WorldWideScience

Sample records for mcnp simulation results

  1. Coupling the MCNP Monte Carlo code and the FISPACT activation code with automatic visualization of the results of simulations

    International Nuclear Information System (INIS)

    Bourauel, Peter; Nabbi, Rahim; Biel, Wolfgang; Forrest, Robin

    2009-01-01

    The MCNP 3D Monte Carlo computer code is used not only for criticality calculations of nuclear systems but also to simulate transports of radiation and particles. The findings so obtained about neutron flux distribution and the associated spectra allow information about materials activation, nuclear heating, and radiation damage to be obtained by means of activation codes such as FISPACT. The stochastic character of particle and radiation transport processes normally links findings to the materials cells making up the geometry model of MCNP. Where high spatial resolution is required for the activation calculations with FISPACT, fine segmentation of the MCNP geometry becomes compulsory, which implies considerable expense for the modeling process. For this reason, an alternative simulation technique has been developed in an effort to automate and optimize data transfer between MCNP and FISPACT. (orig.)

  2. Absorbed body dose simulation in Thyroid cancer therapy using MCNP4Cand ITScodes and comparison to experimental results

    International Nuclear Information System (INIS)

    Hadad, K.; Gorji, Y.

    2004-01-01

    Two standard particle transport codes of MCNP4C and integrated tiger series were used to estimate the total body dose in a thyroid cancer therapy study, with I-131 as the radionuclide source. Human body was modeled by water and soft tissue ellipsoids. Phantoms' dimensions were selected according to Brow nell recommendation. Absorbed fractions were calculated by both codes for different phantoms and for gammas with 0.364 MeV energy, which has the highest fraction in I-131 emitting gammas. Results were compared to the data published by Brow nell et.al.. Figure 1 shows the results of MCNP4C and Integrated Tiger Series with results published by Brow nell et. al.

  3. Spectral measurements in critical assemblies: MCNP specifications and calculated results

    Energy Technology Data Exchange (ETDEWEB)

    Stephanie C. Frankle; Judith F. Briesmeister

    1999-12-01

    Recently, a suite of 86 criticality benchmarks for the Monte Carlo N-Particle (MCNP) transport code was developed, and the results of testing the ENDF/B-V and ENDF/B-VI data (through Release 2) were published. In addition to the standard k{sub eff} measurements, other experimental measurements were performed on a number of these benchmark assemblies. In particular, the Cross Section Evaluation Working Group (CSEWG) specifications contain experimental data for neutron leakage and central-flux measurements, central-fission ratio measurements, and activation ratio measurements. Additionally, there exists another set of fission reaction-rate measurements performed at the National Institute of Standards and Technology (NIST) utilizing a {sup 252}Cf source. This report will describe the leakage and central-flux measurements and show a comparison of experimental data to MCNP simulations performed using the ENDF/B-V and B-VI (Release 2) data libraries. Central-fission and activation reaction-rate measurements will be described, and the comparison of experimental data to MCNP simulations using available data libraries for each reaction of interest will be presented. Finally, the NIST fission reaction-rate measurements will be described. A comparison of MCNP results published previously with the current MCNP simulations will be presented for the NIST measurements, and a comparison of the current MCNP simulations to the experimental measurements will be presented.

  4. Spectral measurements in critical assemblies: MCNP specifications and calculated results

    International Nuclear Information System (INIS)

    Frankle, Stephanie C.; Briesmeister, Judith F.

    1999-01-01

    Recently, a suite of 86 criticality benchmarks for the Monte Carlo N-Particle (MCNP) transport code was developed, and the results of testing the ENDF/B-V and ENDF/B-VI data (through Release 2) were published. In addition to the standard k eff measurements, other experimental measurements were performed on a number of these benchmark assemblies. In particular, the Cross Section Evaluation Working Group (CSEWG) specifications contain experimental data for neutron leakage and central-flux measurements, central-fission ratio measurements, and activation ratio measurements. Additionally, there exists another set of fission reaction-rate measurements performed at the National Institute of Standards and Technology (NIST) utilizing a 252 Cf source. This report will describe the leakage and central-flux measurements and show a comparison of experimental data to MCNP simulations performed using the ENDF/B-V and B-VI (Release 2) data libraries. Central-fission and activation reaction-rate measurements will be described, and the comparison of experimental data to MCNP simulations using available data libraries for each reaction of interest will be presented. Finally, the NIST fission reaction-rate measurements will be described. A comparison of MCNP results published previously with the current MCNP simulations will be presented for the NIST measurements, and a comparison of the current MCNP simulations to the experimental measurements will be presented

  5. Benchmarking the cad-based attila discrete ordinates code with experimental data of fusion experiments and to the results of MCNP code in simulating ITER

    International Nuclear Information System (INIS)

    Youssef, M. Z.

    2007-01-01

    Attila is a newly developed finite element code based on Sn neutron, gamma, and charged particle transport in 3-D geometry in which unstructured tetrahedral meshes are generated to describe complex geometry that is based on CAD input (Solid Works, Pro/Engineer, etc). In the present work we benchmark its calculation accuracy by comparing its prediction to the measured data inside two experimental mock-ups bombarded with 14 MeV neutrons. The results are also compared to those based on MCNP calculations. The experimental mock-ups simulate parts of the International Thermonuclear Experimental Reactor (ITER) in-vessel components, namely: (1) the Tungsten mockup configuration (54.3 cm x 46.8 cm x 45 cm), and (2) the ITER shielding blanket followed by the SCM region (simulated by alternating layers of SS316 and copper). In the latter configuration, a high aspect ratio rectangular streaming channel was introduced (to simulate steaming paths between ITER blanket modules) which ends with a rectangular cavity. The experiments on these two fusion-oriented integral experiments were performed at the Fusion Neutron Generator (FNG) facility, Frascati, Italy. In addition, the nuclear performance of the ITER MCNP 'Benchmark' CAD model has been performed with Attila to compare its results to those obtained with CAD-based MCNP approach developed by several ITER participants. The objective of this paper is to compare results based on two distinctive 3-D calculation tools using the same nuclear data, FENDL2.1, and the same response functions of several reaction rates measured in ITER mock-ups and to enhance confidence from the international neutronics community in the Attila code and how it can precisely quantify the nuclear field in large and complex systems, such as ITER. Attila has the advantage of providing a full flux mapping visualization everywhere in one run where components subjected to excessive radiation level and strong streaming paths can be identified. In addition, the

  6. Simulations for the neutron detector TETRA with MCNP

    International Nuclear Information System (INIS)

    Testov, D.; Kuznetsova, E.; Wilson, Jh.

    2013-01-01

    To study the nuclear structure of β-delayed neutron precursors at ALTO ISOL-facility at IPN (Orsay), the high efficiency 4π neutron detector TETRA with 3 He filled counters built at JINR (Dubna) was modified. The MCNP simulations to optimize the future configuration were necessary. The details of the calculations and the major results obtained are discussed

  7. Comparison and validation of the results of the AZNHEX v.1.0 code with the MCNP code simulating the core of a fast reactor cooled with sodium

    International Nuclear Information System (INIS)

    Galicia A, J.; Francois L, J. L.; Bastida O, G. E.; Esquivel E, J.

    2016-09-01

    The development of the AZTLAN platform for the analysis and design of nuclear reactors is led by Instituto Nacional de Investigaciones Nucleares (ININ) and divided into four working groups, which have well-defined activities to achieve significant progress in this project individually and jointly. Within these working groups is the users group, whose main task is to use the codes that make up the AZTLAN platform to provide feedback to the developers, and in this way to make the final versions of the codes are efficient and at the same time reliable and easy to understand. In this paper we present the results provided by the AZNHEX v.1.0 code when simulating the core of a fast reactor cooled with sodium at steady state. The validation of these results is a fundamental part of the platform development and responsibility of the users group, so in this research the results obtained with AZNHEX are compared and analyzed with those provided by the Monte Carlo code MCNP-5, software worldwide used and recognized. A description of the methodology used with MCNP-5 is also presented for the calculation of the interest variables and the difference that is obtained with respect to the calculated with AZNHEX. (Author)

  8. Parallel of semi-empirical results simulated by MCNP of X-ray spectra with a semiconductor

    International Nuclear Information System (INIS)

    Santos, L.R.; Vivolo, V.; Potiens, M.P.A.; Navarro, M.V.T.; Santos, W.S.

    2016-01-01

    The aim of this study was to use the MCNPX radiation transport code to simulate X-ray spectra generated by a constant voltage system in a CdTe semiconductor detector. As part of the validation process, we obtained a series of experimental spectra. Comparatively, in all cases there is a good correlation between the two spectra. There were no statistically significant differences between the experimental results with the simulated. (author)

  9. Nuclear densimeter of soil simulated in MCNP-4C code

    International Nuclear Information System (INIS)

    Braga, Mario R.M.S.S.; Penna, Rodrigo; Vasconcelos, Danilo C.; Pereira, Claubia; Guerra, Bruno T.; Silva, Clemente J.G.C.

    2009-01-01

    The Monte Carlo code (MCNPX) was used to simulate a nuclear densimeter for measuring soil density. An Americium source (E = 60 keV) and a NaI (Tl) detector were placed on soil surface. Results from MCNP shown that scattered photon fluxes may be used to determining soil density. Linear regressions between scattered photons fluxes and soil density were calculated and shown correlation coefficients near unity. (author)

  10. Developing an interface between MCNP and McStas for simulation of neutron moderators

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Lauritzen, Bent; Nonbøl, Erik

    2012-01-01

    Simulations of target-moderator-reflector system at spallation sources are conventionally carried out using MCNP/X whereas simulations of neutron transport and instrument performance are carried out by neutron ray tracing codes such as McStas. The coupling between the two simulations suites...... typically consists of providing analytical fits from MCNP/X neutron spectra to McStas. This method is generally successful, but as will be discussed in the this paper, there are limitations and a more direct coupling between MCNP/X andMcStas could allow for more accurate simulations of e.g. complex...... moderator geometries, interference between beamlines as well as shielding requirements along the neutron guides. In this paper different possible interfaces between McStas and MCNP/X are discussed and first preliminary performance results are shown....

  11. MCNP simulation of the TRIGA Mark II benchmark experiment

    International Nuclear Information System (INIS)

    Jeraj, R.; Glumac, B.; Maucec, M.

    1996-01-01

    The complete 3D MCNP model of the TRIGA Mark II reactor is presented. It enables precise calculations of some quantities of interest in a steady-state mode of operation. Calculational results are compared to the experimental results gathered during reactor reconstruction in 1992. Since the operating conditions were well defined at that time, the experimental results can be used as a benchmark. It may be noted that this benchmark is one of very few high enrichment benchmarks available. In our simulations experimental conditions were thoroughly simulated: fuel elements and control rods were precisely modeled as well as entire core configuration and the vicinity of the core. ENDF/B-VI and ENDF/B-V libraries were used. Partial results of benchmark calculations are presented. Excellent agreement of core criticality, excess reactivity and control rod worths can be observed. (author)

  12. Calculation of concrete shielding wall thickness for 450kVp X-ray tube with MCNP simulation and result comparison with half value layer method calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Heon; Lee, Eun Joong; Kim, Chan Kyu; Cho, Gyu Seong [Dept. of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of); Hur, Sam Suk [Sam Yong Inspection Engineering Co., Ltd., Seoul (Korea, Republic of)

    2016-11-15

    Radiation generating devices must be properly shielded for their safe application. Although institutes such as US National Bureau of Standards and National Council on Radiation Protection and Measurements (NCRP) have provided guidelines for shielding X-ray tube of various purposes, industry people tend to rely on 'Half Value Layer (HVL) method' which requires relatively simple calculation compared to the case of those guidelines. The method is based on the fact that the intensity, dose, and air kerma of narrow beam incident on shielding wall decreases by about half as the beam penetrates the HVL thickness of the wall. One can adjust shielding wall thickness to satisfy outside wall dose or air kerma requirements with this calculation. However, this may not always be the case because 1) The strict definition of HVL deals with only Intensity, 2) The situation is different when the beam is not 'narrow'; the beam quality inside the wall is distorted and related changes on outside wall dose or air kerma such as buildup effect occurs. Therefore, sometimes more careful research should be done in order to verify the effect of shielding specific radiation generating device. High energy X-ray tubes which is operated at the voltage above 400 kV that are used for 'heavy' nondestructive inspection is an example. People have less experience in running and shielding such device than in the case of widely-used low energy X-ray tubes operated at the voltage below 300 kV. In this study, Air Kerma value per week, outside concrete shielding wall of various thickness surrounding 450 kVp X-ray tube were calculated using MCNP simulation with the aid of Geometry Splitting method which is a famous Variance Reduction technique. The comparison between simulated result, HVL method result, and NCRP Report 147 safety goal 0.02 mGy wk-1 on Air Kerma for the place where the public are free to pass showed that concrete wall of thickness 80 cm is needed to achieve the

  13. Calculation of concrete shielding wall thickness for 450kVp X-ray tube with MCNP simulation and result comparison with half value layer method calculation

    International Nuclear Information System (INIS)

    Lee, Sang Heon; Lee, Eun Joong; Kim, Chan Kyu; Cho, Gyu Seong; Hur, Sam Suk

    2016-01-01

    Radiation generating devices must be properly shielded for their safe application. Although institutes such as US National Bureau of Standards and National Council on Radiation Protection and Measurements (NCRP) have provided guidelines for shielding X-ray tube of various purposes, industry people tend to rely on 'Half Value Layer (HVL) method' which requires relatively simple calculation compared to the case of those guidelines. The method is based on the fact that the intensity, dose, and air kerma of narrow beam incident on shielding wall decreases by about half as the beam penetrates the HVL thickness of the wall. One can adjust shielding wall thickness to satisfy outside wall dose or air kerma requirements with this calculation. However, this may not always be the case because 1) The strict definition of HVL deals with only Intensity, 2) The situation is different when the beam is not 'narrow'; the beam quality inside the wall is distorted and related changes on outside wall dose or air kerma such as buildup effect occurs. Therefore, sometimes more careful research should be done in order to verify the effect of shielding specific radiation generating device. High energy X-ray tubes which is operated at the voltage above 400 kV that are used for 'heavy' nondestructive inspection is an example. People have less experience in running and shielding such device than in the case of widely-used low energy X-ray tubes operated at the voltage below 300 kV. In this study, Air Kerma value per week, outside concrete shielding wall of various thickness surrounding 450 kVp X-ray tube were calculated using MCNP simulation with the aid of Geometry Splitting method which is a famous Variance Reduction technique. The comparison between simulated result, HVL method result, and NCRP Report 147 safety goal 0.02 mGy wk-1 on Air Kerma for the place where the public are free to pass showed that concrete wall of thickness 80 cm is needed to achieve the safety goal

  14. Comparison of TITAN hybrid deterministic transport code and MCNP5 for simulation of SPECT

    International Nuclear Information System (INIS)

    Royston, K.; Haghighat, A.; Yi, C.

    2010-01-01

    Traditionally, Single Photon Emission Computed Tomography (SPECT) simulations use Monte Carlo methods. The hybrid deterministic transport code TITAN has recently been applied to the simulation of a SPECT myocardial perfusion study. The TITAN SPECT simulation uses the discrete ordinates formulation in the phantom region and a simplified ray-tracing formulation outside of the phantom. A SPECT model has been created in the Monte Carlo Neutral particle (MCNP)5 Monte Carlo code for comparison. In MCNP5 the collimator is directly modeled, but TITAN instead simulates the effect of collimator blur using a circular ordinate splitting technique. Projection images created using the TITAN code are compared to results using MCNP5 for three collimator acceptance angles. Normalized projection images for 2.97 deg, 1.42 deg and 0.98 deg collimator acceptance angles had maximum relative differences of 21.3%, 11.9% and 8.3%, respectively. Visually the images are in good agreement. Profiles through the projection images were plotted to find that the TITAN results followed the shape of the MCNP5 results with some differences in magnitude. A timing comparison on 16 processors found that the TITAN code completed the calculation 382 to 2787 times faster than MCNP5. Both codes exhibit good parallel performance. (author)

  15. MCNP6 Simulation of Light and Medium Nuclei Fragmentation at Intermediate Energies

    Energy Technology Data Exchange (ETDEWEB)

    Mashnik, Stepan Georgievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kerby, Leslie Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-22

    MCNP6, the latest and most advanced LANL Monte Carlo transport code, representing a merger of MCNP5 and MCNPX, is actually much more than the sum of those two computer codes; MCNP6 is available to the public via RSICC at Oak Ridge, TN, USA. In the present work, MCNP6 was validated and verified (V&V) against different experimental data on intermediate-energy fragmentation reactions, and results by several other codes, using mainly the latest modifications of the Cascade-Exciton Model (CEM) and of the Los Alamos version of the Quark-Gluon String Model (LAQGSM) event generators CEM03.03 and LAQGSM03.03. It was found that MCNP6 using CEM03.03 and LAQGSM03.03 describes well fragmentation reactions induced on light and medium target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below, and can serve as a reliable simulation tool for different applications, like cosmic-ray-induced single event upsets (SEU’s), radiation protection, and cancer therapy with proton and ion beams, to name just a few. Future improvements of the predicting capabilities of MCNP6 for such reactions are possible, and are discussed in this work.

  16. Simulation of Photon energy Spectra Using MISC, SOURCES, MCNP and GADRAS

    International Nuclear Information System (INIS)

    Tucker, Lucas P.; Shores, Erik F.; Myers, Steven C.; Felsher, Paul D.; Garner, Scott E.; Solomon, Clell J. Jr.

    2012-01-01

    The detector response functions included in the Gamma Detector Response and Analysis Software (GADRAS) are a valuable resource for simulating radioactive source emission spectra. Application of these response functions to the results of three-dimensional transport calculations is a useful modeling capability. Using a 26.2 kg shell of depleted uranium (DU) as a simple test problem, this work illustrates a method for manipulating current tally results from MCNP into the GAM file format necessary for a practical link to GADRAS detector response functions. MISC (MCNP Intrinsic Source Constructor) and SOURCES 4C were used to develop photon and neutron source terms for subsequent MCNP transport, and the resultant spectrum is shown to be in good agreement with that from GADRAS. A 1 kg DU sphere was also modeled with the method described here and showed similarly encouraging results.

  17. Verification of MCNP simulation of neutron flux parameters at TRIGA MK II reactor of Malaysia.

    Science.gov (United States)

    Yavar, A R; Khalafi, H; Kasesaz, Y; Sarmani, S; Yahaya, R; Wood, A K; Khoo, K S

    2012-10-01

    A 3-D model for 1 MW TRIGA Mark II research reactor was simulated. Neutron flux parameters were calculated using MCNP-4C code and were compared with experimental results obtained by k(0)-INAA and absolute method. The average values of φ(th),φ(epi), and φ(fast) by MCNP code were (2.19±0.03)×10(12) cm(-2)s(-1), (1.26±0.02)×10(11) cm(-2)s(-1) and (3.33±0.02)×10(10) cm(-2)s(-1), respectively. These average values were consistent with the experimental results obtained by k(0)-INAA. The findings show a good agreement between MCNP code results and experimental results. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Simulation of Photon energy Spectra Using MISC, SOURCES, MCNP and GADRAS

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Lucas P. [Los Alamos National Laboratory; Shores, Erik F. [Los Alamos National Laboratory; Myers, Steven C. [Los Alamos National Laboratory; Felsher, Paul D. [Los Alamos National Laboratory; Garner, Scott E. [Los Alamos National Laboratory; Solomon, Clell J. Jr. [Los Alamos National Laboratory

    2012-08-14

    The detector response functions included in the Gamma Detector Response and Analysis Software (GADRAS) are a valuable resource for simulating radioactive source emission spectra. Application of these response functions to the results of three-dimensional transport calculations is a useful modeling capability. Using a 26.2 kg shell of depleted uranium (DU) as a simple test problem, this work illustrates a method for manipulating current tally results from MCNP into the GAM file format necessary for a practical link to GADRAS detector response functions. MISC (MCNP Intrinsic Source Constructor) and SOURCES 4C were used to develop photon and neutron source terms for subsequent MCNP transport, and the resultant spectrum is shown to be in good agreement with that from GADRAS. A 1 kg DU sphere was also modeled with the method described here and showed similarly encouraging results.

  19. Comparison and validation of the results of the AZNHEX v.1.0 code with the MCNP code simulating the core of a fast reactor cooled with sodium; Comparacion y validacion de los resultados del codigo AZNHEX v.1.0 con el codigo MCNP simulando el nucleo de un reactor rapido refrigerado con sodio

    Energy Technology Data Exchange (ETDEWEB)

    Galicia A, J.; Francois L, J. L.; Bastida O, G. E. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Esquivel E, J., E-mail: blink19871@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    The development of the AZTLAN platform for the analysis and design of nuclear reactors is led by Instituto Nacional de Investigaciones Nucleares (ININ) and divided into four working groups, which have well-defined activities to achieve significant progress in this project individually and jointly. Within these working groups is the users group, whose main task is to use the codes that make up the AZTLAN platform to provide feedback to the developers, and in this way to make the final versions of the codes are efficient and at the same time reliable and easy to understand. In this paper we present the results provided by the AZNHEX v.1.0 code when simulating the core of a fast reactor cooled with sodium at steady state. The validation of these results is a fundamental part of the platform development and responsibility of the users group, so in this research the results obtained with AZNHEX are compared and analyzed with those provided by the Monte Carlo code MCNP-5, software worldwide used and recognized. A description of the methodology used with MCNP-5 is also presented for the calculation of the interest variables and the difference that is obtained with respect to the calculated with AZNHEX. (Author)

  20. Visualizing MCNP Tally Segment Geometry and Coupling Results with ABAQUS

    International Nuclear Information System (INIS)

    J. R. Parry; J. A. Galbraith

    2007-01-01

    The Advanced Graphite Creep test, AGC-1, is planned for irradiation in the Advanced Test Reactor (ATR) in support of the Next Generation Nuclear Plant program. The experiment requires very detailed neutronics and thermal hydraulics analyses to show compliance with programmatic and ATR safety requirements. The MCNP model used for the neutronics analysis required hundreds of tally regions to provide the desired detail. A method for visualizing the hundreds of tally region geometries and the tally region results in 3 dimensions has been created to support the AGC-1 irradiation. Additionally, a method was created which would allow ABAQUS to access the results directly for the thermal analysis of the AGC-1 experiment

  1. MCNP simulation of a Theratron 780 radiotherapy unit.

    Science.gov (United States)

    Miró, R; Soler, J; Gallardo, S; Campayo, J M; Díez, S; Verdú, G

    2005-01-01

    A Theratron 780 (MDS Nordion) 60Co radiotherapy unit has been simulated with the Monte Carlo code MCNP. The unit has been realistically modelled: the cylindrical source capsule and its housing, the rectangular collimator system, both the primary and secondary jaws and the air gaps between the components. Different collimator openings, ranging from 5 x 5 cm2 to 20 x 20 cm2 (narrow and broad beams) at a source-surface distance equal to 80 cm have been used during the study. In the present work, we have calculated spectra as a function of field size. A study of the variation of the electron contamination of the 60Co beam has also been performed.

  2. A graphical user interface for diagnostic radiology dosimetry using Monte Carlo (MCNP) simulation

    International Nuclear Information System (INIS)

    Collins, P.J.; Gorbatkov, D.; Schultz, F.W.

    2000-01-01

    Monte Carlo methods (for example, MCNP, EGGS4) are the 'gold standard' for both external and internal dosimetry in humans. These powerful simulation tools are, however, general-purpose codes and consequently do not provide a simple user interface for specific dosimetry tasks. We have developed a graphical user interface, for external radiation dosimetry (diagnostic radiology) using MCNP and an anthropomorphic mathematical phantom (Adam/Eva), which enables convenient modification and processing of the MCNP input and output files. The input form displays a colour coded, 3D representation of the phantom with a superimposed 'beam' for the required x-ray projection. The phantom can be rotated through 360 degrees and a transverse section at the level of the mid-point of the beam is also displayed. Text fields enable entry of input data (beam dimensions, source position, kVp, total filtration, focus-to-skin distance). A pull-down menu enables the user to select from 22 standard radiographic views. A standard projection can be modified, or new projection data entered if required. The input program modifies the MCNP input file and initiates processing. An output form displays the organ doses, normalised to unit skin entrance dose (with backscatter) (SED). The user can also enter the SED (calculated or measured) for a particular machine, to obtain the effective dose. To validate the program, the results for a PA Chest study (80 kVp, 2.5 mm Al total filtration) were compared with NRPB data (Jones and Wall, 1985). In conclusion, a convenient and reliable graphical user interface has been developed for MCNP, which enables dosimetry calculation for a full range of diagnostic radiological studies. (author)

  3. Characteristics of Multihole Collimator Gamma Camera Simulation Modeled Using MCNP5

    International Nuclear Information System (INIS)

    Saripan, M. I.; Mashohor, S.; Adnan, W. A. Wan; Marhaban, M. H.; Hashim, S.

    2008-01-01

    This paper describes the characteristics of the multihole collimator gamma camera that is simulated using the combination of the Monte Carlo N-Particles Code (MCNP) version 5 and in-house software. The model is constructed based on the GCA-7100A Toshiba Gamma Camera at the Royal Surrey County Hospital, Guildford, Surrey, UK. The characteristics are analyzed based on the spatial resolution of the images detected by the Sodium Iodide (NaI) detector. The result is recorded in a list-mode file referred to as a PTRAC file within MCNP5. All pertinent nuclear reaction mechanisms, such as Compton and Rayleigh scattering and photoelectric absorption are undertaken by MCNP5 for all materials encountered by each photon. The experiments were conducted on Tl-201, Co-57, Tc-99 m and Cr-51 radio nuclides. The comparison of full width half maximum value of each datasets obtained from experimental work, simulation and literature are also reported in this paper. The relationship of the simulated data is in agreement with the experimental results and data obtained in the literature. A careful inspection at each of the data points of the spatial resolution of Tc-99 m shows a slight discrepancy between these sets. However, the difference is very insignificant, i.e. less than 3 mm only, which corresponds to a size of less than 1 pixel only (of the segmented detector)

  4. Nuclear reactor multi-physics simulations with coupled MCNP5 and STAR-CCM+

    International Nuclear Information System (INIS)

    Cardoni, Jeffrey Neil; Rizwan-uddin

    2011-01-01

    The MCNP5 Monte Carlo particle transport code has been coupled to the computational fluid dynamics code, STAR-CCM+, to provide a high fidelity multi-physics simulation tool for pressurized water nuclear reactors. The codes are executed separately and coupled externally through a Perl script. The Perl script automates the exchange of temperature, density, and volumetric heating information between the codes using ASCII text data files. Fortran90 and Java utility programs assist job automation with data post-processing and file management. The MCNP5 utility code, MAKXSF, pre-generates temperature dependent cross section libraries for the thermal feedback calculations. The MCNP5–STAR-CCM+ coupled simulation tool, dubbed MULTINUKE, was applied to a steady state, PWR cell model to demonstrate its usage and capabilities. The demonstration calculation showed reasonable results that agree with PWR values typically reported in literature. Temperature and fission reaction rate distributions were realistic and intuitive. Reactivity coefficients were also deemed reasonable in comparison to historically reported data. The demonstration problem consisted of 9,984 CFD cells and 7,489 neutronic cells. MCNP5 tallied fission energy deposition over 3,328 UO_2 cells. The coupled solution converged within eight hours and in three MULTINUKE iterations. The simulation was carried out on a 64 bit, quad core, Intel 2.8 GHz microprocessor with 1 GB RAM. The simulations on a quad core machine indicated that a massively parallelized implementation of MULTINUKE can be used to assess larger multi-million cell models. (author)

  5. MCNP simulation to optimise in-pile and shielding parts of the Portuguese SANS instrument.

    Science.gov (United States)

    Gonçalves, I F; Salgado, J; Falcão, A; Margaça, F M A; Carvalho, F G

    2005-01-01

    A Small Angle Neutron Scattering instrument is being installed at one end of the tangential beam tube of the Portuguese Research Reactor. The instrument is fed using a neutron scatterer positioned in the middle of the beam tube. The scatterer consists of circulating H2O contained in a hollow disc of Al. The in-pile shielding components and the shielding installed around the neutron selector have been the object of an MCNP simulation study. The quantities calculated were the neutron and gamma-ray fluxes in different positions, the energy deposited in the material by the neutron and gamma-ray fields, the material activation resulting from the neutron field and radiation doses at the exit wall of the shutter and around the shielding. The MCNP results are presented and compared with results of an analytical approach and with experimental data collected after installation.

  6. MCNP simulations of a glass display used in a mobile phone as an accident dosimeter

    International Nuclear Information System (INIS)

    Discher, Michael; Hiller, Mauritius; Woda, Clemens

    2015-01-01

    It has been demonstrated that glass display of mobile phones can be used as a device for accident dosimetry. Published studies concentrated on the experimental investigation of parts of the glass display. In the work presented here, the experimental results are compared with results of radiation transport calculations using the Monte Carlo code MCNP5. An experimental setup of an irradiation of an extracted glass display is simulated. The simulation is then extended to a simulation of a modern day mobile phone consisting of all major parts. Simulations are performed for various irradiation conditions and different geometric and material properties. The results of the simulation show a good agreement with the experiments for an extracted glass sample as well as for an actual modern mobile phone. The glass display is exposed to radiation in various angular and energy distributions. Simulated results were compared to experimentally determined results. The effects of the irradiation condition on the photon energy dependence were investigated and variations in the material constants of the display glass composition were discussed. This work affirms the usability of a mobile phone as a versatile and flexible accident radiation detector. - Highlights: • Simulations of a modern day mobile phone using MCNP are carried out. • Results of the simulation show a good agreement with the experiments. • Photon energy dependence and angular response for display glass are verified

  7. Simulation of the GCR spectrum in the Mars curiosity rover's RAD detector using MCNP6

    Science.gov (United States)

    Ratliff, Hunter N.; Smith, Michael B. R.; Heilbronn, Lawrence

    2017-08-01

    The paper presents results from MCNP6 simulations of galactic cosmic ray (GCR) propagation down through the Martian atmosphere to the surface and comparison with RAD measurements made there. This effort is part of a collaborative modeling workshop for space radiation hosted by Southwest Research Institute (SwRI). All modeling teams were tasked with simulating the galactic cosmic ray (GCR) spectrum through the Martian atmosphere and the Radiation Assessment Detector (RAD) on-board the Curiosity rover. The detector had two separate particle acceptance angles, 4π and 30 ° off zenith. All ions with Z = 1 through Z = 28 were tracked in both scenarios while some additional secondary particles were only tracked in the 4π cases. The MCNP6 4π absorbed dose rate was 307.3 ± 1.3 μGy/day while RAD measured 233 μGy/day. Using the ICRP-60 dose equivalent conversion factors built into MCNP6, the simulated 4π dose equivalent rate was found to be 473.1 ± 2.4 μSv/day while RAD reported 710 μSv/day.

  8. Simulation of the GCR spectrum in the Mars curiosity rover's RAD detector using MCNP6.

    Science.gov (United States)

    Ratliff, Hunter N; Smith, Michael B R; Heilbronn, Lawrence

    2017-08-01

    The paper presents results from MCNP6 simulations of galactic cosmic ray (GCR) propagation down through the Martian atmosphere to the surface and comparison with RAD measurements made there. This effort is part of a collaborative modeling workshop for space radiation hosted by Southwest Research Institute (SwRI). All modeling teams were tasked with simulating the galactic cosmic ray (GCR) spectrum through the Martian atmosphere and the Radiation Assessment Detector (RAD) on-board the Curiosity rover. The detector had two separate particle acceptance angles, 4π and 30 ° off zenith. All ions with Z = 1 through Z = 28 were tracked in both scenarios while some additional secondary particles were only tracked in the 4π cases. The MCNP6 4π absorbed dose rate was 307.3 ± 1.3 µGy/day while RAD measured 233 µGy/day. Using the ICRP-60 dose equivalent conversion factors built into MCNP6, the simulated 4π dose equivalent rate was found to be 473.1 ± 2.4 µSv/day while RAD reported 710 µSv/day. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  9. MCNP efficiency calculations of INEEL passive active neutron assay system for simulated TRU waste assays

    International Nuclear Information System (INIS)

    Yoon, W.Y.; Meachum, T.R.; Blackwood, L.G.; Harker, Y.D.

    2000-01-01

    The Idaho National Engineering and Environmental Laboratory Stored Waste Examination Pilot Plant (SWEPP) passive active neutron (PAN) radioassay system is used to certify transuranic (TRU) waste drums in terms of quantifying plutonium and other TRU element activities. Depending on the waste form involved, significant systematic and random errors need quantification in addition to the counting statistics. To determine the total uncertainty of the radioassay results, a statistical sampling and verification approach has been developed. In this approach, the total performance of the PAN nondestructive assay system is simulated using the computer models of the assay system, and the resultant output is compared with the known input to assess the total uncertainty. The supporting steps in performing the uncertainty analysis for the passive assay measurements in particular are as follows: (1) Create simulated waste drums and associated conditions; (2) Simulate measurements to determine the basic counting data that would be produced by the PAN assay system under the conditions specified; and (3) Apply the PAN assay system analysis algorithm to the set of counting data produced by simulating measurements to determine the measured plutonium mass. The validity of this simulation approach was verified by comparing simulated output against results from actual measurements using known plutonium sources and surrogate waste drums. The computer simulation of the PAN system performance uses the Monte Carlo N-Particle (MCNP) Code System to produce a neutron transport calculation for a simulated waste drum. Specifically, the passive system uses the neutron coincidence counting technique, utilizing the spontaneous fission of 240 Pu. MCNP application to the SWEPP PAN assay system uncertainty analysis has been very useful for a variety of waste types contained in 208-ell drums measured by a passive radioassay system. The application of MCNP to the active radioassay system is also feasible

  10. A simulation of a pebble bed reactor core by the MCNP-4C computer code

    Directory of Open Access Journals (Sweden)

    Bakhshayesh Moshkbar Khalil

    2009-01-01

    Full Text Available Lack of energy is a major crisis of our century; the irregular increase of fossil fuel costs has forced us to search for novel, cheaper, and safer sources of energy. Pebble bed reactors - an advanced new generation of reactors with specific advantages in safety and cost - might turn out to be the desired candidate for the role. The calculation of the critical height of a pebble bed reactor at room temperature, while using the MCNP-4C computer code, is the main goal of this paper. In order to reduce the MCNP computing time compared to the previously proposed schemes, we have devised a new simulation scheme. Different arrangements of kernels in fuel pebble simulations were investigated and the best arrangement to decrease the MCNP execution time (while keeping the accuracy of the results, chosen. The neutron flux distribution and control rods worth, as well as their shadowing effects, have also been considered in this paper. All calculations done for the HTR-10 reactor core are in good agreement with experimental results.

  11. Development of Multi-physics (Multiphase CFD + MCNP) simulation for generic solution vessel power calculation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Jun [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-17

    The current study aims to predict the steady state power of a generic solution vessel and to develop a corresponding heat transfer coefficient correlation for a Moly99 production facility by conducting a fully coupled multi-physics simulation. A prediction of steady state power for the current application is inherently interconnected between thermal hydraulic characteristics (i.e. Multiphase computational fluid dynamics solved by ANSYS-Fluent 17.2) and the corresponding neutronic behavior (i.e. particle transport solved by MCNP6.2) in the solution vessel. Thus, the development of a coupling methodology is vital to understand the system behavior at a variety of system design and postulated operating scenarios. In this study, we report on the k-effective (keff) calculation for the baseline solution vessel configuration with a selected solution concentration using MCNP K-code modeling. The associated correlation of thermal properties (e.g. density, viscosity, thermal conductivity, specific heat) at the selected solution concentration are developed based on existing experimental measurements in the open literature. The numerical coupling methodology between multiphase CFD and MCNP is successfully demonstrated, and the detailed coupling procedure is documented. In addition, improved coupling methods capturing realistic physics in the solution vessel thermal-neutronic dynamics are proposed and tested further (i.e. dynamic height adjustment, mull-cell approach). As a key outcome of the current study, a multi-physics coupling methodology between MCFD and MCNP is demonstrated and tested for four different operating conditions. Those different operating conditions are determined based on the neutron source strength at a fixed geometry condition. The steady state powers for the generic solution vessel at various operating conditions are reported, and a generalized correlation of the heat transfer coefficient for the current application is discussed. The assessment of multi

  12. γ radiation level simulation and analysis with MCNP in EPR containment during severe accident

    International Nuclear Information System (INIS)

    Zeng Jun; Liu Shuhuan; Wang Yang; Zhai Liang

    2013-01-01

    The γ dosimetry model based on the EPR core structure, material composition and the designed shielding system was established. The γ-ray dose rate distributions in EPR containment under different conditions including normal operation state, loss-of-coolant accident and core melt severe accident were simulated with MCNP5, and the calculation results under normal operation state and severe accident were compared and analyzed respectively with that of the designed limit. The study results may provide some relative data reference for EPR core accident prediction and reactor accident emergency decision making. (authors)

  13. Simulation of radiation transport using MCNP for a teletherapy machine; Simulacion del transporte de radiacion usando MCNP para una maquina de teleterapia

    Energy Technology Data Exchange (ETDEWEB)

    Flores O, F.E.; Mireles G, F.; Davila R, J.I.; Pinedo V, J.L.; Risorios M, C.; Lopez del Rio, H. [UAZ, Unidad Academica de Estudios Nucleares, 98068 Zacatecas (Mexico)

    2008-07-01

    The MCNP code is used to simulate the radiation transport taking as tools the transport physics of each particle, either photon, neutron or electron, and the generation of random numbers. Developed in the Los Alamos National Laboratory, this code has been used thoroughly with great success, because the results of the simulations are broadly validated with representative experiments. In the one present work the room of radiotherapy of the Institute Zacatecano of the Tumor it is simulated, located in the city of Zacatecas where one is Theratron 780C machine manufactured by MSD Nordion, with the purpose of estimating the contribution to the dose that would be received in different points of the structure, included three directly under the source. Three results of analytical calculations for points located at different distances from the source are presented, and they are compared against those obtained by the simulation. Its are also presented results for the simulation of 10 points more distributed around the source. (Author)

  14. Development of gamma-ray absorption and scattering simulation platform based on MCNP

    International Nuclear Information System (INIS)

    Lai Wanchang; Chen Henggui; Zhang Zhen; Chen Xiaoqiang

    2010-01-01

    It describes a γ-ray absorption and scattering simulation platform centering on MCNP, and developed corresponding accessories on the basis of the MCNP. Simulation of this simulation platform can be 93 kinds of single-quality materials and 2-3 kinds of multi-element mixture absorption experiment, simulating the absorption thickness of 0-100cm, and the thickness increment in 0.001cm. The media of Scattering Simulation is from the Li to the Am, the angle between the simulation measuring degree and incident ray direction is from-90 to 90, the angle in increments in 1 degree. (authors)

  15. Comparison of MCNP5 and experimental results on neutron shielding effects for materials

    Energy Technology Data Exchange (ETDEWEB)

    Torres, D. A. (Daniel A.); Mosteller, R. D. (Russell D.); Sweezy, J. E. (Jeremy E.)

    2004-01-01

    The MCNP Radiation-Shielding Validation Suite was created to assess the impact on dose rates and attenuation factors of future improvements in the MCNP Monte Carlo code or its nuclear data libraries. However, it does not currently contain any deep-penetration cases. For this reason, a set of deep-penetration benchmarks has been investigated for possible inclusion in the Suite. Overall, the MCNP5 results match the measured values quite well. Furthermore, with the exception of Resin-F, there is no systematic trend in the ratio of calculated to measured results.

  16. MCNP Modeling Results for Location of Buried TRU Waste Drums

    International Nuclear Information System (INIS)

    Steinman, D K; Schweitzer, J S

    2006-01-01

    In the 1960's, fifty-five gallon drums of TRU waste were buried in shallow pits on remote U.S. Government facilities such as the Idaho National Engineering Laboratory (now split into the Idaho National Laboratory and the Idaho Completion Project [ICP]). Subsequently, it was decided to remove the drums and the material that was in them from the burial pits and send the material to the Waste Isolation Pilot Plant in New Mexico. Several technologies have been tried to locate the drums non-intrusively with enough precision to minimize the chance for material to be spread into the environment. One of these technologies is the placement of steel probe holes in the pits into which wireline logging probes can be lowered to measure properties and concentrations of material surrounding the probe holes for evidence of TRU material. There is also a concern that large quantities of volatile organic compounds (VOC) are also present that would contaminate the environment during removal. In 2001, the Idaho National Engineering and Environmental Laboratory (INEEL) built two pulsed neutron wireline logging tools to measure TRU and VOC around the probe holes. The tools are the Prompt Fission Neutron (PFN) and the Pulsed Neutron Gamma (PNG), respectively. They were tested experimentally in surrogate test holes in 2003. The work reported here estimates the performance of the tools using Monte-Carlo modelling prior to field deployment. A MCNP model was constructed by INEEL personnel. It was modified by the authors to assess the ability of the tools to predict quantitatively the position and concentration of TRU and VOC materials disposed around the probe holes. The model was used to simulate the tools scanning the probe holes vertically in five centimetre increments. A drum was included in the model that could be placed near the probe hole and at other locations out to forty-five centimetres from the probe-hole in five centimetre increments. Scans were performed with no chlorine in the

  17. Criticality Benchmark Results Using Various MCNP Data Libraries

    International Nuclear Information System (INIS)

    Frankle, Stephanie C.

    1999-01-01

    A suite of 86 criticality benchmarks has been recently implemented in MCNPtrademark as part of the nuclear data validation effort. These benchmarks have been run using two sets of MCNP continuous-energy neutron data: ENDF/B-VI based data through Release 2 (ENDF60) and the ENDF/B-V based data. New evaluations were completed for ENDF/B-VI for a number of the important nuclides such as the isotopes of H, Be, C, N, O, Fe, Ni, 235,238 U, 237 Np, and 239,240 Pu. When examining the results of these calculations for the five manor categories of 233 U, intermediate-enriched 235 U (IEU), highly enriched 235 U (HEU), 239 Pu, and mixed metal assembles, we find the following: (1) The new evaluations for 9 Be, 12 C, and 14 N show no net effect on k eff ; (2) There is a consistent decrease in k eff for all of the solution assemblies for ENDF/B-VI due to 1 H and 16 O, moving k eff further from the benchmark value for uranium solutions and closer to the benchmark value for plutonium solutions; (3) k eff decreased for the ENDF/B-VI Fe isotopic data, moving the calculated k eff further from the benchmark value; (4) k eff decreased for the ENDF/B-VI Ni isotopic data, moving the calculated k eff closer to the benchmark value; (5) The W data remained unchanged and tended to calculate slightly higher than the benchmark values; (6) For metal uranium systems, the ENDF/B-VI data for 235 U tends to decrease k eff while the 238 U data tends to increase k eff . The net result depends on the energy spectrum and material specifications for the particular assembly; (7) For more intermediate-energy systems, the changes in the 235,238 U evaluations tend to increase k eff . For the mixed graphite and normal uranium-reflected assembly, a large increase in k eff due to changes in the 238 U evaluation moved the calculated k eff much closer to the benchmark value. (8) There is little change in k eff for the uranium solutions due to the new 235,238 U evaluations; and (9) There is little change in k eff

  18. MCNP: Photon benchmark problems

    International Nuclear Information System (INIS)

    Whalen, D.J.; Hollowell, D.E.; Hendricks, J.S.

    1991-09-01

    The recent widespread, markedly increased use of radiation transport codes has produced greater user and institutional demand for assurance that such codes give correct results. Responding to these pressing requirements for code validation, the general purpose Monte Carlo transport code MCNP has been tested on six different photon problem families. MCNP was used to simulate these six sets numerically. Results for each were compared to the set's analytical or experimental data. MCNP successfully predicted the analytical or experimental results of all six families within the statistical uncertainty inherent in the Monte Carlo method. From this we conclude that MCNP can accurately model a broad spectrum of photon transport problems. 8 refs., 30 figs., 5 tabs

  19. Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry

    International Nuclear Information System (INIS)

    Sohrabpour, M.; Hassanzadeh, M.; Shahriari, M.; Sharifzadeh, M.

    2002-01-01

    The Monte Carlo transport code, MCNP, has been applied in simulating dose rate distribution in the IR-136 gamma irradiator system. Isodose curves, cumulative dose values, and system design data such as throughputs, over-dose-ratios, and efficiencies have been simulated as functions of product density. Simulated isodose curves, and cumulative dose values were compared with dosimetry values obtained using polymethyle-methacrylate, Fricke, ethanol-chlorobenzene, and potassium dichromate dosimeters. The produced system design data were also found to agree quite favorably with those of the system manufacturer's data. MCNP has thus been found to be an effective transport code for handling of various dose mapping excercises for gamma irradiators

  20. Physics and Algorithm Enhancements for a Validated MCNP/X Monte Carlo Simulation Tool, Phase VII

    International Nuclear Information System (INIS)

    McKinney, Gregg W.

    2012-01-01

    Currently the US lacks an end-to-end (i.e., source-to-detector) radiation transport simulation code with predictive capability for the broad range of DHS nuclear material detection applications. For example, gaps in the physics, along with inadequate analysis algorithms, make it difficult for Monte Carlo simulations to provide a comprehensive evaluation, design, and optimization of proposed interrogation systems. With the development and implementation of several key physics and algorithm enhancements, along with needed improvements in evaluated data and benchmark measurements, the MCNP/X Monte Carlo codes will provide designers, operators, and systems analysts with a validated tool for developing state-of-the-art active and passive detection systems. This project is currently in its seventh year (Phase VII). This presentation will review thirty enhancements that have been implemented in MCNPX over the last 3 years and were included in the 2011 release of version 2.7.0. These improvements include 12 physics enhancements, 4 source enhancements, 8 tally enhancements, and 6 other enhancements. Examples and results will be provided for each of these features. The presentation will also discuss the eight enhancements that will be migrated into MCNP6 over the upcoming year.

  1. Simulations of neutron transport at low energy: a comparison between GEANT and MCNP.

    Science.gov (United States)

    Colonna, N; Altieri, S

    2002-06-01

    The use of the simulation tool GEANT for neutron transport at energies below 20 MeV is discussed, in particular with regard to shielding and dose calculations. The reliability of the GEANT/MICAP package for neutron transport in a wide energy range has been verified by comparing the results of simulations performed with this package in a wide energy range with the prediction of MCNP-4B, a code commonly used for neutron transport at low energy. A reasonable agreement between the results of the two codes is found for the neutron flux through a slab of material (iron and ordinary concrete), as well as for the dose released in soft tissue by neutrons. These results justify the use of the GEANT/MICAP code for neutron transport in a wide range of applications, including health physics problems.

  2. Reactor Simulations for Safeguards with the MCNP Utility for Reactor Evolution Code

    International Nuclear Information System (INIS)

    Shiba, T.; Fallot, M.

    2015-01-01

    To tackle nuclear material proliferation, we conducted several proliferation scenarios using the MURE (MCNP Utility for Reactor Evolution) code. The MURE code, developed by CNRS laboratories, is a precision, open-source code written in C++ that automates the preparation and computation of successive MCNP (Monte Carlo N-Particle) calculations and solves the Bateman equations in between, for burnup or thermal-hydraulics purposes. In addition, MURE has been completed recently with a module for the CHaracterization of Radioactive Sources, called CHARS, which computes the emitted gamma, beta and alpha rays associated to any fuel composition. Reactor simulations could allow knowing how plutonium or other material generation evolves inside reactors in terms of time and amount. The MURE code is appropriate for this purpose and can also provide knowledge on associated particle emissions. Using MURE, we have both developed a cell simulation of a typical CANDU reactor and a detailed model of light water PWR core, which could be used to analyze the composition of fuel assemblies as a function of time or burnup. MURE is also able to provide, thanks to its extension MURE-CHARTS, the emitted gamma rays from fuel assemblies unloaded from the core at any burnup. Diversion cases of Generation IV reactors have been also developed; a design of Very High Temperature Reactor (a Pebble Bed Reactor (PBR), loaded with UOx, PuOx and ThUOx fuels), and a Na-cooled Fast Breeder Reactor (FBR) (with depleted Uranium or Minor Actinides in the blanket). The loading of Protected Plutonium Production (P3) in the FBR was simulated. The simulations of various reactor designs taking into account reactor physics constraints may bring valuable information to inspectors. At this symposium, we propose to show the results of these reactor simulations as examples of the potentiality of reactor simulations for safeguards. (author)

  3. Implementation of multileaf collimator in a LINAC MCNP5 simulation coupled with the radiation treatment planing system PLUNC

    International Nuclear Information System (INIS)

    Abella, Vicente; Miro, Rafael; Juste, Belen; Verdu, Gumersindo

    2010-01-01

    Multileaf collimators are used on linear accelerators to provide conformal shaping of radiotherapy treatment beams, being an important tool for radiation therapy dose delivery. In this work, a multileaf collimator has been designed and implemented in the MCNP model of an Elekta Precise Linear Accelerator and introduced in PLUNC, a set of software tools for radiotherapy treatment planning (RTP) which was coupled in previous works with MCNP5 (Monte Carlo N-Particle transport code), with the purpose of comparing its effect on deterministic and Monte Carlo dose calculations. A 3D Shepp-Logan phantom was utilized as the patient model for validation purposes. Once the multileaf collimator model is implemented in the PLUNC LINAC model, a series of Matlab interfaces extract phantom and beam information created with PLUNC during the treatment plan and write it in MCNP5 input deck format. After the Monte Carlo simulation is performed, results are input back again in PLUNC in order to continue with the plan evaluation. The comparison is made via mapping of dose distribution inside the phantom with different field sizes, utilizing the MCNP5 tool EMESH, superimposed mesh tally, which allows registering the results over the problem geometry. This work follows a valid methodology for multileaf LINAC MC calculations during radiation treatment plans. (author)

  4. Gas Core Reactor Numerical Simulation Using a Coupled MHD-MCNP Model

    Science.gov (United States)

    Kazeminezhad, F.; Anghaie, S.

    2008-01-01

    Analysis is provided in this report of using two head-on magnetohydrodynamic (MHD) shocks to achieve supercritical nuclear fission in an axially elongated cylinder filled with UF4 gas as an energy source for deep space missions. The motivation for each aspect of the design is explained and supported by theory and numerical simulations. A subsequent report will provide detail on relevant experimental work to validate the concept. Here the focus is on the theory of and simulations for the proposed gas core reactor conceptual design from the onset of shock generations to the supercritical state achieved when the shocks collide. The MHD model is coupled to a standard nuclear code (MCNP) to observe the neutron flux and fission power attributed to the supercritical state brought about by the shock collisions. Throughout the modeling, realistic parameters are used for the initial ambient gaseous state and currents to ensure a resulting supercritical state upon shock collisions.

  5. Pebble bed reactors simulation using MCNP: The Chinese HTR-10 reactor

    Directory of Open Access Journals (Sweden)

    SA Hosseini

    2013-09-01

    Full Text Available   Given the role of Gas-Graphite reactors as the fourth generation reactors and their recently renewed importance, in 2002 the IAEA proposed a set of Benchmarking problems. In this work, we propose a model both efficient in time and resources and exact to simulate the HTR-10 reactor using MCNP-4C code. During the present work, all of the pressing factors in PBM reactor design such as the inter-pebble leakage, fuel particle distribution and fuel pebble packing fraction effects have been taken into account to obtain an exact and easy to run model. Finally, the comparison between the results of the present work and other calculations made at INEEL proves the exactness of the proposed model.

  6. Monte Carlo simulation of x-ray spectra in diagnostic radiology and mammography using MCNP4C

    Energy Technology Data Exchange (ETDEWEB)

    Ay, M R [Department of Physics and Nuclear Sciences, AmirKabir University of Technology, Tehran (Iran, Islamic Republic of); Shahriari, M [Department of Nuclear Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Sarkar, S [Department of Medical Physics, Tehran University of Medical Science, Tehran (Iran, Islamic Republic of); Adib, M [TPP Co., GE Medical Systems, Iran Authorized Distributor, Tehran (Iran, Islamic Republic of); Zaidi, H [Division of Nuclear Medicine, Geneva University Hospital, 1211 Geneva (Switzerland)

    2004-11-07

    The general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C) was used for the simulation of x-ray spectra in diagnostic radiology and mammography. The electrons were transported until they slow down and stop in the target. Both bremsstrahlung and characteristic x-ray production were considered in this work. We focus on the simulation of various target/filter combinations to investigate the effect of tube voltage, target material and filter thickness on x-ray spectra in the diagnostic radiology and mammography energy ranges. The simulated x-ray spectra were compared with experimental measurements and spectra calculated by IPEM report number 78. In addition, the anode heel effect and off-axis x-ray spectra were assessed for different anode angles and target materials and the results were compared with EGS4-based Monte Carlo simulations and measured data. Quantitative evaluation of the differences between our Monte Carlo simulated and comparison spectra was performed using student's t-test statistical analysis. Generally, there is a good agreement between the simulated x-ray and comparison spectra, although there are systematic differences between the simulated and reference spectra especially in the K-characteristic x-rays intensity. Nevertheless, no statistically significant differences have been observed between IPEM spectra and the simulated spectra. It has been shown that the difference between MCNP simulated spectra and IPEM spectra in the low energy range is the result of the overestimation of characteristic photons following the normalization procedure. The transmission curves produced by MCNP4C have good agreement with the IPEM report especially for tube voltages of 50 kV and 80 kV. The systematic discrepancy for higher tube voltages is the result of systematic differences between the corresponding spectra.

  7. Monte Carlo simulation of x-ray spectra in diagnostic radiology and mammography using MCNP4C

    Science.gov (United States)

    Ay, M. R.; Shahriari, M.; Sarkar, S.; Adib, M.; Zaidi, H.

    2004-11-01

    The general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C) was used for the simulation of x-ray spectra in diagnostic radiology and mammography. The electrons were transported until they slow down and stop in the target. Both bremsstrahlung and characteristic x-ray production were considered in this work. We focus on the simulation of various target/filter combinations to investigate the effect of tube voltage, target material and filter thickness on x-ray spectra in the diagnostic radiology and mammography energy ranges. The simulated x-ray spectra were compared with experimental measurements and spectra calculated by IPEM report number 78. In addition, the anode heel effect and off-axis x-ray spectra were assessed for different anode angles and target materials and the results were compared with EGS4-based Monte Carlo simulations and measured data. Quantitative evaluation of the differences between our Monte Carlo simulated and comparison spectra was performed using student's t-test statistical analysis. Generally, there is a good agreement between the simulated x-ray and comparison spectra, although there are systematic differences between the simulated and reference spectra especially in the K-characteristic x-rays intensity. Nevertheless, no statistically significant differences have been observed between IPEM spectra and the simulated spectra. It has been shown that the difference between MCNP simulated spectra and IPEM spectra in the low energy range is the result of the overestimation of characteristic photons following the normalization procedure. The transmission curves produced by MCNP4C have good agreement with the IPEM report especially for tube voltages of 50 kV and 80 kV. The systematic discrepancy for higher tube voltages is the result of systematic differences between the corresponding spectra.

  8. DXRaySMCS: a user-friendly interface developed for prediction of diagnostic radiology X-ray spectra produced by Monte Carlo (MCNP-4C) simulation.

    Science.gov (United States)

    Bahreyni Toossi, M T; Moradi, H; Zare, H

    2008-01-01

    In this work, the general purpose Monte Carlo N-particle radiation transport computer code (MCNP-4C) was used for the simulation of X-ray spectra in diagnostic radiology. The electron's path in the target was followed until its energy was reduced to 10 keV. A user-friendly interface named 'diagnostic X-ray spectra by Monte Carlo simulation (DXRaySMCS)' was developed to facilitate the application of MCNP-4C code for diagnostic radiology spectrum prediction. The program provides a user-friendly interface for: (i) modifying the MCNP input file, (ii) launching the MCNP program to simulate electron and photon transport and (iii) processing the MCNP output file to yield a summary of the results (relative photon number per energy bin). In this article, the development and characteristics of DXRaySMCS are outlined. As part of the validation process, output spectra for 46 diagnostic radiology system settings produced by DXRaySMCS were compared with the corresponding IPEM78. Generally, there is a good agreement between the two sets of spectra. No statistically significant differences have been observed between IPEM78 reported spectra and the simulated spectra generated in this study.

  9. MCNP code

    International Nuclear Information System (INIS)

    Cramer, S.N.

    1984-01-01

    The MCNP code is the major Monte Carlo coupled neutron-photon transport research tool at the Los Alamos National Laboratory, and it represents the most extensive Monte Carlo development program in the United States which is available in the public domain. The present code is the direct descendent of the original Monte Carlo work of Fermi, von Neumaum, and Ulam at Los Alamos in the 1940s. Development has continued uninterrupted since that time, and the current version of MCNP (or its predecessors) has always included state-of-the-art methods in the Monte Carlo simulation of radiation transport, basic cross section data, geometry capability, variance reduction, and estimation procedures. The authors of the present code have oriented its development toward general user application. The documentation, though extensive, is presented in a clear and simple manner with many examples, illustrations, and sample problems. In addition to providing the desired results, the output listings give a a wealth of detailed information (some optional) concerning each state of the calculation. The code system is continually updated to take advantage of advances in computer hardware and software, including interactive modes of operation, diagnostic interrupts and restarts, and a variety of graphical and video aids

  10. Simulation of the BNCT of Brain Tumors Using MCNP Code: Beam Designing and Dose Evaluation

    Directory of Open Access Journals (Sweden)

    Fatemeh Sadat Rasouli

    2012-09-01

    Full Text Available Introduction BNCT is an effective method to destroy brain tumoral cells while sparing the healthy tissues. The recommended flux for epithermal neutrons is 109 n/cm2s, which has the most effectiveness on deep-seated tumors. In this paper, it is indicated that using D-T neutron source and optimizing of Beam Shaping Assembly (BSA leads to treating brain tumors in a reasonable time where all IAEA recommended criteria are met. Materials and Methods The proposed BSA based on a D-T neutron generator consists of a neutron multiplier system, moderators, reflector, and collimator. The simulated Snyder head phantom is used to evaluate dose profiles in tissues due to the irradiation of designed beam. Monte Carlo Code, MCNP-4C, was used in order to perform these calculations.   Results The neutron beam associated with the designed and optimized BSA has an adequate epithermal flux at the beam port and neutron and gamma contaminations are removed as much as possible. Moreover, it was showed that increasing J/Φ, as a measure of beam directionality, leads to improvement of beam performance and survival of healthy tissues surrounding the tumor. Conclusion According to the simulation results, the proposed system based on D-T neutron source, which is suitable for in-hospital installations, satisfies all in-air parameters. Moreover, depth-dose curves investigate proper performance of designed beam in tissues. The results are comparable with the performances of other facilities.

  11. Uncertainty analysis in the simulation of an HPGe detector using the Monte Carlo Code MCNP5

    International Nuclear Information System (INIS)

    Gallardo, Sergio; Pozuelo, Fausto; Querol, Andrea; Verdu, Gumersindo; Rodenas, Jose; Ortiz, J.; Pereira, Claubia

    2013-01-01

    A gamma spectrometer including an HPGe detector is commonly used for environmental radioactivity measurements. Many works have been focused on the simulation of the HPGe detector using Monte Carlo codes such as MCNP5. However, the simulation of this kind of detectors presents important difficulties due to the lack of information from manufacturers and due to loss of intrinsic properties in aging detectors. Some parameters such as the active volume or the Ge dead layer thickness are many times unknown and are estimated during simulations. In this work, a detailed model of an HPGe detector and a petri dish containing a certified gamma source has been done. The certified gamma source contains nuclides to cover the energy range between 50 and 1800 keV. As a result of the simulation, the Pulse Height Distribution (PHD) is obtained and the efficiency curve can be calculated from net peak areas and taking into account the certified activity of the source. In order to avoid errors due to the net area calculation, the simulated PHD is treated using the GammaVision software. On the other hand, it is proposed to use the Noether-Wilks formula to do an uncertainty analysis of model with the main goal of determining the efficiency curve of this detector and its associated uncertainty. The uncertainty analysis has been focused on dead layer thickness at different positions of the crystal. Results confirm the important role of the dead layer thickness in the low energy range of the efficiency curve. In the high energy range (from 300 to 1800 keV) the main contribution to the absolute uncertainty is due to variations in the active volume. (author)

  12. Uncertainty analysis in the simulation of an HPGe detector using the Monte Carlo Code MCNP5

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, Sergio; Pozuelo, Fausto; Querol, Andrea; Verdu, Gumersindo; Rodenas, Jose, E-mail: sergalbe@upv.es [Universitat Politecnica de Valencia, Valencia, (Spain). Instituto de Seguridad Industrial, Radiofisica y Medioambiental (ISIRYM); Ortiz, J. [Universitat Politecnica de Valencia, Valencia, (Spain). Servicio de Radiaciones. Lab. de Radiactividad Ambiental; Pereira, Claubia [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2013-07-01

    A gamma spectrometer including an HPGe detector is commonly used for environmental radioactivity measurements. Many works have been focused on the simulation of the HPGe detector using Monte Carlo codes such as MCNP5. However, the simulation of this kind of detectors presents important difficulties due to the lack of information from manufacturers and due to loss of intrinsic properties in aging detectors. Some parameters such as the active volume or the Ge dead layer thickness are many times unknown and are estimated during simulations. In this work, a detailed model of an HPGe detector and a petri dish containing a certified gamma source has been done. The certified gamma source contains nuclides to cover the energy range between 50 and 1800 keV. As a result of the simulation, the Pulse Height Distribution (PHD) is obtained and the efficiency curve can be calculated from net peak areas and taking into account the certified activity of the source. In order to avoid errors due to the net area calculation, the simulated PHD is treated using the GammaVision software. On the other hand, it is proposed to use the Noether-Wilks formula to do an uncertainty analysis of model with the main goal of determining the efficiency curve of this detector and its associated uncertainty. The uncertainty analysis has been focused on dead layer thickness at different positions of the crystal. Results confirm the important role of the dead layer thickness in the low energy range of the efficiency curve. In the high energy range (from 300 to 1800 keV) the main contribution to the absolute uncertainty is due to variations in the active volume. (author)

  13. The MCNP simulation of the X-ray leakage of X-ray security inspection equipment

    International Nuclear Information System (INIS)

    Wang Kai; Liu Bin; Hu Wenchao; Zhao Wei

    2011-01-01

    Objective: To simulate the radiation leakage of the X-ray security inspection equipment used in the subways stations. Methods: We use the MCNP4C code to simulate the X-ray leakage of the equipment during the working process. Result: the biggest amount of radiation received by the body is 8.26 μSv/a, however, if the Lead screens of the X-ray security equipment is intact, the amount of radiation received by the body is only 0.0727 μSv/a. The final. Conclusions: When the baggage get in /out the X-ray security inspection equipment, the gas in Lead screens was made, and then the amount of radiation received by human body increased; The amount of radiation received by the body is close to but still below 10 μSv/a which is the exemption criteria set by the 'safety of radiation sources of ionizing radiation protection and basic standards'(GB18871-2002). (authors)

  14. Monte Carlo simulation using MCNP4B for an optimal shielding design of a 252 Cf source

    International Nuclear Information System (INIS)

    Silva, Ademir X. da; Crispim, Verginia R.

    2001-01-01

    This study aim to investigate an optimum shielding design against neutrons and gamma-rays from a source of 252 Cf, using Monte Carlo simulation. The shielding materials studied were: borated polyethylene, borated-lead polyethylene and stainless steel. The Monte Carlo code MCNP, version 4B, was used to design shielding for 252 Cf based neutron irradiator systems. By normalizing the dose equivalent rate values presented to the neutron production rate of the source, the resulting calculations are independents of the intensity of actual 252 Cf source. The results shown what the total dose equivalent rates were reduced significantly by the shielding system optimization. (author)

  15. MCNP6 Simulation of Light and Medium Nuclei Fragmentation at Intermediate Energies

    Energy Technology Data Exchange (ETDEWEB)

    Mashnik, Stepan Georgievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kerby, Leslie Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of Idaho, Moscow, ID (United States)

    2015-08-24

    Fragmentation reactions induced on light and medium nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the Los Alamos transport code MCNP6 and with its CEM03.03 and LAQGSM03.03 event generators. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to sup>4He from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes.

  16. MCNP6 simulation of reactions of interest to FRIB, medical, and space applications

    International Nuclear Information System (INIS)

    Mashnik, Stepan G.

    2015-01-01

    The latest production-version of the Los Alamos Monte Carlo N-Particle transport code MCNP6 has been used to simulate a variety of particle-nucleus and nucleus-nucleus reactions of academic and applied interest to research subjects at the Facility for Rare Isotope Beams (FRIB), medical isotope production, space-radiation shielding, cosmic-ray propagation, and accelerator applications, including several reactions induced by radioactive isotopes, analyzing production of both stable and radioactive residual nuclei. Here, we discuss examples of validation and verification of MCNP6 by comparing with recent neutron spectra measured at the Heavy Ion Medical Accelerator in Chiba, Japan; spectra of light fragments from several reactions measured recently at GANIL, France; INFN Laboratori Nazionali del Sud, Catania, Italy; COSY of the Jülich Research Center, Germany; and cross sections of products from several reactions measured lately at GSI, Darmstadt, Germany; ITEP, Moscow, Russia; and, LANSCE, LANL, Los Alamos, U.S.A. As a rule, MCNP6 provides quite good predictions for most of the reactions we analyzed so far, allowing us to conclude that it can be used as a reliable and useful simulation tool for various applications for FRIB, medical, and space applications involving stable and radioactive isotopes. (author)

  17. An MCNP simulation for API applications to waste management issues

    International Nuclear Information System (INIS)

    Tunnell, L.N.

    1994-01-01

    Issues associated with waste management have increasingly become a focal point of attention for both the government and private sector since the end of the cold war. The problem are difficult to solve; the solutions are expensive to implement. Consequently, the development of a data simulation system capable of predicting the performance of a real system can save many thousands of dollars in travel expenses, optimization of experimental parameters, etc.. In this effort, computer codes were developed to simulate the production of associated particle imaging data so that its performance in a typical waste management application can be assessed

  18. DXRaySMCS. First user friendly interface developed for prediction of diagnostic radiology X-ray spectra produced by Monte Carlo (MCNP-4C) simulation in Iran

    International Nuclear Information System (INIS)

    Bahreyni Toossi, M.T.; Zare, H.; Moradi Faradanbe, H.

