributions in the lung region of human and thorax phantom demonstrated the possibility of SRT system with medium energy X-ray. A detail performance of this system as a kilo-voltage conformal radiotherapy is under investigations. (author)

  7. CREOLE experiment study on the reactivity temperature coefficient with sensitivity and uncertainty analysis using the MCNP5 code and different neutron cross section evaluations

    International Nuclear Information System (INIS)

    Boulaich, Y.; El Bardouni, T.; Erradi, L.; Chakir, E.; Boukhal, H.; Nacir, B.; El Younoussi, C.; El Bakkari, B.; Merroun, O.; Zoubair, M.

    2011-01-01

    Highlights: → In the present work, we have analyzed the CREOLE experiment on the reactivity temperature coefficient (RTC) by using the three-dimensional continuous energy code (MCNP5) and the last updated nuclear data evaluations. → Calculation-experiment discrepancies of the RTC were analyzed and the results have shown that the JENDL3.3 and JEFF3.1 evaluations give the most consistent values. → In order to specify the source of the relatively large discrepancy in the case of ENDF-BVII nuclear data evaluation, the k eff discrepancy between ENDF-BVII and JENDL3.3 was decomposed by using sensitivity and uncertainty analysis technique. - Abstract: In the present work, we analyze the CREOLE experiment on the reactivity temperature coefficient (RTC) by using the three-dimensional continuous energy code (MCNP5) and the last updated nuclear data evaluations. This experiment performed in the EOLE critical facility located at CEA/Cadarache, was mainly dedicated to the RTC studies for both UO 2 and UO 2 -PuO 2 PWR type lattices covering the whole temperature range from 20 deg. C to 300 deg. C. We have developed an accurate 3D model of the EOLE reactor by using the MCNP5 Monte Carlo code which guarantees a high level of fidelity in the description of different configurations at various temperatures taking into account their consequence on neutron cross section data and all thermal expansion effects. In this case, the remaining error between calculation and experiment will be awarded mainly to uncertainties on nuclear data. Our own cross section library was constructed by using NJOY99.259 code with point-wise nuclear data based on ENDF-BVII, JEFF3.1 and JENDL3.3 evaluation files. The MCNP model was validated through the axial and radial fission rate measurements at room and hot temperatures. Calculation-experiment discrepancies of the RTC were analyzed and the results have shown that the JENDL3.3 and JEFF3.1 evaluations give the most consistent values; the discrepancy is

  8. Criticality calculations of the HTR-10 pebble-bed reactor with SCALE6/CSAS6 and MCNP5

    International Nuclear Information System (INIS)

    Wang, Meng-Jen; Sheu, Rong-Jiun; Peir, Jinn-Jer; Liang, Jenq-Horng

    2014-01-01

    Highlights: • Comparisons of the HTR-10 criticality calculations with SCALE6/CSAS6 and MCNP5 were performed. • The DOUBLEHET unit-cell treatment provides the best k eff estimation among PBR criticality calculations using SCALE6. • The continuous-energy SCALE6 calculations present a non-negligible discrepancy with MCNP5 in three PBR cases. - Abstract: HTR-10 is a 10 MWt prototype pebble-bed reactor (PBR) that presents a doubly heterogeneous geometry for neutronics calculations. An appropriate unit-cell treatment for the associated fuel elements is vital for creating problem-dependent multigroup cross sections. Considering four unit-cell options for resonance self-shielding correction in SCALE6, a series of HTR-10 core models were established using the CSAS6 sequence to systematically investigate how they affected the computational accuracy and efficiency of PBR criticality calculations. Three core configurations, which ranged from simplified infinite lattices to a detailed geometry, were examined. Based on the same ENDF/B-VII.0 cross-section library, multigroup results were evaluated by comparing with continuous-energy SCALE6/CSAS6 and MCNP5 calculations. The comparison indicated that the INFHOMMEDIUM results overestimated the effective multiplication factor (k eff ) by about 2800 pcm, whereas the LATTICECELL and MULTIREGION treatments overestimated k eff values with similar biases at approximately 470–680 pcm. The DOUBLEHET results attained further improvement, reducing the k eff overestimation to approximately 280 pcm. The comparison yielded two unexpected problems from using SCALE6/CSAS6 in HTR-10 criticality calculations. In particular, the continuous-energy CSAS6 calculations in this study present a non-negligible discrepancy with MCNP5, potentially causing a k eff value overestimate of approximately 680 pcm. Notably, using a cell-weighted mixture instead of an explicit model of individual TRISO particles in the pebble fuel zone does not shorten the

  9. Conversion coefficients for determination of dispersed photon dose during radiotherapy: NRUrad input code for MCNP.

    Science.gov (United States)

    Shahmohammadi Beni, Mehrdad; Ng, C Y P; Krstic, D; Nikezic, D; Yu, K N

    2017-01-01

    Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient's body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5.

  10. Track 4: basic nuclear science variance reduction for Monte Carlo criticality simulations. 2. Assessment of MCNP Statistical Analysis of keff Eigenvalue Convergence with an Analytical Criticality Verification Test Set

    International Nuclear Information System (INIS)

    Sood, Avnet; Forster, R. Arthur; Parsons, D. Kent

    2001-01-01

    Monte Carlo simulations of nuclear criticality eigenvalue problems are often performed by general purpose radiation transport codes such as MCNP. MCNP performs detailed statistical analysis of the criticality calculation and provides feedback to the user with warning messages, tables, and graphs. The purpose of the analysis is to provide the user with sufficient information to assess spatial convergence of the eigenfunction and thus the validity of the criticality calculation. As a test of this statistical analysis package in MCNP, analytic criticality verification benchmark problems have been used for the first time to assess the performance of the criticality convergence tests in MCNP. The MCNP statistical analysis capability has been recently assessed using the 75 multigroup criticality verification analytic problem test set. MCNP was verified with these problems at the 10 -4 to 10 -5 statistical error level using 40 000 histories per cycle and 2000 active cycles. In all cases, the final boxed combined k eff answer was given with the standard deviation and three confidence intervals that contained the analytic k eff . To test the effectiveness of the statistical analysis checks in identifying poor eigenfunction convergence, ten problems from the test set were deliberately run incorrectly using 1000 histories per cycle, 200 active cycles, and 10 inactive cycles. Six problems with large dominance ratios were chosen from the test set because they do not achieve the normal spatial mode in the beginning of the calculation. To further stress the convergence tests, these problems were also started with an initial fission source point 1 cm from the boundary thus increasing the likelihood of a poorly converged initial fission source distribution. The final combined k eff confidence intervals for these deliberately ill-posed problems did not include the analytic k eff value. In no case did a bad confidence interval go undetected. Warning messages were given signaling that

  11. Characterization of decommissioned reactor internals: Monte Carlo analysis technique

    International Nuclear Information System (INIS)

    Reid, B.D.; Love, E.F.; Luksic, A.T.

    1993-03-01

    This study discusses computer analysis techniques for determining activation levels of irradiated reactor component hardware to yield data for the Department of Energy's Greater-Than-Class C Low-Level Radioactive Waste Program. The study recommends the Monte Carlo Neutron/Photon (MCNP) computer code as the best analysis tool for this application and compares the technique to direct sampling methodology. To implement the MCNP analysis, a computer model would be developed to reflect the geometry, material composition, and power history of an existing shutdown reactor. MCNP analysis would then be performed using the computer model, and the results would be validated by comparison to laboratory analysis results from samples taken from the shutdown reactor. The report estimates uncertainties for each step of the computational and laboratory analyses; the overall uncertainty of the MCNP results is projected to be ±35%. The primary source of uncertainty is identified as the material composition of the components, and research is suggested to address that uncertainty

  12. MCNP perturbation technique for criticality analysis

    International Nuclear Information System (INIS)

    McKinney, G.W.; Iverson, J.L.

    1995-01-01

    The differential operator perturbation technique has been incorporated into the Monte Carlo N-Particle transport code MCNP and will become a standard feature of future releases. This feature includes first and/or second order terms of the Taylor Series expansion for response perturbations related to cross-section data (i.e., density, composition, etc.). Criticality analyses can benefit from this technique in that predicted changes in the track-length tally estimator of K eff may be obtained for multiple perturbations in a single run. A key advantage of this method is that a precise estimate of a small change in response (i.e., < 1%) is easily obtained. This technique can also offer acceptable accuracy, to within a few percent, for up to 20-30% changes in a response

  13. MCNP6 Status

    International Nuclear Information System (INIS)

    Goorley, John T.

    2012-01-01

    We, the development teams for MCNP, NJOY, and parts of ENDF, would like to invite you to a proposed 3 day workshop October 30, 31 and November 1 2012, to be held at Los Alamos National Laboratory. At this workshop, we will review new and developing missions that MCNP6 and the underlying nuclear data are being asked to address. LANL will also present its internal plans to address these missions and recent advances in these three capabilities and we will be interested to hear your input on these topics. Additionally we are interested in hearing from you additional technical advances, missions, concerns, and other issues that we should be considering for both short term (1-3 years) and long term (4-6 years)? What are the additional existing capabilities and methods that we should be investigating? The goal of the workshop is to refine priorities for mcnp6 transport methods, algorithms, physics, data and processing as they relate to the intersection of MCNP, NJOY and ENDF.

  14. Validation and verification of MCNP6 against intermediate and high-energy experimental data and results by other codes

    International Nuclear Information System (INIS)

    Mashnik, Stepan G.

    2011-01-01

    MCNP6, the latest and most advanced LANL transport code representing a recent merger of MCNP5 and MCNPX, has been Validated and Verified (V and V) against a variety of intermediate and high-energy experimental data and against results by different versions of MCNPX and other codes. In the present work, we V and V MCNP6 using mainly the latest modifications of the Cascade-Exciton Model (CEM) and of the Los Alamos version of the Quark-Gluon String Model (LAQGSM) event generators CEM03.02 and LAQGSM03.03. We found that MCNP6 describes reasonably well various reactions induced by particles and nuclei at incident energies from 18 MeV to about 1 TeV per nucleon measured on thin and thick targets and agrees very well with similar results obtained with MCNPX and calculations by CEM03.02, LAQGSM03.01 (03.03), INCL4 + ABLA, and Bertini INC + Dresner evaporation, EPAX, ABRABLA, HIPSE, and AMD, used as stand alone codes. Most of several computational bugs and more serious physics problems observed in MCNP6/X during our V and V have been fixed; we continue our work to solve all the known problems before MCNP6 is distributed to the public. (author)

  15. MCNP HPGe detector benchmark with previously validated Cyltran model.

    Science.gov (United States)

    Hau, I D; Russ, W R; Bronson, F

    2009-05-01

    An exact copy of the detector model generated for Cyltran was reproduced as an MCNP input file and the detection efficiency was calculated similarly with the methodology used in previous experimental measurements and simulation of a 280 cm(3) HPGe detector. Below 1000 keV the MCNP data correlated to the Cyltran results within 0.5% while above this energy the difference between MCNP and Cyltran increased to about 6% at 4800 keV, depending on the electron cut-off energy.

  16. Implementation of a tree algorithm in MCNP code for nuclear well logging applications

    Energy Technology Data Exchange (ETDEWEB)

    Li Fusheng, E-mail: fusheng.li@bakerhughes.com [Baker Hughes Incorporated, 2001 Rankin Rd. Houston, TX 77073-5101 (United States); Han Xiaogang [Baker Hughes Incorporated, 2001 Rankin Rd. Houston, TX 77073-5101 (United States)

    2012-07-15

    The goal of this paper is to develop some modeling capabilities that are missing in the current MCNP code. Those missing capabilities can greatly help for some certain nuclear tools designs, such as a nuclear lithology/mineralogy spectroscopy tool. The new capabilities to be developed in this paper include the following: zone tally, neutron interaction tally, gamma rays index tally and enhanced pulse-height tally. The patched MCNP code also can be used to compute neutron slowing-down length and thermal neutron diffusion length. - Highlights: Black-Right-Pointing-Pointer Tree structure programming is suitable for Monte-Carlo based particle tracking. Black-Right-Pointing-Pointer Enhanced pulse height tally is developed for oilwell logging tool simulation. Black-Right-Pointing-Pointer Neutron interaction tally and gamma ray index tally for geochemical logging.

  17. ENDF/B-VI data for MCNP trademark

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Frankle, S.C.; Court, J.D.

    1994-12-01

    Nuclear and atomic data are the foundation upon which the radiation transport codes are built. For neutron transport the international standard is the Evaluated Nuclear Data File from Brookhaven National Laboratory. The latest version, ENDF/B-VI release 2, has recently become available for use in the Monte Carlo N-Particle (MCNP) radiation transport code. These neutron cross-section data are designated by ZAID identifiers ending in .60c and are referred to as the ENDF60 library. The ENDF60 data library was processed from the ENDF/B-VI evaluations using the NJOY code. Fifty-two percent of the data evaluations are translations from ENDF/B-V. The remaining 48% are new evaluations which have sometimes changed significantly. The RSIC release package contains the ENDF60 neutron library, a new photon library MCPLIB02, the electron library EL1, and an updated XSDIR file. The authors report here the work done by the LANL Radiation Transport Group (X-6) in testing and validating the ENDF60 data library and in developing the necessary new sampling and detector schemes. When the ENDF60 library should be used in preference to the previous libraries, is also considered. The development of the new photon library MCPLIB02 is also discussed

  18. Modelling of a linear accelerator VARIAN 600 C/D for dosimetric study using the Monte Carlo Method; Modelamento de um acelerador linear VARIAN 600 C/D para estudo dosimétrico usando o Método de Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Cancino, Jorge Luis Batista

    2016-07-01

    Based on the high availability of low energy linear accelerators in Brazil and with the goal of developing a reliable tool for dose distribution calculations in radiotherapy; this research aims to validate a linear accelerator head model using MCNP Monte Carlo code. The Varian 600 C/D linear accelerator installed at the Hospital São João de is taken as reference. The main components of the linear accelerator head were simulated based on detailed information of the manufacturer. In order to calculate dose distribution, a water phantom with dimensions of 30 x 30 x 30 cm{sup 3} was simulated and placed at 100 cm of source-surface distance. A monoenergetic electron beam of 6,3 MeV was considered as a source. The number of primary particles used in the simulation was 10{sup 8}. A Phase-Space Surface was used to scoring the photon spectrum below the tungsten target. Others two were placed in the model in order to reduce computational time and improve statistical accuracy. In order to validate the developed model, the X-ray spectrum generated by Bremsstrahlung was calculated and analyzed. Furthermore, the results of percentage depth doses and beam profiles calculations were compared with available measurements. The MCNP calculations results were compared to measurement showing good agreement between them. The comparison between MCNP calculations and measurement of PDD showed reasonable coherence at build-up region. The results were in an acceptable interval of confidence at the flat region of beam profiles comparison for three different field sizes. In this work, we compared MCNP calculations to experimental data in order to validate the developed LINAC head model. The results showed a good agreement according to the recommended criteria. The developed model was validated as an accurate tool for LINAC quality control procedures. (author)

  19. Modeling of the YALINA booster facility by the Monte Carlo code MONK

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.; Kondev, F.; Kiyavitskaya, H.; Serafimovich, I.; Bournos, V.; Fokov, Y.; Routkovskaya, C.

    2007-01-01

    The YALINA-Booster facility has been modeled according to the benchmark specifications defined for the IAEA activity without any geometrical homogenization using the Monte Carlo codes MONK and MCNP/MCNPX/MCB. The MONK model perfectly matches the MCNP one. The computational analyses have been extended through the MCB code, which is an extension of the MCNP code with burnup capability because of its additional feature for analyzing source driven multiplying assemblies. The main neutronics arameters of the YALINA-Booster facility were calculated using these computer codes with different nuclear data libraries based on ENDF/B-VI-0, -6, JEF-2.2, and JEF-3.1.

  20. Study of bremsstrahlung photons in bulk target using MCNP code

    Directory of Open Access Journals (Sweden)

    S. Sangaroon

    2017-11-01

    Full Text Available The aim of this research was to study the feasibility of bremsstrahlung photon production in target bombarded by 1 GeV electrons. The calculations were performed by the Monte Carlo code MCNP. Six target materials with densities between 2 and 20 g/cm3 were studied. The bremsstrahlung photon flux is high for the target density above 8 g/cm3. Copper is the best target for 1 GeV electron beam due to high bremsstrahlung photon production, low scattering and low transmission electron flux. The copper target was altered to have different thicknesses between 0.01 and 2.5 cm. The results showed that the bremsstrahlung photon flux significantly increased when the target thickness increased from 0.01 to 1.5 cm. The angular distribution of the bremsstrahlung photons with angles between 0 and 120 degrees was determined for copper target. The maximum angle of the photon scattering was about 20 degree.

  1. Monte Carlo assessment of the dose rates produced by spent fuel from CANDU reactors

    International Nuclear Information System (INIS)

    Pantazi, Doina; Mateescu, Silvia; Stanciu, Marcela

    2003-01-01

    One of the technical measures considered for biological protection is radiation shielding. The implementation process of a spent fuel intermediate storage system at Cernavoda NPP includes an evolution in computation methods related to shielding evaluation: from using simpler computer codes, like MicroShield and QAD, to systems of codes, like SCALE (which contains few independent modules) and the multipurpose and multi-particles transport code MCNP, based on Monte Carlo method. The Monte Carlo assessment of the dose rates produced by CANDU type spent fuel, during its handling for the intermediate storage, is the main objective of this paper. The work had two main features: -establishing of geometrical models according to description mode used in code MCNP, capable to account for the specific characteristics of CANDU nuclear fuel; - confirming the correctness of proposed models, by comparing MCNP results and the related results obtained with other computer codes for shielding evaluation and dose rates calculations. (authors)

  2. Low Enrichment Uranium (LEU)-fueled SLOWPOKE-2 nuclear reactor simulation with the Monte-Carlo based MCNP 4A code

    International Nuclear Information System (INIS)

    Pierre, J.R.M.

    1996-01-01

    Following the commissioning of the Low Enrichment Uranium (LEU) Fuelled SLOWPOKE-2 research reactor at the Royal Military College-College Militaire Royal (RMC-CMR), excess reactivity measurements were conducted over a range of temperature and power. The results showed a maximum excess reactivity of 3.37 mk at 33 o C. Several deterministic models using computer codes like WIMS-CRNL, CITATION, TRIVAC and DRAGON have been used to try to reproduce the excess reactivity and temperature trend of both the LEU and HEU SLOWPOKE-2 reactors. The best simulations had been obtained at Ecole Polytechnique de Montreal. They were able to reproduce the temperature trend of their HEU-fuelled reactor using TRIVAC calculations, but this model over-estimated the absolute value of the excess reactivity by 119 mk. Although calculations using DRAGON did not reproduce the temperature trend as well as TRIVAC, these calculations represented a significant improvement on the absolute value at 20 o C reducing the discrepancy to 13 mk. Given the advance in computer technology, a probabilistic approach was tried in this work, using the Monte-Carlo N-Particle Transport Code System MCNP 4A, to model the RMC-CMR SLOWPOKE-2 reactor.

