WorldWideScience

Sample records for mccellan nuclear radiation

  1. Graphical user interfaces for McCellan Nuclear Radiation Center (MNRC)

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S. A.

    1998-01-01

    McClellan's Nuclear Radiation Center (MNRC) control console is in the process of being replaced due to spurious scrams, outdated software, and obsolete parts. The intent of the new control console is to eliminate the existing problems by installing a UNIX-based computer system with industry-standard interface software and incorporating human factors during all stages of the graphical user interface (GUI) development and control console design

  2. Nuclear radiation in warfare

    International Nuclear Information System (INIS)

    Rotblat, J.

    1986-01-01

    The subject is covered in chapters, entitled: introduction; digest of nuclear weaponry (characteristics of nuclear weapons; effects of nuclear weapons other than ionizing radiation (fire-ball, fall-out, thermal radiation, blast wave, electromagnetic pulse); the nuclear arms race; war scenarios; biological effects of radiations on man (radiation doses; natural sources of radiation; acute effects of radiation; long-term somatic effects; genetic effects; factors affecting the biological response to radiation; internal exposure; synergistic effects; protection against radiation effects); radiations from nuclear explosions (initial radiation; fall-out; effects of fall-out on animal and plant life; contamination of water and food supplies by fall-out); radiation casualties in a nuclear war; effectiveness of civil defence; other warlike uses of radiation (attacks on civilian nuclear power installations; radiological warfare; terrorist activities); conclusion. (orig./HP) [de

  3. Nuclear radiation in warfare

    International Nuclear Information System (INIS)

    Rotblat, J.

    1981-01-01

    The subject is covered in chapters, entitled: introduction; digest of nuclear weaponry (characteristics of nuclear weapons; effects of nuclear weapons other than ionizing radiation (fire-ball, fall-out, thermal radiation, blast wave, electromagnetic pulse); the nuclear arms race; war scenarios); biological effects of radiations on man (radiation doses; natural sources of radiation; acute effects of radiation; long-term somatic effects; genetic effects; factors affecting the biological response to radiation; internal exposure; synergistic effects; protection against radiation effects); radiations from nuclear explosions (initial radiation; fall-out; effects of fall-out on animal and plant life; contamination of water and food supplies by fall-out); radiation casualties in a nuclear war; effectiveness of civil defence; other warlike uses of radiation (attacks on civilian nuclear power installations; radiological warfare; terrorist activities); conclusion. (U.K.)

  4. Detection of nuclear radiations

    International Nuclear Information System (INIS)

    Tanarro Sanz, A.

    1959-01-01

    A summary of the lectures about the ordinary detectors of nuclear radiations given by the author in the Courses of Introduction to Nuclear Engineering held at the JEN up to the date of publication is given. Those lectures are considered to be a necessary introduction to Nuclear Instrumentation and Applied electronics to Nuclear Engineering so it has been intent to underline those characteristics of radiation detectors that must be taken in consideration in choosing or designing the electronic equipment associated to them in order to take advantage of each detector possibilities. (Author) 8 refs

  5. Detection of nuclear radiations

    International Nuclear Information System (INIS)

    Tanarro Sanz, A.

    1967-01-01

    A summary of the lectures about the ordinary detectors of nuclear radiations explained by the author in the courses of Nuclear Engineering held at the J.E.N. up to the date of publication is given. Those lectures are considered to be a necessary introduction to Nuclear Instrumentation and Applied Electronics to Nuclear Engineering so it has been intended to underline those characteristics of radiation detectors that must be taken in consideration in choosing or designing the electronic equipment associated to them in order to take advantage of each detector possibilities. (Author)

  6. Nuclear radiation gauge standard

    International Nuclear Information System (INIS)

    Berry, R.L.