    2008-01-01

    An accurate knowledge of the output energy spectra of an x-ray tube is essential in many areas of radiological studies. It forms the basis of almost all image quality simulations and enable system designers to predict patient dose more accurately. Many radiological physics problems that can be solved by Monte Carlo simulation methods require an x-ray spectra as input data. Computer simulation of x-ray spectra is one of the most important tools for investigation of patient dose and image quality in diagnostic radiology systems. In this work the general purpose Monte Carlo N-particle radiation transport computer code (MCNP-4C) was used for the simulation of x-ray spectra in diagnostic radiology, Electron's path in the target was followed until it's energy was reduced to 10 keV. A user friendly interface named 'Diagnostic X-ray Spectra by Monte Carlo Simulation (DXRaySMCS)' was developed to facilitate the application of MCNP-4C code for diagnostic radiology spectrum prediction. The program provides a user friendly interface for modifying the MCNP input file, launching the MCNP program to simulate electron and photon transport and processing the MCNP output file to yield a summary of the results (Relative Photon Number per Energy Bin). In this article the development and characteristics of DXRaySMCS are outlined. As part of the validation process, out put spectra for 46 diagnostic radiology system settings produced by DXRaySMCS were compared with the corresponding IPEM78. Generally, there is a good agreement between the two sets of spectra. No statistically significant differences have been observed between IPEM78 reported spectra and the simulated spectra generated in this study. (author)

  19. Evaluation of computational models and cross sections used by MCNP6 for simulation of electron backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Poškus, Andrius, E-mail: andrius.poskus@ff.vu.lt

    2016-02-01

    This work evaluates the accuracy of the single-event (SE) and condensed-history (CH) models of electron transport in Monte Carlo simulations of electron backscattering from thick layers of Be, C, Al, Cu, Ag, Au and U at incident electron energies from 200 eV to 15 MeV. The CH method is used in simulations performed with MCNP6.1, and the SE method is used in simulations performed with an open-source single-event code MCNelectron written by the author of this paper. Both MCNP6.1 and MCNelectron use mainly ENDF/B-VI.8 library data, but MCNelectron allows replacing cross sections of certain types of interactions by alternative datasets from other sources. The SE method is evaluated both using only ENDF/B-VI.8 cross sections (the “SE-ENDF/B method”, which is equivalent to using MCNP6.1 in SE mode) and with an alternative set of elastic scattering cross sections obtained from relativistic (Dirac) partial-wave (DPW) calculations (the “SE-DPW method”). It is shown that at energies from 200 eV to 300 keV the estimates of the backscattering coefficients obtained using the SE-DPW method are typically within 10% of the experimental data, which is approximately the same accuracy that is achieved using MCNP6.1 in CH mode. At energies below 1 keV and above 300 keV, the SE-DPW method is much more accurate than the SE-ENDF/B method due to lack of angular distribution data in the ENDF/B library in those energy ranges. At energies from 500 keV to 15 MeV, the CH approximation is roughly twice more accurate than the SE-DPW method, with the average relative errors equal 7% and 14%, respectively. The energy probability density functions (PDFs) of backscattered electrons for Al and Cu, calculated using the SE method with DPW cross sections when energy of incident electrons is 20 keV, have an average absolute error as low as 4% of the average PDF. This error is approximately twice less than the error of the corresponding PDF calculated using the CH approximation. It is concluded

  20. Monte Carlo simulations of the pulsed thermal neutron flux in two-region hydrogenous systems (using standard MCNP data libraries)

    International Nuclear Information System (INIS)

    Wiacek, U.; Krynicka, E.

    2005-02-01

    Monte Carlo simulations of the pulsed neutron experiment in two- region systems (two concentric spheres and two coaxial finite cylinders) are presented. The MCNP code is used. Aqueous solutions of H 3 BO 3 or KCl are used in the inner region. The outer region is the moderator of Plexiglas. Standard data libraries of the thermal neutron scattering cross-sections of hydrogen in hydrogenous substances are used. The time-dependent thermal neutron transport is simulated when the inner region has a constant size and the external size of the surrounding outer region is variable. The time decay constant of the thermal neutron flux in the system is found in each simulation. The results of the simulations are compared with results of real pulsed neutron experiments on the corresponding systems. (author)

  1. Determination of photon fluence spectra from a 60Co therapy unit based on PENELOPE and MCNP simulations

    International Nuclear Information System (INIS)

    Baumgartner, Andreas; Hranitzky, Christian; Stadtmann, Hannes; Maringer, Franz Josef

    2011-01-01

    Photon fluence spectra of the Seibersdorf Labor/BEV Picker 60 Co therapy unit were calculated using two generally recognised Monte Carlo codes, PENELOPE-2006 and MCNP5. The complexity of the simulation model was increased in three steps (from a pure source capsule and a simplified model using rotational symmetry to a realistic model of the facility). Photon fluence spectra of both codes generally agree within their statistical standard uncertainties for the case of identical geometry set-up and particle transport parameter settings. Resulting total fluence values were about 0.3% higher for MCNP as compared to PENELOPE. The verification of the simulated photon fluence spectra was based upon depth-dose measurements in water performed with a PTW 31003 ionisation chamber and a thick-walled chamber type CC01. The depth-dose curve calculated with PENELOPE agreed with the curve obtained from measurements within 0.4% across the available depth region in the 30 cm x 30 cm x 30 cm water phantom. The comparison of measured and simulated beam quality indices (TPR 20,10 ) revealed deviations of less than 0.2%.

  2. The new MCNP6 depletion capability

    International Nuclear Information System (INIS)

    Fensin, M. L.; James, M. R.; Hendricks, J. S.; Goorley, J. T.

    2012-01-01

    The first MCNP based in-line Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. Both the MCNP5 and MCNPX codes have historically provided a successful combinatorial geometry based, continuous energy, Monte Carlo radiation transport solution for advanced reactor modeling and simulation. However, due to separate development pathways, useful simulation capabilities were dispersed between both codes and not unified in a single technology. MCNP6, the next evolution in the MCNP suite of codes, now combines the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. We describe here the new capabilities of the MCNP6 depletion code dating from the official RSICC release MCNPX 2.6.0, reported previously, to the now current state of MCNP6. NEA/OECD benchmark results are also reported. The MCNP6 depletion capability enhancements beyond MCNPX 2.6.0 reported here include: (1) new performance enhancing parallel architecture that implements both shared and distributed memory constructs; (2) enhanced memory management that maximizes calculation fidelity; and (3) improved burnup physics for better nuclide prediction. MCNP6 depletion enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code. The enhancements described here help provide a powerful capability as well as dictate a path forward for future development to improve the usefulness of the technology. (authors)

  3. The New MCNP6 Depletion Capability

    International Nuclear Information System (INIS)

    Fensin, Michael Lorne; James, Michael R.; Hendricks, John S.; Goorley, John T.

    2012-01-01

    The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. Both the MCNP5 and MCNPX codes have historically provided a successful combinatorial geometry based, continuous energy, Monte Carlo radiation transport solution for advanced reactor modeling and simulation. However, due to separate development pathways, useful simulation capabilities were dispersed between both codes and not unified in a single technology. MCNP6, the next evolution in the MCNP suite of codes, now combines the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. We describe here the new capabilities of the MCNP6 depletion code dating from the official RSICC release MCNPX 2.6.0, reported previously, to the now current state of MCNP6. NEA/OECD benchmark results are also reported. The MCNP6 depletion capability enhancements beyond MCNPX 2.6.0 reported here include: (1) new performance enhancing parallel architecture that implements both shared and distributed memory constructs; (2) enhanced memory management that maximizes calculation fidelity; and (3) improved burnup physics for better nuclide prediction. MCNP6 depletion enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code. The enhancements described here help provide a powerful capability as well as dictate a path forward for future development to improve the usefulness of the technology.

  4. Parallel of semi-empirical results simulated by MCNP of X-ray spectra with a semiconductor; Paralelo de resultado semi- empiricos simulados por MCNPX de espectros de raios-X com um semicondutor

    Energy Technology Data Exchange (ETDEWEB)

    Santos, L.R.; Vivolo, V.; Potiens, M.P.A., E-mail: dossantos.lucasrodrigues@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Navarro, M.V.T.; Santos, W.S. [Universidade Federal de Uberlandia (INFIS/UFU), MG (Brazil). Instituto de Fisica

    2016-07-01

    The aim of this study was to use the MCNPX radiation transport code to simulate X-ray spectra generated by a constant voltage system in a CdTe semiconductor detector. As part of the validation process, we obtained a series of experimental spectra. Comparatively, in all cases there is a good correlation between the two spectra. There were no statistically significant differences between the experimental results with the simulated. (author)

  5. A voxel-based mouse for internal dose calculations using Monte Carlo simulations (MCNP).

    Science.gov (United States)

    Bitar, A; Lisbona, A; Thedrez, P; Sai Maurel, C; Le Forestier, D; Barbet, J; Bardies, M

    2007-02-21

    Murine models are useful for targeted radiotherapy pre-clinical experiments. These models can help to assess the potential interest of new radiopharmaceuticals. In this study, we developed a voxel-based mouse for dosimetric estimates. A female nude mouse (30 g) was frozen and cut into slices. High-resolution digital photographs were taken directly on the frozen block after each section. Images were segmented manually. Monoenergetic photon or electron sources were simulated using the MCNP4c2 Monte Carlo code for each source organ, in order to give tables of S-factors (in Gy Bq-1 s-1) for all target organs. Results obtained from monoenergetic particles were then used to generate S-factors for several radionuclides of potential interest in targeted radiotherapy. Thirteen source and 25 target regions were considered in this study. For each source region, 16 photon and 16 electron energies were simulated. Absorbed fractions, specific absorbed fractions and S-factors were calculated for 16 radionuclides of interest for targeted radiotherapy. The results obtained generally agree well with data published previously. For electron energies ranging from 0.1 to 2.5 MeV, the self-absorbed fraction varies from 0.98 to 0.376 for the liver, and from 0.89 to 0.04 for the thyroid. Electrons cannot be considered as 'non-penetrating' radiation for energies above 0.5 MeV for mouse organs. This observation can be generalized to radionuclides: for example, the beta self-absorbed fraction for the thyroid was 0.616 for I-131; absorbed fractions for Y-90 for left kidney-to-left kidney and for left kidney-to-spleen were 0.486 and 0.058, respectively. Our voxel-based mouse allowed us to generate a dosimetric database for use in preclinical targeted radiotherapy experiments.

  6. Simulation of the field dose of the irradiator PX γ 30 using MCNP

    International Nuclear Information System (INIS)

    Torres, N.; Prieto, E. F.; Chavez, A.; Rosales, J.

    2011-01-01

    Given the acceptance and actual application of radiation technology for research purposes, industrial and trade is increasing, and that safety and quality of the product being treated by radiation technology is a function of absorbed dose, it becomes necessary to have a good characterization of the radiation field at processing volume, avoiding in this way that the product receives a different dose that affects its properties, or failure to reach the desired effect, which in many cases would be embarrassing. The simulation using the MCNP program, which uses probabilistic Monte Carlo code, can correctly characterize the dose field in the irradiation chamber of research irradiator PX γ 30 used in the CEADEN. (Author)

  7. Voxel2MCNP: a framework for modeling, simulation and evaluation of radiation transport scenarios for Monte Carlo codes

    International Nuclear Information System (INIS)

    Pölz, Stefan; Laubersheimer, Sven; Eberhardt, Jakob S; Harrendorf, Marco A; Keck, Thomas; Benzler, Andreas; Breustedt, Bastian

    2013-01-01

    The basic idea of Voxel2MCNP is to provide a framework supporting users in modeling radiation transport scenarios using voxel phantoms and other geometric models, generating corresponding input for the Monte Carlo code MCNPX, and evaluating simulation output. Applications at Karlsruhe Institute of Technology are primarily whole and partial body counter calibration and calculation of dose conversion coefficients. A new generic data model describing data related to radiation transport, including phantom and detector geometries and their properties, sources, tallies and materials, has been developed. It is modular and generally independent of the targeted Monte Carlo code. The data model has been implemented as an XML-based file format to facilitate data exchange, and integrated with Voxel2MCNP to provide a common interface for modeling, visualization, and evaluation of data. Also, extensions to allow compatibility with several file formats, such as ENSDF for nuclear structure properties and radioactive decay data, SimpleGeo for solid geometry modeling, ImageJ for voxel lattices, and MCNPX’s MCTAL for simulation results have been added. The framework is presented and discussed in this paper and example workflows for body counter calibration and calculation of dose conversion coefficients is given to illustrate its application. (paper)

  8. Validation and verification of MCNP6 against intermediate and high-energy experimental data and results by other codes

    International Nuclear Information System (INIS)

    Mashnik, Stepan G.

    2011-01-01

    MCNP6, the latest and most advanced LANL transport code representing a recent merger of MCNP5 and MCNPX, has been Validated and Verified (V and V) against a variety of intermediate and high-energy experimental data and against results by different versions of MCNPX and other codes. In the present work, we V and V MCNP6 using mainly the latest modifications of the Cascade-Exciton Model (CEM) and of the Los Alamos version of the Quark-Gluon String Model (LAQGSM) event generators CEM03.02 and LAQGSM03.03. We found that MCNP6 describes reasonably well various reactions induced by particles and nuclei at incident energies from 18 MeV to about 1 TeV per nucleon measured on thin and thick targets and agrees very well with similar results obtained with MCNPX and calculations by CEM03.02, LAQGSM03.01 (03.03), INCL4 + ABLA, and Bertini INC + Dresner evaporation, EPAX, ABRABLA, HIPSE, and AMD, used as stand alone codes. Most of several computational bugs and more serious physics problems observed in MCNP6/X during our V and V have been fixed; we continue our work to solve all the known problems before MCNP6 is distributed to the public. (author)

  9. Simulation of reactor noise analysis measurement for light-water critical assembly TCA using MCNP-DSP

    International Nuclear Information System (INIS)

    Yamamoto, Toshihiro; Sakurai, Kiyoshi; Tonoike, Kotaro; Miyoshi, Yoshinori

    2001-01-01

    Reactor noise analysis methods using Monte Carlo technique have been proposed and developed in the field of nuclear criticality safety. The Monte Carlo simulation for noise analysis can be made by simulating physical phenomena in the course of neutron transport in a nuclear fuel as practically as possible. MCNP-DSP was developed by T. Valentine of ORNL for this purpose and it is a modified version of MCNP-4A. The authors applied this code to frequency analysis measurements performed in light-water critical assembly TCA. Prompt neutron generation times for critical and subcritical cores were measured by doing the frequency analysis of detector signals. The Monte Carlo simulations for these experiments were carried out using MCNP-DSP, and prompt neutron generation times were calculated. (author)

  10. The effects of nuclear data library processing on Geant4 and MCNP simulations of the thermal neutron scattering law

    Science.gov (United States)

    Hartling, K.; Ciungu, B.; Li, G.; Bentoumi, G.; Sur, B.

    2018-05-01

    Monte Carlo codes such as MCNP and Geant4 rely on a combination of physics models and evaluated nuclear data files (ENDF) to simulate the transport of neutrons through various materials and geometries. The grid representation used to represent the final-state scattering energies and angles associated with neutron scattering interactions can significantly affect the predictions of these codes. In particular, the default thermal scattering libraries used by MCNP6.1 and Geant4.10.3 do not accurately reproduce the ENDF/B-VII.1 model in simulations of the double-differential cross section for thermal neutrons interacting with hydrogen nuclei in a thin layer of water. However, agreement between model and simulation can be achieved within the statistical error by re-processing ENDF/B-VII.I thermal scattering libraries with the NJOY code. The structure of the thermal scattering libraries and sampling algorithms in MCNP and Geant4 are also reviewed.

  11. MCNP simulation of the influence of the external moisture on low calorific value in the coal quality analysis by neutron

    International Nuclear Information System (INIS)

    Liu Dekun; Zhang Hongyu; Zhang Lihong; Dong Huan; Gu Deshan

    2012-01-01

    An important index in assessment of coal quality is low calorific value. Using neutron to analysis coal quality, the more the coal moisture content, especially the increasing of external moisture will reduce the low calorific value. The principle of coal quality analysis by neutron prompt Gamma-ray is introduced. The influence of the gamma count of the carbon element peak with increasing external moisture in coal samples was simulated using MCNP code. And discussed the reasons how external moisture content influence the calorific value. Simulation results indicate that with the increasing of external moisture in the coal samples, the gamma count of the carbon element peak dwindling, and the low calorific value reducing. The conclusion is : using neutrons method to analysis coal quality, the more external moisture content, the larger error of the measurement results of the carbon element, and will influence the calculation accuracy of the low calorific value. (authors)

  12. Monte Carlo Simulation of Electron Beams for Radiotherapy - EGS4, MCNP4b and GEANT3 Intercomparison

    CERN Document Server

    Trindade, A; Alves, C M; Chaves, A; Lopes, C; Oliveira, C; Peralta, L

    2000-01-01

    In medical radiation physics, an increasing number of Monte Carlo codes are being used, which requires intercomparison between them to evaluated the accuracy of the simulated results against benchmark experiments. The Monte Carlo code EGS4, commonly used to simulate electron beams from medical linear accelerators, was compared with GEANT3 and MCNP4b. Intercomparison of electron energy spectra, angular and spatial distribution were carried out for the Siemens KD2 linear accelerator, at beam energies of 10 and 15 MeV for a field size of 10x10 cm2. Indirect validation was performed against electron depth doses curves and beam profiles measured in a MP3-PTW water phantom using a Markus planar chamber. Monte Carlo isodose lines were reconstructed and compared to those from commercial treatment planning systems (TPS's) and with experimental data.

  13. Insertion of the structure of irregular geometries DICOM image-making into a cell for the simulation in MCNP

    International Nuclear Information System (INIS)

    Boia, Leonardo S.; Silva, Ademir X.

    2009-01-01

    It is possible nowadays to make changes in any digital image format due to the advancement of editing systems for images, with a little definition loss. Intending to increase the degrees of freedom on computer simulation fields, a process of integration of irregular geometries in the structure of medical DICOM images of the Anthropomorphic Rando Phantom making it so a cell is developed in this work and, therefore, the inclusion or change of the TLD's location in phantom for dosimetric studies, become a more dynamic simulation in MCNP. At first, creation and processing of the desired geometry are proceeded. It was coupled to the geometry in the study area of the DICOM image and the image's conversion into a MCNP input file was performed by software Scan2MCNP. Using the proposed computational process, a case of a clot and its ramifications was studied in Alderson Rando Phantom's left side brain area. (author)

  14. Neutrons Flux Distributions of the Pu-Be Source and its Simulation by the MCNP-4B Code

    Science.gov (United States)

    Faghihi, F.; Mehdizadeh, S.; Hadad, K.

    Neutron Fluence rate of a low intense Pu-Be source is measured by Neutron Activation Analysis (NAA) of 197Au foils. Also, the neutron fluence rate distribution versus energy is calculated using the MCNP-4B code based on ENDF/B-V library. Theoretical simulation as well as our experimental performance are a new experience for Iranians to make reliability with the code for further researches. In our theoretical investigation, an isotropic Pu-Be source with cylindrical volume distribution is simulated and relative neutron fluence rate versus energy is calculated using MCNP-4B code. Variation of the fast and also thermal neutrons fluence rate, which are measured by NAA method and MCNP code, are compared.

  15. Simulation of gamma-ray irradiation of lettuce leaves in a 137Cs irradiator using MCNP

    International Nuclear Information System (INIS)

    Kim, Jongsoon; Moreira, Rosana G.; Braby, Leslie A.

    2010-01-01

    Ionizing radiation effectively reduces the number of common microbial pathogens in fresh produce. However, the efficacy of the process for pathogens internalized into produce tissue is unknown. The objective of this study was to understand gamma irradiation of lettuce leaf structure exposed in a 137 Cs irradiator using MCNP. The simulated 137 Cs irradiator is a self-shielded device, and its geometry and sources are described in the MCNP input file. When the irradiation chamber is filled with water, lower doses are found at the center of the irradiation volume and the dose uniformity ratio (maximum dose/minimum dose) is 1.76. For randomly oriented rectangular lettuce leaf segments in the irradiation chamber, the dose uniformity ratio is 1.25. It shows that dose uniformity in the Cs irradiator is strongly dependent of the density of the sample. To understand dose distribution inside the leaf, we divided a lettuce leaf into a low density (flat) region (0.72 g/cm 3 ) and high density (rib) region (0.86 g/cm 3 ). Calculated doses to the rib are 61% higher than doses to the flat region of the leaf. This indicates that internalized microorganisms can be inactivated more easily than organisms on the surface. This study shows that irradiation can effectively reduce viable microorganism internalized in lettuce. (author)

  16. Introduction to the simulation with MCNP Monte Carlo code and its applications in Medical Physics

    International Nuclear Information System (INIS)

    Parreno Z, F.; Paucar J, R.; Picon C, C.

    1998-01-01

    The simulation by Monte Carlo is tool which Medical Physics counts with it for the development of its research, the interest by this tool is growing, as we may observe in the main scientific journals for the years 1995-1997 where more than 27 % of the papers treat over Monte Carlo and/or its applications in the radiation transport.In the Peruvian Institute of Nuclear Energy we are implementing and making use of the MCNP4 and EGS4 codes. In this work are presented the general features of the Monte Carlo method and its more useful applications in Medical Physics. Likewise, it is made a simulation of the calculation of isodose curves in an interstitial treatment with Ir-192 wires in a mammary gland carcinoma. (Author)

  17. Features of MCNP6

    International Nuclear Information System (INIS)

    Goorley, T.; James, M.; Booth, T.; Brown, F.; Bull, J.; Cox, L.J.; Durkee, J.; Elson, J.; Fensin, M.; Forster, R.A.; Hendricks, J.; Hughes, H.G.; Johns, R.; Kiedrowski, B.; Martz, R.; Mashnik, S.; McKinney, G.; Pelowitz, D.; Prael, R.; Sweezy, J.

    2016-01-01

    Highlights: • MCNP6 is simply and accurately described as the merger of MCNP5 and MCNPX capabilities, but it is much more than the sum of these two computer codes. • MCNP6 is the result of six years of effort by the MCNP5 and MCNPX code development teams. • These groups of people, residing in Los Alamos National Laboratory’s X Computational Physics Division, Monte Carlo Codes Group (XCP-3) and Nuclear Engineering and Nonproliferation Division, Radiation Transport Modeling Team (NEN-5) respectively, have combined their code development efforts to produce the next evolution of MCNP. • While maintenance and major bug fixes will continue for MCNP5 1.60 and MCNPX 2.7.0 for upcoming years, new code development capabilities only will be developed and released in MCNP6. • In fact, the initial release of MCNP6 contains numerous new features not previously found in either code. • These new features are summarized in this document. • Packaged with MCNP6 is also the new production release of the ENDF/B-VII.1 nuclear data files usable by MCNP. • The high quality of the overall merged code, usefulness of these new features, along with the desire in the user community to start using the merged code, have led us to make the first MCNP6 production release: MCNP6 version 1. • High confidence in the MCNP6 code is based on its performance with the verification and validation test suites, comparisons to its predecessor codes, our automated nightly software debugger tests, the underlying high quality nuclear and atomic databases, and significant testing by many beta testers. - Abstract: MCNP6 can be described as the merger of MCNP5 and MCNPX capabilities, but it is much more than the sum of these two computer codes. MCNP6 is the result of six years of effort by the MCNP5 and MCNPX code development teams. These groups of people, residing in Los Alamos National Laboratory’s X Computational Physics Division, Monte Carlo Codes Group (XCP-3) and Nuclear Engineering and

  18. Enhancement and validation of the NPP Mühleberg MCNP activation simulations for Swiss decommissioning planning

    International Nuclear Information System (INIS)

    Bykov, V.

    2014-08-01

    The Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) regularly performs analysis of cost estimates associated with the NPP decommissioning. For this purpose, NAGRA has over the past ten years developed a NPP activation analysis methodology based on MCNP models of Swiss NPPs. The validation of these models is accomplished using measurements from oil activation campaigns, in which foil samples are activated at key locations inside the NPP for the duration of one cycle. The measurement campaigns have already been carried out at the Gösgen PWR (KKG) and the Mühleberg BWR (KKM). The first validation has already been successfully conducted for the KKG MCNP model. This thesis describes the efforts to validate the KKM MCNP model. This process included modifications, such as modeling of steam separators individually and improving the definition of jet pumps. Furthermore, the core definition was completely redefined, going from a 6-cell cylindrical model to a 940-cell model, shaped like the actual KKM core, which more accurately represented the void distribution. In order to benchmark the new model, the locations of samples during the two KKM foil activation campaigns were implemented into the model using the GSAM code. The interface between the MCNP model and GSAM was improved by creating a new energy group structure, optimized specifically for the activation of the three foil materials. Their activation was stimulated the state of the art hybrid VR code ADVANTG. The calculated results were then compared against the measured values for each foil material separately. The numerous improvements introduced in the 2014 model led to good agreement in many areas. The agreement is within the factor of two on the inner side of the bioshield, at the core height and above, and factor of three above the bioshield. Furthermore, distinct suggestion for improving the agreement in other areas was presented. This includes modeling of pipes extending from the RPV

  19. MCNP Simulations of End Flux Peaking in ACR-1000, 2.4 wt % {sup 235}U Fuel Bundles

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Ian; Donnelly, Jim [Atomic Energy of Canada Limited (AECL), 2251 Speakman Drive, Mississauga, ON, L5K 1B2 (Canada)

    2008-07-01

    This paper examines the end flux peaking in ACR-1000 fuel bundles. Reactor physics simulations are performed with MCNP to assess the steady state end-flux peaking in an infinite lattice of ACR fuel, as well as to quantify the peaking that occurs during refuelling. 3-dimensional MCNP models are created based on the detailed geometry of the fuel bundle. Detailed position-dependent fuel compositions are obtained from MONTEBURNS which couples MCNP and ORIGIN2.2. Axial and radial power profiles are obtained for both fresh and mid-burnup fuel bundles in an infinite lattice. Subsequently an assessment of the impact of a refuelling transient on the power profiles is performed. The refuelling transient is found to increase the end flux peaking in the region adjacent to light water. (authors)

  20. 3D element imaging using NSECT for the detection of renal cancer: a simulation study in MCNP

    Science.gov (United States)

    Viana, R. S.; Agasthya, G. A.; Yoriyaz, H.; Kapadia, A. J.

    2013-09-01

    This work describes a simulation study investigating the application of neutron stimulated emission computed tomography (NSECT) for noninvasive 3D imaging of renal cancer in vivo. Using MCNP5 simulations, we describe a method of diagnosing renal cancer in the body by mapping the 3D distribution of elements present in tumors using the NSECT technique. A human phantom containing the kidneys and other major organs was modeled in MCNP5. The element composition of each organ was based on values reported in literature. The two kidneys were modeled to contain elements reported in renal cell carcinoma (RCC) and healthy kidney tissue. Simulated NSECT scans were executed to determine the 3D element distribution of the phantom body. Elements specific to RCC and healthy kidney tissue were then analyzed to identify the locations of the diseased and healthy kidneys and generate tomographic images of the tumor. The extent of the RCC lesion inside the kidney was determined using 3D volume rendering. A similar procedure was used to generate images of each individual organ in the body. Six isotopes were studied in this work—32S, 12C, 23Na, 14N, 31P and 39K. The results demonstrated that through a single NSECT scan performed in vivo, it is possible to identify the location of the kidneys and other organs within the body, determine the extent of the tumor within the organ, and to quantify the differences between cancer and healthy tissue-related isotopes with p ≤ 0.05. All of the images demonstrated appropriate concentration changes between the organs, with some discrepancy observed in 31P, 39K and 23Na. The discrepancies were likely due to the low concentration of the elements in the tissue that were below the current detection sensitivity of the NSECT technique.

  1. 3D element imaging using NSECT for the detection of renal cancer: a simulation study in MCNP.

    Science.gov (United States)

    Viana, R S; Agasthya, G A; Yoriyaz, H; Kapadia, A J

    2013-09-07

    This work describes a simulation study investigating the application of neutron stimulated emission computed tomography (NSECT) for noninvasive 3D imaging of renal cancer in vivo. Using MCNP5 simulations, we describe a method of diagnosing renal cancer in the body by mapping the 3D distribution of elements present in tumors using the NSECT technique. A human phantom containing the kidneys and other major organs was modeled in MCNP5. The element composition of each organ was based on values reported in literature. The two kidneys were modeled to contain elements reported in renal cell carcinoma (RCC) and healthy kidney tissue. Simulated NSECT scans were executed to determine the 3D element distribution of the phantom body. Elements specific to RCC and healthy kidney tissue were then analyzed to identify the locations of the diseased and healthy kidneys and generate tomographic images of the tumor. The extent of the RCC lesion inside the kidney was determined using 3D volume rendering. A similar procedure was used to generate images of each individual organ in the body. Six isotopes were studied in this work - (32)S, (12)C, (23)Na, (14)N, (31)P and (39)K. The results demonstrated that through a single NSECT scan performed in vivo, it is possible to identify the location of the kidneys and other organs within the body, determine the extent of the tumor within the organ, and to quantify the differences between cancer and healthy tissue-related isotopes with p ≤ 0.05. All of the images demonstrated appropriate concentration changes between the organs, with some discrepancy observed in (31)P, (39)K and (23)Na. The discrepancies were likely due to the low concentration of the elements in the tissue that were below the current detection sensitivity of the NSECT technique.

  2. Dose mapping simulation using the MCNP code for the Syrian gamma irradiation facility and benchmarking

    International Nuclear Information System (INIS)

    Khattab, K.; Boush, M.; Alkassiri, H.

    2013-01-01

    Highlights: • The MCNP4C was used to calculate the gamma ray dose rate spatial distribution in for the SGIF. • Measurement of the gamma ray dose rate spatial distribution using the Chlorobenzene dosimeter was conducted as well. • Good agreements were noticed between the calculated and measured results. • The maximum relative differences were less than 7%, 4% and 4% in the x, y and z directions respectively. - Abstract: A three dimensional model for the Syrian gamma irradiation facility (SGIF) is developed in this paper to calculate the gamma ray dose rate spatial distribution in the irradiation room at the 60 Co source board using the MCNP-4C code. Measurement of the gamma ray dose rate spatial distribution using the Chlorobenzene dosimeter is conducted as well to compare the calculated and measured results. Good agreements are noticed between the calculated and measured results with maximum relative differences less than 7%, 4% and 4% in the x, y and z directions respectively. This agreement indicates that the established model is an accurate representation of the SGIF and can be used in the future to make the calculation design for a new irradiation facility

  3. Analysis of MCNP simulated gamma spectra of CdTe detectors for boron neutron capture therapy.

    Science.gov (United States)

    Winkler, Alexander; Koivunoro, Hanna; Savolainen, Sauli

    2017-06-01

    The next step in the boron neutron capture therapy (BNCT) is the real time imaging of the boron concentration in healthy and tumor tissue. Monte Carlo simulations are employed to predict the detector response required to realize single-photon emission computed tomography in BNCT, but have failed to correctly resemble measured data for cadmium telluride detectors. In this study we have tested the gamma production cross-section data tables of commonly used libraries in the Monte Carlo code MCNP in comparison to measurements. The cross section data table TENDL-2008-ACE is reproducing measured data best, whilst the commonly used ENDL92 and other studied libraries do not include correct tables for the gamma production from the cadmium neutron capture reaction that is occurring inside the detector. Furthermore, we have discussed the size of the annihilation peaks of spectra obtained by cadmium telluride and germanium detectors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Determination of the detection efficiency of a HPGe detector by means of the MCNP 4A simulation code

    International Nuclear Information System (INIS)

    Leal, B.

    2004-01-01

    In the majority of the laboratories, the calibration in efficiency of the detector is carried out by means of the standard sources measurement of gamma photons that have a determined activity, or for matrices that contain a variety of radionuclides that can embrace the energy range of interest. Given the experimental importance that has the determination from the curves of efficiency to the effects of establishing the quantitative results, is appealed to the simulation of the response function of the detector used in the Regional Center of Nuclear Studies inside the energy range of 80 keV to 1400 keV varying the density of the matrix, by means of the application of the Monte Carlo code MCNP-4A. The adjustment obtained shows an acceptance grade in the range of 100 to 600 keV, with a smaller percentage discrepancy to 5%. (Author)

  5. The performance test of anti-scattering x-ray grid with inclined shielding material by MCNP code simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jun Woo; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2016-06-15

    The scattered photons cause reduction of the contrast of radiographic image and it results in the degradation of the quality of the image. In order to acquire better quality image, an anti-scattering x-ray gird should be equipped in radiography system. The X-ray anti-scattering grid of the inclined type based on the hybrid concept for that of parallel and focused type was tested by MCNP code. The MCNPX 2.7.0 was used for the simulation based test. The geometry for the test was based on the IEC 60627 which was an international standard for diagnostic X-ray imaging equipment-Characteristics of general purpose and mammographic anti-scatter grids. The performance of grids with four inclined shielding material types was compared with that of the parallel type. The grid with completely tapered type the best performance where there were little performance difference according to the degree of inclination.

  6. MCNP simulation of detection efficiency of NaI and measuration of natural radionuclide contents in soil in the northeast China

    International Nuclear Information System (INIS)

    Peng Bangbao; Yan Qiang; Li Taosheng; Li Zhi

    2012-01-01

    Using the standard earth sample, the full-energy peak detection efficiency of NaI(Tl) detector for γ rays with the biggest branching ratio emitted from the isotopes of 40 K, 226 Ra, 232 Th, 238 U in earth was measured. And the same efficiency also simulated with the code of MCNP. The results obtained by both methods matched well and the difference between the two results was no more than 5 percent. To calculate the maximum error induced by the variation of detection efficiency from the difference of the density of earth samples, the detection efficiency under the different density of earth samples was investigated with MCNP code. Based on the work mentioned above, some typical samples of earth and architectural materials were measured. Compared with data form literature, the results were reasonable and had some reference value in this field. (authors)

  7. Shielding property of bismuth glass based on MCNP 5 and WINXCOM simulated calculation

    International Nuclear Information System (INIS)

    Zhang Zhicheng; Zhang Jinzhao; Liu Ze; Lu Chunhai; Chen Min

    2013-01-01

    Background: Currently, lead glass is widely used as observation window, while lead is toxic heavy metal. Purpose: Non-toxic materials and their shielding effects are researched in order to find a new material to replace lead containing material. Methods: The mass attenuation coefficients of bismuth silicate glass were investigated with gamma-ray's energy at 0.662 MeV, 1.17 MeV and 1.33 MeV, respectively, by MCNP 5 (Monte Carlo) and WINXCOM program, and compared with those of the lead glass. Results: With attenuation factor K, shielding and mechanical properties taken into consideration bismuth glass containing 50% bismuth oxide might be selected as the right material. Dose rate distributions of water phantom were calculated with 2-cm and 10-cm thick glass, respectively, irradiated by 137 Cs and 60 Co in turn. Conclusion: Results show that the bismuth glass may replace lead glass for radiation shielding with appropriate energy. (authors)

  8. Estimation of Amount of Scattered Neutrons at Devices PFZ and GIT-12 by MCNP Simulations

    Directory of Open Access Journals (Sweden)

    Ondrej Šíla

    2013-01-01

    Full Text Available Our work is dedicated to pinch effect occurring during current discharge in deuterium plasma, and our results are connected with two devices – plasma focus PFZ, situated in the Faculty of Electrical Engineering, CTU, Prague, and Z-pinch GIT-12, which is situated in the Institute of High Current Electronics, Tomsk. During fusion reactions that proceed in plasma during discharge, neutrons are produced. We use neutrons as instrument for plasma diagnostics. Despite of the advantage that neutrons do not interact with electric and magnetic fields inside device, they are inevitably scattered by materials that are placed between their source and probe, and information about plasma from which they come from is distorted. For estimation of rate of neutron scattering we use MCNP code.

  9. Monte Carlo simulation applied to radiosurgery narrow beams using MCNP-4C

    International Nuclear Information System (INIS)

    Chaves, A.; Lopes, M.C.; Oliveira, C.

    2001-01-01

    Dose measurements for the narrow photon beams used in radiosurgery are complicated by the lack of electron equilibrium which is a requirement namely for ionometric methods. To overcome this difficulty the use of different dosimetric supports is strongly recommended in order to appreciate the influence of each type of detector. Monte Carlo simulation is another kind of tool to assess the details of the energy deposition phenomena in such narrow photon beams. In this study output factors and depth dose calculated by the Monte Carlo MCNP-4C code are presented and compared with experimental data measured with a diode, a Markus chamber, a 0.125 cc thimble chamber and a Pinpoint chamber. Simulated energy spectra for narrow beams are also presented in order to compare them with the reference 10 cm x 10 cm beam field size and thus discuss the different contributions of the absorbed energy in water, in each case. A detailed analysis on the photon energy spectra showed a slight decrease on the photon mean energy that can be explained by the increased scattering inside the additional collimators. Calculated and measured depth doses curves are in good agreement for most of the collimators. For the two smallest collimators some differences have been pointed and explained according to the characteristics of the detectors (author)

  10. Simulation of dental intensifying screen for intraoral radiographic using MCNP5 code

    International Nuclear Information System (INIS)

    Ferreira, Vanessa M.; Oliveira, Renato C.M.; Barros, Graiciany P.; Oliveira, Arno H.; Veloso, M. Auxiliadora F.

    2011-01-01

    One of basic principles for radiological protection is the optimization of techniques for obtain radiographic images, in way that the dose in the patient is kept as low as reasonably achievable (ALARA). Intensifying screens are used in medical radiology, which reduce considerably the dose rates in the production of radiographic images, maintaining the quality of these, while in dental radiology, there is no a intensifying screen available for intraoral examinations. From this technological requirement, this paper evaluates a computational modeling of an intensifying screen for use in intraoral radiography. For this, it was used the Monte Carlo code MCNP5 that allows the radiography simulation through the transport of electrons and photons in the different materials present in this examination. The goal of an intensifying screen is the conversion of X-ray photons to photons in the visible spectrum, knowing that radiographic films are more sensitive to light photons than to X-ray photons. So the screen should be composed of an efficient material for converting x-rays photons in light photons, therefore was made simulations using different materials, thicknesses and positions possible for placing screen in radiographic film in order to find the way more technically feasible. (author)

  11. Gamma knife simulation using the MCNP4C code and the zubal phantom and comparison with experimental data

    International Nuclear Information System (INIS)

    Gholami, S.; Kamali Asl, A.; Aghamiri, M.; Allahverdi, M.

    2010-01-01

    Gamma Knife is an instrument specially designed for treating brain disorders. In Gamma Knife, there are 201 narrow beams of cobalt-60 sources that intersect at an isocenter point to treat brain tumors. The tumor is placed at the isocenter and is treated by the emitted gamma rays. Therefore, there is a high dose at this point and a low dose is delivered to the normal tissue surrounding the tumor. Material and Method: In the current work, the MCNP simulation code was used to simulate the Gamma Knife. The calculated values were compared to the experimental ones and previous works. Dose distribution was compared for different collimators in a water phantom and the Zubal brain-equivalent phantom. The dose profiles were obtained along the x, y and z axes. Result: The evaluation of the developed code was performed using experimental data and we found a good agreement between our simulation and experimental data. Discussion: Our results showed that the skull bone has a high contribution to both scatter and absorbed dose. In other words, inserting the exact material of brain and other organs of the head in digital phantom improves the quality of treatment planning. This work is regarding the measurement of absorbed dose and improving the treatment planning procedure in Gamma-Knife radiosurgery in the brain.

  12. Gamma Knife Simulation Using the MCNP4C Code and the Zubal Phantom and Comparison with Experimental Data

    Directory of Open Access Journals (Sweden)

    Somayeh Gholami

    2010-06-01

    Full Text Available Introduction: Gamma Knife is an instrument specially designed for treating brain disorders. In Gamma Knife, there are 201 narrow beams of cobalt-60 sources that intersect at an isocenter point to treat brain tumors. The tumor is placed at the isocenter and is treated by the emitted gamma rays. Therefore, there is a high dose at this point and a low dose is delivered to the normal tissue surrounding the tumor. Material and Method: In the current work, the MCNP simulation code was used to simulate the Gamma Knife. The calculated values were compared to the experimental ones and previous works. Dose distribution was compared for different collimators in a water phantom and the Zubal brain-equivalent phantom. The dose profiles were obtained along the x, y and z axes. Result: The evaluation of the developed code was performed using experimental data and we found a good agreement between our simulation and experimental data. Discussion: Our results showed that the skull bone has a high contribution to both scatter and absorbed dose. In other words, inserting the exact material of brain and other organs of the head in digital phantom improves the quality of treatment planning. This work is regarding the measurement of absorbed dose and improving the treatment planning procedure in Gamma-Knife radiosurgery in the brain.

  13. MCNP5 development, verification, and performance

    International Nuclear Information System (INIS)

    Forrest B, Brown

    2003-01-01

    MCNP is a well-known and widely used Monte Carlo code for neutron, photon, and electron transport simulations. During the past 18 months, MCNP was completely reworked to provide MCNP5, a modernized version with many new features, including plotting enhancements, photon Doppler broadening, radiography image tallies, enhancements to source definitions, improved variance reduction, improved random number generator, tallies on a superimposed mesh, and edits of criticality safety parameters. Significant improvements in software engineering and adherence to standards have been made. Over 100 verification problems have been used to ensure that MCNP5 produces the same results as before and that all capabilities have been preserved. Testing on large parallel systems shows excellent parallel scaling. (author)

  14. MCNP5 development, verification, and performance

    Energy Technology Data Exchange (ETDEWEB)

    Forrest B, Brown [Los Alamos National Laboratory (United States)

    2003-07-01

    MCNP is a well-known and widely used Monte Carlo code for neutron, photon, and electron transport simulations. During the past 18 months, MCNP was completely reworked to provide MCNP5, a modernized version with many new features, including plotting enhancements, photon Doppler broadening, radiography image tallies, enhancements to source definitions, improved variance reduction, improved random number generator, tallies on a superimposed mesh, and edits of criticality safety parameters. Significant improvements in software engineering and adherence to standards have been made. Over 100 verification problems have been used to ensure that MCNP5 produces the same results as before and that all capabilities have been preserved. Testing on large parallel systems shows excellent parallel scaling. (author)

  15. Investigation of reactivity changes due to flooding the irradiation sites of the MNSR reactor using the MCNP code and comparison with experimental results

    Directory of Open Access Journals (Sweden)

    A Shirani

    2010-06-01

    Full Text Available In this work, the Isfahan Miniature Neutron Source Reactor (MNSR has been simulated using the MCNP code, and reactivity worth of flooding the inner irradiation sites of this reactor in an accident has been calculated. Also, by inserting polyethylene capsules containing water inside the inner irradiation sites, reactivity changes of this reactor in same such accident have been measured, the results of which are in good agreements with the calculated results. In this work, the reactivity worth due to flooding one inner irradiation site is 0.53mk , and reactivity worth due to flooding of the whole 5 inner irradiation sites is 2.61 mk.

  16. Use of a Boron Doped Spherical Phantom for the Investigation of Neutron Directional Properties: Comparison Between Experiment and MCNP Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Drake, P.; Kierkegaard, J

    1999-07-01

    A boron doped 19 cm diameter spherical phantom was constructed to give information on the direction of neutrons inside the Ringhals 4 containment. The phantom was made of 40% paraffin and 60% boric acid. 10B contributes 2% of the total phantom weight. The phantom was tested for its angular sensitivity to neutrons. The response was tested with a {sup 252}Cf source and with a Monte Carlo calculation (MCNP) simulating a {sup 252}Cf source. In these investigations the phantom showed a strong directional response. However, there was only a fair correspondence between the experiment and the simulation. The discrepancies are, at least in part, due to the difference in energy and angular response of the dosemeters as compared with the idealised response characteristics in the MCNP calculation. In the MCNP calculation the experimental conditions were not fully simulated. The investigations also showed that the addition of boron to the phantom reduces the leakage of thermalised neutrons from the phantom, and the production of neutron induced photons in the phantom to insignificant levels. (author)

  17. Use of a Boron Doped Spherical Phantom for the Investigation of Neutron Directional Properties: Comparison Between Experiment and MCNP Simulation

    International Nuclear Information System (INIS)

    Drake, P.; Kierkegaard, J.

    1999-01-01

    A boron doped 19 cm diameter spherical phantom was constructed to give information on the direction of neutrons inside the Ringhals 4 containment. The phantom was made of 40% paraffin and 60% boric acid. 10B contributes 2% of the total phantom weight. The phantom was tested for its angular sensitivity to neutrons. The response was tested with a 252 Cf source and with a Monte Carlo calculation (MCNP) simulating a 252 Cf source. In these investigations the phantom showed a strong directional response. However, there was only a fair correspondence between the experiment and the simulation. The discrepancies are, at least in part, due to the difference in energy and angular response of the dosemeters as compared with the idealised response characteristics in the MCNP calculation. In the MCNP calculation the experimental conditions were not fully simulated. The investigations also showed that the addition of boron to the phantom reduces the leakage of thermalised neutrons from the phantom, and the production of neutron induced photons in the phantom to insignificant levels. (author)

  18. Response function of an HPGe detector simulated through MCNP 4A varying the density and chemical composition of the matrix

    International Nuclear Information System (INIS)

    Leal A, B.; Mireles G, F.; Quirino T, L.; Pinedo, J.L.

    2005-01-01

    In the area of the Radiological Safety it is required of a calibrated detection system in energy and efficiency for the determination of the concentration in activity in samples that vary in chemical composition and by this in density. The area of Nuclear Engineering requires to find the grade of isotopic enrichment of the uranium of the Sub-critic Nuclear Chicago 9000 Mark. Given the experimental importance that has the determination from the curves of efficiency to the effects of establishing the quantitative results, is appealed to the simulation of the response function of the detector used in the Regional Center of Nuclear Studies inside the range of energy of 80 keV to 1400 keV varying the density of the matrix and the chemical composition by means of the application of the Monte Carlo code MCNP-4A. The obtained results in the simulation of the response function of the detector show a grade of acceptance in the range from 500 to 1400 keV energy, with a smaller percentage discrepancy to 10%, in the range of low energy that its go from 59 to 400 keV, the percentage discrepancy varies from 17% until 30%, which is manifested in the opposing isotopic relationship for 5 fuel rods of the Sub critic nuclear assemble. (Author)

  19. Criticality benchmark results for the ENDF60 library with MCNP trademark

    International Nuclear Information System (INIS)

    Keen, N.D.; Frankle, S.C.; MacFarlane, R.E.

    1995-01-01

    The continuous-energy neutron data library ENDF60, for use with the Monte Carlo N-Particle radiation transport code MCNP4A, was released in the fall of 1994. The ENDF60 library is comprised of 124 nuclide data files based on the ENDF/B-VI (B-VI) evaluations through Release 2. Fifty-two percent of these B-VI evaluations are translations from ENDF/B-V (B-V). The remaining forty-eight percent are new evaluations which have sometimes changed significantly. Among these changes are greatly increased use of isotopic evaluations, more extensive resonance-parameter evaluations, and energy-angle correlated distributions for secondary particles. In particular, the upper energy limit for the resolved resonance region of 235 U, 238 U and 239 Pu has been extended from 0.082, 4.0, and 0.301 keV to 2..25, 10.0, and 2.5 keV respectively. As regulatory oversight has advanced and performing critical experiments has become more difficult, there has been an increased reliance on computational methods. For the criticality safety community, the performance of the combined transport code and data library is of interest. The purpose of this abstract is to provide benchmarking results to aid the user in determining the best data library for their application

  20. Comparison of MCNP4C and experimental results on neutron and gamma ray shielding effects for materials

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Kyoon Ho; Lee, Eun Ki [KEPRI, Taejon (Korea, Republic of)

    2004-07-01

    MCNP code is a general-purpose Monte Carlo radiation transport code that can numerically simulate neutron, photon, and electron transport. Increasing the speed of computing machine is making numerical transport simulation more attractive and has led to the widespread use of such code. This code can be used for general radiation shielding and criticality accident alarm system related dose calculations, so that the version 4C2 of this code was used to evaluate the shielding effect against neutron and gamma ray experiments. The Ueki experiments were used for neutron shielding effects for materials, and the Kansas State University (KSU) photon skyshine experiments of 1977 were tested for gamma ray shielding effects.

  1. Determination of the detection efficiency of a HPGe detector by means of the MCNP 4A simulation code; Determinacion de la eficiencia de deteccion de un detector HPGe mediante el codigo de simulacion MCNP 4A

    Energy Technology Data Exchange (ETDEWEB)

    Leal, B. [Centro Regional de Estudios Nucleares, A.P. 579C, 98068 Zacatecas (Mexico)

    2004-07-01

    In the majority of the laboratories, the calibration in efficiency of the detector is carried out by means of the standard sources measurement of gamma photons that have a determined activity, or for matrices that contain a variety of radionuclides that can embrace the energy range of interest. Given the experimental importance that has the determination from the curves of efficiency to the effects of establishing the quantitative results, is appealed to the simulation of the response function of the detector used in the Regional Center of Nuclear Studies inside the energy range of 80 keV to 1400 keV varying the density of the matrix, by means of the application of the Monte Carlo code MCNP-4A. The adjustment obtained shows an acceptance grade in the range of 100 to 600 keV, with a smaller percentage discrepancy to 5%. (Author)

  2. MCNP6.1 simulations for low-energy atomic relaxation: Code-to-code comparison with GATEv7.2, PENELOPE2014, and EGSnrc

    Science.gov (United States)

    Jung, Seongmoon; Sung, Wonmo; Lee, Jaegi; Ye, Sung-Joon

    2018-01-01

    Emerging radiological applications of gold nanoparticles demand low-energy electron/photon transport calculations including details of an atomic relaxation process. Recently, MCNP® version 6.1 (MCNP6.1) has been released with extended cross-sections for low-energy electron/photon, subshell photoelectric cross-sections, and more detailed atomic relaxation data than the previous versions. With this new feature, the atomic relaxation process of MCNP6.1 has not been fully tested yet with its new physics library (eprdata12) that is based on the Evaluated Atomic Data Library (EADL). In this study, MCNP6.1 was compared with GATEv7.2, PENELOPE2014, and EGSnrc that have been often used to simulate low-energy atomic relaxation processes. The simulations were performed to acquire both photon and electron spectra produced by interactions of 15 keV electrons or photons with a 10-nm-thick gold nano-slab. The photon-induced fluorescence X-rays from MCNP6.1 fairly agreed with those from GATEv7.2 and PENELOPE2014, while the electron-induced fluorescence X-rays of the four codes showed more or less discrepancies. A coincidence was observed in the photon-induced Auger electrons simulated by MCNP6.1 and GATEv7.2. A recent release of MCNP6.1 with eprdata12 can be used to simulate the photon-induced atomic relaxation.

  3. Comparison between experiment and MCNP simulation for retrospective dosimetry according to the geometry of exposure using electronic components in a mobile phone

    International Nuclear Information System (INIS)

    Kim, Min Chae; Kim, Hyoungtaek; Lee, Seung Kyu; Chang, Insu; Lee, Jungil; Kim, Jang-Lyul; Kim, Bong-Hwan; Kim, Chan Hyeong

    2017-01-01

    Many efforts are carrying out for the use of thermoluminescence (TL) and optically stimulated luminescence (OSL) of personal electronic devices (such as mobile phone, USB memory chip etc.) as fortuitous dosimeters in the case of radiation emergency. A correction is required when evaluating the exposure dose to the body using the measured dose to the devices. As a starting point of this purpose, we have studied to evaluate the effects of the position of the electronic device on human body to measure the dose to the electronic device (mobile phone). We evaluated the doses to the mobile phone by using Monte Carlo N-Particle (MCNP) simulations and TL method with resistors and inductors in the mobile phone, and the results were then compared. We have studied to evaluate the effects of the position of mobile phone on human body to measure the dose to the phone with TL method and MCNP simulation method, and then compared. The results obtained by the TL experiments showed excellent agreement with the simulation results. With these results, it is expected that the retrospective estimation of the exposure dose to human body is possible by using the dose to mobile phone measured by TL analysis of resistors and inductors in phone.

  4. Neutron reflector design with Californium 252 neutron for Boron neutron chapter therapy facility using MCNP5 simulation method

    International Nuclear Information System (INIS)

    Muhammad Fakhrurreza; Kusminanto; Y Sardjono

    2014-01-01

    In this research has made a reflector design to provide beams of Neutron for BNCT with Californium-252 radioactive source. This collimator is useful to obtain optimum epithermal neutron flux with the smallest impurity radiation (thermal neutron, fast neutron, and gamma). The design process is done using Monte Carlo N-Particle simulation version 5 (MCNP5) code to calculate the neutron flux tally form. The chosen reflector design is the reflectors which use material such as BeO ceramic with 13 cm thick. Moderator use sulfur material with the slope angle of the cone is 30°. From the calculation result, it is obtained that Reflector with 1 gram Californium-252 source can produce a neutron output thermal which has thermal neutron specification 2.23189 x 10 9 n/s.cm 2 , epithermal neutron 3.51548 x 10 9 n/s.cm 2 , and fast neutron 4.82241 x 10 9 n/s.cm 2 From the result, it needs additional collimator because the BNCT requirement. (author)

  5. A calibration method for realistic neutron dosimetry in radiobiological experiments assisted by MCNP simulation.

    Science.gov (United States)

    Shahmohammadi Beni, Mehrdad; Krstic, Dragana; Nikezic, Dragoslav; Yu, Kwan Ngok

    2016-09-01

    Many studies on biological effects of neutrons involve dose responses of neutrons, which rely on accurately determined absorbed doses in the irradiated cells or living organisms. Absorbed doses are difficult to measure, and are commonly surrogated with doses measured using separate detectors. The present work describes the determination of doses absorbed in the cell layer underneath a medium column (D A ) and the doses absorbed in an ionization chamber (D E ) from neutrons through computer simulations using the MCNP-5 code, and the subsequent determination of the conversion coefficients R (= D A /D E ). It was found that R in general decreased with increase in the medium thickness, which was due to elastic and inelastic scattering. For 2-MeV neutrons, conspicuous bulges in R values were observed at medium thicknesses of about 500, 1500, 2500 and 4000 μm, and these were attributed to carbon, oxygen and nitrogen nuclei, and were reflections of spikes in neutron interaction cross sections with these nuclei. For 0.1-MeV neutrons, no conspicuous bulges in R were observed (except one at ~2000 μm that was due to photon interactions), which was explained by the absence of prominent spikes in the interaction cross-sections with these nuclei for neutron energies <0.1 MeV. The ratio R could be increased by ~50% for small medium thickness if the incident neutron energy was reduced from 2 MeV to 0.1 MeV. As such, the absorbed doses in cells (D A ) would vary with the incident neutron energies, even when the absorbed doses shown on the detector were the same. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  6. Validation of MCNP NPP Activation Simulations for Decommissioning Studies by Analysis of NPP Neutron Activation Foil Measurement Campaigns

    Directory of Open Access Journals (Sweden)

    Volmert Ben

    2016-01-01

    Full Text Available In this paper, an overview of the Swiss Nuclear Power Plant (NPP activation methodology is presented and the work towards its validation by in-situ NPP foil irradiation campaigns is outlined. Nuclear Research and consultancy Group (NRG in The Netherlands has been given the task of performing the corresponding neutron metrology. For this purpose, small Aluminium boxes containing a set of circular-shaped neutron activation foils have been prepared. After being irradiated for one complete reactor cycle, the sets have been successfully retrieved, followed by gamma-spectrometric measurements of the individual foils at NRG. Along with the individual activities of the foils, the reaction rates and thermal, intermediate and fast neutron fluence rates at the foil locations have been determined. These determinations include appropriate corrections for gamma self-absorption and neutron self-shielding as well as corresponding measurement uncertainties. The comparison of the NPP Monte Carlo calculations with the results of the foil measurements is done by using an individual generic MCNP model functioning as an interface and allowing the simulation of individual foil activation by predetermined neutron spectra. To summarize, the comparison between calculation and measurement serve as a sound validation of the Swiss NPP activation methodology by demonstrating a satisfying agreement between measurement and calculation. Finally, the validation offers a chance for further improvements of the existing NPP models by ensuing calibration and/or modelling optimizations for key components and structures.

  7. Comparison of MCNP6 and experimental results for neutron counts, Rossi-α, and Feynman-α distributions

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.; Sadovich, S.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.

    2013-01-01

    MCNP6, the general-purpose Monte Carlo N-Particle code, has the capability to perform time-dependent calculations by tracking the time interval between successive events of the neutron random walk. In fixed-source calculations for a subcritical assembly, the zero time value is assigned at the moment the neutron is emitted by the external neutron source. The PTRAC and F8 cards of MCNP allow to tally the time when a neutron is captured by 3 He(n, p) reactions in the neutron detector. From this information, it is possible to build three different time distributions: neutron counts, Rossi-α, and Feynman-α. The neutron counts time distribution represents the number of neutrons captured as a function of time. The Rossi-a distribution represents the number of neutron pairs captured as a function of the time interval between two capture events. The Feynman-a distribution represents the variance-to-mean ratio, minus one, of the neutron counts array as a function of a fixed time interval. The MCNP6 results for these three time distributions have been compared with the experimental data of the YALINA Thermal facility and have been found to be in quite good agreement. (authors)

  8. Comparison of MCNP6 and experimental results for neutron counts, Rossi-{alpha}, and Feynman-{alpha} distributions

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, Y. [Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439 (United States); Sadovich, S.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C. [Joint Institute for Power and Nuclear Research-Sosny, 99 Academician A.K. Krasin Str., Minsk 220109 (Belarus)

    2013-07-01

    MCNP6, the general-purpose Monte Carlo N-Particle code, has the capability to perform time-dependent calculations by tracking the time interval between successive events of the neutron random walk. In fixed-source calculations for a subcritical assembly, the zero time value is assigned at the moment the neutron is emitted by the external neutron source. The PTRAC and F8 cards of MCNP allow to tally the time when a neutron is captured by {sup 3}He(n, p) reactions in the neutron detector. From this information, it is possible to build three different time distributions: neutron counts, Rossi-{alpha}, and Feynman-{alpha}. The neutron counts time distribution represents the number of neutrons captured as a function of time. The Rossi-a distribution represents the number of neutron pairs captured as a function of the time interval between two capture events. The Feynman-a distribution represents the variance-to-mean ratio, minus one, of the neutron counts array as a function of a fixed time interval. The MCNP6 results for these three time distributions have been compared with the experimental data of the YALINA Thermal facility and have been found to be in quite good agreement. (authors)

  9. On the effect of updated MCNP photon cross section data on the simulated response of the HPA TLD.

    Science.gov (United States)

    Eakins, Jonathan

    2009-02-01

    The relative response of the new Health Protection Agency thermoluminescence dosimeter (TLD) has been calculated for Narrow Series X-ray distribution and (137)Cs photon sources using the Monte Carlo code MCNP5, and the results compared with those obtained during its design stage using the predecessor code, MCNP4c2. The results agreed at intermediate energies (approximately 0.1 MeV to (137)Cs), but differed at low energies (<0.1 MeV) by up to approximately 10%. This disparity has been ascribed to differences in the default photon interaction data used by the two codes, and derives ultimately from the effect on absorbed dose of the recent updates to the photoelectric cross sections. The sources of these data have been reviewed.

  10. Decay of the pulsed thermal neutron flux in two-zone hydrogenous systems - Monte Carlo simulations using MCNP standard data libraries

    International Nuclear Information System (INIS)

    Wiacek, Urszula; Krynicka, Ewa

    2006-01-01

    Pulsed neutron experiments in two-zone spherical and cylindrical geometry has been simulated using the MCNP code. The systems are built of hydrogenous materials. The inner zone is filled with aqueous solutions of absorbers (H 3 BO 3 or KCl). It is surrounded by the outer zone built of Plexiglas. The system is irradiated with the pulsed thermal neutron flux and the thermal neutron decay in time is observed. Standard data libraries of the thermal neutron scattering cross-sections of hydrogen in hydrogenous substances have been used to simulate the neutron transport. The time decay constant of the fundamental mode of the thermal neutron flux determined in each simulation has been compared with the corresponding result of the real pulsed neutron experiment

  11. Monte Carlo simulation for treatment planning optimization of the COMS and USC eye plaques using the MCNP4C code

    International Nuclear Information System (INIS)

    Jannati Isfahani, A.; Shokrani, P.; Raisali, Gh.

    2010-01-01

    Ophthalmic plaque radiotherapy using I-125 radioactive seeds in removable episcleral plaques is often used in management of ophthalmic tumors. Radioactive seeds are fixed in a gold bowl-shaped plaque and the plaque is sutured to the scleral surface corresponding to the base of the intraocular tumor. This treatment allows for a localized radiation dose delivery to the tumor with a minimum target dose of 85 Gy. The goal of this study was to develop a Monte Carlo simulation method for treatment planning optimization of the COMS and USC eye plaques. Material and Methods: The MCNP4C code was used to simulate three plaques: COMS-12mm, COMS-20mm, and USC ≠9 with I-125 seeds. Calculation of dose was performed in a spherical water phantom (radius 12 mm) using a 3D matrix with a size of 12 voxels in each dimension. Each voxel contained a sphere of radius 1 mm. Results: Dose profiles were calculated for each plaque. Isodose lines were created in 2 planes normal to the axes of the plaque, at the base of the tumor and at the level of the 85 Gy isodose in a 7 day treatment. Discussion and Conclusion: This study shows that it is necessary to consider the following tumor properties in design or selection of an eye plaque: the diameter of tumor base, its thickness and geometric shape, and the tumor location with respect to normal critical structures. The plaque diameter is selected by considering the tumor diameter. Tumor thickness is considered when selecting the seed parameters such as their number, activity and distribution. Finally, tumor shape and its location control the design of following parameters: the shape and material of the plaque and the need for collimation.

  12. Comparison of penumbra regions produced by ancient Gamma knife model C and Gamma ART 6000 using Monte Carlo MCNP6 simulation.

    Science.gov (United States)

    Banaee, Nooshin; Asgari, Sepideh; Nedaie, Hassan Ali

    2018-07-01

    The accuracy of penumbral measurements in radiotherapy is pivotal because dose planning computers require accurate data to adequately modeling the beams, which in turn are used to calculate patient dose distributions. Gamma knife is a non-invasive intracranial technique based on principles of the Leksell stereotactic system for open deep brain surgeries, invented and developed by Professor Lars Leksell. The aim of this study is to compare the penumbra widths of Leksell Gamma Knife model C and Gamma ART 6000. Initially, the structure of both systems were simulated by using Monte Carlo MCNP6 code and after validating the accuracy of simulation, beam profiles of different collimators were plotted. MCNP6 beam profile calculations showed that the penumbra values of Leksell Gamma knife model C and Gamma ART 6000 for 18, 14, 8 and 4 mm collimators are 9.7, 7.9, 4.3, 2.6 and 8.2, 6.9, 3.6, 2.4, respectively. The results of this study showed that since Gamma ART 6000 has larger solid angle in comparison with Gamma Knife model C, it produces better beam profile penumbras than Gamma Knife model C in the direct plane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Evaluation of computational models and cross sections used by MCNP6 for simulation of characteristic X-ray emission from thick targets bombarded by kiloelectronvolt electrons

    Energy Technology Data Exchange (ETDEWEB)

    Poškus, A., E-mail: andrius.poskus@ff.vu.lt

    2016-09-15

    This paper evaluates the accuracy of the single-event (SE) and condensed-history (CH) models of electron transport in MCNP6.1 when simulating characteristic K{sub α}, total K (=K{sub α} + K{sub β}) and L{sub α} X-ray emission from thick targets bombarded by electrons with energies from 5 keV to 30 keV. It is shown that the MCNP6.1 implementation of the CH model for the K-shell impact ionization leads to underestimation of the K yield by 40% or more for the elements with atomic numbers Z < 15 and overestimation of the K{sub α} yield by more than 40% for the elements with Z > 25. The L{sub α} yields are underestimated by more than an order of magnitude in CH mode, because MCNP6.1 neglects X-ray emission caused by electron-impact ionization of L, M and higher shells in CH mode (the L{sub α} yields calculated in CH mode reflect only X-ray fluorescence, which is mainly caused by photoelectric absorption of bremsstrahlung photons). The X-ray yields calculated by MCNP6.1 in SE mode (using ENDF/B-VII.1 library data) are more accurate: the differences of the calculated and experimental K yields are within the experimental uncertainties for the elements C, Al and Si, and the calculated K{sub α} yields are typically underestimated by (20–30)% for the elements with Z > 25, whereas the L{sub α} yields are underestimated by (60–70)% for the elements with Z > 49. It is also shown that agreement of the experimental X-ray yields with those calculated in SE mode is additionally improved by replacing the ENDF/B inner-shell electron-impact ionization cross sections with the set of cross sections obtained from the distorted-wave Born approximation (DWBA), which are also used in the PENELOPE code system. The latter replacement causes a decrease of the average relative difference of the experimental X-ray yields and the simulation results obtained in SE mode to approximately 10%, which is similar to accuracy achieved with PENELOPE. This confirms that the DWBA inner

  14. Response function of an HPGe detector simulated through MCNP 4A varying the density and chemical composition of the matrix; Funcion respuesta de un detector HPGe simulada mediante MCNP 4A variando la densidad y composicion quimica de la matriz

    Energy Technology Data Exchange (ETDEWEB)

    Leal A, B.; Mireles G, F.; Quirino T, L.; Pinedo, J.L. [Universidad Autonoma de Zacatecas, Zacatecas (Mexico)]. e-mail: bleal79@yahoo.com.mx

    2005-07-01

    In the area of the Radiological Safety it is required of a calibrated detection system in energy and efficiency for the determination of the concentration in activity in samples that vary in chemical composition and by this in density. The area of Nuclear Engineering requires to find the grade of isotopic enrichment of the uranium of the Sub-critic Nuclear Chicago 9000 Mark. Given the experimental importance that has the determination from the curves of efficiency to the effects of establishing the quantitative results, is appealed to the simulation of the response function of the detector used in the Regional Center of Nuclear Studies inside the range of energy of 80 keV to 1400 keV varying the density of the matrix and the chemical composition by means of the application of the Monte Carlo code MCNP-4A. The obtained results in the simulation of the response function of the detector show a grade of acceptance in the range from 500 to 1400 keV energy, with a smaller percentage discrepancy to 10%, in the range of low energy that its go from 59 to 400 keV, the percentage discrepancy varies from 17% until 30%, which is manifested in the opposing isotopic relationship for 5 fuel rods of the Sub critic nuclear assemble. (Author)

  15. MCNP and OMEGA criticality calculations

    International Nuclear Information System (INIS)

    Seifert, E.