  3. Modelling of a linear accelerator VARIAN 600 C/D for dosimetric study using the Monte Carlo Method

    International Nuclear Information System (INIS)

    Cancino, Jorge Luis Batista

    2016-01-01

    Based on the high availability of low energy linear accelerators in Brazil and with the goal of developing a reliable tool for dose distribution calculations in radiotherapy; this research aims to validate a linear accelerator head model using MCNP Monte Carlo code. The Varian 600 C/D linear accelerator installed at the Hospital São João de is taken as reference. The main components of the linear accelerator head were simulated based on detailed information of the manufacturer. In order to calculate dose distribution, a water phantom with dimensions of 30 x 30 x 30 cm 3 was simulated and placed at 100 cm of source-surface distance. A monoenergetic electron beam of 6,3 MeV was considered as a source. The number of primary particles used in the simulation was 10 8 . A Phase-Space Surface was used to scoring the photon spectrum below the tungsten target. Others two were placed in the model in order to reduce computational time and improve statistical accuracy. In order to validate the developed model, the X-ray spectrum generated by Bremsstrahlung was calculated and analyzed. Furthermore, the results of percentage depth doses and beam profiles calculations were compared with available measurements. The MCNP calculations results were compared to measurement showing good agreement between them. The comparison between MCNP calculations and measurement of PDD showed reasonable coherence at build-up region. The results were in an acceptable interval of confidence at the flat region of beam profiles comparison for three different field sizes. In this work, we compared MCNP calculations to experimental data in order to validate the developed LINAC head model. The results showed a good agreement according to the recommended criteria. The developed model was validated as an accurate tool for LINAC quality control procedures. (author)

  4. Organic scintillators response function modeling for Monte Carlo simulation of Time-of-Flight measurements

    Energy Technology Data Exchange (ETDEWEB)

    Carasco, C., E-mail: cedric.carasco@cea.fr [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France)

    2012-07-15

    In neutron Time-of-Flight (TOF) measurements performed with fast organic scintillation detectors, both pulse arrival time and amplitude are relevant. Monte Carlo simulation can be used to calculate the time-energy dependant neutron flux at the detector position. To convert the flux into a pulse height spectrum, one must calculate the detector response function for mono-energetic neutrons. MCNP can be used to design TOF systems, but standard MCNP versions cannot reliably calculate the energy deposited by fast neutrons in the detector since multiple scattering effects must be taken into account in an analog way, the individual recoil particles energy deposit being summed with the appropriate scintillation efficiency. In this paper, the energy response function of 2 Double-Prime Multiplication-Sign 2 Double-Prime and 5 Double-Prime Multiplication-Sign 5 Double-Prime liquid scintillation BC-501 A (Bicron) detectors to fast neutrons ranging from 20 keV to 5.0 MeV is computed with GEANT4 to be coupled with MCNPX through the 'MCNP Output Data Analysis' software developed under ROOT (). - Highlights: Black-Right-Pointing-Pointer GEANT4 has been used to model organic scintillators response to neutrons up to 5 MeV. Black-Right-Pointing-Pointer The response of 2 Double-Prime Multiplication-Sign 2 Double-Prime and 5 Double-Prime Multiplication-Sign 5 Double-Prime BC501A detectors has been parameterized with simple functions. Black-Right-Pointing-Pointer Parameterization will allow the modeling of neutron Time of Flight measurements with MCNP using tools based on CERN's ROOT.

  5. MCNP modelling of vaginal and uterine applicators used in intracavitary brachytherapy and comparison with radiochromic film measurements

    Science.gov (United States)

    Ceccolini, E.; Gerardy, I.; Ródenas, J.; van Dycke, M.; Gallardo, S.; Mostacci, D.

    Brachytherapy is an advanced cancer treatment that is minimally invasive, minimising radiation exposure to the surrounding healthy tissues. Microselectron© Nucletron devices with 192Ir source can be used for gynaecological brachytherapy, in patients with vaginal or uterine cancer. Measurements of isodose curves have been performed in a PMMA phantom and compared with Monte Carlo calculations and TPS (Plato software of Nucletron BPS 14.2) evaluation. The isodose measurements have been performed with radiochromic films (Gafchromic EBT©). The dose matrix has been obtained after digitalisation and use of a dose calibration curve obtained with a 6 MV photon beam provided by a medical linear accelerator. A comparison between the calculated and the measured matrix has been performed. The calculated dose matrix is obtained with a simulation using the MCNP5 Monte Carlo code (F4MESH tally).

  6. The study on neutron and photon distribution of AP1000 reactor by MCNP code

    International Nuclear Information System (INIS)

    Chen Defeng; Shen Mingqi

    2014-01-01

    The core and reactor structural of AP1000 was modeled by the MCNP calculation program which is based on the Monte Carlo method in this paper, the neutron and photon distribution of AP1000 reactor core was calculated by the conditions of reactor critical. The results show that the AP1000 reactor neutron and photon distribution is in accordance with the critical design of PWR. (authors)

  7. Monte Carlo N-Particle (MCNP) Modeling of the Cellular Dosimetry of 64Cu: Comparison with MIRDcell S Values and Implications for Studies of Its Cytotoxic Effects.

    Science.gov (United States)

    Cai, Zhongli; Kwon, Yongkyu Luke; Reilly, Raymond M

    2017-02-01

    64 Cu emits positrons as well as β - particles and Auger and internal conversion electrons useful for radiotherapy. Our objective was to model the cellular dosimetry of 64 Cu under different geometries commonly used to study the cytotoxic effects of 64 Cu. Monte Carlo N-Particle (MCNP) was used to simulate the transport of all particles emitted by 64 Cu from the cell surface (CS), cytoplasm (Cy), or nucleus (N) of a single cell; monolayer in a well (radius = 0.32-1.74 cm); or a sphere (radius = 50-6,000 μm) of cells to calculate S values. The radius of the cell and N ranged from 5 to 12 μm and 2 to 11 μm, respectively. S values were obtained by MIRDcell for comparison. MCF7/HER2-18 cells were exposed in vitro to 64 Cu-labeled trastuzumab. The subcellular distribution of 64 Cu was measured by cell fractionation. The surviving fraction was determined in a clonogenic assay. The relative differences of MCNP versus MIRDcell self-dose S values (S self ) for 64 Cu ranged from -0.2% to 3.6% for N to N (S N←N ), 2.3% to 8.6% for Cy to N (S N←Cy ), and -12.0% to 7.3% for CS to N (S N←CS ). The relative differences of MCNP versus MIRDcell cross-dose S values were 25.8%-30.6% for a monolayer and 30%-34% for a sphere, respectively. The ratios of S N←N versus S N←Cy and S N←Cy versus S N←CS decreased with increasing ratio of the N of the cell versus radius of the cell and the size of the monolayer or sphere. The surviving fraction of MCF7 /: HER2-18 cells treated with 64 Cu-labeled trastuzumab (0.016-0.368 MBq/μg, 67 nM) for 18 h versus the absorbed dose followed a linear survival curve with α = 0.51 ± 0.05 Gy -1 and R 2 = 0.8838. This is significantly different from the linear quadratic survival curve of MCF7 /: HER2-18 cells exposed to γ-rays. MCNP- and MIRDcell-calculated S values agreed well. 64 Cu in the N increases the dose to the N in isolated single cells but has less effect in a cell monolayer or small cluster of cells simulating a micrometastasis

  8. Analysis of neutron dose rates on RGTT200K core using MCNP5

    International Nuclear Information System (INIS)

    Suwoto; Zuhair

    2016-01-01

    The conceptual design of RGTT200K (High Temperature Gas-cooled Reactor of 200 MWth Cogeneration) is the non-annular cylindrical reactor core with TRISO kernel coated fuel particles in the form of balls called pebble and cooled by helium gas. The RGTT200K reactor core design adopts high temperature gas cooled reactor (HTGR) technology with inherent passive safety. The RGTT200K spherical fuel called pebble fuel containing thousand of TRISO-coated fuel particles of uranium oxide (UO 2 ) 10 % enriched. TRISO coating comprises four layers, namely: porous carbon buffer layer, inner pyrolytic carbon layer (IPyC, Inner Pyrolytic Carbon), silicon carbide layer (SiC) and a layer of pyrolytic carbon outer portion (OPyC, Outer Pyrolytic Carbon). Modeling and analysis of preliminary calculation of neutron dose rate on normal operating temperature (T kernel =1200K) and accident temperature (T kernel =1800K) of the RGTT200K core were performed using Monte Carlo MCNP5v1.2 code. The continuous energy nuclear data cross-sections was taken from ENDF/B-VII, JENDL-4 and JEFF-3.1 nuclear data files . Double heterogeneity model in TRISO-coated fuel particles kernel and the pebble of RGTT200K core. By utilizing EGS99304 code, the 640 amount of energy group structures (SAND-II neutron group structures) is used in the neutron fluxes and spectrum calculation in RGTT200K reactor. The RGTT200K reactor core is divided into 25 zones (5 zones in radial and 10 zones in axial directions), while the modeling of radiation and biological shielding reactor RGTT200K are used to determine of preliminary neutron dose rate emitted by the neutron source with tally cards are available in the MCNP5v1.2 code. The calculation result analyses of the neutron dose rate distributions are determined using a conversion factor of flux-to-dose taken from International Commission on Radiological Protection, ICRP. The preliminary calculations result show that the neutrons dose rate using ICRP-74 conversion factor for

  9. Monte Carlo simulation of the response of a pixellated 3D photo-detector in silicon

    CERN Document Server

    Dubaric, E; Froejdh, C; Norlin, B

    2002-01-01

    The charge transport and X-ray photon absorption in three-dimensional (3D) X-ray pixel detectors have been studied using numerical simulations. The charge transport has been modelled using the drift-diffusion simulator MEDICI, while photon absorption has been studied using MCNP. The response of the entire pixel detector system in terms of charge sharing, line spread function and modulation transfer function, has been simulated using a system level Monte Carlo simulation approach. A major part of the study is devoted to the effect of charge sharing on the energy resolution in 3D-pixel detectors. The 3D configuration was found to suppress charge sharing much better than conventional planar detectors.

  10. Single pin BWR benchmark problem for coupled Monte Carlo - Thermal hydraulics analysis

    International Nuclear Information System (INIS)

    Ivanov, A.; Sanchez, V.; Hoogenboom, J. E.

    2012-01-01

    As part of the European NURISP research project, a single pin BWR benchmark problem was defined. The aim of this initiative is to test the coupling strategies between Monte Carlo and subchannel codes developed by different project participants. In this paper the results obtained by the Delft Univ. of Technology and Karlsruhe Inst. of Technology will be presented. The benchmark problem was simulated with the following coupled codes: TRIPOLI-SUBCHANFLOW, MCNP-FLICA, MCNP-SUBCHANFLOW, and KENO-SUBCHANFLOW. (authors)

  11. Single pin BWR benchmark problem for coupled Monte Carlo - Thermal hydraulics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A.; Sanchez, V. [Karlsruhe Inst. of Technology, Inst. for Neutron Physics and Reactor Technology, Herman-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hoogenboom, J. E. [Delft Univ. of Technology, Faculty of Applied Sciences, Mekelweg 15, 2629 JB Delft (Netherlands)

    2012-07-01

    As part of the European NURISP research project, a single pin BWR benchmark problem was defined. The aim of this initiative is to test the coupling strategies between Monte Carlo and subchannel codes developed by different project participants. In this paper the results obtained by the Delft Univ. of Technology and Karlsruhe Inst. of Technology will be presented. The benchmark problem was simulated with the following coupled codes: TRIPOLI-SUBCHANFLOW, MCNP-FLICA, MCNP-SUBCHANFLOW, and KENO-SUBCHANFLOW. (authors)

  12. A practical look at Monte Carlo variance reduction methods in radiation shielding

    Energy Technology Data Exchange (ETDEWEB)

    Olsher, Richard H. [Los Alamos National Laboratory, Los Alamos (United States)

    2006-04-15

    With the advent of inexpensive computing power over the past two decades, applications of Monte Carlo radiation transport techniques have proliferated dramatically. At Los Alamos, the Monte Carlo codes MCNP5 and MCNPX are used routinely on personal computer platforms for radiation shielding analysis and dosimetry calculations. These codes feature a rich palette of Variance Reduction (VR) techniques. The motivation of VR is to exchange user efficiency for computational efficiency. It has been said that a few hours of user time often reduces computational time by several orders of magnitude. Unfortunately, user time can stretch into the many hours as most VR techniques require significant user experience and intervention for proper optimization. It is the purpose of this paper to outline VR strategies, tested in practice, optimized for several common radiation shielding tasks, with the hope of reducing user setup time for similar problems. A strategy is defined in this context to mean a collection of MCNP radiation transport physics options and VR techniques that work synergistically to optimize a particular shielding task. Examples are offered the areas of source definition, skyshine, streaming, and transmission.

  13. A practical look at Monte Carlo variance reduction methods in radiation shielding

    International Nuclear Information System (INIS)

    Olsher, Richard H.

    2006-01-01

    With the advent of inexpensive computing power over the past two decades, applications of Monte Carlo radiation transport techniques have proliferated dramatically. At Los Alamos, the Monte Carlo codes MCNP5 and MCNPX are used routinely on personal computer platforms for radiation shielding analysis and dosimetry calculations. These codes feature a rich palette of Variance Reduction (VR) techniques. The motivation of VR is to exchange user efficiency for computational efficiency. It has been said that a few hours of user time often reduces computational time by several orders of magnitude. Unfortunately, user time can stretch into the many hours as most VR techniques require significant user experience and intervention for proper optimization. It is the purpose of this paper to outline VR strategies, tested in practice, optimized for several common radiation shielding tasks, with the hope of reducing user setup time for similar problems. A strategy is defined in this context to mean a collection of MCNP radiation transport physics options and VR techniques that work synergistically to optimize a particular shielding task. Examples are offered the areas of source definition, skyshine, streaming, and transmission

  14. Homogenized group cross sections by Monte Carlo

    International Nuclear Information System (INIS)

    Van Der Marck, S. C.; Kuijper, J. C.; Oppe, J.

    2006-01-01

    Homogenized group cross sections play a large role in making reactor calculations efficient. Because of this significance, many codes exist that can calculate these cross sections based on certain assumptions. However, the application to the High Flux Reactor (HFR) in Petten, the Netherlands, the limitations of such codes imply that the core calculations would become less accurate when using homogenized group cross sections (HGCS). Therefore we developed a method to calculate HGCS based on a Monte Carlo program, for which we chose MCNP. The implementation involves an addition to MCNP, and a set of small executables to perform suitable averaging after the MCNP run(s) have completed. Here we briefly describe the details of the method, and we report on two tests we performed to show the accuracy of the method and its implementation. By now, this method is routinely used in preparation of the cycle to cycle core calculations for HFR. (authors)

  15. Monte Carlo simulation for the estimation of iron in human whole ...

    Indian Academy of Sciences (India)

    2017-02-10

    Feb 10, 2017 ... Monte Carlo N-particle (MCNP) code has been used to simulate the transport of gamma photon rays ... experimental data, and better than the theoretical XCOM values. ... tions in the materials, according to probability density.

  16. Calibration curves of a PGNAA system for cement raw material analysis using the MCNP code

    International Nuclear Information System (INIS)

    Oliveira, Carlos; Salgado, Jose

    1998-01-01

    In large samples, the γ-ray count rate of a prompt gamma neutron activation analysis system is a multi-variable function of the elemental dry composition, density, water content and thickness of the material. The experimental calibration curves require tremendous laboratory work, using a great number of standards with well-known compositions. Although a Monte Carlo simulation study does not avoid the experimental calibration work, it reduces the number of experimental calibration standards. This paper is part of a feasibility study for a PGNAA system for on-line continuous characterisation of cement raw material conveyed on a belt (Oliveira, C., Salgado, J. and Carvalho, F. G. (1997) Optimisation of PGNAA instrument design for cement raw materials using the MCNP code. J. Radioanal. Nucl. Chem. 216(2), 191-198; Oliveira, C., Salgado, J., Goncalves, I. F., Carvalho, F. G. and Leitao, F. (1997a) A Monte Carlo study of the influence of geometry arrangements and structural materials on a PGNAA system performance for cement raw materials analysis. Appl. Radiat. Isot. (accepted); Oliveira, C., Salgado, J. and Leitao, F. (1997b) Density and water content corrections in the gamma count rate of a PGNAA system for cement raw material analysis using the MCNP code. Appl. Radiat. Isot. (accepted).]. It reports on the influence of the density, mass water content and thickness on the calibration curves of the PGNAA system. The MCNP-4A code, running in a Pentium-PC and in a DEC workstation, was used to simulate the PGNAA configuration system

  17. The performance test of anti-scattering x-ray grid with inclined shielding material by MCNP code simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jun Woo; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2016-06-15

    The scattered photons cause reduction of the contrast of radiographic image and it results in the degradation of the quality of the image. In order to acquire better quality image, an anti-scattering x-ray gird should be equipped in radiography system. The X-ray anti-scattering grid of the inclined type based on the hybrid concept for that of parallel and focused type was tested by MCNP code. The MCNPX 2.7.0 was used for the simulation based test. The geometry for the test was based on the IEC 60627 which was an international standard for diagnostic X-ray imaging equipment-Characteristics of general purpose and mammographic anti-scatter grids. The performance of grids with four inclined shielding material types was compared with that of the parallel type. The grid with completely tapered type the best performance where there were little performance difference according to the degree of inclination.

  18. Visualization of geometry and tally data using MCNP and Justine

    International Nuclear Information System (INIS)

    Cox, L.J.; Favorite, J.A.

    1999-01-01

    The Monte Carlo N-Particle (MCNP) transport code is a general-purpose code that can be used for neutron, photon, electron, or coupled neutron/photon/electron transport, including the capability to calculate eigenvalues for neutron-multiplying systems. The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and fourth-degree elliptical tori. Justine is the graphical user interface and problem setup tool for the Los Alamos Radiation Modeling Interactive Environment (LARAMIE). Its purpose is to serve as a convenient and very general interface for setting up physics calculations and linking together the disparate radiation transport codes under a single front-end. Currently, the LARAMIE system includes MCNP and the deterministic transport code suit DANTSYS (ONEDANT, TWODANT, and THREEDANT, for one-, two-, and three-dimensional geometries, respectively). Justine is currently available through the Radiation Safety Information Computational Center to members of the criticality safety community for evaluation and use. The authors will demonstrate the capabilities of both codes for visualization of geometries and results from a variety of criticality problems

  19. Effects of X-rays spectrum on the dose; Efectos del espectro de rayos X sobre la dosis

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez I, J. L.; Hernandez A, P. L.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Rivera M, T., E-mail: johann_greenday@hotmail.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    The X-ray equipment for diagnosis comes in different sizes and shapes depending on the scan type to perform. The X-ray spectrum is the energy distribution of the beam photons and consists of a continuous spectrum of photons braking and discrete spectrum due to the characteristic photons. The knowledge of the X-rays spectrum is important to understand like they affect the voltage changes (k Vp), current (m A), time (s) and the type of filter in the interaction mechanisms between X-rays and patient's body, the image receptor or other material that gets in the beam. Across the spectrum can be estimated the absorbed dose in any point of the patient, the quality of the image and the scattered radiation (which is related to the dose received by the equipment operator). The Monte Carlo method was used by MCNP5 code to calculate the spectrum of X-rays that occurs when a monoenergetic electron beam of 250 keV interact with targets of Mo, Rh and W. The spectra were calculated with and without filter, and the values of ambient dose equivalent were estimated, as well as the air kerma. (Author)

  20. BREM5 electroweak Monte Carlo

    International Nuclear Information System (INIS)

    Kennedy, D.C. II.