    1977-01-01

    A hydrophobic standard for calibrating nuclear radiation moisture gauges is described, comprising a body of superposed interleaved thin layers of a moderating material containing hydrogen in the molecular structure thereof and of a substantially non-moderating material

  7. Nuclear medicine radiation dosimetry

    CERN Document Server

    McParland, Brian J

    2010-01-01

    Complexities of the requirements for accurate radiation dosimetry evaluation in both diagnostic and therapeutic nuclear medicine (including PET) have grown over the past decade. This is due primarily to four factors: growing consideration of accurate patient-specific treatment planning for radionuclide therapy as a means of improving the therapeutic benefit, development of more realistic anthropomorphic phantoms and their use in estimating radiation transport and dosimetry in patients, design and use of advanced Monte Carlo algorithms in calculating the above-mentioned radiation transport and

  8. Nuclear energy and radiation

    International Nuclear Information System (INIS)

    Myers, D.K.; Johnson, J.R.

    1980-01-01

    Both the light water reactor and the Canadian heavy water reactor systems produce electricity cheaply and efficiently. They produce some fissionable byproducts, which can be recycled to extend energy sources many-fold. Besides the production of electrical power, the nuclear industry produces various radioistopes used for treatment of cancer, in diagnostic procedures in nuclear medicine, in ionization smoke detectors, and as radioactive tracers with various technological applications including the study of the mechanisms of life. The increment in environmental radiation levels resulting from operation of nuclear power reactors represents a very small fraction of the radiation levels to which we are all exposed from natural sources, and of the average radiation exposures resulting from diagnostic procedures in the healing arts. The total health hazard of the complete nuclear power cycle is generally agreed to be smaller than the hazards associated with the generation of an equal amount of electricity from most other currently available sources of energy. The hazards from energy production in terms of shortened life expectancy are much smaller in all cases than the resulting increase in health and life expectancy. (auth)

  9. Nuclear radiation detectors

    International Nuclear Information System (INIS)

    Kapoor, S.S.; Ramamurthy, V.S.

    1986-01-01

    The present monograph is intended to treat the commonly used detectors in the field of nuclear physics covering important developments of the recent years. After a general introduction, a brief account of interaction of radiation with matter relevant to the processes in radiation detection is given in Chapter II. In addition to the ionization chamber, proportional counters and Geiger Mueller counters, several gas-filled detectors of advanced design such as those recently developed for heavy ion physics and other types of studies have been covered in Chapter III. Semiconductor detectors are dealt with in Chapter IV. The scintillation detectors which function by sensing the photons emitted by the luminescence process during the interaction of the impinging radiation with the scintillation detector medium are described in Chapter V. The topic of neutron detectors is covered in Chapter VI, as in this case the emphasis is more on the method of neutron detection rather than on detector type. Electronic instrumentation related to signal pulse processing dealt with in Chapter VII. The track etch detectors based on the visualization of the track of the impinging charge particle have also been briefly covered in the last chapter. The scope of this monograph is confined to detectors commonly used in low and medium energy nuclear physics research and applications of nuclear techniques. The monograph is intended for post-graduate students and those beginning to work with the radiation detectors. (author)

  10. Nuclear and radiation safety policy

    International Nuclear Information System (INIS)

    Mikus, T; Strycek, E.

    1998-01-01

    Slovenske elektrarne (SE) is a producer of electricity and heat, including from nuclear fuel source. The board of SE is ultimately responsible for nuclear and radiation safety matters. In this leaflet main principles of maintaining nuclear and radiation safety of the Company SE are explained

  11. Nuclear radiation in water

    International Nuclear Information System (INIS)

    Abrams, H.L.