    1998-04-01

    The reliability of OMEGA criticality calculations is shown by a comparison with calculations by the validated and widely used Monte Carlo code MCNP. The criticality of 16 assemblies with uranium as fissionable is calculated with the codes MCNP (Version 4A, ENDF/B-V cross sections), MCNP (Version 4B, ENDF/B-VI cross sections), and OMEGA. Identical calculation models are used for the three codes. The results are compared mutually and with the experimental criticality of the assemblies. (orig.)

  16. MCNP HPGe detector benchmark with previously validated Cyltran model.

    Science.gov (United States)

    Hau, I D; Russ, W R; Bronson, F

    2009-05-01

    An exact copy of the detector model generated for Cyltran was reproduced as an MCNP input file and the detection efficiency was calculated similarly with the methodology used in previous experimental measurements and simulation of a 280 cm(3) HPGe detector. Below 1000 keV the MCNP data correlated to the Cyltran results within 0.5% while above this energy the difference between MCNP and Cyltran increased to about 6% at 4800 keV, depending on the electron cut-off energy.

  17. Gamma spectroscopy modelization intercomparison of the modelization results using two different codes (MCNP, and Pascalys-mercure)

    International Nuclear Information System (INIS)

    Luneville, L.; Chiron, M.; Toubon, H.; Dogny, S.; Huver, M.; Berger, L.

    2001-01-01

    The research performed in common these last 3 years by the French Atomic Commission CEA, COGEMA and Eurisys Mesures had for main subject the realization of a complete tool of modelization for the largest range of realistic cases, the Pascalys modelization software. The main purpose of the modelization was to calculate the global measurement efficiency, which delivers the most accurate relationship between the photons emitted by the nuclear source in volume, punctual or deposited form and the germanium hyper pure detector, which detects and analyzes the received photons. It has been stated since long time that experimental global measurement efficiency becomes more and more difficult to address especially for complex scene as we can find in decommissioning and dismantling or in case of high activities for which the use of high activity reference sources become difficult to use for both health physics point of view and regulations. The choice of a calculation code is fundamental if accurate modelization is searched. MCNP represents the reference code but its use is long time calculation consuming and then not practicable in line on the field. Direct line-of-sight point kernel code as the French Atomic Commission 3-D analysis Mercure code can represent the practicable compromise between the most accurate MCNP reference code and the realistic performances needed in modelization. The comparison between the results of Pascalys-Mercure and MCNP code taking in account the last improvements of Mercure in the low energy range where the most important errors can occur, is presented in this paper, Mercure code being supported in line by the recent Pascalys 3-D modelization scene software. The incidence of the intrinsic efficiency of the Germanium detector is also approached for the total efficiency of measurement. (authors)

  18. MCNP6 simulation of radiographs generated from megaelectron volt X-rays for characterizing a computed tomography system

    Science.gov (United States)

    Dooraghi, Alex A.; Tringe, Joseph W.

    2018-04-01

    To evaluate conventional munition, we simulated an x-ray computed tomography (CT) system for generating radiographs from nominal x-ray energies of 6 or 9 megaelectron volts (MeV). CT simulations, informed by measured data, allow for optimization of both system design and acquisition techniques necessary to enhance image quality. MCNP6 radiographic simulation tools were used to model ideal detector responses (DR) that assume either (1) a detector response proportional to photon flux (N) or (2) a detector response proportional to energy flux (E). As scatter may become significant with MeV x-ray systems, simulations were performed with and without the inclusion of object scatter. Simulations were compared against measurements of a cylindrical munition component principally composed of HMX, tungsten and aluminum encased in carbon fiber. Simulations and measurements used a 6 MeV peak energy x-ray spectrum filtered with 3.175 mm of tantalum. A detector response proportional to energy which includes object scatter agrees to within 0.6 % of the measured line integral of the linear attenuation coefficient. Exclusion of scatter increases the difference between measurement and simulation to 5 %. A detector response proportional to photon flux agrees to within 20 % when object scatter is included in the simulation and 27 % when object scatter is excluded.

  19. First results of saturation curve measurements of heat-resistant steel using GEANT4 and MCNP5 codes

    International Nuclear Information System (INIS)

    Hoang, Duc-Tam; Tran, Thien-Thanh; Le, Bao-Tran; Vo, Hoang-Nguyen; Chau, Van-Tao; Tran, Kim-Tuyet; Huynh, Dinh-Chuong

    2015-01-01

    A gamma backscattering technique is applied to calculate the saturation curve and the effective mass attenuation coefficient of material. A NaI(Tl) detector collimated by collimator of large diameter is modeled by Monte Carlo technique using both MCNP5 and GEANT4 codes. The result shows a good agreement in response function of the scattering spectra for the two codes. Based on such spectra, the saturation curve of heat-resistant steel is determined. The results represent a strong confirmation that it is appropriate to use the detector collimator of large diameter to obtain the scattering spectra and this work is also the basis of experimental set-up for determining the thickness of material. (author)

  20. Comparative analysis of results between CASMO, MCNP and Serpent for a suite of Benchmark problems on BWR reactors

    International Nuclear Information System (INIS)

    Xolocostli M, J. V.; Vargas E, S.; Gomez T, A. M.; Reyes F, M. del C.; Del Valle G, E.

    2014-10-01

    In this paper a comparison is made in analyzing the suite of Benchmark problems for reactors type BWR between CASMO-4, MCNP6 and Serpent code. The Benchmark problem consists of two different geometries: a fuel cell of a pin and assembly type BWR. To facilitate the study of reactors physics in the fuel pin their nuclear characteristics are provided to detail, such as burnt dependence, the reactivity of selected nuclide, etc. With respect to the fuel assembly, the presented results are regarding to infinite multiplication factor for burning different steps and different vacuum conditions. Making the analysis of this set of Benchmark problems provides comprehensive test problems for the next fuels generation of BWR reactors with high extended burned. It is important to note that when making this comparison the purpose is to validate the methodologies used in modeling for different operating conditions, if the case is of other BWR assembly. The results will be within a range with some uncertainty, considering that does not depend on code that is used. Escuela Superior de Fisica y Matematicas of Instituto Politecnico Nacional (IPN (Mexico) has accumulated some experience in using Serpent, due to the potential of this code over other commercial codes such as CASMO and MCNP. The obtained results for the infinite multiplication factor are encouraging and motivate the studies to continue with the generation of the X S of a core to a next step a respective nuclear data library is constructed and this can be used by codes developed as part of the development project of the Mexican Analysis Platform of Nuclear Reactors AZTLAN. (Author)

  1. Using lattice tools and unfolding methods for hpge detector efficiency simulation with the Monte Carlo code MCNP5

    International Nuclear Information System (INIS)

    Querol, A.; Gallardo, S.; Ródenas, J.; Verdú, G.

    2015-01-01

    In environmental radioactivity measurements, High Purity Germanium (HPGe) detectors are commonly used due to their excellent resolution. Efficiency calibration of detectors is essential to determine activity of radionuclides. The Monte Carlo method has been proved to be a powerful tool to complement efficiency calculations. In aged detectors, efficiency is partially deteriorated due to the dead layer increasing and consequently, the active volume decreasing. The characterization of the radiation transport in the dead layer is essential for a realistic HPGe simulation. In this work, the MCNP5 code is used to calculate the detector efficiency. The F4MESH tally is used to determine the photon and electron fluence in the dead layer and the active volume. The energy deposited in the Ge has been analyzed using the ⁎F8 tally. The F8 tally is used to obtain spectra and to calculate the detector efficiency. When the photon fluence and the energy deposition in the crystal are known, some unfolding methods can be used to estimate the activity of a given source. In this way, the efficiency is obtained and serves to verify the value obtained by other methods. - Highlights: • The MCNP5 code is used to estimate the dead layer thickness of an HPGe detector. • The F4MESH tally is applied to verify where interactions occur into the Ge crystal. • PHD and the energy deposited are obtained with F8 and ⁎F8 tallies, respectively. • An average dead layer between 70 and 80 µm is obtained for the HPGe studied. • The efficiency is calculated applying the TSVD method to the response matrix.

  2. Simulation the spatial resolution of an X-ray imager based on zinc oxide nanowires in anodic aluminium oxide membrane by using MCNP and OPTICS Codes

    Science.gov (United States)

    Samarin, S. N.; Saramad, S.

    2018-05-01

    The spatial resolution of a detector is a very important parameter for x-ray imaging. A bulk scintillation detector because of spreading of light inside the scintillator does't have a good spatial resolution. The nanowire scintillators because of their wave guiding behavior can prevent the spreading of light and can improve the spatial resolution of traditional scintillation detectors. The zinc oxide (ZnO) scintillator nanowire, with its simple construction by electrochemical deposition in regular hexagonal structure of Aluminum oxide membrane has many advantages. The three dimensional absorption of X-ray energy in ZnO scintillator is simulated by a Monte Carlo transport code (MCNP). The transport, attenuation and scattering of the generated photons are simulated by a general-purpose scintillator light response simulation code (OPTICS). The results are compared with a previous publication which used a simulation code of the passage of particles through matter (Geant4). The results verify that this scintillator nanowire structure has a spatial resolution less than one micrometer.

  3. Modeling and Simulation Monte Carlo by the MCNP code for determining neutron parameters of the nuclear reactor-subcritical assembly in CNSTN

    International Nuclear Information System (INIS)

    Romdhani, Ibtissem

    2014-01-01

    As part of developing its nuclear infrastructure base, the National Science and Technology Center Nuclear (CNSTN) examines the technical feasibility of setting up a new installation of subcritical assembly. Our study focuses on determining the neutron parameters of a nuclear zero power reactor based on Monte Carlo simulation MCNP. The objective of the simulation is to model the installation, determine the effective multiplication factor, and spatial distribution of neutron flux.

  4. Estimation of doses received by operators in the 1958 RB reactor accident using the MCNP5 computer code simulation

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2012-01-01

    Full Text Available A numerical simulation of the radiological consequences of the RB reactor reactivity excursion accident, which occurred on October 15, 1958, and an estimation of the total doses received by the operators were run by the MCNP5 computer code. The simulation was carried out under the same assumptions as those used in the 1960 IAEA-organized experimental simulation of the accident: total fission energy of 80 MJ released in the accident and the frozen positions of the operators. The time interval of exposure to high doses received by the operators has been estimated. Data on the RB1/1958 reactor core relevant to the accident are given. A short summary of the accident scenario has been updated. A 3-D model of the reactor room and the RB reactor tank, with all the details of the core, created. For dose determination, 3-D simplified, homogenised, sexless and faceless phantoms, placed inside the reactor room, have been developed. The code was run for a number of neutron histories which have given a dose rate uncertainty of less than 2%. For the determination of radiation spectra escaping the reactor core and radiation interaction in the tissue of the phantoms, the MCNP5 code was run (in the KCODE option and “mode n p e”, with a 55-group neutron spectra, 35-group gamma ray spectra and a 10-group electron spectra. The doses were determined by using the conversion of flux density (obtained by the F4 tally in the phantoms to doses using factors taken from ICRP-74 and from the deposited energy of neutrons and gamma rays (obtained by the F6 tally in the phantoms’ tissue. A rough estimation of the time moment when the odour of ozone was sensed by the operators is estimated for the first time and given in Appendix A.1. Calculated total absorbed and equivalent doses are compared to the previously reported ones and an attempt to understand and explain the reasons for the obtained differences has been made. A Root Cause Analysis of the accident was done and

  5. MCID: personalized dosimetric tool to simulate voxelized studies using MCNP5

    International Nuclear Information System (INIS)

    Gil, Alex Vergara; Perez, Marco A. Coca; Aroche, Leonel A. Torres; Pacilio, Massimiliano

    2013-01-01

    The purpose of this paper is to present the MCID software, a tool for calculating specific absorbed dose of patients in nuclear medicine, based on Monte Carlo simulation. This paper evaluates new clinical cases and new phantoms whose results validate the methodology implemented in MCID, which has followed a process of incorporating new materials, image processing in DICOM and Analyze format, a module of regions of interest and improvements in user interface. Now it has a tool to calculate the patient-specific absorbed doses in nuclear medicine that can be applied in clinical practice

  6. Introduction to the simulation with MCNP Monte Carlo code and its applications in Medical Physics; Introduccion a la simulacion con el codigo de Monte Carlo MCNP y sus aplicaciones en Fisica Medica

    Energy Technology Data Exchange (ETDEWEB)

    Parreno Z, F.; Paucar J, R.; Picon C, C. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, San Borja, Lima 41 (Peru)

    1998-12-31

    The simulation by Monte Carlo is tool which Medical Physics counts with it for the development of its research, the interest by this tool is growing, as we may observe in the main scientific journals for the years 1995-1997 where more than 27 % of the papers treat over Monte Carlo and/or its applications in the radiation transport.In the Peruvian Institute of Nuclear Energy we are implementing and making use of the MCNP4 and EGS4 codes. In this work are presented the general features of the Monte Carlo method and its more useful applications in Medical Physics. Likewise, it is made a simulation of the calculation of isodose curves in an interstitial treatment with Ir-192 wires in a mammary gland carcinoma. (Author)

  7. MCID: personalized dosimetric tool to simulate voxelized studies using MCNP5; MCID: herramienta dosimetrica personalizada para simular estudios voxelizados con MCNP5

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Alex Vergara [Centro de Proteccion e Higiene de las Radiaciones (CPHR), La Habana (Cuba); Perez, Marco A. Coca; Aroche, Leonel A. Torres, E-mail: mcoca@infomed.sld.cu, E-mail: leonel@infomed.sld.cu [Centro de Investigaciones Clinicas (CIC), La Habana (Cuba); Pacilio, Massimiliano, E-mail: mpacilio@scamilloforlanini.rm.it [Hospital S. Camillo Forlanini (AOSCF), Roma (Italy). Departmento de Fisica Medica

    2013-07-01

    The purpose of this paper is to present the MCID software, a tool for calculating specific absorbed dose of patients in nuclear medicine, based on Monte Carlo simulation. This paper evaluates new clinical cases and new phantoms whose results validate the methodology implemented in MCID, which has followed a process of incorporating new materials, image processing in DICOM and Analyze format, a module of regions of interest and improvements in user interface. Now it has a tool to calculate the patient-specific absorbed doses in nuclear medicine that can be applied in clinical practice.

  8. Preliminary MCNP-POLIMI Simulations for the Evaluation of the ''Floor Effect'' Comparison of APSTNG and Cf Sources

    CERN Document Server

    Pozzi, S A

    2002-01-01

    The present simulations performed with the Monte Carlo code MCNP-POLIMI [1] have the scope of evaluating the associated-particle sealed tube neutron generator (APSTNG) for use as an interrogation source in the source-driven noise analysis method for the assay of nuclear materials. In the Nuclear Materials Identification System (NMIS) developed at the Oak Ridge National Laboratory, the time dependent cross-correlation of the timed neutron source and detector responses is one of the signatures acquired. Previous studies and measurements have demonstrated the sensitivity of this and other related signatures to fissile mass [2-3]. In a recent report [4], we outlined the advantages of the APSTNG interrogation source for use with NMIS when compared with the Cf-252 source. In particular, we showed that when the distance between the source and the sample and the sample and the detectors is large, the APSTNG source outperforms the Cf-252 in sensitivity to fissile mass. This is the case when performing measurements of ...

  9. The comparison of MCNP perturbation technique with MCNP difference method in critical calculation

    International Nuclear Information System (INIS)

    Liu Bin; Lv Xuefeng; Zhao Wei; Wang Kai; Tu Jing; Ouyang Xiaoping

    2010-01-01

    For a nuclear fission system, we calculated Δk eff , which arise from system material composition changes, by two different approaches, the MCNP perturbation technique and the MCNP difference method. For every material composition change, we made four different runs, each run with different cycles or each cycle generating different neutrons, then we compared the two Δk eff that are obtained by two different approaches. As a material composition change in any particular cell of the nuclear fission system is small compared to the material compositions in the whole nuclear fission system, in other words, this composition change can be treated as a small perturbation, the Δk eff results obtained from the MCNP perturbation technique are much quicker, much more efficient and reliable than the results from the MCNP difference method. When a material composition change in any particular cell of the nuclear fission system is significant compared to the material compositions in the whole nuclear fission system, both the MCNP perturbation technique and the MCNP difference method can give satisfactory results. But for the run with the same cycles and each cycle generating the same neutrons, the results obtained from the MCNP perturbation technique are systemically less than the results obtained from the MCNP difference method. To further confirm our calculation results from the MCNP4C, we run the exact same MCNP4C input file in MCNP5, the calculation results from MCNP5 are the same as the calculation results from MCNP4C. We need caution when using the MCNP perturbation technique to calculate the Δk eff as the material composition change is large compared to the material compositions in the whole nuclear fission system, even though the material composition changes of any particular cell of the fission system still meet the criteria of MCNP perturbation technique.

  10. Validation suite for MCNP

    International Nuclear Information System (INIS)

    Mosteller, Russell D.

    2002-01-01

    Two validation suites, one for criticality and another for radiation shielding, have been defined and tested for the MCNP Monte Carlo code. All of the cases in the validation suites are based on experiments so that calculated and measured results can be compared in a meaningful way. The cases in the validation suites are described, and results from those cases are discussed. For several years, the distribution package for the MCNP Monte Carlo code1 has included an installation test suite to verify that MCNP has been installed correctly. However, the cases in that suite have been constructed primarily to test options within the code and to execute quickly. Consequently, they do not produce well-converged answers, and many of them are physically unrealistic. To remedy these deficiencies, sets of validation suites are being defined and tested for specific types of applications. All of the cases in the validation suites are based on benchmark experiments. Consequently, the results from the measurements are reliable and quantifiable, and calculated results can be compared with them in a meaningful way. Currently, validation suites exist for criticality and radiation-shielding applications.

  11. Comparisons between MCNP, EGS4 and experiment for clinical electron beams.

    Science.gov (United States)

    Jeraj, R; Keall, P J; Ostwald, P M

    1999-03-01

    Understanding the limitations of Monte Carlo codes is essential in order to avoid systematic errors in simulations, and to suggest further improvement of the codes. MCNP and EGS4, Monte Carlo codes commonly used in medical physics, were compared and evaluated against electron depth dose data and experimental backscatter results obtained using clinical radiotherapy beams. Different physical models and algorithms used in the codes give significantly different depth dose curves and electron backscattering factors. The default version of MCNP calculates electron depth dose curves which are too penetrating. The MCNP results agree better with experiment if the ITS-style energy-indexing algorithm is used. EGS4 underpredicts electron backscattering for high-Z materials. The results slightly improve if optimal PRESTA-I parameters are used. MCNP simulates backscattering well even for high-Z materials. To conclude the comparison, a timing study was performed. EGS4 is generally faster than MCNP and use of a large number of scoring voxels dramatically slows down the MCNP calculation. However, use of a large number of geometry voxels in MCNP only slightly affects the speed of the calculation.

  12. Comparisons between MCNP, EGS4 and experiment for clinical electron beams

    International Nuclear Information System (INIS)

    Jeraj, R.; Keall, P.J.; Ostwald, P.M.

    1999-01-01

    Understanding the limitations of Monte Carlo codes is essential in order to avoid systematic errors in simulations, and to suggest further improvement of the codes. MCNP and EGS4, Monte Carlo codes commonly used in medical physics, were compared and evaluated against electron depth dose data and experimental backscatter results obtained using clinical radiotherapy beams. Different physical models and algorithms used in the codes give significantly different depth dose curves and electron backscattering factors. The default version of MCNP calculates electron depth dose curves which are too penetrating. The MCNP results agree better with experiment if the ITS-style energy-indexing algorithm is used. EGS4 underpredicts electron backscattering for high- Z materials. The results slightly improve if optimal PRESTA-I parameters are used. MCNP simulates backscattering well even for high- Z materials. To conclude the comparison, a timing study was performed. EGS4 is generally faster than MCNP and use of a large number of scoring voxels dramatically slows down the MCNP calculation. However, use of a large number of geometry voxels in MCNP only slightly affects the speed of the calculation. (author)

  13. The MCNP Simulation of a PGNAA System at TRR-1/M1

    Science.gov (United States)

    Sangaroon, S.; Ratanatongchai, W.; Picha, R.; Khaweerat, S.; Channuie, J.

    2017-06-01

    The prompt-gamma neutron activation analysis system (PGNAA) has been installed at Thai Research Reactor-1/Modified 1 (TRR-1/M1) since 1999. The purpose of the system is for elemental and isotopic analyses. The system mainly consists of a series of the moderator and collimator, neutron and gamma-ray shielding and the HPGe detector. In this work, the condition of the system is carried out based on the Monte Carlo method using Monte Carlo N-Particle transport code and the experiment. The flux ratios (Φthermal/Φepithermal and Φthermal/Φfast) and thermal neutron flux have been obtained. The simulated prompt gamma rays of the Portland cement sample have been carried out. The simulation provides significant contribution in upgrading the PGNAA station to be available in various applications.

  14. Simulation of image detectors in radiology for determination of scatter-to-primary ratios using Monte Carlo radiation transport code MCNP/MCNPX.

    Science.gov (United States)

    Smans, Kristien; Zoetelief, Johannes; Verbrugge, Beatrijs; Haeck, Wim; Struelens, Lara; Vanhavere, Filip; Bosmans, Hilde

    2010-05-01

    The purpose of this study was to compare and validate three methods to simulate radiographic image detectors with the Monte Carlo software MCNP/MCNPX in a time efficient way. The first detector model was the standard semideterministic radiography tally, which has been used in previous image simulation studies. Next to the radiography tally two alternative stochastic detector models were developed: A perfect energy integrating detector and a detector based on the energy absorbed in the detector material. Validation of three image detector models was performed by comparing calculated scatter-to-primary ratios (SPRs) with the published and experimentally acquired SPR values. For mammographic applications, SPRs computed with the radiography tally were up to 44% larger than the published results, while the SPRs computed with the perfect energy integrating detectors and the blur-free absorbed energy detector model were, on the average, 0.3% (ranging from -3% to 3%) and 0.4% (ranging from -5% to 5%) lower, respectively. For general radiography applications, the radiography tally overestimated the measured SPR by as much as 46%. The SPRs calculated with the perfect energy integrating detectors were, on the average, 4.7% (ranging from -5.3% to -4%) lower than the measured SPRs, whereas for the blur-free absorbed energy detector model, the calculated SPRs were, on the average, 1.3% (ranging from -0.1% to 2.4%) larger than the measured SPRs. For mammographic applications, both the perfect energy integrating detector model and the blur-free energy absorbing detector model can be used to simulate image detectors, whereas for conventional x-ray imaging using higher energies, the blur-free energy absorbing detector model is the most appropriate image detector model. The radiography tally overestimates the scattered part and should therefore not be used to simulate radiographic image detectors.

  15. Comparison between correlated sampling and the perturbation technique of MCNP5 for fixed-source problems

    International Nuclear Information System (INIS)

    He Tao; Su Bingjing

    2011-01-01

    Highlights: → The performance of the MCNP differential operator perturbation technique is compared with that of the MCNP correlated sampling method for three types of fixed-source problems. → In terms of precision, the MCNP perturbation technique outperforms correlated sampling for one type of problem but performs comparably with or even under-performs correlated sampling for the other two types of problems. → In terms of accuracy, the MCNP perturbation calculations may predict inaccurate results for some of the test problems. However, the accuracy can be improved if the midpoint correction technique is used. - Abstract: Correlated sampling and the differential operator perturbation technique are two methods that enable MCNP (Monte Carlo N-Particle) to simulate small response change between an original system and a perturbed system. In this work the performance of the MCNP differential operator perturbation technique is compared with that of the MCNP correlated sampling method for three types of fixed-source problems. In terms of precision of predicted response changes, the MCNP perturbation technique outperforms correlated sampling for the problem involving variation of nuclide concentrations in the same direction but performs comparably with or even underperforms correlated sampling for the other two types of problems that involve void or variation of nuclide concentrations in opposite directions. In terms of accuracy, the MCNP differential operator perturbation calculations may predict inaccurate results that deviate from the benchmarks well beyond their uncertainty ranges for some of the test problems. However, the accuracy of the MCNP differential operator perturbation can be improved if the midpoint correction technique is used.

  16. Advanced Variance Reduction for Global k-Eigenvalue Simulations in MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Edward W. Larsen

    2008-06-01

    The "criticality" or k-eigenvalue of a nuclear system determines whether the system is critical (k=1), or the extent to which it is subcritical (k<1) or supercritical (k>1). Calculations of k are frequently performed at nuclear facilities to determine the criticality of nuclear reactor cores, spent nuclear fuel storage casks, and other fissile systems. These calculations can be expensive, and current Monte Carlo methods have certain well-known deficiencies. In this project, we have developed and tested a new "functional Monte Carlo" (FMC) method that overcomes several of these deficiencies. The current state-of-the-art Monte Carlo k-eigenvalue method estimates the fission source for a sequence of fission generations (cycles), during each of which M particles per cycle are processed. After a series of "inactive" cycles during which the fission source "converges," a series of "active" cycles are performed. For each active cycle, the eigenvalue and eigenfunction are estimated; after N >> 1 active cycles are performed, the results are averaged to obtain estimates of the eigenvalue and eigenfunction and their standard deviations. This method has several disadvantages: (i) the estimate of k depends on the number M of particles per cycle, (iii) for optically thick systems, the eigenfunction estimate may not converge due to undersampling of the fission source, and (iii) since the fission source in any cycle depends on the estimated fission source from the previous cycle (the fission sources in different cycles are correlated), the estimated variance in k is smaller than the real variance. For an acceptably large number M of particles per cycle, the estimate of k is nearly independent of M; this essentially takes care of item (i). Item (ii) can be addressed by taking M sufficiently large, but for optically thick systems a sufficiently large M can easily be unrealistic. Item (iii) cannot be accounted for by taking M or N sufficiently large; it is an inherent deficiency due

  17. Comparative analysis of results between CASMO, MCNP and Serpent for a suite of Benchmark problems on BWR reactors; Analisis comparativo de resultados entre CASMO, MCNP y SERPENT para una suite de problemas Benchmark en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Xolocostli M, J. V.; Vargas E, S.; Gomez T, A. M. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Reyes F, M. del C.; Del Valle G, E., E-mail: vicente.xolocostli@inin.gob.mx [IPN, Escuela Superior de Fisica y Matematicas, UP - Adolfo Lopez Mateos, Edif. 9, 07738 Mexico D. F. (Mexico)

    2014-10-15

    In this paper a comparison is made in analyzing the suite of Benchmark problems for reactors type BWR between CASMO-4, MCNP6 and Serpent code. The Benchmark problem consists of two different geometries: a fuel cell of a pin and assembly type BWR. To facilitate the study of reactors physics in the fuel pin their nuclear characteristics are provided to detail, such as burnt dependence, the reactivity of selected nuclide, etc. With respect to the fuel assembly, the presented results are regarding to infinite multiplication factor for burning different steps and different vacuum conditions. Making the analysis of this set of Benchmark problems provides comprehensive test problems for the next fuels generation of BWR reactors with high extended burned. It is important to note that when making this comparison the purpose is to validate the methodologies used in modeling for different operating conditions, if the case is of other BWR assembly. The results will be within a range with some uncertainty, considering that does not depend on code that is used. Escuela Superior de Fisica y Matematicas of Instituto Politecnico Nacional (IPN (Mexico) has accumulated some experience in using Serpent, due to the potential of this code over other commercial codes such as CASMO and MCNP. The obtained results for the infinite multiplication factor are encouraging and motivate the studies to continue with the generation of the X S of a core to a next step a respective nuclear data library is constructed and this can be used by codes developed as part of the development project of the Mexican Analysis Platform of Nuclear Reactors AZTLAN. (Author)

  18. Comparison study of photon attenuation characteristics of Lead-Boron Polyethylene by MCNP code, XCOM and experimental data

    Science.gov (United States)

    Zhang, Lei; Jia, Mingchun; Gong, Junjun; Xia, Wenming

    2017-08-01

    The linear attenuation coefficient, mass attenuation coefficient and mean free path of various Lead-Boron Polyethylene (PbBPE) samples which can be used as the photon shielding materials in marine reactor have been simulated using the Monte Carlo N-Particle (MCNP)-5 code. The MCNP simulation results are in good agreement with the XCOM values and the reported experimental data for source Cesium-137 and Cobalt-60. Thus, this method based on MCNP can be used to simulate the photon attenuation characteristics of various types of PbBPE materials.

  19. Low Enrichment Uranium (LEU)-fueled SLOWPOKE-2 nuclear reactor simulation with the Monte-Carlo based MCNP 4A code

    International Nuclear Information System (INIS)

    Pierre, J.R.M.

    1996-01-01

    Following the commissioning of the Low Enrichment Uranium (LEU) Fuelled SLOWPOKE-2 research reactor at the Royal Military College-College Militaire Royal (RMC-CMR), excess reactivity measurements were conducted over a range of temperature and power. The results showed a maximum excess reactivity of 3.37 mk at 33 o C. Several deterministic models using computer codes like WIMS-CRNL, CITATION, TRIVAC and DRAGON have been used to try to reproduce the excess reactivity and temperature trend of both the LEU and HEU SLOWPOKE-2 reactors. The best simulations had been obtained at Ecole Polytechnique de Montreal. They were able to reproduce the temperature trend of their HEU-fuelled reactor using TRIVAC calculations, but this model over-estimated the absolute value of the excess reactivity by 119 mk. Although calculations using DRAGON did not reproduce the temperature trend as well as TRIVAC, these calculations represented a significant improvement on the absolute value at 20 o C reducing the discrepancy to 13 mk. Given the advance in computer technology, a probabilistic approach was tried in this work, using the Monte-Carlo N-Particle Transport Code System MCNP 4A, to model the RMC-CMR SLOWPOKE-2 reactor.

  20. Characterization and MCNP simulation of neutron energy spectrum shift after transmission through strong absorbing materials and its impact on tomography reconstructed image.

    Science.gov (United States)

    Hachouf, N; Kharfi, F; Boucenna, A

    2012-10-01

    An ideal neutron radiograph, for quantification and 3D tomographic image reconstruction, should be a transmission image which exactly obeys to the exponential attenuation law of a monochromatic neutron beam. There are many reasons for which this assumption does not hold for high neutron absorbing materials. The main deviations from the ideal are due essentially to neutron beam hardening effect. The main challenges of this work are the characterization of neutron transmission through boron enriched steel materials and the observation of beam hardening. Then, in our work, the influence of beam hardening effect on neutron tomographic image, for samples based on these materials, is studied. MCNP and FBP simulation are performed to adjust linear attenuation coefficients data and to perform 2D tomographic image reconstruction with and without beam hardening corrections. A beam hardening correction procedure is developed and applied based on qualitative and quantitative analyses of the projections data. Results from original and corrected 2D reconstructed images obtained shows the efficiency of the proposed correction procedure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Improved photon production data for MCNP trademark

    International Nuclear Information System (INIS)

    Adams, A.A.; Frankle, S.C.; Little, R.C.

    1998-04-01

    Computer simulations with MCNP are often used to obtain information from measurements of neutron induced gamma-ray spectra. For such simulations to be useful, the complicated spectra produced by a wide variety of nuclides must be reproduced, requiring high quality nuclear data. A previous assessment of the neutron induced photon production data in the MCNP data libraries indicated a need for improvement. The photon production data were often based on outdated experiments and binned in such wide energy groups as to be of limited value for some applications. This paper describes the work that is underway at Los Alamos National Laboratory to improve the photon production data for thermal neutron capture reactions. To date, high quality photon production data for each stable isotope of chlorine, chromium, iron, copper, and nickel have been obtained. The improved spectra have been incorporated into ENDF formatted evaluations and processed into corresponding MCNP data files. Similar improvements for aluminum, manganese, silicon, calcium, and vanadium are also planned. The methodology used to produce the spectra is discussed, and sample results for chlorine are presented

  2. MCNP(trademark) Version 5

    International Nuclear Information System (INIS)

    Cox, Lawrence J.; Barrett, Richard F.; Booth, Thomas Edward; Briesmeister, Judith F.; Brown, Forrest B.; Bull, Jeffrey S.; Giesler, Gregg Carl; Goorley, John T.; Mosteller, Russell D.; Forster, R. Arthur; Post, Susan E.; Prael, Richard E.; Selcow, Elizabeth Carol; Sood, Avneet

    2002-01-01

    The Monte Carlo transport workhorse, MCNP, is undergoing a massive renovation at Los Alamos National Laboratory (LANL) in support of the Eolus Project of the Advanced Simulation and Computing (ASCI) Program. MCNP Version 5 (V5) (expected to be released to RSICC in Spring, 2002) will consist of a major restructuring from FORTRAN-77 (with extensions) to ANSI-standard FORTRAN-90 with support for all of the features available in the present release (MCNP-4C2/4C3). To most users, the look-and-feel of MCNP will not change much except for the improvements (improved graphics, easier installation, better online documentation). For example, even with the major format change, full support for incremental patching will still be provided. In addition to the language and style updates, MCNP V5 will have various new user features. These include improved photon physics, neutral particle radiography, enhancements and additions to variance reduction methods, new source options, and improved parallelism support (PVM, MPI, OpenMP).

  3. Comparison of results from the MCNP criticality validation suite using ENDF/B-VI and preliminary ENDF/B-VII nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Mosteller, R. D. (Russell D.)

    2004-01-01

    The MCNP Criticality Validation Suite is a collection of 31 benchmarks taken from the International Handbook of Evaluated Criticality Safety Benchmark Experiments. MCNP5 calculations clearly demonstrate that, overall, nuclear data for a preliminary version of ENDFB-VII produce better agreement with the benchmarks in the suite than do corresponding data from ENDF/B-VI. Additional calculations identify areas where improvements in the data still are needed. Based on results for the MCNP Criticality Validation Suite, the Pre-ENDF/B-VII nuclear data produce substantially better overall results than do their ENDF/B-VI counterparts. The calculated values for k{sub eff} for bare metal spheres and for an IEU cylinder reflected by normal uranium are in much better agreement with the benchmark values. In addition, the values of k{sub eff} for the bare metal spheres are much more consistent with those for corresponding metal spheres reflected by normal uranium or water. In addition, a long-standing controversy about the need for an ad hoc adjustment to the {sup 238}U resonance integral for thermal systems may finally be resolved. On the other hand, improvements still are needed in a number of areas. Those areas include intermediate-energy cross sections for {sup 235}U, angular distributions for elastic scattering in deuterium, and fast cross sections for {sup 237}Np.

  4. Accelerating Pseudo-Random Number Generator for MCNP on GPU

    Science.gov (United States)

    Gong, Chunye; Liu, Jie; Chi, Lihua; Hu, Qingfeng; Deng, Li; Gong, Zhenghu

    2010-09-01

    Pseudo-random number generators (PRNG) are intensively used in many stochastic algorithms in particle simulations, artificial neural networks and other scientific computation. The PRNG in Monte Carlo N-Particle Transport Code (MCNP) requires long period, high quality, flexible jump and fast enough. In this paper, we implement such a PRNG for MCNP on NVIDIA's GTX200 Graphics Processor Units (GPU) using CUDA programming model. Results shows that 3.80 to 8.10 times speedup are achieved compared with 4 to 6 cores CPUs and more than 679.18 million double precision random numbers can be generated per second on GPU.

  5. MCNP variance reduction overview

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Booth, T.E.

    1985-01-01

    The MCNP code is rich in variance reduction features. Standard variance reduction methods found in most Monte Carlo codes are available as well as a number of methods unique to MCNP. We discuss the variance reduction features presently in MCNP as well as new ones under study for possible inclusion in future versions of the code

  6. Rapid MCNP simulation of DNA double strand break (DSB) relative biological effectiveness (RBE) for photons, neutrons, and light ions.

    Science.gov (United States)

    Stewart, Robert D; Streitmatter, Seth W; Argento, David C; Kirkby, Charles; Goorley, John T; Moffitt, Greg; Jevremovic, Tatjana; Sandison, George A

    2015-11-07

    To account for particle interactions in the extracellular (physical) environment, information from the cell-level Monte Carlo damage simulation (MCDS) for DNA double strand break (DSB) induction has been integrated into the general purpose Monte Carlo N-particle (MCNP) radiation transport code system. The effort to integrate these models is motivated by the need for a computationally efficient model to accurately predict particle relative biological effectiveness (RBE) in cell cultures and in vivo. To illustrate the approach and highlight the impact of the larger scale physical environment (e.g. establishing charged particle equilibrium), we examined the RBE for DSB induction (RBEDSB) of x-rays, (137)Cs γ-rays, neutrons and light ions relative to γ-rays from (60)Co in monolayer cell cultures at various depths in water. Under normoxic conditions, we found that (137)Cs γ-rays are about 1.7% more effective at creating DSB than γ-rays from (60)Co (RBEDSB  =  1.017) whereas 60-250 kV x-rays are 1.1 to 1.25 times more efficient at creating DSB than (60)Co. Under anoxic conditions, kV x-rays may have an RBEDSB up to 1.51 times as large as (60)Co γ-rays. Fission neutrons passing through monolayer cell cultures have an RBEDSB that ranges from 2.6 to 3.0 in normoxic cells, but may be as large as 9.93 for anoxic cells. For proton pencil beams, Monte Carlo simulations suggest an RBEDSB of about 1.2 at the tip of the Bragg peak and up to 1.6 a few mm beyond the Bragg peak. Bragg peak RBEDSB increases with decreasing oxygen concentration, which may create opportunities to apply proton dose painting to help address tumor hypoxia. Modeling of the particle RBE for DSB induction across multiple physical and biological scales has the potential to aid in the interpretation of laboratory experiments and provide useful information to advance the safety and effectiveness of hadron therapy in the treatment of cancer.

  7. Adjoint acceleration of Monte Carlo simulations using TORT/MCNP coupling approach: A case study on the shielding improvement for the cyclotron room of the Buddhist Tzu Chi General Hospital

    International Nuclear Information System (INIS)

    Sheu, R. J.; Sheu, R. D.; Jiang, S. H.; Kao, C. H.

    2005-01-01

    Full-scale Monte Carlo simulations of the cyclotron room of the Buddhist Tzu Chi General Hospital were carried out to improve the original inadequate maze design. Variance reduction techniques are indispensable in this study to facilitate the simulations for testing a variety of configurations of shielding modification. The TORT/MCNP manual coupling approach based on the Consistent Adjoint Driven Importance Sampling (CADIS) methodology has been used throughout this study. The CADIS utilises the source and transport biasing in a consistent manner. With this method, the computational efficiency was increased significantly by more than two orders of magnitude and the statistical convergence was also improved compared to the unbiased Monte Carlo run. This paper describes the shielding problem encountered, the procedure for coupling the TORT and MCNP codes to accelerate the calculations and the calculation results for the original and improved shielding designs. In order to verify the calculation results and seek additional accelerations, sensitivity studies on the space-dependent and energy-dependent parameters were also conducted. (authors)

  8. MCNP trademark directions

    International Nuclear Information System (INIS)

    Hendricks, J.S.

    1994-01-01

    The MCNP code development program is a relatively large and rapidly changing project in the small and highly-specialized field of radiation transport, specifically radiation protection and shielding. A number of major new MCNP initiatives are described in the subsequent papers in this session. The focus of this paper is the important new developments not described elsewhere and a number of recent developments that have been available since MCNP4A but have gone unnoticed. In particular, we report for the first time a new MCNP quality assurance initiative providing 97% test coverage, a new MCNP feature enabling plotting of nuclear data, and the other new features developed so far for MCNP4B. Finally, an attempt is made to articulate how all these fit together into the overall MCNP development program

  9. Improvement of Monte Carlo code A3MCNP for large-scale shielding problems

    International Nuclear Information System (INIS)

    Miyake, Y.; Ohmura, M.; Hasegawa, T.; Ueki, K.; Sato, O.; Haghighat, A.; Sjoden, G.E.

    2004-01-01

    A 3 MCNP (Automatic Adjoint Accelerated MCNP) is a revised version of the MCNP Monte Carlo code, that automatically prepares variance reduction parameters for the CADIS (Consistent Adjoint Driven Importance Sampling) methodology. Using a deterministic 'importance' (or adjoint) function, CADIS performs source and transport biasing within the weight-window technique. The current version of A 3 MCNP uses the 3-D Sn transport TORT code to determine a 3-D importance function distribution. Based on simulation of several real-life problems, it is demonstrated that A 3 MCNP provides precise calculation results with a remarkably short computation time by using the proper and objective variance reduction parameters. However, since the first version of A 3 MCNP provided only a point source configuration option for large-scale shielding problems, such as spent-fuel transport casks, a large amount of memory may be necessary to store enough points to properly represent the source. Hence, we have developed an improved version of A 3 MCNP (referred to as A 3 MCNPV) which has a volumetric source configuration option. This paper describes the successful use of A 3 MCNPV for a concrete cask streaming problem and a PWR dosimetry problem. (author)

  10. Performance of the improved version of Monte Carlo Code A3MCNP for cask shielding design

    International Nuclear Information System (INIS)

    Hasegawa, T.; Ueki, K.; Sato, O.; Sjoden, G.E.; Miyake, Y.; Ohmura, M.; Haghighat, A.

    2004-01-01

    A 3 MCNP (Automatic Adjoint Accelerated MCNP) is a revised version of the MCNP Monte Carlo code, that automatically prepares variance reduction parameters for the CADIS (Consistent Adjoint Driven Importance Sampling) methodology. Using a deterministic ''importance'' (or adjoint) function, CADIS performs source and transport biasing within the weight-window technique. The current version of A 3 MCNP uses the 3-D Sn transport TORT code to determine a 3-D importance function distribution. Based on simulation of several real-life problems, it is demonstrated that A3MCNP provides precise calculation results with a remarkably short computation time by using the proper and objective variance reduction parameters. However, since the first version of A 3 MCNP provided only a point source configuration option for large-scale shielding problems, such as spent-fuel transport casks, a large amount of memory may be necessary to store enough points to properly represent the source. Hence, we have developed an improved version of A 3 MCNP (referred to as A 3 MCNPV) which has a volumetric source configuration option. This paper describes the successful use of A 3 MCNPV for cask neutron and gamma-ray shielding problem

  11. Monte Carlo determination of the conversion coefficients Hp(3)/Ka in a right cylinder phantom with 'PENELOPE' code. Comparison with 'MCNP' simulations.

    Science.gov (United States)

    Daures, J; Gouriou, J; Bordy, J M

    2011-03-01

    This work has been performed within the frame of the European Union ORAMED project (Optimisation of RAdiation protection for MEDical staff). The main goal of the project is to improve standards of protection for medical staff for procedures resulting in potentially high exposures and to develop methodologies for better assessing and for reducing, exposures to medical staff. The Work Package WP2 is involved in the development of practical eye-lens dosimetry in interventional radiology. This study is complementary of the part of the ENEA report concerning the calculations with the MCNP-4C code of the conversion factors related to the operational quantity H(p)(3). In this study, a set of energy- and angular-dependent conversion coefficients (H(p)(3)/K(a)), in the newly proposed square cylindrical phantom made of ICRU tissue, have been calculated with the Monte-Carlo code PENELOPE and MCNP5. The H(p)(3) values have been determined in terms of absorbed dose, according to the definition of this quantity, and also with the kerma approximation as formerly reported in ICRU reports. At a low-photon energy (up to 1 MeV), the two results obtained with the two methods are consistent. Nevertheless, large differences are showed at a higher energy. This is mainly due to the lack of electronic equilibrium, especially for small angle incidences. The values of the conversion coefficients obtained with the MCNP-4C code published by ENEA quite agree with the kerma approximation calculations obtained with PENELOPE. We also performed the same calculations with the code MCNP5 with two types of tallies: F6 for kerma approximation and *F8 for estimating the absorbed dose that is, as known, due to secondary electrons. PENELOPE and MCNP5 results agree for the kerma approximation and for the absorbed dose calculation of H(p)(3) and prove that, for photon energies larger than 1 MeV, the transport of the secondary electrons has to be taken into account.

  12. Dosimetric characterization of model Cs-1 Rev2 cesium-131 brachytherapy source in water phantoms and human tissues with MCNP5 Monte Carlo simulation

    International Nuclear Information System (INIS)

    Wang Jianhua; Zhang Hualin

    2008-01-01

    A recently developed alternative brachytherapy seed, Cs-1 Rev2 cesium-131, has begun to be used in clinical practice. The dosimetric characteristics of this source in various media, particularly in human tissues, have not been fully evaluated. The aim of this study was to calculate the dosimetric parameters for the Cs-1 Rev2 cesium-131 seed following the recommendations of the AAPM TG-43U1 report [Rivard et al., Med. Phys. 31, 633-674 (2004)] for new sources in brachytherapy applications. Dose rate constants, radial dose functions, and anisotropy functions of the source in water, Virtual Water, and relevant human soft tissues were calculated using MCNP5 Monte Carlo simulations following the TG-43U1 formalism. The results yielded dose rate constants of 1.048, 1.024, 1.041, and 1.044 cGy h -1 U -1 in water, Virtual Water, muscle, and prostate tissue, respectively. The conversion factor for this new source between water and Virtual Water was 1.02, between muscle and water was 1.006, and between prostate and water was 1.004. The authors' calculation of anisotropy functions in a Virtual Water phantom agreed closely with Murphy's measurements [Murphy et al., Med. Phys. 31, 1529-1538 (2004)]. Our calculations of the radial dose function in water and Virtual Water have good agreement with those in previous experimental and Monte Carlo studies. The TG-43U1 parameters for clinical applications in water, muscle, and prostate tissue are presented in this work

  13. Comparison of Wims-Aecl / Dragon / RFSP and MCNP results with Zed-2 measurements for control device worth and reactor kinetics - 037

    International Nuclear Information System (INIS)

    Pencer, J.; Choy Wong, F.; Bromley, B.P.; Atfield, J.; Zeller, M.

    2010-01-01

    This paper summarizes comparisons between MCNP5 and WIMS-AECL / DRAGON / RFSP calculations and experimental results obtained from the Zero Energy Deuterium (ZED-2) critical facility at AECL Chalk River Laboratories. MCNP5 and WIMS-AECL / DRAGON / RFSP were used to calculate reactivity worths for two reactivity devices, a mechanical zone controller (MZC) and shut-off rod (SOR) in a lattice similar to that of the ACR-1000 R . WIMS-AECL / DRAGON / RFSP was also used to obtain kinetics parameters for a transient based on a rod drop of a ZED-2 standby absorber rod (SAR). ZED-2 experiments were performed using 43-element ACR Low Enriched Uranium (ACR-LEU) fuel bundles with H 2 O- or air-cooled fuel bundles arranged in a 24-cm pitch square lattice. Calculations with MCNP5 gave biases in device worths that were within 0.2 mk of measured values, while WIMS-AECL / DRAGON / RFSP gave values that were within 0.3 mk of measured values. Transient analyses using the CERBERUS module within RFSP yielded a total delayed neutron fraction (β) that was within 4% of the value derived by point kinetics analysis of experimental data. The corresponding delayed photo-neutron fraction (β photo-neutron ) from CERBERUS was within 5% of that derived by point kinetics. This study has helped quantify the agreement between calculation and measurement for codes that are used in the safety analysis of the ACR-1000 reactor. Results demonstrate good agreement in code predictions. (authors)

  14. Comparison of CdZnTe neutron detector models using MCNP6 and Geant4

    Science.gov (United States)

    Wilson, Emma; Anderson, Mike; Prendergasty, David; Cheneler, David

    2018-01-01

    The production of accurate detector models is of high importance in the development and use of detectors. Initially, MCNP and Geant were developed to specialise in neutral particle models and accelerator models, respectively; there is now a greater overlap of the capabilities of both, and it is therefore useful to produce comparative models to evaluate detector characteristics. In a collaboration between Lancaster University, UK, and Innovative Physics Ltd., UK, models have been developed in both MCNP6 and Geant4 of Cadmium Zinc Telluride (CdZnTe) detectors developed by Innovative Physics Ltd. Herein, a comparison is made of the relative strengths of MCNP6 and Geant4 for modelling neutron flux and secondary γ-ray emission. Given the increasing overlap of the modelling capabilities of MCNP6 and Geant4, it is worthwhile to comment on differences in results for simulations which have similarities in terms of geometries and source configurations.

  15. MCNP Version 6.2 Release Notes

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bull, Jeffrey S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Solomon, C. J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McKinney, Gregg Walter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dixon, David A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martz, Roger Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hughes, Henry G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cox, Lawrence James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zukaitis, Anthony J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Armstrong, J. C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Forster, Robert Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Casswell, Laura [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-05

    Monte Carlo N-Particle or MCNP® is a general-purpose Monte Carlo radiation-transport code designed to track many particle types over broad ranges of energies. This MCNP Version 6.2 follows the MCNP6.1.1 beta version and has been released in order to provide the radiation transport community with the latest feature developments and bug fixes for MCNP. Since the last release of MCNP major work has been conducted to improve the code base, add features, and provide tools to facilitate ease of use of MCNP version 6.2 as well as the analysis of results. These release notes serve as a general guide for the new/improved physics, source, data, tallies, unstructured mesh, code enhancements and tools. For more detailed information on each of the topics, please refer to the appropriate references or the user manual which can be found at http://mcnp.lanl.gov. This release of MCNP version 6.2 contains 39 new features in addition to 172 bug fixes and code enhancements. There are still some 33 known issues the user should familiarize themselves with (see Appendix).

  16. MCNP Simulations of Measurement of Insulation Compaction in the Cryogenic Rocket Fuel Tanks at Kennedy Space Center by Fast/Thermal Neutron Techniques

    Science.gov (United States)

    Livingston, R. A.; Schweitzer, J. S.; Parsons, A. M.; Arens, E. E.

    2010-01-01

    MCNP simulations have been run to evaluate the feasibility of using a combination of fast and thermal neutrons as a nondestructive method to measure of the compaction of the perlite insulation in the liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC). Perlite is a feldspathic volcanic rock made up of the major elements Si, AI, Na, K and 0 along with some water. When heated it expands from four to twenty times its original volume which makes it very useful for thermal insulation. The cryogenic tanks at Kennedy Space Center are spherical with outer diameters of 69-70 feet and lined with a layer of expanded perlite with thicknesses on the order of 120 cm. There is evidence that some of the perlite has compacted over time since the tanks were built 1965, affecting the thermal properties and possibly also the structural integrity of the tanks. With commercially available portable neutron generators it is possible to produce simultaneously fluxes of neutrons in two energy ranges: fast (14 Me V) and thermal (25 me V). The two energy ranges produce complementary information. Fast neutrons produce gamma rays by inelastic scattering, which is sensitive to Fe and O. Thermal neutrons produce gamma rays by prompt gamma neutron activation (PGNA) and this is sensitive to Si, Al, Na, K and H. The compaction of the perlite can be measured by the change in gamma ray signal strength which is proportional to the atomic number densities of the constituent elements. The MCNP simulations were made to determine the magnitude of this change. The tank wall was approximated by a I-dimensional slab geometry with an 11/16" outer carbon steel wall, an inner stainless wall and 120 cm thick perlite zone. Runs were made for cases with expanded perlite, compacted perlite or with various void fractions. Runs were also made to simulate the effect of adding a moderator. Tallies were made for decay-time analysis from t=0 to 10 ms; total detected gamma

  17. Monte Carlo simulation of a TRIGA source driven core configuration: Preliminary results

    International Nuclear Information System (INIS)

    Burgio, N.; Ciavola, C.; Santagata, A.

    2002-01-01

    The different core configurations with a k eff ranging from 0.93 to 0.98, and their response when driven by a pulsed neutron source were simulated with MCNP4C3 (Los Alamos - Monte Carlo N Particles). Simulation results could be considered both as preliminary check for nuclear data and a conceptual design for 'source jerk' experiments on the frame of TRIGA Accelerator Driven Experiment (TRADE) on the reactor facility of Casaccia research center. (author)

  18. Production of neutronic discrete equations for a cylindrical geometry in one group energy and benchmark the results with MCNP-4B code with one group energy library

    International Nuclear Information System (INIS)

    Salehi, A. A.; Vosoughi, N.; Shahriari, M.

    2002-01-01

    In reactor core neutronic calculations, we usually choose a control volume and investigate about the input, output, production and absorption inside it. Finally, we derive neutron transport equation. This equation is not easy to solve for simple and symmetrical geometry. The objective of this paper is to introduce a new direct method for neutronic calculations. This method is based on physics of problem and with meshing of the desired geometry, writing the balance equation for each mesh intervals and with notice to the conjunction between these mesh intervals, produce the final discrete equation series without production of neutron transport differential equation and mandatory passing form differential equation bridge. This method, which is named Direct Discrete Method, was applied in static state, for a cylindrical geometry in one group energy. The validity of the results from this new method are tested with MCNP-4B code with a one group energy library. One energy group direct discrete equation produces excellent results, which can be compared with the results of MCNP-4B

  19. Evaluation of the new electron-transport algorithm in MCNP6.1 for the simulation of dose point kernel in water

    Science.gov (United States)

    Antoni, Rodolphe; Bourgois, Laurent

    2017-12-01

    In this work, the calculation of specific dose distribution in water is evaluated in MCNP6.1 with the regular condensed history algorithm the "detailed electron energy-loss straggling logic" and the new electrons transport algorithm proposed the "single event algorithm". Dose Point Kernel (DPK) is calculated with monoenergetic electrons of 50, 100, 500, 1000 and 3000 keV for different scoring cells dimensions. A comparison between MCNP6 results and well-validated codes for electron-dosimetry, i.e., EGSnrc or Penelope, is performed. When the detailed electron energy-loss straggling logic is used with default setting (down to the cut-off energy 1 keV), we infer that the depth of the dose peak increases with decreasing thickness of the scoring cell, largely due to combined step-size and boundary crossing artifacts. This finding is less prominent for 500 keV, 1 MeV and 3 MeV dose profile. With an appropriate number of sub-steps (ESTEP value in MCNP6), the dose-peak shift is almost complete absent to 50 keV and 100 keV electrons. However, the dose-peak is more prominent compared to EGSnrc and the absorbed dose tends to be underestimated at greater depths, meaning that boundaries crossing artifact are still occurring while step-size artifacts are greatly reduced. When the single-event mode is used for the whole transport, we observe the good agreement of reference and calculated profile for 50 and 100 keV electrons. Remaining artifacts are fully vanished, showing a possible transport treatment for energies less than a hundred of keV and accordance with reference for whatever scoring cell dimension, even if the single event method initially intended to support electron transport at energies below 1 keV. Conversely, results for 500 keV, 1 MeV and 3 MeV undergo a dramatic discrepancy with reference curves. These poor results and so the current unreliability of the method is for a part due to inappropriate elastic cross section treatment from the ENDF/B-VI.8 library in those

  20. An evaluation of the Monte Carlo simulation of SPECT projection data using MCNP and SimSPECT

    International Nuclear Information System (INIS)

    Selcow, E.C.; Dobrzeniecki, A.B.; Yanch, J.C.; Lu, A.; Belanger, M.J.

    1996-01-01

    Simulation of the complete nuclear medicine imaging situation for SPECT (Single Photon Emission Computed Tomography) produces synthetic images that are useful in the analysis and improvement of existing imaging systems and in the design of new and improved systems. The simulation methods the authors employ are based on probabilistic numerical calculations (Monte Carlo); they require enormous amounts of computer time and employ highly complex models (the tomographic acquisition of images through intricate collimators). The presentation consists of three parts. In the first, they describe the techniques developed to achieve reasonable simulation times and the tools built to allow interactive and effective analysis and processing of the resultant synthetic images. In the next part, they explore the limitations of such techniques for performing simulations of medical imaging situations. In the final part, they describe the areas of research that are promising for increasing the quality and breadth of the simulation process

  1. MCNP output data analysis with ROOT (MODAR)

    Science.gov (United States)

    Carasco, C.

    2010-12-01

    MCNP Output Data Analysis with ROOT (MODAR) is a tool based on CERN's ROOT software. MODAR has been designed to handle time-energy data issued by MCNP simulations of neutron inspection devices using the associated particle technique. MODAR exploits ROOT's Graphical User Interface and functionalities to visualize and process MCNP simulation results in a fast and user-friendly way. MODAR allows to take into account the detection system time resolution (which is not possible with MCNP) as well as detectors energy response function and counting statistics in a straightforward way. New version program summaryProgram title: MODAR Catalogue identifier: AEGA_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGA_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 150 927 No. of bytes in distributed program, including test data, etc.: 4 981 633 Distribution format: tar.gz Programming language: C++ Computer: Most Unix workstations and PCs Operating system: Most Unix systems, Linux and windows, provided the ROOT package has been installed. Examples where tested under Suse Linux and Windows XP. RAM: Depends on the size of the MCNP output file. The example presented in the article, which involves three two dimensional 139×740 bins histograms, allocates about 60 MB. These data are running under ROOT and include consumption by ROOT itself. Classification: 17.6 Catalogue identifier of previous version: AEGA_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 1161 External routines: ROOT version 5.24.00 ( http://root.cern.ch/drupal/) Does the new version supersede the previous version?: Yes Nature of problem: The output of a MCNP simulation is an ascii file. The data processing is usually performed by copying and pasting the relevant parts of the ascii

  2. General introduction to MCNP

    International Nuclear Information System (INIS)

    Naito, Yoshitaka

    2001-01-01

    To assist succeeding reports which will be presented in this research meeting, following items on the computer code MCNP developed in USA are presented: (1) history of development of MCNP, (2) meaning of the development, (3) progress of study on Monte Carlo codes in the nuclear code committee and (4) expectation to Monte Carlo codes. (author)

  3. MCNP Progress & Performance Improvements

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bull, Jeffrey S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-14

    Twenty-eight slides give information about the work of the US DOE/NNSA Nuclear Criticality Safety Program on MCNP6 under the following headings: MCNP6.1.1 Release, with ENDF/B-VII.1; Verification/Validation; User Support & Training; Performance Improvements; and Work in Progress. Whisper methodology will be incorporated into the code, and run speed should be increased.

  4. MCNP evaluation of top node control rod depletion below the core in KKL

    International Nuclear Information System (INIS)

    Beran, Tâm; Seltborg, Per; Lindahl, Sten-Örjan; Bieli, Roger; Ledergerber, Guido

    2014-01-01

    In previous studies, there has been identified a significant discrepancy in the BWR control rod top node depletion between the two core simulator nodal codes POLCA7 and PRESTO-2, which indicates that there is a large general uncertainty in nodal codes in calculating the top node depletion of fully withdrawn control rods. In this study, the stochastic Monte Carlo code MCNP has been used to calculate the top node control rod depletion for benchmarking the nodal codes. By using the TIP signal obtained from an extended TIP campaign below the core performed in the KKL reactor, the MCNP model has been verified by comparing the axial profile between the TIP data and the gamma flux calculated by MCNP. The MCNP results have also been compared with calculations from POLCA7, which was found to yield slightly higher depletion rates than MCNP. It was also found that the 10 B depletion in the top node is very sensitive to the exact axial location of the control rod top when it is fully withdrawn. By using the MCNP results, the neutron flux model below the core in the nodal codes can be improved by implementing an exponential function for the neutron flux. (author)

  5. Simulation of measurement absorbed dose on prostate brachytherapy with radius of prostate 2 cm using MCNP5 with seed implant model isoaid AdvantageTM IAPd-103A

    International Nuclear Information System (INIS)

    Poundra Setiawan; Suharyana; Riyatun

    2015-01-01

    Simulation of measurement absorbed dose on prostate brachytherapy with radius of prostate 2 cm using MCNP5 with seed implant model IsoAid Advantage TM IAPd-103A has been conducted. 103 Pd used as a radioactive source in the seed implant and it has energy gamma emission 20,8 keV with half live 16,9 days and has activity 4 mCi. The prostate cancer is modeled with spherical and it has radius 3 cm, after planting the seed implant 103 Pdover 24,4 days, prostate cancer has absorbed dose 2,172Gy. Lethal dose maximum use 103 Pd is 125 Gy and it was reached with 59 seeds. (author)

  6. EchoSeed Model 6733 Iodine-125 brachytherapy source: Improved dosimetric characterization using the MCNP5 Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Mosleh-Shirazi, M. A.; Hadad, K.; Faghihi, R.; Baradaran-Ghahfarokhi, M.; Naghshnezhad, Z.; Meigooni, A. S. [Center for Research in Medical Physics and Biomedical Engineering and Physics Unit, Radiotherapy Department, Shiraz University of Medical Sciences, Shiraz 71936-13311 (Iran, Islamic Republic of); Radiation Research Center and Medical Radiation Department, School of Engineering, Shiraz University, Shiraz 71936-13311 (Iran, Islamic Republic of); Comprehensive Cancer Center of Nevada, Las Vegas, Nevada 89169 (United States)

    2012-08-15

    This study primarily aimed to obtain the dosimetric characteristics of the Model 6733 {sup 125}I seed (EchoSeed) with improved precision and accuracy using a more up-to-date Monte-Carlo code and data (MCNP5) compared to previously published results, including an uncertainty analysis. Its secondary aim was to compare the results obtained using the MCNP5, MCNP4c2, and PTRAN codes for simulation of this low-energy photon-emitting source. The EchoSeed geometry and chemical compositions together with a published {sup 125}I spectrum were used to perform dosimetric characterization of this source as per the updated AAPM TG-43 protocol. These simulations were performed in liquid water material in order to obtain the clinically applicable dosimetric parameters for this source model. Dose rate constants in liquid water, derived from MCNP4c2 and MCNP5 simulations, were found to be 0.993 cGyh{sup -1} U{sup -1} ({+-}1.73%) and 0.965 cGyh{sup -1} U{sup -1} ({+-}1.68%), respectively. Overall, the MCNP5 derived radial dose and 2D anisotropy functions results were generally closer to the measured data (within {+-}4%) than MCNP4c and the published data for PTRAN code (Version 7.43), while the opposite was seen for dose rate constant. The generally improved MCNP5 Monte Carlo simulation may be attributed to a more recent and accurate cross-section library. However, some of the data points in the results obtained from the above-mentioned Monte Carlo codes showed no statistically significant differences. Derived dosimetric characteristics in liquid water are provided for clinical applications of this source model.

  7. Monte Carlo calculations of thermal neutron capture in gadolinium: a comparison of GEANT4 and MCNP with measurements.

    Science.gov (United States)

    Enger, Shirin A; Munck af Rosenschöld, Per; Rezaei, Arash; Lundqvist, Hans

    2006-02-01

    GEANT4 is a Monte Carlo code originally implemented for high-energy physics applications and is well known for particle transport at high energies. The capacity of GEANT4 to simulate neutron transport in the thermal energy region is not equally well known. The aim of this article is to compare MCNP, a code commonly used in low energy neutron transport calculations and GEANT4 with experimental results and select the suitable code for gadolinium neutron capture applications. To account for the thermal neutron scattering from chemically bound atoms [S(alpha,beta)] in biological materials a comparison of thermal neutron fluence in tissue-like poly(methylmethacrylate) phantom is made with MCNP4B, GEANT4 6.0 patch1, and measurements from the neutron capture therapy (NCT) facility at the Studsvik, Sweden. The fluence measurements agreed with MCNP calculated results considering S(alpha,beta). The location of the thermal neutron peak calculated with MCNP without S(alpha,beta) and GEANT4 is shifted by about 0.5 cm towards a shallower depth and is 25%-30% lower in amplitude. Dose distribution from the gadolinium neutron capture reaction is then simulated by MCNP and compared with measured data. The simulations made by MCNP agree well with experimental results. As long as thermal neutron scattering from chemically bound atoms are not included in GEANT4 it is not suitable for NCT applications.

  8. Determination of the dead layer and full-energy peak efficiency of an HPGe detector using the MCNP code and experimental results

    Directory of Open Access Journals (Sweden)

    M Moeinifar

    2017-02-01

    Full Text Available One important factor in using an High Purity Germanium (HPGe detector is its efficiency that highly depends on the geometry and absorption factors, so that when the configuration of source-detector geometry is changed, the detector efficiency must be re-measured. The best way of determining the efficiency of a detector is measuring the efficiency of standard sources. But considering the fact that standard sources are hardly available and it is time consuming to find them, determinig the efficiency by simulation which gives enough efficiency in less time, is important. In this study, the dead layer thickness and the full-energy peak efficiency of an HPGe detector was obtained by Monte Carlo simulation, using MCNPX code. For this, we first measured gamma–ray spectra for different sources placed at various distances from the detector and stored the measured spectra obtained. Then the obtained spectra were simulated under similar conditions in vitro.At first, the whole volume of germanium was regarded as active, and the obtaind spectra from calculation were compared with the corresponding experimental spectra. Comparison of the calculated spectra with the measured spectra showed considerable differences. By making small variations in the dead layer thickness of the detector (about a few hundredths of a millimeter in the simulation program, we tried to remove these differences and in this way a dead layer of 0.57 mm was obtained for the detector. By incorporating this value for the dead layer in the simulating program, the full-energy peak efficiency of the detector was then obtained both by experiment and by simulation, for various sources at various distances from the detector, and both methods showed good agreements. Then, using MCNP code and considering the exact measurement system, one can conclude that the efficiency of an HPGe detector for various source-detector geometries can be calculated with rather good accuracy by simulation method

  9. Semi-Analytical Benchmarks for MCNP6

    Energy Technology Data Exchange (ETDEWEB)

    Grechanuk, Pavel Aleksandrovi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-07

    Code verification is an extremely important process that involves proving or disproving the validity of code algorithms by comparing them against analytical results of the underlying physics or mathematical theory on which the code is based. Monte Carlo codes such as MCNP6 must undergo verification and testing upon every release to ensure that the codes are properly simulating nature. Specifically, MCNP6 has multiple sets of problems with known analytic solutions that are used for code verification. Monte Carlo codes primarily specify either current boundary sources or a volumetric fixed source, either of which can be very complicated functions of space, energy, direction and time. Thus, most of the challenges with modeling analytic benchmark problems in Monte Carlo codes come from identifying the correct source definition to properly simulate the correct boundary conditions. The problems included in this suite all deal with mono-energetic neutron transport without energy loss, in a homogeneous material. The variables that differ between the problems are source type (isotropic/beam), medium dimensionality (infinite/semi-infinite), etc.