    1987-01-01

    This is an update on the progress of the BREMMUS Monte Carlo simulator, particularly in its current incarnation, BREM5. The present report is intended only as a follow-up to the Mark II/Granlibakken proceedings, and those proceedings should be consulted for a complete description of the capabilities and goals of the BREMMUS program. The new BREM5 program improves on the previous version of BREMMUS, BREM2, in a number of important ways. In BREM2, the internal loop (oblique) corrections were not treated in consistent fashion, a deficiency that led to renormalization scheme-dependence; i.e., physical results, such as cross sections, were dependent on the method used to eliminate infinities from the theory. Of course, this problem cannot be tolerated in a Monte Carlo designed for experimental use. BREM5 incorporates a new way of treating the oblique corrections, as explained in the Granlibakken proceedings, that guarantees renormalization scheme-independence and dramatically simplifies the organization and calculation of radiative corrections. This technique is to be presented in full detail in a forthcoming paper. BREM5 is, at this point, the only Monte Carlo to contain the entire set of one-loop corrections to electroweak four-fermion processes and renormalization scheme-independence. 3 figures

  1. Preliminary scoping study of some neutronic aspects of new shim safety rods for a typical 5 MW research reactor by Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Shoushtari, M.K.; Kakavand, T. [Faculty of Science, University of Zanjan, P.O. BOX 1415, Zanjan (Iran, Islamic Republic of); Ghaforian, H. [Faculty of Science and Technology of Marine, P.O. BOX 212 Tehran (Iran, Islamic Republic of); Kiai, S.M. Sadat [Nuclear Science and Technology Research Institute (NSTR), Nuclear Science Research, A.E.O.I. P.O. BOX 14155-1339, Tehran (Iran, Islamic Republic of)], E-mail: sadatkiai@yahoo.com

    2009-02-15

    A Monte Carlo simulation of a typical 5 MW research reactor (TRR) was carried out using MCNP4C code. The geometry of the reactor core was modeled including the details of all fuel elements, control rods, all irradiation channels, graphite reflectors, reactor pool and thermal column. The model predicted neutron flux distributions within the core, control rod (CR) worth, core reactivity ({rho}), shutdown margin, and some kinetic parameters when the control rod insert or withdraw. This study was carried out to reduce blockage probability of shim safety rod (SSR)s of the TRR. Two introduced more blackness SSRs were chosen and made thinner in a way adequate blackness, in comparison to the present rods, achieved.

  2. Installation of MCNP on 64-bit parallel computers

    International Nuclear Information System (INIS)

    Meginnis, A.B.; Hendricks, J.S.; McKinney, G.W.

    1995-01-01

    The Monte Carlo radiation transport code MCNP has been successfully ported to two 64-bit workstations, the SGI and DEC Alpha. We found the biggest problem for installation on these machines to be Fortran and C mismatches in argument passing. Correction of these mismatches enabled, for the first time, dynamic memory allocation on 64-bit workstations. Although the 64-bit hardware is faster because 8-bytes are processed at a time rather than 4-bytes, we found no speed advantage in true 64-bit coding versus implicit double precision when porting an existing code to the 64-bit workstation architecture. We did find that PVM multiasking is very successful and represents a significant performance enhancement for scientific workstations

  3. Optimization study of ultracold neutron sources at TRIGA reactors using MCNP

    International Nuclear Information System (INIS)

    Pokotilovskij, Yu.N.; Rogov, A.D.

    1997-01-01

    Monte Carlo simulation for the optimization of ultracold and very cold neutron sources for TRIGA reactors is performed. The calculations of thermal and cold neutron fluxes from the TRIGA reactor for different positions and configurations of a very cold solid methane moderator were performed with using the MCNP program. The production of neutrons in the ultracold and very cold energy range was calculated for the most promising final moderators (converters): very cold solid deuterium and heavy methane. The radiation energy deposition was calculated for the optimized solid methane-heavy methane cold neutron moderator

  4. TU-H-CAMPUS-IeP1-02: Validation of a CT Monte Carlo Software

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R; Wulff, J; Penchev, P [Technische Hochschule Mittelhessen - University of Applied Sciences, Giessen (Germany); Zink, K [Technische Hochschule Mittelhessen - University of Applied Sciences, Giessen (Germany); University Medical Center Giessen and Marburg, Marburg (Germany)

    2016-06-15

    Purpose: To validate the in-house developed CT Monte Carlo calculation tool GMctdospp against reference simulation sets provided by the AAPM in the new report 195. Methods: Deposited energy was calculated in four segments (test 1) and two 10 cm long cylinders (test 2) inside a CTDI phantom (following case #4 of the AAPM report 195). The x-ray point source of a given 120 kVp spectrum was collimated to a fan beam with two thicknesses (10 mm, 80 mm) for a static and a rotational setup. In addition, a given chest geometry was used to calculate deposited energy in several organs for a 0° static and a rotational beam (following case #5 of the AAPM report 195). The results of GMctdospp were compared against the particular mean value of the four quoted Monte Carlo codes (EGSnrc, Geant 4, MCNP and Penelope). Results: Calculated values showed no outliers in any of the cases. Differences between GMctdospp and the particular mean Results: Calculated values showed no outliers in any of the cases. Differences between GMctdospp and the particular mean value were always at similar magnitude compared to the quoted codes. For case #4 (CTDI phantom) the relative differences were within 1.5 %, on average 0.4 % and for case #5 (chest phantom) within 2.5 % and on average 0.85 %. Conclusion: The results confirmed an overall uncertainty of the Monte-Carlo calculation chain in GMctdospp being <2.5 %, for most cases even better. This can be considered small compared to other sources of uncertainties, e.g. virtual source and patient models. The photon transport implemented in GMctdospp inside a voxel-based patient geometry was successfully verified.

  5. MCNP modelling of the wall effects observed in tissue-equivalent proportional counters.

    Science.gov (United States)

    Hoff, J L; Townsend, L W

    2002-01-01

    Tissue-equivalent proportional counters (TEPCs) utilise tissue-equivalent materials to depict homogeneous microscopic volumes of human tissue. Although both the walls and gas simulate the same medium, they respond to radiation differently. Density differences between the two materials cause distortions, or wall effects, in measurements, with the most dominant effect caused by delta rays. This study uses a Monte Carlo transport code, MCNP, to simulate the transport of secondary electrons within a TEPC. The Rudd model, a singly differential cross section with no dependence on electron direction, is used to describe the energy spectrum obtained by the impact of two iron beams on water. Based on the models used in this study, a wall-less TEPC had a higher lineal energy (keV.micron-1) as a function of impact parameter than a solid-wall TEPC for the iron beams under consideration. An important conclusion of this study is that MCNP has the ability to model the wall effects observed in TEPCs.

  6. About the application of MCNP4 code in nuclear reactor core design calculations

    International Nuclear Information System (INIS)

    Svarny, J.

    2000-01-01

    This paper provides short review about application of MCNP code for reactor physics calculations performed in SKODA JS. Problems of criticality safety analysis of spent fuel systems for storage and transport of spent fuel are discussed and relevant applications are presented. Application of standard Monte Carlo code for accelerator driven system for LWR waste destruction is shown and conclusions are reviewed. Specific heterogeneous effects in neutron balance of WWER nuclear cores are solved for adjusting standard design codes. (Authors)

  7. Comparison of deterministic and Monte Carlo methods in shielding design.

    Science.gov (United States)

    Oliveira, A D; Oliveira, C

    2005-01-01

    In shielding calculation, deterministic methods have some advantages and also some disadvantages relative to other kind of codes, such as Monte Carlo. The main advantage is the short computer time needed to find solutions while the disadvantages are related to the often-used build-up factor that is extrapolated from high to low energies or with unknown geometrical conditions, which can lead to significant errors in shielding results. The aim of this work is to investigate how good are some deterministic methods to calculating low-energy shielding, using attenuation coefficients and build-up factor corrections. Commercial software MicroShield 5.05 has been used as the deterministic code while MCNP has been used as the Monte Carlo code. Point and cylindrical sources with slab shield have been defined allowing comparison between the capability of both Monte Carlo and deterministic methods in a day-by-day shielding calculation using sensitivity analysis of significant parameters, such as energy and geometrical conditions.

  8. Comparison of deterministic and Monte Carlo methods in shielding design

    International Nuclear Information System (INIS)

    Oliveira, A. D.; Oliveira, C.

    2005-01-01

    In shielding calculation, deterministic methods have some advantages and also some disadvantages relative to other kind of codes, such as Monte Carlo. The main advantage is the short computer time needed to find solutions while the disadvantages are related to the often-used build-up factor that is extrapolated from high to low energies or with unknown geometrical conditions, which can lead to significant errors in shielding results. The aim of this work is to investigate how good are some deterministic methods to calculating low-energy shielding, using attenuation coefficients and build-up factor corrections. Commercial software MicroShield 5.05 has been used as the deterministic code while MCNP has been used as the Monte Carlo code. Point and cylindrical sources with slab shield have been defined allowing comparison between the capability of both Monte Carlo and deterministic methods in a day-by-day shielding calculation using sensitivity analysis of significant parameters, such as energy and geometrical conditions. (authors)

  9. Using MCNP code for neutron and photon skyshine analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zharkov, V.P.; Dikareva, O.F.; Kartashev, I.A.; Kiselev, A.N.; Netecha, M.E. [Research and Development Inst. of Power Engineering, Moscow (Russian Federation); Nomura, Y.; Tsubosaka, A. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2000-03-01

    The MCNP Monte-Carlo code was used for the investigation of the sensitivity of neutron and neutron-induced secondary photon dose rate, total and thermal neutron fluxes and space-energy distributions to energy and angular distribution of radiation source, to thickness and composition of the ground, air density (including it changing with height), humidities of air and ground, thermalization effects, detector's dimension and its disposal above the ground level. The calculations were performed with the assumption that the source or released radiation into the atmosphere can be treated as a point source and the source containment structure has a negligible perturbation on the skyshine radiation field. (author)

  10. An experimental and Monte Carlo investigation of the energy dependence of alanine/EPR dosimetry: I. Clinical x-ray beams

    International Nuclear Information System (INIS)

    Zeng, G G; McEwen, M R; Rogers, D W O; Klassen, N V

    2004-01-01

    The energy dependence of alanine/EPR dosimetry, in terms of absorbed dose-to-water for clinical 6, 10, 25 MV x-rays and 60 Co rays was investigated by measurements and Monte Carlo (MC) calculations. The dose rates were traceable to the NRC primary standard for absorbed dose, a sealed water calorimetry. The electron paramagnetic resonance (EPR) spectra of irradiated pellets were measured using a Bruker EMX 081 EPR spectrometer. The DOSRZnrc Monte Carlo code of the EGSnrc system was used to simulate the experimental conditions with BEAM code calculated input spectra of x-rays and γ-rays. Within the experimental uncertainty of 0.5%, the alanine EPR response to absorbed dose-to-water for x-rays was not dependent on beam quality from 6 MV to 25 MV, but on average, it was about 0.6% lower than its response to 60 Co gamma rays. Combining experimental data with Monte Carlo calculations, it is found that the alanine/EPR response per unit absorbed dose-to-alanine is the same for clinical x-rays and 60 Co gamma rays within the uncertainty of 0.6%. Monte Carlo simulations showed that neither the presence of PMMA holder nor varying the dosimeter thickness between 1 mm and 5 mm has significant effect on the energy dependence of alanine/EPR dosimetry within the calculation uncertainty of 0.3%

  11. Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code.

    Science.gov (United States)

    Yoriyaz, H; dos Santos, A; Stabin, M G; Cabezas, R

    2000-07-01

    A new approach for calculating internal dose estimates was developed through the use of a more realistic computational model of the human body. The present technique shows the capability to build a patient-specific phantom with tomography data (a voxel-based phantom) for the simulation of radiation transport and energy deposition using Monte Carlo methods such as in the MCNP-4B code. MCNP-4B absorbed fractions for photons in the mathematical phantom of Snyder et al. agreed well with reference values. Results obtained through radiation transport simulation in the voxel-based phantom, in general, agreed well with reference values. Considerable discrepancies, however, were found in some cases due to two major causes: differences in the organ masses between the phantoms and the occurrence of organ overlap in the voxel-based phantom, which is not considered in the mathematical phantom.

  12. Present status of Monte Carlo seminar for sub-criticality safety analysis in Japan

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi

    2003-01-01

    This paper provides overview of the methods and results of a series of sub-criticality safety analysis seminars for nuclear fuel cycle facility with the Monte Carlo method held in Japan from July 2000 to July 2003. In these seminars, MCNP-4C2 system (MS-DOS version) was installed in note-type personal computers for participants. Fundamental theory of reactor physics and Monte Carlo simulation as well as the contents of the MCNP manual were lectured. Effective neutron multiplication factors and neutron spectra were calculated for some examples such as JCO deposit tank, JNC uranium solution storage tank, JNC plutonium solution storage tank and JAERI TCA core. Management for safety of nuclear fuel cycle facilities was discussed in order to prevent criticality accidents in some of the seminars. (author)

  13. A keff calculation method by Monte Carlo

    International Nuclear Information System (INIS)

    Shen, H; Wang, K.

    2008-01-01

    The effective multiplication factor (k eff ) is defined as the ratio between the number of neutrons in successive generations, which definition is adopted by most Monte Carlo codes (e.g. MCNP). Also, it can be thought of as the ratio of the generation rate of neutrons by the sum of the leakage rate and the absorption rate, which should exclude the effect of the neutron reaction such as (n, 2n) and (n, 3n). This article discusses the Monte Carlo method for k eff calculation based on the second definition. A new code has been developed and the results are presented. (author)

  14. Monte Carlo validation of self shielding and void effect calculations

    International Nuclear Information System (INIS)

    Tellier, H.; Coste, M.; Raepsaet, C.; Soldevila, M.; Van der Gucht, C.

    1995-01-01

    The self shielding validation and the void effect are studied with Monte Carlo method. The satisfactory comparison obtained between the APOLLO 2 results of the self shielding effect and the TRIPOLI and MCNP results allows us to be confident in the multigroup transport code. (K.A.)

  15. An experimental test on large animals of MCNP application for whole body counting

    International Nuclear Information System (INIS)

    Borisov, N.; Yatsenko, V.; Kochetkov, O.; Gusev, I.; Vlasov, P.; Kalistratova, V.; Nisimov, P.; Levochkin, F.; Borovkov, M.; Stolyarov, V.; Tsedish, S.; Tyurin, I.; Franck, D.; Carlan, L. de

    2005-01-01

    Measurements of actinide body burden using whole body counting spectrometry is hampered due to intensive absorption of γ-rays inside the patient's body, which depends on the anatomy of a patient. To establish the correspondence between pulse-height-spectra intensity and radionuclide activity, Monte Carlo calculations are widely used. For such calculations, the radiation transport geometry is usually described in terms of small rectangular boxes (voxels) retrieved from computed tomography or magnetic resonance images. The software for Monte Carlo-assisted calibration of whole body counting, which performs automatic creation of individual MCNP voxel phantoms, was checked in a quasi-in vivo experiment on large animals. During the experiment, pigs of 35-40 kg body mass were used as phantoms for measurement of actinides body burden. 241 Am was administered (via injection of a radioactive solution or via implantation of plastic capsules containing the radioactive material) into the lungs of pigs. The pigs were measured using the pure germanium low-energy γ-spectrometers. The images of animals were obtained using the computed tomography machine. On the base of these tomograms, MCNP4c2 calculations were done to obtain the pulse-height-spectra of the whole body counters. The experimental results were reproduced in calculations with error of less than 30% for 241 Am administered via injection and less than 10% for 241 Am administered inside the capsules. (authors)

  16. MCNP6 simulation of reactions of interest to FRIB, medical, and space applications

    International Nuclear Information System (INIS)

    Mashnik, Stepan G.

    2015-01-01

    The latest production-version of the Los Alamos Monte Carlo N-Particle transport code MCNP6 has been used to simulate a variety of particle-nucleus and nucleus-nucleus reactions of academic and applied interest to research subjects at the Facility for Rare Isotope Beams (FRIB), medical isotope production, space-radiation shielding, cosmic-ray propagation, and accelerator applications, including several reactions induced by radioactive isotopes, analyzing production of both stable and radioactive residual nuclei. Here, we discuss examples of validation and verification of MCNP6 by comparing with recent neutron spectra measured at the Heavy Ion Medical Accelerator in Chiba, Japan; spectra of light fragments from several reactions measured recently at GANIL, France; INFN Laboratori Nazionali del Sud, Catania, Italy; COSY of the Jülich Research Center, Germany; and cross sections of products from several reactions measured lately at GSI, Darmstadt, Germany; ITEP, Moscow, Russia; and, LANSCE, LANL, Los Alamos, U.S.A. As a rule, MCNP6 provides quite good predictions for most of the reactions we analyzed so far, allowing us to conclude that it can be used as a reliable and useful simulation tool for various applications for FRIB, medical, and space applications involving stable and radioactive isotopes. (author)

  17. Comparative assessment of different approaches for the use of CAD geometry in Monte Carlo transport calculations

    International Nuclear Information System (INIS)

    Weinhorst, Bastian; Fischer, Ulrich; Lu, Lei; Qiu, Yuefeng; Wilson, Paul

    2015-01-01

    Highlights: • Comparison of different approaches for the use of CAD geometry for Monte Carlo transport calculations. • Comparison with regard to user-friendliness and computation performance. • Three approaches, namely conversion with McCad, unstructured mesh feature of MCN6 and DAGMC. • Installation most complex for DAGMC, model preparation worst for McCad, computation performance worst for MCNP6. • Installation easiest for McCad, model preparation best for MCNP6, computation speed fastest for McCad. - Abstract: Computer aided design (CAD) is an important industrial way to produce high quality designs. Therefore, CAD geometries are in general used for engineering and the design of complex facilities like the ITER tokamak. Although Monte Carlo codes like MCNP are well suited to handle the complex 3D geometry of ITER for transport calculations, they rely on their own geometry description and are in general not able to directly use the CAD geometry. In this paper, three different approaches for the use of CAD geometries with MCNP calculations are investigated and assessed with regard to calculation performance and user-friendliness. The first method is the conversion of the CAD geometry into MCNP geometry employing the conversion software McCad developed by KIT. The second approach utilizes the MCNP6 mesh geometry feature for the particle tracking and relies on the conversion of the CAD geometry into a mesh model. The third method employs DAGMC, developed by the University of Wisconsin-Madison, for the direct particle tracking on the CAD geometry using a patched version of MCNP. The obtained results show that each method has its advantages depending on the complexity and size of the model, the calculation problem considered, and the expertise of the user.

  18. Comparative assessment of different approaches for the use of CAD geometry in Monte Carlo transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Weinhorst, Bastian, E-mail: bastian.weinhorst@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology, Eggenstein-Leopoldshafen (Germany); Fischer, Ulrich; Lu, Lei; Qiu, Yuefeng [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology, Eggenstein-Leopoldshafen (Germany); Wilson, Paul [University of Wisconsin-Madison, Computational Nuclear Engineering Research Group, Madison, WI (United States)

    2015-10-15

    Highlights: • Comparison of different approaches for the use of CAD geometry for Monte Carlo transport calculations. • Comparison with regard to user-friendliness and computation performance. • Three approaches, namely conversion with McCad, unstructured mesh feature of MCN6 and DAGMC. • Installation most complex for DAGMC, model preparation worst for McCad, computation performance worst for MCNP6. • Installation easiest for McCad, model preparation best for MCNP6, computation speed fastest for McCad. - Abstract: Computer aided design (CAD) is an important industrial way to produce high quality designs. Therefore, CAD geometries are in general used for engineering and the design of complex facilities like the ITER tokamak. Although Monte Carlo codes like MCNP are well suited to handle the complex 3D geometry of ITER for transport calculations, they rely on their own geometry description and are in general not able to directly use the CAD geometry. In this paper, three different approaches for the use of CAD geometries with MCNP calculations are investigated and assessed with regard to calculation performance and user-friendliness. The first method is the conversion of the CAD geometry into MCNP geometry employing the conversion software McCad developed by KIT. The second approach utilizes the MCNP6 mesh geometry feature for the particle tracking and relies on the conversion of the CAD geometry into a mesh model. The third method employs DAGMC, developed by the University of Wisconsin-Madison, for the direct particle tracking on the CAD geometry using a patched version of MCNP. The obtained results show that each method has its advantages depending on the complexity and size of the model, the calculation problem considered, and the expertise of the user.