    1989-01-01

    The manifestations of acute radiation sickness in the post-nuclear attack period must be recognized and understood in order to apply therapeutic measure appropriately. The syndromes observed-hematopoietic, gastrointestinal, central nervous system-are dose dependent and vary in the degree of patient impairment and lethality. Estimates of mortality and morbidity following a massive exchange vary profoundly, depending on the targeting scenarios, the modes employed, and the meteorologic conditions anticipated. Even the LD-50 dose remain the subject of controversy. Using a US Government model of such an exchange, an estimated 23 million survivors would have radiation sickness, frequently complicated by trauma and burns. Among these survivors, an overriding consideration will be the presence and extent of infection, associated with alterations in the immune system, malnutrition, dehydration, exposure and hardship. Triage and treatment will be extraordinarily complex, requiring patient relocation, massive fluid replacement, antibiotics, a sterile environment , and many other measures. Massive disparities between supply and demand for physicians, nurses, other health workers, hospital beds, supplies and equipment, antibiotics, and other pharmaceutical agents will render a coherent physician response virtually impossible. Such disparities will be compounded by the destruction of transport systems and intolerably high radiation levels in many areas. If it is true that the meliorative efforts of physicians in post-attack radiation damage will be incapable of addressing this massive health care problem meaningfully, then clearly their most effective role is to prevent the threat from materializing. (authors)

  12. Radiation versus radiation: nuclear energy in perspective

    International Nuclear Information System (INIS)

    Gonzalez, A.J.; Anderer, J.

    1989-01-01

    This paper seeks to provide a proper perspective on radiation exposures from nuclear energy. Instead of comparing these exposures with other pollutants, natural and man-made, it assesses the radiation doses that result from the human environment and from the entire fuel cycle associated with nuclear generated electricity. It explores radiation versus radiation, not only in terms of absolute levels but, more importantly, of the enormous variability characterizing many radiation sources. The quantitative findings and their implications are meant to contribute to a balanced understanding of the radiological impact of nuclear energy, and so to help to bridge the information gap that is perceived to exist on this issue. The 1988 Unscear report and its seven scientific annexes provide an authoritative and dispassionate factual basis for examining radiation levels from all sources, natural and man-made. It is the main source for this paper. (author)

  13. Nuclear instrumentation for radiation measurement

    International Nuclear Information System (INIS)

    Madan, V.K.

    2012-01-01

    Nuclear radiation cannot be detected by human senses. Nuclear detectors and associated electronics facilitate detection and measurement of different types of radiation like alpha particles, beta particles, gamma radiation, and detection of neutrons. Nuclear instrumentation has evolved greatly since the discovery of radioactivity. There has been tremendous advancement in detector technology, electronics, computer technology, and development of efficient algorithms and methods for spectral processing to extract precisely qualitative and quantitative information of the radiation. Various types of detectors and nuclear instruments are presently available and are used for different applications. This paper describes nuclear radiation, its detection and measurement and associated electronics, spectral information extraction, and advances in these fields. The paper also describes challenges in this field

  14. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Corstens, F.

    1989-01-01

    Aspects of radiation protection in nuclear medicine and the role of the Dutch Society for Nuclear Medicine in these are discussed. With an effective dose-equivalence of averaged 3 mSv per year per nuclear medical examination and about 200.000 examinations per year in the Netherlands, nuclear medicine contributes only to a small degree to the total averaged radiation dose by medical treating. Nevertheless from the beginning, besides to protection of environment and personnel, much attention has been spent by nuclear physicians to dose reduction with patients. Replacing of relatively long living radionuclides like 131 I by short living radionuclides like 99m Tc is an example. In her education and acknowledgement policy the Dutch Society for Nuclear Medicine spends much attention to aspects of radiation reduction. (author). 3 tabs

  15. Radiation chemistry in nuclear technology

    International Nuclear Information System (INIS)

    Katsumura, Yosuke

    2006-01-01

    The importance of radiation chemistry in the field of nuclear technology including reactor chemistry, spent fuel reprocessing and radioactive high level waste repository, is summarized and, in parallel, our research activity will be briefly presented. (author)

  16. Radiation physics for nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2011-01-01

    The field of nuclear medicine is expanding rapidly, with the development of exciting new diagnostic methods and treatments. This growth is closely associated with significant advances in radiation physics. In this book, acknowledged experts explain the basic principles of radiation physics in relation to nuclear medicine and examine important novel approaches in the field. The first section is devoted to what might be termed the "building blocks" of nuclear medicine, including the mechanisms of interaction between radiation and matter and Monte Carlo codes. In subsequent sections, radiation sources for medical applications, radiopharmaceutical development and production, and radiation detectors are discussed in detail. New frontiers are then explored, including improved algorithms for image reconstruction, biokinetic models, and voxel phantoms for internal dosimetry. Both trainees and experienced practitioners and researchers will find this book to be an invaluable source of up-to-date information.