  10. Performance of the improved version of Monte Carlo code A 3MCNP for large-scale shielding problems

    International Nuclear Information System (INIS)

    Omura, M.; Miyake, Y.; Hasegawa, T.; Ueki, K.; Sato, O.; Haghighat, A.; Sjoden, G. E.

    2005-01-01

    A 3MCNP (Automatic Adjoint Accelerated MCNP) is a revised version of the MCNP Monte Carlo code, which automatically prepares variance reduction parameters for the CADIS (Consistent Adjoint Driven Importance Sampling) methodology. Using a deterministic 'importance' (or adjoint) function, CADIS performs source and transport biasing within the weight-window technique. The current version of A 3MCNP uses the three-dimensional (3-D) Sn transport TORT code to determine a 3-D importance function distribution. Based on simulation of several real-life problems, it is demonstrated that A 3MCNP provides precise calculation results with a remarkably short computation time by using the proper and objective variance reduction parameters. However, since the first version of A 3MCNP provided only a point source configuration option for large-scale shielding problems, such as spent-fuel transport casks, a large amount of memory may be necessary to store enough points to properly represent the source. Hence, we have developed an improved version of A 3MCNP (referred to as A 3MCNPV) which has a volumetric source configuration option. This paper describes the successful use of A 3MCNPV for a concrete cask neutron and gamma-ray shielding problem, and a PWR dosimetry problem. (authors)

  11. TET_2MCNP: A conversion program to implement tetrahearal-mesh models in MCNP

    International Nuclear Information System (INIS)

    Han, Min Cheol; Yeom, Yeon Soo; Nguyen, Thng Tat; Choi, Chan Soo; Lee, Hyun Su; Kim, Chan Hyeong

    2016-01-01

    Tetrahedral-mesh geometries can be used in the MCNP code, but the MCNP code accepts only the geometry in the Abaqus input file format; hence, the existing tetrahedral-mesh models first need to be converted to the Abacus input file format to be used in the MCNP code. In the present study, we developed a simple but useful computer program, TET_2MCNP, for converting TetGen-generated tetrahedral-mesh models to the Abacus input file format. TET_2MCNP is written in C++ and contains two components: one for converting a TetGen output file to the Abacus input file and the other for the reverse conversion process. The TET_2MCP program also produces an MCNP input file. Further, the program provides some MCNP-specific functions: the maximum number of elements (i.e., tetrahedrons) per part can be limited, and the material density of each element can be transferred to the MCNP input file. To test the developed program, two tetrahedral-mesh models were generated using TetGen and converted to the Abaqus input file format using TET_2MCNP. Subsequently, the converted files were used in the MCNP code to calculate the object- and organ-averaged absorbed dose in the sphere and phantom, respectively. The results show that the converted models provide, within statistical uncertainties, identical dose values to those obtained using the PHITS code, which uses the original tetrahedral-mesh models produced by the TetGen program. The results show that the developed program can successfully convert TetGen tetrahedral-mesh models to Abacus input files. In the present study, we have developed a computer program, TET_2MCNP, which can be used to convert TetGen-generated tetrahedral-mesh models to the Abaqus input file format for use in the MCNP code. We believe this program will be used by many MCNP users for implementing complex tetrahedral-mesh models, including computational human phantoms, in the MCNP code

  12. TET{sub 2}MCNP: A conversion program to implement tetrahearal-mesh models in MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min Cheol; Yeom, Yeon Soo; Nguyen, Thng Tat; Choi, Chan Soo; Lee, Hyun Su; Kim, Chan Hyeong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2016-12-15

    Tetrahedral-mesh geometries can be used in the MCNP code, but the MCNP code accepts only the geometry in the Abaqus input file format; hence, the existing tetrahedral-mesh models first need to be converted to the Abacus input file format to be used in the MCNP code. In the present study, we developed a simple but useful computer program, TET{sub 2}MCNP, for converting TetGen-generated tetrahedral-mesh models to the Abacus input file format. TET{sub 2}MCNP is written in C++ and contains two components: one for converting a TetGen output file to the Abacus input file and the other for the reverse conversion process. The TET{sub 2}MCP program also produces an MCNP input file. Further, the program provides some MCNP-specific functions: the maximum number of elements (i.e., tetrahedrons) per part can be limited, and the material density of each element can be transferred to the MCNP input file. To test the developed program, two tetrahedral-mesh models were generated using TetGen and converted to the Abaqus input file format using TET{sub 2}MCNP. Subsequently, the converted files were used in the MCNP code to calculate the object- and organ-averaged absorbed dose in the sphere and phantom, respectively. The results show that the converted models provide, within statistical uncertainties, identical dose values to those obtained using the PHITS code, which uses the original tetrahedral-mesh models produced by the TetGen program. The results show that the developed program can successfully convert TetGen tetrahedral-mesh models to Abacus input files. In the present study, we have developed a computer program, TET{sub 2}MCNP, which can be used to convert TetGen-generated tetrahedral-mesh models to the Abaqus input file format for use in the MCNP code. We believe this program will be used by many MCNP users for implementing complex tetrahedral-mesh models, including computational human phantoms, in the MCNP code.

  13. Installation and validation of MCNP-4A

    International Nuclear Information System (INIS)

    Marks, N.A.

    1997-01-01

    MCNP-4A is a multi-purpose Monte Carlo program suitable for the modelling of neutron, photon, and electron transport problems. It is a particularly useful technique when studying systems containing irregular shapes. MCNP has been developed over the last 25 years by Los Alamos, and is distributed internationally via RSIC at Oak Ridge. This document describes the installation of MCNP-4A (henceforth referred to as MCNP) on the Silicon Graphics workstation (bluey.ansto.gov.au). A limited number of benchmarks pertaining to fast and thermal systems were performed to check the installation and validate the code. The results are compared to deterministic calculations performed using the AUS neutronics code system developed at ANSTO. (author)

  14. Whole core burnup calculations using 'MCNP'

    International Nuclear Information System (INIS)

    Haran, O.; Shaham, Y.

    1996-01-01

    Core parameters such as the reactivity, the power distribution and different reactivity coefficients calculated in simulations play an important role in the nuclear reactor handling. Operational safety margins are decided upon, based on the calculated parameters. Thus, the ability to accurately calculate those parameters is of uppermost importance. Such ability exists for fresh cores, using the Monte-Carlo method. The change in the core parameters that results from the core burnup is nowadays calculated within transport codes that simplifies the transport process by using approximations such as the diffusion approximation. The inaccuracy in the burned core parameters arising from the use of such approximations is hard to quantify, leading to an increased gap between the operational routines and the safety limits. A Monte Carlo transport code that caries out accurate static calculations in three dimensional geometries using continuous-energy neutron cross-section data such as the MCNP can be used to generate accurate reaction rates for burnup purposes. Monte Carlo method is statistical by nature, so that the reaction rates calculated will be accurate only to a certain known extent. The purpose of this work was to create a burnup routine that uses the capabilities of the Monte Carlo based MCNP code. It should be noted that burnup using Monte Carlo has been reported in the literatures, but this work is the result of an independent effort (authors)

  15. Whole core burnup calculations using `MCNP`

    Energy Technology Data Exchange (ETDEWEB)

    Haran, O; Shaham, Y [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev

    1996-12-01

    Core parameters such as the reactivity, the power distribution and different reactivity coefficients calculated in simulations play an important role in the nuclear reactor handling. Operational safety margins are decided upon, based on the calculated parameters. Thus, the ability to accurately calculate those parameters is of uppermost importance. Such ability exists for fresh cores, using the Monte-Carlo method. The change in the core parameters that results from the core burnup is nowadays calculated within transport codes that simplifies the transport process by using approximations such as the diffusion approximation. The inaccuracy in the burned core parameters arising from the use of such approximations is hard to quantify, leading to an increased gap between the operational routines and the safety limits. A Monte Carlo transport code that caries out accurate static calculations in three dimensional geometries using continuous-energy neutron cross-section data such as the MCNP can be used to generate accurate reaction rates for burnup purposes. Monte Carlo method is statistical by nature, so that the reaction rates calculated will be accurate only to a certain known extent. The purpose of this work was to create a burnup routine that uses the capabilities of the Monte Carlo based MCNP code. It should be noted that burnup using Monte Carlo has been reported in the literatures, but this work is the result of an independent effort (authors).

  16. Adjoint-Based Uncertainty Quantification with MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Seifried, Jeffrey E. [Univ. of California, Berkeley, CA (United States)

    2011-09-01

    This work serves to quantify the instantaneous uncertainties in neutron transport simulations born from nuclear data and statistical counting uncertainties. Perturbation and adjoint theories are used to derive implicit sensitivity expressions. These expressions are transformed into forms that are convenient for construction with MCNP6, creating the ability to perform adjoint-based uncertainty quantification with MCNP6. These new tools are exercised on the depleted-uranium hybrid LIFE blanket, quantifying its sensitivities and uncertainties to important figures of merit. Overall, these uncertainty estimates are small (< 2%). Having quantified the sensitivities and uncertainties, physical understanding of the system is gained and some confidence in the simulation is acquired.

  17. MCNP calculation for calibration curve of X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Tan Chunming; Wu Zhifang; Guo Xiaojing; Xing Guilai; Wang Zhentao

    2011-01-01

    Due to the compositional variation of the sample, linear relationship between the element concentration and fluorescent intensity will not be well maintained in most X-ray fluorescence analysis. To overcome this, we use MCNP program to simulate fluorescent intensity of Fe (0∼100% concentration range) within binary mixture of Cr and O which represent typical strong absorption and weak absorption conditions respectively. The theoretic calculation shows that the relationship can be described as a curve determined by parameter p and value of p can be obtained with given absorption coefficient of substrate elements and element under detection. MCNP simulation results are consistent with theoretic calculation. Our research reveals that MCNP program can calculate the Calibration Curve of X-ray fluorescence very well. (authors)

  18. Development of a coupling scheme between MCNP5 and subchanflow for the PIN- and fuel Assembly-Wise simulation of LWR and innovative reactors

    International Nuclear Information System (INIS)

    Ivanov, A.; Sanchez, V.; Imke, U.

    2011-01-01

    In order to increase the accuracy and the degree of spatial resolution of core design studies, coupled 3D neutronic (deterministic and Monte Carlo) and 3D thermal hydraulics (CFD and subchannel) codes are being developed worldwide. At KIT both deterministic and Monte Carlo codes were coupled with subchannel codes and applied to predict the safety-related design parameters such as pin power, maximal cladding and fuel temperature, DNB. These coupling approaches were revised and improved based on the experience gained. One particular example is replacing COBRA-TF with SUBCHANFLOW, in-house development subchannel code, in the COBRA-TF/MCNP coupling, accompanied with new way of radial mapping between the neutronic and thermal hydraulic domains. The new coupled system MCNP5/SUBCHANFLOW makes it possible to investigate variety of fuel assembly types (BWR, PWR or SCFR). Key issues in such a coupled system are the way in which thermal-hydraulic/neutronic feedbacks, accuracy of the Monte Carlo solutions and observation of convergence during the iterative solution are handled. Another key issue that might be considered is the optimal application of parallel computing. Using multi-processor computer architectures, it is possible to reduce the Monte- Carlo running time and obtain converged results within reasonable time limit. In particular it is shown that by exploiting the capabilities of multi-processor calculation, it is possible to investigate large fuel assemblies in a pin-by-pin manner with a resolution at pin and subchannel level. One of the most important issues addressed in the current work is the temperature effects on nuclear data. For the particular studies pseudo material approach was used, which produces interpolated results for Doppler broadened cross sections from NJOY pre-generated nuclear data. (author)

  19. Verification of MCNP6.2 for Nuclear Criticality Safety Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Alwin, Jennifer Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-10

    Several suites of verification/validation benchmark problems were run in early 2017 to verify that the new production release of MCNP6.2 performs correctly for nuclear criticality safety applications (NCS). MCNP6.2 results for several NCS validation suites were compared to the results from MCNP6.1 [1] and MCNP6.1.1 [2]. MCNP6.1 is the production version of MCNP® released in 2013, and MCNP6.1.1 is the update released in 2014. MCNP6.2 includes all of the standard features for NCS calculations that have been available for the past 15 years, along with new features for sensitivity-uncertainty based methods for NCS validation [3]. Results from the benchmark suites were compared with results from previous verification testing [4-8]. Criticality safety analysts should consider testing MCNP6.2 on their particular problems and validation suites. No further development of MCNP5 is planned. MCNP6.1 is now 4 years old, and MCNP6.1.1 is now 3 years old. In general, released versions of MCNP are supported only for about 5 years, due to resource limitations. All future MCNP improvements, bug fixes, user support, and new capabilities are targeted only to MCNP6.2 and beyond.

  20. Neutronic design of pulse operation simulating device for in-pile functional test of fusion blanket by MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yoshiharu; Nakamichi, Masaru; Kawamura, Hiroshi [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan)

    2000-03-01

    The pulse operation of a fusion reactor can be simulated in a fission reactor by controlling the neutron flux entering a test section by using a rotating 'hollow cylinder with window' made of hafnium. The rotating cylinder is installed between the test section and the fixed outer neutron absorber cylinder and is also made of hafnium with an opening in the direction to the core center. For gathering engineering data for the tritium breeding blanket such as characteristics of temperature change, tritium release and recovery, etc., it is desirable that the ratio of minimum to maximum thermal neutron fluxes is greater than 1:10. Design calculations were performed for the test assembly which considered local neutronic effects and the mechanical constraints of the device. From the results of these calculations, the ratio of minimum to maximum thermal neutron flux under irradiation would be about 1:10 using a pulse operation simulating device which has a thickness of 6.5 mm and a 150deg window angle for the rotating hollow cylinder and 5.0 mm in thickness of fixed neutron absorber. (author)

  1. MCNP and GADRAS Comparisons

    International Nuclear Information System (INIS)

    Klasky, Marc Louis; Myers, Steven Charles; James, Michael R.; Mayo, Douglas R.

    2016-01-01

    To facilitate the timely execution of System Threat Reviews (STRs) for DNDO, and also to develop a methodology for performing STRs, LANL performed comparisons of several radiation transport codes (MCNP, GADRAS, and Gamma-Designer) that have been previously utilized to compute radiation signatures. While each of these codes has strengths, it is of paramount interest to determine the limitations of each of the respective codes and also to identify the most time efficient means by which to produce computational results, given the large number of parametric cases that are anticipated in performing STR's. These comparisons serve to identify regions of applicability for each code and provide estimates of uncertainty that may be anticipated. Furthermore, while performing these comparisons, examination of the sensitivity of the results to modeling assumptions was also examined. These investigations serve to enable the creation of the LANL methodology for performing STRs. Given the wide variety of radiation test sources, scenarios, and detectors, LANL calculated comparisons of the following parameters: decay data, multiplicity, device (n,γ) leakages, and radiation transport through representative scenes and shielding. This investigation was performed to understand potential limitations utilizing specific codes for different aspects of the STR challenges.

  2. Application of MCNP in the criticality calculation for reactors

    International Nuclear Information System (INIS)

    Zhong Zhaopeng; Shi Gong; Hu Yongming

    2003-01-01

    The criticality calculation is carried out with 3-D Monte Carlo code (MCNP). The author focuses on the introduction of modelling of the core and reflector. The core description is simplified by using repetition structure function of MCNP. k eff in different control rods positions are calculated for the case of JRR3, and the results is consistent with that of the reference. This work shows that MCNP is applicable for reactor criticality calculation

  3. Monte Carlo parameter studies and uncertainty analyses with MCNP5

    International Nuclear Information System (INIS)

    Brown, F. B.; Sweezy, J. E.; Hayes, R.

    2004-01-01

    A software tool called mcnp p study has been developed to automate the setup, execution, and collection of results from a series of MCNP5 Monte Carlo calculations. This tool provides a convenient means of performing parameter studies, total uncertainty analyses, parallel job execution on clusters, stochastic geometry modeling, and other types of calculations where a series of MCNP5 jobs must be performed with varying problem input specifications. (authors)

  4. Elaborate SMART MCNP Modelling Using ANSYS and Its Applications

    Science.gov (United States)

    Song, Jaehoon; Surh, Han-bum; Kim, Seung-jin; Koo, Bonsueng

    2017-09-01

    An MCNP 3-dimensional model can be widely used to evaluate various design parameters such as a core design or shielding design. Conventionally, a simplified 3-dimensional MCNP model is applied to calculate these parameters because of the cumbersomeness of modelling by hand. ANSYS has a function for converting the CAD `stp' format into an MCNP input in the geometry part. Using ANSYS and a 3- dimensional CAD file, a very detailed and sophisticated MCNP 3-dimensional model can be generated. The MCNP model is applied to evaluate the assembly weighting factor at the ex-core detector of SMART, and the result is compared with a simplified MCNP SMART model and assembly weighting factor calculated by DORT, which is a deterministic Sn code.

  5. Recent MCNP developments

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Briesmeister, J.F.

    1991-01-01

    MCNP is a widely used and actively developed Monte Carlo radiation transport code. Many important features have recently been added and more are under development. Benchmark studies not only indicate that MCNP is accurate but also that modern computer codes can give answers basically as accurate as the physics data that goes in them. Even deep penetration problems can be correct to within a factor of two after 10 to 25 mean free paths of penetration. And finally, Monte Carlo calculations, once thought to be too expensive to run routinely, can now be run effectively on desktop computers which compete with the supercomputers of yesteryear. 21 refs., 3 tabs

  6. MCNP neutron benchmarks

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Whalen, D.J.; Cardon, D.A.; Uhle, J.L.

    1991-01-01

    Over 50 neutron benchmark calculations have recently been completed as part of an ongoing program to validate the MCNP Monte Carlo radiation transport code. The new and significant aspects of this work are as follows: These calculations are the first attempt at a validation program for MCNP and the first official benchmarking of version 4 of the code. We believe the chosen set of benchmarks is a comprehensive set that may be useful for benchmarking other radiation transport codes and data libraries. These calculations provide insight into how well neutron transport calculations can be expected to model a wide variety of problems

  7. Methodology for converting CT medical images to MCNP input using the Scan2MCNP system

    International Nuclear Information System (INIS)

    Boia, L.S.; Silva, A.X.; Cardoso, S.C.; Castro, R.C.

    2009-01-01

    This paper develops a methodology for the application software Scan2MCNP, which converts medical images DICOM (Digital Imaging and Communications in Medicine) for MCNP input file. The Scan2MCNP handles, processes and executes the medical images generated by CT equipment, allowing the user to perform the selection and parameterization of the study area in question (tissues and organs). The details of these worked in medical imaging software, therefore, will be converted to equity to the process of language analysis of MCNP radiation transport, through the generation of a code input file. With this file, it is possible to simulate any situation/problem of the type and level of radiation to the proposed treatment chosen by the medical staff responsible for the patient. Within a computational process oriented, the Scan2MCNP can contribute along with other software that has been used recently in the area of medical physics, to improve the levels of quality and precision of radiotherapy treatments. In this work, medical images DICOM of the Anthropomorphic Rando Phantom were used in the process of analysis and development of computer software Scan2MCNP. However, it emphasized that the software is successful in certain situations, depending upon a number of auxiliary procedures and software that can help in the solution of certain problems in the natural radiation treatment or express agility by the team of medical physics. (author)

  8. Evaluation of TLD dose response compared to MCNP-5 simulation of diagnostic X ray equipment - radiation diagnostic image

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez G, R.; Cavalieri, T. A.; De Paiva, F.; Dalledone S, P. de T.; Yoriyaz, H. [Instituto de Pesquisas Energeticas e Nucleares, Centro de Engenharia Nuclear / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil); Rodrigues F, M. A. [Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Departamento de Dermatologia e Radioterapia, Av. Prof. Montenegro s/n, Rubiao Junior, 18601-970 Botucatu (Brazil); Vivolo, V., E-mail: chancez@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares, Gerencia de Metrologia das Radiacoes / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    The thermo luminescent dosimeter (TLD) is used as a radiation dosimeter and can be used as environmental and staff personnel monitoring. The TLD measures ionizing radiation exposure by a process in which the amount of radiation collected by the dosimeter is converted in visible light when the crystal is heated. The amount of emitted light is proportional to the radiation exposure, and then the response of the TLD must be the related to the real dose. In this work it was used twenty four TLD 700 in order to obtain eight values of doses from a diagnostic X-ray equipment. The TLD-700 is a LiF TLD enriched with {sup 7}Li isotope. One way to compare and study the response of TLD is by Monte Carlo method, which has been used as a computational tool to solve problems stochastically. This method can be applied to any geometry, even those where the boundary conditions are unknown, making the method particularly useful to solve problems a priori. In this work it was modeled the X-ray tube exactly as the one used to irradiate the TLD, after the simulation and the TLD irradiation the results of dose value from both were compared. (Author)

  9. Evaluation of TLD dose response compared to MCNP-5 simulation of diagnostic X ray equipment - radiation diagnostic image

    International Nuclear Information System (INIS)

    Sanchez G, R.; Cavalieri, T. A.; De Paiva, F.; Dalledone S, P. de T.; Yoriyaz, H.; Rodrigues F, M. A.; Vivolo, V.

    2014-08-01

    The thermo luminescent dosimeter (TLD) is used as a radiation dosimeter and can be used as environmental and staff personnel monitoring. The TLD measures ionizing radiation exposure by a process in which the amount of radiation collected by the dosimeter is converted in visible light when the crystal is heated. The amount of emitted light is proportional to the radiation exposure, and then the response of the TLD must be the related to the real dose. In this work it was used twenty four TLD 700 in order to obtain eight values of doses from a diagnostic X-ray equipment. The TLD-700 is a LiF TLD enriched with 7 Li isotope. One way to compare and study the response of TLD is by Monte Carlo method, which has been used as a computational tool to solve problems stochastically. This method can be applied to any geometry, even those where the boundary conditions are unknown, making the method particularly useful to solve problems a priori. In this work it was modeled the X-ray tube exactly as the one used to irradiate the TLD, after the simulation and the TLD irradiation the results of dose value from both were compared. (Author)

  10. Benchmarking the MCNP code for Monte Carlo modelling of an in vivo neutron activation analysis system.

    Science.gov (United States)

    Natto, S A; Lewis, D G; Ryde, S J

    1998-01-01

    The Monte Carlo computer code MCNP (version 4A) has been used to develop a personal computer-based model of the Swansea in vivo neutron activation analysis (IVNAA) system. The model included specification of the neutron source (252Cf), collimators, reflectors and shielding. The MCNP model was 'benchmarked' against fast neutron and thermal neutron fluence data obtained experimentally from the IVNAA system. The Swansea system allows two irradiation geometries using 'short' and 'long' collimators, which provide alternative dose rates for IVNAA. The data presented here relate to the short collimator, although results of similar accuracy were obtained using the long collimator. The fast neutron fluence was measured in air at a series of depths inside the collimator. The measurements agreed with the MCNP simulation within the statistical uncertainty (5-10%) of the calculations. The thermal neutron fluence was measured and calculated inside the cuboidal water phantom. The depth of maximum thermal fluence was 3.2 cm (measured) and 3.0 cm (calculated). The width of the 50% thermal fluence level across the phantom at its mid-depth was found to be the same by both MCNP and experiment. This benchmarking exercise has given us a high degree of confidence in MCNP as a tool for the design of IVNAA systems.

  11. MCNP6 Status

    International Nuclear Information System (INIS)

    Goorley, John T.

    2012-01-01

    We, the development teams for MCNP, NJOY, and parts of ENDF, would like to invite you to a proposed 3 day workshop October 30, 31 and November 1 2012, to be held at Los Alamos National Laboratory. At this workshop, we will review new and developing missions that MCNP6 and the underlying nuclear data are being asked to address. LANL will also present its internal plans to address these missions and recent advances in these three capabilities and we will be interested to hear your input on these topics. Additionally we are interested in hearing from you additional technical advances, missions, concerns, and other issues that we should be considering for both short term (1-3 years) and long term (4-6 years)? What are the additional existing capabilities and methods that we should be investigating? The goal of the workshop is to refine priorities for mcnp6 transport methods, algorithms, physics, data and processing as they relate to the intersection of MCNP, NJOY and ENDF.

  12. Radiation shielding calculation using MCNP

    International Nuclear Information System (INIS)

    Masukawa, Fumihiro

    2001-01-01

    To verify the Monte Carlo code MCNP4A as a tool to generate the reference data in the shielding designs and the safety evaluations, various shielding benchmark experiments were analyzed using this code. These experiments were categorized in three types of the shielding subjects; bulk shielding, streaming, and skyshine. For the variance reduction technique, which is indispensable to get meaningful results with the Monte Carlo shielding calculation, we mainly used the weight window, the energy dependent Russian roulette and spitting. As a whole, our analyses performed enough small statistical errors and showed good agreements with these experiments. (author)

  13. Validation of MCNP4A for repository scattered radiation analysis

    International Nuclear Information System (INIS)

    Haas, M.N.; Su, S.

    1998-02-01

    Comparison is made between experimentally determined albedo (scattered) radiation and MCNP4A predictions in order to provide independent validation for repository shielding analysis. Both neutron and gamma scattered radiation fields from concrete ducts are compared in this paper. Satisfactory agreement is found between actual and calculated results with conservative values calculated by the MCNP4A code for all conditions

  14. Development and improvement for MCNP-3B interactive plotter

    International Nuclear Information System (INIS)

    Gao Yanfeng

    1996-01-01

    The author briefly explains the development and improvement for the MCNP-3B interactive plotter. It describes the functions of geometry visualization and tally result plot, and introduces the progresses in user interface, process display and surface matching. The construction of MCNP-3B/PC is given

  15. Calculation of conversion coefficients Hp(3)/K air using the PENELOPE Monte Carlo code and comparison with MCNP calculation results

    International Nuclear Information System (INIS)

    Daures, J.; Gouriou, J.; Bordy, J.M.

    2010-01-01

    The authors report calculations performed using the MNCP and PENELOPE codes to determine the Hp(3)/K air conversion coefficient which allows the Hp(3) dose equivalent to be determined from the measured value of the kerma in the air. They report the definition of the phantom, a 20 cm diameter and 20 cm high cylinder which is considered as representative of a head. Calculations are performed for an energy range corresponding to interventional radiology or cardiology (20 keV-110 keV). Results obtained with both codes are compared

  16. CTEx Beowulf cluster for MCNP performance

    International Nuclear Information System (INIS)

    Gonzaga, Roberto N.; Amorim, Aneuri S. de; Balthar, Mario Cesar V.

    2011-01-01

    This work is an introduction to the CTEx Nuclear Defense Department's Beowulf Cluster. Building a Beowulf Cluster is a complex learning process that greatly depends upon your hardware and software requirements. The feasibility and efficiency of performing MCNP5 calculations with a small, heterogeneous computing cluster built in Red Hat's Fedora Linux operating system personal computers (PC) are explored. The performance increases that may be expected with such clusters are estimated for cases that typify general radiation transport calculations. Our results show that the speed increase from additional slave PCs is nearly linear up to 10 processors. The pre compiled parallel binary version of MCNP uses the Message-Passing Interface (MPI) protocol. The use of this pre compiled parallel version of MCNP5 with the MPI protocol on a small, heterogeneous computing cluster built from Red Hat's Fedora Linux operating system PCs is the subject of this work. (author)

  17. Impact of MCNP unresolved resonance probability-table treatment on uranium and plutonium benchmarks

    International Nuclear Information System (INIS)

    Mosteller, R.D.; Little, R.C.

    1998-01-01

    Versions of MCNP up through and including 4B have not accurately modeled neutron self-shielding effects in the unresolved resonance energy region. Recently, a probability-table treatment has been incorporated into a developmental version of MCNP. This paper presents MCNP results for a variety of uranium and plutonium critical benchmarks, calculated with and without the probability-table treatment

  18. Criticality safety validation of MCNP5 using continuous energy libraries

    International Nuclear Information System (INIS)

    Salome, Jean A.D.; Pereira, Claubia; Assuncao, Jonathan B.A.; Veloso, Maria Auxiliadora F.; Costa, Antonella L.; Silva, Clarysson A.M. da

    2013-01-01

    The study of subcritical systems is very important in the design, installation and operation of various devices, mainly nuclear reactors and power plants. The information generated by these systems guide the decisions to be taken in the executive project, the economic viability and the safety measures to be employed in a nuclear facility. Simulating some experiments from the International Handbook of Evaluated Criticality Safety Benchmark Experiments, the code MCNP5 was validated to nuclear criticality analysis. Its continuous libraries were used. The average values and standard deviation (SD) were evaluated. The results obtained with the code are very similar to the values obtained by the benchmark experiments. (author)

  19. E language based on MCNP modeling software for autonomous

    International Nuclear Information System (INIS)

    Li Fei; Ge Liangquan; Zhang Qingxian

    2010-01-01

    MCNP (Monte Carlo N-Particle Code) is based on the Monte Carlo method for computing neutron, photon and other particles as the object of the movement simulation computer program. Because of its powerful computing simulation, flexible and universal features in many fields has been widely used, but due to a software professional in the operating area has been greatly restricted, so that in later development has been greatly hindered. E-language was used in order to develop the autonomy of MCNP modeling software, used to address users not familiar with MCNP and can not create object model, get rid of dull red tape 'notebook' type of program type and built a new MCNP modeling system. (authors)

  20. Evaluation of the OSCAR-4/MCNP calculation methodology for radioisotope production in the SAFARI-1 reactor

    International Nuclear Information System (INIS)

    Karriem, Z.; Zamonsky, O.M.

    2014-01-01

    The South African Nuclear Energy Corporation SOC Ltd (Necsa) is a state owned nuclear facility which owns and operates SAFARI-1, a 20 MW material testing reactor. SAFARI-1 is a multi-purpose reactor and is used for the production of radioisotopes through in-core sample irradiation. The Radiation and Reactor Theory (RRT) Section of Necsa supports SAFARI-1 operations with nuclear engineering analyses which include core-reload design, core-follow and radiation transport analyses. The primary computer codes that are used for the analyses are the OSCAR-4 nodal diffusion core simulator and the Monte Carlo transport code MCNP. RRT has developed a calculation methodology based on OSCAR-4 and MCNP to simulate the diverse in-core irradiation conditions in SAFARI-1, for the purpose of radioisotope production. In this paper we present the OSCAR-4/MCNP calculation methodology and the software tools that were developed for rapid and reliable construction of MCNP analysis models. The paper will present the application and accuracy of the methodology for the production of yttrium-90 ( 90 Y) and will include comparisons between calculation results and experimental measurements. The paper will also present sensitivity analyses that were performed to determine the effects of control rod bank position, representation of core depletion state and sample loading configuration, on the calculated 90 Y sample activity. (author)

  1. Using Machine Learning to Predict MCNP Bias

    Energy Technology Data Exchange (ETDEWEB)

    Grechanuk, Pavel Aleksandrovi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-09

    For many real-world applications in radiation transport where simulations are compared to experimental measurements, like in nuclear criticality safety, the bias (simulated - experimental keff) in the calculation is an extremely important quantity used for code validation. The objective of this project is to accurately predict the bias of MCNP6 [1] criticality calculations using machine learning (ML) algorithms, with the intention of creating a tool that can complement the current nuclear criticality safety methods. In the latest release of MCNP6, the Whisper tool is available for criticality safety analysts and includes a large catalogue of experimental benchmarks, sensitivity profiles, and nuclear data covariance matrices. This data, coming from 1100+ benchmark cases, is used in this study of ML algorithms for criticality safety bias predictions.

  2. Comparison of TG‐43 dosimetric parameters of brachytherapy sources obtained by three different versions of MCNP codes

    Science.gov (United States)

    Zaker, Neda; Sina, Sedigheh; Koontz, Craig; Meigooni1, Ali S.

    2016-01-01

    Monte Carlo simulations are widely used for calculation of the dosimetric parameters of brachytherapy sources. MCNP4C2, MCNP5, MCNPX, EGS4, EGSnrc, PTRAN, and GEANT4 are among the most commonly used codes in this field. Each of these codes utilizes a cross‐sectional library for the purpose of simulating different elements and materials with complex chemical compositions. The accuracies of the final outcomes of these simulations are very sensitive to the accuracies of the cross‐sectional libraries. Several investigators have shown that inaccuracies of some of the cross section files have led to errors in  125I and  103Pd parameters. The purpose of this study is to compare the dosimetric parameters of sample brachytherapy sources, calculated with three different versions of the MCNP code — MCNP4C, MCNP5, and MCNPX. In these simulations for each source type, the source and phantom geometries, as well as the number of the photons, were kept identical, thus eliminating the possible uncertainties. The results of these investigations indicate that for low‐energy sources such as  125I and  103Pd there are discrepancies in gL(r) values. Discrepancies up to 21.7% and 28% are observed between MCNP4C and other codes at a distance of 6 cm for  103Pd and 10 cm for  125I from the source, respectively. However, for higher energy sources, the discrepancies in gL(r) values are less than 1.1% for  192Ir and less than 1.2% for  137Cs between the three codes. PACS number(s): 87.56.bg PMID:27074460

  3. Comparison of TG-43 dosimetric parameters of brachytherapy sources obtained by three different versions of MCNP codes.

    Science.gov (United States)

    Zaker, Neda; Zehtabian, Mehdi; Sina, Sedigheh; Koontz, Craig; Meigooni, Ali S

    2016-03-08

    Monte Carlo simulations are widely used for calculation of the dosimetric parameters of brachytherapy sources. MCNP4C2, MCNP5, MCNPX, EGS4, EGSnrc, PTRAN, and GEANT4 are among the most commonly used codes in this field. Each of these codes utilizes a cross-sectional library for the purpose of simulating different elements and materials with complex chemical compositions. The accuracies of the final outcomes of these simulations are very sensitive to the accuracies of the cross-sectional libraries. Several investigators have shown that inaccuracies of some of the cross section files have led to errors in 125I and 103Pd parameters. The purpose of this study is to compare the dosimetric parameters of sample brachytherapy sources, calculated with three different versions of the MCNP code - MCNP4C, MCNP5, and MCNPX. In these simulations for each source type, the source and phantom geometries, as well as the number of the photons, were kept identical, thus eliminating the possible uncertainties. The results of these investigations indicate that for low-energy sources such as 125I and 103Pd there are discrepancies in gL(r) values. Discrepancies up to 21.7% and 28% are observed between MCNP4C and other codes at a distance of 6 cm for 103Pd and 10 cm for 125I from the source, respectively. However, for higher energy sources, the discrepancies in gL(r) values are less than 1.1% for 192Ir and less than 1.2% for 137Cs between the three codes.

  4. New data for MCNP

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Frankle, S.C.; Court, J.D.

    1994-01-01

    We report here for the first time the availability of an official set of ENDF/B-VI neutron data for MCNP(trademark). The LANL Radiation Transport group engaged the Nuclear Theory and Applications Group to construct a complete library based on ENDF/B-VI Release in the Spring of 1994. A new and thorough set of quality assurance tests was established and data passing those tests were subject only to a limited set of benchmarking tests. All nuclides were subjected to infinite medium calculations. The fissionable materials were benchmarked against critical assemblies, and 28 nuclides were benchmarked against the LLNL pulsed sphere experiments

  5. Track 4: basic nuclear science variance reduction for Monte Carlo criticality simulations. 2. Assessment of MCNP Statistical Analysis of keff Eigenvalue Convergence with an Analytical Criticality Verification Test Set

    International Nuclear Information System (INIS)

    Sood, Avnet; Forster, R. Arthur; Parsons, D. Kent

    2001-01-01

    Monte Carlo simulations of nuclear criticality eigenvalue problems are often performed by general purpose radiation transport codes such as MCNP. MCNP performs detailed statistical analysis of the criticality calculation and provides feedback to the user with warning messages, tables, and graphs. The purpose of the analysis is to provide the user with sufficient information to assess spatial convergence of the eigenfunction and thus the validity of the criticality calculation. As a test of this statistical analysis package in MCNP, analytic criticality verification benchmark problems have been used for the first time to assess the performance of the criticality convergence tests in MCNP. The MCNP statistical analysis capability has been recently assessed using the 75 multigroup criticality verification analytic problem test set. MCNP was verified with these problems at the 10 -4 to 10 -5 statistical error level using 40 000 histories per cycle and 2000 active cycles. In all cases, the final boxed combined k eff answer was given with the standard deviation and three confidence intervals that contained the analytic k eff . To test the effectiveness of the statistical analysis checks in identifying poor eigenfunction convergence, ten problems from the test set were deliberately run incorrectly using 1000 histories per cycle, 200 active cycles, and 10 inactive cycles. Six problems with large dominance ratios were chosen from the test set because they do not achieve the normal spatial mode in the beginning of the calculation. To further stress the convergence tests, these problems were also started with an initial fission source point 1 cm from the boundary thus increasing the likelihood of a poorly converged initial fission source distribution. The final combined k eff confidence intervals for these deliberately ill-posed problems did not include the analytic k eff value. In no case did a bad confidence interval go undetected. Warning messages were given signaling that

  6. S values at voxels level for 188Re and 90Y calculated with the MCNP-4C code

    International Nuclear Information System (INIS)

    Coca Perez, Marco Antonio; Torres Aroche, Leonel Alberto; Cornejo, Nestor; Martin Hernandez, Guido

    2003-01-01

    The main objective of this work was estimate the voxels S values for 188 Re at cubical geometry using the MCNP-4C code for the simulation of radiation transport and energy deposition. Mean absorbed dose to target voxels per radioactive decay in a source voxels were estimated and reported for 188 Re and Y 90 . A comparison of voxels S values computed with the MCNP code the data reported in MIRD pamphlet 17 for 90 Y was performed in order to evaluate our results

  7. Use of McCad for the conversion of ITER CAD data to MCNP geometry

    International Nuclear Information System (INIS)

    Tsige-Tamirat, H.; Fischer, U.; Serikov, A.; Stickel, S.

    2008-01-01

    The program McCad provides a CAD interface for the Monte Carlo transport code MCNP. It is able to convert CAD data into MCNP input geometry description and provides GUI components for modeling, visualization, and data exchange. It performs sequences of tests on CAD data to check its validity and neutronics appropriateness including completion of the final MCNP model by void geometries. McCad has been used to convert a 40 deg. ITER torus sector CAD model to a suitable MCNP geometry model. Results of MCNP calculations performed to validate the converted geometry are presented

  8. Investigation of the applicability of MCNP code to complicated geometries

    International Nuclear Information System (INIS)

    Higuchi, Kenji; Yamaguchi, Yukichi

    1994-03-01

    Applicability of MCNP code, which is a general purpose Monte Carlo code for particle transport problems, to complicated geometries, has been investigated as a study in Human Acts Simulation Program (HASP), in which basic studies for intelligent robot for patrol and inspection of nuclear facilities are being performed. In HASP, basic software systems simulating the behavior of intelligent robot of human shape working in Japan Research Reactor No.3 are being developed. The aim of Dose Evaluation system in HASP is to establish the methodology to evaluate irradiation damage of the LSI/VLSI circuits embedded within a robot body and to give design criteria of intelligent robot. Monte Carlo method is used to solve particle transport problem in a complicated geometry such as robot body. Preliminary evaluation to establish the methodology has been conducted using continuous energy Monte Carlo code, MCNP with the anthropomorphic phantom. The phantom has the same degree of geometric complexity as robot body and is widely used for the calculation of the effective dose equivalent for radiological protection. It allowed us to verify the validity of the methodology by comparison of calculation results with the data in ICRP Pub. 51. In this report, the method used in the calculation of effective dose equivalent, visualization system supporting visualization of input data for complicated geometry and the results in the evaluation of validity of the method by the comparison of the calculated results with the data in the ICRP publication are described. (author)

  9. The ENSDF based radionuclide source for MCNP

    International Nuclear Information System (INIS)

    Berlizov, A.N.; Tryshyn, V.V.

    2003-01-01

    A utility for generating source code of the Source subroutine of MCNP (a general Monte Carlo NxParticle transport code) on the basis of ENSDF (Evaluated Nuclear Structure Data File) is described. The generated code performs statistical simulation of processes, accompanying radioactive decay of a chosen radionuclide through a specified decay branch, providing characteristics of emitted correlated particles on its output. At modeling the following processes are taken into account: emission of continuum energy electrons at beta - -decay to different exited levels of a daughter nucleus; annihilation photon emission accompanying beta + -decay; gamma-ray emission; emission of discrete energy electrons resulted from internal conversion process on atomic K- and L I,II,III -shells; K and LX-ray emission at single and double fluorescence, accompanying electron capture and internal conversion processes. Number of emitted particles, their types, energies and emission times are sampled according to characteristics of a decay scheme of a particular radionuclide as well as characteristics of atomic shells of mother and daughter nuclei. Angular correlations, calculated for a particular combination of nuclear level spins, mixing ratios and gamma-ray multipolarities, are taken into account at sampling of directional cosines of emitted gamma-rays. The paper contains examples of spectrometry system response simulation at measurements with real radionuclide sources. (authors)

  10. Neutron flux measurement in the thermal column of the Malaysian TRIGA mark II reactor with MCNP verification

    International Nuclear Information System (INIS)

    Abdel Munem, E.; Shukri, A.; Tajuddin, A.A.

    2006-01-01

    A study of the thermal column of the Malaysian TRIGA Mark II reactor, forming part of a feasibility study for BNCT was proposed in 2001. In the current study, pure metals were used to measure the neutron flux at selected points in the thermal column and the neutron flux determined using SAND-II. Monte Carlo simulation of the thermal column was also carried out. The reactor core was homogenized and calculations of the neutron flux through the graphite stringers performed using MCNP5. The results show good agreement between the measured flux and the MCNP calculated flux. An obvious extension from this is that the MCNP neutron flux output can be utilized as an input spectrum for SAND-II for the flux iteration. (author)

  11. MCNP trademark Monte Carlo: A precis of MCNP

    International Nuclear Information System (INIS)

    Adams, K.J.

    1996-01-01

    MCNP trademark is a general purpose three-dimensional time-dependent neutron, photon, and electron transport code. It is highly portable and user-oriented, and backed by stringent software quality assurance practices and extensive experimental benchmarks. The cross section database is based upon the best evaluations available. MCNP incorporates state-of-the-art analog and adaptive Monte Carlo techniques. The code is documented in a 600 page manual which is augmented by numerous Los Alamos technical reports which detail various aspects of the code. MCNP represents over a megahour of development and refinement over the past 50 years and an ongoing commitment to excellence

  12. Monte Carlo simulation for the estimation of iron in human whole ...

    Indian Academy of Sciences (India)

    The simulation shows that theobtained results are in good agreement with experimental data, and better than the theoretical XCOM values. The study indicates that MCNP simulation is an excellent tool to estimate the iron concentration in the blood samples. The MCNP code can also be utilized to estimate other trace ...

  13. Data simulation for the Associated Particle Imaging system

    International Nuclear Information System (INIS)

    Tunnell, L.N.

    1994-01-01

    A data simulation procedure for the Associated Particle Imaging (API) system has been developed by postprocessing output from the Monte Carlo Neutron Photon (MCNP) code. This paper compares the simulated results to our experimental data

  14. Possible Improvements to MCNP6 and its CEM/LAQGSM Event-Generators

    Energy Technology Data Exchange (ETDEWEB)

    Mashnik, Stepan Georgievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-04

    This report is intended to the MCNP6 developers and sponsors of MCNP6. It presents a set of suggested possible future improvements to MCNP6 and to its CEM03.03 and LAQGSM03.03 event-generators. A few suggested modifications of MCNP6 are quite simple, aimed at avoiding possible problems with running MCNP6 on various computers, i.e., these changes are not expected to change or improve any results, but should make the use of MCNP6 easier; such changes are expected to require limited man-power resources. On the other hand, several other suggested improvements require a serious further development of nuclear reaction models, are expected to improve significantly the predictive power of MCNP6 for a number of nuclear reactions; but, such developments require several years of work by real experts on nuclear reactions.

  15. Verification of the AZNHEX code v.1.4 with MCNP6 for different reference cases

    International Nuclear Information System (INIS)

    Galicia A, J.; Francois L, J. L.; Bastida O, G. E.; Del Valle G, E.

    2017-09-01

    The codes that make up the AZTLAN platform (AZTHECA, AZTRAN, AZKIND and AZNHEX) are currently in the testing phase simulating a variety of nuclear reactor assemblies and cores to compare and validate the results obtained for a particular case, with codes globally used in the nuclear area such as CASMO, Serpent and MCNP. The objective of this work is to continue improving the future versions of the codes of the AZTLAN platform so that accurate and reliable results can be obtained for the user. To test the current version of the AZNHEX code, 3 cases were taken into account, the first being the simulation of a VVER-440 reactor assembly; for the second case, the assembly of a fast reactor cooled with helium was simulated and for the third case it was decided to take up the case of the core of a fast reactor cooled with sodium, this because the previous versions of AZNHEX did not show adequate results and, in addition, they presented a considerable amount of limitations. The comparison and validation of the results (neutron multiplication factor, radial power, radial flow, axial power) for these three cases were made using the code MCNP6. The results obtained show that this version of AZNHEX produces values of the neutron multiplication factor and the neutron and power flow distributions very close to those of MCNP6. (Author)

  16. MCNP-DSP users manual

    International Nuclear Information System (INIS)

    Valentine, T.E.

    1997-01-01

    The Monte Carlo code MCNP-DSP was developed from the Los Alamos MCNP4a code to calculate the time and frequency response statistics obtained from the 252 Cf-source-driven frequency analysis measurements. This code can be used to validate calculational methods and cross section data sets from subcritical experiments. This code provides a more general model for interpretation and planning of experiments for nuclear criticality safety, nuclear safeguards, and nuclear weapons identification and replaces the use of point kinetics models for interpreting the measurements. The use of MCNP-DSP extends the usefulness of this measurement method to systems with much lower neutron multiplication factors

  17. A new MCNP trademark test set

    International Nuclear Information System (INIS)

    Brockhoff, R.C.; Hendricks, J.S.

    1994-09-01

    The MCNP test set is used to test the MCNP code after installation on various computer platforms. For MCNP4 and MCNP4A this test set included 25 test problems designed to test as many features of the MCNP code as possible. A new and better test set has been devised to increase coverage of the code from 85% to 97% with 28 problems. The new test set is as fast as and shorter than the MCNP4A test set. The authors describe the methodology for devising the new test set, the features that were not covered in the MCNP4A test set, and the changes in the MCNP4A test set that have been made for MCNP4B and its developmental versions. Finally, new bugs uncovered by the new test set and a compilation of all known MCNP4A bugs are presented

  18. Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code.

    Science.gov (United States)

    Yoriyaz, H; dos Santos, A; Stabin, M G; Cabezas, R

    2000-07-01

    A new approach for calculating internal dose estimates was developed through the use of a more realistic computational model of the human body. The present technique shows the capability to build a patient-specific phantom with tomography data (a voxel-based phantom) for the simulation of radiation transport and energy deposition using Monte Carlo methods such as in the MCNP-4B code. MCNP-4B absorbed fractions for photons in the mathematical phantom of Snyder et al. agreed well with reference values. Results obtained through radiation transport simulation in the voxel-based phantom, in general, agreed well with reference values. Considerable discrepancies, however, were found in some cases due to two major causes: differences in the organ masses between the phantoms and the occurrence of organ overlap in the voxel-based phantom, which is not considered in the mathematical phantom.

  19. Suitability study of MCNP Monte Carlo program for use in medical physics

    International Nuclear Information System (INIS)

    Jeraj, R.

    1998-01-01

    MCNP is widely used Monte Carlo program in reactor and nuclear physics. However, an option of simulating electrons was added into the code a few years ago. With this extension MCNP became a code, potentially applicable for applications in medical physics. In 1997, a new version of the code, named MCNP4B was released, which contains several improvements in electron transport modeling. To test suitability of the code, several important issues were considered and examined. Default sampling in MCNP electron transport was found to be inappropriate, because it gives wrong depth dose curves for electron energies of interest in radiotherapy (Me V range). The problem can be solved if ITS-style energy sampling is used instead. One of the most difficult problems in electron transport is simulation of electron backscattering, which MCNP predicts well for all, low and high Z materials. One of the potential drawbacks, if somebody wanted to use MCNP for dosimetry on real patient geometries is that MCNP lattice calculation (e.g. when calculating dose distributions) becomes very slow for large number of scoring voxels. However, if just one scoring voxel is used, the number of geometry voxels only slightly affects the speed. In the study it was found that MCNP could be reliability used for many applications in medical physics. However, the established limitations should be taken into account when MCNP is used for a particular application.(author)

  20. Potential MCNP enhancements for NCT

    International Nuclear Information System (INIS)

    Estes, G.P.; Taylor, W.M.

    1992-01-01

    MCNP a Monte Carlo radiation transport code, is currently widely used in the medical community for a variety of purposes including treatment planning, diagnostics, beam design, tomographic studies, and radiation protection. This is particularly true in the Neutron Capture Therapy (NCT) community. The current widespread medical use of MCNP after its general public distribution in about 1980 attests to the code's general versatility and usefulness, particularly since its development to date has not been influenced by medical applications. This paper discusses enhancements to MCNP that could be implemented at Los Alamos for the benefit of the NCT community. These enhancements generally fall into two categories, namely those that have already been developed to some extent but are not yet publicly available, and those that seem both needed based on our current understanding of NCT goals, and achievable based on our working knowledge of the MCNP code. MCNP is a general, coupled neutron/photon/electron Monte Carlo code developed and maintained by the Radiation Transport Group at Los Alamos. It has been used extensively for radiation shielding studies, reactor analysis, detector design, physics experiment interpretation, oil and gas well logging, radiation protection studies, accelerator design, etc. over the years. MCNP is a three-dimensional geometry, continuous energy physics code capable of modeling complex geometries, specifying material regions such as organs by the intersections of analytical surfaces

  1. Lecture note on neutron and photon transport calculation with MCNP

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi

    2003-01-01

    This paper is a lecture note on the continuous energy Monte Carlo method. The contents are as follows; history of the Monte Carlo study, continuous energy Monte Carlo codes, libraries, evaluation method for calculation results, integral emergent particle density equation, pseudorandom number, random walk, variance reduction techniques, MCNP weight window method, MCNP weight window generator, exponential transform, estimators, criticality problem and research subjects. This paper is a textbook for beginners on the Monte Carlo calculation. (author)

  2. Studies on the liquid fluoride thorium reactor: Comparative neutronics analysis of MCNP6 code with SRAC95 reactor analysis code based on FUJI-U3-(0)

    Energy Technology Data Exchange (ETDEWEB)

    Jaradat, S.Q., E-mail: sqjxv3@mst.edu; Alajo, A.B., E-mail: alajoa@mst.edu

    2017-04-01

    Highlights: • The verification for FUJI-U3-(0)—a molten salt reactor—was performed. • The MCNP6 was used to study the reactor physics characteristics for FUJI-U3 type. • The results from the MCNP6 were comparable with the ones obtained from literature. - Abstract: The verification for FUJI-U3-(0)—a molten salt reactor—was performed. The reactor used LiF-BeF2-ThF4-UF4 as the mixed liquid fuel salt, and the core was graphite moderated. The MCNP6 code was used to study the reactor physics characteristics for the FUJI-U3-(0) reactor. Results for reactor physics characteristic of the FUJI-U3-(0) exist in literature, which were used as reference. The reference results were obtained using SRAC95 (a reactor analysis code) coupled with ORIGEN2 (a depletion code). Some modifications were made in the reconstruction of the FUJI-U3-(0) reactor in MCNP due to unavailability of more detailed description of the reactor core. The assumptions resulted in two representative models of the reactor. The results from the MCNP6 models were compared with the reference results obtained from literature. The results were comparable with each other, but with some notable differences. The differences are because of the approximations that were done on the SRAC95 model of the FUJI-U3 to simplify the simulation. Based on the results, it is concluded that MCNP6 code predicts well the overall simulation of neutronics analysis to the previous simulation works using SRAC95 code.

  3. GB - a preliminary linking code between MCNP4C and Origen2.1 - DEN/UFMG version

    International Nuclear Information System (INIS)

    Campolina, Daniel; Pereira, Claubia; Veloso, Maria Auxiliadora Fortini; Cavatoni, Andre

    2009-01-01

    Nowadays it is possible to perform burnup simulation in a detailed 3D geometry and a continuous energy description by the Monte Carlo method. This paper describes an initial project to create and verify a connection code to link Origen2.1 (Oak Ridge National Laboratory) and MCNP4C (Los Alamos National Laboratory). Essentially the code includes point depletion capability to the MCNP code. The incorporation of point depletion capability is explicit and can be summarized by three steps: 1-Monte Carlo determines reaction rates, 2-the reaction rates are used to determine microscopic cross sections for depletion equations, 3-solution of depletion equations (given by Origen2.1) determines number densities for next MCNP step. To evaluate the initial version of the program, we focused on comparing the results with one of the major Monte Carlo burnup codes: MCNPX version 2.6.0. The input files for all codes share the same MCNP geometry, nuclear data library and core thermal power. While simulating 75 time steps at 800 kw of a Heat Pipe Power System model, we have found that the codes generate very similar results. The neutron flux and criticality value of the core agree, especially in the begin of burnup when the influence of fission products are not very considerable. The small difference encountered was probably caused by the difference in the number of isotopes considered in the transport models (89 MCNPX x 25 GB (author)

  4. Flux at a point in MCNP

    International Nuclear Information System (INIS)

    Cashwell, E.D.; Schrandt, R.G.

    1980-01-01

    The current state of the art of calculating flux at a point with MCNP is discussed. Various techniques are touched upon, but the main emphasis is on the fast improved version of the once-more-collided flux estimator, which has been modified to treat neutrons thermalized by the free gas model. The method is tested on several problems on interest and the results are presented

  5. Monte Carlo dose calculations in homogeneous media and at interfaces: a comparison between GEPTS, EGSnrc, MCNP, and measurements.

    Science.gov (United States)

    Chibani, Omar; Li, X Allen

    2002-05-01

    Three Monte Carlo photon/electron transport codes (GEPTS, EGSnrc, and MCNP) are bench-marked against dose measurements in homogeneous (both low- and high-Z) media as well as at interfaces. A brief overview on physical models used by each code for photon and electron (positron) transport is given. Absolute calorimetric dose measurements for 0.5 and 1 MeV electron beams incident on homogeneous and multilayer media are compared with the predictions of the three codes. Comparison with dose measurements in two-layer media exposed to a 60Co gamma source is also performed. In addition, comparisons between the codes (including the EGS4 code) are done for (a) 0.05 to 10 MeV electron beams and positron point sources in lead, (b) high-energy photons (10 and 20 MeV) irradiating a multilayer phantom (water/steel/air), and (c) simulation of a 90Sr/90Y brachytherapy source. A good agreement is observed between the calorimetric electron dose measurements and predictions of GEPTS and EGSnrc in both homogeneous and multilayer media. MCNP outputs are found to be dependent on the energy-indexing method (Default/ITS style). This dependence is significant in homogeneous media as well as at interfaces. MCNP(ITS) fits more closely the experimental data than MCNP(DEF), except for the case of Be. At low energy (0.05 and 0.1 MeV), MCNP(ITS) dose distributions in lead show higher maximums in comparison with GEPTS and EGSnrc. EGS4 produces too penetrating electron-dose distributions in high-Z media, especially at low energy (MCNP results depend significantly on the electron energy-indexing method.

  6. MCNP-DSP, Monte Carlo Neutron-Particle Transport Code with Digital Signal Processing

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Description of program or function: MCNP-DSP is recommended only for experienced MCNP users working with subcritical measurements. It is a modification of the Los Alamos National Laboratory's Monte Carlo code MCNP4a that is used to simulate a variety of subcritical measurements. The DSP version was developed to simulate frequency analysis measurements, correlation (Rossi-) measurements, pulsed neutron measurements, Feynman variance measurements, and multiplicity measurements. CCC-700/MCNP4C is recommended for general purpose calculations. 2 - Methods:MCNP-DSP performs calculations very similarly to MCNP and uses the same generalized geometry capabilities of MCNP. MCNP-DSP can only be used with the continuous-energy cross-section data. A variety of source and detector options are available. However, unlike standard MCNP, the source and detector options are limited to those described in the manual because these options are specified in the MCNP-DSP extra data file. MCNP-DSP is used to obtain the time-dependent response of detectors that are modeled in the simulation geometry. The detectors represent actual detectors used in measurements. These time-dependent detector responses are used to compute a variety of quantities such as frequency analysis signatures, correlation signatures, multiplicity signatures, etc., between detectors or sources and detectors. Energy ranges are 0-60 MeV for neutrons (data generally only available up to 20 MeV) and 1 keV - 1 GeV for photons and electrons. 3 - Restrictions on the complexity of the problem: None noted

  7. Evaluation of Geometric Progression (GP Buildup Factors using MCNP Codes (MCNP6.1 and MCNP5-1.60

    Directory of Open Access Journals (Sweden)

    Kim Kyung-O

    2016-01-01

    Full Text Available The gamma-ray buildup factors of three-dimensional point kernel code (QAD-CGGP are re-evaluated by using MCNP codes (MCNP6.1 and MCNPX5-1.60 and ENDF/B-VI.8 photoatomic data, which cover an energy range of 0.015–15 MeV and an iron thickness of 0.5–40 Mean Free Path (MFP. These new data are fitted to the Geometric Progression (GP fitting function and are then compared with ANS standard data equipped with QAD-CGGP. In addition, a simple benchmark calculation was performed to compare the QAD-CGGP results applied with new and existing buildup factors based on the MCNP codes. In the case of the buildup factors of low-energy gamma-rays, new data are evaluated to be about 5% higher than the existing data. In other cases, these new data present a similar trend based on the specific penetration depth, while existing data continuously increase beyond that depth. In a simple benchmark, the calculations using the existing data were slightly underestimated compared to the reference data at a deep penetration depth. On the other hand, the calculations with new data were stabilized with an increasing penetration depth, despite a slight overestimation at a shallow penetration depth.

  8. Importance sampling techniques and treatment of electron transport in MCNP 4A

    International Nuclear Information System (INIS)

    Ueki, K.

    1994-01-01

    The continuous energy Monte Carlo code MCNP was developed by the Radiation Transport Group at Los Alamos National Laboratory and the MCNP 4A version is available, now. The MCNP 4A is able to do the coupled neutron-secondary gamma-ray-electron-bremsstrahlung calculation. The calculated results, such as energy spectra, tally fluctuation chart, and geometrical input data can be displayed by using a work station. The document of the MCNP 4A code has no description on the subroutines, except few ones of 'SOURCE', 'TALLYX'. However, when we want to improve the MCNP Monte Carlo sampling techniques to get more accuracy or efficiency results for some problems, some subroutines are required or needed to revised. Three subroutines have been revised and built in the MCNP 4A code. (author)

  9. Data analysis and visualization in MCNP trademark

    International Nuclear Information System (INIS)

    Waters, L.S.

    1994-01-01

    There are many situations where the user may wish to go beyond current MCNP capabilities. For example, data produced by the code may need formatting for input into an external graphics package. Limitations on disk space may hinder writing out large PTRAK files. Specialized data analysis routines may be needed to model complex experimental results. One may wish to produce particle histories in a format not currently available in the code. To address these and other similar concerns a new capability in MCNP is being tested. A number of real, integer, logical and character variables describing the current and past characteristics of a particle are made available online to the user in three subroutines. The type of data passed can be controlled by cards in the INP file. The subroutines otherwise are empty, and the user may code in any desired analysis. A new MCNP executable is produced by compiling these subroutines and linking to a library which contains the object files for the rest of the code

  10. Dose mapping using MCNP code and experiment for SVST-Co-60/B irradiator in Vietnam.

    Science.gov (United States)

    Tran, Van Hung; Tran, Khac An

    2010-06-01

    By using MCNP code and ethanol-chlorobenzene (ECB) dosimeters the simulations and measurements of absorbed dose distribution in a tote-box of the Cobalt-60 irradiator, SVST-Co60/B at VINAGAMMA have been done. Based on the results Dose Uniformity Ratios (DUR), positions and values of minimum and maximum dose extremes in a tote-box, and efficiency of the irradiator for the different dummy densities have been gained. There is a good agreement between simulation and experimental results in comparison and they have valuable meanings for operation of the irradiator. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. An Electron/Photon/Relaxation Data Library for MCNP6

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, III, H. Grady [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-07

    The capabilities of the MCNP6 Monte Carlo code in simulation of electron transport, photon transport, and atomic relaxation have recently been significantly expanded. The enhancements include not only the extension of existing data and methods to lower energies, but also the introduction of new categories of data and methods. Support of these new capabilities has required major additions to and redesign of the associated data tables. In this paper we present the first complete documentation of the contents and format of the new electron-photon-relaxation data library now available with the initial production release of MCNP6.

  12. SUPERIMPOSED MESH PLOTTING IN MCNP

    Energy Technology Data Exchange (ETDEWEB)

    J. HENDRICKS

    2001-02-01

    The capability to plot superimposed meshes has been added to MCNP{trademark}. MCNP4C featured a superimposed mesh weight window generator which enabled users to set up geometries without having to subdivide geometric cells for variance reduction. The variance reduction was performed with weight windows on a rectangular or cylindrical mesh superimposed over the physical geometry. Experience with the new capability was favorable but also indicated that a number of enhancements would be very beneficial, particularly a means of visualizing the mesh and its values. The mathematics for plotting the mesh and its values is described here along with a description of other upgrades.

  13. Design of boron carbide-shielded irradiation channel of the outer irradiation channel of the Ghana Research Reactor-1 using MCNP.

    Science.gov (United States)

    Abrefah, R G; Sogbadji, R B M; Ampomah-Amoako, E; Birikorang, S A; Odoi, H C; Nyarko, B J B

    2011-01-01

    The MCNP model for the Ghana Research Reactor-1 was redesigned to incorporate a boron carbide-shielded irradiation channel in one of the outer irradiation channels. Extensive investigations were made before arriving at the final design of only one boron carbide covered outer irradiation channel; as all the other designs that were considered did not give desirable results of neutronic performance. The concept of redesigning a new MCNP model, which has a boron carbide-shielded channel is to equip the Ghana Research Reactor-1 with the means of performing efficient epithermal neutron activation analysis. After the simulation, a comparison of the results from the original MCNP model for the Ghana Research Reactor-1 and the new redesigned model of the boron carbide shielded channel was made. The final effective criticality of the original MCNP model for the GHARR-1 was recorded as 1.00402 while that of the new boron carbide designed model was recorded as 1.00282. Also, a final prompt neutron lifetime of 1.5245 × 10(-4)s was recorded for the new boron carbide designed model while a value of 1.5571 × 10(-7)s was recorded for the original MCNP design of the GHARR-1. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. The use of the MCNP code for the quantitative analysis of elements in geological formations

    Energy Technology Data Exchange (ETDEWEB)

    Cywicka-Jakiel, T.; Woynicka, U. [The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Zorski, T. [University of Mining and Metallurgy, Faculty of Geology, Geophysics and Environmental Protection, Krakow (Poland)

    2003-07-01

    The Monte Carlo modelling calculations using the MCNP code have been performed, which support the spectrometric neutron-gamma (SNGL) borehole logging. The SNGL enables the lithology identification through the quantitative analysis of the elements in geological formations and thus can be very useful for the oil and gas industry as well as for prospecting of the potential host rocks for radioactive waste disposal. In the SNGL experiment, gamma-rays induced by the neutron interactions with the nuclei of the rock elements are detected using the gamma-ray probe of complex mechanical and electronic construction. The probe has to be calibrated for a wide range of the elemental concentrations, to assure the proper quantitative analysis. The Polish Calibration Station in Zielona Gora is equipped with a limited number of calibration standards. An extension of the experimental calibration and the evaluation of the effect of the so-called side effects (for example the borehole and formation salinity variation) on the accuracy of the SNGL method can be done by the use of the MCNP code. The preliminary MCNP results showing the effect of the borehole and formation fluids salinity variations on the accuracy of silicon (Si), calcium (Ca) and iron (Fe) content determination are presented in the paper. The main effort has been focused on a modelling of the complex SNGL probe situated in a fluid filled borehole, surrounded by a geological formation. Track length estimate of the photon flux from the (n,gamma) interactions as a function of gamma-rays energy was used. Calculations were run on the PC computer with AMD Athlon 1.33 GHz processor. Neutron and photon cross-sections libraries were taken from the MCNP4c package and based mainly on the ENDF/B-6, ENDF/B-5 and MCPLIB02 data. The results of simulated experiment are in conformity with results of the real experiment performed with the use of the main lithology models (sandstones, limestones and dolomite). (authors)

  15. The use of the MCNP code for the quantitative analysis of elements in geological formations

    International Nuclear Information System (INIS)

    Cywicka-Jakiel, T.; Woynicka, U.; Zorski, T.