  19. Verification and validation of a multi-temperature JEFF 3.1 library for MCNP(X) - JEF/DOC-1099

    Energy Technology Data Exchange (ETDEWEB)

    Haeck, W; Verboomen, B

    2005-11-15

    all that experience and decide upon our own approach. At this point we can already draw a st important conclusion: documentation is of key importance. This has resulted in the creation of ALEPH-LIB (a multi-temperature library for standard use by MCNP(X)) and ALEPH-DLG (Data Library Generator). The temperatures included in the ALEPH-LIB library are 300, 600, 900, 1200, 1500 and 1800 K. Library files were produced using the JEF 2.2, JEFF 3.0, JEFF 3.1, JENDL 3.3 and ENDF/B-VI.8 nuclear data evaluations. This will be extended with ENDF/B-VII when it becomes available. ALEPH-DLG is an auxiliary computer code to ALEPH, the Monte Carlo burn-up interface code under development at SCK CEN in collaboration with Ghent university. This code automates the entire process of generating library files with NJOY and takes care of the st requirement of a validated application library: verify the processing. It produces tailor made NJOY input files using data from the original ENDF file (such as initial temperature, the fact if the nuclide is fissile or if it has unresolved resonances, . . . ) When the library files have been generated, ALEPH-DLG will also process the output from NJOY. It will extract all messages and warnings from NJOY and print out a short explanation of the message in question, it will test the unresolved resonance probability tables (to see if there are any negative cross sections, . . . ), . . . If ALEPH-DLG finds anything out of the ordinary, it will warn the user or perform corrective actions. In what follows we will briefly explain the verification process as it is implemented into ALEPH-DLG and give a summary of the results of this verification on the JEFF 3.1 files included in ALEPH-LIB. We will also present some results of the validation effort that we are performing on ALEPH-LIB using the Lawrence Livermore pulsed sphere experiments. These pulsed spheres can be used to validate nuclear data at high energy (above 2 MeV), mainly threshold reactions, inelastic

  20. Verification and validation of a multi-temperature JEFF 3.1 library for MCNP(X) - JEF/DOC-1099

    International Nuclear Information System (INIS)

    Haeck, W.; Verboomen, B.

    2005-11-01

    all that experience and decide upon our own approach. At this point we can already draw a st important conclusion: documentation is of key importance. This has resulted in the creation of ALEPH-LIB (a multi-temperature library for standard use by MCNP(X)) and ALEPH-DLG (Data Library Generator). The temperatures included in the ALEPH-LIB library are 300, 600, 900, 1200, 1500 and 1800 K. Library files were produced using the JEF 2.2, JEFF 3.0, JEFF 3.1, JENDL 3.3 and ENDF/B-VI.8 nuclear data evaluations. This will be extended with ENDF/B-VII when it becomes available. ALEPH-DLG is an auxiliary computer code to ALEPH, the Monte Carlo burn-up interface code under development at SCK CEN in collaboration with Ghent university. This code automates the entire process of generating library files with NJOY and takes care of the st requirement of a validated application library: verify the processing. It produces tailor made NJOY input files using data from the original ENDF file (such as initial temperature, the fact if the nuclide is fissile or if it has unresolved resonances, . . . ) When the library files have been generated, ALEPH-DLG will also process the output from NJOY. It will extract all messages and warnings from NJOY and print out a short explanation of the message in question, it will test the unresolved resonance probability tables (to see if there are any negative cross sections, . . . ), . . . If ALEPH-DLG finds anything out of the ordinary, it will warn the user or perform corrective actions. In what follows we will briefly explain the verification process as it is implemented into ALEPH-DLG and give a summary of the results of this verification on the JEFF 3.1 files included in ALEPH-LIB. We will also present some results of the validation effort that we are performing on ALEPH-LIB using the Lawrence Livermore pulsed sphere experiments. These pulsed spheres can be used to validate nuclear data at high energy (above 2 MeV), mainly threshold reactions, inelastic

  1. NJOY processed multigroup library for fast reactor applications and point data library for MCNP - Experience and validation

    International Nuclear Information System (INIS)

    Kim Jung-Do; Gil Choong-Sup

    1996-01-01

    JEF-1-based 50-group cross section library for fast reactor applications and point data library for continuous-energy Monte Carlo code MCNP have been generated using NJOY91.38 system. They have been examined by analyzing measured integral quantities such as criticality and central reaction rate ratios for 8 small fast critical assemblies. (author). 9 refs, 2 figs, 10 tabs

  2. Modelling of the RA-1 reactor using a Monte Carlo code; Modelado del reactor RA-1 utilizando un codigo Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Quinteiro, Guillermo F; Calabrese, Carlos R [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Reactores y Centrales Nucleares

    2000-07-01

    It was carried out for the first time, a model of the Argentine RA-1 reactor using the MCNP Monte Carlo code. This model was validated using data for experimental neutron and gamma measurements at different energy ranges and locations. In addition, the resulting fluxes were compared with the data obtained using a 3D diffusion code. (author)

  3. Full Core Criticality Modeling of Gas-Cooled Fast Reactor Using the SCALE6.0 and MCNP5 Code Packages

    International Nuclear Information System (INIS)

    Matijevic, M.; Jecmenica, R.; Pevec, D.; Trontl, K.

    2012-01-01

    The Gas-Cooled Fast Reactor (GFR) is one of the reactor concepts selected by the Generation IV International Forum (GIF) for the next generation of innovative nuclear energy systems. It was selected among a group of more than 100 prototypes and his commercial availability is expected by 2030. GFR has common goals of the rest GIF advanced reactor types: economy, safety, proliferation resistance, availability and sustainability. Several GFR fuel design concepts such as plates, rod pins and pebbles are currently being investigated in order to meet the high temperature constraints characteristic for a GFR working enviroment. In the previous study we have compared the fuel depletion results for heterogeneous GFR fuel assembly (FA), obtained with TRITON6 sequence of SCALE6.0 code system, with the MCNPX-CINDER90 and TRIPOLI-4-D codes. Present work is a continuation of neutronic criticality analysis of heterogeneous FA and full core configurations of a GFR concept using 3-D Monte Carlo codes KENO-VI/SCALE6.0 and MCNP5. The FA is based on a hexagonal mesh of fuel rods (uranium and plutonium carbide fuel, silicon carbide clad, helium gas coolant) with axial reflector thickness being varied for the purpose of optimization. Three reflector materials were analysed: zirconium carbide (ZrC), silicon carbide (SiC) and natural uranium. ZrC has been selected as a reflector material, having the best contribution to the neutron economy and to the reactivity of the core. The core safety parameters were also analysed: a negative temperature coefficient of reactivity was verified for the heavy metal fuel and coolant density loss. Criticality calculations of different FA active heights were performed and the reflector thickness was also adjusted. Finally, GFR full core criticality calculations using different active fuel rod heights and fixed ZrC reflector height were done to find the optimal height of the core. The Shannon entropy of the GFR core fission distribution was proved to be

  4. Methodology for converting CT medical images to MCNP input using the Scan2MCNP system

    International Nuclear Information System (INIS)

    Boia, L.S.; Silva, A.X.; Cardoso, S.C.; Castro, R.C.

    2009-01-01

    This paper develops a methodology for the application software Scan2MCNP, which converts medical images DICOM (Digital Imaging and Communications in Medicine) for MCNP input file. The Scan2MCNP handles, processes and executes the medical images generated by CT equipment, allowing the user to perform the selection and parameterization of the study area in question (tissues and organs). The details of these worked in medical imaging software, therefore, will be converted to equity to the process of language analysis of MCNP radiation transport, through the generation of a code input file. With this file, it is possible to simulate any situation/problem of the type and level of radiation to the proposed treatment chosen by the medical staff responsible for the patient. Within a computational process oriented, the Scan2MCNP can contribute along with other software that has been used recently in the area of medical physics, to improve the levels of quality and precision of radiotherapy treatments. In this work, medical images DICOM of the Anthropomorphic Rando Phantom were used in the process of analysis and development of computer software Scan2MCNP. However, it emphasized that the software is successful in certain situations, depending upon a number of auxiliary procedures and software that can help in the solution of certain problems in the natural radiation treatment or express agility by the team of medical physics. (author)

  5. Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations

    International Nuclear Information System (INIS)

    Garcia-Herranz, Nuria; Cabellos, Oscar; Sanz, Javier; Juan, Jesus; Kuijper, Jim C.

    2008-01-01

    Two methodologies to propagate the uncertainties on the nuclide inventory in combined Monte Carlo-spectrum and burn-up calculations are presented, based on sensitivity/uncertainty and random sampling techniques (uncertainty Monte Carlo method). Both enable the assessment of the impact of uncertainties in the nuclear data as well as uncertainties due to the statistical nature of the Monte Carlo neutron transport calculation. The methodologies are implemented in our MCNP-ACAB system, which combines the neutron transport code MCNP-4C and the inventory code ACAB. A high burn-up benchmark problem is used to test the MCNP-ACAB performance in inventory predictions, with no uncertainties. A good agreement is found with the results of other participants. This benchmark problem is also used to assess the impact of nuclear data uncertainties and statistical flux errors in high burn-up applications. A detailed calculation is performed to evaluate the effect of cross-section uncertainties in the inventory prediction, taking into account the temporal evolution of the neutron flux level and spectrum. Very large uncertainties are found at the unusually high burn-up of this exercise (800 MWd/kgHM). To compare the impact of the statistical errors in the calculated flux with respect to the cross uncertainties, a simplified problem is considered, taking a constant neutron flux level and spectrum. It is shown that, provided that the flux statistical deviations in the Monte Carlo transport calculation do not exceed a given value, the effect of the flux errors in the calculated isotopic inventory are negligible (even at very high burn-up) compared to the effect of the large cross-section uncertainties available at present in the data files

  6. Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Herranz, Nuria [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain)], E-mail: nuria@din.upm.es; Cabellos, Oscar [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain); Sanz, Javier [Departamento de Ingenieria Energetica, Universidad Nacional de Educacion a Distancia, UNED (Spain); Juan, Jesus [Laboratorio de Estadistica, Universidad Politecnica de Madrid, UPM (Spain); Kuijper, Jim C. [NRG - Fuels, Actinides and Isotopes Group, Petten (Netherlands)

    2008-04-15

    Two methodologies to propagate the uncertainties on the nuclide inventory in combined Monte Carlo-spectrum and burn-up calculations are presented, based on sensitivity/uncertainty and random sampling techniques (uncertainty Monte Carlo method). Both enable the assessment of the impact of uncertainties in the nuclear data as well as uncertainties due to the statistical nature of the Monte Carlo neutron transport calculation. The methodologies are implemented in our MCNP-ACAB system, which combines the neutron transport code MCNP-4C and the inventory code ACAB. A high burn-up benchmark problem is used to test the MCNP-ACAB performance in inventory predictions, with no uncertainties. A good agreement is found with the results of other participants. This benchmark problem is also used to assess the impact of nuclear data uncertainties and statistical flux errors in high burn-up applications. A detailed calculation is performed to evaluate the effect of cross-section uncertainties in the inventory prediction, taking into account the temporal evolution of the neutron flux level and spectrum. Very large uncertainties are found at the unusually high burn-up of this exercise (800 MWd/kgHM). To compare the impact of the statistical errors in the calculated flux with respect to the cross uncertainties, a simplified problem is considered, taking a constant neutron flux level and spectrum. It is shown that, provided that the flux statistical deviations in the Monte Carlo transport calculation do not exceed a given value, the effect of the flux errors in the calculated isotopic inventory are negligible (even at very high burn-up) compared to the effect of the large cross-section uncertainties available at present in the data files.

  7. Flow regime identification methodology with MCNP-X code and artificial neural network

    International Nuclear Information System (INIS)

    Salgado, Cesar M.; Instituto de Engenharia Nuclear; Schirru, Roberto; Brandao, Luis E.B.; Pereira, Claudio M.N.A.

    2009-01-01

    This paper presents flow regimes identification methodology in multiphase system in annular, stratified and homogeneous oil-water-gas regimes. The principle is based on recognition of the pulse height distributions (PHD) from gamma-ray with supervised artificial neural network (ANN) systems. The detection geometry simulation comprises of two NaI(Tl) detectors and a dual-energy gamma-ray source. The measurement of scattered radiation enables the dual modality densitometry (DMD) measurement principle to be explored. Its basic principle is to combine the measurement of scattered and transmitted radiation in order to acquire information about the different flow regimes. The PHDs obtained by the detectors were used as input to ANN. The data sets required for training and testing the ANN were generated by the MCNP-X code from static and ideal theoretical models of multiphase systems. The ANN correctly identified the three different flow regimes for all data set evaluated. The results presented show that PHDs examined by ANN may be applied in the successfully flow regime identification. (author)

  8. Monte Carlo calculation of dose rate conversion factors for external exposure to photon emitters in soil

    CERN Document Server

    Clouvas, A; Antonopoulos-Domis, M; Silva, J

    2000-01-01

    The dose rate conversion factors D/sub CF/ (absorbed dose rate in air per unit activity per unit of soil mass, nGy h/sup -1/ per Bq kg/sup -1/) are calculated 1 m above ground for photon emitters of natural radionuclides uniformly distributed in the soil. Three Monte Carlo codes are used: 1) The MCNP code of Los Alamos; 2) The GEANT code of CERN; and 3) a Monte Carlo code developed in the Nuclear Technology Laboratory of the Aristotle University of Thessaloniki. The accuracy of the Monte Carlo results is tested by the comparison of the unscattered flux obtained by the three Monte Carlo codes with an independent straightforward calculation. All codes and particularly the MCNP calculate accurately the absorbed dose rate in air due to the unscattered radiation. For the total radiation (unscattered plus scattered) the D/sub CF/ values calculated from the three codes are in very good agreement between them. The comparison between these results and the results deduced previously by other authors indicates a good ag...

  9. Simulation of X-ray irradiation on human hand

    International Nuclear Information System (INIS)

    Amaya, Fabiola; Montoya, Modesto

    2001-01-01

    Using the Monte Carlo code MCNP we simulate a human hand X-rays irradiation with radiodiagnostic energies to find the better range energy to make radiographs with the lowest dose and an optimal contrast. We calculate bone doses by considering a soft tissue - water - and calcium bone hand, which is irradiated with a million of X-rays photons from a punctual source. These photons are directed inside a conic angle on the hand. Afterwards, we simulate elements which normally compose bones (C, H, O, N, Mg, P, Ca, and S). We estimate bone dose considering: a) bone material (water, calcium and bone tissue); b) bone thickness (0.01; 0.1; 0.5; 1.0; 1.5 and 3.0 cm); and c) source-hand distance (30, 50, 70 and 90 cm). We calculate photon transmission percent through soft tissue and bone tissue and the statistics from the number of photons that reach the radiographic film after passing through soft tissue or bone tissue for our geometric configuration. We found that we can obtain a good image contrast by using X-rays with energies in the range of 20 to 40 keV. (author)

  10. MCNP Progress & Performance Improvements

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bull, Jeffrey S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-14

    Twenty-eight slides give information about the work of the US DOE/NNSA Nuclear Criticality Safety Program on MCNP6 under the following headings: MCNP6.1.1 Release, with ENDF/B-VII.1; Verification/Validation; User Support & Training; Performance Improvements; and Work in Progress. Whisper methodology will be incorporated into the code, and run speed should be increased.

  11. The effects of nuclear data library processing on Geant4 and MCNP simulations of the thermal neutron scattering law

    Science.gov (United States)

    Hartling, K.; Ciungu, B.; Li, G.; Bentoumi, G.; Sur, B.

    2018-05-01

    Monte Carlo codes such as MCNP and Geant4 rely on a combination of physics models and evaluated nuclear data files (ENDF) to simulate the transport of neutrons through various materials and geometries. The grid representation used to represent the final-state scattering energies and angles associated with neutron scattering interactions can significantly affect the predictions of these codes. In particular, the default thermal scattering libraries used by MCNP6.1 and Geant4.10.3 do not accurately reproduce the ENDF/B-VII.1 model in simulations of the double-differential cross section for thermal neutrons interacting with hydrogen nuclei in a thin layer of water. However, agreement between model and simulation can be achieved within the statistical error by re-processing ENDF/B-VII.I thermal scattering libraries with the NJOY code. The structure of the thermal scattering libraries and sampling algorithms in MCNP and Geant4 are also reviewed.

  12. Evaluation of the OSCAR-4/MCNP calculation methodology for radioisotope production in the SAFARI-1 reactor

    International Nuclear Information System (INIS)

    Karriem, Z.; Zamonsky, O.M.

    2014-01-01

    The South African Nuclear Energy Corporation SOC Ltd (Necsa) is a state owned nuclear facility which owns and operates SAFARI-1, a 20 MW material testing reactor. SAFARI-1 is a multi-purpose reactor and is used for the production of radioisotopes through in-core sample irradiation. The Radiation and Reactor Theory (RRT) Section of Necsa supports SAFARI-1 operations with nuclear engineering analyses which include core-reload design, core-follow and radiation transport analyses. The primary computer codes that are used for the analyses are the OSCAR-4 nodal diffusion core simulator and the Monte Carlo transport code MCNP. RRT has developed a calculation methodology based on OSCAR-4 and MCNP to simulate the diverse in-core irradiation conditions in SAFARI-1, for the purpose of radioisotope production. In this paper we present the OSCAR-4/MCNP calculation methodology and the software tools that were developed for rapid and reliable construction of MCNP analysis models. The paper will present the application and accuracy of the methodology for the production of yttrium-90 ( 90 Y) and will include comparisons between calculation results and experimental measurements. The paper will also present sensitivity analyses that were performed to determine the effects of control rod bank position, representation of core depletion state and sample loading configuration, on the calculated 90 Y sample activity. (author)

  13. Application of dose evaluation of the MCNP code for interim spent fuel cask storage facility

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Iimoto, Takeshi; Ishikawa, Satoshi; Tsuboi, Takafumi; Teramura, Masahiro; Okamura, Tomomi; Narumiya, Yoshiyuki

    2007-01-01

    The interim storage facility for spent fuel metallic cask is designed as a concrete building structure with air inlet and outlet for circulating the natural cooling. The feature of the interim storage facility is big capacity of spent fuel at several thousands MTU and restricted site usage. It is important to evaluate realistic dose rate in shielding design of the interim storage facility, therefore the three-dimensional continuous-energy Monte Carlo radiation transport code MCNP that exactly treating the complicated geometry was applied. The validation of dose evaluation for interim storage facility by MCNP code were performed by three kinds of neutron shielding benchmark experiments; cask shadow shielding experiment, duct streaming experiment and concrete deep penetration experiment. Dose rate distributions at each benchmark were measured and compared with the calculated results. The comparison showed a good consistency between calculation and experiment results. (author)

  14. C5 Benchmark Problem with Discrete Ordinate Radiation Transport Code DENOVO

    Energy Technology Data Exchange (ETDEWEB)

    Yesilyurt, Gokhan [ORNL; Clarno, Kevin T [ORNL; Evans, Thomas M [ORNL; Davidson, Gregory G [ORNL; Fox, Patricia B [ORNL

    2011-01-01

    The C5 benchmark problem proposed by the Organisation for Economic Co-operation and Development/Nuclear Energy Agency was modeled to examine the capabilities of Denovo, a three-dimensional (3-D) parallel discrete ordinates (S{sub N}) radiation transport code, for problems with no spatial homogenization. Denovo uses state-of-the-art numerical methods to obtain accurate solutions to the Boltzmann transport equation. Problems were run in parallel on Jaguar, a high-performance supercomputer located at Oak Ridge National Laboratory. Both the two-dimensional (2-D) and 3-D configurations were analyzed, and the results were compared with the reference MCNP Monte Carlo calculations. For an additional comparison, SCALE/KENO-V.a Monte Carlo solutions were also included. In addition, a sensitivity analysis was performed for the optimal angular quadrature and mesh resolution for both the 2-D and 3-D infinite lattices of UO{sub 2} fuel pin cells. Denovo was verified with the C5 problem. The effective multiplication factors, pin powers, and assembly powers were found to be in good agreement with the reference MCNP and SCALE/KENO-V.a Monte Carlo calculations.