  17. Nuclear radiation and the properties of concrete

    International Nuclear Information System (INIS)

    Kaplan, M.F.

    1983-08-01

    Concrete is used for structures in which the concrete is exposed to nuclear radiation. Exposure to nuclear radiation may affect the properties of concrete. The report mentions the types of nuclear radiation while radiation damage in concrete is discussed. Attention is also given to the effects of neutron and gamma radiation on compressive and tensile strength of concrete. Finally radiation shielding, the attenuation of nuclear radiation and the value of concrete as a shielding material is discussed

  18. Radiation protection in nuclear facilities

    International Nuclear Information System (INIS)

    Piechowski, J.; Lochard, J.; Lefaure, Ch.; Schieber, C.; Schneider, Th; Lecomte, J.F.; Delmont, D.; Boitel, S.; Le Fauconnier, J.P.; Sugier, A; Zerbib, J.C.; Barbey, P.

    1998-01-01

    Close ties exist between nuclear safety and radiation protection. Nuclear safety is made up of all the arrangements taken to prevent accidents occurring in nuclear facilities, these accidents would certainly involved a radiological aspect. Radiation protection is made up of all the arrangements taken to evaluate and reduce the impact of radiation on workers or population in normal situations or in case of accident. In the fifties the management of radiological hazards was based on the quest for minimal or even zero risk. This formulation could lead to call some activities in question whereas the benefits for the whole society were evident. Now a new attitude more aware of the real risks and of no wasting resources prevails. This attitude is based on the ALARA principle whose purpose is to maintain the exposure to radiation as low as reasonably achievable taking into account social and economic concerns. This document regroups articles illustrating different aspects of the radiation protection in nuclear facilities such as a research center, a waste vitrification workshop and a nuclear power plant. The surveillance of radiological impacts of nuclear sites on environment is examined, a point is made about the pending epidemiologic studies concerning La Hague complex. (A.C.)

  19. Radiation protection in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Volodin, V; Hanson, G P

    1993-12-31

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  20. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Volodin, V.; Hanson, G.P.

    1992-01-01

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  1. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Seeburrun, V.

    2013-04-01

    Radiation protection in nuclear medicine in this project is concerned with the reduction of doses to workers, patients and members of the public. Protection of workers is achieved by adopting good personal habits, good housekeeping, proper use of personal protective devices and equipment, attend training and have continuous education. Exposure to radiation of workers and the members of the public are minimised by proper management of radioactive waste and safe transport of radioactive material. The design and shielding of a nuclear medicine department shall further provide for the protection of the worker, the patient and the general public. Protection of patient is achieved by justifying the procedure, delivering the minimum radiation dose possible to the patient while obtaining the best image quality and applying guidance levels. Special considerations shall be given to pregnant and breast-feeding patients. Quality assurance programme through image quality, radiopharmaceutical quality and patient records on nuclear medicine procedures shall provide assurance to the patient. (au)

  2. Principles of nuclear radiation detection

    International Nuclear Information System (INIS)

    Eichholz, G.G.; Poston, J.W.

    1985-01-01

    This book covers the transistorization of equipment and provides an introduction into practice of semiconductor and thermoluminescent detectors. It discusses the principles of radiation detectors most widely used in nuclear technology, medical practice and radiation protection. It stresses the alternative detectors available and discusses practical considerations in choosing and setting up detector systems for actual use. Traditional materials, including semiconductors, TLD's and modern data handling facilities are covered