    2003-01-01

    The Monte Carlo modelling calculations using the MCNP code have been performed, which support the spectrometric neutron-gamma (SNGL) borehole logging. The SNGL enables the lithology identification through the quantitative analysis of the elements in geological formations and thus can be very useful for the oil and gas industry as well as for prospecting of the potential host rocks for radioactive waste disposal. In the SNGL experiment, gamma-rays induced by the neutron interactions with the nuclei of the rock elements are detected using the gamma-ray probe of complex mechanical and electronic construction. The probe has to be calibrated for a wide range of the elemental concentrations, to assure the proper quantitative analysis. The Polish Calibration Station in Zielona Gora is equipped with a limited number of calibration standards. An extension of the experimental calibration and the evaluation of the effect of the so-called side effects (for example the borehole and formation salinity variation) on the accuracy of the SNGL method can be done by the use of the MCNP code. The preliminary MCNP results showing the effect of the borehole and formation fluids salinity variations on the accuracy of silicon (Si), calcium (Ca) and iron (Fe) content determination are presented in the paper. The main effort has been focused on a modelling of the complex SNGL probe situated in a fluid filled borehole, surrounded by a geological formation. Track length estimate of the photon flux from the (n,gamma) interactions as a function of gamma-rays energy was used. Calculations were run on the PC computer with AMD Athlon 1.33 GHz processor. Neutron and photon cross-sections libraries were taken from the MCNP4c package and based mainly on the ENDF/B-6, ENDF/B-5 and MCPLIB02 data. The results of simulated experiment are in conformity with results of the real experiment performed with the use of the main lithology models (sandstones, limestones and dolomite). (authors)

  16. Verification of the AZNHEX code v.1.4 with MCNP6 for different reference cases; Verificacion del codigo AZNHEX v.1.4 con MCNP6 para diferentes casos de referencia

    Energy Technology Data Exchange (ETDEWEB)

    Galicia A, J.; Francois L, J. L.; Bastida O, G. E. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, Circuito Exterior s/n, 04510 Ciudad de Mexico (Mexico); Del Valle G, E., E-mail: jgaliciaa87@gmail.com [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, 07738 Ciudad de Mexico (Mexico)

    2017-09-15

    The codes that make up the AZTLAN platform (AZTHECA, AZTRAN, AZKIND and AZNHEX) are currently in the testing phase simulating a variety of nuclear reactor assemblies and cores to compare and validate the results obtained for a particular case, with codes globally used in the nuclear area such as CASMO, Serpent and MCNP. The objective of this work is to continue improving the future versions of the codes of the AZTLAN platform so that accurate and reliable results can be obtained for the user. To test the current version of the AZNHEX code, 3 cases were taken into account, the first being the simulation of a VVER-440 reactor assembly; for the second case, the assembly of a fast reactor cooled with helium was simulated and for the third case it was decided to take up the case of the core of a fast reactor cooled with sodium, this because the previous versions of AZNHEX did not show adequate results and, in addition, they presented a considerable amount of limitations. The comparison and validation of the results (neutron multiplication factor, radial power, radial flow, axial power) for these three cases were made using the code MCNP6. The results obtained show that this version of AZNHEX produces values of the neutron multiplication factor and the neutron and power flow distributions very close to those of MCNP6. (Author)

  17. MCNP SIMULATION OF THE HP(10) ENERGY RESPONSE OF A BRAZILIAN TLD ALBEDO NEUTRON INDIVIDUAL DOSEMETER, FROM THERMAL TO 20 MeV.

    Science.gov (United States)

    Freitas, B M; Martins, M M; Pereira, W W; da Silva, A X; Mauricio, C L P

    2016-09-01

    The Brazilian Instituto de Radioproteção e Dosimetria (IRD) runs a neutron individual monitoring system with a home-made TLD albedo dosemeter. It has already been characterised and calibrated in some reference fields. However, the complete energy response of this dosemeter is not known, and the calibration factors for all monitored workplace neutron fields are difficult to be obtained experimentally. Therefore, to overcome such difficulties, Monte Carlo simulations have been used. This paper describes the simulation of the HP(10) neutron response of the IRD TLD albedo dosemeter using the MCNPX transport code, for energies from thermal to 20 MeV. The validation of the MCNPX modelling is done comparing the simulated results with the experimental measurements for ISO standard neutron fields of (241)Am-Be, (252)Cf, (241)Am-B and (252)Cf(D2O) and also for (241)Am-Be source moderated with paraffin and silicone. Bare (252)Cf are used for normalisation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. A comparison study for mass attenuation coefficients of some amino acids using MCNP code

    Energy Technology Data Exchange (ETDEWEB)

    Vahabi, Seyed Milad; Bahreynipour, Mostean; Shamsaie-Zafarghandi, Mojtaba [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Dept. of Energy Engineering and Physics

    2017-07-15

    In this study, a novel model of MCNP4C code reported recently was used to determine the photon mass attenuation coefficients of some amino acids at energies, 123, 360, 511, 662, 1170, 1280 and 1330 keV. The simulation results were compared with the XCOM data. It was indicated that the results were highly close to the calculated XCOM values. Obtained results were used to calculate the molar extinction coefficient. All the results showed the convenience and usefulness of the model in calculation of mass attenuation coefficients of amino acids.

  19. Benchmarking comparison and validation of MCNP photon interaction data

    Directory of Open Access Journals (Sweden)

    Colling Bethany

    2017-01-01

    Full Text Available The objective of the research was to test available photoatomic data libraries for fusion relevant applications, comparing against experimental and computational neutronics benchmarks. Photon flux and heating was compared using the photon interaction data libraries (mcplib 04p, 05t, 84p and 12p. Suitable benchmark experiments (iron and water were selected from the SINBAD database and analysed to compare experimental values with MCNP calculations using mcplib 04p, 84p and 12p. In both the computational and experimental comparisons, the majority of results with the 04p, 84p and 12p photon data libraries were within 1σ of the mean MCNP statistical uncertainty. Larger differences were observed when comparing computational results with the 05t test photon library. The Doppler broadening sampling bug in MCNP-5 is shown to be corrected for fusion relevant problems through use of the 84p photon data library. The recommended libraries for fusion neutronics are 84p (or 04p with MCNP6 and 84p if using MCNP-5.

  20. Benchmarking comparison and validation of MCNP photon interaction data

    Science.gov (United States)

    Colling, Bethany; Kodeli, I.; Lilley, S.; Packer, L. W.

    2017-09-01

    The objective of the research was to test available photoatomic data libraries for fusion relevant applications, comparing against experimental and computational neutronics benchmarks. Photon flux and heating was compared using the photon interaction data libraries (mcplib 04p, 05t, 84p and 12p). Suitable benchmark experiments (iron and water) were selected from the SINBAD database and analysed to compare experimental values with MCNP calculations using mcplib 04p, 84p and 12p. In both the computational and experimental comparisons, the majority of results with the 04p, 84p and 12p photon data libraries were within 1σ of the mean MCNP statistical uncertainty. Larger differences were observed when comparing computational results with the 05t test photon library. The Doppler broadening sampling bug in MCNP-5 is shown to be corrected for fusion relevant problems through use of the 84p photon data library. The recommended libraries for fusion neutronics are 84p (or 04p) with MCNP6 and 84p if using MCNP-5.

  1. Validation of MCNP and WIMS-AECL/DRAGON/RFSP for ACR-1000 applications

    International Nuclear Information System (INIS)

    Bromley, Blair P.; Adams, Fred P.; Zeller, Michael B.; Watts, David G.; Shukhman, Boris V.; Pencer, Jeremy

    2008-01-01

    This paper gives a summary of the validation of the reactor physics codes WIMS-AECL, DRAGON, RFSP and MCNP5, which are being used in the design, operation, and safety analysis of the ACR-1000 R . The standards and guidelines being followed for code validation of the suite are established in CSA Standard N286.7-99 and ANS Standard ANS-19.3-2005. These codes are being validated for the calculation of key output parameters associated with various reactor physics phenomena of importance during normal operations and postulated accident conditions in an ACR-1000 reactor. Experimental data from a variety of sources are being used for validation. The bulk of the validation data is from critical experiments in the ZED-2 research reactor with ACR-type lattices. To supplement and complement ZED-2 data, qualified and applicable data are being taken from other power and research reactors, such as existing CANDU R units, FUGEN, NRU and SPERT research reactors, and the DCA critical facility. MCNP simulations of the ACR-1000 are also being used for validating WIMS-AECL/ DRAGON/RFSP, which involves extending the validation results for MCNP through the assistance of TSUNAMI analyses. Code validation against commissioning data in the first-build ACR-1000 will be confirmatory. The code validation is establishing the biases and uncertainties in the calculations of the WIMS-AECL/DRAGON/RFSP suite for the evaluation of various key parameters of importance in the reactor physics analysis of the ACR-1000. (authors)

  2. Tally and geometry definition influence on the computing time in radiotherapy treatment planning with MCNP Monte Carlo code.

    Science.gov (United States)

    Juste, B; Miro, R; Gallardo, S; Santos, A; Verdu, G

    2006-01-01

    The present work has simulated the photon and electron transport in a Theratron 780 (MDS Nordion) (60)Co radiotherapy unit, using the Monte Carlo transport code, MCNP (Monte Carlo N-Particle), version 5. In order to become computationally more efficient in view of taking part in the practical field of radiotherapy treatment planning, this work is focused mainly on the analysis of dose results and on the required computing time of different tallies applied in the model to speed up calculations.

  3. Development of automatic cross section compilation system for MCNP

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Sakurai, Kiyoshi

    1999-01-01

    A development of a code system to automatically convert cross-sections for MCNP is in progress. The NJOY code is, in general, used to convert the data compiled in the ENDF format (Evaluated Nuclear Data Files by BNL) into the cross-section libraries required by various reactor physics codes. While the cross-section library: FSXLIB-J3R2 was already converted from the JENDL-3.2 version of Japanese Evaluated Nuclear Data Library for a continuous energy Monte Carlo code MCNP, the library keeps only the cross-sections at room temperature (300 K). According to the users requirements which want to have cross-sections at higher temperature, say 600 K or 900 K, a code system named 'autonj' is under development to provide a set of cross-section library of arbitrary temperature for the MCNP code. This system can accept any of data formats adopted JENDL that may not be treated by NJOY code. The input preparation that is repeatedly required at every nuclide on NJOY execution is greatly reduced by permitting the conversion process of as many nuclides as the user wants in one execution. A few MCNP runs were achieved for verification purpose by using two libraries FSXLIB-J3R2 and the output of autonj'. The almost identical MCNP results within the statistical errors show the 'autonj' output library is correct. In FY 1998, the system will be completed, and in FY 1999, the user's manual will be published. (K. Tsuchihashi)

  4. Benchmark analysis of MCNP trademark ENDF/B-VI iron

    International Nuclear Information System (INIS)

    Court, J.D.; Hendricks, J.S.

    1994-12-01

    The MCNP ENDF/B-VI iron cross-section data was subjected to four benchmark studies as part of the Hiroshima/Nagasaki dose re-evaluation for the National Academy of Science and the Defense Nuclear Agency. The four benchmark studies were: (1) the iron sphere benchmarks from the Lawrence Livermore Pulsed Spheres; (2) the Oak Ridge National Laboratory Fusion Reactor Shielding Benchmark; (3) a 76-cm diameter iron sphere benchmark done at the University of Illinois; (4) the Oak Ridge National Laboratory Benchmark for Neutron Transport through Iron. MCNP4A was used to model each benchmark and computational results from the ENDF/B-VI iron evaluations were compared to ENDF/B-IV, ENDF/B-V, the MCNP Recommended Data Set (which includes Los Alamos National Laboratory Group T-2 evaluations), and experimental data. The results show that the ENDF/B-VI iron evaluations are as good as, or better than, previous data sets

  5. Milestone M4900: Simulant Mixing Analytical Results

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.I.

    2001-07-26

    This report addresses Milestone M4900, ''Simulant Mixing Sample Analysis Results,'' and contains the data generated during the ''Mixing of Process Heels, Process Solutions, and Recycle Streams: Small-Scale Simulant'' task. The Task Technical and Quality Assurance Plan for this task is BNF-003-98-0079A. A report with a narrative description and discussion of the data will be issued separately.

  6. A Complete Reporting of MCNP6 Validation Results for Electron Energy Deposition in Single-Layer Extended Media for Source Energies <= 1-MeV

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hughes, Henry Grady [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-04

    In this paper, we expand on previous validation work by Dixon and Hughes. That is, we present a more complete suite of validation results with respect to to the well-known Lockwood energy deposition experiment. Lockwood et al. measured energy deposition in materials including beryllium, carbon, aluminum, iron, copper, molybdenum, tantalum, and uranium, for both single- and multi-layer 1-D geometries. Source configurations included mono-energetic, mono-directional electron beams with energies of 0.05-MeV, 0.1-MeV, 0.3- MeV, 0.5-MeV, and 1-MeV, in both normal and off-normal angles of incidence. These experiments are particularly valuable for validating electron transport codes, because they are closely represented by simulating pencil beams incident on 1-D semi-infinite slabs with and without material interfaces. Herein, we include total energy deposition and energy deposition profiles for the single-layer experiments reported by Lockwood et al. (a more complete multi-layer validation will follow in another report).

  7. NUCLEAR HEATING IN LIF DOSEMETERS IN A FUSION NEUTRON FIELD, TRIAL OF DIRECT COMPARISON OF EXPERIMENTAL AND SIMULATED RESULTS.

    Science.gov (United States)

    Pohorecki, Wladyslaw; Obryk, Barbara

    2017-09-29

    The results of nuclear heating measured by means of thermoluminescent dosemeters (TLD-LiF) in a Cu block irradiated by 14 MeV neutrons are presented. The integral Cu experiment relevant for verification of copper nuclear data at neutron energies characteristic for fusion facilities was performed in the ENEA FNG Laboratory at Frascati. Five types of TLDs were used: highly photon sensitive LiF:Mg,Cu,P (MCP-N), 7LiF:Mg,Cu,P (MCP-7) and standard, lower sensitivity LiF:Mg,Ti (MTS-N), 7LiF:Mg,Ti (MTS-7) and 6LiF:Mg,Ti (MTS-6). Calibration of the detectors was performed with gamma rays in terms of air-kerma (10 mGy of 137Cs air-kerma). Nuclear heating in the Cu block was also calculated with the use of MCNP transport code Nuclear heating in Cu and air in TLD's positions was calculated as well. The nuclear heating contribution from all simulated by MCNP6 code particles including protons, deuterons, alphas tritons and heavier ions produced by the neutron interactions were calculated. A trial of the direct comparison between experimental results and results of simulation was performed. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Reactor physics verification of the MCNP6 unstructured mesh capability

    International Nuclear Information System (INIS)

    Burke, T. P.; Kiedrowski, B. C.; Martz, R. L.; Martin, W. R.

    2013-01-01

    The Monte Carlo software package MCNP6 has the ability to transport particles on unstructured meshes generated from the Computed-Aided Engineering software Abaqus. Verification is performed using benchmarks with features relevant to reactor physics - Big Ten and the C5G7 computational benchmark. Various meshing strategies are tested and results are compared to reference solutions. Computational performance results are also given. The conclusions show MCNP6 is capable of producing accurate calculations for reactor physics geometries and the computational requirements for small lattice benchmarks are reasonable on modern computing platforms. (authors)

  9. Reactor physics verification of the MCNP6 unstructured mesh capability

    Energy Technology Data Exchange (ETDEWEB)

    Burke, T. P. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Kiedrowski, B. C.; Martz, R. L. [X-Computational Physics Division, Monte Carlo Codes Group, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Martin, W. R. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States)

    2013-07-01

    The Monte Carlo software package MCNP6 has the ability to transport particles on unstructured meshes generated from the Computed-Aided Engineering software Abaqus. Verification is performed using benchmarks with features relevant to reactor physics - Big Ten and the C5G7 computational benchmark. Various meshing strategies are tested and results are compared to reference solutions. Computational performance results are also given. The conclusions show MCNP6 is capable of producing accurate calculations for reactor physics geometries and the computational requirements for small lattice benchmarks are reasonable on modern computing platforms. (authors)

  10. SU-F-T-140: Assessment of the Proton Boron Fusion Reaction for Practical Radiation Therapy Applications Using MCNP6

    Energy Technology Data Exchange (ETDEWEB)

    Adam, D; Bednarz, B [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: The proton boron fusion reaction is a reaction that describes the creation of three alpha particles as the result of the interaction of a proton incident upon a 11B target. Theoretically, the proton boron fusion reaction is a desirable reaction for radiation therapy applications in that, with the appropriate boron delivery agent, it could potentially combine the localized dose delivery protons exhibit (Bragg peak) and the local deposition of high LET alpha particles in cancerous sites. Previous efforts have shown significant dose enhancement using the proton boron fusion reaction; the overarching purpose of this work is an attempt to validate previous Monte Carlo results of the proton boron fusion reaction. Methods: The proton boron fusion reaction, 11B(p, 3α), is investigated using MCNP6 to assess the viability for potential use in radiation therapy. Simple simulations of a proton pencil beam incident upon both a water phantom and a water phantom with an axial region containing 100ppm boron were modeled using MCNP6 in order to determine the extent of the impact boron had upon the calculated energy deposition. Results: The maximum dose increase calculated was 0.026% for the incident 250 MeV proton beam scenario. The MCNP simulations performed demonstrated that the proton boron fusion reaction rate at clinically relevant boron concentrations was too small in order to have any measurable impact on the absorbed dose. Conclusion: For all MCNP6 simulations conducted, the increase of absorbed dose of a simple water phantom due to the 11B(p, 3α) reaction was found to be inconsequential. In addition, it was determined that there are no good evaluations of the 11B(p, 3α) reaction for use in MCNPX/6 and further work should be conducted in cross section evaluations in order to definitively evaluate the feasibility of the proton boron fusion reaction for use in radiation therapy applications.

  11. A comparison of MCNP4C electron transport with ITS 3.0 and experiment at incident energies between 100 keV and 20 MeV: influence of voxel size, substeps and energy indexing algorithm

    International Nuclear Information System (INIS)

    Schaart, Dennis R.; Jansen, Jan Th.M.; Zoetelief, Johannes; Leege, Piet F.A. de

    2002-01-01

    The condensed-history electron transport algorithms in the Monte Carlo code MCNP4C are derived from ITS 3.0, which is a well-validated code for coupled electron-photon simulations. This, combined with its user-friendliness and versatility, makes MCNP4C a promising code for medical physics applications. Such applications, however, require a high degree of accuracy. In this work, MCNP4C electron depth-dose distributions in water are compared with published ITS 3.0 results. The influences of voxel size, substeps and choice of electron energy indexing algorithm are investigated at incident energies between 100 keV and 20 MeV. Furthermore, previously published dose measurements for seven beta emitters are simulated. Since MCNP4C does not allow tally segmentation with the *F8 energy deposition tally, even a homogeneous phantom must be subdivided in cells to calculate the distribution of dose. The repeated interruption of the electron tracks at the cell boundaries significantly affects the electron transport. An electron track length estimator of absorbed dose is described which allows tally segmentation. In combination with the ITS electron energy indexing algorithm, this estimator appears to reproduce ITS 3.0 and experimental results well. If, however, cell boundaries are used instead of segments, or if the MCNP indexing algorithm is applied, the agreement is considerably worse. (author)

  12. Estimation and interpretation of keff confidence intervals in MCNP

    International Nuclear Information System (INIS)

    Urbatsch, T.J.

    1995-11-01

    MCNP's criticality methodology and some basic statistics are reviewed. Confidence intervals are discussed, as well as how to build them and their importance in the presentation of a Monte Carlo result. The combination of MCNP's three k eff estimators is shown, theoretically and empirically, by statistical studies and examples, to be the best k eff estimator. The method of combining estimators is based on a solid theoretical foundation, namely, the Gauss-Markov Theorem in regard to the least squares method. The confidence intervals of the combined estimator are also shown to have correct coverage rates for the examples considered

  13. Hot Cell Window Shielding Analysis Using MCNP

    International Nuclear Information System (INIS)

    Pope, Chad L.; Scates, Wade W.; Taylor, J. Todd

    2009-01-01

    The Idaho National Laboratory Materials and Fuels Complex nuclear facilities are undergoing a documented safety analysis upgrade. In conjunction with the upgrade effort, shielding analysis of the Fuel Conditioning Facility (FCF) hot cell windows has been conducted. This paper describes the shielding analysis methodology. Each 4-ft thick window uses nine glass slabs, an oil film between the slabs, numerous steel plates, and packed lead wool. Operations in the hot cell center on used nuclear fuel (UNF) processing. Prior to the shielding analysis, shield testing with a gamma ray source was conducted, and the windows were found to be very effective gamma shields. Despite these results, because the glass contained significant amounts of lead and little neutron absorbing material, some doubt lingered regarding the effectiveness of the windows in neutron shielding situations, such as during an accidental criticality. MCNP was selected as an analysis tool because it could model complicated geometry, and it could track gamma and neutron radiation. A bounding criticality source was developed based on the composition of the UNF. Additionally, a bounding gamma source was developed based on the fission product content of the UNF. Modeling the windows required field inspections and detailed examination of drawings and material specifications. Consistent with the shield testing results, MCNP results demonstrated that the shielding was very effective with respect to gamma radiation, and in addition, the analysis demonstrated that the shielding was also very effective during an accidental criticality.

  14. Parallel MCNP Monte Carlo transport calculations with MPI

    International Nuclear Information System (INIS)

    Wagner, J.C.; Haghighat, A.

    1996-01-01

    The steady increase in computational performance has made Monte Carlo calculations for large/complex systems possible. However, in order to make these calculations practical, order of magnitude increases in performance are necessary. The Monte Carlo method is inherently parallel (particles are simulated independently) and thus has the potential for near-linear speedup with respect to the number of processors. Further, the ever-increasing accessibility of parallel computers, such as workstation clusters, facilitates the practical use of parallel Monte Carlo. Recognizing the nature of the Monte Carlo method and the trends in available computing, the code developers at Los Alamos National Laboratory implemented the message-passing general-purpose Monte Carlo radiation transport code MCNP (version 4A). The PVM package was chosen by the MCNP code developers because it supports a variety of communication networks, several UNIX platforms, and heterogeneous computer systems. This PVM version of MCNP has been shown to produce speedups that approach the number of processors and thus, is a very useful tool for transport analysis. Due to software incompatibilities on the local IBM SP2, PVM has not been available, and thus it is not possible to take advantage of this useful tool. Hence, it became necessary to implement an alternative message-passing library package into MCNP. Because the message-passing interface (MPI) is supported on the local system, takes advantage of the high-speed communication switches in the SP2, and is considered to be the emerging standard, it was selected

  15. Comparison of sliced lungs with whole lung sets for a torso phantom measured with Ge detectors using Monte Carlo simulations (MCNP).

    Science.gov (United States)

    Kramer, Gary H; Guerriere, Steven

    2003-02-01

    Lung counters are generally used to measure low energy photons (<100 keV). They are usually calibrated with lung sets that are manufactured from a lung tissue substitute material that contains homogeneously distributed activity; however, it is difficult to verify either the activity in the phantom or the homogeneity of the activity distribution without destructive testing. Lung sets can have activities that are as much as 25% different from the expected value. An alternative method to using whole lungs to calibrate a lung counter is to use a sliced lung with planar inserts. Experimental work has already indicated that this alternative method of calibration can be a satisfactory substitute. This work has extended the experimental study by the use of Monte Carlo simulation to validate that sliced and whole lungs are equivalent. It also has determined the optimum slice thicknesses that separate the planar sources in the sliced lung. Slice thicknesses have been investigated in the range of 0.5 cm to 9.0 cm and at photon energies from 17 keV to 1,000 keV. Results have shown that there is little difference between sliced and whole lungs at low energies providing that the slice thickness is 2.0 cm or less. As the photon energy rises the slice thickness can increase substantially with no degradation on equivalence.

  16. Electron absorbed dose comparison between MCNP5 and Penelope Monte Carlo code for microdosimetry

    International Nuclear Information System (INIS)

    Cintra, Felipe B. de; Yoriyaz, Helio

    2009-01-01

    The objective of the present work was to compare electron absorbed dose results between two widespread used codes in international scientific community: MCNP5 and Penelope-2003. Individual water spheres with masses between 10 -9 g up to 10 -3 g immersed in an infinite water medium (density of 1g/cm 3 ) and monoenergetic electron sources with energy from 0.002 MeV to 0.1 MeV have been considered. The absorbed dose in the spheres was evaluated by both codes and the relative differences have been quantified. The results shown that Penelope gives, in general, higher results that, in some cases saturate or reach a maximum point and then rapidly drops. Particularly, for the 40 keV electron source we have done additional tests in three different scenarios: more points in the region of lower masses to a better definition of the curve behavior; MCNP used 200 substeps and Penelope was set to a full detail history methodology, and almost same parameters of case B but with the density of exterior medium increased to 10 g/cm 3 . The three cases show the influence of the backscattering that contribute with an important fraction of absorbed dose, finally we can infer a range of reliability to use the codes in this kind of simulations: both codes can calculate close results for up to 10 -4 g.Even though MCNP5 uses the condensed history method, if simulation parameters are chosen carefully it can reproduce results very close to those obtained using detailed history mode. In some cases, the use of higher number of electron substeps causes significant differences in the result. (author)

  17. Titan's organic chemistry: Results of simulation experiments

    Science.gov (United States)

    Sagan, Carl; Thompson, W. Reid; Khare, Bishun N.

    1992-01-01

    Recent low pressure continuous low plasma discharge simulations of the auroral electron driven organic chemistry in Titan's mesosphere are reviewed. These simulations yielded results in good accord with Voyager observations of gas phase organic species. Optical constants of the brownish solid tholins produced in similar experiments are in good accord with Voyager observations of the Titan haze. Titan tholins are rich in prebiotic organic constituents; the Huygens entry probe may shed light on some of the processes that led to the origin of life on Earth.

  18. Simulation Results of Double Forward Converter

    Directory of Open Access Journals (Sweden)

    P. Vijaya KUMAR

    2009-12-01

    Full Text Available This work aims to find a better forward converter for DC to DC conversion.Simulation of double forward converter in SMPS system is discussed in this paper. Aforward converter with RCD snubber to synchronous rectifier and/or to current doubleris also discussed. The evolution of the forward converter is first reviewed in a tutorialfashion. Performance parameters are discussed including operating principle, voltageconversion ratio, efficiency, device stress, small-signal dynamics, noise and EMI. Itscircuit operation and its performance characteristics of the forward converter with RCDsnubber and double forward converter are described and the simulation results arepresented.

  19. New developments enhancing MCNP for criticality safety

    International Nuclear Information System (INIS)

    Hendricks, J.S.; McKinney, G.W.; Forster, R.A.

    1993-01-01

    Since the early 80's MCNP has had three estimates of k eff : collision, absorption, and track length. MCNP has also had collision and absorption estimators of removal lifetime. These are calculated for every cycle and are averaged over the cycles as simple averages and covariance weighted averages. Correlation coefficients between estimators are also calculated. These criticality estimators are all in addition to the extensive summary information and tally edits used in shielding and other problems. A number of significant new developments have been made to enhance the MCNP Monte Carlo radiation transport code for criticality safety applications. These are available in the newly released MCNP4A version of the code

  20. MCNP-REN a Monte Carlo tool for neutron detector design

    CERN Document Server

    Abhold, M E

    2002-01-01

    The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo code developed at Los Alamos National Laboratory, Monte Carlo N-Particle (MCNP), was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP-Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program, predicts neutron detector response without using the point reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of mixed oxide fresh fuel w...

  1. A fast, automated, semideterministic weight windows generator for MCNP

    International Nuclear Information System (INIS)

    Mickael, M.W.

    1995-01-01

    A fast automated method is developed to estimate particle importance in the Los Alamos Carlo code MCNP. It provides an automated and efficient way of predicting and setting up an important map for the weight windows technique. A short analog simulation is first performed to obtain effective group parameters based on the input description of the problem. A solution of the multigroup time-dependent adjoint diffusion equation is then used to estimate particle importance. At any point in space, time, and energy, the particle importance is determined, based on the calculated parameters, and used as the lower limit of the weight window. The method has been tested for neutron, photon, and coupled neutron-photon problems. Significant improvement in the simulation efficiency is obtained using this technique at no additional computer time and with no prior knowledge of the nature of the problem. Moreover, time and angular importance that are not available yet in MCNP are easily implemented in this method

  2. S values at voxels level for 188Re and 90Y calculated with the MCNP-4C code

    International Nuclear Information System (INIS)

    Coca, M.A.; Torres, L.A.; Cornejo, N.; Martin, G.

    2008-01-01

    Full text: MIRD formalism at voxel level has been suggested as an optional methodology to perform internal radiation dosimetry calculation during internal radiation therapy in Nuclear Medicine. Voxel S values for Y 90 , 131 I, 32 P, 99m Tc and 89 Sr have been published to different sizes. Currently, 188 Re has been proposed as a promising radionuclide for therapy due to its physical features and availability from generators. The main objective of this work was to estimate the voxel S values for 188 Re at cubical geometry using the MCNP-4C code for the simulations of radiation transport and energy deposition. Mean absorbed dose to target voxels per radioactive decay in a source voxel were estimated and reported for 188 Re and Y 90 . A comparison of voxel S values computed with the MCNP code and the data reported in MIRD Pamphlet 17 for 90 Y was performed in order to evaluate our results. (author)

  3. Performance of scientific computing platforms with MCNP4B

    International Nuclear Information System (INIS)

    McLaughlin, H.E.; Hendricks, J.S.

    1998-01-01

    Several computing platforms were evaluated with the MCNP4B Monte Carlo radiation transport code. The DEC AlphaStation 500/500 was the fastest to run MCNP4B. Compared to the HP 9000-735, the fastest platform 4 yr ago, the AlphaStation is 335% faster, the HP C180 is 133% faster, the SGI Origin 2000 is 82% faster, the Cray T94/4128 is 1% faster, the IBM RS/6000-590 is 93% as fast, the DEC 3000/600 is 81% as fast, the Sun Sparc20 is 57% as fast, the Cray YMP 8/8128 is 57% as fast, the sun Sparc5 is 33% as fast, and the Sun Sparc2 is 13% as fast. All results presented are reproducible and allow for comparison to computer platforms not included in this study. Timing studies are seen to be very problem dependent. The performance gains resulting from advances in software were also investigated. Various compilers and operating systems were seen to have a modest impact on performance, whereas hardware improvements have resulted in a factor of 4 improvement. MCNP4B also ran approximately as fast as MCNP4A

  4. MCNP trademark Software Quality Assurance plan

    International Nuclear Information System (INIS)

    Abhold, H.M.; Hendricks, J.S.

    1996-04-01

    MCNP is a computer code that models the interaction of radiation with matter. MCNP is developed and maintained by the Transport Methods Group (XTM) of the Los Alamos National Laboratory (LANL). This plan describes the Software Quality Assurance (SQA) program applied to the code. The SQA program is consistent with the requirements of IEEE-730.1 and the guiding principles of ISO 900

  5. How to Build MCNP 6.2

    Energy Technology Data Exchange (ETDEWEB)

    Bull, Jeffrey S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-13

    This presentation describes how to build MCNP 6.2. MCNP®* 6.2 can be compiled on Macs, PCs, and most Linux systems. It can also be built for parallel execution using both OpenMP and Messing Passing Interface (MPI) methods. MCNP6 requires Fortran, C, and C++ compilers to build the code.

  6. Status Report on the MCNP 2020 Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-02

    The discussion below provides a status report on the MCNP 2020 initiative. It includes discussion of the history of MCNP 2020, accomplishments during 2013-17, priorities for near-term development, other related efforts, a brief summary, and a list of references for the plans and work accomplished.

  7. Status of electron transport in MCNP trademark

    International Nuclear Information System (INIS)

    Hughes, H.G.

    1997-01-01

    The latest version of MCNP, the Los Alamos Monte Carlo transport code, has now been officially released. MCNP4B has been sent to the Radiation Safety Information Computational Center (RSICC), in Oak Ridge, Tennessee, which is responsible for the further distribution of the code within the US. International distribution of MCNP is done by the Nuclear Energy Agency (ECD/NEA), in Paris, France. Readers with access to the World-Wide-Web should consult the MCNP distribution site http://www-xdiv.lanl.gov/XTM/mcnp/about.html for specific information about contacting RSICC and OECD/NEA. A variety of new features are available in MCNP4B. Among these are differential operator perturbations, cross-section plotting capabilities, enhanced diagnostics for transport in repeated structures and lattices, improved efficiency in distributed-memory multiprocessing, corrected particle lifetime and lifespan estimators, and expanded software quality assurance procedures and testing, including testing of the multigroup Boltzmann-Fokker-Planck capability. New and improved cross section sets in the form of ENDF/B-VI evaluations have also been recently released and can be used in MCNP4B. Perhaps most significant for the interests of this special session, the electron transport algorithm has been improved, especially in the collisional energy-loss straggling and the angular-deflection treatments. In this paper, the author concentrates on a fairly complete documentation of the current status of the electron transport methods in MCNP

  8. Development of MCNP interface code in HFETR

    International Nuclear Information System (INIS)

    Qiu Liqing; Fu Rong; Deng Caiyu

    2007-01-01

    In order to describe the HFETR core with MCNP method, the interface code MCNPIP for HFETR and MCNP code is developed. This paper introduces the core DXSY and flowchart of MCNPIP code, and the handling of compositions of fuel elements and requirements on hardware and software. Finally, MCNPIP code is validated against the practical application. (authors)

  9. First results from simulations of supersymmetric lattices

    Science.gov (United States)

    Catterall, Simon

    2009-01-01

    We conduct the first numerical simulations of lattice theories with exact supersymmetry arising from the orbifold constructions of \\cite{Cohen:2003xe,Cohen:2003qw,Kaplan:2005ta}. We consider the Script Q = 4 theory in D = 0,2 dimensions and the Script Q = 16 theory in D = 0,2,4 dimensions. We show that the U(N) theories do not possess vacua which are stable non-perturbatively, but that this problem can be circumvented after truncation to SU(N). We measure the distribution of scalar field eigenvalues, the spectrum of the fermion operator and the phase of the Pfaffian arising after integration over the fermions. We monitor supersymmetry breaking effects by measuring a simple Ward identity. Our results indicate that simulations of Script N = 4 super Yang-Mills may be achievable in the near future.

  10. MCNP4A: Features and philosophy

    International Nuclear Information System (INIS)

    Hendricks, J.S.

    1993-01-01

    This paper describes MCNP, states its philosophy, introduces a number of new features becoming available with version MCNP4A, and answers a number of questions asked by participants in the workshop. MCNP is a general-purpose three-dimensional neutron, photon and electron transport code. Its philosophy is ''Quality, Value and New Features.'' Quality is exemplified by new software quality assurance practices and a program of benchmarking against experiments. Value includes a strong emphasis on documentation and code portability. New features are the third priority. MCNP4A is now available at Los Alamos. New features in MCNP4A include enhanced statistical analysis, distributed processor multitasking, new photon libraries, ENDF/B-VI capabilities, X-Windows graphics, dynamic memory allocation, expanded criticality output, periodic boundaries, plotting of particle tracks via SABRINA, and many other improvements. 23 refs

  11. Comparison of EGS4 and MCNP Monte Carlo codes when calculating radiotherapy depth doses.

    Science.gov (United States)

    Love, P A; Lewis, D G; Al-Affan, I A; Smith, C W

    1998-05-01

    The Monte Carlo codes EGS4 and MCNP have been compared when calculating radiotherapy depth doses in water. The aims of the work were to study (i) the differences between calculated depth doses in water for a range of monoenergetic photon energies and (ii) the relative efficiency of the two codes for different electron transport energy cut-offs. The depth doses from the two codes agree with each other within the statistical uncertainties of the calculations (1-2%). The relative depth doses also agree with data tabulated in the British Journal of Radiology Supplement 25. A discrepancy in the dose build-up region may by attributed to the different electron transport algorithims used by EGS4 and MCNP. This discrepancy is considerably reduced when the improved electron transport routines are used in the latest (4B) version of MCNP. Timing calculations show that EGS4 is at least 50% faster than MCNP for the geometries used in the simulations.

  12. Preliminary evaluation of pin power distribution for fuel assemblies of SMART by MCNP

    International Nuclear Information System (INIS)

    Kim, Kyo Youn

    1998-08-01

    Monte Carlo transport code MCNP can describe an object sophisticately by use of three-dimensional modelling and can adopt a continuous energy cross-section library. Therefore MCNP has been widely utilized in the field of radiation physics to estimate fluxes and dose rates for nuclear facilities and to review results from conventional methods such a as discrete ordinates method and point kernel method. The Monte Carlo method has recently been introduced to estimated the neutron multiplication factor and pin power distribution in the fuel assembly of a reactor core. The operating thermal power of SMART core is 330 MWt and there are 57 fuel assemblies in the core. In this study it was assumed that the core has 4 types of fuel assemblies. In this study, MCNP4a was used to perform to estimate criticality and normalized pin power distribution in a fuel assembly of SMART core. The results from MCNP4a calculations are able to be used review those from nuclear design/analysis code. It is very complicated to pick up interested data from MCNP output list and to normalize pin power distribution in a fuel assembly because MCNP is not only a nuclear design/analysis code. In this study a program FAPIN was developed to generated a generate a normalized pin power distribution from the MCNP output list. (author). 11 refs

  13. Electron/Photon Verification Calculations Using MCNP4B

    Energy Technology Data Exchange (ETDEWEB)

    D. P. Gierga; K. J. Adams

    1999-04-01

    MCNP4BW was released in February 1997 with significant enhancements to electron/photon transport methods. These enhancements have been verified against a wide range of published electron/photon experiments, spanning high energy bremsstrahlung production to electron transmission and reflection. The impact of several MCNP tally options and physics parameters was explored in detail. The agreement between experiment and simulation was usually within two standard deviations of the experimental and calculational errors. Furthermore, sub-step artifacts for bremsstrahlung production were shown to be mitigated. A detailed suite of electron depth dose calculations in water is also presented. Areas for future code development have also been explored and include the dependence of cell and detector tallies on different bremsstrahlung angular models and alternative variance reduction splitting schemes for bremsstrahlung production.

  14. A DRAGON-MCNP comparison of void reactivity calculations

    Energy Technology Data Exchange (ETDEWEB)

    Marleau, G [Ecole Polytechnique, Montreal, PQ (Canada). Inst. de Genie Nucleaire; Milgram, M S [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    The determination of the reactivity coefficients associated with coolant voiding in a CANDU reactor is a subject which has attracted a large amount of interest in the last few years both from the theoretical and experimental point of view. One expects that deterministic codes such as DRAGON and WIMS-AECL or the MCNP4 Monte Carlo code should be able to adequately simulate the cell behaviour upon coolant voiding. However, the absence of an experimental database at equilibrium and discharge burnups has not permitted the full validation of any of these lattice codes, although a partial validation through comparison of two different computer codes has been considered. Here we present a comparison between DRAGON and MCNP4 of the void reactivity evaluation for fresh fuel. (author). 16 refs., 5 tabs.

  15. A DRAGON-MCNP comparison of void reactivity calculations

    International Nuclear Information System (INIS)

    Marleau, G.

    1995-01-01

    The determination of the reactivity coefficients associated with coolant voiding in a CANDU reactor is a subject which has attracted a large amount of interest in the last few years both from the theoretical and experimental point of view. One expects that deterministic codes such as DRAGON and WIMS-AECL or the MCNP4 Monte Carlo code should be able to adequately simulate the cell behaviour upon coolant voiding. However, the absence of an experimental database at equilibrium and discharge burnups has not permitted the full validation of any of these lattice codes, although a partial validation through comparison of two different computer codes has been considered. Here we present a comparison between DRAGON and MCNP4 of the void reactivity evaluation for fresh fuel. (author). 16 refs., 5 tabs

  16. MCNP6 fragmentation of light nuclei at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Mashnik, Stepan G., E-mail: mashnik@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Kerby, Leslie M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); University of Idaho, Moscow, ID 83844 (United States)

    2014-11-11

    Fragmentation reactions induced on light target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the latest Los Alamos Monte Carlo transport code MCNP6 and with its cascade-exciton model (CEM) and Los Alamos version of the quark-gluon string model (LAQGSM) event generators, version 03.03, used as stand-alone codes. Such reactions are involved in different applications, like cosmic-ray-induced single event upsets (SEU's), radiation protection, and cancer therapy with proton and ion beams, among others; therefore, it is important that MCNP6 simulates them as well as possible. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. Both CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to {sup 4}He from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes.

  17. Verification and Validation of Monte Carlo n-Particle Code 6 (MCNP6) with Neutron Protection Factor Measurements of an Iron Box

    Science.gov (United States)

    2014-03-27

    Vehicle Code System (VCS), the Monte Carlo Adjoint SHielding (MASH), and the Monte Carlo n- Particle ( MCNP ) code. Of the three, the oldest and still most...widely utilized radiation transport code is MCNP . First created at Los Alamos National Laboratory (LANL) in 1957, the code simulated neutral...particle types, and previous versions of MCNP were repeatedly validated using both simple and complex 10 geometries [12, 13]. Much greater discussion and

  18. Impact of MCNP Unresolved Resonance Probability-Table Treatment on Uranium and Plutonium Benchmarks

    International Nuclear Information System (INIS)

    Mosteller, R.D.; Little, R.C.

    1999-01-01

    A probability-table treatment recently has been incorporated into an intermediate version of the MCNP Monte Carlo code named MCNP4XS. This paper presents MCNP4XS results for a variety of uranium and plutonium criticality benchmarks, calculated with and without the probability-table treatment. It is shown that the probability-table treatment can produce small but significant reactivity changes for plutonium and 233 U systems with intermediate spectra. More importantly, it can produce substantial reactivity increases for systems with large amounts of 238 U and intermediate spectra

  19. MCNP(TM) Release 6.1.1 beta: Creating and Testing the Code Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Lawrence J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Casswell, Laura [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-06-12

    This report documents the preparations for and testing of the production release of MCNP6™1.1 beta through RSICC at ORNL. It addresses tests on supported operating systems (Linux, MacOSX, Windows) with the supported compilers (Intel, Portland Group and gfortran). Verification and Validation test results are documented elsewhere. This report does not address in detail the overall packaging of the distribution. Specifically, it does not address the nuclear and atomic data collection, the other included software packages (MCNP5, MCNPX and MCNP6) and the collection of reference documents.

  20. MCNP Perturbation Capability for Monte Carlo Criticality Calculations

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Carter, L.L.; McKinney, G.W.

    1999-01-01

    The differential operator perturbation capability in MCNP4B has been extended to automatically calculate perturbation estimates for the track length estimate of k eff in MCNP4B. The additional corrections required in certain cases for MCNP4B are no longer needed. Calculating the effect of small design changes on the criticality of nuclear systems with MCNP is now straightforward

  1. Medical Simulation Practices 2010 Survey Results

    Science.gov (United States)

    McCrindle, Jeffrey J.

    2011-01-01

    Medical Simulation Centers are an essential component of our learning infrastructure to prepare doctors and nurses for their careers. Unlike the military and aerospace simulation industry, very little has been published regarding the best practices currently in use within medical simulation centers. This survey attempts to provide insight into the current simulation practices at medical schools, hospitals, university nursing programs and community college nursing programs. Students within the MBA program at Saint Joseph's University conducted a survey of medical simulation practices during the summer 2010 semester. A total of 115 institutions responded to the survey. The survey resus discuss overall effectiveness of current simulation centers as well as the tools and techniques used to conduct the simulation activity

  2. Development of an interface between MCNP and ORIGEN codes for calculations of fuel evolution in nuclear systems. Initial project

    International Nuclear Information System (INIS)

    Campolina, Daniel de Almeida Magalhaes

    2009-01-01

    In Many situations of nuclear system study, it is necessary to know the detailed particle flux in a geometry. Deterministic 1-D and 2-D methods aren't suitable to represent some strong 3-D behavior configurations, for example in cores where the neutron flux varies considerably in the space and Monte Carlo analysis are necessary. The majority of Monte Carlo transport calculation codes, performs time static simulations, in terms of fuel isotopic composition. This work is a initial project to incorporate depletion capability to the MCNP code, by means of a connection with ORIGEN2.1 burnup code. The method to develop the program proposed followed the methodology of other programs used to the same purpose. Essentially, MCNP data library are used to generate one group microscopic cross sections that override default ORIGEN libraries. To verify the actual implemented part, comparisons which MCNPX (version 2.6.0) results were made. The neutron flux and criticality value of core agree. The neutron flux and criticality value of the core agree, especially in beginning of burnup when the influence of fission products are not very considerable. The small difference encountered was probably caused by the difference in the number of isotopes considered in the transport models (89 MCNPX x 25 GB). Next step of this work is to adapt MCNP version 4C to work with a memory higher than its standard value (4MB), in order to allow a greater number of isotopes in the transport model. (author)

  3. Extensions of the MCNP5 and TRIPOLI4 Monte Carlo Codes for Transient Reactor Analysis

    Science.gov (United States)

    Hoogenboom, J. Eduard; Sjenitzer, Bart L.

    2014-06-01

    To simulate reactor transients for safety analysis with the Monte Carlo method the generation and decay of delayed neutron precursors is implemented in the MCNP5 and TRIPOLI4 general purpose Monte Carlo codes. Important new variance reduction techniques like forced decay of precursors in each time interval and the branchless collision method are included to obtain reasonable statistics for the power production per time interval. For simulation of practical reactor transients also the feedback effect from the thermal-hydraulics must be included. This requires coupling of the Monte Carlo code with a thermal-hydraulics (TH) code, providing the temperature distribution in the reactor, which affects the neutron transport via the cross section data. The TH code also provides the coolant density distribution in the reactor, directly influencing the neutron transport. Different techniques for this coupling are discussed. As a demonstration a 3x3 mini fuel assembly with a moving control rod is considered for MCNP5 and a mini core existing of 3x3 PWR fuel assemblies with control rods and burnable poisons for TRIPOLI4. Results are shown for reactor transients due to control rod movement or withdrawal. The TRIPOLI4 transient calculation is started at low power and includes thermal-hydraulic feedback. The power rises about 10 decades and finally stabilises the reactor power at a much higher level than initial. The examples demonstrate that the modified Monte Carlo codes are capable of performing correct transient calculations, taking into account all geometrical and cross section detail.

  4. A Monte-Carlo Benchmark of TRIPOLI-4® and MCNP on ITER neutronics

    Science.gov (United States)

    Blanchet, David; Pénéliau, Yannick; Eschbach, Romain; Fontaine, Bruno; Cantone, Bruno; Ferlet, Marc; Gauthier, Eric; Guillon, Christophe; Letellier, Laurent; Proust, Maxime; Mota, Fernando; Palermo, Iole; Rios, Luis; Guern, Frédéric Le; Kocan, Martin; Reichle, Roger

    2017-09-01

    Radiation protection and shielding studies are often based on the extensive use of 3D Monte-Carlo neutron and photon transport simulations. ITER organization hence recommends the use of MCNP-5 code (version 1.60), in association with the FENDL-2.1 neutron cross section data library, specifically dedicated to fusion applications. The MCNP reference model of the ITER tokamak, the `C-lite', is being continuously developed and improved. This article proposes to develop an alternative model, equivalent to the 'C-lite', but for the Monte-Carlo code TRIPOLI-4®. A benchmark study is defined to test this new model. Since one of the most critical areas for ITER neutronics analysis concerns the assessment of radiation levels and Shutdown Dose Rates (SDDR) behind the Equatorial Port Plugs (EPP), the benchmark is conducted to compare the neutron flux through the EPP. This problem is quite challenging with regard to the complex geometry and considering the important neutron flux attenuation ranging from 1014 down to 108 n•cm-2•s-1. Such code-to-code comparison provides independent validation of the Monte-Carlo simulations, improving the confidence in neutronic results.

  5. Practice of calculation of neutron-physical characteristics of reactors and radiating shielding in structure SNPS with program complex MCNP

    International Nuclear Information System (INIS)

    Krotov, A.D.; Son'ko, A.V.

    2009-01-01

    Calculation of neutron-physical properties and radiation protection of space power reactor was made by means of the MCNP code allowing simulation of neutron, γ- and electron transport by the Monte Carlo method in the systems with combined geometry. Universality of the MCNP code has been demonstrated both for the calculation of reactor-converter so for the optimization of radiation protection that allows to reserve a new level of complex simulation of SNPS [ru

  6. NaI(Tl) detectors modeling in MCNP-X and Gate/Geant4 codes

    Energy Technology Data Exchange (ETDEWEB)

    Affonso, Renato Raoni Werneck; Silva, Ademir Xavier da, E-mail: raoniwa@yahoo.com.br, E-mail: ademir@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Salgado, Cesar Marques, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    NaI (Tl) detectors are widely used in gamma-ray densitometry, but their modeling in Monte Carlo codes, such as MCNP-X and Gate/Geant4, needs a lot of work and does not yield comparable results with experimental arrangements, possibly due to non-simulated physical phenomena, such as light transport within the scintillator. Therefore, it is necessary a methodology that positively impacts the results of the simulations while maintaining the real dimensions of the detectors and other objects to allow validating a modeling that matches up with the experimental arrangement. Thus, the objective of this paper is to present the studies conducted with the MCNPX and Gate/Geant4 codes, in which the comparisons of their results were satisfactory, showing that both can be used for the same purposes. (author)

  7. MCNP-based computational model for the Leksell gamma knife.

    Science.gov (United States)

    Trnka, Jiri; Novotny, Josef; Kluson, Jaroslav

    2007-01-01

    We have focused on the usage of MCNP code for calculation of Gamma Knife radiation field parameters with a homogenous polystyrene phantom. We have investigated several parameters of the Leksell Gamma Knife radiation field and compared the results with other studies based on EGS4 and PENELOPE code as well as the Leksell Gamma Knife treatment planning system Leksell GammaPlan (LGP). The current model describes all 201 radiation beams together and simulates all the sources in the same time. Within each beam, it considers the technical construction of the source, the source holder, collimator system, the spherical phantom, and surrounding material. We have calculated output factors for various sizes of scoring volumes, relative dose distributions along basic planes including linear dose profiles, integral doses in various volumes, and differential dose volume histograms. All the parameters have been calculated for each collimator size and for the isocentric configuration of the phantom. We have found the calculated output factors to be in agreement with other authors' works except the case of 4 mm collimator size, where averaging over the scoring volume and statistical uncertainties strongly influences the calculated results. In general, all the results are dependent on the choice of the scoring volume. The calculated linear dose profiles and relative dose distributions also match independent studies and the Leksell GammaPlan, but care must be taken about the fluctuations within the plateau, which can influence the normalization, and accuracy in determining the isocenter position, which is important for comparing different dose profiles. The calculated differential dose volume histograms and integral doses have been compared with data provided by the Leksell GammaPlan. The dose volume histograms are in good agreement as well as integral doses calculated in small calculation matrix volumes. However, deviations in integral doses up to 50% can be observed for large

  8. Analysis of parallel computing performance of the code MCNP

    International Nuclear Information System (INIS)

    Wang Lei; Wang Kan; Yu Ganglin

    2006-01-01

    Parallel computing can reduce the running time of the code MCNP effectively. With the MPI message transmitting software, MCNP5 can achieve its parallel computing on PC cluster with Windows operating system. Parallel computing performance of MCNP is influenced by factors such as the type, the complexity level and the parameter configuration of the computing problem. This paper analyzes the parallel computing performance of MCNP regarding with these factors and gives measures to improve the MCNP parallel computing performance. (authors)

  9. Feasibility and its characteristics of CO2 laser micromachining-based PMMA anti-scattering grid estimated by MCNP code simulation.

    Science.gov (United States)

    Bae, Jun Woo; Kim, Hee Reyoung

    2018-01-01

    Anti-scattering grid has been used to improve the image quality. However, applying a commonly used linear or parallel grid would cause image distortion, and focusing grid also requires a precise fabrication technology, which is expensive. To investigate and analyze whether using CO2 laser micromachining-based PMMA anti-scattering grid can improve the performance of the grid at a lower cost. Thus, improvement of grid performance would result in improvement of image quality. The cross-sectional shape of CO2 laser machined PMMA is similar to alphabet 'V'. The performance was characterized by contrast improvement factor (CIF) and Bucky. Four types of grid were tested, which include thin parallel, thick parallel, 'V'-type and 'inverse V'-type of grid. For a Bucky factor of 2.1, the CIF of the grid with both the "V" and inverse "V" had a value of 1.53, while the thick and thick parallel types had values of 1.43 and 1.65, respectively. The 'V' shape grid manufacture by CO2 laser micromachining showed higher CIF than parallel one, which had same shielding material channel width. It was thought that the 'V' shape grid would be replacement to the conventional parallel grid if it is hard to fabricate the high-aspect-ratio grid.

  10. MatMCNP: A Code for Producing Material Cards for MCNP

    Energy Technology Data Exchange (ETDEWEB)

    DePriest, Kendall Russell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Saavedra, Karen C. [American Structurepoint, Inc., Indianapolis, IN (United States)

    2014-09-01

    A code for generating MCNP material cards (MatMCNP) has been written and verified for naturally occurring, stable isotopes. The program allows for material specification as either atomic or weight percent (fractions). MatMCNP also permits the specification of enriched lithium, boron, and/or uranium. In addition to producing the material cards for MCNP, the code calculates the atomic (or number) density in atoms/barn-cm as well as the multiplier that should be used to convert neutron and gamma fluences into dose in the material specified.

  11. LEU-fueled SLOWPOKE-2 modelling with MCNP4A

    International Nuclear Information System (INIS)

    Pierre, J.R.M.; Bonin, H.W.J.

    1996-01-01

    Following the commissioning of the Low Enrichment Uranium (LEU) Fueled SLOWPOKE-2 research reactor at Royal Military College,excess reactivity measurements were conducted over a range of temperature and power. Given the advance in computer technology, the use of Monte Carlo N-Particle Transport Code System MCNP 4A appeared possible for the simulation of the LEU-fueled SLOWPOKE-2 reactor core, and this work demonstrates that this is indeed the case. MCNP 4A is a full three dimensional program allowing the user to enter a large amount of complexity. The limit on the geometry complexity is the computing time required to achieve a reasonable standard deviation. To this point several models of the SLOWPOKE-2 have been developed giving some insight on the sensitivity of the code. MCNP4A can use various cross section libraries. The aim of this work is to calculate accurately the reactivity of the core and reproduce The temperature trend of the reactivity. The model preserved as much as possible the details of the core and facility in order to allow further study in the flux mapping

  12. MCNP application for the 21 century

    International Nuclear Information System (INIS)

    McKinney, G.W.

    2000-01-01

    The Los Alamos National Laboratory (LANL) Monte Carlo N-Particle radiation transport code, MCNP, has become an international standard for a wide spectrum of neutron, photon, and electron radiation transport applications. The latest version of the code, MCNP 4C, was released to the Radiation Safety Information Computational Center (RSICC) in February 2000. This paper describes the code development philosophy, new features and capabilities, applicability to various problems, and future directions

  13. Neutron-induced photon production in MCNP

    International Nuclear Information System (INIS)

    Little, R.C.; Seamon, R.E.

    1983-01-01

    An improved method of neutron-induced photon production has been incorporated into the Monte Carlo transport code MCNP. The new method makes use of all partial photon-production reaction data provided by ENDF/B evaluators including photon-production cross sections as well as energy and angular distributions of secondary photons. This faithful utilization of sophisticated ENDF/B evaluations allows more precise MCNP calculations for several classes of coupled neutron-photon problems

  14. Criticality calculations with MCNP trademark: A primer

    International Nuclear Information System (INIS)

    Harmon, C.D. II; Busch, R.D.; Briesmeister, J.F.; Forster, R.A.

    1994-01-01

    With the closure of many experimental facilities, the nuclear criticality safety analyst increasingly is required to rely on computer calculations to identify safe limits for the handling and storage of fissile materials. However, in many cases, the analyst has little experience with the specific codes available at his/her facility. This primer will help you, the analyst, understand and use the MCNP Monte Carlo code for nuclear criticality safety analyses. It assumes that you have a college education in a technical field. There is no assumption of familiarity with Monte Carlo codes in general or with MCNP in particular. Appendix A gives an introduction to Monte Carlo techniques. The primer is designed to teach by example, with each example illustrating two or three features of MCNP that are useful in criticality analyses. Beginning with a Quickstart chapter, the primer gives an overview of the basic requirements for MCNP input and allows you to run a simple criticality problem with MCNP. This chapter is not designed to explain either the input or the MCNP options in detail; but rather it introduces basic concepts that are further explained in following chapters. Each chapter begins with a list of basic objectives that identify the goal of the chapter, and a list of the individual MCNP features that are covered in detail in the unique chapter example problems. It is expected that on completion of the primer you will be comfortable using MCNP in criticality calculations and will be capable of handling 80 to 90 percent of the situations that normally arise in a facility. The primer provides a set of basic input files that you can selectively modify to fit the particular problem at hand

  15. Saltstone Matrix Characterization And Stadium Simulation Results

    International Nuclear Information System (INIS)

    Langton, C.

    2009-01-01

    SIMCO Technologies, Inc. was contracted to evaluate the durability of the saltstone matrix material and to measure saltstone transport properties. This information will be used to: (1) Parameterize the STADIUM(reg s ign) service life code, (2) Predict the leach rate (degradation rate) for the saltstone matrix over 10,000 years using the STADIUM(reg s ign) concrete service life code, and (3) Validate the modeled results by conducting leaching (water immersion) tests. Saltstone durability for this evaluation is limited to changes in the matrix itself and does not include changes in the chemical speciation of the contaminants in the saltstone. This report summarized results obtained to date which include: characterization data for saltstone cured up to 365 days and characterization of saltstone cured for 137 days and immersed in water for 31 days. Chemicals for preparing simulated non-radioactive salt solution were obtained from chemical suppliers. The saltstone slurry was mixed according to directions provided by SRNL. However SIMCO Technologies Inc. personnel made a mistake in the premix proportions. The formulation SIMCO personnel used to prepare saltstone premix was not the reference mix proportions: 45 wt% slag, 45 wt% fly ash, and 10 wt% cement. SIMCO Technologies Inc. personnel used the following proportions: 21 wt% slag, 65 wt% fly ash, and 14 wt% cement. The mistake was acknowledged and new mixes have been prepared and are curing. The results presented in this report are assumed to be conservative since the excessive fly ash was used in the SIMCO saltstone. The SIMCO mixes are low in slag which is very reactive in the caustic salt solution. The impact is that the results presented in this report are expected to be conservative since the samples prepared were deficient in slag and contained excess fly ash. The hydraulic reactivity of slag is about four times that of fly ash so the amount of hydrated binder formed per unit volume in the SIMCO saltstone samples

  16. MCNP-REN: a Monte Carlo tool for neutron detector design

    International Nuclear Information System (INIS)

    Abhold, M.E.; Baker, M.C.

    2002-01-01

    The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo code developed at Los Alamos National Laboratory, Monte Carlo N-Particle (MCNP), was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP-Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program, predicts neutron detector response without using the point reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of mixed oxide fresh fuel were taken with the Underwater Coincidence Counter, and measurements of highly enriched uranium reactor fuel were taken with the active neutron interrogation Research Reactor Fuel Counter and compared to calculation. Simulations completed for other detector design applications are described. The method used in MCNP-REN is demonstrated to be fundamentally sound and shown to eliminate the need to use the point model for detector performance predictions

  17. SU-E-T-521: Investigation of the Uncertainties Involved in Secondary Neutron/gamma Production in Geant4/MCNP6 Monte Carlo Codes for Proton Therapy Application

    International Nuclear Information System (INIS)

    Mirzakhanian, L; Enger, S; Giusti, V

    2015-01-01

    Purpose: A major concern in proton therapy is the production of secondary neutrons causing secondary cancers, especially in young adults and children. Most utilized Monte Carlo codes in proton therapy are Geant4 and MCNP. However, the default versions of Geant4 and MCNP6 do not have suitable cross sections or physical models to properly handle secondary particle production in proton energy ranges used for therapy. In this study, default versions of Geant4 and MCNP6 were modified to better handle production of secondaries by adding the TENDL-2012 cross-section library. Methods: In-water proton depth-dose was measured at the “The Svedberg Laboratory” in Uppsala (Sweden). The proton beam was mono-energetic with mean energy of 178.25±0.2 MeV. The measurement set-up was simulated by Geant4 version 10.00 (default and modified version) and MCNP6. Proton depth-dose, primary and secondary particle fluence and neutron equivalent dose were calculated. In case of Geant4, the secondary particle fluence was filtered by all the physics processes to identify the main process responsible for the difference between the default and modified version. Results: The proton depth-dose curves and primary proton fluence show a good agreement between both Geant4 versions and MCNP6. With respect to the modified version, default Geant4 underestimates the production of secondary neutrons while overestimates that of gammas. The “ProtonInElastic” process was identified as the main responsible process for the difference between the two versions. MCNP6 shows higher neutron production and lower gamma production than both Geant4 versions. Conclusion: Despite the good agreement on the proton depth dose curve and primary proton fluence, there is a significant discrepancy on secondary neutron production between MCNP6 and both versions of Geant4. Further studies are thus in order to find the possible cause of this discrepancy or more accurate cross-sections/models to handle the nuclear

  18. Photopeak efficiency response function of an underwater gamma-ray NaI(Tl) detector using MCNP-X

    International Nuclear Information System (INIS)

    Salgado, William L.; Silva, Ademir X.; Salgado, Cesar M.

    2015-01-01

    This work presents a study to calculate the response function of a 1.5″ x 1″ NaI(Tl) scintillation detector when it is used in the marine environment in the energy range from 20 keV to 662 keV. The method takes into account both the scattering of photons in the water and the detection mechanism of the detector. In addition, the calculation of the response function of the whole system is essential for suppressing the background of the measurement and for estimating the concentration of the involved radionuclides, especially given the greater probability of primary gamma photons undergoing multiple scattering events before they interact with the detector. The experimental photopeak efficiency measurements for point sources were compared with the simulated results under the same conditions of the experimental setup to validate the simulation of the detector. Monte Carlo simulations were performed using the MCNP-X code for the investigation of gamma-ray absorption in water in different brines. The energy resolution curve was used to improve the response of the mathematical simulation of the detector. The detector’s simulation was based on information obtained from the gammagraphy technique. Both dimensions and materials were used for the calculation with the MCNP-X code. The photopeak efficiency of a NaI(Tl) detector for different radionuclides in the aquatic environment with different salinities was calculated. (author)

  19. Dosimetry analysis of distributions radials dose profiles of {sup 90}Sr + {sup 90}Y beta therapy applicators using the MCNP-4C code and radio chromium films; Analise dosimetrica de perfis de distribuicoes radias de doses relativas de um aplicador de betaterapia de {sup 90}Sr + {sup 90}Y utilizando o codigo MCNP-4C e filmes radiocromicos

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Talita S.; Yoriyaz, Helio [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Fernandes, Marco A.R., E-mail: tasallesc@gmail.co [UNESP, Botucatu, SP (Brazil). Faculdade de Medicina. Servico de Radioterapia; Louzada, Mario J.Q. [UNESP, Aracatuba, SP (Brazil). Curso de Medicina Veterinaria

    2011-07-01

    Although they are no longer manufactured, the applicators of {sup 90}Sr + {sup 90}Y acquired in the decades of 1990 are still in use, by having half-life of 28.5 years. These applicators have calibration certificate given by their manufacturers, where few have been re calibrated. Thus it becomes necessary to accomplish thorough dosimetry of these applicators. This paper presents a dosimetric analysis distribution radial dose profiles for emitted by an {sup 90}Sr + {sup 90}Y beta therapy applicator, using the MCNP-4C code to simulate the distribution radial dose profiles and radio chromium films to get them experimentally . The results with the simulated values were compared with the results of experimental measurements, where both curves show similar behavior, which may validate the use of MCNP-4C and radio chromium films for this type of dosimetry. (author)

  20. Dosimetry analysis of distribution radial dose profiles of {sup 90}Sr + {sup 90}Y beta therapy applicators using the MCNP-4C code and radio chromium films; Analise dosimetrica de perfis de distribuicoes radiais de doses relativas de um aplicador de betaterapia de {sup 90}Sr + {sup 90}Y utilizando o codigo MCNP-4C e filmes radiocromicos

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, T.S.; Yoriyaz, H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Fernandes, M.A.R. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Fac. de Medicina. Servico de Radioterapia; Louzada, M.J.Q. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Aracatuba, SP (Brazil). Curso de Medicina Veterinaria

    2010-07-01

    Although they are no longer manufactured, the applicators of {sup 90}Sr +{sup 90}Y acquired in the decades of 1990 are still in use, by having half-life of 28.5 years. These applicators have calibration certificate given by their manufacturers, where few have been recalibrated. Thus it becomes necessary to accomplish thorough dosimetry of these applicators. This paper presents a dosimetric analysis distribution radial dose profiles for emitted by an {sup 90}Sr+{sup 90}Y beta therapy applicator, using the MCNP-4C code to simulate the distribution radial dose profiles and radiochromium films to get them experimentally . The results with the simulated values were compared with the results of experimental measurements, where both curves show similar behavior, which may validate the use of MCNP-4C and radiochromium films for this type of dosimetry. (author)

  1. Calculation of the X-Ray Spectrum of a Mammography System with Various Voltages and Different Anode-Filter Combinations Using MCNP Code

    Directory of Open Access Journals (Sweden)

    Lida Gholamkar

    2016-09-01

    Full Text Available Introduction One of the best methods in the diagnosis and control of breast cancer is mammography. The importance of mammography is directly related to its value in the detection of breast cancer in the early stages, which leads to a more effective treatment. The purpose of this article was to calculate the X-ray spectrum in a mammography system with Monte Carlo codes, including MCNPX and MCNP5. Materials and Methods The device, simulated using the MCNP code, was Planmed Nuance digital mammography device (Planmed Oy, Finland, equipped with an amorphous selenium detector. Different anode/filter materials, such as molybdenum-rhodium (Mo-Rh, molybdenum-molybdenum (Mo-Mo, tungsten-tin (W-Sn, tungsten-silver (W-Ag, tungsten-palladium (W-Pd, tungsten-aluminum (W-Al, tungsten-molybdenum (W-Mo, molybdenum-aluminum (Mo-Al, tungsten-rhodium (W-Rh, rhodium-aluminum (Rh-Al, and rhodium-rhodium (Rh-Rh, were simulated in this study. The voltage range of the X-ray tube was between 24 and 34 kV with a 2 kV interval. Results The charts of changing photon flux versus energy were plotted for different types of anode-filter combinations. The comparison with the findings reported by others indicated acceptable consistency. Also, the X-ray spectra, obtained from MCNP5 and MCNPX codes for W-Ag and W-Rh combinations, were compared. We compared the present results with the reported data of MCNP4C and IPEM report No. 78 for Mo-Mo, Mo-Rh, and W-Al combinations. Conclusion The MCNPX calculation outcomes showed acceptable results in a low-energy X-ray beam range (10-35 keV. The obtained simulated spectra for different anode/filter combinations were in good conformity with the finding of previous research.

  2. A Monte Carlo burnup code linking MCNP and REBUS

    International Nuclear Information System (INIS)

    Hanan, N.A.; Olson, A.P.; Pond, R.B.; Matos, J.E.