  15. MCNPX{trademark} -- The LAHET{trademark}/MCNP{trademark} code merger

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, H.G.; Adams, K.J.; Chadwick, M.B. [and others

    1997-08-01

    The MCNP code is written and maintained by Group X-TM at Los Alamos National Laboratory. In response to the demands of the accelerator community, the authors have undertaken a major effort to expand the capabilities of MCNP to increase the set of transportable particles; to make use of newly evaluated high-energy nuclear data tables for neutrons, protons, and potentially other particles; and to incorporate physics models for use where tabular data are unavailable. A preliminary version of the expanded code, called MCNPX, has now been issued for testing. The new code includes all existing LAHET physics modules, and has the ability to utilize the 150-MeV data libraries that have recently been released by LANL Group T-2.

  16. Modeling the PUSPATI TRIGA Reactor using MCNP code

    International Nuclear Information System (INIS)

    Mohamad Hairie Rabir; Mark Dennis Usang; Naim Syauqi Hamzah; Julia Abdul Karim; Mohd Amin Sharifuldin Salleh

    2012-01-01

    The 1 MW TRIGA MARK II research reactor at Malaysian Nuclear Agency achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution and depletion study of TRIGA fuel. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core and shielding with literally no physical approximation. (author)

  17. Effects of X-rays spectrum on the dose

    International Nuclear Information System (INIS)

    Rodriguez I, J. L.; Hernandez A, P. L.; Vega C, H. R.; Rivera M, T.

    2015-10-01

    The X-ray equipment for diagnosis comes in different sizes and shapes depending on the scan type to perform. The X-ray spectrum is the energy distribution of the beam photons and consists of a continuous spectrum of photons braking and discrete spectrum due to the characteristic photons. The knowledge of the X-rays spectrum is important to understand like they affect the voltage changes (k Vp), current (m A), time (s) and the type of filter in the interaction mechanisms between X-rays and patient's body, the image receptor or other material that gets in the beam. Across the spectrum can be estimated the absorbed dose in any point of the patient, the quality of the image and the scattered radiation (which is related to the dose received by the equipment operator). The Monte Carlo method was used by MCNP5 code to calculate the spectrum of X-rays that occurs when a monoenergetic electron beam of 250 keV interact with targets of Mo, Rh and W. The spectra were calculated with and without filter, and the values of ambient dose equivalent were estimated, as well as the air kerma. (Author)

  18. PWR Facility Dose Modeling Using MCNP5 and the CADIS/ADVANTG Variance-Reduction Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Blakeman, Edward D [ORNL; Peplow, Douglas E. [ORNL; Wagner, John C [ORNL; Murphy, Brian D [ORNL; Mueller, Don [ORNL

    2007-09-01

    The feasibility of modeling a pressurized-water-reactor (PWR) facility and calculating dose rates at all locations within the containment and adjoining structures using MCNP5 with mesh tallies is presented. Calculations of dose rates resulting from neutron and photon sources from the reactor (operating and shut down for various periods) and the spent fuel pool, as well as for the photon source from the primary coolant loop, were all of interest. Identification of the PWR facility, development of the MCNP-based model and automation of the run process, calculation of the various sources, and development of methods for visually examining mesh tally files and extracting dose rates were all a significant part of the project. Advanced variance reduction, which was required because of the size of the model and the large amount of shielding, was performed via the CADIS/ADVANTG approach. This methodology uses an automatically generated three-dimensional discrete ordinates model to calculate adjoint fluxes from which MCNP weight windows and source bias parameters are generated. Investigative calculations were performed using a simple block model and a simplified full-scale model of the PWR containment, in which the adjoint source was placed in various regions. In general, it was shown that placement of the adjoint source on the periphery of the model provided adequate results for regions reasonably close to the source (e.g., within the containment structure for the reactor source). A modification to the CADIS/ADVANTG methodology was also studied in which a global adjoint source is weighted by the reciprocal of the dose response calculated by an earlier forward discrete ordinates calculation. This method showed improved results over those using the standard CADIS/ADVANTG approach, and its further investigation is recommended for future efforts.

  19. PWR Facility Dose Modeling Using MCNP5 and the CADIS/ADVANTG Variance-Reduction Methodology

    International Nuclear Information System (INIS)

    Blakeman, Edward D.; Peplow, Douglas E.; Wagner, John C.; Murphy, Brian D.; Mueller, Don

    2007-01-01

    The feasibility of modeling a pressurized-water-reactor (PWR) facility and calculating dose rates at all locations within the containment and adjoining structures using MCNP5 with mesh tallies is presented. Calculations of dose rates resulting from neutron and photon sources from the reactor (operating and shut down for various periods) and the spent fuel pool, as well as for the photon source from the primary coolant loop, were all of interest. Identification of the PWR facility, development of the MCNP-based model and automation of the run process, calculation of the various sources, and development of methods for visually examining mesh tally files and extracting dose rates were all a significant part of the project. Advanced variance reduction, which was required because of the size of the model and the large amount of shielding, was performed via the CADIS/ADVANTG approach. This methodology uses an automatically generated three-dimensional discrete ordinates model to calculate adjoint fluxes from which MCNP weight windows and source bias parameters are generated. Investigative calculations were performed using a simple block model and a simplified full-scale model of the PWR containment, in which the adjoint source was placed in various regions. In general, it was shown that placement of the adjoint source on the periphery of the model provided adequate results for regions reasonably close to the source (e.g., within the containment structure for the reactor source). A modification to the CADIS/ADVANTG methodology was also studied in which a global adjoint source is weighted by the reciprocal of the dose response calculated by an earlier forward discrete ordinates calculation. This method showed improved results over those using the standard CADIS/ADVANTG approach, and its further investigation is recommended for future efforts

  20. A midway forward-adjoint coupling method for neutron and photon Monte Carlo transport

    International Nuclear Information System (INIS)

    Serov, I.V.; John, T.M.; Hoogenboom, J.E.

    1999-01-01

    The midway Monte Carlo method for calculating detector responses combines a forward and an adjoint Monte Carlo calculation. In both calculations, particle scores are registered at a surface to be chosen by the user somewhere between the source and detector domains. The theory of the midway response determination is developed within the framework of transport theory for external sources and for criticality theory. The theory is also developed for photons, which are generated at inelastic scattering or capture of neutrons. In either the forward or the adjoint calculation a so-called black absorber technique can be applied; i.e., particles need not be followed after passing the midway surface. The midway Monte Carlo method is implemented in the general-purpose MCNP Monte Carlo code. The midway Monte Carlo method is demonstrated to be very efficient in problems with deep penetration, small source and detector domains, and complicated streaming paths. All the problems considered pose difficult variance reduction challenges. Calculations were performed using existing variance reduction methods of normal MCNP runs and using the midway method. The performed comparative analyses show that the midway method appears to be much more efficient than the standard techniques in an overwhelming majority of cases and can be recommended for use in many difficult variance reduction problems of neutral particle transport

  1. Monte Carlo simulation of neutron counters for safeguards applications

    International Nuclear Information System (INIS)

    Looman, Marc; Peerani, Paolo; Tagziria, Hamid

    2009-01-01

    MCNP-PTA is a new Monte Carlo code for the simulation of neutron counters for nuclear safeguards applications developed at the Joint Research Centre (JRC) in Ispra (Italy). After some preliminary considerations outlining the general aspects involved in the computational modelling of neutron counters, this paper describes the specific details and approximations which make up the basis of the model implemented in the code. One of the major improvements allowed by the use of Monte Carlo simulation is a considerable reduction in both the experimental work and in the reference materials required for the calibration of the instruments. This new approach to the calibration of counters using Monte Carlo simulation techniques is also discussed.

  2. Environmental dose rate heterogeneity of beta radiation and its implications for luminescence dating: Monte Carlo modelling and experimental validation

    DEFF Research Database (Denmark)

    Nathan, R.P.; Thomas, P.J.; Jain, M.

    2003-01-01

    and identify the likely size of these effects on D-e distributions. The study employs the MCNP 4C Monte Carlo electron/photon transport model, supported by an experimental validation of the code in several case studies. We find good agreement between the experimental measurements and the Monte Carlo...

  3. Monte Carlo verification of control-rod worth for the Savannah River K reactor

    International Nuclear Information System (INIS)

    Mosteller, R.D.

    1992-01-01

    The Savannah River K Reactor is a heavy-water reactor that relies on control-rod movement to control its reactivity and power distribution during normal operations. It is necessary, therefore, to have an accurate estimate of the reactivity worth of its control rods in order to predict the behavior of the reactor. Westinghouse Savannah River Company (WSRC) uses the GLASS lattice-physics code to calculate few-group cross sections for fuel and control-rod assemblies in the K reactor. This paper compares the control-rod worth calculated by GLASS to that calculated by the MCNP Monte Carlo program. The GLASS calculations utilize its standard 37-group cross-section library, while the MCNP calculations employ continuous-energy isotopic cross-section libraries derived from ENDF/B-V. The MCNP calculations therefore combine the most rigorous analytical model and the most accurate cross sections currently available for thermal-reactor analysis. Consequently, the MCNP results comprise a computational benchmark against which the accuracy of the GLASS code can be evaluated

  4. Monte Carlo simulations of a D-T neutron generator shielding for landmine detection

    International Nuclear Information System (INIS)

    Reda, A.M.

    2011-01-01

    Shielding for a D-T sealed neutron generator has been designed using the MCNP5 Monte Carlo radiation transport code. The neutron generator will be used in field for the detection of explosives, landmines, drugs and other 'threat' materials. The optimization of the detection of buried objects was started by studying the signal-to-noise ratio for different geometric conditions. - Highlights: → A landmine detection system based on neutron fast/slow analysis has been designed. → Shielding for a D-T sealed neutron generator tube has been designed using Monte Carlo radiation transport code. → Detection of buried objects was started by studying the signal-to-noise ratio for different geometric conditions. → The signal-to-background ratio optimized at one position for all depths.

  5. ARCHER, a new Monte Carlo software tool for emerging heterogeneous computing environments

    International Nuclear Information System (INIS)

    Xu, X. George; Liu, Tianyu; Su, Lin; Du, Xining; Riblett, Matthew; Ji, Wei; Gu, Deyang; Carothers, Christopher D.; Shephard, Mark S.; Brown, Forrest B.; Kalra, Mannudeep K.; Liu, Bob

    2015-01-01

    Highlights: • A fast Monte Carlo based radiation transport code ARCHER was developed. • ARCHER supports different hardware including CPU, GPU and Intel Xeon Phi coprocessor. • Code is benchmarked again MCNP for medical applications. • A typical CT scan dose simulation only takes 6.8 s on an NVIDIA M2090 GPU. • GPU and coprocessor-based codes are 5–8 times faster than the CPU-based codes. - Abstract: The Monte Carlo radiation transport community faces a number of challenges associated with peta- and exa-scale computing systems that rely increasingly on heterogeneous architectures involving hardware accelerators such as GPUs and Xeon Phi coprocessors. Existing Monte Carlo codes and methods must be strategically upgraded to meet emerging hardware and software needs. In this paper, we describe the development of a software, called ARCHER (Accelerated Radiation-transport Computations in Heterogeneous EnviRonments), which is designed as a versatile testbed for future Monte Carlo codes. Preliminary results from five projects in nuclear engineering and medical physics are presented

  6. Biasing secondary particle interaction physics and production in MCNP6

    International Nuclear Information System (INIS)

    Fensin, M.L.; James, M.R.

    2016-01-01

    Highlights: • Biasing secondary production and interactions of charged particles in the tabular energy regime. • Examining lower weight window bounds for rare events when using Russian roulette. • The new biasing strategy can speedup calculations by a factor of 1 million or more. - Abstract: Though MCNP6 will transport elementary charged particles and light ions to low energies (i.e. less than 20 MeV), MCNP6 has historically relied on model physics with suggested minimum energies of ∼20 to 200 MeV. Use of library data for the low energy regime was developed for MCNP6 1.1.Beta to read and use light ion libraries. Thick target yields of neutron production for alphas on fluoride result in 1 production event per roughly million sampled alphas depending on the energy of the alpha (for other isotopes the yield can be even rarer). Calculation times to achieve statistically significant and converged thick target yields are quite laborious, needing over one hundred processor hours. The MUCEND code possess a biasing technique for improving the sampling of secondary particle production by forcing a nuclear interaction to occur per each alpha transported. We present here a different biasing strategy for secondary particle production from charged particles. During each substep, as the charged particle slows down, we bias both a nuclear collision event to occur at each substep and the production of secondary particles at the collision event, while still continuing to progress the charged particle until reaching a region of zero importance or an energy/time cutoff. This biasing strategy is capable of speeding up calculations by a factor of a million or more as compared to the unbiased calculation. Further presented here are both proof that the biasing strategy is capable of producing the same results as the unbiased calculation and the limitations to consider in order to achieve accurate results of secondary particle production. Though this strategy was developed for MCNP

  7. Computation cluster for Monte Carlo calculations

    Energy Technology Data Exchange (ETDEWEB)

    Petriska, M.; Vitazek, K.; Farkas, G.; Stacho, M.; Michalek, S. [Dep. Of Nuclear Physics and Technology, Faculty of Electrical Engineering and Information, Technology, Slovak Technical University, Ilkovicova 3, 81219 Bratislava (Slovakia)

    2010-07-01

    Two computation clusters based on Rocks Clusters 5.1 Linux distribution with Intel Core Duo and Intel Core Quad based computers were made at the Department of the Nuclear Physics and Technology. Clusters were used for Monte Carlo calculations, specifically for MCNP calculations applied in Nuclear reactor core simulations. Optimization for computation speed was made on hardware and software basis. Hardware cluster parameters, such as size of the memory, network speed, CPU speed, number of processors per computation, number of processors in one computer were tested for shortening the calculation time. For software optimization, different Fortran compilers, MPI implementations and CPU multi-core libraries were tested. Finally computer cluster was used in finding the weighting functions of neutron ex-core detectors of VVER-440. (authors)

  8. Computation cluster for Monte Carlo calculations

    International Nuclear Information System (INIS)

    Petriska, M.; Vitazek, K.; Farkas, G.; Stacho, M.; Michalek, S.

    2010-01-01

    Two computation clusters based on Rocks Clusters 5.1 Linux distribution with Intel Core Duo and Intel Core Quad based computers were made at the Department of the Nuclear Physics and Technology. Clusters were used for Monte Carlo calculations, specifically for MCNP calculations applied in Nuclear reactor core simulations. Optimization for computation speed was made on hardware and software basis. Hardware cluster parameters, such as size of the memory, network speed, CPU speed, number of processors per computation, number of processors in one computer were tested for shortening the calculation time. For software optimization, different Fortran compilers, MPI implementations and CPU multi-core libraries were tested. Finally computer cluster was used in finding the weighting functions of neutron ex-core detectors of VVER-440. (authors)

  9. The OpenMC Monte Carlo particle transport code

    International Nuclear Information System (INIS)

    Romano, Paul K.; Forget, Benoit

    2013-01-01

    Highlights: ► An open source Monte Carlo particle transport code, OpenMC, has been developed. ► Solid geometry and continuous-energy physics allow high-fidelity simulations. ► Development has focused on high performance and modern I/O techniques. ► OpenMC is capable of scaling up to hundreds of thousands of processors. ► Results on a variety of benchmark problems agree with MCNP5. -- Abstract: A new Monte Carlo code called OpenMC is currently under development at the Massachusetts Institute of Technology as a tool for simulation on high-performance computing platforms. Given that many legacy codes do not scale well on existing and future parallel computer architectures, OpenMC has been developed from scratch with a focus on high performance scalable algorithms as well as modern software design practices. The present work describes the methods used in the OpenMC code and demonstrates the performance and accuracy of the code on a variety of problems.

  10. Evaluation of TLD dose response compared to MCNP-5 simulation of diagnostic X ray equipment - radiation diagnostic image

    International Nuclear Information System (INIS)

    Sanchez G, R.; Cavalieri, T. A.; De Paiva, F.; Dalledone S, P. de T.; Yoriyaz, H.; Rodrigues F, M. A.; Vivolo, V.

    2014-08-01

    The thermo luminescent dosimeter (TLD) is used as a radiation dosimeter and can be used as environmental and staff personnel monitoring. The TLD measures ionizing radiation exposure by a process in which the amount of radiation collected by the dosimeter is converted in visible light when the crystal is heated. The amount of emitted light is proportional to the radiation exposure, and then the response of the TLD must be the related to the real dose. In this work it was used twenty four TLD 700 in order to obtain eight values of doses from a diagnostic X-ray equipment. The TLD-700 is a LiF TLD enriched with 7 Li isotope. One way to compare and study the response of TLD is by Monte Carlo method, which has been used as a computational tool to solve problems stochastically. This method can be applied to any geometry, even those where the boundary conditions are unknown, making the method particularly useful to solve problems a priori. In this work it was modeled the X-ray tube exactly as the one used to irradiate the TLD, after the simulation and the TLD irradiation the results of dose value from both were compared. (Author)

  11. Evaluation of TLD dose response compared to MCNP-5 simulation of diagnostic X ray equipment - radiation diagnostic image

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez G, R.; Cavalieri, T. A.; De Paiva, F.; Dalledone S, P. de T.; Yoriyaz, H. [Instituto de Pesquisas Energeticas e Nucleares, Centro de Engenharia Nuclear / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil); Rodrigues F, M. A. [Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Departamento de Dermatologia e Radioterapia, Av. Prof. Montenegro s/n, Rubiao Junior, 18601-970 Botucatu (Brazil); Vivolo, V., E-mail: chancez@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares, Gerencia de Metrologia das Radiacoes / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    The thermo luminescent dosimeter (TLD) is used as a radiation dosimeter and can be used as environmental and staff personnel monitoring. The TLD measures ionizing radiation exposure by a process in which the amount of radiation collected by the dosimeter is converted in visible light when the crystal is heated. The amount of emitted light is proportional to the radiation exposure, and then the response of the TLD must be the related to the real dose. In this work it was used twenty four TLD 700 in order to obtain eight values of doses from a diagnostic X-ray equipment. The TLD-700 is a LiF TLD enriched with {sup 7}Li isotope. One way to compare and study the response of TLD is by Monte Carlo method, which has been used as a computational tool to solve problems stochastically. This method can be applied to any geometry, even those where the boundary conditions are unknown, making the method particularly useful to solve problems a priori. In this work it was modeled the X-ray tube exactly as the one used to irradiate the TLD, after the simulation and the TLD irradiation the results of dose value from both were compared. (Author)

  12. The use of the MCNP code for the quantitative analysis of elements in geological formations

    Energy Technology Data Exchange (ETDEWEB)

    Cywicka-Jakiel, T.; Woynicka, U. [The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Zorski, T. [University of Mining and Metallurgy, Faculty of Geology, Geophysics and Environmental Protection, Krakow (Poland)

    2003-07-01

    The Monte Carlo modelling calculations using the MCNP code have been performed, which support the spectrometric neutron-gamma (SNGL) borehole logging. The SNGL enables the lithology identification through the quantitative analysis of the elements in geological formations and thus can be very useful for the oil and gas industry as well as for prospecting of the potential host rocks for radioactive waste disposal. In the SNGL experiment, gamma-rays induced by the neutron interactions with the nuclei of the rock elements are detected using the gamma-ray probe of complex mechanical and electronic construction. The probe has to be calibrated for a wide range of the elemental concentrations, to assure the proper quantitative analysis. The Polish Calibration Station in Zielona Gora is equipped with a limited number of calibration standards. An extension of the experimental calibration and the evaluation of the effect of the so-called side effects (for example the borehole and formation salinity variation) on the accuracy of the SNGL method can be done by the use of the MCNP code. The preliminary MCNP results showing the effect of the borehole and formation fluids salinity variations on the accuracy of silicon (Si), calcium (Ca) and iron (Fe) content determination are presented in the paper. The main effort has been focused on a modelling of the complex SNGL probe situated in a fluid filled borehole, surrounded by a geological formation. Track length estimate of the photon flux from the (n,gamma) interactions as a function of gamma-rays energy was used. Calculations were run on the PC computer with AMD Athlon 1.33 GHz processor. Neutron and photon cross-sections libraries were taken from the MCNP4c package and based mainly on the ENDF/B-6, ENDF/B-5 and MCPLIB02 data. The results of simulated experiment are in conformity with results of the real experiment performed with the use of the main lithology models (sandstones, limestones and dolomite). (authors)

  13. The use of the MCNP code for the quantitative analysis of elements in geological formations

    International Nuclear Information System (INIS)

    Cywicka-Jakiel, T.; Woynicka, U.; Zorski, T.