  3. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Chougule, Arun

    2014-01-01

    The branch of medical science that utilizes the nuclear properties of the radioactivity and stable nuclides to make diagnostic evaluation of anatomical and/or physiological conditions of the body and provide therapy with unsealed radioactive sources is called Nuclear Medicine (NM). The use of unsealed radionuclides in medicine is increasing throughout the world for diagnosis and treatment. As per UNSCEAR report more than 6 million nuclear medicine procedures are conducted in a year. However we know that radiation is double edged sword and if not used carefully will be harmful to patient as well as staff and therefore a nuclear medicine procedure should be undertaken only after proper justification and optimization. Nuclear medicine procedures are different than the X-ray diagnostic procedures as in NM, radioisotope is administered to patient and patient becomes radioactive. The NM staff is involved in unpacking radioactive material, activity measurements, storage of sources, internal transports of sources, preparation of radiopharmaceuticals, administration of radiopharmaceutical, examination of the patient, care of the radioactive patient, handling of radioactive waste and therefore receives radiation dose. This talk will discuss the various steps for radiation safety of patient, staff and public during Nuclear Medicine procedures so as to implementing the ALARA concept. (author)

  4. Radiation safety in nuclear medicine procedures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun [Dept. of Nuclear Medicine, Medical Radiation Safety Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2017-03-15

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed.

  5. Radiation safety in nuclear medicine procedures

    International Nuclear Information System (INIS)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun

    2017-01-01

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed

  6. Radiation Effects in Nuclear Ceramics

    Directory of Open Access Journals (Sweden)

    L. Thomé

    2012-01-01

    Full Text Available Due to outstanding physicochemical properties, ceramics are key engineering materials in many industrial domains. The evaluation of the damage created in ceramics employed in radiative media is a challenging problem for electronic, space, and nuclear industries. In this latter field, ceramics can be used as immobilization forms for radioactive wastes, inert fuel matrices for actinide transmutation, cladding materials for gas-cooled fission reactors, and structural components for fusion reactors. Information on the radiation stability of nuclear materials may be obtained by simulating the different types of interactions involved during the slowing down of energetic particles with ion beams delivered by various types of accelerators. This paper presents a review of the radiation effects occurring in nuclear ceramics, with an emphasis on recent results concerning the damage accumulation processes. Energetic ions in the KeV-GeV range are used to explore the nuclear collision (at low energy and electronic excitation (at high energy regimes. The recovery by electronic excitation of the damage created by ballistic collisions (SHIBIEC process is also addressed.

  7. Radiation shield for nuclear reactors

    International Nuclear Information System (INIS)

    Weissenfluh, J.A.

    1978-01-01

    A shield for use with nuclear reactor systems to attenuate radiation resulting from reactor operation is described. The shield comprises a container preferably of a thin, flexible or elastic material, which may be in the form of a bag, a mattress, a toroidal segment or toroid or the like filled with radiation attenuating liuid. Means are provided in the container for filling and draining the container in place. Due to its flexibility, the shield readily conforms to irregularities in surfaces with which it may be in contact in a shielding position

  8. Radiation dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.; Tagesson, M.; Ljungberg, M.; Strand, S.E.; Thomas, S.R.

    1999-01-01

    Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. A knowledge of the radiation dose received by different organs in the body is essential to an evaluation of the risks and benefits of any procedure. In this paper, current methods for internal dosimetry are reviewed, as they are applied in nuclear medicine. Particularly, the Medical Internal Radiation Dose (MIRD) system for dosimetry is explained, and many of its published resources discussed. Available models representing individuals of different age and gender, including those representing the pregnant woman are described; current trends in establishing models for individual patients are also evaluated. The proper design of kinetic studies for establishing radiation doses for radiopharmaceuticals is discussed. An overview of how to use information obtained in a dosimetry study, including that of the effective dose equivalent (ICRP 30) and effective dose (ICRP 60), is given. Current trends and issues in internal dosimetry, including the calculation of patient-specific doses and in the use of small scale and microdosimetry techniques, are also reviewed

  9. Intercomparison of Environmental Nuclear Radiation Measuring

    Institute of Scientific and Technical Information of China (English)

    GAO; Fei; NI; Ning; HOU; Jin-bing; SONG; Ming-zhe

    2015-01-01

    In 2015,Radiation Metrology Division of China Institute of Atomic Energy organized an environmental monitoring of nuclear radiation measuring intercomparison,and 9laboratories attended.The intercomparison included environmental level dosemeters and protection level

  10. Integrated nuclear radiation detector and monitor

    International Nuclear Information System (INIS)

    Biehl, B.L.; Lieberman, S.I.