    1998-01-01

    The REBUS-3 burnup code, used in the anl RERTR Program, is a very general code that uses diffusion theory (DIF3D) to obtain the fluxes required for reactor burnup analyses. Diffusion theory works well for most reactors. However, to include the effects of exact geometry and strong absorbers that are difficult to model using diffusion theory, a Monte Carlo method is required. MCNP, a general-purpose, generalized-geometry, time-dependent, Monte Carlo transport code, is the most widely used Monte Carlo code. This paper presents a linking of the MCNP code and the REBUS burnup code to perform these difficult analyses. The linked code will permit the use of the full capabilities of REBUS which include non-equilibrium and equilibrium burnup analyses. Results of burnup analyses using this new linked code are also presented. (author)

  3. A Monte Carlo burnup code linking MCNP and REBUS

    International Nuclear Information System (INIS)

    Hanan, N. A.

    1998-01-01

    The REBUS-3 burnup code, used in the ANL RERTR Program, is a very general code that uses diffusion theory (DIF3D) to obtain the fluxes required for reactor burnup analyses. Diffusion theory works well for most reactors. However, to include the effects of exact geometry and strong absorbers that are difficult to model using diffusion theory, a Monte Carlo method is required. MCNP, a general-purpose, generalized-geometry, time-dependent, Monte Carlo transport code, is the most widely used Monte Carlo code. This paper presents a linking of the MCNP code and the REBUS burnup code to perform these difficult burnup analyses. The linked code will permit the use of the full capabilities of REBUS which include non-equilibrium and equilibrium burnup analyses. Results of burnup analyses using this new linked code are also presented

  4. Fission products detection in irradiated TRIGA fuel by means of gamma spectroscopy and MCNP calculation.

    Science.gov (United States)

    Cagnazzo, M; Borio di Tigliole, A; Böck, H; Villa, M

    2018-05-01

    Aim of this work was the detection of fission products activity distribution along the axial dimension of irradiated fuel elements (FEs) at the TRIGA Mark II research reactor of the Technische Universität (TU) Wien. The activity distribution was measured by means of a customized fuel gamma scanning device, which includes a vertical lifting system to move the fuel rod along its vertical axis. For each investigated FE, a gamma spectrum measurement was performed along the vertical axis, with steps of 1 cm, in order to determine the axial distribution of the fission products. After the fuel elements underwent a relatively short cooling down period, different fission products were detected. The activity concentration was determined by calibrating the gamma detector with a standard calibration source of known activity and by MCNP6 simulations for the evaluation of self-absorption and geometric effects. Given the specific TRIGA fuel composition, a correction procedure is developed and used in this work for the measurement of the fission product Zr 95 . This measurement campaign is part of a more extended project aiming at the modelling of the TU Wien TRIGA reactor by means of different calculation codes (MCNP6, Serpent): the experimental results presented in this paper will be subsequently used for the benchmark of the models developed with the calculation codes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Modeling of a planning system in radiotherapy and Nuclear Medicine using the MCNP6 code

    International Nuclear Information System (INIS)

    Massicano, Felipe

    2015-01-01

    Cancer therapy has many branches and one of them is the use of radiation sources as treatment leading method. Radiotherapy and nuclear medicine are examples of these treatment types. For using the ionization radiation as main tool for the therapy, there is the need of crafting many treatment simulation in order to maximum the tumoral tissue dose without surpass the dose limit in health tissue surrounding. Treatment planning systems (TPS) are systems which have the purpose of simulating these therapy types. Nuclear medicine and radiotherapy have many distinct features linked to the therapy mode and consequently they have different TPS destined for each. The radiotherapy TPS is more developed than the nuclear medicine TPS and by that reason the development of a TPS that was similar to the radiotherapy TPS, but enough generic for include other therapy types, it will contribute with significant advances in nuclear medicine and in others therapy types with radiation. Based on this, the goal of work was to model a TPS that utilizes the Monte Carlo N-Particle Transport code (MCNP6) in order to simulate radiotherapy therapy, nuclear medicine therapy and with potential for simulating other therapy types too. The result of this work was the creation of a Framework in Java language, object oriented, named IBMC which will assist in the development of new TPS with MCNP6 code. The IBMC allowed to develop rapidly and easily TPS for radiotherapy and nuclear medicine and the results were validated with systems already consolidated. The IBMC showed high potential for developing TPS by new therapy types. (author)

  6. Thermal neutron self-shielding correction factors for large sample instrumental neutron activation analysis using the MCNP code

    International Nuclear Information System (INIS)

    Tzika, F.; Stamatelatos, I.E.

    2004-01-01

    Thermal neutron self-shielding within large samples was studied using the Monte Carlo neutron transport code MCNP. The code enabled a three-dimensional modeling of the actual source and geometry configuration including reactor core, graphite pile and sample. Neutron flux self-shielding correction factors derived for a set of materials of interest for large sample neutron activation analysis are presented and evaluated. Simulations were experimentally verified by measurements performed using activation foils. The results of this study can be applied in order to determine neutron self-shielding factors of unknown samples from the thermal neutron fluxes measured at the surface of the sample

  7. Treating voxel geometries in radiation protection dosimetry with a patched version of the Monte Carlo codes MCNP and MCNPX.

    Science.gov (United States)

    Burn, K W; Daffara, C; Gualdrini, G; Pierantoni, M; Ferrari, P

    2007-01-01

    The question of Monte Carlo simulation of radiation transport in voxel geometries is addressed. Patched versions of the MCNP and MCNPX codes are developed aimed at transporting radiation both in the standard geometry mode and in the voxel geometry treatment. The patched code reads an unformatted FORTRAN file derived from DICOM format data and uses special subroutines to handle voxel-to-voxel radiation transport. The various phases of the development of the methodology are discussed together with the new input options. Examples are given of employment of the code in internal and external dosimetry and comparisons with results from other groups are reported.

  8. Comparison of Monte Carlo simulation of gamma ray attenuation coefficients of amino acids with XCOM program and experimental data

    Science.gov (United States)

    Elbashir, B. O.; Dong, M. G.; Sayyed, M. I.; Issa, Shams A. M.; Matori, K. A.; Zaid, M. H. M.

    2018-06-01

    The mass attenuation coefficients (μ/ρ), effective atomic numbers (Zeff) and electron densities (Ne) of some amino acids obtained experimentally by the other researchers have been calculated using MCNP5 simulations in the energy range 0.122-1.330 MeV. The simulated values of μ/ρ, Zeff, and Ne were compared with the previous experimental work for the amino acids samples and a good agreement was noticed. Moreover, the values of mean free path (MFP) for the samples were calculated using MCNP5 program and compared with the theoretical results obtained by XCOM. The investigation of μ/ρ, Zeff, Ne and MFP values of amino acids using MCNP5 simulations at various photon energies when compared with the XCOM values and previous experimental data for the amino acids samples revealed that MCNP5 code provides accurate photon interaction parameters for amino acids.

  9. Monte Carlo simulation on nuclear energy study. Annual report of Nuclear Code Evaluation Committee

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi; Yamamoto, Toshihiro

    1999-03-01

    In this report, research results discussed in 1998 fiscal year at Nuclear Code Evaluation Special Committee of Nuclear Code Committee were summarised. Present status of Monte Carlo calculation in high energy region investigated / discussed at Monte Carlo simulation working-group and automatic compilation system for MCNP cross sections developed at MCNP high temperature library compilation working-group were described. The 6 papers are indexed individually. (J.P.N.)

  10. Simulating measures of wood density through the surface by Compton scattering

    International Nuclear Information System (INIS)

    Penna, Rodrigo; Oliveira, Arno H.; Braga, Mario R.M.S.S.; Vasconcelos, Danilo C.; Carneiro, Clemente J.G.; Penna, Ariane G.C.

    2009-01-01

    Monte Carlo code (MCNP-4C) was used to simulate a nuclear densimeter for measuring wood densities nondestructively. An Americium source (E = 60 keV) and a NaI (Tl) detector were placed on a wood block surface. Results from MCNP shown that scattered photon fluxes may be used to determining wood densities. Linear regressions between scattered photons fluxes and wood density were calculated and shown correlation coefficients near unity. (author)

  11. Preparation and comparitive analysis of MCNP thermal libraries for liquid hydrogen and deuterium using NJOY97 on 32 bit and 64 bit computers

    International Nuclear Information System (INIS)

    Jo, Y. S.; Kim, J. D.; Kil, C. S.; Jang, J. H.

    1999-01-01

    The scattering laws and MCNP thermal libraries for liquid hydrogen and deuterium are comparatively calculated on HP715 (32-bit computer) and SGI IP27 (64-bit computer) using NJOY97. The results are also compared with the experimental data. In addition, MCNP calculations for the nuclear design of a cold neutron source at HANARO are performed with the newly generated MCNP thermal libraries from two different computers and the results are compared

  12. MCNP capabilities for nuclear well logging calculations

    International Nuclear Information System (INIS)

    Forster, R.A.; Little, R.C.; Briesmeister, J.F.; Hendricks, J.S.

    1990-01-01

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. This paper discusses how the general-purpose continuous-energy Monte Carlo code MCNP (Monte Carlo neutron photon), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tally characteristics with standard MCNP features. The time-dependent capability of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data

  13. Characteristics of multiprocessing MCNP5 on small personal computer clusters

    International Nuclear Information System (INIS)

    Robinson, S M; Mc Conn, R J Jr; Pagh, R T; Schweppe, J E; Siciliano, E R

    2006-01-01

    The feasibility and efficiency of performing MCNP5 calculations with a small, heterogeneous computing cluster built from Microsoft ( R) Windows TM personal computers (PC) are explored. The performance increases that may be expected with such clusters are estimated for cases that typify general radiation-shielding calculations. Our results show that the speed increase from additional slave PCs is nearly linear up to 10 processors. Guidance is given as to the specific advantages of changing various parameters present in the system. Implementing load balancing, and reducing the overhead from the MCNP rendezvous mechanism add to heterogeneous cluster efficiency. Hyper-threading technology and matching the total number of slave processes to the total number of logical processors also yield modest speed increases in the range below 7 processors. Because of the ease of acquisition of heterogeneous desktop computers, and the peak in efficiency at the level of a few physical processors, a strong case is made for the use of small clusters as a tool for producing MCNP5 calculations rapidly, and detailed instructions for constructing such clusters are provided

  14. MCNP to study the BF3 detection efficiency

    International Nuclear Information System (INIS)

    Castro, Vinicius A.; Cavalieri, Tassio A.; Siqueira, Paulo T.D.; Fedorenko, Giuliana G.; Coelho, Paulo R.P.; Madi Filho, Tufic

    2011-01-01

    One of the main parameters to monitor on the employment of the Boron Neutron Capture Therapy (BNCT) is the thermal neutron flux. It can be performed by different techniques such as the activation analysis and the detection by a Boron Trifluoride detector (BF 3 ). BF 3 detector is a real time neutron flux detector which retrieves results in real time. It is however necessary to study the efficiency of the BF 3 detectors when they are exposed to fields of different neutron energy spectra. BF 3 is known to have high efficiency for thermal neutrons (with energy up to 0.5 eV) due the presence of 10 B atoms in the detector. However, one must also understand how this detector interacts with other neutron energy ranges (epithermal and fast). This work shows the experiment and a set of associated simulations carried out in order to evaluate the BF 3 detector efficiency dependence on neutron energy spectra. A set of experiments was conducted in which a BF 3 detector was submitted to different mixed fields (field containing gamma rays and neutrons). These fields were generated by the interposition of paraffin layers with distinct thicknesses between the Am-Be source and the BF 3 detector. The BF 3 detector responses were recorded according to the number of paraffin planes used. MCNP simulations were also performed to study the detector responses on such experimental conditions. It has been possible to achieve the intended goal of evaluating the BF 3 detector response to different mixed irradiation fields. (author)

  15. Depleted Reactor Analysis With MCNP-4B

    International Nuclear Information System (INIS)

    Caner, M.; Silverman, L.; Bettan, M.

    2004-01-01

    Monte Carlo neutronics calculations are mostly done for fresh reactor cores. There is today an ongoing activity in the development of Monte Carlo plus burnup code systems made possible by the fast gains in computer processor speeds. In this work we investigate the use of MCNP-4B for the calculation of a depleted core of the Soreq reactor (IRR-1). The number densities as function of burnup were taken from the WIMS-D/4 cell code calculations. This particular code coupling has been implemented before. The Monte Carlo code MCNP-4B calculates the coupled transport of neutrons and photons for complicated geometries. We have done neutronics calculations of the IRR-1 core with the WIMS and CITATION codes in the past Also, we have developed an MCNP model of the IRR-1 standard fuel for a criticality safety calculation of a spent fuel storage pool

  16. MCNP study for epithermal neutron irradiation of an isolated liver at the Finnish BNCT facility.

    Science.gov (United States)

    Kotiluoto, P; Auterinen, I

    2004-11-01

    A successful boron neutron capture treatment (BNCT) of a patient with multiple liver metastases has been first given in Italy, by placing the removed organ into the thermal neutron column of the Triga research reactor of the University of Pavia. In Finland, FiR 1 Triga reactor with an epithermal neutron beam well suited for BNCT has been extensively used to irradiate patients with brain tumors such as glioblastoma and recently also head and neck tumors. In this work we have studied by MCNP Monte Carlo simulations, whether it would be beneficial to treat an isolated liver with epithermal neutrons instead of thermal ones. The results show, that the epithermal field penetrates deeper into the liver and creates a build-up distribution of the boron dose. Our results strongly encourage further studying of irradiation arrangement of an isolated liver with epithermal neutron fields.

  17. SABRINA, Geometry Plot Program for MCNP

    International Nuclear Information System (INIS)

    SEIDL, Marcus

    2003-01-01

    1 - Description of program or function: SABRINA is an interactive, three-dimensional, geometry-modeling code system, primarily for use with CCC-200/MCNP. SABRINA's capabilities include creation, visualization, and verification of three-dimensional geometries specified by either surface- or body-base combinatorial geometry; display of particle tracks are calculated by MCNP; and volume fraction generation. 2 - Method of solution: Rendering is performed by ray tracing or an edge and intersection algorithm. Volume fraction calculations are made by ray tracing. 3 - Restrictions on the complexity of the problem: A graphics display with X Window capability is required

  18. MCNP: a general Monte Carlo code for neutron and photon transport. Version 3A. Revision 2

    International Nuclear Information System (INIS)

    Briesmeister, J.F.

    1986-09-01

    This manual is a practical guide for the use of our general-purpose Monte Carlo code MCNP. The first chapter is a primer for the novice user. The second chapter describes the mathematics, data, physics, and Monte Carlo simulation found in MCNP. This discussion is not meant to be exhaustive - details of the particular techniques and of the Monte Carlo method itself will have to be found elsewhere. The third chapter shows the user how to prepare input for the code. The fourth chapter contains several examples, and the fifth chapter explains the output. The appendices show how to use MCNP on particular computer systems at the Los Alamos National Laboratory and also give details about some of the code internals that those who wish to modify the code may find useful. 57 refs

  19. MCNP modelling of scintillation-detector gamma-ray spectra from natural radionuclides

    NARCIS (Netherlands)

    Hendriks, Peter; Maucec, M; de Meijer, RJ

    gamma-ray spectra of natural radionuclides are simulated for a BGO detector in a borehole geometry using the Monte Carlo code MCNP. All gamma-ray emissions of the decay of K-40 and the series of Th-232 and U-238 are used to describe the source. A procedure is proposed which excludes the

  20. Considerations of MCNP Monte Carlo code to be used as a radiotherapy treatment planning tool.

    Science.gov (United States)

    Juste, B; Miro, R; Gallardo, S; Verdu, G; Santos, A

    2005-01-01

    The present work has simulated the photon and electron transport in a Theratron 780® (MDS Nordion)60Co radiotherapy unit, using the Monte Carlo transport code, MCNP (Monte Carlo N-Particle). This project explains mainly the different methodologies carried out to speedup calculations in order to apply this code efficiently in radiotherapy treatment planning.

  1. A detailed investigation of interactions within the shielding to HPGe detector response using MCNP code

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Tran Thien; Tao, Chau Van; Loan, Truong Thi Hong; Nhon, Mai Van; Chuong, Huynh Dinh; Au, Bui Hai [Vietnam National Univ., Ho Chi Minh City (Viet Nam). Dept. of Nuclear Physics

    2012-12-15

    The accuracy of the coincidence-summing corrections in gamma spectrometry depends on the total efficiency calibration that is hardly obtained over the whole energy as the required experimental conditions are not easily attained. Monte Carlo simulations using MCNP5 code was performed in order to estimate the affect of the shielding to total efficiency. The effect of HPGe response are also shown. (orig.)

  2. Evaluation of the WIMS (KAERI) - VENTURE code system for peak power prediction of KMRR core using MCNP

    International Nuclear Information System (INIS)

    Park, W.S.; Lee, K.M.; Lee, C.S.; Lee, J.T.; Oh, S.K.

    1992-01-01

    In this work, the validity and quantitative uncertainty of WIMS (KAERI) - VENTURE code system for the design and analysis of KMRR core was tried to be inferred using a well known benchmark code, MCNP. WIMS (KAERI) showed an excellent agreement with MCNP code. For three different control rod positions at a simulated core which has a quarter symmetry, total peaking factors and three sub-factors (radial, axial, and local) obtained from VENTURE were compared with those of MCNP. The comparison proved the validity of VENTURE and showed better agreement in the order of radial, axial, and local factors. The uncertainty of WIMS (KAERI) - VENTURE system was inferred using the 2σ band of total peaking obtained by MCNP. The uncertainty of WIMS (KAERI) - VENTURE system were found to be 18.5 % for the operating condition. (author)

  3. A physiological production model for cacao : results of model simulations

    NARCIS (Netherlands)

    Zuidema, P.A.; Leffelaar, P.A.

    2002-01-01

    CASE2 is a physiological model for cocoa (Theobroma cacao L.) growth and yield. This report introduces the CAcao Simulation Engine for water-limited production in a non-technical way and presents simulation results obtained with the model.

  4. MCNP apply in calculating reactor critical coefficient Keff under the changing of the burnable poison rod

    International Nuclear Information System (INIS)

    Wang Xinghua; Zhou Sichun; Zhang Qingxian; Zhao Feng; Liu Jun; Zhu Jian

    2013-01-01

    Taking Qinshan nuclear power plant as an example, in this paper, Monte Carlo method was used in the MCNP procedures for the establishment of nuclear power station simulation model, construct the reactor pressure vessel and vessel core component composition and arrangement, KCODE card was used to calculate the effect of the number and the location of burnable poison control rod factor K eff by the boron acid. The calculation results show that, with the increasing in the number of burnable poison control rod value-added factor K eff shown a downward trend, and with the burnable poison control rod from the dense to sparse, which K eff will be decreasing slowly. This condition is consistent with the theoretical. (authors)

  5. Comparison Of Simulation Results When Using Two Different Methods For Mold Creation In Moldflow Simulation

    Directory of Open Access Journals (Sweden)

    Kaushikbhai C. Parmar

    2017-04-01

    Full Text Available Simulation gives different results when using different methods for the same simulation. Autodesk Moldflow Simulation software provide two different facilities for creating mold for the simulation of injection molding process. Mold can be created inside the Moldflow or it can be imported as CAD file. The aim of this paper is to study the difference in the simulation results like mold temperature part temperature deflection in different direction time for the simulation and coolant temperature for this two different methods.

  6. MOCUP, MCNP/ORIGEN Coupling Utility Programs

    International Nuclear Information System (INIS)

    SEIDL, Marcus

    2003-01-01

    1 - Description of program or function: MOCUP is a series of utility and data manipulation programs to solve time and space-dependent coupled neutronics/isotopics problems. 2 - Methods: The neutronics calculation is performed by the Los Alamos National Laboratory code system, version 4a or later (CCC-200 or CCC-660),and the depletion and isotopics calculation is performed by CCC-371/ORIGEN2.1 developed at Oak Ridge National Laboratory. MCNP and ORIGEN2.1 are NOT included in this package. MOCUP consists of three utility programs (mcnpPRO, origenPRO, compPRO) to, respectively, search the MCNP output and tally files for relevant cell and tally parameters, prepare ORIGEN2.1 input files and execute the ORIGEN2.1 runs, and search ORIGEN2.1 punch files for relevant isotope concentrations and produce new MCNP input files. A graphical user interface is provided for execution convenience. 3 - Restrictions on the complexity of the problem: At present, no mechanism exists for automatic serial execution of the program modules. The user must interface with the GUI to run each of the modules

  7. Validation of MCNP6 Version 1.0 with the ENDF/B-VII.1 Cross Section Library for Uranium Metal, Oxide, and Solution Systems on the High Performance Computing Platform Moonlight

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Bryan Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); MacQuigg, Michael Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wysong, Andrew Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-21

    In this document, the code MCNP is validated with ENDF/B-VII.1 cross section data under the purview of ANSI/ANS-8.24-2007, for use with uranium systems. MCNP is a computer code based on Monte Carlo transport methods. While MCNP has wide reading capability in nuclear transport simulation, this validation is limited to the functionality related to neutron transport and calculation of criticality parameters such as keff.

  8. Validation of MCNP6 Version 1.0 with the ENDF/B-VII.1 Cross Section Library for Uranium Metal, Oxide, and Solution Systems on the High Performance Computing Platform Moonlight

    International Nuclear Information System (INIS)

    Chapman, Bryan Scott; MacQuigg, Michael Robert; Wysong, Andrew Russell

    2016-01-01

    In this document, the code MCNP is validated with ENDF/B-VII.1 cross section data under the purview of ANSI/ANS-8.24-2007, for use with uranium systems. MCNP is a computer code based on Monte Carlo transport methods. While MCNP has wide reading capability in nuclear transport simulation, this validation is limited to the functionality related to neutron transport and calculation of criticality parameters such as k eff .

  9. Validating MCNP5 libraries and tracking the reason for differences between libraries in criticality calculations

    International Nuclear Information System (INIS)

    Hossny, K.

    2015-01-01

    The purpose of this work is to validate MCNP5 libraries by simulating 4 detailed benchmark experiments and comparing MCNP5 results (each library) with the experimental results and also the previously validated codes for the same experiments MORET 4.A coupled with APOLLO2 (France), and MONK8 (UK). The reasons for difference between libraries are also investigated in this work. Investigating the reason for the differences between libraries will be done by specifying a different library for specific part (clad, fuel, light water) and checking the result deviation than the previously calculated result (with all parts of the same library). The investigated benchmark experiments are of single fuel rods arrays that are water-moderated and water-reflected. Rods contained low-enriched (4.738 wt.% 92 235 U)uranium dioxide (UO 2 ) fuel were clad with aluminum alloy AGS. These experiments were subcritical approaches extrapolated to critical, with the multiplication factor reached being very close to 1.000 (within 0.1%); the subcritical approach parameter was the water level. The studied four cases differ from each other in pitch, number of fuel rods and of course critical height of water. The results show that although library ENDF/B-IV lacks light water treatment card, however its results can be reliable as light water treatment library does not have significant differences from library to another, so it will not be necessary to specify light water treatment card. The main reason for differences between ENDF/B-V and ENDF/B-VI is light water material, especially the Hydrogen element. Specifying the library of Uranium is necessary in case of using library ENDF/B-IV. On the other hand it is not necessary to specify library of cladding material whatever the used library. Validated libraries are ENDF/BIV, ENDF/B-V and ENDF/B-VI with codes in MCNP 42C, 50C and 60C respectively. The presentation slides have been added to the article

  10. Calculation of power density with MCNP in TRIGA reactor

    International Nuclear Information System (INIS)

    Snoj, L.; Ravnik, M.

    2006-01-01

    Modern Monte Carlo codes (e.g. MCNP) allow calculation of power density distribution in 3-D geometry assuming detailed geometry without unit-cell homogenization. To normalize MCNP calculation by the steady-state thermal power of a reactor, one must use appropriate scaling factors. The description of the scaling factors is not adequately described in the MCNP manual and requires detailed knowledge of the code model. As the application of MCNP for power density calculation in TRIGA reactors has not been reported in open literature, the procedure of calculating power density with MCNP and its normalization to the power level of a reactor is described in the paper. (author)

  11. Extensions of the MCNP5 and TRIPOLI4 Monte Carlo codes for transient reactor analysis

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    2013-01-01

    To simulate reactor transients for safety analysis with the Monte Carlo method the generation and decay of delayed neutron precursors is implemented in the MCNP5 and TRIPOLI4 general purpose Monte Carlo codes. Important new variance reduction techniques like forced decay of precursors in each time interval and the branch-less collision method are included to obtain reasonable statistics for the power production per time interval. For simulation of practical reactor transients also the feedback effect from the thermal-hydraulics must be included. This requires the coupling of the Monte Carlo code with a thermal-hydraulics (TH) code, providing the temperature distribution in the reactor, which affects the neutron transport via the cross section data. The TH code also provides the coolant density distribution in the reactor, directly influencing the neutron transport. Different techniques for this coupling are discussed. As a demonstration a 3*3 mini fuel assembly with a moving control rod is considered for MCNP5 and a mini core existing of 3*3 PWR fuel assemblies with control rods and burnable poisons for TRIPOLI4. Results are shown for reactor transients due to control rod movement or withdrawal. The TRIPOLI4 transient calculation is started at low power and includes thermal-hydraulic feedback. The power rises about 10 decades and finally stabilises the reactor power at a much higher level than initial. The examples demonstrate that the modified Monte Carlo codes are capable of performing correct transient calculations, taking into account all geometrical and cross section detail. (authors)

  12. Effect of the MCNP model definition on the computation time

    International Nuclear Information System (INIS)

    Šunka, Michal

    2017-01-01

    The presented work studies the influence of the method of defining the geometry in the MCNP transport code and its impact on the computational time, including the difficulty of preparing an input file describing the given geometry. Cases using different geometric definitions including the use of basic 2-dimensional and 3-dimensional objects and theirs combinations were studied. The results indicate that an inappropriate definition can increase the computational time by up to 59% (a more realistic case indicates 37%) for the same results and the same statistical uncertainty. (orig.)

  13. Use of MCNP + GADRAS in Generating More Realistic Gamma-Ray Spectra for Plutonium and HEU Objects

    International Nuclear Information System (INIS)

    Rawool-Sullivan, Mohini; Mattingly, John; Mitchell, Dean

    2012-01-01

    The ability to accurately simulate high-resolution gamma spectra from materials that emit both neutrons and gammas is very important to the analysis of special nuclear materials (SNM), e.g., uranium and plutonium. One approach under consideration has been to combine MCNP and GADRAS. This approach is expected to generate more accurate gamma ray spectra for complex three-dimensional geometries than can be obtained from one-dimensional deterministic transport simulations (e.g., ONEDANT). This presentation describes application of combining MCNP and GADRAS in simulating plutonium and uranium spectra.

  14. Summarizing Simulation Results using Causally-relevant States

    Science.gov (United States)

    Parikh, Nidhi; Marathe, Madhav; Swarup, Samarth

    2016-01-01

    As increasingly large-scale multiagent simulations are being implemented, new methods are becoming necessary to make sense of the results of these simulations. Even concisely summarizing the results of a given simulation run is a challenge. Here we pose this as the problem of simulation summarization: how to extract the causally-relevant descriptions of the trajectories of the agents in the simulation. We present a simple algorithm to compress agent trajectories through state space by identifying the state transitions which are relevant to determining the distribution of outcomes at the end of the simulation. We present a toy-example to illustrate the working of the algorithm, and then apply it to a complex simulation of a major disaster in an urban area. PMID:28042620

  15. SMITHERS: An object-oriented modular mapping methodology for MCNP-based neutronic–thermal hydraulic multiphysics

    International Nuclear Information System (INIS)

    Richard, Joshua; Galloway, Jack; Fensin, Michael; Trellue, Holly

    2015-01-01

    Highlights: • A modular mapping methodogy for neutronic-thermal hydraulic nuclear reactor multiphysics, SMITHERS, has been developed. • Written in Python, SMITHERS takes a novel object-oriented approach for facilitating data transitions between solvers. This approach enables near-instant compatibility with existing MCNP/MONTEBURNS input decks. • It also allows for coupling with thermal-hydraulic solvers of various levels of fidelity. • Two BWR and PWR test problems are presented for verifying correct functionality of the SMITHERS code routines. - Abstract: A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. Additionally, it performs the basis mapping from the combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers. The mapping methodology was specifically developed to be flexible enough such that it could successfully integrate preexisting depletion solver case files with different thermal-hydraulic solvers. This approach allows the user to tailor the selection of a

  16. Processing methods for temperature-dependent MCNP libraries

    International Nuclear Information System (INIS)

    Li Songyang; Wang Kan; Yu Ganglin

    2008-01-01

    In this paper,the processing method of NJOY which transfers ENDF files to ACE (A Compact ENDF) files (point-wise cross-Section file used for MCNP program) is discussed. Temperatures that cover the range for reactor design and operation are considered. Three benchmarks are used for testing the method: Jezebel Benchmark, 28 cm-thick Slab Core Benchmark and LWR Benchmark with Burnable Absorbers. The calculation results showed the precision of the neutron cross-section library and verified the correct processing methods in usage of NJOY. (authors)

  17. MCNP modelling of scintillation-detector gamma-ray spectra from natural radionuclides.

    Science.gov (United States)

    Hendriks, P H G M; Maucec, M; de Meijer, R J

    2002-09-01

    gamma-ray spectra of natural radionuclides are simulated for a BGO detector in a borehole geometry using the Monte Carlo code MCNP. All gamma-ray emissions of the decay of 40K and the series of 232Th and 238U are used to describe the source. A procedure is proposed which excludes the time-consuming electron tracking in less relevant areas of the geometry. The simulated gamma-ray spectra are benchmarked against laboratory data.

  18. Biasing secondary particle interaction physics and production in MCNP6

    International Nuclear Information System (INIS)

    Fensin, M.L.; James, M.R.

    2016-01-01

    Highlights: • Biasing secondary production and interactions of charged particles in the tabular energy regime. • Examining lower weight window bounds for rare events when using Russian roulette. • The new biasing strategy can speedup calculations by a factor of 1 million or more. - Abstract: Though MCNP6 will transport elementary charged particles and light ions to low energies (i.e. less than 20 MeV), MCNP6 has historically relied on model physics with suggested minimum energies of ∼20 to 200 MeV. Use of library data for the low energy regime was developed for MCNP6 1.1.Beta to read and use light ion libraries. Thick target yields of neutron production for alphas on fluoride result in 1 production event per roughly million sampled alphas depending on the energy of the alpha (for other isotopes the yield can be even rarer). Calculation times to achieve statistically significant and converged thick target yields are quite laborious, needing over one hundred processor hours. The MUCEND code possess a biasing technique for improving the sampling of secondary particle production by forcing a nuclear interaction to occur per each alpha transported. We present here a different biasing strategy for secondary particle production from charged particles. During each substep, as the charged particle slows down, we bias both a nuclear collision event to occur at each substep and the production of secondary particles at the collision event, while still continuing to progress the charged particle until reaching a region of zero importance or an energy/time cutoff. This biasing strategy is capable of speeding up calculations by a factor of a million or more as compared to the unbiased calculation. Further presented here are both proof that the biasing strategy is capable of producing the same results as the unbiased calculation and the limitations to consider in order to achieve accurate results of secondary particle production. Though this strategy was developed for MCNP

  19. Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS

    International Nuclear Information System (INIS)

    Perkasa, Y. S.; Waris, A.; Kurniadi, R.; Su'ud, Z.

    2014-01-01

    Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS have been conducted. In this work, fission cross section resulted from MCNP6 prediction will be compared with result from TALYS calculation. MCNP6 with its event generator CEM03.03 and LAQGSM03.03 have been validated and verified for several intermediate and heavy nuclides fission reaction data and also has a good agreement with experimental data for fission reaction that induced by photons, pions, and nucleons at energy from several ten of MeV to about 1 TeV. The calculation that induced within TALYS will be focused mainly to several hundred MeV for actinide and sub-actinide nuclides and will be compared with MCNP6 code and several experimental data from other evaluator

  20. Numerical verification of the theory of coupled reactors for a deuterium critical assembly using MCNP5

    International Nuclear Information System (INIS)

    Hussein, M.S.; Bonin, H.W.; Lewis, B.J.

    2013-01-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as Deuterium Critical Assembly, (DCA). The variations of the criticality factors and the coupling coefficients were investigated by changing of the water levels in the inner and outer cores. The numerical results of the model developed with MCNP5 code were validated and verified against published results and the mathematical model based on coupled reactor theory. (author)

  1. Numerical verification of the theory of coupled reactors for a deuterium critical assembly using MCNP5

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M.S.; Bonin, H.W.; Lewis, B.J., E-mail: mohamed.hussein@rmc.ca, E-mail: bonin-h@rmc.ca, E-mail: lewis-b@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2013-07-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as Deuterium Critical Assembly, (DCA). The variations of the criticality factors and the coupling coefficients were investigated by changing of the water levels in the inner and outer cores. The numerical results of the model developed with MCNP5 code were validated and verified against published results and the mathematical model based on coupled reactor theory. (author)

  2. Potential of the MCNP computer code

    International Nuclear Information System (INIS)

    Kyncl, J.

    1995-01-01

    The MCNP code is designed for numerical solution of neutron, photon, and electron transport problems by the Monte Carlo method. The code is based on the linear transport theory of behavior of the differential flux of the particles. The code directly uses data from the cross section point data library for input. Experience is outlined, gained in the application of the code to the calculation of the effective parameters of fuel assemblies and of the entire reactor core, to the determination of the effective parameters of the elementary fuel cell, and to the numerical solution of neutron diffusion and/or transport problems of the fuel assembly. The agreement between the calculated and observed data gives evidence that the MCNP code can be used with advantage for calculations involving WWER type fuel assemblies. (J.B.). 4 figs., 6 refs

  3. MCNP Code in Assessment of Variations of Effective Dose with Torso Adipose Tissue Thickness

    International Nuclear Information System (INIS)

    Massoud, E.

    2005-01-01

    The effective dose is the unite used in the field of radiation protection. It is a well defined doubly weighted uantity involving both physical and biological variables. Several factors may induce variation in the effective dose in different individuals of similar exposure data. One of these factors is the variation of adipose tissue thickness in different exposed individuals. This study essentially concenrs the assessment of the possible variation in the effective dose due to variation in the thickness of adipose tissue. The study was done using MCNP4b code to perform mathematical model of the human body depending on that given to the reference man developed by International Commission of Radiological Protection (ICRP), and calculate the effective dose with different thicknessess of adipose tissues. The study includes a comprehensive appraisal of the Monte Cario simulation, the Medical Internal Radiation Dose (MIRD) model for the human body, and the various mathematical considerations involved in the radiation dose calculations for the various pertinent parts of the human body. The radiation energies considered were 80 KeV, 300 KeV and I MeV, applying two exposure positions; anteroposterior (AP), postero-anterior (PA) with different adipose tissue thickness. This study is a theoretical approach based on detailed mathematical calculations of great precision that deals with all considerations involved in the mechanisms of radiation energy absorption in biological system depending on the variation in the densities of the particular in biological system depending on the variation in the densities of the particular tissues. The results obtained indicate that maximum decrease in effective dose occures with the lowest energy at 5cm adipose tissues thickeness for both AP and PA exposure positions. The results obtained were compared to similar work previsouly done using MCNP4 b showing very good agreement

  4. MCNP benchmark analyses of critical experiments for the Space Nuclear Thermal Propulsion program

    International Nuclear Information System (INIS)

    Selcow, E.C.; Cerbone, R.J.; Ludewig, H.; Mughabghab, S.F.; Schmidt, E.; Todosow, M.; Parma, E.J.; Ball, R.M.; Hoovler, G.S.

    1993-01-01

    Benchmark analyses have been performed of Particle Bed Reactor (PBR) critical experiments (CX) using the MCNP radiation transport code. The experiments have been conducted at the Sandia National Laboratory reactor facility in support of the Space Nuclear Thermal Propulsion (SNTP) program. The test reactor is a nineteen element water moderated and reflected thermal system. A series of integral experiments have been carried out to test the capabilities of the radiation transport codes to predict the performance of PBR systems. MCNP was selected as the preferred radiation analysis tool for the benchmark experiments. Comparison between experimental and calculational results indicate close agreement. This paper describes the analyses of benchmark experiments designed to quantify the accuracy of the MCNP radiation transport code for predicting the performance characteristics of PBR reactors

  5. MCNP benchmark analyses of critical experiments for the Space Nuclear Thermal Propulsion program

    Science.gov (United States)

    Selcow, Elizabeth C.; Cerbone, Ralph J.; Ludewig, Hans; Mughabghab, Said F.; Schmidt, Eldon; Todosow, Michael; Parma, Edward J.; Ball, Russell M.; Hoovler, Gary S.

    1993-01-01

    Benchmark analyses have been performed of Particle Bed Reactor (PBR) critical experiments (CX) using the MCNP radiation transport code. The experiments have been conducted at the Sandia National Laboratory reactor facility in support of the Space Nuclear Thermal Propulsion (SNTP) program. The test reactor is a nineteen element water moderated and reflected thermal system. A series of integral experiments have been carried out to test the capabilities of the radiation transport codes to predict the performance of PBR systems. MCNP was selected as the preferred radiation analysis tool for the benchmark experiments. Comparison between experimental and calculational results indicate close agreement. This paper describes the analyses of benchmark experiments designed to quantify the accuracy of the MCNP radiation transport code for predicting the performance characteristics of PBR reactors.

  6. Criticality Calculations with MCNP6 - Practical Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Methods, Codes, and Applications (XCP-3); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Methods, Codes, and Applications (XCP-3); Alwin, Jennifer Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Methods, Codes, and Applications (XCP-3)

    2016-11-29

    These slides are used to teach MCNP (Monte Carlo N-Particle) usage to nuclear criticality safety analysts. The following are the lecture topics: course information, introduction, MCNP basics, criticality calculations, advanced geometry, tallies, adjoint-weighted tallies and sensitivities, physics and nuclear data, parameter studies, NCS validation I, NCS validation II, NCS validation III, case study 1 - solution tanks, case study 2 - fuel vault, case study 3 - B&W core, case study 4 - simple TRIGA, case study 5 - fissile mat. vault, criticality accident alarm systems. After completion of this course, you should be able to: Develop an input model for MCNP; Describe how cross section data impact Monte Carlo and deterministic codes; Describe the importance of validation of computer codes and how it is accomplished; Describe the methodology supporting Monte Carlo codes and deterministic codes; Describe pitfalls of Monte Carlo calculations; Discuss the strengths and weaknesses of Monte Carlo and Discrete Ordinants codes; The diffusion theory model is not strictly valid for treating fissile systems in which neutron absorption, voids, and/or material boundaries are present. In the context of these limitations, identify a fissile system for which a diffusion theory solution would be adequate.

  7. Criticality Calculations with MCNP6 - Practical Lectures

    International Nuclear Information System (INIS)

    Brown, Forrest B.; Rising, Michael Evan; Alwin, Jennifer Louise

    2016-01-01

    These slides are used to teach MCNP (Monte Carlo N-Particle) usage to nuclear criticality safety analysts. The following are the lecture topics: course information, introduction, MCNP basics, criticality calculations, advanced geometry, tallies, adjoint-weighted tallies and sensitivities, physics and nuclear data, parameter studies, NCS validation I, NCS validation II, NCS validation III, case study 1 - solution tanks, case study 2 - fuel vault, case study 3 - B&W core, case study 4 - simple TRIGA, case study 5 - fissile mat. vault, criticality accident alarm systems. After completion of this course, you should be able to: Develop an input model for MCNP; Describe how cross section data impact Monte Carlo and deterministic codes; Describe the importance of validation of computer codes and how it is accomplished; Describe the methodology supporting Monte Carlo codes and deterministic codes; Describe pitfalls of Monte Carlo calculations; Discuss the strengths and weaknesses of Monte Carlo and Discrete Ordinants codes; The diffusion theory model is not strictly valid for treating fissile systems in which neutron absorption, voids, and/or material boundaries are present. In the context of these limitations, identify a fissile system for which a diffusion theory solution would be adequate.

  8. Comparison calculations of WWER-1000 fuel assemblies by using the MCNP 4.2 a KASSETA codes

    International Nuclear Information System (INIS)

    Trgina, M.

    1993-12-01

    The power multiplication and distribution factors are compared for various geometries and material configurations of WWER-1000 fuel assemblies. The calculations were performed in 2 ways: (i) using nuclear data, employing older and current data collections, and (ii) using the author's own model based on the KASSETA code. The comparison code MCNP 4.2 is described, intended for computerized simulation of the transport of neutrons, photons and electrons. This code uses its own cross section library. The methodology is outlined and a specification of the Monte Carlo method employed is given. The use of the refined data library gave rise to appreciable deviations of the multiplication factors in all variants. The use of the older data library led to identical criticality results for the variant with water holes. For inserted absorbers the discrepancies in criticality and in power distribution data are appreciable. The marked disagreement between the results of application of the MCNP 4.2 and KASSETA codes for the variants with inserted control elements is indicative of inappropriateness of the approximation procedure in the latter code. (J.B.). 2 tabs., 11 figs., 11 refs

  9. Installation of Monte Carlo neutron and photon transport code system MCNP4

    International Nuclear Information System (INIS)

    Takano, Makoto; Sasaki, Mikio; Kaneko, Toshiyuki; Yamazaki, Takao.

    1993-03-01

    The continuous energy Monte Carlo code MCNP-4 including its graphic functions has been installed on the Sun-4 sparc-2 work station with minor corrections. In order to validate the installed MCNP-4 code, 25 sample problems have been executed on the work station and these results have been compared with the original ones. And, the most of the graphic functions have been demonstrated by using 3 sample problems. Further, additional 14 nuclides have been included to the continuous cross section library edited from JENDL-3. (author)

  10. MCNP analysis of the nine-cell LWR gadolinium benchmark

    International Nuclear Information System (INIS)

    Arkuszewski, J.J.

    1988-01-01

    The Monte Carlo results for a 9-cell fragment of the light water reactor square lattice with a central gadolinium-loaded pin are presented. The calculations are performed with the code MCNP-3A and the ENDF-B/5 library and compared with the results obtained from the BOXER code system and the JEF-1 library. The objective of this exercise is to study the feasibility of BOXER for the analysis of a Gd-loaded LWR lattice in the broader framework of GAP International Benchmark Analysis. A comparison of results indicates that, apart from unavoidable discrepancies originating from different data evaluations, the BOXER code overestimates the multiplication factor by 1.4 % and underestimates the power release in a Gd cell by 4.66 %. It is hoped that further similar studies with use of the JEF-1 library for both BOXER and MCNP will help to isolate and explain these discrepancies in a cleaner way. (author) 4 refs., 9 figs., 10 tabs

  11. New calculations for critical assemblies using MCNP4B

    International Nuclear Information System (INIS)

    Adams, A.A.; Frankle, S.C.; Little, R.C.

    1997-07-01

    A suite of 41 criticality benchmarks has been modeled using MCNP trademark (version 4B). Most of the assembly specifications were obtained from the Cross Section Evaluation Working Group (CSEWG) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) compendiums of experimental benchmarks. A few assembly specifications were obtained from experimental papers. The suite contains thermal and fast assemblies, bare and reflected assemblies, and emphasizes 233 U, 235 U, 238 U, and 239 Pu. The values of k eff for each assembly in the suite were calculated using MCNP libraries derived primarily from release 2 of ENDF/B-V and release 2 of ENDF/B-VI. The results show that the new ENDF/B-VI.2 evaluations for H, O, N, B, 235 U, 238 U, and 239 Pu can have a significant impact on the values of k eff . In addition to the integral quantity k eff , several additional experimental measurements were performed and documented. These experimental measurements include central fission and reaction-rate ratios for various isotopes, and neutron leakage and flux spectra. They provide more detailed information about the accuracy of the nuclear data than can k eff . Comparison calculations were performed using both ENDF/B-V.2 and ENDF/B-VI.2-based data libraries. The purpose of this paper is to compare the results of these additional calculations with experimental data, and to use these results to assess the quality of the nuclear data

  12. Computational fluid dynamics simulations and validations of results

    CSIR Research Space (South Africa)

    Sitek, MA

    2013-09-01

    Full Text Available Wind flow influence on a high-rise building is analyzed. The research covers full-scale tests, wind-tunnel experiments and numerical simulations. In the present paper computational model used in simulations is described and the results, which were...

  13. Evaluation of dose equivalent to the people accompanying patients in diagnostic radiology using MCNP4C Monte Carlo code

    International Nuclear Information System (INIS)

    Mehdizadeh, S.; Faghihi, R.; Sina, S.; Zehtabian, M.

    2007-01-01

    Complete text of publication follows. Objective: X rays used in diagnostic radiology contribute a major share to population doses from man-made sources of radiation. In some branches of radiology, it is necessary that another person stay in the imaging room and immobilize the patient to carry out radiological operation. ICRP 70 recommends that this should be done by parents or accompanying nursing or ancillary personnel and not in any case by radiation workers. Methods: Dose measurements were made previously using standard methods employing LiF TLD-100 dosimeters. A TLD card was installed on the main trunk of the body of the accompanying people where the maximum dose was probable. In this research the general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C) is used to calculate the equivalent dose to the people accompanying patients exposed to radiation scattered from the patient (Without protective clothing). To do the simulations, all components of the geometry are placed within an air-filled box. Two homogeneous water phantoms are used to simulate the patient and the accompanying person. The accompanying person leans against the table at one side of the patient. Finally in case of source specification, only the focus of the X-ray tube is modelled, i.e. as a standard MCNP point source emitting a cone of photons. Photon stopping material is used as a collimator model to reduce the circular cross section of the cone to a rectangle. The X-ray spectra to be used in the MCNP simulations are generated with spectrum generator software, taking the X-ray voltage and all filtration applied in the clinic as input parameters. These calculations are done for different patient sizes and for different radiological operations. Results: In case of TL dosimetry, for a group of 100 examinations, the dose equivalents ranged from 0.01 μsv to 0.13 msv with the average of 0.05 msv. The results are seen to be in close agreement with Monte Carlo simulations

  14. Development of visual platform of MCNP4B

    International Nuclear Information System (INIS)

    Fan Jiajin; Wang Yi; Cheng Jianping

    2002-01-01

    For convenience of using MCNP, the authors successfully developed a new code named McnpClient. With friend man-machine interface, the users can create input files very easily. If any error occurs during running process, McnpClient will give detailed fatal error or bad trouble messages. When the running is done, all the data can be obtained and in the mean time the curves associated with the data can be displayed

  15. Using MCNP for in-core instrument calibration in CANDU

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, D.C. [Point Lepreau Generating Station, NB Power, Lepreau, New Brunswick (Canada); Anghel, V.N.P.; Sur, B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2002-07-01

    The calibration of in-core instruments is important for safe and economical CANDU operation. However, in-core detectors are not normally suited to bench calibration procedures. This paper describes the use and validation of detailed neutron transport calculations for the purpose of calibrating the response of in-core neutron flux detectors. The Monte-Carlo transport code, MCNP, was used to model the thermal neutron flux distribution in the region around self-powered in-core flux detectors (ICFDs), and in the vicinity of the calandria edge. The ICFD model was used to evaluate the reduction in signal of a given detector (the 'detector shading factor') due to neutron absorption in surrounding materials, detectors, and lead-cables. The calandria edge model was used to infer the accuracy of the calandria edge position from flux scans performed by AECL's traveling flux detector (TFD) system. The MCNP results were checked against experimental results on ICFDs, and also against shading factors computed by other means. The use of improved in-core detector calibration factors obtained by this new methodology will improve the accuracy of spatial flux control performance in CANDU-6 reactors. The accurate determination of TFD based calandria edge position is useful in the quantitative measurement of changes in in-core component dimensions and position due to aging, such as pressure tube sag. (author)

  16. Organ dose conversion coefficients based on a voxel mouse model and MCNP code for external photon irradiation.

    Science.gov (United States)

    Zhang, Xiaomin; Xie, Xiangdong; Cheng, Jie; Ning, Jing; Yuan, Yong; Pan, Jie; Yang, Guoshan

    2012-01-01

    A set of conversion coefficients from kerma free-in-air to the organ absorbed dose for external photon beams from 10 keV to 10 MeV are presented based on a newly developed voxel mouse model, for the purpose of radiation effect evaluation. The voxel mouse model was developed from colour images of successive cryosections of a normal nude male mouse, in which 14 organs or tissues were segmented manually and filled with different colours, while each colour was tagged by a specific ID number for implementation of mouse model in Monte Carlo N-particle code (MCNP). Monte Carlo simulation with MCNP was carried out to obtain organ dose conversion coefficients for 22 external monoenergetic photon beams between 10 keV and 10 MeV under five different irradiation geometries conditions (left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic). Organ dose conversion coefficients were presented in tables and compared with the published data based on a rat model to investigate the effect of body size and weight on the organ dose. The calculated and comparison results show that the organ dose conversion coefficients varying the photon energy exhibits similar trend for most organs except for the bone and skin, and the organ dose is sensitive to body size and weight at a photon energy approximately <0.1 MeV.

  17. Reconstructing the ideal results of a perturbed analog quantum simulator

    Science.gov (United States)

    Schwenk, Iris; Reiner, Jan-Michael; Zanker, Sebastian; Tian, Lin; Leppäkangas, Juha; Marthaler, Michael

    2018-04-01

    Well-controlled quantum systems can potentially be used as quantum simulators. However, a quantum simulator is inevitably perturbed by coupling to additional degrees of freedom. This constitutes a major roadblock to useful quantum simulations. So far there are only limited means to understand the effect of perturbation on the results of quantum simulation. Here we present a method which, in certain circumstances, allows for the reconstruction of the ideal result from measurements on a perturbed quantum simulator. We consider extracting the value of the correlator 〈Ôi(t ) Ôj(0 ) 〉 from the simulated system, where Ôi are the operators which couple the system to its environment. The ideal correlator can be straightforwardly reconstructed by using statistical knowledge of the environment, if any n -time correlator of operators Ôi of the ideal system can be written as products of two-time correlators. We give an approach to verify the validity of this assumption experimentally by additional measurements on the perturbed quantum simulator. The proposed method can allow for reliable quantum simulations with systems subjected to environmental noise without adding an overhead to the quantum system.

  18. Electron-cloud simulation results for the PSR and SNS

    International Nuclear Information System (INIS)

    Pivi, M.; Furman, M.A.

    2002-01-01

    We present recent simulation results for the main features of the electron cloud in the storage ring of the Spallation Neutron Source (SNS) at Oak Ridge, and updated results for the Proton Storage Ring (PSR) at Los Alamos. In particular, a complete refined model for the secondary emission process including the so called true secondary, rediffused and backscattered electrons has been included in the simulation code

  19. Visualization of geometry and tally data using MCNP and Justine

    International Nuclear Information System (INIS)

    Cox, L.J.; Favorite, J.A.

    1999-01-01

    The Monte Carlo N-Particle (MCNP) transport code is a general-purpose code that can be used for neutron, photon, electron, or coupled neutron/photon/electron transport, including the capability to calculate eigenvalues for neutron-multiplying systems. The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and fourth-degree elliptical tori. Justine is the graphical user interface and problem setup tool for the Los Alamos Radiation Modeling Interactive Environment (LARAMIE). Its purpose is to serve as a convenient and very general interface for setting up physics calculations and linking together the disparate radiation transport codes under a single front-end. Currently, the LARAMIE system includes MCNP and the deterministic transport code suit DANTSYS (ONEDANT, TWODANT, and THREEDANT, for one-, two-, and three-dimensional geometries, respectively). Justine is currently available through the Radiation Safety Information Computational Center to members of the criticality safety community for evaluation and use. The authors will demonstrate the capabilities of both codes for visualization of geometries and results from a variety of criticality problems

  20. MCNP modelling of a combined neutron/gamma counter

    CERN Document Server

    Bourva, L C A; Ottmar, H; Weaver, D R

    1999-01-01

    A series of Monte Carlo neutron calculations for a combined gamma/passive neutron coincidence counter has been performed. This type of device, part of a suite of non-destructive assay instruments utilised for the enforcement of the Euratom nuclear safeguards within the European Union, is to be used for high accuracy measurements of the plutonium content of small samples of nuclear materials. The multi-purpose Monte Carlo N-particle (MCNP) code version 4B has been used to model in detail the neutron coincidence detector and to investigate the leakage self-multiplication of PuO sub 2 and mixed U-Pu oxide (MOX) reference samples used to calibrate the instrument. The MCNP calculations have been used together with a neutron coincidence counting interpretative model to determine characteristic parameters of the detector. A comparative study to both experimental and previous numerical results has been performed. Sensitivity curves of the variation of the detector's efficiency, epsilon, to, alpha, the ratio of (alpha...

  1. Electron-cloud simulation results for the SPS and recent results for the LHC

    International Nuclear Information System (INIS)

    Furman, M.A.; Pivi, M.T.F.

    2002-01-01

    We present an update of computer simulation results for some features of the electron cloud at the Large Hadron Collider (LHC) and recent simulation results for the Super Proton Synchrotron (SPS). We focus on the sensitivity of the power deposition on the LHC beam screen to the emitted electron spectrum, which we study by means of a refined secondary electron (SE) emission model recently included in our simulation code

  2. Modelling of a proton spot scanning system using MCNP6

    International Nuclear Information System (INIS)

    Ardenfors, O; Gudowska, I; Dasu, A; Kopeć, M

    2017-01-01

    The aim of this work was to model the characteristics of a clinical proton spot scanning beam using Monte Carlo simulations with the code MCNP6. The proton beam was defined using parameters obtained from beam commissioning at the Skandion Clinic, Uppsala, Sweden. Simulations were evaluated against measurements for proton energies between 60 and 226 MeV with regard to range in water, lateral spot sizes in air and absorbed dose depth profiles in water. The model was also used to evaluate the experimental impact of lateral signal losses in an ionization chamber through simulations using different detector radii. Simulated and measured distal ranges agreed within 0.1 mm for R 90 and R 80 , and within 0.2 mm for R 50 . The average absolute difference of all spot sizes was 0.1 mm. The average agreement of absorbed dose integrals and Bragg-peak heights was 0.9%. Lateral signal losses increased with incident proton energy with a maximum signal loss of 7% for 226 MeV protons. The good agreement between simulations and measurements supports the assumptions and parameters employed in the presented Monte Carlo model. The characteristics of the proton spot scanning beam were accurately reproduced and the model will prove useful in future studies on secondary neutrons. (paper)

  3. Development of interface between MCNP-FISPACT-MCNP (IPR-MFM) based on rigorous two step method

    International Nuclear Information System (INIS)

    Shaw, A.K.; Swami, H.L.; Danani, C.

    2015-01-01

    In this work we present the development of interface tool between MCNP-FISPACT-MCNP (MFM) based on Rigorous Two Step method for the shutdown dose rate (SDDR) calculation. The MFM links MCNP radiation transport and the FISPACT inventory code through a suitable coupling scheme. MFM coupling scheme has three steps. In first step it picks neutron spectrum and total flux from MCNP output file to use as input parameter for FISPACT. It prepares the FISPACT input files by using irradiation history, neutron flux and neutron spectrum and then execute the FISPACT input file in the second step. Third step of MFM coupling scheme extracts the decay gammas from the FISPACT output file and prepares MCNP input file for decay gamma transport followed by execution of MCNP input file and estimation of SDDR. Here detailing of MFM methodology and flow scheme has been described. The programming language PYTHON has been chosen for this development of the coupling scheme. A complete loop of MCNP-FISPACT-MCNP has been developed to handle the simplified geometrical problems. For validation of MFM interface a manual cross-check has been performed which shows good agreements. The MFM interface also has been validated with exiting MCNP-D1S method for a simple geometry with 14 MeV cylindrical neutron source. (author)

  4. Evaluation of Tehran research reactor (TRR) control rod worth using MCNP4C computer code

    International Nuclear Information System (INIS)

    Hosseini, Mohammad; Vosoughi, Naser; Hosseini, Seyed Abolfazl

    2010-01-01

    The main objective of reactor control system is to provide a safe reactor starting up, operation and shutting down. Calculation or measurement of precise values of control rod worth is of great importance in Tehran Research Reactor (TRR), considering the fact that they are the only controlling tools in the reactor. In present paper, simulation of TRR in First Operation Cycle (FOC) and in cold and clean core for the calculation of total and integral worth of control nods is reported. MCNP4C computer code has been used for all simulation process. Two method have been used for control rods worth calculation in this paper, namely the direct approach and perturbation method. It is shown that while the direct approach is appropriate for worth calculation of both the shim and the regulating control rods, the perturbation method is just suitable for tiny reactivity changes, i.e. for small initial part of regulating rods. Results of simulation are compared with the reported data in Safety Analysis Report (SAR) of Tehran research reactor and showed satisfactory agreement. (author)

  5. V&V of MCNP 6.1.1 Beta Against Intermediate and High-Energy Experimental Data

    Energy Technology Data Exchange (ETDEWEB)

    Mashnik, Stepan G [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-08

    This report presents a set of validation and verification (V&V) MCNP 6.1.1 beta results calculated in parallel, with MPI, obtained using its event generators at intermediate and high-energies compared against various experimental data. It also contains several examples of results using the models at energies below 150 MeV, down to 10 MeV, where data libraries are normally used. This report can be considered as the forth part of a set of MCNP6 Testing Primers, after its first, LA-UR-11-05129, and second, LA-UR-11-05627, and third, LA-UR-26944, publications, but is devoted to V&V with the latest, 1.1 beta version of MCNP6. The MCNP6 test-problems discussed here are presented in the /VALIDATION_CEM/and/VALIDATION_LAQGSM/subdirectories in the MCNP6/Testing/directory. README files that contain short descriptions of every input file, the experiment, the quantity of interest that the experiment measures and its description in the MCNP6 output files, and the publication reference of that experiment are presented for every test problem. Templates for plotting the corresponding results with xmgrace as well as pdf files with figures representing the final results of our V&V efforts are presented. Several technical “bugs” in MCNP 6.1.1 beta were discovered during our current V&V of MCNP6 while running it in parallel with MPI using its event generators. These “bugs” are to be fixed in the following version of MCNP6. Our results show that MCNP 6.1.1 beta using its CEM03.03, LAQGSM03.03, Bertini, and INCL+ABLA, event generators describes, as a rule, reasonably well different intermediate- and high-energy measured data. This primer isn’t meant to be read from cover to cover. Readers may skip some sections and go directly to any test problem in which they are interested.

  6. Program for the Generation of MCNP Inputs from State Files of CAREM

    International Nuclear Information System (INIS)

    Leszczynski, Francisco; Lopasso, Edmundo; Villarino, E

    2000-01-01

    The objective of this work is the development and tests of detailed input data for the Monte Carlo program MCNP, to be able of model the core of CAREM reactor, with the detail included on the updated models, for having available a calculation system that allow the production of confident results to be compared with results obtained with the system used today for designing the CAREM reactor core (CONDOR-CITVAP).The model includes the possibility of temperature and coolant density, and temperature and numeric densities of fuel.The detail consists of 21 different fuel elements (symmetry 3) and 14 axial zones.Results of comparisons of reactivity and power pick factors are presented, between MCNP and CONDOR-CITVAP.On average, these results show an acceptable agreement for all the compared parameters.It is described, also, the interface CONDOR-CITVAP-MCNP program, that has been developed for generating inputs of materials for MCNP, from outputs of CONDOR and CITVAP, for different reactor states

  7. MCNP modeling of NORM dosimetry in the oil and gas industry

    International Nuclear Information System (INIS)

    Siqiu Wang

    2016-01-01

    Naturally-occurring radioactive materials wastes in the oil and gas industry create a radioactive environment for the workers in the field. MCNP simulation conducted in this work provides a useful tool in terms of radiation safety design of the oil field, as well as validation and an important addition to in situ measurements. Furthermore, phantoms are employed to observe the dose distribution throughout the human body, demonstrating radiation effects on each individual organ. (author)

  8. Obtaining of primary rays of spectrum X codes Penelope and MCNP5; Obtencion del espectro primario de Rayos X con los codigos Penelope y MCNP5

    Energy Technology Data Exchange (ETDEWEB)

    Pozuelo, F.; Querol, A.; Gallardo, S.; Rodenas, J.; Verdu, G.

    2012-07-01

    In this case, used codes PENELOPE MCNP5, based on the Monte Carlo method for x-ray spectrum taking into account the characteristics of the x-ray tube. In order to achieve a greater fit of simulated by the theoretical spectrum. It carried out a sensitivity analysis of the parameters available in both codes. The obtaining of the simulated spectrum could lead to an improvement in quality control of the x-ray tube to incorporate it as a method complementary to techniques.

  9. SU-E-T-212: Comparison of TG-43 Dosimetric Parameters of Low and High Energy Brachytherapy Sources Obtained by MCNP Code Versions of 4C, X and 5

    Energy Technology Data Exchange (ETDEWEB)

    Zehtabian, M; Zaker, N; Sina, S [Shiraz University, Shiraz, Fars (Iran, Islamic Republic of); Meigooni, A Soleimani [Comprehensive Cancer Center of Nevada, Las Vegas, Nevada (United States)

    2015-06-15

    Purpose: Different versions of MCNP code are widely used for dosimetry purposes. The purpose of this study is to compare different versions of the MCNP codes in dosimetric evaluation of different brachytherapy sources. Methods: The TG-43 parameters such as dose rate constant, radial dose function, and anisotropy function of different brachytherapy sources, i.e. Pd-103, I-125, Ir-192, and Cs-137 were calculated in water phantom. The results obtained by three versions of Monte Carlo codes (MCNP4C, MCNPX, MCNP5) were compared for low and high energy brachytherapy sources. Then the cross section library of MCNP4C code was changed to ENDF/B-VI release 8 which is used in MCNP5 and MCNPX codes. Finally, the TG-43 parameters obtained using the MCNP4C-revised code, were compared with other codes. Results: The results of these investigations indicate that for high energy sources, the differences in TG-43 parameters between the codes are less than 1% for Ir-192 and less than 0.5% for Cs-137. However for low energy sources like I-125 and Pd-103, large discrepancies are observed in the g(r) values obtained by MCNP4C and the two other codes. The differences between g(r) values calculated using MCNP4C and MCNP5 at the distance of 6cm were found to be about 17% and 28% for I-125 and Pd-103 respectively. The results obtained with MCNP4C-revised and MCNPX were similar. However, the maximum difference between the results obtained with the MCNP5 and MCNP4C-revised codes was 2% at 6cm. Conclusion: The results indicate that using MCNP4C code for dosimetry of low energy brachytherapy sources can cause large errors in the results. Therefore it is recommended not to use this code for low energy sources, unless its cross section library is changed. Since the results obtained with MCNP4C-revised and MCNPX were similar, it is concluded that the difference between MCNP4C and MCNPX is their cross section libraries.

  10. Problem and solution of tally segment card in MCNP code

    International Nuclear Information System (INIS)

    Xie Jiachun; Zhao Shouzhi; Sun Zheng; Jia Baoshan

    2010-01-01

    Wrong results may be given when FS card (tally segment card) was used for tally with other tally cards in Monte Carlo code MCNP. According to the comparison of segment tally results which were obtained by FS card of three different models of the same geometry, the tally results of fuel regions were found to be wrong in fill pattern. The reason is that the fuel cells were described by Universe card and FILL card, and the filled cells were always considered at Universe card definition place. A proposed solution was that the segment tally for filled cells was done at Universe card definition place. Radial flux distribution of one example was calculated in this way. The results show that the fault of segment tally with FS card in fill pattern could be solved by this method. (authors)

  11. Implementation of 3D models in the Monte Carlo code MCNP

    International Nuclear Information System (INIS)

    Lopes, Vivaldo; Millian, Felix M.; Guevara, Maria Victoria M.; Garcia, Fermin; Sena, Isaac; Menezes, Hugo

    2009-01-01

    On the area of numerical dosimetry Applied to medical physics, the scientific community focuses on the elaboration of new hybrids models based on 3D models. But different steps of the process of simulation with 3D models needed improvement and optimization in order to expedite the calculations and accuracy using this methodology. This project was developed with the aim of optimize the process of introduction of 3D models within the simulation code of radiation transport by Monte Carlo (MCNP). The fast implementation of these models on the simulation code allows the estimation of the dose deposited on the patient organs on a more personalized way, increasing the accuracy with this on the estimates and reducing the risks to health, caused by ionizing radiations. The introduction o these models within the MCNP was made through a input file, that was constructed through a sequence of images, bi-dimensional in the 3D model, generated using the program '3DSMAX', imported by the program 'TOMO M C' and thus, introduced as INPUT FILE of the MCNP code. (author)

  12. Au-coated X-ray Anti-scattering Grid Performance Test by MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Bae, JunWoo; Yoo, Dong Han; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    It is required to protect individual against the dangers of ionizing radiation from medical exposure. And increasing of resolution for x-ray radiography tools can give radiation protectoral benefits. Because the image device has higher resolution in same energy source, it requires low energy level source and it can reduce individual dose. The anti-scattering grid is sub-device that is attached in front of detector (direction of source). It is square lattice shape generally. It is composed of penetration parts and shielding parts. Penetration part is generally air (the void) and in some studies it uses wood or aluminum. Shielding part is composed of various materials such as lead or copper. In this study, it is focused on the gold as one of X-ray grid materials, where gold is generally known as excellent shielding material and the performance test on the gold coated anti-scattering grid is carried out by MCNP simulation. X-ray grid was simulated by using MCNP code and its performance was investigated. It was understood that glass based and Au-coated grid could lessen the scattered photons more where the reduction was about two third. In further study, geometry optimization or material selection will be conducted by MCNP simulation for giving benefits to design proper grid for various instruments.