    2003-01-01

    The Monte Carlo modelling calculations using the MCNP code have been performed, which support the spectrometric neutron-gamma (SNGL) borehole logging. The SNGL enables the lithology identification through the quantitative analysis of the elements in geological formations and thus can be very useful for the oil and gas industry as well as for prospecting of the potential host rocks for radioactive waste disposal. In the SNGL experiment, gamma-rays induced by the neutron interactions with the nuclei of the rock elements are detected using the gamma-ray probe of complex mechanical and electronic construction. The probe has to be calibrated for a wide range of the elemental concentrations, to assure the proper quantitative analysis. The Polish Calibration Station in Zielona Gora is equipped with a limited number of calibration standards. An extension of the experimental calibration and the evaluation of the effect of the so-called side effects (for example the borehole and formation salinity variation) on the accuracy of the SNGL method can be done by the use of the MCNP code. The preliminary MCNP results showing the effect of the borehole and formation fluids salinity variations on the accuracy of silicon (Si), calcium (Ca) and iron (Fe) content determination are presented in the paper. The main effort has been focused on a modelling of the complex SNGL probe situated in a fluid filled borehole, surrounded by a geological formation. Track length estimate of the photon flux from the (n,gamma) interactions as a function of gamma-rays energy was used. Calculations were run on the PC computer with AMD Athlon 1.33 GHz processor. Neutron and photon cross-sections libraries were taken from the MCNP4c package and based mainly on the ENDF/B-6, ENDF/B-5 and MCPLIB02 data. The results of simulated experiment are in conformity with results of the real experiment performed with the use of the main lithology models (sandstones, limestones and dolomite). (authors)

  14. Validating MCNP5 libraries and tracking the reason for differences between libraries in criticality calculations

    International Nuclear Information System (INIS)

    Hossny, K.

    2015-01-01

    The purpose of this work is to validate MCNP5 libraries by simulating 4 detailed benchmark experiments and comparing MCNP5 results (each library) with the experimental results and also the previously validated codes for the same experiments MORET 4.A coupled with APOLLO2 (France), and MONK8 (UK). The reasons for difference between libraries are also investigated in this work. Investigating the reason for the differences between libraries will be done by specifying a different library for specific part (clad, fuel, light water) and checking the result deviation than the previously calculated result (with all parts of the same library). The investigated benchmark experiments are of single fuel rods arrays that are water-moderated and water-reflected. Rods contained low-enriched (4.738 wt.% 92 235 U)uranium dioxide (UO 2 ) fuel were clad with aluminum alloy AGS. These experiments were subcritical approaches extrapolated to critical, with the multiplication factor reached being very close to 1.000 (within 0.1%); the subcritical approach parameter was the water level. The studied four cases differ from each other in pitch, number of fuel rods and of course critical height of water. The results show that although library ENDF/B-IV lacks light water treatment card, however its results can be reliable as light water treatment library does not have significant differences from library to another, so it will not be necessary to specify light water treatment card. The main reason for differences between ENDF/B-V and ENDF/B-VI is light water material, especially the Hydrogen element. Specifying the library of Uranium is necessary in case of using library ENDF/B-IV. On the other hand it is not necessary to specify library of cladding material whatever the used library. Validated libraries are ENDF/BIV, ENDF/B-V and ENDF/B-VI with codes in MCNP 42C, 50C and 60C respectively. The presentation slides have been added to the article

  15. Evaluation of a special pencil ionization chamber by the Monte Carlo method

    International Nuclear Information System (INIS)

    Mendonca, Dalila; Neves, Lucio P.; Perini, Ana P.

    2015-01-01

    A special pencil type ionization chamber, developed at the Instituto de Pesquisas Energeticas e Nucleares, was characterized by means of Monte Carlo simulation to determine the influence of its components on its response. The main differences between this ionization chamber and commercial ionization chambers are related to its configuration and constituent materials. The simulations were made employing the MCNP-4C Monte Carlo code. The highest influence was obtained for the body of PMMA: 7.0%. (author)

  16. Comparison of MCNP6 and experimental results for neutron counts, Rossi-α, and Feynman-α distributions

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.; Sadovich, S.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.

    2013-01-01

    MCNP6, the general-purpose Monte Carlo N-Particle code, has the capability to perform time-dependent calculations by tracking the time interval between successive events of the neutron random walk. In fixed-source calculations for a subcritical assembly, the zero time value is assigned at the moment the neutron is emitted by the external neutron source. The PTRAC and F8 cards of MCNP allow to tally the time when a neutron is captured by 3 He(n, p) reactions in the neutron detector. From this information, it is possible to build three different time distributions: neutron counts, Rossi-α, and Feynman-α. The neutron counts time distribution represents the number of neutrons captured as a function of time. The Rossi-a distribution represents the number of neutron pairs captured as a function of the time interval between two capture events. The Feynman-a distribution represents the variance-to-mean ratio, minus one, of the neutron counts array as a function of a fixed time interval. The MCNP6 results for these three time distributions have been compared with the experimental data of the YALINA Thermal facility and have been found to be in quite good agreement. (authors)

  17. An Overview of the Monte Carlo Application ToolKit (MCATK)

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, Travis John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-07

    MCATK is a C++ component-based Monte Carlo neutron-gamma transport software library designed to build specialized applications and designed to provide new functionality in existing general-purpose Monte Carlo codes like MCNP; it was developed with Agile software engineering methodologies under the motivation to reduce costs. The characteristics of MCATK can be summarized as follows: MCATK physics – continuous energy neutron-gamma transport with multi-temperature treatment, static eigenvalue (k and α) algorithms, time-dependent algorithm, fission chain algorithms; MCATK geometry – mesh geometries, solid body geometries. MCATK provides verified, unit-tested Monte Carlo components, flexibility in Monte Carlo applications development, and numerous tools such as geometry and cross section plotters. Recent work has involved deterministic and Monte Carlo analysis of stochastic systems. Static and dynamic analysis is discussed, and the results of a dynamic test problem are given.

  18. Comparison of two accelerators for Monte Carlo radiation transport calculations, Nvidia Tesla M2090 GPU and Intel Xeon Phi 5110p coprocessor: A case study for X-ray CT imaging dose calculation

    International Nuclear Information System (INIS)

    Liu, T.; Xu, X.G.; Carothers, C.D.

    2015-01-01

    Highlights: • A new Monte Carlo photon transport code ARCHER-CT for CT dose calculations is developed to execute on the GPU and coprocessor. • ARCHER-CT is verified against MCNP. • The GPU code on an Nvidia M2090 GPU is 5.15–5.81 times faster than the parallel CPU code on an Intel X5650 6-core CPU. • The coprocessor code on an Intel Xeon Phi 5110p coprocessor is 3.30–3.38 times faster than the CPU code. - Abstract: Hardware accelerators are currently becoming increasingly important in boosting high performance computing systems. In this study, we tested the performance of two accelerator models, Nvidia Tesla M2090 GPU and Intel Xeon Phi 5110p coprocessor, using a new Monte Carlo photon transport package called ARCHER-CT we have developed for fast CT imaging dose calculation. The package contains three components, ARCHER-CT CPU , ARCHER-CT GPU and ARCHER-CT COP designed to be run on the multi-core CPU, GPU and coprocessor architectures respectively. A detailed GE LightSpeed Multi-Detector Computed Tomography (MDCT) scanner model and a family of voxel patient phantoms are included in the code to calculate absorbed dose to radiosensitive organs under user-specified scan protocols. The results from ARCHER agree well with those from the production code Monte Carlo N-Particle eXtended (MCNPX). It is found that all the code components are significantly faster than the parallel MCNPX run on 12 MPI processes, and that the GPU and coprocessor codes are 5.15–5.81 and 3.30–3.38 times faster than the parallel ARCHER-CT CPU , respectively. The M2090 GPU performs better than the 5110p coprocessor in our specific test. Besides, the heterogeneous computation mode in which the CPU and the hardware accelerator work concurrently can increase the overall performance by 13–18%

  19. MCNP calculations for criticality-safety benchmarks with ENDF/B-V and ENDF/B-VI libraries

    International Nuclear Information System (INIS)

    Iverson, J.L.; Mosteller, R.D.

    1995-01-01

    The MCNP Monte Carlo code, in conjunction with its continuous-energy ENDF/B-V and ENDF/B-VI cross-section libraries, has been benchmarked against results from 27 different critical experiments. The predicted values of k eff are in excellent agreement with the benchmarks, except for the ENDF/B-V results for solutions of plutonium nitrate and, to a lesser degree, for the ENDF/B-V and ENDF/B-VI results for a bare sphere of 233 U

  20. Angle dependent focal spot size of a conical X-ray target

    International Nuclear Information System (INIS)

    Saeed Raza, Hamid; Jin Kim, Hyun; Nam Kim, Hyun; Oh Cho, Sung

    2015-01-01

    Misaligned phantoms may severely affect the focal spot calculations. A method is proposed to determine the geometry of the X-ray target and the position of the image radiograph around the X-ray target to get a relatively smaller focal spot size. Results reveal that the focal spot size is not always isotropic around the target but it decreases as the point of observation shifts radially away from the center line of the conical X-ray target. This research will help in producing high quality X-ray images in multi-directions by properly aligning the phantoms and the radiograph tallies. - Highlights: • Misaligned phantoms may severely affect the focal spot calculations. • The aim of this research is to analyze systematically the angle dependent behavior of the focal spot size around a conical shaped X-ray target. • A general purpose Monte Carlo (MCNP5) computer code is used to achieve a relatively small focal spot size. • Angular distribution of the X-ray focal spot size mainly depends on the angular orientation of the phantom and its aligned FIR tally. • This research will help in producing high quality X-ray images in multi-directions

  1. Monte Carlo efficiency calibration of a neutron generator-based total-body irradiator

    International Nuclear Information System (INIS)

    Shypailo, R.J.; Ellis, K.J.

    2009-01-01

    Many body composition measurement systems are calibrated against a single-sized reference phantom. Prompt-gamma neutron activation (PGNA) provides the only direct measure of total body nitrogen (TBN), an index of the body's lean tissue mass. In PGNA systems, body size influences neutron flux attenuation, induced gamma signal distribution, and counting efficiency. Thus, calibration based on a single-sized phantom could result in inaccurate TBN values. We used Monte Carlo simulations (MCNP-5; Los Alamos National Laboratory) in order to map a system's response to the range of body weights (65-160 kg) and body fat distributions (25-60%) in obese humans. Calibration curves were constructed to derive body-size correction factors relative to a standard reference phantom, providing customized adjustments to account for differences in body habitus of obese adults. The use of MCNP-generated calibration curves should allow for a better estimate of the true changes in lean tissue mass that many occur during intervention programs focused only on weight loss. (author)

  2. Simulation of photon and charge transport in X-ray imaging semiconductor sensors

    CERN Document Server

    Nilsson, H E; Hjelm, M; Bertilsson, K

    2002-01-01

    A fully stochastic model for the imaging properties of X-ray silicon pixel detectors is presented. Both integrating and photon counting configurations have been considered, as well as scintillator-coated structures. The model is based on three levels of Monte Carlo simulations; photon transport and absorption using MCNP, full band Monte Carlo simulation of charge transport and system level Monte Carlo simulation of the imaging performance of the detector system. In the case of scintillator-coated detectors, the light scattering in the detector layers has been simulated using a Monte Carlo method. The image resolution was found to be much lower in scintillator-coated systems due to large light spread in thick scintillator layers. A comparison between integrating and photon counting readout methods shows that the image resolution can be slightly enhanced using a photon-counting readout. In addition, the proposed model has been used to study charge-sharing effects on the energy resolution in photon counting dete...

  3. Calculation of the effective dose from natural radioactivity in soil using MCNP code.

    Science.gov (United States)

    Krstic, D; Nikezic, D

    2010-01-01

    Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this work. Calculations have been done for the most common natural radionuclides in soil (238)U, (232)Th series and (40)K. A ORNL human phantoms and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs. The effective dose was calculated according to ICRP 74 recommendations. Conversion factors of effective dose per air kerma were determined. Results obtained here were compared with other authors. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Monte Carlo modelling of TRIGA research reactor

    Science.gov (United States)

    El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.

    2010-10-01

    The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.

  5. Determination of shielding parameters for different types of concretes by Monte Carlo methods

    International Nuclear Information System (INIS)

    Aminian, A.; Nematollahi, M. R.

    2007-01-01

    The chose of a suitable concrete composition for a biological reactor shield remain as a research target up to now. In the present study the attempts has been made to estimate the influence of the concrete aggregates on the shielding parameters for three type of ordinary, serpentine and steel magnetite concrete by Monte Carlo N-Particle (MCNP ) transport code. MCNP calculations have been performed in order to obtain the leakage of neutrons, photons and electrons from dry shield. Also the mass attenuation coefficients and the liner attenuation coefficient are estimated for neutron and photon in those energies in range of actual energy which exist out of pressure vessel of power reactor in the cavity for the investigated concretes. The concrete densities ranged from 2.3 to 5.11 g/cm 3 . These calculations were done in the condition of a typical commercial Pressurized Water Reactor (PWR). The results show that Steel-magnetite concrete, with high density (5.11 g/cm 3 ) and constituents of relatively high atomic number, is an effective shield for both photons and neutrons

  6. Determination of the exposure speed of radiation emitted by the linear accelerator, using the code MCNP5 to evaluate the radiotherapy room shields of ABC Hospital; Determinacion de la rapidez de exposicion de la radiacion emitida por el acelerador lineal, utilizando el codigo MCNP5, para evaluar los blindajes de la sala de radioterapia del Hospital ABC

    Energy Technology Data Exchange (ETDEWEB)

    Corral B, J. R.

    2015-07-01

    Humans should avoid exposure to radiation, because the consequences are harmful to health. Although there are different emission sources of radiation, generated by medical devices they are usually of great interest, since people who attend hospitals are exposed in one way or another to ionizing radiation. Therefore, is important to conduct studies on radioactive levels that are generated in hospitals, as a result of the use of medical equipment. To determine levels of exposure speed of a radioactive facility there are different methods, including the radiation detector and computational method. This thesis uses the computational method. With the program MCNP5 was determined the speed of the radiation exposure in the radiotherapy room of Cancer Center of ABC Hospital in Mexico City. In the application of computational method, first the thicknesses of the shields were calculated, using variables as: 1) distance from the shield to the source; 2) desired weekly equivalent dose; 3) weekly total dose equivalent emitted by the equipment; 4) occupation and use factors. Once obtained thicknesses, we proceeded to model the bunker using the mentioned program. The program uses the Monte Carlo code to probabilistic ally determine the phenomena of interaction of radiation with the shield, which will be held during the X-ray emission from the linear accelerator. The results of computational analysis were compared with those obtained experimentally with the detection method, for which was required the use of a Geiger-Muller counter and the linear accelerator was programmed with an energy of 19 MV with 500 units monitor positioning the detector in the corresponding boundary. (Author)

  7. The design of a multisource americium-beryllium (Am-Be) neutron irradiation facility using MCNP for the neutronic performance calculation.

    Science.gov (United States)

    Sogbadji, R B M; Abrefah, R G; Nyarko, B J B; Akaho, E H K; Odoi, H C; Attakorah-Birinkorang, S

    2014-08-01

    The americium-beryllium neutron irradiation facility at the National Nuclear Research Institute (NNRI), Ghana, was re-designed with four 20 Ci sources using Monte Carlo N-Particle (MCNP) code to investigate the maximum amount of flux that is produced by the combined sources. The results were compared with a single source Am-Be irradiation facility. The main objective was to enable us to harness the maximum amount of flux for the optimization of neutron activation analysis and to enable smaller sample sized samples to be irradiated. Using MCNP for the design construction and neutronic performance calculation, it was realized that the single-source Am-Be design produced a thermal neutron flux of (1.8±0.0007)×10(6) n/cm(2)s and the four-source Am-Be design produced a thermal neutron flux of (5.4±0.0007)×10(6) n/cm(2)s which is a factor of 3.5 fold increase compared to the single-source Am-Be design. The criticality effective, k(eff), of the single-source and the four-source Am-Be designs were found to be 0.00115±0.0008 and 0.00143±0.0008, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. TH-AB-207A-07: Radiation Dose Simulation for a Newly Proposed Dynamic Bowtie Filters for CT Using Fast Monte Carlo Methods

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T; Lin, H; Gao, Y; Caracappa, P; Wang, G; Cong, W; Xu, X [Rensselaer Polytechnic Institute, Troy, NY (United States)

    2016-06-15

    Purpose: Dynamic bowtie filter is an innovative design capable of modulating the X-ray and balancing the flux in the detectors, and it introduces a new way of patient-specific CT scan optimizations. This study demonstrates the feasibility of performing fast Monte Carlo dose calculation for a type of dynamic bowtie filter for cone-beam CT (Liu et al. 2014 9(7) PloS one) using MIC coprocessors. Methods: The dynamic bowtie filter in question consists of a highly attenuating bowtie component (HB) and a weakly attenuating bowtie (WB). The HB is filled with CeCl3 solution and its surface is defined by a transcendental equation. The WB is an elliptical cylinder filled with air and immersed in the HB. As the scanner rotates, the orientation of WB remains the same with the static patient. In our Monte Carlo simulation, the HB was approximated by 576 boxes. The phantom was a voxelized elliptical cylinder composed of PMMA and surrounded by air (44cm×44cm×40cm, 1000×1000×1 voxels). The dose to the PMMA phantom was tallied with 0.15% statistical uncertainty under 100 kVp source. Two Monte Carlo codes ARCHER and MCNP-6.1 were compared. Both used double-precision. Compiler flags that may trade accuracy for speed were avoided. Results: The wall time of the simulation was 25.4 seconds by ARCHER on a 5110P MIC, 40 seconds on a X5650 CPU, and 523 seconds by the multithreaded MCNP on the same CPU. The high performance of ARCHER is attributed to the parameterized geometry and vectorization of the program hotspots. Conclusion: The dynamic bowtie filter modeled in this study is able to effectively reduce the dynamic range of the detected signals for the photon-counting detectors. With appropriate software optimization methods, the accelerator-based (MIC and GPU) Monte Carlo dose engines have shown good performance and can contribute to patient-specific CT scan optimizations.