    1982-01-01

    A battery powered device which can continuously monitor and detect nuclear radiation utilizing fully integrated circuitry and which is provided with an alarm which alerts persons when the radiation level exceeds a predetermined threshold

  11. Radiation exposure due to nuclear power

    International Nuclear Information System (INIS)

    This information brochure contains 12 earlier papers of leading experts on the radiation hazard the population incurs during normal operation of nuclear facilities and the radiation-biological fundamentals of the effects of ionizing radio humans. (HP) [de

  12. Nuclear analysis methods. Rudiments of radiation protection

    International Nuclear Information System (INIS)

    Roth, E.

    1998-01-01

    The nuclear analysis methods are generally used to analyse radioactive elements but they can be used also for chemical analysis, with fields such analysis and characterization of traces. The principles of radiation protection are explained (ALARA), the biological effects of ionizing radiations are given, elements and units used in radiation protection are reminded in tables. A part of this article is devoted to how to use radiation protection in a nuclear analysis laboratory. (N.C.)

  13. Integrated nuclear and radiation protection systems

    International Nuclear Information System (INIS)

    Oprea, I.; Oprea, M.; Stoica, V.; Cerga, V.; Pirvu, V.; Badea, E.

    1993-01-01

    A multifunctional radiation monitoring equipment, flexible and capable to meet virtually environmental radiation monitoring, activity measurement and computational requirements, for nuclear laboratories has been designed. It can be used as a radiation protection system, for radionuclide measurement in isotope laboratories, nuclear technology, health physics and nuclear medicine, nuclear power stations and nuclear industry. The equipment is able to measure, transmit and record gamma dose rate and isotope activities. Other parameters and functions are optionally available, such as: self-contained alarm level, system self-test, dose integrator, syringe volume calculation for a given dose corrected for decay, calibration factor, 99 Mo assays performing and background subtraction

  14. Nuclear radiation application to nanotechnology

    International Nuclear Information System (INIS)

    Chakarvarti, S.K.

    2012-01-01

    Out of the numerous uses and applications of nuclear radiation, in particular heavy ions, the interaction of radiation with materials have culminated into a gamut of fine tools and technologies for taming the synergetic potential of the interaction. One such field of the immense importance is nanotechnology through nuclear radiation via use of ion-crafted polymeric membranes- so called 'Template Synthesis'. This talk will be addressed to the users of membranes - organic (polymeric) in general, formed through irradiation of polymeric foils with heavy and energetic ions followed by chemical processing leading finally to what is known as 'Track Etch Membranes (TEMs)', and present the review of the innovative uses of these membranes from filtration to electro-kinetic based applications and nano-/micro fabrication of devices- the potent aspect of emerging technologies. The emphasis would be on the dependence of useful and novel usages including applications in nano devices' fabrication. A membrane, with its most comprehensive and clear definition, is an intervening phase separating two phases and/or acting as an active or passive barrier to the transport of matter between phases. The very existence of a membrane relies upon the functionality domain of the pores contained therein. The geometrical traits and morphology of the pore ensembles dictate the applications, which any membrane can serve to. There are variety of membranes being developed and used in myriad of applications in diverse fields of science and technology. The range of commercially available membrane materials is quiet diverse and varies widely in terms of composition, and physical structure. The creation of pores, whether through natural self-assembling phenomenon or man-made processes, might itself be an issue of interest but these are the pore-traits which are fundamentally more important, whether the membrane is being used for sieving-one of the ever most important applications the mankind has been

  15. 3.International conference 'Nuclear and Radiation Physics'

    International Nuclear Information System (INIS)

    2001-01-01

    The 3-rd International Conference 'Nuclear and Radiation Physics' was held in Almaty (Kazakhstan) 4-7 June 2001. The primary purpose of the conference is consolidation of the scientists efforts in the area of fundamental and applied investigations on nuclear physics, radiation physics of solids and radioecology. In the conference more than 350 papers were presented by participants from 17 countries

  16. Pulse generator circuit triggerable by nuclear radiation

    International Nuclear Information System (INIS)

    Fredrickson, P.B.