  13. Presenting simulation results in a nested loop plot.

    Science.gov (United States)

    Rücker, Gerta; Schwarzer, Guido

    2014-12-12

    Statisticians investigate new methods in simulations to evaluate their properties for future real data applications. Results are often presented in a number of figures, e.g., Trellis plots. We had conducted a simulation study on six statistical methods for estimating the treatment effect in binary outcome meta-analyses, where selection bias (e.g., publication bias) was suspected because of apparent funnel plot asymmetry. We varied five simulation parameters: true treatment effect, extent of selection, event proportion in control group, heterogeneity parameter, and number of studies in meta-analysis. In combination, this yielded a total number of 768 scenarios. To present all results using Trellis plots, 12 figures were needed. Choosing bias as criterion of interest, we present a 'nested loop plot', a diagram type that aims to have all simulation results in one plot. The idea was to bring all scenarios into a lexicographical order and arrange them consecutively on the horizontal axis of a plot, whereas the treatment effect estimate is presented on the vertical axis. The plot illustrates how parameters simultaneously influenced the estimate. It can be combined with a Trellis plot in a so-called hybrid plot. Nested loop plots may also be applied to other criteria such as the variance of estimation. The nested loop plot, similar to a time series graph, summarizes all information about the results of a simulation study with respect to a chosen criterion in one picture and provides a suitable alternative or an addition to Trellis plots.

  14. Numerical verification/validation of the theory of coupled reactors for deuterium critical assembly, using MCNP5 and Serpent codes

    International Nuclear Information System (INIS)

    Hussein, M.S; Lewis, B.J.; Bonin, H.W.

    2013-01-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5 and the continuous-energy Monte Carlo reactor physics burnup calculation Serpent code. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as the Deuterium Critical Assembly, DCA. The multiplication factors k eff calculated numerically and independently from simulations of the DCA by MCNP5 and Serpent codes are compared with the multiplication factors k eff calculated based on the coupled reactor theory. Excellent agreement was obtained between the multiplication factors k eff calculated with the Serpent code, with MCNP5, and from the coupled reactor theory. This analysis demonstrates that the Serpent code is valid for the multipoint coupled reactor calculations. (author)

  15. Numerical verification/validation of the theory of coupled reactors for deuterium critical assembly, using MCNP5 and Serpent codes

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M.S, E-mail: mohamed.hussein@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada); Lewis, B.J., E-mail: Brent.Lewis@uoit.ca [Univ. of Ontario Inst. of Technology, Faculty of Energy Systems and Nuclear Science, Oshawa, Ontario (Canada); Bonin, H.W., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2013-07-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5 and the continuous-energy Monte Carlo reactor physics burnup calculation Serpent code. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as the Deuterium Critical Assembly, DCA. The multiplication factors k{sub eff} calculated numerically and independently from simulations of the DCA by MCNP5 and Serpent codes are compared with the multiplication factors k{sub eff} calculated based on the coupled reactor theory. Excellent agreement was obtained between the multiplication factors k{sub eff} calculated with the Serpent code, with MCNP5, and from the coupled reactor theory. This analysis demonstrates that the Serpent code is valid for the multipoint coupled reactor calculations. (author)

  16. Estimation and interpretation of keff confidence intervals in MCNP

    International Nuclear Information System (INIS)

    Urbatsch, T.J.

    1995-01-01

    MCNP has three different, but correlated, estimators for Calculating k eff in nuclear criticality calculations: collision, absorption, and track length estimators. The combination of these three estimators, the three-combined k eff estimator, is shown to be the best k eff estimator available in MCNP for estimating k eff confidence intervals. Theoretically, the Gauss-Markov Theorem provides a solid foundation for MCNP's three-combined estimator. Analytically, a statistical study, where the estimates are drawn using a known covariance matrix, shows that the three-combined estimator is superior to the individual estimator with the smallest variance. The importance of MCNP's batch statistics is demonstrated by an investigation of the effects of individual estimator variance bias on the combination of estimators, both heuristically with the analytical study and emprically with MCNP

  17. Estimation and interpretation of keff confidence intervals in MCNP

    International Nuclear Information System (INIS)

    Urbatsch, T.J.

    1995-01-01

    The Monte Carlo code MCNP has three different, but correlated, estimators for calculating k eff in nuclear criticality calculations: collision, absorption, and track length estimators. The combination of these three estimators, the three-combined k eff estimator, is shown to be the best k eff estimator available in MCNP for estimating k eff confidence intervals. Theoretically, the Gauss-Markov theorem provides a solid foundation for MCNP's three-combined estimator. Analytically, a statistical study, where the estimates are drawn using a known covariance matrix, shows that the three-combined estimator is superior to the estimator with the smallest variance. Empirically, MCNP examples for several physical systems demonstrate the three-combined estimator's superiority over each of the three individual estimators and its correct coverage rates. Additionally, the importance of MCNP's statistical checks is demonstrated

  18. An assessment of the MCNP4C weight window

    International Nuclear Information System (INIS)

    Culbertson, Christopher N.; Hendricks, John S.

    1999-01-01

    A new, enhanced weight window generator suite has been developed for MCNP version 4C. The new generator correctly estimates importances in either a user-specified, geometry-independent, orthogonal grid or in MCNP geometric cells. The geometry-independent option alleviates the need to subdivide the MCNP cell geometry for variance reduction purposes. In addition, the new suite corrects several pathologies in the existing MCNP weight window generator. The new generator is applied in a set of five variance reduction problems. The improved generator is compared with the weight window generator applied in MCNP4B. The benefits of the new methodology are highlighted, along with a description of its limitations. The authors also provide recommendations for utilization of the weight window generator

  19. An improved algorithm to convert CAD model to MCNP geometry model based on STEP file

    International Nuclear Information System (INIS)

    Zhou, Qingguo; Yang, Jiaming; Wu, Jiong; Tian, Yanshan; Wang, Junqiong; Jiang, Hai; Li, Kuan-Ching

    2015-01-01

    Highlights: • Fully exploits common features of cells, making the processing efficient. • Accurately provide the cell position. • Flexible to add new parameters in the structure. • Application of novel structure in INP file processing, conveniently evaluate cell location. - Abstract: MCNP (Monte Carlo N-Particle Transport Code) is a general-purpose Monte Carlo N-Particle code that can be used for neutron, photon, electron, or coupled neutron/photon/electron transport. Its input file, the INP file, has the characteristics of complicated form and is error-prone when describing geometric models. Due to this, a conversion algorithm that can solve the problem by converting general geometric model to MCNP model during MCNP aided modeling is highly needed. In this paper, we revised and incorporated a number of improvements over our previous work (Yang et al., 2013), which was proposed and targeted after STEP file and INP file were analyzed. Results of experiments show that the revised algorithm is more applicable and efficient than previous work, with the optimized extraction of geometry and topology information of the STEP file, as well as the production efficiency of output INP file. This proposed research is promising, and serves as valuable reference for the majority of researchers involved with MCNP-related researches

  20. RBMK fuel channel blockage analysis by MCNP5, DRAGON and RELAP5-3D codes

    International Nuclear Information System (INIS)

    Parisi, C.; D'Auria, F.

    2007-01-01

    The aim of this work was to perform precise criticality analyses by Monte-Carlo code MCNP5 for a Fuel Channel (FC) flow blockage accident, considering as calculation domain a single FC and a 3x3 lattice of RBMK cells. Boundary conditions for MCNP5 input were derived by a previous transient calculation by state-of-the-art codes HELIOS/RELAP5-3D. In a preliminary phase, suitable MCNP5 models of a single cell and of a small lattice of RBMK cells were set-up; criticality analyses were performed at reference conditions for 2.0% and 2.4% enriched fuel. These analyses were compared with results obtained by University of Pisa (UNIPI) using deterministic transport code DRAGON and with results obtained by NIKIET Institute using MCNP4C. Then, the changes of the main physical parameters (e.g. fuel and water/steam temperature, water density, graphite temperature) at different time intervals of the FC blockage transient were evaluated by a RELAP5-3D calculation. This information was used to set up further MCNP5 inputs. Criticality analyses were performed for different systems (single channel and lattice) at those transient' states, obtaining global criticality versus transient time. Finally the weight of each parameter's change (fuel overheating and channel voiding) on global criticality was assessed. The results showed that reactivity of a blocked FC is always negative; nevertheless, when considering the effect of neighboring channels, the global reactivity trend reverts, becoming slightly positive or not changing at all, depending in inverse relation to the fuel enrichment. (author)

  1. Criticality analysis of the storage tubes for irradiated fuel elements from the IEA-R1 with the MCNP code

    International Nuclear Information System (INIS)

    Maragni, M.G.; Moreira, J.M.L.

    1992-01-01

    A criticality safety analysis has been carried out for the storage tubes for irradiated fuel elements from the IEA-R1 research reactor. The analysis utilized the MCNP computer code which allows exact simulations of complex geometries. Aiming reducing the amount of input data, the fuel element cross-sections have been spatially smeared out. The earth material interstice between fuel elements has been approximated conservatively as concrete because its composition was unknown. The storage tubes have been found subcritical for the most adverse conditions (water flooding and un-irradiated fuel elements). A similar analysis with the KENO-IV computer code overestimated the KEF result but still confirmed the criticality safety of the storage tubes. (author)

  2. Development and Application of MCNP5 and KENO-VI Monte Carlo Models for the Atucha-2 PHWR Analysis

    Directory of Open Access Journals (Sweden)

    M. Pecchia

    2011-01-01

    Full Text Available The geometrical complexity and the peculiarities of Atucha-2 PHWR require the adoption of advanced Monte Carlo codes for performing realistic neutronic simulations. Core models of Atucha-2 PHWR were developed using both MCNP5 and KENO-VI codes. The developed models were applied for calculating reactor criticality states at beginning of life, reactor cell constants, and control rods volumes. The last two applications were relevant for performing successive three dimensional neutron kinetic analyses since it was necessary to correctly evaluate the effect of each oblique control rod in each cell discretizing the reactor. These corrective factors were then applied to the cell cross sections calculated by the two-dimensional deterministic lattice physics code HELIOS. These results were implemented in the RELAP-3D model to perform safety analyses for the licensing process.

  3. MCNP5 CRITICALITY VALIDATION AND BIAS FOR INTERMEDIATE ENRICHED URANIUM SYSTEMS

    International Nuclear Information System (INIS)

    Finfrock, S.H.

    2009-01-01

    The purpose of this analysis is to validate the Monte Carlo N-Particle 5 (MCNP5) code Version 1.40 (LA-UR-03-1987, 2005) and its cross-section database for k-code calculations of intermediate enriched uranium systems on INTEL(reg s ign) processor based PC's running any version of the WINDOWS operating system. Configurations with intermediate enriched uranium were modeled with the moderator range of 39 (le) H/Fissile (le) 1438. See Table 2-1 for brief descriptions of selected cases and Table 3-1 for the range of applicability for this validation. A total of 167 input cases were evaluated including bare and reflected systems in a single body or arrays. The 167 cases were taken directly from the previous (Version 4C [Lan 2005]) validation database. Section 2.0 list data used to calculate k-effective (k eff ) for the 167 experimental criticality benchmark cases using the MCNP5 code v1.40 and its cross section database. Appendix B lists the MCNP cross-section database entries validated for use in evaluating the intermediate enriched uranium systems for criticality safety. The dimensions and atom densities for the intermediate enriched uranium experiments were taken from NEA/NSC/DOC(95)03, September 2005, which will be referred to as the benchmark handbook throughout the report. For these input values, the experimental benchmark k eff is approximately 1.0. The MCNP validation computer runs ran to an accuracy of approximately ± 0.001. For the cases where the reported benchmark k eff was not equal to 1.0000 the MCNP calculational results were normalized. The difference between the MCNP validation computer runs and the experimentally measured k eff is the MCNP5 v1.40 bias. The USLSTATS code (ORNL 1998) was utilized to perform the statistical analysis and generate an acceptable maximum k eff limit for calculations of the intermediate enriched uranium type systems.

  4. Implementation of a tree algorithm in MCNP code for nuclear well logging applications

    Energy Technology Data Exchange (ETDEWEB)

    Li Fusheng, E-mail: fusheng.li@bakerhughes.com [Baker Hughes Incorporated, 2001 Rankin Rd. Houston, TX 77073-5101 (United States); Han Xiaogang [Baker Hughes Incorporated, 2001 Rankin Rd. Houston, TX 77073-5101 (United States)

    2012-07-15

    The goal of this paper is to develop some modeling capabilities that are missing in the current MCNP code. Those missing capabilities can greatly help for some certain nuclear tools designs, such as a nuclear lithology/mineralogy spectroscopy tool. The new capabilities to be developed in this paper include the following: zone tally, neutron interaction tally, gamma rays index tally and enhanced pulse-height tally. The patched MCNP code also can be used to compute neutron slowing-down length and thermal neutron diffusion length. - Highlights: Black-Right-Pointing-Pointer Tree structure programming is suitable for Monte-Carlo based particle tracking. Black-Right-Pointing-Pointer Enhanced pulse height tally is developed for oilwell logging tool simulation. Black-Right-Pointing-Pointer Neutron interaction tally and gamma ray index tally for geochemical logging.

  5. Experiment vs simulation RT WFNDEC 2014 benchmark: CIVA results

    International Nuclear Information System (INIS)

    Tisseur, D.; Costin, M.; Rattoni, B.; Vienne, C.; Vabre, A.; Cattiaux, G.; Sollier, T.

    2015-01-01

    The French Atomic Energy Commission and Alternative Energies (CEA) has developed for years the CIVA software dedicated to simulation of NDE techniques such as Radiographic Testing (RT). RT modelling is achieved in CIVA using combination of a determinist approach based on ray tracing for transmission beam simulation and a Monte Carlo model for the scattered beam computation. Furthermore, CIVA includes various detectors models, in particular common x-ray films and a photostimulable phosphor plates. This communication presents the results obtained with the configurations proposed in the World Federation of NDEC 2014 RT modelling benchmark with the RT models implemented in the CIVA software

  6. Experiment vs simulation RT WFNDEC 2014 benchmark: CIVA results

    Energy Technology Data Exchange (ETDEWEB)

    Tisseur, D., E-mail: david.tisseur@cea.fr; Costin, M., E-mail: david.tisseur@cea.fr; Rattoni, B., E-mail: david.tisseur@cea.fr; Vienne, C., E-mail: david.tisseur@cea.fr; Vabre, A., E-mail: david.tisseur@cea.fr; Cattiaux, G., E-mail: david.tisseur@cea.fr [CEA LIST, CEA Saclay 91191 Gif sur Yvette Cedex (France); Sollier, T. [Institut de Radioprotection et de Sûreté Nucléaire, B.P.17 92262 Fontenay-Aux-Roses (France)

    2015-03-31

    The French Atomic Energy Commission and Alternative Energies (CEA) has developed for years the CIVA software dedicated to simulation of NDE techniques such as Radiographic Testing (RT). RT modelling is achieved in CIVA using combination of a determinist approach based on ray tracing for transmission beam simulation and a Monte Carlo model for the scattered beam computation. Furthermore, CIVA includes various detectors models, in particular common x-ray films and a photostimulable phosphor plates. This communication presents the results obtained with the configurations proposed in the World Federation of NDEC 2014 RT modelling benchmark with the RT models implemented in the CIVA software.

  7. Investigation of reactivity variations of the Isfahan MNSR reactor due to variations in the thickness of the core top beryllium layer using WIMSD and MCNP codes

    Directory of Open Access Journals (Sweden)

    A Shirani

    2010-12-01

    Full Text Available In this work, the Isfahan Miniature Neutron Source Reactor (MNSR is first simulated using the WIMSD code, and its fuel burn-up after 7 years of operation ( when the reactor was revived by adding a 1.5 mm thick beryllium shim plate to the top of its core and also after 14 years of operation (total operation time of the reactor is calculated. The reactor is then simulated using the MCNP code, and its reactivity variation due to adding a 1.5 mm thick beryllium shim plate to the top of the reactor core, after 7 years of operation, is calculated. The results show good agreement with the available data collected at the revival time. Exess reactivity of the reactor at present time (after 14 years of operation and after 7 years of the the reactor revival time is also determined both experimentally and by calculation, which show good agreement, and indicate that at the present time there is no need to add any further beryllium shim plate to the top of the reactor core. Furthermore, by adding more beryllium layers with various thicknesses to the top of the reactor core, in the input program of the MCNP program, reactivity value of these layers is calculated. From these results, one can predict the necessary beryllium thickness needed to reach a desired reactivity in the MNSR reactor.

  8. Optimal space-energy splitting in MCNP with the DSA

    International Nuclear Information System (INIS)

    Dubi, A.; Gurvitz, N.

    1990-01-01

    The Direct Statistical Approach (DSA) particle transport theory is based on the possibility of obtaining exact explicit expressions for the dependence of the second moment and calculation time on the splitting parameters. This allows the automatic optimization of the splitting parameters by ''learning'' the bulk parameters from which the problem dependent coefficients of the quality function (second moment time) are constructed. The above procedure was exploited to implement an automatic optimization of the splitting parameters in the Monte Carlo Neutron Photon (MCNP) code. This was done in a number of steps. In the first instance, only spatial surface splitting was considered. In this step, the major obstacle has been the truncation of an infinite series of ''products'' of ''surface path's'' leading from the source to the detector. Encouraging results from the first phase led to the inclusion of full space/energy phase space splitting. (author)

  9. MCNP and visualization of neutron flux and power distributions

    International Nuclear Information System (INIS)

    Snoj, L.; Lengar, I.; Zerovnik, G.; Ravnik, M.

    2009-01-01

    The visualization of neutron flux and power distributions in two nuclear reactors (TRIG A type research reactor and typical PWR) and one thermonuclear reactor (tokamak type) are treated in the paper. The distributions are calculated with MCNP computer code and presented using Amira and Voxler software. The results in the form of figures are presented in the paper together with comments qualitatively explaining the figures. The remembrance of most of the people is better, if they visualize a process. Therefore a representation of the reactor and neutron transport parameters is a convenient modern educational tool for (nuclear power plant) operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for core and irradiation planning. (authors)

  10. Fuel element transfer cask modelling using MCNP technique

    International Nuclear Information System (INIS)

    Rosli Darmawan

    2009-01-01

    Full text: After operating for more than 25 years, some of the Reaktor TRIGA PUSPATI (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement. (author)

  11. Fuel Element Transfer Cask Modelling Using MCNP Technique

    International Nuclear Information System (INIS)

    Darmawan, Rosli; Topah, Budiman Naim

    2010-01-01

    After operating for more than 25 years, some of the Reaktor TRIGA Puspati (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement.

  12. Computation of a voxelized anthropomorphic phantom from Computer Tomography slices and 3D dose distribution calculation utilizing the MCNP5 Code

    International Nuclear Information System (INIS)

    Abella, V.; Miro, R.; Juste, B.; Verdu, G.

    2008-01-01

    Full text: The purpose of this work is to obtain the voxelization of a series of tomography slices in order to provide a voxelized human phantom throughout a MatLab algorithm, and the consequent simulation of the irradiation of such phantom with the photon beam generated in a Theratron 780 (MDS Nordion) 60 Co radiotherapy unit, using the Monte Carlo transport code MCNP (Monte Carlo N-Particle), version 5. The project provides as results dose mapping calculations inside the voxelized anthropomorphic phantom. Prior works have validated the cobalt therapy model utilizing a simple heterogeneous water cube-shaped phantom. The reference phantom model utilized in this work is the Zubal phantom, which consists of a group of pre-segmented CT slices of a human body. The CT slices are to be input into the Matlab program which computes the voxelization by means of two-dimensional pixel and material identification on each slice, and three-dimensional interpolation, in order to depict the phantom geometry via small cubic cells. Each slice is divided in squares with the size of the desired voxelization, and then the program searches for the pixel intensity with a predefined material at each square, making a subsequent three-dimensional interpolation. At the end of this process, the program produces a voxelized phantom in which each voxel defines the mixture of the different materials that compose it. In the case of the Zubal phantom, the voxels result in pure organ materials due to the fact that the phantom is presegmented. The output of this code follows the MCNP input deck format and is integrated in a full input model including the 60 Co radiotherapy unit. Dose rates are calculated using the MCNP5 tool FMESH, superimposed mesh tally. This feature allows to tally particles on an independent mesh over the problem geometry, and to obtain the length estimation of the particle flux, in units of particles/cm 2 (tally F4). Furthermore, the particle flux is transformed into dose by

  13. ANOVA parameters influence in LCF experimental data and simulation results

    Directory of Open Access Journals (Sweden)

    Vercelli A.

    2010-06-01

    Full Text Available The virtual design of components undergoing thermo mechanical fatigue (TMF and plastic strains is usually run in many phases. The numerical finite element method gives a useful instrument which becomes increasingly effective as the geometrical and numerical modelling gets more accurate. The constitutive model definition plays an important role in the effectiveness of the numerical simulation [1, 2] as, for example, shown in Figure 1. In this picture it is shown how a good cyclic plasticity constitutive model can simulate a cyclic load experiment. The component life estimation is the subsequent phase and it needs complex damage and life estimation models [3-5] which take into account of several parameters and phenomena contributing to damage and life duration. The calibration of these constitutive and damage models requires an accurate testing activity. In the present paper the main topic of the research activity is to investigate whether the parameters, which result to be influent in the experimental activity, influence the numerical simulations, thus defining the effectiveness of the models in taking into account of all the phenomena actually influencing the life of the component. To obtain this aim a procedure to tune the parameters needed to estimate the life of mechanical components undergoing TMF and plastic strains is presented for commercial steel. This procedure aims to be easy and to allow calibrating both material constitutive model (for the numerical structural simulation and the damage and life model (for life assessment. The procedure has been applied to specimens. The experimental activity has been developed on three sets of tests run at several temperatures: static tests, high cycle fatigue (HCF tests, low cycle fatigue (LCF tests. The numerical structural FEM simulations have been run on a commercial non linear solver, ABAQUS®6.8. The simulations replied the experimental tests. The stress, strain, thermal results from the thermo

  14. MCNP perturbation technique for criticality analysis

    International Nuclear Information System (INIS)

    McKinney, G.W.; Iverson, J.L.

    1995-01-01

    The differential operator perturbation technique has been incorporated into the Monte Carlo N-Particle transport code MCNP and will become a standard feature of future releases. This feature includes first and/or second order terms of the Taylor Series expansion for response perturbations related to cross-section data (i.e., density, composition, etc.). Criticality analyses can benefit from this technique in that predicted changes in the track-length tally estimator of K eff may be obtained for multiple perturbations in a single run. A key advantage of this method is that a precise estimate of a small change in response (i.e., < 1%) is easily obtained. This technique can also offer acceptable accuracy, to within a few percent, for up to 20-30% changes in a response

  15. SU-E-T-753: Three-Dimensional Dose Distributions of Incident Proton Particle in the Polymer Gel Dosimeter and the Radiochromic Gel Dosimeter: A Simulation Study with MCNP Code

    International Nuclear Information System (INIS)

    Park, M; Kim, G; Ji, Y; Kim, K; Park, S; Jung, H

    2015-01-01

    Purpose: The purpose of this study is to estimate the three-dimensional dose distributions in the polymer and the radiochromic gel dosimeter, and to identify the detectability of both gel dosimeters by comparing with the water phantom in case of irradiating the proton particles. Methods: The normoxic polymer gel and the LCV micelle radiochromic gel were used in this study. The densities of polymer and the radiochromic gel dosimeter were 1.024 and 1.005 g/cm 3 , respectively. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiation transport code (MCNPX, Los Alamos National Laboratory). The shape of phantom irradiated by proton particles was a hexahedron with the dimension of 12.4 × 12.4 × 15.0 cm 3 . The energies of proton beam were 50, 80, and 140 MeV energies were directed to top of the surface of phantom. The cross-sectional view of proton dose distribution in both gel dosimeters was estimated with the water phantom and evaluated by the gamma evaluation method. In addition, the absorbed dose(Gy) was also calculated for evaluating the proton detectability. Results: The evaluation results show that dose distributions in both gel dosimeters at intermediated section and Bragg-peak region are similar with that of the water phantom. At entrance section, however, inconsistencies of dose distribution are represented, compared with water. The relative absorbed doses in radiochromic and polymer gel dosimeter were represented to be 0.47 % and 2.26 % difference, respectively. These results show that the radiochromic gel dosimeter was better matched than the water phantom in the absorbed dose evaluation. Conclusion: The polymer and the radiochromic gel dosimeter show similar characteristics in dose distributions for the proton beams at intermediate section and Bragg-peak region. Moreover the calculated absorbed dose in both gel dosimeters represents similar tendency by comparing with that in water phantom

  16. A Microsoft Windows version of the MCNP visual editor

    International Nuclear Information System (INIS)

    Schwarz, R.A.; Carter, L.L.; Pfohl, J.

    1999-01-01

    Work has started on a Microsoft Windows version of the MCNP visual editor. The MCNP visual editor provides a graphical user interface for displaying and creating MCNP geometries. The visual editor is currently available from the Radiation Safety Information Computational Center (RSICC) and the Nuclear Energy Agency (NEA) as software package PSR-358. It currently runs on the major UNIX platforms (IBM, SGI, HP, SUN) and Linux. Work has started on converting the visual editor to work in a Microsoft Windows environment. This initial work focuses on converting the display capabilities of the visual editor; the geometry creation capability of the visual editor may be included in future upgrades

  17. Development of automatic editing system for MCNP library 'autonj'

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Sakurai, Kiyoshi; Kume, Etsuo; Nomura, Yasushi; Kosako, Kazuaki; Kawasaki, Nobuo; Naito, Yoshitaka

    1999-12-01

    As an activity of the MCNP High-Temperature Library Production Working Group under the Nuclear Code Evaluation Special Committee of Nuclear Code Committee, the automatic editing system for MCNP library 'autonj' was developed. The autonj includes the NJOY-97 code as its main body, and is a system that enables us to easily produce cross section libraries for MCNP from evaluated nuclear data files such as JENDL-3.2. A temperature dependent library at six temperature points based on JENDL-3.2 was produced by using autonj. The autonj system and the temperature dependent library were installed on the JAERI AP3000 computer. (author)

  18. Shielding properties of 80TeO2–5TiO2–(15−x) WO3–xAnOm glasses using WinXCom and MCNP5 code

    International Nuclear Information System (INIS)

    Dong, M.G.; El-Mallawany, R.; Sayyed, M.I.; Tekin, H.O.

    2017-01-01

    Gamma ray shielding properties of 80TeO 2 –5TiO 2 –(15−x) WO 3 –xA n O m glasses, where A n O m is Nb 2 O 5 = 0.01, 5, Nd 2 O 3 = 3, 5 and Er 2 O 3 = 5 mol% have been achieved. Shielding parameters; mass attenuation coefficients, half value layers, and macroscopic effective removal cross section for fast neutrons have been computed by using WinXCom program and MCNP5 Monte Carlo code. In addition, by using Geometric Progression method (G-P), exposure buildup factor values were also calculated. Variations of shielding parameters are discussed for the effect of REO addition into the glasses and photon energy. - Highlights: • The shielding properties of 80TeO 2 –5TiO 2 –(15−x) WO 3 –xA n O m glasses were evaluated. • WinXCom program and MCNP simulation codes were used in the calculations. • Good agreement was noticed between the WinXCom and MCNP5 code results.

  19. Comparison the Results of Numerical Simulation And Experimental Results for Amirkabir Plasma Focus Facility

    Science.gov (United States)

    Goudarzi, Shervin; Amrollahi, R.; Niknam Sharak, M.

    2014-06-01

    In this paper the results of the numerical simulation for Amirkabir Mather-type Plasma Focus Facility (16 kV, 36μF and 115 nH) in several experiments with Argon as working gas at different working conditions (different discharge voltages and gas pressures) have been presented and compared with the experimental results. Two different models have been used for simulation: five-phase model of Lee and lumped parameter model of Gonzalez. It is seen that the results (optimum pressures and current signals) of the Lee model at different working conditions show better agreement than lumped parameter model with experimental values.

  20. Comparison the results of numerical simulation and experimental results for Amirkabir plasma focus facility

    International Nuclear Information System (INIS)

    Goudarzi, Shervin; Amrollahi, R; Sharak, M Niknam

    2014-01-01

    In this paper the results of the numerical simulation for Amirkabir Mather-type Plasma Focus Facility (16 kV, 36μF and 115 nH) in several experiments with Argon as working gas at different working conditions (different discharge voltages and gas pressures) have been presented and compared with the experimental results. Two different models have been used for simulation: five-phase model of Lee and lumped parameter model of Gonzalez. It is seen that the results (optimum pressures and current signals) of the Lee model at different working conditions show better agreement than lumped parameter model with experimental values.

  1. Simulation and study on the γ response spectrum of BGO detector by the application of monte carlo code MOCA

    International Nuclear Information System (INIS)

    Jia Wenbao; Chen Xiaowen; Xu Aiguo; Li Anmin

    2010-01-01

    Application of Monte Carlo method to build spectra library is useful to reduce experiment workload in Prompt Gamma Neutron Activation Analysis (PGNAA). The new Monte Carlo Code MOCA was used to simulate the response spectra of BGO detector for gamma rays from 137 Cs, 60 Co and neutron induced gamma rays from S and Ti. The results were compared with general code MCNP, show that the agreement of MOCA between simulation and experiment is better than MCNP. This research indicates that building spectra library by Monte Carlo method is feasible. (authors)

  2. Recent simulation results of the magnetic induction tomography forward problem

    Directory of Open Access Journals (Sweden)

    Stawicki Krzysztof

    2016-06-01

    Full Text Available In this paper we present the results of simulations of the Magnetic Induction Tomography (MIT forward problem. Two complementary calculation techniques have been implemented and coupled, namely: the finite element method (applied in commercial software Comsol Multiphysics and the second, algebraic manipulations on basic relationships of electromagnetism in Matlab. The developed combination saves a lot of time and makes a better use of the available computer resources.

  3. An evaluation of a manganese bath system having a new geometry through MCNP modelling.

    Science.gov (United States)

    Khabaz, Rahim

    2012-12-01

    In this study, an approximate symmetric cylindrical manganese bath system with equal diameter and height was appraised using a Monte Carlo simulation. For nine sizes of the tank filled with MnSO(4).H(2)O solution of three different concentrations, the necessary correction factors involved in the absolute measurement of neutron emission rate were determined by a detailed modelling of the MCNP4C code with the ENDF/B-VII.0 neutron cross section data library. The results obtained were also used to determine the optimum dimensions of the bath for each concentration of solution in the calibration of (241)Am-Be and (252)Cf sources. Also, the amount of gamma radiation produced as a result of (n,γ) the reaction with the nuclei of the manganese sulphate solution that escaped from the boundary of each tank was evaluated. This gamma can be important for the background in NaI(Tl) detectors and issues concerned with radiation protection.

  4. Comparative dosimetry of prostate brachytherapy with I-125 and Pd-103 seeds via SISCODES/MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Trindade, Bruno Machado; Falcao, Patricia Lima, E-mail: bmtrindade@yahoo.com [Nucleo de Radiacoes Ionizantes - Universidade Federal de Minas Gerais (NRI/UFMG), Belo Horizonte, MG (Brazil); Christovao, Marilia Tavares [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Trindade, Daniela de Fatima Maia [Centro Universitario Una, Belo Horizonte, MG (Brazil); Campos, Tarcisio Passos Ribeiro de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2012-09-15

    Objective: The present paper is aimed at presenting a comparative dosimetric study of prostate brachytherapy with I-125 and Pd-103 seeds. Materials and Methods: A protocol for both implants with 148 seeds was simulated on a heterogeneous three-dimensional pelvic phantom by means of the SISCODES/MCNP5 codes. Dose-volume histograms on prostate, rectum and bladder, dose indexes D10, D30, D90, D0.5cc, D2cc and D7cc, and representations of the spatial dose distribution were evaluated. Results: For a D90 index equivalent to the prescription dose, the initial activity of each I-125 seed was calculated as 0.42 mCi and of Pd-103 as 0.94 mCi. The maximum dose on the urethra was 90% and 108% of the prescription dose for I-125 and Pd-103, respectively. The D2cc for I-125 was 30 Gy on the rectum and 127 Gy on the bladder; for Pd-103 was 29 Gy on the rectum and 189 Gy on the bladder. The D10 on the pubic bone was 144 Gy for I-125 and 66 Gy for Pd-103. Conclusion: The results indicate that Pd-103 and I-125 implants could deposit the prescribed dose on the target volume. Among the findings of the present study, there is an excessive radiation exposure of the pelvic bones, particularly with the I-125 protocol. (author)

  5. An analysis of MCNP cross-sections and tally methods for low-energy photon emitters.

    Science.gov (United States)

    Demarco, John J; Wallace, Robert E; Boedeker, Kirsten

    2002-04-21

    Monte Carlo calculations are frequently used to analyse a variety of radiological science applications using low-energy (10-1000 keV) photon sources. This study seeks to create a low-energy benchmark for the MCNP Monte Carlo code by simulating the absolute dose rate in water and the air-kerma rate for monoenergetic point sources with energies between 10 keV and 1 MeV. The analysis compares four cross-section datasets as well as the tally method for collision kerma versus absorbed dose. The total photon attenuation coefficient cross-section for low atomic number elements has changed significantly as cross-section data have changed between 1967 and 1989. Differences of up to 10% are observed in the photoelectric cross-section for water at 30 keV between the standard MCNP cross-section dataset (DLC-200) and the most recent XCOM/NIST tabulation. At 30 keV, the absolute dose rate in water at 1.0 cm from the source increases by 7.8% after replacing the DLC-200 photoelectric cross-sections for water with those from the XCOM/NIST tabulation. The differences in the absolute dose rate are analysed when calculated with either the MCNP absorbed dose tally or the collision kerma tally. Significant differences between the collision kerma tally and the absorbed dose tally can occur when using the DLC-200 attenuation coefficients in conjunction with a modern tabulation of mass energy-absorption coefficients.

  6. Verification of Compton scattering spectrum of a 662 keV photon beam scattered on a cylindrical steel target using MCNP5 code

    International Nuclear Information System (INIS)

    Thanh, Tran Thien; Nguyen, Vo Hoang; Chuong, Huynh Dinh; Tran, Le Bao; Tam, Hoang Duc; Binh, Nguyen Thi; Tao, Chau Van

    2015-01-01

    This article focuses on the possible application of a "1"3"7Cs low-radioactive source (5 mCi) and a NaI(Tl) detector for measuring the saturation thickness of solid cylindrical steel targets. In order to increase the reliability of the obtained experimental results and to verify the detector response function of Compton scattering spectrum, simulation using Monte Carlo N-particle (MCNP5) code is performed. The obtained results are in good agreement with the response functions of the simulation scattering and experimental scattering spectra. On the basis of such spectra, the saturation depth of a steel cylinder is determined by experiment and simulation at about 27 mm using gamma energy of 662 keV ("1"3"7Cs) at a scattering angle of 120°. This study aims at measuring the diameter of solid cylindrical objects by gamma-scattering technique. - Highlights: • This study aims a possible application a "1"3"7Cs low-radioactive source (5 mCi) and a NaI(Tl) detector for measuring the saturation thickness of solid cylindrical steel targets by gamma-scattering technique. • Monte Carlo N-particle (MCNP5) code is performed to verify on the detector response function of Compton scattering spectrum. • The results show a good agreement in response function of the experimental and simulation scattering spectra. • The saturation depth of a steel cylinder is determined by experiment and simulation at about 27 mm using gamma energy of 662 keV ("1"3"7Cs) at a scattering angle of 120°.

  7. BWR Full Integral Simulation Test (FIST). Phase I test results

    International Nuclear Information System (INIS)

    Hwang, W.S.; Alamgir, M.; Sutherland, W.A.

    1984-09-01

    A new full height BWR system simulator has been built under the Full-Integral-Simulation-Test (FIST) program to investigate the system responses to various transients. The test program consists of two test phases. This report provides a summary, discussions, highlights and conclusions of the FIST Phase I tests. Eight matrix tests were conducted in the FIST Phase I. These tests have investigated the large break, small break and steamline break LOCA's, as well as natural circulation and power transients. Results and governing phenomena of each test have been evaluated and discussed in detail in this report. One of the FIST program objectives is to assess the TRAC code by comparisons with test data. Two pretest predictions made with TRACB02 are presented and compared with test data in this report

  8. Growth Kinetics of the Homogeneously Nucleated Water Droplets: Simulation Results

    International Nuclear Information System (INIS)

    Mokshin, Anatolii V; Galimzyanov, Bulat N

    2012-01-01

    The growth of homogeneously nucleated droplets in water vapor at the fixed temperatures T = 273, 283, 293, 303, 313, 323, 333, 343, 353, 363 and 373 K (the pressure p = 1 atm.) is investigated on the basis of the coarse-grained molecular dynamics simulation data with the mW-model. The treatment of simulation results is performed by means of the statistical method within the mean-first-passage-time approach, where the reaction coordinate is associated with the largest droplet size. It is found that the water droplet growth is characterized by the next features: (i) the rescaled growth law is unified at all the considered temperatures and (ii) the droplet growth evolves with acceleration and follows the power law.

  9. MOCUP: MCNP-ORIGEN2 coupled utility program

    International Nuclear Information System (INIS)

    Moore, R.L.; Schnitzler, B.G.; Wemple, C.A.

    1995-01-01

    MOCUP is a system of external processors that allow for a limited treatment of the temporal composition of the user-selected MCNP cells in a time-dependent flux environment. The ORIGEN2 code computes the time-dependent compositions of these individually selected MCNP cells. All data communication between the two codes is accomplished through the MCNP and ORIGEN2 input/output files, the MOCUP Processor Output files, and two user supplied tables. MOCUP is either command line or interactively driven. The interactive interface is based on the portable XII window environment and the Motif tool kit. MOCUP was constructed so that no modifications to either MCNP or ORIGEN2 were necessary. Section 4 of the writeup contains the input instructions needed to set up the MOCUP run. MOCUP is extremely useful for analysts who perform isotope production, material transformation, and depletion and isotope analyses on complex, non-lattice geometries, and uniform and non-uniform lattices

  10. Particle Track Visualization using the MCNP Visual Editor

    International Nuclear Information System (INIS)

    Schwarz, Randolph A.; Carter, Lee; Brown, Wendi A.

    2001-01-01

    The Monte Carlo N-Particle (MCNP) visual editor1,2,3 is used throughout the world for displaying and creating complex MCNP geometries. The visual editor combines the Los Alamos MCNP Fortran code with a C front end to provide a visual interface. A big advantage of this approach is that the particle transport routines for MCNP are available to the visual front end. The latest release of the visual editor by Pacific Northwest National Laboratory enables the user to plot transport data points on top of a two-dimensional geometry plot. The user can plot source points, collisions points, surface crossings, and tally contributions. This capability can be used to show where particle collisions are occurring, verify the effectiveness of the particle biasing, or show which collisions contribute to a tally. For a KCODE (criticality source) calculation, the visual editor can be used to plot the source points for specific cycles

  11. Flow regime identification methodology with MCNP-X code and artificial neural network

    International Nuclear Information System (INIS)

    Salgado, Cesar M.; Instituto de Engenharia Nuclear; Schirru, Roberto; Brandao, Luis E.B.; Pereira, Claudio M.N.A.

    2009-01-01

    This paper presents flow regimes identification methodology in multiphase system in annular, stratified and homogeneous oil-water-gas regimes. The principle is based on recognition of the pulse height distributions (PHD) from gamma-ray with supervised artificial neural network (ANN) systems. The detection geometry simulation comprises of two NaI(Tl) detectors and a dual-energy gamma-ray source. The measurement of scattered radiation enables the dual modality densitometry (DMD) measurement principle to be explored. Its basic principle is to combine the measurement of scattered and transmitted radiation in order to acquire information about the different flow regimes. The PHDs obtained by the detectors were used as input to ANN. The data sets required for training and testing the ANN were generated by the MCNP-X code from static and ideal theoretical models of multiphase systems. The ANN correctly identified the three different flow regimes for all data set evaluated. The results presented show that PHDs examined by ANN may be applied in the successfully flow regime identification. (author)

  12. Optimization of Shielding- Collimator Parameters for ING-27 Neutron Generator Using MCNP5

    Directory of Open Access Journals (Sweden)

    Hegazy Aya Hamdy

    2018-01-01

    Full Text Available Neutron generators are now used in various fields. They produce only fast neutrons; D-D neutron generator produces 2.45 MeV neutrons and D-T produces 14.1 MeV neutrons. In order to optimize shielding-collimator parameters to achieve higher neutron flux at the investigated sample (The signal with lower neutron and gamma rays flux at the area of the detectors, design iterations are widely used. This work was applied to ROMASHA setup, TANGRA project, FLNP, Joint Institute for Nuclear Research. The studied parameters were; (1 shielding-collimator material, (2 Distance between the shielding-collimator assembly first plate and center of the neutron beam, and (3 thickness of collimator sheets. MCNP5 was used to simulate ROMASHA setup after it was validated on the experimental results of irradiation of Carbon-12 sample for one hour to detect its 4.44 MeV characteristic gamma line. The ratio between the signal and total neutron flux that enters each detector was calculated and plotted, concluding that the optimum shielding-collimator assembly is Tungsten of 5 cm thickness for each plate, and a distance of 2.3 cm. Also, the ratio between the signal and total gamma rays flux was calculated and plotted for each detector, leading to the previous conclusion but the distance was 1 cm.

  13. Optimization of Shielding- Collimator Parameters for ING-27 Neutron Generator Using MCNP5

    Science.gov (United States)

    Hegazy, Aya Hamdy; Skoy, V. R.; Hossny, K.

    2018-04-01

    Neutron generators are now used in various fields. They produce only fast neutrons; D-D neutron generator produces 2.45 MeV neutrons and D-T produces 14.1 MeV neutrons. In order to optimize shielding-collimator parameters to achieve higher neutron flux at the investigated sample (The signal) with lower neutron and gamma rays flux at the area of the detectors, design iterations are widely used. This work was applied to ROMASHA setup, TANGRA project, FLNP, Joint Institute for Nuclear Research. The studied parameters were; (1) shielding-collimator material, (2) Distance between the shielding-collimator assembly first plate and center of the neutron beam, and (3) thickness of collimator sheets. MCNP5 was used to simulate ROMASHA setup after it was validated on the experimental results of irradiation of Carbon-12 sample for one hour to detect its 4.44 MeV characteristic gamma line. The ratio between the signal and total neutron flux that enters each detector was calculated and plotted, concluding that the optimum shielding-collimator assembly is Tungsten of 5 cm thickness for each plate, and a distance of 2.3 cm. Also, the ratio between the signal and total gamma rays flux was calculated and plotted for each detector, leading to the previous conclusion but the distance was 1 cm.

  14. Performance of the MTR core with MOX fuel using the MCNP4C2 code

    International Nuclear Information System (INIS)

    Shaaban, Ismail; Albarhoum, Mohamad

    2016-01-01

    The MCNP4C2 code was used to simulate the MTR-22 MW research reactor and perform the neutronic analysis for a new fuel namely: a MOX (U 3 O 8 &PuO 2 ) fuel dispersed in an Al matrix for One Neutronic Trap (ONT) and Three Neutronic Traps (TNTs) in its core. Its new characteristics were compared to its original characteristics based on the U 3 O 8 -Al fuel. Experimental data for the neutronic parameters including criticality relative to the MTR-22 MW reactor for the original U 3 O 8 -Al fuel at nominal power were used to validate the calculated values and were found acceptable. The achieved results seem to confirm that the use of MOX fuel in the MTR-22 MW will not degrade the safe operational conditions of the reactor. In addition, the use of MOX fuel in the MTR-22 MW core leads to reduce the uranium fuel enrichment with 235 U and the amount of loaded 235 U in the core by about 34.84% and 15.21% for the ONT and TNTs cases, respectively. - Highlights: • Re-cycling of the ETRR-2 reactor by MOX fuel. • Increase the number of the neutronic traps from one neutronic trap to three neutronic trap. • Calculation of the criticality safety and neutronic parameters of the ETRR-2 reactor for the U 3 O 8 -Al original fuel and the MOX fuel.

  15. Modeling results for a linear simulator of a divertor

    International Nuclear Information System (INIS)

    Hooper, E.B.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Jackson, M.C.; Kaiser, T.B.; Molvik, A.W.; Nevins, W.M.; Nilson, D.G.; Pearlstein, L.D.; Rognlien, T.D.

    1993-01-01

    A divertor simulator, IDEAL, has been proposed by S. Cohen to study the difficult power-handling requirements of the tokamak program in general and the ITER program in particular. Projections of the power density in the ITER divertor reach ∼ 1 Gw/m 2 along the magnetic fieldlines and > 10 MW/m 2 on a surface inclined at a shallow angle to the fieldlines. These power densities are substantially greater than can be handled reliably on the surface, so new techniques are required to reduce the power density to a reasonable level. Although the divertor physics must be demonstrated in tokamaks, a linear device could contribute to the development because of its flexibility, the easy access to the plasma and to tested components, and long pulse operation (essentially cw). However, a decision to build a simulator requires not just the recognition of its programmatic value, but also confidence that it can meet the required parameters at an affordable cost. Accordingly, as reported here, it was decided to examine the physics of the proposed device, including kinetic effects resulting from the intense heating required to reach the plasma parameters, and to conduct an independent cost estimate. The detailed role of the simulator in a divertor program is not explored in this report

  16. Analysis of Topaz-II reactor performance using MCNP and TFEHX

    International Nuclear Information System (INIS)

    Lee, H.H.; Klein, A.C.

    1993-01-01

    Data reported by Russian scientist and engineers for the TOPAZ-II Space Nuclear Power is compared with analytical results calculated using the Monte Carlo Neutron and Photon (MCNP) and TFEHX computer codes. The results of these comparisons show good agreement with the TOPAZ-II neutronics, thermionic and thermal hydraulics performance. A detailed description of the TOPAZ-II reactor and of the TFE should enhance the performance of the both codes in modeling the reactor and TFE performances

  17. Development of a consistent Monte Carlo-deterministic transport methodology based on the method of characteristics and MCNP5

    International Nuclear Information System (INIS)

    Karriem, Z.; Ivanov, K.; Zamonsky, O.

    2011-01-01

    This paper presents work that has been performed to develop an integrated Monte Carlo- Deterministic transport methodology in which the two methods make use of exactly the same general geometry and multigroup nuclear data. The envisioned application of this methodology is in reactor lattice physics methods development and shielding calculations. The methodology will be based on the Method of Long Characteristics (MOC) and the Monte Carlo N-Particle Transport code MCNP5. Important initial developments pertaining to ray tracing and the development of an MOC flux solver for the proposed methodology are described. Results showing the viability of the methodology are presented for two 2-D general geometry transport problems. The essential developments presented is the use of MCNP as geometry construction and ray tracing tool for the MOC, verification of the ray tracing indexing scheme that was developed to represent the MCNP geometry in the MOC and the verification of the prototype 2-D MOC flux solver. (author)

  18. Doppler Temperature Coefficient Calculations Using Adjoint-Weighted Tallies and Continuous Energy Cross Sections in MCNP6

    Science.gov (United States)

    Gonzales, Matthew Alejandro

    The calculation of the thermal neutron Doppler temperature reactivity feedback co-efficient, a key parameter in the design and safe operation of advanced reactors, using first order perturbation theory in continuous energy Monte Carlo codes is challenging as the continuous energy adjoint flux is not readily available. Traditional approaches of obtaining the adjoint flux attempt to invert the random walk process as well as require data corresponding to all temperatures and their respective temperature derivatives within the system in order to accurately calculate the Doppler temperature feedback. A new method has been developed using adjoint-weighted tallies and On-The-Fly (OTF) generated continuous energy cross sections within the Monte Carlo N-Particle (MCNP6) transport code. The adjoint-weighted tallies are generated during the continuous energy k-eigenvalue Monte Carlo calculation. The weighting is based upon the iterated fission probability interpretation of the adjoint flux, which is the steady state population in a critical nuclear reactor caused by a neutron introduced at that point in phase space. The adjoint-weighted tallies are produced in a forward calculation and do not require an inversion of the random walk. The OTF cross section database uses a high order functional expansion between points on a user-defined energy-temperature mesh in which the coefficients with respect to a polynomial fitting in temperature are stored. The coefficients of the fits are generated before run- time and called upon during the simulation to produce cross sections at any given energy and temperature. The polynomial form of the OTF cross sections allows the possibility of obtaining temperature derivatives of the cross sections on-the-fly. The use of Monte Carlo sampling of adjoint-weighted tallies and the capability of computing derivatives of continuous energy cross sections with respect to temperature are used to calculate the Doppler temperature coefficient in a research

  19. Electron-cloud updated simulation results for the PSR, and recent results for the SNS

    International Nuclear Information System (INIS)

    Pivi, M.; Furman, M.A.

    2002-01-01

    Recent simulation results for the main features of the electron cloud in the storage ring of the Spallation Neutron Source (SNS) at Oak Ridge, and updated results for the Proton Storage Ring (PSR) at Los Alamos are presented in this paper. A refined model for the secondary emission process including the so called true secondary, rediffused and backscattered electrons has recently been included in the electron-cloud code

  20. KENO2MCNP, Version 5L, Conversion of Input Data between KENOV.a and MCNP File Formats

    International Nuclear Information System (INIS)

    2008-01-01

    1 - Description of program or function: The KENO2MCNP program was written to convert KENO V.a input files to MCNP Format. This program currently only works with KENO Va geometries and will not work with geometries that contain more than a single array. A C++ graphical user interface was created that was linked to Fortran routines from KENO V.a that read the material library and Fortran routines from the MCNP Visual Editor that generate the MCNP input file. Either SCALE 5.0 or SCALE 5.1 cross section files will work with this release. 2 - Methods: The C++ binary executable reads the KENO V.a input file, the KENO V.a material library and SCALE data libraries. When an input file is read in, the input is stored in memory. The converter goes through and loads different sections of the input file into memory including parameters, composition, geometry information, array information and starting information. Many of the KENO V.a materials represent compositions that must be read from the KENO V.a material library. KENO2MCNP includes the KENO V.a FORTRAN routines used to read this material file for creating the MCNP materials. Once the file has been read in, the user must select 'Convert' to convert the file from KENO V.a to MCNP. This will generate the MCNP input file along with an output window that lists the KENO V.a composition information for the materials contained in the KENO V.a input file. The program can be run interactively by clicking on the executable or in batch mode from the command prompt. 3 - Restrictions on the complexity of the problem: Not all KENO V.a input files are supported. Only one array is allowed in the input file. Some of the more complex material descriptions also may not be converted

  1. Validation of a new midway forward-adjoint coupling option in MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Serov, I.V.; John, T.M.; Hoogenboom, J.E. [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.

    1996-09-01

    The new midway Monte Carlo is based on the coupling of scores from a forward and an adjoint Monte Carlo calculation on a surface in between the source and the detector. The method is implemented in MCNP. The utilization of the method is fairly straight-forward and does not require any substantial expertise. The midway Monte Carlo method was tested against the gamma-ray skyshine MCNP benchmark problem. This problem involves deep penetration and streaming along complicated paths. The midway method supplied results, which agree with the results of the reference calculation within the limits of the estimated statistical uncertainties. The efficiency of the easy-to-implement midway calculation is higher than the efficiency of the reference calculation which is already optimized by use of an importance function. The midway method proves to be efficient in problems with complicated streaming paths towards small detectors. (author)

  2. Validation of a new midway forward-adjoint coupling option in MCNP

    International Nuclear Information System (INIS)

    Serov, I.V.; John, T.M.; Hoogenboom, J.E.

    1996-01-01

    The new midway Monte Carlo is based on the coupling of scores from a forward and an adjoint Monte Carlo calculation on a surface in between the source and the detector. The method is implemented in MCNP. The utilization of the method is fairly straight-forward and does not require any substantial expertise. The midway Monte Carlo method was tested against the gamma-ray skyshine MCNP benchmark problem. This problem involves deep penetration and streaming along complicated paths. The midway method supplied results, which agree with the results of the reference calculation within the limits of the estimated statistical uncertainties. The efficiency of the easy-to-implement midway calculation is higher than the efficiency of the reference calculation which is already optimized by use of an importance function. The midway method proves to be efficient in problems with complicated streaming paths towards small detectors. (author)

  3. Application of dose evaluation of the MCNP code for interim spent fuel cask storage facility

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Iimoto, Takeshi; Ishikawa, Satoshi; Tsuboi, Takafumi; Teramura, Masahiro; Okamura, Tomomi; Narumiya, Yoshiyuki

    2007-01-01

    The interim storage facility for spent fuel metallic cask is designed as a concrete building structure with air inlet and outlet for circulating the natural cooling. The feature of the interim storage facility is big capacity of spent fuel at several thousands MTU and restricted site usage. It is important to evaluate realistic dose rate in shielding design of the interim storage facility, therefore the three-dimensional continuous-energy Monte Carlo radiation transport code MCNP that exactly treating the complicated geometry was applied. The validation of dose evaluation for interim storage facility by MCNP code were performed by three kinds of neutron shielding benchmark experiments; cask shadow shielding experiment, duct streaming experiment and concrete deep penetration experiment. Dose rate distributions at each benchmark were measured and compared with the calculated results. The comparison showed a good consistency between calculation and experiment results. (author)

  4. High-fidelity MCNP modeling of a D-T neutron generator for active interrogation of special nuclear material

    International Nuclear Information System (INIS)

    Katalenich, Jeff; Flaska, Marek; Pozzi, Sara A.; Hartman, Michael R.

    2011-01-01

    Fast and robust methods for interrogation of special nuclear material (SNM) are of interest to many agencies and institutions in the United States. It is well known that passive interrogation methods are typically sufficient for plutonium identification because of a relatively high neutron production rate from 240 Pu . On the other hand, identification of shielded uranium requires active methods using neutron or photon sources . Deuterium-deuterium (2.45 MeV) and deuterium-tritium (14.1 MeV) neutron-generator sources have been previously tested and proven to be relatively reliable instruments for active interrogation of nuclear materials . In addition, the newest generators of this type are small enough for applications requiring portable interrogation systems. Active interrogation techniques using high-energy neutrons are being investigated as a method to detect hidden SNM in shielded containers . Due to the thickness of some containers, penetrating radiation such as high-energy neutrons can provide a potential means of probing shielded SNM. In an effort to develop the capability to assess the signal seen from various forms of shielded nuclear materials, University of Michigan Neutron Science Laboratory's D-T neutron generator and its shielding were accurately modeled in MCNP. The generator, while operating at nominal power, produces approximately 1x10 10 neutrons/s, a source intensity which requires a large amount of shielding to minimize the dose rates around the generator. For this reason, the existing shielding completely encompasses the generator and does not include beam ports. Therefore, several MCNP simulations were performed to estimate the yield of uncollided 14.1-MeV neutrons from the generator for active interrogation experiments. Beam port diameters of 5, 10, 15, 20, and 25 cm were modeled to assess the resulting neutron fluxes. The neutron flux outside the beam ports was estimated to be approximately 2x10 4 n/cm 2 s.

  5. A parallelization study of the general purpose Monte Carlo code MCNP4 on a distributed memory highly parallel computer

    International Nuclear Information System (INIS)

    Yamazaki, Takao; Fujisaki, Masahide; Okuda, Motoi; Takano, Makoto; Masukawa, Fumihiro; Naito, Yoshitaka

    1993-01-01

    The general purpose Monte Carlo code MCNP4 has been implemented on the Fujitsu AP1000 distributed memory highly parallel computer. Parallelization techniques developed and studied are reported. A shielding analysis function of the MCNP4 code is parallelized in this study. A technique to map a history to each processor dynamically and to map control process to a certain processor was applied. The efficiency of parallelized code is up to 80% for a typical practical problem with 512 processors. These results demonstrate the advantages of a highly parallel computer to the conventional computers in the field of shielding analysis by Monte Carlo method. (orig.)

  6. Cooperation as a Service in VANET: Implementation and Simulation Results

    Directory of Open Access Journals (Sweden)

    Hajar Mousannif

    2012-01-01

    Full Text Available The past decade has witnessed the emergence of Vehicular Ad-hoc Networks (VANET, specializing from the well-known Mobile Ad Hoc Networks (MANET to Vehicle-to-Vehicle (V2V and Vehicle-to-Infrastructure (V2I wireless communications. While the original motivation for Vehicular Networks was to promote traffic safety, recently it has become increasingly obvious that Vehicular Networks open new vistas for Internet access, providing weather or road condition, parking availability, distributed gaming, and advertisement. In previous papers [27,28], we introduced Cooperation as a Service (CaaS; a new service-oriented solution which enables improved and new services for the road users and an optimized use of the road network through vehicle's cooperation and vehicle-to-vehicle communications. The current paper is an extension of the first ones; it describes an improved version of CaaS and provides its full implementation details and simulation results. CaaS structures the network into clusters, and uses Content Based Routing (CBR for intra-cluster communications and DTN (Delay–and disruption-Tolerant Network routing for inter-cluster communications. To show the feasibility of our approach, we implemented and tested CaaS using Opnet modeler software package. Simulation results prove the correctness of our protocol and indicate that CaaS achieves higher performance as compared to an Epidemic approach.

  7. The study on neutron and photon distribution of AP1000 reactor by MCNP code

    International Nuclear Information System (INIS)

    Chen Defeng; Shen Mingqi

    2014-01-01

    The core and reactor structural of AP1000 was modeled by the MCNP calculation program which is based on the Monte Carlo method in this paper, the neutron and photon distribution of AP1000 reactor core was calculated by the conditions of reactor critical. The results show that the AP1000 reactor neutron and photon distribution is in accordance with the critical design of PWR. (authors)

  8. SELF-ABSORPTION CORRECTIONS BASED ON MONTE CARLO SIMULATIONS

    Directory of Open Access Journals (Sweden)

    Kamila Johnová

    2016-12-01

    Full Text Available The main aim of this article is to demonstrate how Monte Carlo simulations are implemented in our gamma spectrometry laboratory at the Department of Dosimetry and Application of Ionizing Radiation in order to calculate the self-absorption within the samples. A model of real HPGe detector created for MCNP simulations is presented in this paper. All of the possible parameters, which may influence the self-absorption, are at first discussed theoretically and lately described using the calculated results.

  9. New Neutron, Proton, and S(α,β) MCNP Data Libraries Based on ENDF/B-VII

    International Nuclear Information System (INIS)

    Little, Robert C.; Trellue, Holly R.; MacFarlane, Robert E.; Kahler, A.C.; Lee, Mary Beth; White, Morgan C.

    2008-01-01

    The general-purpose Evaluated Nuclear Data File ENDF/B-VII.0 was released in December 2006. A number of sub-libraries were included in ENDF/B-VII.0 such that data were provided for incident neutrons, photons, and charged particles. This paper describes the creation of MCNP data libraries at Los Alamos National Laboratory based on three ENDF/B-VII.0 sub-libraries: neutrons, protons, and thermal scattering. An ACE-formatted continuous-energy neutron data library called ENDF70 for MCNP has been produced. This library provides data for 390 materials at five temperatures: 293.6, 600, 900, 1200, and 2500 K. The library was processed primarily with Version 248 of NJOY99. Extensive checking and quality-assurance tests were applied to the data. Improvements to the processing code were made and certain evaluations were modified as a result of these tests. ENDF/B-VII.0 included proton evaluations for 48 target materials. Forty-seven proton evaluations (all except for 13 C) were processed at room temperature and combined into the MCNP library ENDF70PROT. Neutron thermal S(α,β) scattering data exist for twenty different materials in ENDF/B-VII.0. All twenty of these evaluations were processed at all applicable temperatures (these vary for each evaluation), and combined into the MCNP library ENDF70SAB. All of these ENDF/B-VII.0 based MCNP libraries (ENDF70, ENDF70PROT, and ENDF70SAB) are available as part of the MCNP5 1.50 release. (authors)

  10. Calculation of thermal neutron self-shielding correction factors for aqueous bulk sample prompt gamma neutron activation analysis using the MCNP code

    International Nuclear Information System (INIS)

    Nasrabadi, M.N.; Jalali, M.; Mohammadi, A.

    2007-01-01

    In this work thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing materials is studied using bulk sample prompt gamma neutron activation analysis (BSPGNAA) with the MCNP code. The code was used to perform three dimensional simulations of a neutron source, neutron detector and sample of various material compositions. The MCNP model was validated against experimental measurements of the neutron flux performed using a BF 3 detector. Simulations were performed to predict thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing solutes. In practice, the MCNP calculations are combined with experimental measurements of the relative thermal neutron flux over the sample's surface, with respect to a reference water sample, to derive the thermal neutron self-shielding within the sample. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the average thermal neutron flux within the sample volume is required

  11. Calibration of neutron yield activation measurements at JET using MCNP and furnace neutron transport codes

    International Nuclear Information System (INIS)

    Pillon, M.; Martone, M.; Verschuur, K.A.; Jarvis, O.N.; Kaellne, J.

    1989-01-01

    Neutron transport calculations have been performed using fluence ray tracing (FURNACE code) and Monte Carlo particle trajectory sampling methods (MCNP code) in order to determine the neutron fluence and energy distributions at different locations in the JET tokamak. These calculations were used to calibrate the activation measurements used in the determination of the absolute fusion neutron yields from the JET plasma. We present here the neutron activation response coefficients calculated for three different materials. Comparison of the MCNP and FURNACE results helps identify the sources of error in these neutron transport calculations. The accuracy of these calculations was tested by comparing the total 2.5 MeV neutron yields derived from the activation measurements with those obtained with calibrated fission chambers; agreement at the ±15% level was demonstrate. (orig.)

  12. Magnetic Compression Experiment at General Fusion with Simulation Results

    Science.gov (United States)

    Dunlea, Carl; Khalzov, Ivan; Hirose, Akira; Xiao, Chijin; Fusion Team, General

    2017-10-01

    The magnetic compression experiment at GF was a repetitive non-destructive test to study plasma physics applicable to Magnetic Target Fusion compression. A spheromak compact torus (CT) is formed with a co-axial gun into a containment region with an hour-glass shaped inner flux conserver, and an insulating outer wall. External coil currents keep the CT off the outer wall (levitation) and then rapidly compress it inwards. The optimal external coil configuration greatly improved both the levitated CT lifetime and the rate of shots with good compressional flux conservation. As confirmed by spectrometer data, the improved levitation field profile reduced plasma impurity levels by suppressing the interaction between plasma and the insulating outer wall during the formation process. We developed an energy and toroidal flux conserving finite element axisymmetric MHD code to study CT formation and compression. The Braginskii MHD equations with anisotropic heat conduction were implemented. To simulate plasma / insulating wall interaction, we couple the vacuum field solution in the insulating region to the full MHD solution in the remainder of the domain. We see good agreement between simulation and experiment results. Partly funded by NSERC and MITACS Accelerate.

  13. Some results on ethnic conflicts based on evolutionary game simulation

    Science.gov (United States)

    Qin, Jun; Yi, Yunfei; Wu, Hongrun; Liu, Yuhang; Tong, Xiaonian; Zheng, Bojin

    2014-07-01

    The force of the ethnic separatism, essentially originating from the negative effect of ethnic identity, is damaging the stability and harmony of multiethnic countries. In order to eliminate the foundation of the ethnic separatism and set up a harmonious ethnic relationship, some scholars have proposed a viewpoint: ethnic harmony could be promoted by popularizing civic identity. However, this viewpoint is discussed only from a philosophical prospective and still lacks support of scientific evidences. Because ethnic group and ethnic identity are products of evolution and ethnic identity is the parochialism strategy under the perspective of game theory, this paper proposes an evolutionary game simulation model to study the relationship between civic identity and ethnic conflict based on evolutionary game theory. The simulation results indicate that: (1) the ratio of individuals with civic identity has a negative association with the frequency of ethnic conflicts; (2) ethnic conflict will not die out by killing all ethnic members once for all, and it also cannot be reduced by a forcible pressure, i.e., increasing the ratio of individuals with civic identity; (3) the average frequencies of conflicts can stay in a low level by promoting civic identity periodically and persistently.

  14. Calculated organ doses for Mayak production association central hall using ICRP and MCNP.

    Science.gov (United States)

    Choe, Dong-Ok; Shelkey, Brenda N; Wilde, Justin L; Walk, Heidi A; Slaughter, David M

    2003-03-01

    As part of an ongoing dose reconstruction project, equivalent organ dose rates from photons and neutrons were estimated using the energy spectra measured in the central hall above the graphite reactor core located in the Russian Mayak Production Association facility. Reconstruction of the work environment was necessary due to the lack of personal dosimeter data for neutrons in the time period prior to 1987. A typical worker scenario for the central hall was developed for the Monte Carlo Neutron Photon-4B (MCNP) code. The resultant equivalent dose rates for neutrons and photons were compared with the equivalent dose rates derived from calculations using the conversion coefficients in the International Commission on Radiological Protection Publications 51 and 74 in order to validate the model scenario for this Russian facility. The MCNP results were in good agreement with the results of the ICRP publications indicating the modeling scenario was consistent with actual work conditions given the spectra provided. The MCNP code will allow for additional orientations to accurately reflect source locations.

  15. Study of geometry to obtain the volume fraction of multiphase flows using the MCNP-X code

    International Nuclear Information System (INIS)

    Peixoto, Philippe N.B.; Salgado, Cesar M.

    2015-01-01

    The gamma ray attenuation technique is used in many works to obtaining volume fraction of multiphase flows in the oil industry, because it is a noninvasive technique with good precision. In these studies are simulated various geometries with different flow regime, compositions of materials, source-detector positions and types of collimation for sources. This work aim evaluate the interference in the results of the geometry changes and obtaining the best measuring geometry to provide the volume fractions accurately by evaluating different geometries simulations (ranging the source-detector position, flow schemes and homogeneity Makeup) in the MCNP-X code. The study was performed for two types of biphasic compositions of materials (oil-water and oil-air), two flow regimes (annular and smooth stratified) and was varied the position of each material in relative to source and detector positions. Another study to evaluate the interference of homogeneity of the compositions in the results was also conducted in order to verify the possibility of removing part of the composition and make a homogeneous blend using a mixer equipment. All these variations were simulated with two different types of beam, divergent beam and pencil beam. From the simulated geometries, it was possible to compare the differences between the areas of the spectra generated for each model. The results indicate that the flow regime and the differences in the material's densities interfere in the results being necessary to establish a specific simulation geometry for each flows regime. However, the simulations indicate that changing the type of collimation of sources do not affect the results, but improving the counts statistics, increasing the accurate. (author)

  16. Study of geometry to obtain the volume fraction of multiphase flows using the MCNP-X code

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Philippe N.B.; Salgado, Cesar M., E-mail: phbelache@hotmail.com, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The gamma ray attenuation technique is used in many works to obtaining volume fraction of multiphase flows in the oil industry, because it is a noninvasive technique with good precision. In these studies are simulated various geometries with different flow regime, compositions of materials, source-detector positions and types of collimation for sources. This work aim evaluate the interference in the results of the geometry changes and obtaining the best measuring geometry to provide the volume fractions accurately by evaluating different geometries simulations (ranging the source-detector position, flow schemes and homogeneity Makeup) in the MCNP-X code. The study was performed for two types of biphasic compositions of materials (oil-water and oil-air), two flow regimes (annular and smooth stratified) and was varied the position of each material in relative to source and detector positions. Another study to evaluate the interference of homogeneity of the compositions in the results was also conducted in order to verify the possibility of removing part of the composition and make a homogeneous blend using a mixer equipment. All these variations were simulated with two different types of beam, divergent beam and pencil beam. From the simulated geometries, it was possible to compare the differences between the areas of the spectra generated for each model. The results indicate that the flow regime and the differences in the material's densities interfere in the results being necessary to establish a specific simulation geometry for each flows regime. However, the simulations indicate that changing the type of collimation of sources do not affect the results, but improving the counts statistics, increasing the accurate. (author)

  17. Monte Carlo simulations of plutonium gamma-ray spectra

    International Nuclear Information System (INIS)

    Koenig, Z.M.; Carlson, J.B.; Wang, Tzu-Fang; Ruhter, W.D.