  9. Neutron Production in Spallation Reactions of 0.9 and 1.5 GeV Protons on a Thick Lead Target. Comparison between Experimental Data and Monte-Carlo Simulations

    CERN Document Server

    Krasa, A; Bradnova, V; Caloun, P; Chultem, D; Henzl, V; Henzlová, D; Kalinnikov, V G; Krivopustov, M I; Krízek, F; Kugler, A; Majerle, M; Solnyshkin, A A; Stegailov, V I; Tsoupko-Sitnikov, V M; Tumendelger, T; Vasilev, S I; Wagner, V; Nuclear Physics Institute of Academy of Sciences of Czech Republic, Rez, Czech Republic

    2005-01-01

    This paper reports on two experiments performed at the Synchrophasotron/Nuclotron accelerator complex at JINR. Relativistic protons with energies 885 MeV and 1.5 GeV hit a massive cylindrical lead target. The spatial and energetic distributions of the neutron field produced by the spallation reactions were measured by the activation of Al, Au, Bi, Co, and Cu foils placed on the surface of the target and close to it. The yields of the radioactive nuclei produced by threshold reactions in these foils were determined by the analyses of their $\\gamma$ spectra. The comparison with Monte-Carlo based simulations was performed both with the LAHET+MCNP code and the MCNPX code.

  10. Neutron production in spallation reactions of 0.9 and 1.5 GeV protons on a thick lead target. Comparison between experimental data and Monte-Carlo simulations

    International Nuclear Information System (INIS)

    Krasa, A.; Krizek, F.; Wagner, V.; Kugler, A.; Henzl, V.; Henzlova, D.; Majerle, M.; Adam, J.; Caloun, P.; Bradnova, V.; Chultem, D.; Kalinnikov, V.G.; Krivopustov, M.I.; Solnyshkin, A.A.; Stegajlov, V.I.; Tsupko-Sitnikov, V.M.; Tumehndehlgehr, Ts.; Vasil'ev, S.I.

    2005-01-01

    This paper reports on two experiments performed at the Synchrophasotron/Nuclotron accelerator complex at JINR. Relativistic protons with energies 885 MeV and 1.5 GeV hit a massive cylindrical lead target. The spatial and energetic distributions of the neutron field produced by the spallation reactions were measured by the activation of Al, Au, Bi, Co, and Cu foils placed on the surface of the target and close to it. The yields of the radioactive nuclei produced by threshold reactions in these foils were determined by the analyses of their γ spectra. The comparison with Monte-Carlo based simulations was performed both with the LAHET+MCNP code and the MCNPX code

  11. Monte Carlo Codes Invited Session

    International Nuclear Information System (INIS)

    Trama, J.C.; Malvagi, F.; Brown, F.

    2013-01-01

    This document lists 22 Monte Carlo codes used in radiation transport applications throughout the world. For each code the names of the organization and country and/or place are given. We have the following computer codes. 1) ARCHER, USA, RPI; 2) COG11, USA, LLNL; 3) DIANE, France, CEA/DAM Bruyeres; 4) FLUKA, Italy and CERN, INFN and CERN; 5) GEANT4, International GEANT4 collaboration; 6) KENO and MONACO (SCALE), USA, ORNL; 7) MC21, USA, KAPL and Bettis; 8) MCATK, USA, LANL; 9) MCCARD, South Korea, Seoul National University; 10) MCNP6, USA, LANL; 11) MCU, Russia, Kurchatov Institute; 12) MONK and MCBEND, United Kingdom, AMEC; 13) MORET5, France, IRSN Fontenay-aux-Roses; 14) MVP2, Japan, JAEA; 15) OPENMC, USA, MIT; 16) PENELOPE, Spain, Barcelona University; 17) PHITS, Japan, JAEA; 18) PRIZMA, Russia, VNIITF; 19) RMC, China, Tsinghua University; 20) SERPENT, Finland, VTT; 21) SUPERMONTECARLO, China, CAS INEST FDS Team Hefei; and 22) TRIPOLI-4, France, CEA Saclay

  12. Monte Carlo modelling of the Belgian materials testing reactor BR2: present status

    International Nuclear Information System (INIS)

    Verboomen, B.; Aoust, Th.; Raedt, Ch. de; Beeckmans de West-Meerbeeck, A.

    2001-01-01

    A very detailed 3-D MCNP-4B model of the BR2 reactor was developed to perform all neutron and gamma calculations needed for the design of new experimental irradiation rigs. The Monte Carlo model of BR2 includes the nearly exact geometrical representation of fuel elements (now with their axially varying burn-up), of partially inserted control and regulating rods, of experimental devices and of radioisotope production rigs. The multiple level-geometry possibilities of MCNP-4B are fully exploited to obtain sufficiently flexible tools to cope with the very changing core loading. (orig.)

  13. Determination of the exposure speed of radiation emitted by the linear accelerator, using the code MCNP5 to evaluate the radiotherapy room shields of ABC Hospital

    International Nuclear Information System (INIS)

    Corral B, J. R.

    2015-01-01

    Humans should avoid exposure to radiation, because the consequences are harmful to health. Although there are different emission sources of radiation, generated by medical devices they are usually of great interest, since people who attend hospitals are exposed in one way or another to ionizing radiation. Therefore, is important to conduct studies on radioactive levels that are generated in hospitals, as a result of the use of medical equipment. To determine levels of exposure speed of a radioactive facility there are different methods, including the radiation detector and computational method. This thesis uses the computational method. With the program MCNP5 was determined the speed of the radiation exposure in the radiotherapy room of Cancer Center of ABC Hospital in Mexico City. In the application of computational method, first the thicknesses of the shields were calculated, using variables as: 1) distance from the shield to the source; 2) desired weekly equivalent dose; 3) weekly total dose equivalent emitted by the equipment; 4) occupation and use factors. Once obtained thicknesses, we proceeded to model the bunker using the mentioned program. The program uses the Monte Carlo code to probabilistic ally determine the phenomena of interaction of radiation with the shield, which will be held during the X-ray emission from the linear accelerator. The results of computational analysis were compared with those obtained experimentally with the detection method, for which was required the use of a Geiger-Muller counter and the linear accelerator was programmed with an energy of 19 MV with 500 units monitor positioning the detector in the corresponding boundary. (Author)

  14. Reactor condition monitoring and singularity detection via wavelet and use of entropy in Monte Carlo calculation

    International Nuclear Information System (INIS)

    Kim, Ok Joo

    2007-02-01

    Wavelet theory was applied to detect the singularity in reactor power signal. Compared to Fourier transform, wavelet transform has localization properties in space and frequency. Therefore, by wavelet transform after de-noising, singular points can be found easily. To demonstrate this, we generated reactor power signals using a HANARO (a Korean multi-purpose research reactor) dynamics model consisting of 39 nonlinear differential equations and Gaussian noise. We applied wavelet transform decomposition and de-noising procedures to these signals. It was effective to detect the singular events such as sudden reactivity change and abrupt intrinsic property changes. Thus this method could be profitably utilized in a real-time system for automatic event recognition (e.g., reactor condition monitoring). In addition, using the wavelet de-noising concept, variance reduction of Monte Carlo result was tried. To get correct solution in Monte Carlo calculation, small uncertainty is required and it is quite time-consuming on a computer. Instead of long-time calculation in the Monte Carlo code (MCNP), wavelet de-noising can be performed to get small uncertainties. We applied this idea to MCNP results of k eff and fission source. Variance was reduced somewhat while the average value is kept constant. In MCNP criticality calculation, initial guess for the fission distribution is used and it could give contamination to solution. To avoid this situation, sufficient number of initial generations should be discarded, and they are called inactive cycles. Convergence check can give guildeline to determine when we should start the active cycles. Various entropy functions are tried to check the convergence of fission distribution. Some entropy functions reflect the convergence behavior of fission distribution well. Entropy could be a powerful method to determine inactive/active cycles in MCNP calculation

  15. Experimental and MCNP5 based evaluation of neutron and gamma flux in the irradiation ports of the University of Utah research reactor

    Directory of Open Access Journals (Sweden)

    Noble Brooklyn

    2012-01-01

    Full Text Available Neutron and gamma flux environment of various irradiation ports in the University of Utah training, research, isotope production, general atomics reactor were experimentally assessed and fully modeled using the MCNP5 code. The experimental measurements were based on the cadmium ratio in the irradiation ports of the reactor, flux profiling using nickel wire, and gamma dose measurements using thermo luminescence dosimeter. Full 3-D MCNP5 reactor model was developed to obtain the neutron flux distributions of the entire reactor core and to compare it with the measured flux focusing at the irradiation ports. Integration of all these analysis provided the updated comprehensive neutron-gamma flux maps of the existing irradiation facilities of the University of Utah TRIGA reactor.

  16. Analysis of Gamma Dose Rate for RTP 2 MW Core Configuration Using MCNP

    International Nuclear Information System (INIS)

    Mohamad Hairie Rabir; Mohd Amin Sharifuldin Salleh; Julia Abdul Karim

    2011-01-01

    The Malaysian 1 MW TRIGA MARK II research reactor at Malaysian Nuclear Agency achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the calculation of gamma dose rate at water pool surface and concrete shielding surface of the proposed 2-MW core configuration of PUSPATI TRIGA Reactor. The 3-D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA core with pool water and concrete shielding and validation of the input by comparisons with the measured and available safety analysis report (SAR) of the reactor. The model represents in detailed all components of the reactor with literally no physical approximation. Continuous energy cross section data from the more recent nuclear data as well as S(α, β) thermal neutron scattering functions distributed with the MCNP code were used. Results of calculations are analyzed and discussed. (author)

  17. Using MCNP for in-core instrument calibration in CANDU

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, D.C. [Point Lepreau Generating Station, NB Power, Lepreau, New Brunswick (Canada); Anghel, V.N.P.; Sur, B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2002-07-01

    The calibration of in-core instruments is important for safe and economical CANDU operation. However, in-core detectors are not normally suited to bench calibration procedures. This paper describes the use and validation of detailed neutron transport calculations for the purpose of calibrating the response of in-core neutron flux detectors. The Monte-Carlo transport code, MCNP, was used to model the thermal neutron flux distribution in the region around self-powered in-core flux detectors (ICFDs), and in the vicinity of the calandria edge. The ICFD model was used to evaluate the reduction in signal of a given detector (the 'detector shading factor') due to neutron absorption in surrounding materials, detectors, and lead-cables. The calandria edge model was used to infer the accuracy of the calandria edge position from flux scans performed by AECL's traveling flux detector (TFD) system. The MCNP results were checked against experimental results on ICFDs, and also against shading factors computed by other means. The use of improved in-core detector calibration factors obtained by this new methodology will improve the accuracy of spatial flux control performance in CANDU-6 reactors. The accurate determination of TFD based calandria edge position is useful in the quantitative measurement of changes in in-core component dimensions and position due to aging, such as pressure tube sag. (author)

  18. Testing of the ENDF/B-VI neutron data library ENDF60 for use with MCNP trademark

    International Nuclear Information System (INIS)

    Frankle, S.C.; MacFarlane, R.E.

    1995-01-01

    The continuous-energy neutron data library ENDF60, for use with the Monte Carlo N-Particle radiation transport code MCNP4A, was released in the fall of 1994. It is comprised of 124 nuclide data files based on the ENDF/B-Vi evaluations through Release 2. Forty-eight percent of these materials are new or modified evaluations, while the balance are translations from ENDF/B-V. The new evaluations include most of the important materials for criticality safety calculations, and include significant enhancements such as more isotopic evaluations, better resonance-range representations, and the new correlated energy-angle distributions for emitted particles. As part of the overall quality assurance testing of the ENDF60 library, calculations for well known benchmark assemblies were performed. The results of these calculations help the user to know how the combination of ENDF60 and MCNP4A will perform for real problems

  19. Monte Carlo determination of dose in crystalline and thyroid during chest tomography examinations; Determinacion Monte Carlo de dosis en cristalino y tiroides durante examenes de tomografia de torax

    Energy Technology Data Exchange (ETDEWEB)

    Quispe H, B.; Pena V, J. D.; Waldo B, G.; Leon M, M.; Ceron R, P.; Vallejo H, A.; Sosa A, M. [Universidad de Guanajuato, Campus Leon, Division de Ciencias e Ingenierias, Loma del Bosque 103, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Vega C, H. R., E-mail: b.quispehuillcara@ugto.mx [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas, Zac. (Mexico)

    2017-10-15

    Computed tomography is a diagnostic imaging method that deposits higher doses than other radio diagnosis methods. The knowledge of the spectrum of X-rays is important, since is in direct function with the dose absorbed by the patient. In this work we estimated the spectrum of X-rays, produced during the interaction of monoenergetic electrons of 130 KeV with Tungsten white, in order to determine their energetic characteristics at 50 cm from the focal point. The study was done using Monte Carlo methods with the code MCNP5 where the X-ray tube of a Siemens SOMATOM Perspective tomograph of the General Regional Hospital of Leon, Mexico was modeled. In the calculations, 3 x 10{sup 8} stories were used and a relative uncertainty of less than 0.1% was obtained. Also, a neck manikin with thyroid, thorax and head that included the eye, the table and gantry with 70 cm opening of the tomography was modeled. The X-ray spectrum calculated with a cut thickness of 10 mm limited by Pb collimators was used as the source term. The radiological service routine scanning protocol was used for chest computed tomography; the step-by-step or instant trigger method was simulated by moving the manikin coordinates for each cut and 360 degree continuous rotation movement. 36 positions of the X-ray tube were used in steps of 10 degrees. The radiation dispersed in the thorax deposits a dose of 2.063 mGy in crystalline and 252 mGy in thyroid. (Author)

  20. Benchmark of physics design of a proposed 30 MW Multi Purpose Research Reactor using a Monte Carlo code MCNP

    International Nuclear Information System (INIS)

    Singh, Tej; Kumar, Jainendra; Sharma, Archana; Singh, Kanchhi; Raina, V.K.; Srinivasan, P.

    2009-01-01

    At present Dhruva and Cirus reactors provide majority of research reactor based experimental/irradiation facilities to cater to various needs of the vast pool of researchers in the field of sciences research and development work for nuclear power plants and production of radioisotopes. With a view to further consolidate and expand the scope of research and development in nuclear and allied sciences, a new 30 MWt Multi Purpose Research Reactor is proposed to be constructed. This paper describes some of the physics design features of this reactor using MCNP code to validate the deterministic methods. The criticality calculations for 100 material testing reactor (JHR) of France and 610 MW SAVANNAH thermal reactor were performed using MCNP computer codes to boost the confidence level in designing the physics design of reactor core. (author)

  1. Tenth value layers for 60Co gamma rays and for 4, 6, 10, 15, and 18 MV x rays in concrete for beams of cone angles between 0 degrees and 14 degrees calculated by Monte Carlo simulation.

    Science.gov (United States)

    Jaradat, Adnan K; Biggs, Peter J

    2007-05-01

    The calculation of shielding barrier thicknesses for radiation therapy facilities according to the NCRP formalism is based on the use of broad beams (that is, the maximum possible field sizes). However, in practice, treatment fields used in radiation therapy are, on average, less than half the maximum size. Indeed, many contemporary treatment techniques call for reduced field sizes to reduce co-morbidity and the risk of second cancers. Therefore, published tenth value layers (TVLs) for shielding materials do not apply to these very small fields. There is, hence, a need to determine the TVLs for various beam modalities as a function of field size. The attenuation of (60)Co gamma rays and photons of 4, 6, 10, 15, and 18 MV bremsstrahlung x ray beams by concrete has been studied using the Monte Carlo technique (MCNP version 4C2) for beams of half-opening angles of 0 degrees , 3 degrees , 6 degrees , 9 degrees , 12 degrees , and 14 degrees . The distance between the x-ray source and the distal surface of the shielding wall was fixed at 600 cm, a distance that is typical for modern radiation therapy rooms. The maximum concrete thickness varied between 76.5 cm and 151.5 cm for (60)Co and 18 MV x rays, respectively. Detectors were placed at 630 cm, 700 cm, and 800 cm from the source. TVLs have been determined down to the third TVL. Energy spectra for 4, 6, 10, 15, and 18 MV x rays for 10 x 10 cm(2) and 40 x 40 cm(2) field sizes were used to generate depth dose curves in water that were compared with experimentally measured values.

  2. Calculation of the effective dose from natural radioactivity sources in soil using MCNP code

    International Nuclear Information System (INIS)

    Krstic, D.; Nikezic, D.

    2008-01-01

    Full text: Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this report. Calculations have been done for the most common natural radionuclides in soil as 238 U, 232 Th series and 40 K. A ORNL age-dependent phantom and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs of phantom.The effective dose was calculated according to ICRP74 recommendations. Conversion coefficients of effective dose per air kerma were determined. Results obtained here were compared with other authors

  3. Elaborate SMART MCNP Modelling Using ANSYS and Its Applications

    Science.gov (United States)

    Song, Jaehoon; Surh, Han-bum; Kim, Seung-jin; Koo, Bonsueng

    2017-09-01

    An MCNP 3-dimensional model can be widely used to evaluate various design parameters such as a core design or shielding design. Conventionally, a simplified 3-dimensional MCNP model is applied to calculate these parameters because of the cumbersomeness of modelling by hand. ANSYS has a function for converting the CAD `stp' format into an MCNP input in the geometry part. Using ANSYS and a 3- dimensional CAD file, a very detailed and sophisticated MCNP 3-dimensional model can be generated. The MCNP model is applied to evaluate the assembly weighting factor at the ex-core detector of SMART, and the result is compared with a simplified MCNP SMART model and assembly weighting factor calculated by DORT, which is a deterministic Sn code.

  4. MCNP6.1 simulations for low-energy atomic relaxation: Code-to-code comparison with GATEv7.2, PENELOPE2014, and EGSnrc

    Science.gov (United States)

    Jung, Seongmoon; Sung, Wonmo; Lee, Jaegi; Ye, Sung-Joon

    2018-01-01

    Emerging radiological applications of gold nanoparticles demand low-energy electron/photon transport calculations including details of an atomic relaxation process. Recently, MCNP® version 6.1 (MCNP6.1) has been released with extended cross-sections for low-energy electron/photon, subshell photoelectric cross-sections, and more detailed atomic relaxation data than the previous versions. With this new feature, the atomic relaxation process of MCNP6.1 has not been fully tested yet with its new physics library (eprdata12) that is based on the Evaluated Atomic Data Library (EADL). In this study, MCNP6.1 was compared with GATEv7.2, PENELOPE2014, and EGSnrc that have been often used to simulate low-energy atomic relaxation processes. The simulations were performed to acquire both photon and electron spectra produced by interactions of 15 keV electrons or photons with a 10-nm-thick gold nano-slab. The photon-induced fluorescence X-rays from MCNP6.1 fairly agreed with those from GATEv7.2 and PENELOPE2014, while the electron-induced fluorescence X-rays of the four codes showed more or less discrepancies. A coincidence was observed in the photon-induced Auger electrons simulated by MCNP6.1 and GATEv7.2. A recent release of MCNP6.1 with eprdata12 can be used to simulate the photon-induced atomic relaxation.

  5. Monte Carlo technique applications in field of radiation dosimetry at ENEA radiation protection institute: A Review

    International Nuclear Information System (INIS)

    Gualdrini, G.F.; Casalini, L.; Morelli, B.

    1994-12-01

    The present report summarizes the activities concerned with numerical dosimetry as carried out at the Radiation Protection Institute of ENEA (Italian Agency for New Technologies, Energy and the Environment) on photon dosimetric quantities. The first part is concerned with MCNP Monte Carlo calculation of field parameters and operational quantities for the ICRU sphere with reference photon beams for the design of personal dosemeters. The second part is related with studies on the ADAM anthropomorphic phantom using the SABRINA and MCNP codes. The results of other Monte Carlo studies carried out on electron conversion factors for various tissue equivalent slab phantoms are about to be published in other ENEA reports. The report has been produced in the framework of the EURADOS WG4 (numerical dosimetry) activities within a collaboration between the ENEA Environmental Department and ENEA Energy Department

  6. Njoy modules used at Enea, Frascati to produce an Ace format neutron cross section library from Eff-1 for the Monte Carlo Mcnp

    International Nuclear Information System (INIS)

    Petrizzi, L.

    1989-01-01

    A note is presented about the experience had in using the NJOY 87.1 module to produce an ACE format library for MCNP from the European Fusion File EFF-1. The IBM 3090 computer, MVS system at ENEA, Bologna was used. The library, called MCNP. EFF1 is at the moment available at Frascati. Few words are said about the met processing problems and the more general topics related to our activity

  7. Comparison of MCNP6 and experimental results for neutron counts, Rossi-{alpha}, and Feynman-{alpha} distributions

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, Y. [Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439 (United States); Sadovich, S.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C. [Joint Institute for Power and Nuclear Research-Sosny, 99 Academician A.K. Krasin Str., Minsk 220109 (Belarus)

    2013-07-01

    MCNP6, the general-purpose Monte Carlo N-Particle code, has the capability to perform time-dependent calculations by tracking the time interval between successive events of the neutron random walk. In fixed-source calculations for a subcritical assembly, the zero time value is assigned at the moment the neutron is emitted by the external neutron source. The PTRAC and F8 cards of MCNP allow to tally the time when a neutron is captured by {sup 3}He(n, p) reactions in the neutron detector. From this information, it is possible to build three different time distributions: neutron counts, Rossi-{alpha}, and Feynman-{alpha}. The neutron counts time distribution represents the number of neutrons captured as a function of time. The Rossi-a distribution represents the number of neutron pairs captured as a function of the time interval between two capture events. The Feynman-a distribution represents the variance-to-mean ratio, minus one, of the neutron counts array as a function of a fixed time interval. The MCNP6 results for these three time distributions have been compared with the experimental data of the YALINA Thermal facility and have been found to be in quite good agreement. (authors)

  8. Modelling of the RA-1 reactor using a Monte Carlo code

    International Nuclear Information System (INIS)

    Quinteiro, Guillermo F.; Calabrese, Carlos R.

    2000-01-01

    It was carried out for the first time, a model of the Argentine RA-1 reactor using the MCNP Monte Carlo code. This model was validated using data for experimental neutron and gamma measurements at different energy ranges and locations. In addition, the resulting fluxes were compared with the data obtained using a 3D diffusion code. (author)

  9. MCNP simulations of a glass display used in a mobile phone as an accident dosimeter

    International Nuclear Information System (INIS)

    Discher, Michael; Hiller, Mauritius; Woda, Clemens

    2015-01-01

    It has been demonstrated that glass display of mobile phones can be used as a device for accident dosimetry. Published studies concentrated on the experimental investigation of parts of the glass display. In the work presented here, the experimental results are compared with results of radiation transport calculations using the Monte Carlo code MCNP5. An experimental setup of an irradiation of an extracted glass display is simulated. The simulation is then extended to a simulation of a modern day mobile phone consisting of all major parts. Simulations are performed for various irradiation conditions and different geometric and material properties. The results of the simulation show a good agreement with the experiments for an extracted glass sample as well as for an actual modern mobile phone. The glass display is exposed to radiation in various angular and energy distributions. Simulated results were compared to experimentally determined results. The effects of the irradiation condition on the photon energy dependence were investigated and variations in the material constants of the display glass composition were discussed. This work affirms the usability of a mobile phone as a versatile and flexible accident radiation detector. - Highlights: • Simulations of a modern day mobile phone using MCNP are carried out. • Results of the simulation show a good agreement with the experiments. • Photon energy dependence and angular response for display glass are verified

  10. Use of a Boron Doped Spherical Phantom for the Investigation of Neutron Directional Properties: Comparison Between Experiment and MCNP Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Drake, P.; Kierkegaard, J

    1999-07-01

    A boron doped 19 cm diameter spherical phantom was constructed to give information on the direction of neutrons inside the Ringhals 4 containment. The phantom was made of 40% paraffin and 60% boric acid. 10B contributes 2% of the total phantom weight. The phantom was tested for its angular sensitivity to neutrons. The response was tested with a {sup 252}Cf source and with a Monte Carlo calculation (MCNP) simulating a {sup 252}Cf source. In these investigations the phantom showed a strong directional response. However, there was only a fair correspondence between the experiment and the simulation. The discrepancies are, at least in part, due to the difference in energy and angular response of the dosemeters as compared with the idealised response characteristics in the MCNP calculation. In the MCNP calculation the experimental conditions were not fully simulated. The investigations also showed that the addition of boron to the phantom reduces the leakage of thermalised neutrons from the phantom, and the production of neutron induced photons in the phantom to insignificant levels. (author)

  11. Use of a Boron Doped Spherical Phantom for the Investigation of Neutron Directional Properties: Comparison Between Experiment and MCNP Simulation

    International Nuclear Information System (INIS)

    Drake, P.; Kierkegaard, J.

    1999-01-01

    A boron doped 19 cm diameter spherical phantom was constructed to give information on the direction of neutrons inside the Ringhals 4 containment. The phantom was made of 40% paraffin and 60% boric acid. 10B contributes 2% of the total phantom weight. The phantom was tested for its angular sensitivity to neutrons. The response was tested with a 252 Cf source and with a Monte Carlo calculation (MCNP) simulating a 252 Cf source. In these investigations the phantom showed a strong directional response. However, there was only a fair correspondence between the experiment and the simulation. The discrepancies are, at least in part, due to the difference in energy and angular response of the dosemeters as compared with the idealised response characteristics in the MCNP calculation. In the MCNP calculation the experimental conditions were not fully simulated. The investigations also showed that the addition of boron to the phantom reduces the leakage of thermalised neutrons from the phantom, and the production of neutron induced photons in the phantom to insignificant levels. (author)

  12. Applications to shielding design and others of monte carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Daiichiro [Mitsui Engineering and Shipbuiding Co., Ltd., Tokyo (Japan)

    2001-01-01

    One-dimensional or two-dimensional Sn computer code (ANISN, DOT3.5, etc.) and a point attenuation kernel integral code (QAD, etc.) have been used widely for shielding design. Application examples of monte carlo method which could follow precisely the three-dimensional configuration of shielding structure are shown as follow: (1) CASTER cask has a complex structure which consists of a large number of fuel baskets (stainless steel), neutron moderators (polyethylene rods), the body (cast iron), and cooling fin. The R-{theta} model of Sn code DOT3.5 cannot follow closely the complex form of polyethylene rods and fuel baskets. A monte carlo code MORSE is used to ascertain the calculation results of DOT3.5. The discrepancy between the calculation results of DOT3.5 and MORSE was in 10% for dose rate at distance of 1 m from the cask surface. (2) The dose rates of an iron cell at 10 cm above the floor are calculated by the code QAD and the MORSE. The reflected components of gamma ray caused by the auxiliary floor shield (lead) are analyzed by the MORSE. (3) A monte carlo code MCNP4A is used for skyshine evaluation of spent fuel carrier ship 'ROKUEIMARU'. The direct and skyshine components of gamma ray and neutron flux are estimated at each center of engine room and wheel house. The skyshine dose rate of neutron flux is 5-15 times larger than the gamma ray. (M. Suetake)

  13. Benchmarking the cad-based attila discrete ordinates code with experimental data of fusion experiments and to the results of MCNP code in simulating ITER

    International Nuclear Information System (INIS)

    Youssef, M. Z.

    2007-01-01

    Attila is a newly developed finite element code based on Sn neutron, gamma, and charged particle transport in 3-D geometry in which unstructured tetrahedral meshes are generated to describe complex geometry that is based on CAD input (Solid Works, Pro/Engineer, etc). In the present work we benchmark its calculation accuracy by comparing its prediction to the measured data inside two experimental mock-ups bombarded with 14 MeV neutrons. The results are also compared to those based on MCNP calculations. The experimental mock-ups simulate parts of the International Thermonuclear Experimental Reactor (ITER) in-vessel components, namely: (1) the Tungsten mockup configuration (54.3 cm x 46.8 cm x 45 cm), and (2) the ITER shielding blanket followed by the SCM region (simulated by alternating layers of SS316 and copper). In the latter configuration, a high aspect ratio rectangular streaming channel was introduced (to simulate steaming paths between ITER blanket modules) which ends with a rectangular cavity. The experiments on these two fusion-oriented integral experiments were performed at the Fusion Neutron Generator (FNG) facility, Frascati, Italy. In addition, the nuclear performance of the ITER MCNP 'Benchmark' CAD model has been performed with Attila to compare its results to those obtained with CAD-based MCNP approach developed by several ITER participants. The objective of this paper is to compare results based on two distinctive 3-D calculation tools using the same nuclear data, FENDL2.1, and the same response functions of several reaction rates measured in ITER mock-ups and to enhance confidence from the international neutronics community in the Attila code and how it can precisely quantify the nuclear field in large and complex systems, such as ITER. Attila has the advantage of providing a full flux mapping visualization everywhere in one run where components subjected to excessive radiation level and strong streaming paths can be identified. In addition, the

  14. MCNP(TM) Release 6.1.1 beta: Creating and Testing the Code Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Lawrence J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Casswell, Laura [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-06-12

    This report documents the preparations for and testing of the production release of MCNP6™1.1 beta through RSICC at ORNL. It addresses tests on supported operating systems (Linux, MacOSX, Windows) with the supported compilers (Intel, Portland Group and gfortran). Verification and Validation test results are documented elsewhere. This report does not address in detail the overall packaging of the distribution. Specifically, it does not address the nuclear and atomic data collection, the other included software packages (MCNP5, MCNPX and MCNP6) and the collection of reference documents.

  15. Practical Application of Monte Carlo Code in RTP

    International Nuclear Information System (INIS)

    Mohamad Hairie Rabir; Julia Abdul Karim; Muhammad Rawi Mohamed Zin; Na'im Syauqi Hamzah; Mark Dennis Anak Usang; Abi Muttaqin Jalal Bayar; Muhammad Khairul Ariff Mustafa

    2015-01-01

    Monte Carlo neutron transport codes are widely used in various reactor physics applications in RTP and other related nuclear and radiation research in Nuklear Malaysia. The main advantage of the method is the capability to model geometry and interaction physics without major approximations. The disadvantage is that the modelling of complicated systems is very computing-intensive, which restricts the applications to some extent. The importance of Monte Carlo calculation is likely to increase in the future, along with the development in computer capacities and parallel calculation. This paper presents several calculation activities, its achievements and challenges in using MCNP code for neutronics analysis, nuclide inventory and source term calculation, shielding and dose evaluation. (author)

  16. Monte Carlo Numerical Models for Nuclear Logging Applications

    Directory of Open Access Journals (Sweden)

    Fusheng Li

    2012-06-01

    Full Text Available Nuclear logging is one of most important logging services provided by many oil service companies. The main parameters of interest are formation porosity, bulk density, and natural radiation. Other services are also provided from using complex nuclear logging tools, such as formation lithology/mineralogy, etc. Some parameters can be measured by using neutron logging tools and some can only be measured by using a gamma ray tool. To understand the response of nuclear logging tools, the neutron transport/diffusion theory and photon diffusion theory are needed. Unfortunately, for most cases there are no analytical answers if complex tool geometry is involved. For many years, Monte Carlo numerical models have been used by nuclear scientists in the well logging industry to address these challenges. The models have been widely employed in the optimization of nuclear logging tool design, and the development of interpretation methods for nuclear logs. They have also been used to predict the response of nuclear logging systems for forward simulation problems. In this case, the system parameters including geometry, materials and nuclear sources, etc., are pre-defined and the transportation and interactions of nuclear particles (such as neutrons, photons and/or electrons in the regions of interest are simulated according to detailed nuclear physics theory and their nuclear cross-section data (probability of interacting. Then the deposited energies of particles entering the detectors are recorded and tallied and the tool responses to such a scenario are generated. A general-purpose code named Monte Carlo N– Particle (MCNP has been the industry-standard for some time. In this paper, we briefly introduce the fundamental principles of Monte Carlo numerical modeling and review the physics of MCNP. Some of the latest developments of Monte Carlo Models are also reviewed. A variety of examples are presented to illustrate the uses of Monte Carlo numerical models

  17. Monte Carlo analysis of Musashi TRIGA mark II reactor core

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo

    1999-01-01

    The analysis of the TRIGA-II core at the Musashi Institute of Technology Research Reactor (Musashi reactor, 100 kW) was performed by the three-dimensional continuous-energy Monte Carlo code (MCNP4A). Effective multiplication factors (k eff ) for the several fuel-loading patterns including the initial core criticality experiment, the fuel element and control rod reactivity worth as well as the neutron flux measurements were used in the validation process of the physical model and neutron cross section data from the ENDF/B-V evaluation. The calculated k eff overestimated the experimental data by about 1.0%Δk/k for both the initial core and the several fuel-loading arrangements. The calculated reactivity worths of control rod and fuel element agree well the measured ones within the uncertainties. The comparison of neutron flux distribution was consistent with the experimental ones which were measured by activation methods at the sample irradiation tubes. All in all, the agreement between the MCNP predictions and the experimentally determined values is good, which indicated that the Monte Carlo model is enough to simulate the Musashi TRIGA-II reactor core. (author)

  18. An assessment of the feasibility of using Monte Carlo calculations to model a combined neutron/gamma electronic personal dosemeter

    International Nuclear Information System (INIS)

    Tanner, J.E.; Witts, D.; Tanner, R.J.; Bartlett, D.T.; Burgess, P.H.; Edwards, A.A.; More, B.R.

    1995-01-01

    A Monte Carlo facility has been developed for modelling the response of semiconductor devices to mixed neutron-photon fields. This utilises the code MCNP for neutron and photon transport and a new code, STRUGGLE, which has been developed to model the secondary charged particle transport. It is thus possible to predict the pulse height distribution expected from prototype electronic personal detectors, given the detector efficiency factor. Initial calculations have been performed on a simple passivated implanted planar silicon detector. This device has also been irradiated in neutron, gamma and X ray fields to verify the accuracy of the predictions. Good agreement was found between experiment and calculation. (author)

  19. DESAIN TERAS PLTN JENIS PEBBLE BED MODULAR REACTOR (PBMR MENGGUNAKAN PAKET PROGRAM MCNP-5 PADA KONDISI BEGINNING OF LIFE

    Directory of Open Access Journals (Sweden)

    Ralind Re Marla

    2015-03-01

    Full Text Available Telah dilakukan desain teras Pembangkit Listrik Tenaga Nuklir (PLTN untuk jenis Pebble Bed Modular Reactor (PBMR dengan daya 70 MWe untuk keperluan proses smelter pada keadaan beginning of life (BOL. Analisis ini bertujuan untuk mengetahui persen pengkayaan, distribusi suhu dan nilai keselamatan dengan koefisien reaktivitas teras yang negatif pada reaktor jenis PBMR apabila daya reaktor 70 MWe. Analisis menggunakan program Monte Carlo N-Particle-5 (MCNP5 dan dari hasil analisis ini diharapkan dapat memenuhi syarat dalam mendukung program percepatan pembangunan kelistrikan batubara 10.000 MWe khususnya untuk proses smelter, yang tersebar merata di wilayah Indonesia. Hasil penelitian menunjukkan bahwa, faktor perlipatan efektif (k-eff Reaktor jenis PBMR daya 70 MWe mengalami kondisi kritis pada pengkayaan 5,626 % dengan nilai faktor perlipatan efektif 1,00031±0,00087 dan nilai koefisien reaktivitas suhu pada -10,0006 pcm/K. Dari hasil analisis daat disimpulkan bahwa reaktor jenis PBMR daya 70 MWe adalah aman.   ABSTRACT The core design of Nuclear Power Plant for Pebble Bed Modular Reactor (PBMR type with 70 MWe capacity power in Beginning of Life (BOL has been performed. The aim of this analysis, to know percent enrichment, temperature distribution and safety value by negative temperature coefficient at type PBMR if reactor power become lower equal to 70 MWe. This analysis was expected become one part of overview project development the power plant with 10.000 MWe of total capacity, spread evenly in territory of Indonesia especially to support of smelter industries. The results showed that, effective multiplication factor (keff with power 70 MWe critical condition at enrichment 5,626 %is 1,00031±0,00087, based on enrichment result, a value of the temperature coefficient reactivity is - 10,0006 pcm/K. Based on the results of these studies, it can beconcluded that the PBMR 70 MWe design is theoritically safe.

  20. Dose point kernel simulation for monoenergetic electrons and radionuclides using Monte Carlo techniques.

    Science.gov (United States)

    Wu, J; Liu, Y L; Chang, S J; Chao, M M; Tsai, S Y; Huang, D E

    2012-11-01

    Monte Carlo (MC) simulation has been commonly used in the dose evaluation of radiation accidents and for medical purposes. The accuracy of simulated results is affected by the particle-tracking algorithm, cross-sectional database, random number generator and statistical error. The differences among MC simulation software packages must be validated. This study simulated the dose point kernel (DPK) and the cellular S-values of monoenergetic electrons ranging from 0.01 to 2 MeV and the radionuclides of (90)Y, (177)Lu and (103 m)Rh, using Fluktuierende Kaskade (FLUKA) and MC N-Particle Transport Code Version 5 (MCNP5). A 6-μm-radius cell model consisting of the cell surface, cytoplasm and cell nucleus was constructed for cellular S-value calculation. The mean absolute percentage errors (MAPEs) of the scaled DPKs, simulated using FLUKA and MCNP5, were 7.92, 9.64, 4.62, 3.71 and 3.84 % for 0.01, 0.1, 0.5, 1 and 2 MeV, respectively. For the three radionuclides, the MAPEs of the scaled DPKs were within 5 %. The maximum deviations of S(N←N), S(N←Cy) and S(N←CS) for the electron energy larger than 10 keV were 6.63, 6.77 and 5.24 %, respectively. The deviations for the self-absorbed S-values and cross-dose S-values of the three radionuclides were within 4 %. On the basis of the results of this study, it was concluded that the simulation results are consistent between FLUKA and MCNP5. However, there is a minor inconsistency for low energy range. The DPK and the cellular S-value should be used as the quality assurance tools before the MC simulation results are adopted as the gold standard.