    1993-01-01

    Monte Carlo calculations were investigated as a means of simulating the gamma-ray spectra of Pu. These simulated spectra will be used to develop and evaluate gamma-ray analysis techniques for various nondestructive measurements. Simulated spectra of calculational standards can be used for code intercomparisons, to understand systematic biases and to estimate minimum detection levels of existing and proposed nondestructive analysis instruments. The capability to simulate gamma-ray spectra from HPGe detectors could significantly reduce the costs of preparing large numbers of real reference materials. MCNP was used for the Monte Carlo transport of the photons. Results from the MCNP calculations were folded in with a detector response function for a realistic spectrum. Plutonium spectrum peaks were produced with Lorentzian shapes, for the x-rays, and Gaussian distributions. The MGA code determined the Pu isotopes and specific power of this calculated spectrum and compared it to a similar analysis on a measured spectrum

  18. Virtual simulation. First clinical results in patients with prostate cancer

    International Nuclear Information System (INIS)

    Buchali, A.; Dinges, S.; Koswig, S.; Rosenthal, P.; Salk, S.; Harder, C.; Schlenger, L.; Budach, V.

    1998-01-01

    Investigation of options of virtual simulation in patients with localized prostate cancer. Twenty-four patients suffering from prostate cancer were virtual simulated. The clinical target volume was contoured and the planning target volume was defined after CT scan. The isocenter of the planning target volume was determined and marked at patient's skin. The precision of patients marking was controlled with conventional simulation after physical radiation treatment planning. Mean differences of the patient's mark revealed between the 2 simulations in all room axes around 1 mm. The organs at risk were visualized in the digital reconstructed radiographs. The precise patient's mark of the isocentre by virtual simulation allows to skip the conventional simulation. The visualisation of organs at risk leeds to an unnecessarity of an application of contrast medium and to a further relieve of the patient. The personal requirement is not higher in virtual simulation than in conventional CT based radiation treatment planning. (orig./MG) [de

  19. Study of radiation dose attenuation by skull bone in head during radiotherapy treatment using MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Artur F.; Boia, Leonardo S.; Trombetta, Debora M.; Martins, Maximiano C.; Reis Junior, Juraci P.; Silva, Ademir X., E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Batista, Delano V.S., E-mail: delano@inca.gov.b [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil). Dept. de Fisica Medica

    2011-07-01

    In this study the MCNPX code was used to investigate possible influences of the attenuation beam by the surface bone during radiotherapy treatments of the skull. The computer simulation was performed on topographic image obtained from the National Cancer Institute, in Rio de Janeiro, database of patients treated with radiotherapy. The image segmentation process were performed using the SAPDI program developed to this purpose. The segmented image conversion for the input file recognized by MCNPX code was performed by SCAN2MCNP Software. The simulation was done using 10MeV Clinac 2300C spectrum considering two opposite parallel beams, with field size 2x2 and 4x4 cm{sup 2}, incident on a slice located above the eyes, containing two row of detectors positioned on the central region with a radius of 0.03 cm and arranged perpendicular to the radiation beams. After analyze the results, the relative error values in the range of 2 at 4% for the high dose region, and 26 at 37% for the low dose area were found, respectively. These differences were attributed to the radiation field attenuation on the bone surface at the entrance of the beam. It was observed that most situations on the high dose region the beam profile, from more realistic scenarios, became smaller than the one obtained when the tomography image was considered consisting of water. However for the low dose area the profile, obtained of the realistic situation, became higher than the one which was obtained when the tomography image was considered consisting of water. The results showed significant differences between both analyzed cases which show the need to use a correction factor by the treatment planning system used in radiotherapy services when the real chemical composition of patient head is unconsidered during the patient treatment planning. (author)

  20. Study of radiation dose attenuation by skull bone in head during radiotherapy treatment using MCNP

    International Nuclear Information System (INIS)

    Menezes, Artur F.; Boia, Leonardo S.; Trombetta, Debora M.; Martins, Maximiano C.; Reis Junior, Juraci P.; Silva, Ademir X.; Batista, Delano V.S.

    2011-01-01

    In this study the MCNPX code was used to investigate possible influences of the attenuation beam by the surface bone during radiotherapy treatments of the skull. The computer simulation was performed on topographic image obtained from the National Cancer Institute, in Rio de Janeiro, database of patients treated with radiotherapy. The image segmentation process were performed using the SAPDI program developed to this purpose. The segmented image conversion for the input file recognized by MCNPX code was performed by SCAN2MCNP Software. The simulation was done using 10MeV Clinac 2300C spectrum considering two opposite parallel beams, with field size 2x2 and 4x4 cm 2 , incident on a slice located above the eyes, containing two row of detectors positioned on the central region with a radius of 0.03 cm and arranged perpendicular to the radiation beams. After analyze the results, the relative error values in the range of 2 at 4% for the high dose region, and 26 at 37% for the low dose area were found, respectively. These differences were attributed to the radiation field attenuation on the bone surface at the entrance of the beam. It was observed that most situations on the high dose region the beam profile, from more realistic scenarios, became smaller than the one obtained when the tomography image was considered consisting of water. However for the low dose area the profile, obtained of the realistic situation, became higher than the one which was obtained when the tomography image was considered consisting of water. The results showed significant differences between both analyzed cases which show the need to use a correction factor by the treatment planning system used in radiotherapy services when the real chemical composition of patient head is unconsidered during the patient treatment planning. (author)

  1. Comparison of thermal scattering processing options for S(α,β) cards in MCNP

    International Nuclear Information System (INIS)

    Čerba, Štefan; Damian, Jose Ignacio Marquez; Lüley, Jakub; Vrban, Branislav; Farkas, Gabriel; Nečas, Vladimír; Haščík, Jan

    2013-01-01

    Highlights: ► Determination of MCNP calculation bias for WWER-440. ► Specific scattering law S(α,β). ► Benchmark cases investigated. ► Three methods to process material cards for hydrogen bound in light water. - Abstract: The MCNP distributions include sets of pre-calculated thermal scattering libraries but these libraries are available for several temperature steps only. In order to achieve reliable results it is suitable to process the cross section libraries for the desired temperature. In general, there are three methods to process these thermal scattering libraries for the desired temperatures. This paper deals with the comparison of these three methods on the basis of several benchmarks and on the basis of a thermal transient experiment of a WWER-440 reactor. The choice is up to the MCNP user but unfortunately very few studies concerning the comparison have been published so far. Therefore conclusions and results presented in this paper may help the user to choose the most appropriate method for his calculation

  2. Current status of ACE format libraries for MCNP at nuclear date center of KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heon; Gil, Choong Sup; Lee, Young Ouk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    The current status of ACE format MCNP/MCNPX libraries by NDC of KAERI is presented with a short description of each library. Validation calculations with recent nuclear data evaluations ENDF/B-VII.0, ENDF/B-VII.1, JEFF-3.2, and JENDL-4.0 have been carried out by the MCNP5 code for 119 criticality benchmark problems taken from the expanded criticality validation suite supplied by LANL. The overall performances of the ACE format KN-libraries have been analyzed in comparison with the results calculated with the ENDF/B-VII.0-based ENDF70 library of LANL. It was confirmed that the ENDF/B-VII.1-based KNE71 library showed better performances than the others by comparing the RMS errors and χ2 values for five benchmark categories as well as whole benchmark problems. ENDF/B-VII.1 and JEFF-3.2 have a tendency to yield more reliable MCNP calculation results within certain confidence intervals regarding the total uncertainties for the keff values. It is found that the adoption of the latest evaluated nuclear data might ensure better outcomes in various research and development areas.

  3. Optimization study of ultracold neutron sources at TRIGA reactors using MCNP

    International Nuclear Information System (INIS)

    Pokotilovskij, Yu.N.; Rogov, A.D.

    1997-01-01

    Monte Carlo simulation for the optimization of ultracold and very cold neutron sources for TRIGA reactors is performed. The calculations of thermal and cold neutron fluxes from the TRIGA reactor for different positions and configurations of a very cold solid methane moderator were performed with using the MCNP program. The production of neutrons in the ultracold and very cold energy range was calculated for the most promising final moderators (converters): very cold solid deuterium and heavy methane. The radiation energy deposition was calculated for the optimized solid methane-heavy methane cold neutron moderator

  4. Calculation of self–shielding factor for neutron activation experiments using GEANT4 and MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Romero–Barrientos, Jaime, E-mail: jaromero@ing.uchile.cl [Comisión Chilena de Energía Nuclear, Nueva Bilbao 12501, Las Condes, Santiago (Chile); Universidad de Chile, DFI, Facultad de Ciencias Físicas Y Matemáticas, Avenida Blanco Encalada 2008, Santiago (Chile); Molina, F. [Comisión Chilena de Energía Nuclear, Nueva Bilbao 12501, Las Condes, Santiago (Chile); Aguilera, Pablo [Comisión Chilena de Energía Nuclear, Nueva Bilbao 12501, Las Condes, Santiago (Chile); Universidad de Chile, Depto. de Física, Facultad de Ciencias, Las Palmeras 3425, Ñuñoa, Santiago (Chile); Arellano, H. F. [Universidad de Chile, DFI, Facultad de Ciencias Físicas Y Matemáticas, Avenida Blanco Encalada 2008, Santiago (Chile)

    2016-07-07

    The neutron self–shielding factor G as a function of the neutron energy was obtained for 14 pure metallic samples in 1000 isolethargic energy bins from 1·10{sup −5}eV to 2·10{sup 7}eV using Monte Carlo simulations in GEANT4 and MCNP6. The comparison of these two Monte Carlo codes shows small differences in the final self–shielding factor mostly due to the different cross section databases that each program uses.

  5. Conversion of Input Data between KENO and MCNP File Formats for Computer Criticality Assessments

    International Nuclear Information System (INIS)

    Schwarz, Randolph A.; Carter, Leland L.; Schwarz Alysia L.

    2006-01-01

    KENO is a Monte Carlo criticality code that is maintained by Oak Ridge National Laboratory (ORNL). KENO is included in the SCALE (Standardized Computer Analysis for Licensing Evaluation) package. KENO is often used because it was specifically designed for criticality calculations. Because KENO has convenient geometry input, including the treatment of lattice arrays of materials, it is frequently used for production calculations. Monte Carlo N-Particle (MCNP) is a Monte Carlo transport code maintained by Los Alamos National Laboratory (LANL). MCNP has a powerful 3D geometry package and an extensive cross section database. It is a general-purpose code and may be used for calculations involving shielding or medical facilities, for example, but can also be used for criticality calculations. MCNP is becoming increasingly more popular for performing production criticality calculations. Both codes have their own specific advantages. After a criticality calculation has been performed with one of the codes, it is often desirable (or may be a safety requirement) to repeat the calculation with the other code to compare the important parameters using a different geometry treatment and cross section database. This manual conversion of input files between the two codes is labor intensive. The industry needs the capability of converting geometry models between MCNP and KENO without a large investment in manpower. The proposed conversion package will aid the user in converting between the codes. It is not intended to be used as a ''black box''. The resulting input file will need to be carefully inspected by criticality safety personnel to verify the intent of the calculation is preserved in the conversion. The purpose of this package is to help the criticality specialist in the conversion process by converting the geometry, materials, and pertinent data cards

  6. UNR. A code for processing unresolved resonance data for MCNP

    International Nuclear Information System (INIS)

    Hogenbirk, A.

    1994-09-01

    In neutron transport problems the correct treatment of self-shielding is important for those nuclei present in large concentrations. Monte Carlo calculations using continuous-energy cross section data, such as calculations with the code MCNP, offer the advantage that neutron transport is calculated in a very accurate way. Self-shielding in the resolved resonance region is taken into account exactly in MCNP. However, self-shielding in the unresolved resonance region can not be taken into account by MCNP, although the effect of it may be important in many applications. In this report a description is given of the computer code UNR. With this code problem-dependent cross section libraries can be produced for MCNP. In these libraries self-shielded cross section data in the unresolved resonance range are given, which are produced by NJOY-module UNRESR. It is noted, that the treatment for resonance self-shielding presented in this report is approximate. However, the current version of MCNP does not allow the use of probability tables, which would be a general solution. (orig.)

  7. Some results of simulation on radiation effects in crystals

    International Nuclear Information System (INIS)

    Baier, T.; AN SSSR, Novosibirsk

    1993-05-01

    Simulations concerning radiation in oriented silicon and tungsten crystals of different thicknesses are developed. Conditions are those of experiments done at Kharkov (Ukraine) and Tomsk (Russia) with electron beams in the 1 GeV range. Systematic comparisons between experimental and simulated spectra associated to real spectrum, radiation energy and angular distribution of the photons are developed. The ability of the simulation program to describe crystal effects in the considered energy range is analysed. (author) 11 refs.; 8 figs

  8. Comparative Analysis of the Dalat Nuclear Research Reactor with HEU Fuel Using SRAC and MCNP5

    Directory of Open Access Journals (Sweden)

    Giang Phan

    2017-01-01

    Full Text Available Neutronics analysis has been performed for the 500 kW Dalat Nuclear Research Reactor loaded with highly enriched uranium fuel using the SRAC code system. The effective multiplication factors, keff, were analyzed for the core at criticality conditions and in two cases corresponding to the complete withdrawal and the full insertion of control rods. MCNP5 calculations were also conducted and compared to that obtained with the SRAC code. The results show that the difference of the keff values between the codes is within 55 pcm. Compared to the criticality conditions established in the experiments, the maximum differences of the keff values obtained from the SRAC and MCNP5 calculations are 119 pcm and 64 pcm, respectively. The radial and axial power peaking factors are 1.334 and 1.710, respectively, in the case of no control rod insertion. At the criticality condition these values become 1.445 and 1.832 when the control rods are partially inserted. Compared to MCNP5 calculations, the deviation of the relative power densities is less than 4% at the fuel bundles in the middle of the core, while the maximum deviation is about 7% appearing at some peripheral bundles. This agreement indicates the verification of the analysis models.

  9. Calibration curves of a PGNAA system for cement raw material analysis using the MCNP code

    International Nuclear Information System (INIS)

    Oliveira, Carlos; Salgado, Jose

    1998-01-01

    In large samples, the γ-ray count rate of a prompt gamma neutron activation analysis system is a multi-variable function of the elemental dry composition, density, water content and thickness of the material. The experimental calibration curves require tremendous laboratory work, using a great number of standards with well-known compositions. Although a Monte Carlo simulation study does not avoid the experimental calibration work, it reduces the number of experimental calibration standards. This paper is part of a feasibility study for a PGNAA system for on-line continuous characterisation of cement raw material conveyed on a belt (Oliveira, C., Salgado, J. and Carvalho, F. G. (1997) Optimisation of PGNAA instrument design for cement raw materials using the MCNP code. J. Radioanal. Nucl. Chem. 216(2), 191-198; Oliveira, C., Salgado, J., Goncalves, I. F., Carvalho, F. G. and Leitao, F. (1997a) A Monte Carlo study of the influence of geometry arrangements and structural materials on a PGNAA system performance for cement raw materials analysis. Appl. Radiat. Isot. (accepted); Oliveira, C., Salgado, J. and Leitao, F. (1997b) Density and water content corrections in the gamma count rate of a PGNAA system for cement raw material analysis using the MCNP code. Appl. Radiat. Isot. (accepted).]. It reports on the influence of the density, mass water content and thickness on the calibration curves of the PGNAA system. The MCNP-4A code, running in a Pentium-PC and in a DEC workstation, was used to simulate the PGNAA configuration system

  10. MCNP load balancing and fault tolerance with PVM

    International Nuclear Information System (INIS)

    McKinney, G.W.

    1995-01-01

    Version 4A of the Monte Carlo neutron, photon, and electron transport code MCNP, developed by LANL (Los Alamos National Laboratory), supports distributed-memory multiprocessing through the software package PVM (Parallel Virtual Machine, version 3.1.4). Using PVM for interprocessor communication, MCNP can simultaneously execute a single problem on a cluster of UNIX-based workstations. This capability provided system efficiencies that exceeded 80% on dedicated workstation clusters, however, on heterogeneous or multiuser systems, the performance was limited by the slowest processor (i.e., equal work was assigned to each processor). The next public release of MCNP will provide multiprocessing enhancements that include load balancing and fault tolerance which are shown to dramatically increase multiuser system efficiency and reliability

  11. Lecture Notes on Criticality Safety Validation Using MCNP & Whisper

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Alwin, Jennifer Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    Training classes for nuclear criticality safety, MCNP documentation. The need for, and problems surrounding, validation of computer codes and data area considered first. Then some background for MCNP & Whisper is given--best practices for Monte Carlo criticality calculations, neutron spectra, S(α,β) thermal neutron scattering data, nuclear data sensitivities, covariance data, and correlation coefficients. Whisper is computational software designed to assist the nuclear criticality safety analyst with validation studies with the Monte Carlo radiation transport package MCNP. Whisper's methodology (benchmark selection – Ck's, weights; extreme value theory – bias, bias uncertainty; MOS for nuclear data uncertainty – GLLS) and usage are discussed.

  12. Monte Carlo importance sampling for the MCNP trademark general source

    International Nuclear Information System (INIS)

    Lichtenstein, H.

    1996-01-01

    Research was performed to develop an importance sampling procedure for a radiation source. The procedure was developed for the MCNP radiation transport code, but the approach itself is general and can be adapted to other Monte Carlo codes. The procedure, as adapted to MCNP, relies entirely on existing MCNP capabilities. It has been tested for very complex descriptions of a general source, in the context of the design of spent-reactor-fuel storage casks. Dramatic improvements in calculation efficiency have been observed in some test cases. In addition, the procedure has been found to provide an acceleration to acceptable convergence, as well as the benefit of quickly identifying user specified variance-reduction in the transport that effects unstable convergence

  13. Generating and verification of ACE-multigroup library for MCNP

    International Nuclear Information System (INIS)

    Chen Chaobin; Hu Zehua; Chen Yixue; Wu Jun; Yang Shouhai

    2012-01-01

    The Monte Carlo code MCNP can handle multigroup calculations and a sample multigroup set based on ENDF/B-V, MGXSNP, is available for MCNP for coupled neutron-photon transport. However, this library is not suit- able for all problems, and there is a need for users to be able to generate multigroup libraries tailored to their specific applications. For these purposes CSPT (cross section processing tool) is created to generate multigroup library for MCNP from deterministic multigroup cross sections (GENDF or ANISN format at present). Several ACE-multigroup libraries based on ENDF/B-VII.0 converted and verified in this work, we drawn the conclusion that the CSPT code works correctly and the libraries produced are credible. (authors)

  14. Computational bone remodelling simulations and comparisons with DEXA results.

    Science.gov (United States)

    Turner, A W L; Gillies, R M; Sekel, R; Morris, P; Bruce, W; Walsh, W R

    2005-07-01

    Femoral periprosthetic bone loss following total hip replacement is often associated with stress shielding. Extensive bone resorption may lead to implant or bone failure and complicate revision surgery. In this study, an existing strain-adaptive bone remodelling theory was modified and combined with anatomic three-dimensional finite element models to predict alterations in periprosthetic apparent density. The theory incorporated an equivalent strain stimulus and joint and muscle forces from 45% of the gait cycle. Remodelling was simulated for three femoral components with different design philosophies: cobalt-chrome alloy, two-thirds proximally coated; titanium alloy, one-third proximally coated; and a composite of cobalt-chrome surrounded by polyaryletherketone, fully coated. Theoretical bone density changes correlated significantly with clinical densitometry measurements (DEXA) after 2 years across the Gruen zones (R2>0.67, p<0.02), with average differences of less than 5.4%. The results suggest that a large proportion of adaptive bone remodelling changes seen clinically with these implants may be explained by a consistent theory incorporating a purely mechanical stimulus. This theory could be applied to pre-clinical testing of new implants, investigation of design modifications, and patient-specific implant selection.

  15. LANGMUIR WAVE DECAY IN INHOMOGENEOUS SOLAR WIND PLASMAS: SIMULATION RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Krafft, C. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, F-91128 Palaiseau Cedex (France); Volokitin, A. S. [IZMIRAN, Troitsk, 142190, Moscow (Russian Federation); Krasnoselskikh, V. V., E-mail: catherine.krafft@u-psud.fr [Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, 3A Av. de la Recherche Scientifique, F-45071 Orléans Cedex 2 (France)

    2015-08-20

    Langmuir turbulence excited by electron flows in solar wind plasmas is studied on the basis of numerical simulations. In particular, nonlinear wave decay processes involving ion-sound (IS) waves are considered in order to understand their dependence on external long-wavelength plasma density fluctuations. In the presence of inhomogeneities, it is shown that the decay processes are localized in space and, due to the differences between the group velocities of Langmuir and IS waves, their duration is limited so that a full nonlinear saturation cannot be achieved. The reflection and the scattering of Langmuir wave packets on the ambient and randomly varying density fluctuations lead to crucial effects impacting the development of the IS wave spectrum. Notably, beatings between forward propagating Langmuir waves and reflected ones result in the parametric generation of waves of noticeable amplitudes and in the amplification of IS waves. These processes, repeated at different space locations, form a series of cascades of wave energy transfer, similar to those studied in the frame of weak turbulence theory. The dynamics of such a cascading mechanism and its influence on the acceleration of the most energetic part of the electron beam are studied. Finally, the role of the decay processes in the shaping of the profiles of the Langmuir wave packets is discussed, and the waveforms calculated are compared with those observed recently on board the spacecraft Solar TErrestrial RElations Observatory and WIND.

  16. MCNP speed advances for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Goorley, J.T.; McKinney, G.; Adams, K.; Estes, G.

    1998-04-01

    The Boron Neutron Capture Therapy (BNCT) treatment planning process of the Beth Israel Deaconess Medical Center-M.I.T team relies on MCNP to determine dose rates in the subject's head for various beam orientations. In this time consuming computational process, four or five potential beams are investigated. Of these, one or two final beams are selected and thoroughly evaluated. Recent advances greatly decreased the time needed to do these MCNP calculations. Two modifications to the new MCNP4B source code, lattice tally and tracking enhancements, reduced the wall-clock run times of a typical one million source neutrons run to one hour twenty five minutes on a 200 MHz Pentium Pro computer running Linux and using the GNU FORTRAN compiler. Previously these jobs used a special version of MCNP4AB created by Everett Redmond, which completed in two hours two minutes. In addition to this 30% speedup, the MCNP4B version was adapted for use with Parallel Virtual Machine (PVM) on personal computers running the Linux operating system. MCNP, using PVM, can be run on multiple computers simultaneously, offering a factor of speedup roughly the same as the number of computers used. With two 200 MHz Pentium Pro machines, the run time was reduced to forty five minutes, a 1.9 factor of improvement over the single Linux computer. While the time of a single run was greatly reduced, the advantages associated with PVM derive from using computational power not already used. Four possible beams, currently requiring four separate runs, could be run faster when each is individually run on a single machine under Windows NT, rather than using Linux and PVM to run one after another with each multiprocessed across four computers. It would be advantageous, however, to use PVM to distribute the final two beam orientations over four computers

  17. Study of bremsstrahlung photons in bulk target using MCNP code

    Directory of Open Access Journals (Sweden)

    S. Sangaroon

    2017-11-01

    Full Text Available The aim of this research was to study the feasibility of bremsstrahlung photon production in target bombarded by 1 GeV electrons. The calculations were performed by the Monte Carlo code MCNP. Six target materials with densities between 2 and 20 g/cm3 were studied. The bremsstrahlung photon flux is high for the target density above 8 g/cm3. Copper is the best target for 1 GeV electron beam due to high bremsstrahlung photon production, low scattering and low transmission electron flux. The copper target was altered to have different thicknesses between 0.01 and 2.5 cm. The results showed that the bremsstrahlung photon flux significantly increased when the target thickness increased from 0.01 to 1.5 cm. The angular distribution of the bremsstrahlung photons with angles between 0 and 120 degrees was determined for copper target. The maximum angle of the photon scattering was about 20 degree.

  18. Simplification of an MCNP model designed for dose rate estimation

    Science.gov (United States)

    Laptev, Alexander; Perry, Robert

    2017-09-01

    A study was made to investigate the methods of building a simplified MCNP model for radiological dose estimation. The research was done using an example of a complicated glovebox with extra shielding. The paper presents several different calculations for neutron and photon dose evaluations where glovebox elements were consecutively excluded from the MCNP model. The analysis indicated that to obtain a fast and reasonable estimation of dose, the model should be realistic in details that are close to the tally. Other details may be omitted.

  19. Simplification of an MCNP model designed for dose rate estimation

    Directory of Open Access Journals (Sweden)

    Laptev Alexander

    2017-01-01

    Full Text Available A study was made to investigate the methods of building a simplified MCNP model for radiological dose estimation. The research was done using an example of a complicated glovebox with extra shielding. The paper presents several different calculations for neutron and photon dose evaluations where glovebox elements were consecutively excluded from the MCNP model. The analysis indicated that to obtain a fast and reasonable estimation of dose, the model should be realistic in details that are close to the tally. Other details may be omitted.

  20. Optimization of Neutron Spectrum in Northwest Beam Tube of Tehran Research Reactor for BNCT, by MCNP Code

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, M. [National Radiation Protection Department - NRPD, Atomic Energy Organization of Iran - AEOI, Tehran (Iran, Islamic Republic of); End of North Kargar st, Atomic Energy Organization of Iran, P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of); Kasesaz, Y.; Khalafi, H.; Shayesteh, M. [Radiation Application School, Nuclear Science and Technology Research Institute, AEOI, Tehran (Iran, Islamic Republic of)

    2015-07-01

    In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials with different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)

  1. Optimization of Neutron Spectrum in Northwest Beam Tube of Tehran Research Reactor for BNCT, by MCNP Code

    International Nuclear Information System (INIS)

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Shayesteh, M.

    2015-01-01

    In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials with different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)

  2. Implementation and qualification of MCNP 5 through the intercomparison with the benchmark for the calculation of critical systems Godiva and Jezebel

    International Nuclear Information System (INIS)

    Lara, Rafael G.; Maiorino, Jose R.

    2013-01-01

    This work aimed at the implementation and qualification of MCNP code in a supercomputer of the Universidade Federal do ABC, so that may be available a next-generation simulation tool for precise calculations of nuclear reactors and systems subject to radiation. The implementation of this tool will have multidisciplinary applications, covering various areas of engineering (nuclear, aerospace, biomedical), radiation physics and others

  3. MCNP modelling of the wall effects observed in tissue-equivalent proportional counters.

    Science.gov (United States)

    Hoff, J L; Townsend, L W

    2002-01-01

    Tissue-equivalent proportional counters (TEPCs) utilise tissue-equivalent materials to depict homogeneous microscopic volumes of human tissue. Although both the walls and gas simulate the same medium, they respond to radiation differently. Density differences between the two materials cause distortions, or wall effects, in measurements, with the most dominant effect caused by delta rays. This study uses a Monte Carlo transport code, MCNP, to simulate the transport of secondary electrons within a TEPC. The Rudd model, a singly differential cross section with no dependence on electron direction, is used to describe the energy spectrum obtained by the impact of two iron beams on water. Based on the models used in this study, a wall-less TEPC had a higher lineal energy (keV.micron-1) as a function of impact parameter than a solid-wall TEPC for the iron beams under consideration. An important conclusion of this study is that MCNP has the ability to model the wall effects observed in TEPCs.

  4. Monte Carlo N-particle simulation of neutron-based sterilisation of anthrax contamination.

    Science.gov (United States)

    Liu, B; Xu, J; Liu, T; Ouyang, X

    2012-10-01

    To simulate the neutron-based sterilisation of anthrax contamination by Monte Carlo N-particle (MCNP) 4C code. Neutrons are elementary particles that have no charge. They are 20 times more effective than electrons or γ-rays in killing anthrax spores on surfaces and inside closed containers. Neutrons emitted from a (252)Cf neutron source are in the 100 keV to 2 MeV energy range. A 2.5 MeV D-D neutron generator can create neutrons at up to 10(13) n s(-1) with current technology. All these enable an effective and low-cost method of killing anthrax spores. There is no effect on neutron energy deposition on the anthrax sample when using a reflector that is thicker than its saturation thickness. Among all three reflecting materials tested in the MCNP simulation, paraffin is the best because it has the thinnest saturation thickness and is easy to machine. The MCNP radiation dose and fluence simulation calculation also showed that the MCNP-simulated neutron fluence that is needed to kill the anthrax spores agrees with previous analytical estimations very well. The MCNP simulation indicates that a 10 min neutron irradiation from a 0.5 g (252)Cf neutron source or a 1 min neutron irradiation from a 2.5 MeV D-D neutron generator may kill all anthrax spores in a sample. This is a promising result because a 2.5 MeV D-D neutron generator output >10(13) n s(-1) should be attainable in the near future. This indicates that we could use a D-D neutron generator to sterilise anthrax contamination within several seconds.

  5. A method to optimize the shield compact and lightweight combining the structure with components together by genetic algorithm and MCNP code.

    Science.gov (United States)

    Cai, Yao; Hu, Huasi; Pan, Ziheng; Hu, Guang; Zhang, Tao

    2018-05-17

    To optimize the shield for neutrons and gamma rays compact and lightweight, a method combining the structure and components together was established employing genetic algorithms and MCNP code. As a typical case, the fission energy spectrum of 235 U which mixed neutrons and gamma rays was adopted in this study. Six types of materials were presented and optimized by the method. Spherical geometry was adopted in the optimization after checking the geometry effect. Simulations have made to verify the reliability of the optimization method and the efficiency of the optimized materials. To compare the materials visually and conveniently, the volume and weight needed to build a shield are employed. The results showed that, the composite multilayer material has the best performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. MCNP: a general Monte Carlo code for neutron and photon transport

    International Nuclear Information System (INIS)

    1979-11-01

    The general-purpose Monte Carlo code MCNP ca be used for neutron, photon, or coupled neutron-photon transport, including the capability to calculate eigenvalues for critical systems. The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces (elliptical tori). Pointwise cross-section data are used. For neutrons, all reactions given in a particular cross-section evaluation are accounted for. Thermal neutrons are described by both the free-gas and S(α,β) models. For photons, the code takes account of incoherent and coherent scattering, the possibility of fluorescent emission following photoelectric absorption, and absorption in pair production with local emission of annihilation radiation. MCNP includes an elaborate, interactive plotting capability that allows the user to view his input geometry to help check for setup errors. Standard features which are available to improve computational efficiency include geometry splitting and Russian roulette, weight cutoff with Russian roulette, correlated sampling, analog capture or capture by weight reduction, the exponential transformation, energy splitting, forced collisions in designated cells, flux estimates at point or ring detectors, deterministically transporting pseudo-particles to designated regions, track-length estimators, source biasing, and several parameter cutoffs. Extensive summary information is provided to help the user better understand the physics and Monte Carlo simulation of his problem. The standard, user-defined output of MCNP includes two-way current as a function of direction across any set of surfaces or surface segments in the problem. Flux across any set of surfaces or surface segments is available. 58 figures, 28 tables

  7. Results of modeling advanced BWR fuel designs using CASMO-4

    International Nuclear Information System (INIS)

    Knott, D.; Edenius, M.

    1996-01-01

    Advanced BWR fuel designs from General Electric, Siemens and ABB-Atom have been analyzed using CASMO-4 and compared against fission rate distributions and control rod worths from MCNP. Included in the analysis were fuel storage rack configurations and proposed mixed oxide (MOX) designs. Results are also presented from several cycles of SIMULATE-3 core follow analysis, using nodal data generated by CASMO-4, for cycles in transition from 8x8 designs to advanced fuel designs. (author)

  8. FINAL SIMULATION RESULTS FOR DEMONSTRATION CASE 1 AND 2

    Energy Technology Data Exchange (ETDEWEB)

    David Sloan; Woodrow Fiveland

    2003-10-15

    The goal of this DOE Vision-21 project work scope was to develop an integrated suite of software tools that could be used to simulate and visualize advanced plant concepts. Existing process simulation software did not meet the DOE's objective of ''virtual simulation'' which was needed to evaluate complex cycles. The overall intent of the DOE was to improve predictive tools for cycle analysis, and to improve the component models that are used in turn to simulate equipment in the cycle. Advanced component models are available; however, a generic coupling capability that would link the advanced component models to the cycle simulation software remained to be developed. In the current project, the coupling of the cycle analysis and cycle component simulation software was based on an existing suite of programs. The challenge was to develop a general-purpose software and communications link between the cycle analysis software Aspen Plus{reg_sign} (marketed by Aspen Technology, Inc.), and specialized component modeling packages, as exemplified by industrial proprietary codes (utilized by ALSTOM Power Inc.) and the FLUENT{reg_sign} computational fluid dynamics (CFD) code (provided by Fluent Inc). A software interface and controller, based on an open CAPE-OPEN standard, has been developed and extensively tested. Various test runs and demonstration cases have been utilized to confirm the viability and reliability of the software. ALSTOM Power was tasked with the responsibility to select and run two demonstration cases to test the software--(1) a conventional steam cycle (designated as Demonstration Case 1), and (2) a combined cycle test case (designated as Demonstration Case 2). Demonstration Case 1 is a 30 MWe coal-fired power plant for municipal electricity generation, while Demonstration Case 2 is a 270 MWe, natural gas-fired, combined cycle power plant. Sufficient data was available from the operation of both power plants to complete the cycle

  9. Duplicating MC-15 Output with Python and MCNP

    Energy Technology Data Exchange (ETDEWEB)

    McSpaden, Alexander Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-23

    Two Python scripts have been written that process the output files of MCNP6 into a format that mimics the list-mode output of Los Alamos National Laboratory’s MC-15 and NPOD neutron detection systems. This report details the methods implemented in these scripts and instructions on their use.

  10. Availability of MCNP and MATLAB for reconstructing the water-vapor two-phase flow pattern in neutron radiography

    International Nuclear Information System (INIS)

    Feng Qixi; Feng Quanke; Takeshi, K.

    2008-01-01

    The China Advanced Research Reactor (CARR) is scheduled to be operated in the autumn of 2008. In this paper, we report preparations for installing the neutron radiography instrument (NRI) and for utilizing it efficiently. The 2-D relative neutron intensity profiles for the water-vapor two-phase flow inside the tube were obtained using the MCNP code without influence of γ-ray and electronic-noise. The MCNP simulation of the 2-D neutron intensity profile for the water-vapor two-phase flow was demonstrated. The simulated 2-D neutron intensity profiles could be used as the benchmark data base by calibrating part of the data measured by the CARR-NRI. The 3-D objective images allow us to understand the flow pattern more clearly and it is reconstructed using the MATLAB through the threshold transformation techniques. And thus it is concluded that the MCNP code and the MATLAB are very useful for constructing the benchmark data base for the investigation of the water-vapor two-phase flow using the CARR-NRI. (authors)

  11. Benchmark of PENELOPE code for low-energy photon transport: dose comparisons with MCNP4 and EGS4

    International Nuclear Information System (INIS)

    Ye, Sung-Joon; Brezovich, Ivan A; Pareek, Prem; Naqvi, Shahid A

    2004-01-01

    The expanding clinical use of low-energy photon emitting 125 I and 103 Pd seeds in recent years has led to renewed interest in their dosimetric properties. Numerous papers pointed out that higher accuracy could be obtained in Monte Carlo simulations by utilizing newer libraries for the low-energy photon cross-sections, such as XCOM and EPDL97. The recently developed PENELOPE 2001 Monte Carlo code is user friendly and incorporates photon cross-section data from the EPDL97. The code has been verified for clinical dosimetry of high-energy electron and photon beams, but has not yet been tested at low energies. In the present work, we have benchmarked the PENELOPE code for 10-150 keV photons. We computed radial dose distributions from 0 to 10 cm in water at photon energies of 10-150 keV using both PENELOPE and MCNP4C with either DLC-146 or DLC-200 cross-section libraries, assuming a point source located at the centre of a 30 cm diameter and 20 cm length cylinder. Throughout the energy range of simulated photons (except for 10 keV), PENELOPE agreed within statistical uncertainties (at worst ±5%) with MCNP/DLC-146 in the entire region of 1-10 cm and with published EGS4 data up to 5 cm. The dose at 1 cm (or dose rate constant) of PENELOPE agreed with MCNP/DLC-146 and EGS4 data within approximately ±2% in the range of 20-150 keV, while MCNP/DLC-200 produced values up to 9% lower in the range of 20-100 keV than PENELOPE or the other codes. However, the differences among the four datasets became negligible above 100 keV

  12. Benchmark of PENELOPE code for low-energy photon transport: dose comparisons with MCNP4 and EGS4.

    Science.gov (United States)

    Ye, Sung-Joon; Brezovich, Ivan A; Pareek, Prem; Naqvi, Shahid A

    2004-02-07

    The expanding clinical use of low-energy photon emitting 125I and 103Pd seeds in recent years has led to renewed interest in their dosimetric properties. Numerous papers pointed out that higher accuracy could be obtained in Monte Carlo simulations by utilizing newer libraries for the low-energy photon cross-sections, such as XCOM and EPDL97. The recently developed PENELOPE 2001 Monte Carlo code is user friendly and incorporates photon cross-section data from the EPDL97. The code has been verified for clinical dosimetry of high-energy electron and photon beams, but has not yet been tested at low energies. In the present work, we have benchmarked the PENELOPE code for 10-150 keV photons. We computed radial dose distributions from 0 to 10 cm in water at photon energies of 10-150 keV using both PENELOPE and MCNP4C with either DLC-146 or DLC-200 cross-section libraries, assuming a point source located at the centre of a 30 cm diameter and 20 cm length cylinder. Throughout the energy range of simulated photons (except for 10 keV), PENELOPE agreed within statistical uncertainties (at worst +/- 5%) with MCNP/DLC-146 in the entire region of 1-10 cm and with published EGS4 data up to 5 cm. The dose at 1 cm (or dose rate constant) of PENELOPE agreed with MCNP/DLC-146 and EGS4 data within approximately +/- 2% in the range of 20-150 keV, while MCNP/DLC-200 produced values up to 9% lower in the range of 20-100 keV than PENELOPE or the other codes. However, the differences among the four datasets became negligible above 100 keV.

  13. Optimal Results and Numerical Simulations for Flow Shop Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Tao Ren

    2012-01-01

    Full Text Available This paper considers the m-machine flow shop problem with two objectives: makespan with release dates and total quadratic completion time, respectively. For Fm|rj|Cmax, we prove the asymptotic optimality for any dense scheduling when the problem scale is large enough. For Fm‖ΣCj2, improvement strategy with local search is presented to promote the performance of the classical SPT heuristic. At the end of the paper, simulations show the effectiveness of the improvement strategy.

  14. RF feedback simulation results for PEP-II

    International Nuclear Information System (INIS)

    Tighe, R.; Corredoura, P.

    1995-06-01

    A model of the RF feedback system for PEP-II has been developed to provide time-domain simulation and frequency-domain analysis of the complete system. The model includes the longitudinal beam dynamics, cavity fundamental resonance, feedback loops, and the nonlinear klystron operating near saturation. Transients from an ion clearing gap and a reference phase modulation from the longitudinal feedback system are also studied. Growth rates are predicted and overall system stability examined

  15. Rainout assessment: the ACRA system and summaries of simulation results

    International Nuclear Information System (INIS)

    Watson, C.W.; Barr, S.; Allenson, R.E.

    1977-09-01

    A generalized, three-dimensional, integrated computer code system was developed to estimate collateral-damage threats from precipitation-scavenging (rainout) of airborne debris-clouds from defensive tactical nuclear engagements. This code system, called ACRA for Atmospheric-Contaminant Rainout Assessment, is based on Monte Carlo statistical simulation methods that allow realistic, unbiased simulations of probabilistic storm, wind, and precipitation fields that determine actual magnitudes and probabilities of rainout threats. Detailed models (or data bases) are included for synoptic-scale storm and wind fields; debris transport and dispersal (with the roles of complex flow fields, time-dependent diffusion, and multidimensional shear effects accounted for automatically); microscopic debris-precipitation interactions and scavenging probabilities; air-to-ground debris transport; local demographic features, for assessing actual threats to populations; and nonlinear effects accumulations from multishot scenarios. We simulated several hundred representative shots for West European scenarios and climates to study single-shot and multishot sensitivities of rainout effects to variations in pertinent physical variables

  16. Control of the Low-energy X-rays by Using MCNP5 and Numerical Analysis for a New Concept Intra-oral X-ray Imaging System

    Science.gov (United States)

    Huh, Jangyong; Ji, Yunseo; Lee, Rena

    2018-05-01

    An X-ray control algorithm to modulate the X-ray intensity distribution over the FOV (field of view) has been developed by using numerical analysis and MCNP5, a particle transport simulation code on the basis of the Monte Carlo method. X-rays, which are widely used in medical diagnostic imaging, should be controlled in order to maximize the performance of the X-ray imaging system. However, transporting X-rays, like a liquid or a gas is conveyed through a physical form such as pipes, is not possible. In the present study, an X-ray control algorithm and technique to uniformize the Xray intensity projected on the image sensor were developed using a flattening filter and a collimator in order to alleviate the anisotropy of the distribution of X-rays due to intrinsic features of the X-ray generator. The proposed method, which is combined with MCNP5 modeling and numerical analysis, aimed to optimize a flattening filter and a collimator for a uniform distribution of X-rays. Their size and shape were estimated from the method. The simulation and the experimental results both showed that the method yielded an intensity distribution over an X-ray field of 6×4 cm2 at SID (source to image-receptor distance) of 5 cm with a uniformity of more than 90% when the flattening filter and the collimator were mounted on the system. The proposed algorithm and technique are not only confined to flattening filter development but can also be applied for other X-ray related research and development efforts.

  17. New Results on the Simulation of Particulate Flows

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, M.

    2004-07-01

    We propose a new immersed boundary method for the simulation of particulate flows. The fluid solid interaction force is formulate din a direct manner, without resorting to a feed-back mechanisms and thereby avoiding the introduction of additional free parameters. The regularized delta function of Peskin (Acta Numerica, 2002) is used to pass variables between Lagrangian and Eulerian representations, providing for a smooth variation of the hydrodynamic forces while particles are in motion relative to the fixed grid. The application of this scheme to several benchmark problems in two space dimensions demonstrates its feasibility and efficiency. (Author) 9 refs.

  18. New Results on the Simulation of Particulate Flows

    International Nuclear Information System (INIS)

    Uhlmann, M.

    2004-01-01

    We propose a new immersed boundary method for the simulation of particulate flows. The fluid solid interaction force is formulated in a direct manner, without resorting to a feed-back mechanism and thereby avoiding the introduction of additional free parameters. The regularized delta function of Pekin (Acta Numerical, 2002) is used to pass variables between Lagrangian and Eulerian representations, providing for a smooth variation of the hydrodynamic forces while particles are in motion relative to the fixed grid. The application of this schemer to several benchmark problems in two space dimensions demonstrates its feasibility and efficiency. (Author) 9 refs

  19. Direct drive: Simulations and results from the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Radha, P. B., E-mail: rbah@lle.rochester.edu; Hohenberger, M.; Edgell, D. H.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Rosenberg, M. J.; Seka, W.; Shvydky, A.; Boehly, T. R.; Collins, T. J. B.; Campbell, E. M.; Craxton, R. S.; Delettrez, J. A.; Froula, D. H.; Goncharov, V. N.; Hu, S. X.; Knauer, J. P.; McCrory, R. L.; McKenty, P. W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); and others

    2016-05-15

    Direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolved scattered light and scattered-light spectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivity analyses indicate that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat.

  20. Benchmarking of MCNP for calculating dose rates at an interim storage facility for nuclear waste.

    Science.gov (United States)

    Heuel-Fabianek, Burkhard; Hille, Ralf

    2005-01-01

    During the operation of research facilities at Research Centre Jülich, Germany, nuclear waste is stored in drums and other vessels in an interim storage building on-site, which has a concrete shielding at the side walls. Owing to the lack of a well-defined source, measured gamma spectra were unfolded to determine the photon flux on the surface of the containers. The dose rate simulation, including the effects of skyshine, using the Monte Carlo transport code MCNP is compared with the measured dosimetric data at some locations in the vicinity of the interim storage building. The MCNP data for direct radiation confirm the data calculated using a point-kernel method. However, a comparison of the modelled dose rates for direct radiation and skyshine with the measured data demonstrate the need for a more precise definition of the source. Both the measured and the modelled dose rates verified the fact that the legal limits (<1 mSv a(-1)) are met in the area outside the perimeter fence of the storage building to which members of the public have access. Using container surface data (gamma spectra) to define the source may be a useful tool for practical calculations and additionally for benchmarking of computer codes if the discussed critical aspects with respect to the source can be addressed adequately.

  1. Conversion coefficients for determination of dispersed photon dose during radiotherapy: NRUrad input code for MCNP.

    Science.gov (United States)

    Shahmohammadi Beni, Mehrdad; Ng, C Y P; Krstic, D; Nikezic, D; Yu, K N

    2017-01-01

    Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient's body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5.

  2. Physical models, cross sections, and numerical approximations used in MCNP and GEANT4 Monte Carlo codes for photon and electron absorbed fraction calculation.

    Science.gov (United States)

    Yoriyaz, Hélio; Moralles, Maurício; Siqueira, Paulo de Tarso Dalledone; Guimarães, Carla da Costa; Cintra, Felipe Belonsi; dos Santos, Adimir

    2009-11-01

    Radiopharmaceutical applications in nuclear medicine require a detailed dosimetry estimate of the radiation energy delivered to the human tissues. Over the past years, several publications addressed the problem of internal dose estimate in volumes of several sizes considering photon and electron sources. Most of them used Monte Carlo radiation transport codes. Despite the widespread use of these codes due to the variety of resources and potentials they offered to carry out dose calculations, several aspects like physical models, cross sections, and numerical approximations used in the simulations still remain an object of study. Accurate dose estimate depends on the correct selection of a set of simulation options that should be carefully chosen. This article presents an analysis of several simulation options provided by two of the most used codes worldwide: MCNP and GEANT4. For this purpose, comparisons of absorbed fraction estimates obtained with different physical models, cross sections, and numerical approximations are presented for spheres of several sizes and composed as five different biological tissues. Considerable discrepancies have been found in some cases not only between the different codes but also between different cross sections and algorithms in the same code. Maximum differences found between the two codes are 5.0% and 10%, respectively, for photons and electrons. Even for simple problems as spheres and uniform radiation sources, the set of parameters chosen by any Monte Carlo code significantly affects the final results of a simulation, demonstrating the importance of the correct choice of parameters in the simulation.

  3. Measurements by activation foils and comparative computations by MCNP code

    International Nuclear Information System (INIS)

    Kyncl, J.

    2008-01-01

    Systematic study of the radioactive waste minimisation problem is subject of the SPHINX project. Its idea is that burning or transmutation of the waste inventory problematic part will be realized in a nuclear reactor the fuel of which is in the form of liquid fluorides. In frame of the project, several experiments have been performed with so-called inserted experimental channel. The channel was filled up by the fluorides mixture, surrounded by six fuel assemblies with moderator and placed into LR-0 reactor vessel. This formation was brought to critical state and measurement with activation foil detectors were carried out at selected positions of the inserted channel. Main aim of the measurements was to determine reaction rates for the detectors mentioned. For experiment evaluation, comparative computations were accomplished by code MCNP4a. The results obtained show that very often, computed values of reaction rates differ substantially from the values that were obtained from the experiment. This contribution deals with analysis of the reasons of these differences from the point of view of computations by Monte Carlo method. The analysis of concrete cases shows that the inaccuracy of reaction rate computed is caused mostly by three circumstances:-space region that is occupied by detector is relatively very small;- microscopic effective cross-section R(E) of the reaction changes strongly with energy just in the energy interval that gives the greatest contribution to the reaction; - in the energy interval that gives the greatest contribution to reaction rate, the error of the computed neutron flux is great. These circumstances evoke that the computation of reaction rate with casual accuracy submits extreme demands on computing time. (Author)

  4. Implementation and qualification of MCNP 5 through the intercomparison with the benchmark for the calculation of critical systems Godiva and Jezebel; Implementacao e qualificacao do MCNP5 atraves da intercomparacao com o benchmark para o calculo dos sistemas criticos Godiva e Jezebel

    Energy Technology Data Exchange (ETDEWEB)

    Lara, Rafael G.; Maiorino, Jose R., E-mail: rafael.lara@aluno.ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais Aplicadas

    2013-07-01

    This work aimed at the implementation and qualification of MCNP code in a supercomputer of the Universidade Federal do ABC, so that may be available a next-generation simulation tool for precise calculations of nuclear reactors and systems subject to radiation. The implementation of this tool will have multidisciplinary applications, covering various areas of engineering (nuclear, aerospace, biomedical), radiation physics and others.

  5. PWR Facility Dose Modeling Using MCNP5 and the CADIS/ADVANTG Variance-Reduction Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Blakeman, Edward D [ORNL; Peplow, Douglas E. [ORNL; Wagner, John C [ORNL; Murphy, Brian D [ORNL; Mueller, Don [ORNL

    2007-09-01

    The feasibility of modeling a pressurized-water-reactor (PWR) facility and calculating dose rates at all locations within the containment and adjoining structures using MCNP5 with mesh tallies is presented. Calculations of dose rates resulting from neutron and photon sources from the reactor (operating and shut down for various periods) and the spent fuel pool, as well as for the photon source from the primary coolant loop, were all of interest. Identification of the PWR facility, development of the MCNP-based model and automation of the run process, calculation of the various sources, and development of methods for visually examining mesh tally files and extracting dose rates were all a significant part of the project. Advanced variance reduction, which was required because of the size of the model and the large amount of shielding, was performed via the CADIS/ADVANTG approach. This methodology uses an automatically generated three-dimensional discrete ordinates model to calculate adjoint fluxes from which MCNP weight windows and source bias parameters are generated. Investigative calculations were performed using a simple block model and a simplified full-scale model of the PWR containment, in which the adjoint source was placed in various regions. In general, it was shown that placement of the adjoint source on the periphery of the model provided adequate results for regions reasonably close to the source (e.g., within the containment structure for the reactor source). A modification to the CADIS/ADVANTG methodology was also studied in which a global adjoint source is weighted by the reciprocal of the dose response calculated by an earlier forward discrete ordinates calculation. This method showed improved results over those using the standard CADIS/ADVANTG approach, and its further investigation is recommended for future efforts.

  6. PWR Facility Dose Modeling Using MCNP5 and the CADIS/ADVANTG Variance-Reduction Methodology

    International Nuclear Information System (INIS)

    Blakeman, Edward D.; Peplow, Douglas E.; Wagner, John C.; Murphy, Brian D.; Mueller, Don

    2007-01-01

    The feasibility of modeling a pressurized-water-reactor (PWR) facility and calculating dose rates at all locations within the containment and adjoining structures using MCNP5 with mesh tallies is presented. Calculations of dose rates resulting from neutron and photon sources from the reactor (operating and shut down for various periods) and the spent fuel pool, as well as for the photon source from the primary coolant loop, were all of interest. Identification of the PWR facility, development of the MCNP-based model and automation of the run process, calculation of the various sources, and development of methods for visually examining mesh tally files and extracting dose rates were all a significant part of the project. Advanced variance reduction, which was required because of the size of the model and the large amount of shielding, was performed via the CADIS/ADVANTG approach. This methodology uses an automatically generated three-dimensional discrete ordinates model to calculate adjoint fluxes from which MCNP weight windows and source bias parameters are generated. Investigative calculations were performed using a simple block model and a simplified full-scale model of the PWR containment, in which the adjoint source was placed in various regions. In general, it was shown that placement of the adjoint source on the periphery of the model provided adequate results for regions reasonably close to the source (e.g., within the containment structure for the reactor source). A modification to the CADIS/ADVANTG methodology was also studied in which a global adjoint source is weighted by the reciprocal of the dose response calculated by an earlier forward discrete ordinates calculation. This method showed improved results over those using the standard CADIS/ADVANTG approach, and its further investigation is recommended for future efforts

  7. Comparison study on neutronic analysis of the K-DEMO water cooled ceramic breeder blanket using MCNP and ATTILA

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Sung, E-mail: jspark@nfri.re.kr; Kwon, Sungjin; Im, Kihak

    2016-11-01

    Highlights: • A comparison study of main parameter calculations: neutron wall loading (NWL), tritium breeding ratio (TBR), and nuclear heating, on a Korean fusion demonstration reactor (K-DEMO) neutronic analysis model using MCNP and ATTILA was performed to investigate the feasibility of using ATTILA. • The calculation results of this study indicates that ATTILA showed close agreement with MCNP within ranges (3.3–28%). • Partly high discrepancy (17–28%) results between two codes existed to the nuclear heating calculation in high attenuating materials and radially thick structure regions. • The rest of the results showed small differences of NWL calculation (3.3%) and TBR distribution (3.9%). • ATTILA could be acceptable for K-DEMO neutronic analysis considering discrepancy (3.3–28%). - Abstract: A comparison study of main parameter calculations: neutron wall loading (NWL), tritium breeding ratio (TBR), and nuclear heating, on a Korean fusion demonstration reactor (K-DEMO) neutronic analysis model using MCNP and ATTILA was performed to investigate the feasibility of using ATTILA for the main parameter calculations. The model was created by commercial CAD program (Pro-Engineer™) as a 22.5° sector of tokamak consisting of major components such as blankets, shields, divertors, vacuum vessels (VV), toroidal field (TF) coils, and others, which was directly imported into ATTILA by Parasolid file. The discretizing in space, angle, and energy variables were refined for application of the K-DEMO neutronic analysis model through an iterative process since these variables greatly impact on accuracy, solution times, and memory consumptions in ATTILA. The main parameter calculations using ATTILA and the result of comparison studies indicate that the NWL distributions by two codes were almost agreed within discrepancy of 3.3%; the TBR distribution using ATTILA was slightly bigger than MCNP with a difference 3.9%; the nuclear heating values on TF coils and VV

  8. Calculation of the effective dose from natural radioactivity sources in soil using MCNP code

    International Nuclear Information System (INIS)

    Krstic, D.; Nikezic, D.

    2008-01-01

    Full text: Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this report. Calculations have been done for the most common natural radionuclides in soil as 238 U, 232 Th series and 40 K. A ORNL age-dependent phantom and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs of phantom.The effective dose was calculated according to ICRP74 recommendations. Conversion coefficients of effective dose per air kerma were determined. Results obtained here were compared with other authors

  9. Criticality safety analysis of spent fuel storage for NPP Mochovce using MCNP5

    International Nuclear Information System (INIS)

    Farkas, G.; Hascik, J.; Lueley, J.; Vrban, B.; Petriska, M.; Slugen, V.; Urban, P.

    2011-01-01

    The paper presents results of nuclear criticality safety analysis of spent fuel storage for the first and second unit of NPP Mochovce. The spent fuel storage pool (compact and reserve grid) was modeled using the Monte Carlo code MCNP5. Conservative approach was applied and calculation of k eff values was performed for normal and various postulated emergency conditions in order to evaluate the final maximal k eff values. The requirement of current safety regulations to ensure 5% subcriticality was met except one especially conservative case. (Authors)

  10. Calculation of the effective dose from natural radioactivity in soil using MCNP code.

    Science.gov (United States)

    Krstic, D; Nikezic, D

    2010-01-01

    Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this work. Calculations have been done for the most common natural radionuclides in soil (238)U, (232)Th series and (40)K. A ORNL human phantoms and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs. The effective dose was calculated according to ICRP 74 recommendations. Conversion factors of effective dose per air kerma were determined. Results obtained here were compared with other authors. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Comparisons of the MCNP criticality benchmark suite with ENDF/B-VI.8, JENDL-3.3, and JEFF-3.0

    International Nuclear Information System (INIS)

    Kim, Do Heon; Gil, Choong-Sup; Kim, Jung-Do; Chang, Jonghwa

    2003-01-01

    A comparative study has been performed with the latest evaluated nuclear data libraries ENDF/B-VI.8, JENDL-3.3, and JEFF-3.0. The study has been conducted through the benchmark calculations for 91 criticality problems with the libraries processed for MCNP4C. The calculation results have been compared with those of the ENDF60 library. The self-shielding effects of the unresolved-resonance (UR) probability tables have also been estimated for each library. The χ 2 differences between the MCNP results and experimental data were calculated for the libraries. (author)

  12. Calculation of ex-core detector weighting functions for a sodium-cooled tru burner mockup using MCNP5

    International Nuclear Information System (INIS)

    Pham Nhu Viet Ha; Min Jae Lee; Sunghwan Yun; Sang Ji Kim

    2015-01-01

    Power regulation systems of fast reactors are based on the signals of excore detectors. The excore detector weighting functions, which establish correspondence between the core power distribution and detector signal, are very useful for detector response analyses, e.g., in rod drop experiments. This paper presents the calculation of the weighting functions for a TRU burner mockup of the Korean Prototype Generation-IV Sodium-cooled Fast Reactor (named BFS-76-1A) using the MCNP5 multi-group adjoint capability. For generation of the weighting functions, all fuel assemblies were considered and each of them was divided into ten horizontal layers. Then the weighting functions for individual fuel assembly horizontal layers, the assembly weighting functions, and the shape annealing functions at RCP (Reactor Critical Point) and at conditions under which a control rod group was fully inserted into the core while other control rods at RCP were determined and evaluated. The results indicate that the weighting functions can be considered relatively insensitive to the control rods position during the rod drop experiments and therefore those weighting values at RCP can be applied to the dynamic rod worth simulation for the BFS-76-1A. (author)

  13. Computational model of Amersham I-125 source model 6711 and Prosper Pd-103 source model MED3633 using MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Artur F.; Reis Junior, Juraci P.; Silva, Ademir X., E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Rosa, Luiz A.R. da, E-mail: lrosa@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Facure, Alessandro [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Cardoso, Simone C., E-mail: Simone@if.ufrj.b [Universidade Federal do Rio de Janeiro (IF/UFRJ), RJ (Brazil). Inst. de Fisica. Dept. de Fisica Nuclear

    2011-07-01

    Brachytherapy is used in cancer treatment at shorter distances through the use of small encapsulated source of ionizing radiation. In such treatment, a radiation source is positioned directly into or near the target volume to be treated. In this study the Monte Carlo based MCNP code was used to model and simulate the I-125 Amersham Health source model 6711 and the Pd-103 Prospera source model MED3633 in order to obtain the dosimetric parameter dose rate constant ({Lambda}) . The sources geometries were modeled and implemented in MCNPX code. The dose rate constant is an important parameter prostate LDR brachytherapy's treatments planning. This study was based on American Association of Physicists in Medicine (AAPM) recommendations which were produced by its Task Group 43. The results obtained were 0.941 and 0.65 for the dose rate constants of I-125 and Pd-103 sources, respectively. They present good agreement with the literature values based on different Monte Carlo codes. (author)

  14. Convergence testing for MCNP5 Monte Carlo eigenvalue calculations

    International Nuclear Information System (INIS)

    Brown, F.; Nease, B.; Cheatham, J.

    2007-01-01

    Determining convergence of Monte Carlo criticality problems is complicated by the statistical noise inherent in the random, walks of the neutrons in each generation. The latest version of MCNP5 incorporates an important new tool for assessing convergence: the Shannon entropy of the fission source distribution, H src . Shannon entropy is a well-known concept from information theory and provides a single number for each iteration to help characterize convergence trends for the fission source distribution. MCNP5 computes H src for each iteration, and these values may be plotted to examine convergence trends. Convergence testing should include both k eff and H src , since the fission distribution will converge more slowly than k eff , especially when the dominance ratio is close to 1.0. (authors)

  15. MCNP/X TRANSPORT IN THE TABULAR REGIME

    Energy Technology Data Exchange (ETDEWEB)

    HUGHES, H. GRADY [Los Alamos National Laboratory

    2007-01-08

    The authors review the transport capabilities of the MCNP and MCNPX Monte Carlo codes in the energy regimes in which tabular transport data are available. Giving special attention to neutron tables, they emphasize the measures taken to improve the treatment of a variety of difficult aspects of the transport problem, including unresolved resonances, thermal issues, and the availability of suitable cross sections sets. They also briefly touch on the current situation in regard to photon, electron, and proton transport tables.

  16. A photoneutron production option for MCNP4A

    International Nuclear Information System (INIS)

    Gallmeier, F.X.

    1996-01-01

    A photoneutron production option was implemented in the MCNP4A code, mainly to supply a tool for reactor shielding calculations in beryllium and heavy water environments of complicated three dimensional geometries. Subroutines were developed to calculate the probability of the photoneutron production at the photon collision sites and the energy and flight direction of the created photoneutrons with the help of user supplied data. These subroutines are accessed through subroutine colidp which processes the photon collisions

  17. Parallelization of MCNP4 code by using simple FORTRAN algorithms

    International Nuclear Information System (INIS)

    Yazid, P.I.; Takano, Makoto; Masukawa, Fumihiro; Naito, Yoshitaka.

    1993-12-01

    Simple FORTRAN algorithms, that rely only on open, close, read and write statements, together with disk files and some UNIX commands have been applied to parallelization of MCNP4. The code, named MCNPNFS, maintains almost all capabilities of MCNP4 in solving shielding problems. It is able to perform parallel computing on a set of any UNIX workstations connected by a network, regardless of the heterogeneity in hardware system, provided that all processors produce a binary file in the same format. Further, it is confirmed that MCNPNFS can be executed also on Monte-4 vector-parallel computer. MCNPNFS has been tested intensively by executing 5 photon-neutron benchmark problems, a spent fuel cask problem and 17 sample problems included in the original code package of MCNP4. Three different workstations, connected by a network, have been used to execute MCNPNFS in parallel. By measuring CPU time, the parallel efficiency is determined to be 58% to 99% and 86% in average. On Monte-4, MCNPNFS has been executed using 4 processors concurrently and has achieved the parallel efficiency of 79% in average. (author)

  18. CT-Based Brachytherapy Treatment Planning using Monte Carlo Simulation Aided by an Interface Software

    Directory of Open Access Journals (Sweden)

    Vahid Moslemi

    2011-03-01

    Full Text Available Introduction: In brachytherapy, radioactive sources are placed close to the tumor, therefore, small changes in their positions can cause large changes in the dose distribution. This emphasizes the need for computerized treatment planning. The usual method for treatment planning of cervix brachytherapy uses conventional radiographs in the Manchester system. Nowadays, because of their advantages in locating the source positions and the surrounding tissues, CT and MRI images are replacing conventional radiographs. In this study, we used CT images in Monte Carlo based dose calculation for brachytherapy treatment planning, using an interface software to create the geometry file required in the MCNP code. The aim of using the interface software is to facilitate and speed up the geometry set-up for simulations based on the patient’s anatomy. This paper examines the feasibility of this method in cervix brachytherapy and assesses its accuracy and speed. Material and Methods: For dosimetric measurements regarding the treatment plan, a pelvic phantom was made from polyethylene in which the treatment applicators could be placed. For simulations using CT images, the phantom was scanned at 120 kVp. Using an interface software written in MATLAB, the CT images were converted into MCNP input file and the simulation was then performed. Results: Using the interface software, preparation time for the simulations of the applicator and surrounding structures was approximately 3 minutes; the corresponding time needed in the conventional MCNP geometry entry being approximately 1 hour. The discrepancy in the simulated and measured doses to point A was 1.7% of the prescribed dose.  The corresponding dose differences between the two methods in rectum and bladder were 3.0% and 3.7% of the prescribed dose, respectively. Comparing the results of simulation using the interface software with those of simulation using the standard MCNP geometry entry showed a less than 1

  19. Thermal lattice benchmarks for testing basic evaluated data files, developed with MCNP4B

    International Nuclear Information System (INIS)

    Maucec, M.; Glumac, B.

    1996-01-01

    The development of unit cell and full reactor core models of DIMPLE S01A and TRX-1 and TRX-2 benchmark experiments, using Monte Carlo computer code MCNP4B is presented. Nuclear data from ENDF/B-V and VI version of cross-section library were used in the calculations. In addition, a comparison to results obtained with the similar models and cross-section data from the EJ2-MCNPlib library (which is based upon the JEF-2.2 evaluation) developed in IRC Petten, Netherlands is presented. The results of the criticality calculation with ENDF/B-VI data library, and a comparison to results obtained using JEF-2.2 evaluation, confirm the MCNP4B full core model of a DIMPLE reactor as a good benchmark for testing basic evaluated data files. On the other hand, the criticality calculations results obtained using the TRX full core models show less agreement with experiment. It is obvious that without additional data about the TRX geometry, our TRX models are not suitable as Monte Carlo benchmarks. (author)

  20. Using relational databases to collect and store discrete-event simulation results

    DEFF Research Database (Denmark)

    Poderys, Justas; Soler, José

    2016-01-01

    , export the results to a data carrier file and then process the results stored in a file using the data processing software. In this work, we propose to save the simulation results directly from a simulation tool to a computer database. We implemented a link between the discrete-even simulation tool...... and the database and performed performance evaluation of 3 different open-source database systems. We show, that with a right choice of a database system, simulation results can be collected and exported up to 2.67 times faster, and use 1.78 times less disk space when compared to using simulation software built...