    1980-01-01

    A pulse generator circuit triggerable by a pulse of nuclear radiation is described. The pulse generator circuit includes a pair of transistors arranged, together with other electrical components, in the topology of a standard monostable multivibrator circuit. The circuit differs most significantly from a standard monostable multivibrator circuit in that the circuit is adapted to be triggered by a pulse of nuclear radiation rather than electrically and the transistors have substantially different sensitivities to radiation, due to different physical and electrical characteristics and parameters. One of the transistors is employed principally as a radiation detector and is in a normally non-conducting state and the other transistor is normally in a conducting state. When the circuit is exposed to a pulse of nuclear radiation, currents are induced in the collector-base junctions of both transistors but, due to the different radiation sensitivities of the transistors, the current induced in the collector-base junction of the radiation-detecting transistor is substantially greater than that induced in the collector-base junction of the other transistor. The pulse of radiation causes the radiation-detecting transistor to operate in its conducting state, causing the other transistor to operate in its non-conducting state. As the radiation-detecting transistor operates in its conducting state, an output signal is produced at an output terminal connected to the radiation-detecting transistor indicating the presence of a predetermined intensity of nuclear radiation

  17. Radiation exposure analysis of female nuclear medicine radiation workers

    International Nuclear Information System (INIS)

    Lee, Ju Young; Park, Hoon Hee

    2016-01-01

    In this study, radiation workers who work in nuclear medicine department were analyzed to find the cause of differences of radiation exposure from General Characteristic, Knowledge, Recognition and Conduct, especially females working on nuclear medicine radiation, in order to pave the way for positive defense against radiation exposure. The subjects were 106 radiation workers who were divided into two groups of sixty-four males and forty-two females answered questions about their General Characteristic, Knowledge, Recognition, Conduct, and radiation exposure dose which was measured by TLD (Thermo Luminescence Dosimeter). The results of the analysis revealed that as the higher score of knowledge and conduct was shown, the radiation exposure decreased in female groups, and as the higher score of conduct was shown, the radiation exposure decreased in male groups. In the correlation analysis of female groups, the non-experienced in pregnancy showed decreasing amount of radiation exposure as the score of knowledge and conduct was higher and the experienced in pregnancy showed decreasing amount of radiation exposure as the score of recognition and conduct was higher. In the regression analysis on related factors of radiation exposure dose of nuclear medicine radiation workers, the gender caused the meaningful result and the amount of radiation exposure of female groups compared to male groups. In the regression analysis on related factors of radiation exposure dose of female groups, the factor of conduct showed a meaningful result and the amount of radiation exposure of the experienced in pregnancy was lower compared to the non-experienced. The conclusion of this study revealed that radiation exposure of female groups was lower than that of male groups. Therefore, male groups need to more actively defend themselves against radiation exposure. Among the female groups, the experienced in pregnancy who have an active defense tendency showed a lower radiation exposure. Thus

  18. Radiation exposure analysis of female nuclear medicine radiation workers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Young [Dept. of Biomedical Engineering Graduate School, Chungbuk National University, Cheongju (Korea, Republic of); Park, Hoon Hee [Dept. of Radiological Technologist, Shingu College, Sungnam (Korea, Republic of)

    2016-06-15

    In this study, radiation workers who work in nuclear medicine department were analyzed to find the cause of differences of radiation exposure from General Characteristic, Knowledge, Recognition and Conduct, especially females working on nuclear medicine radiation, in order to pave the way for positive defense against radiation exposure. The subjects were 106 radiation workers who were divided into two groups of sixty-four males and forty-two females answered questions about their General Characteristic, Knowledge, Recognition, Conduct, and radiation exposure dose which was measured by TLD (Thermo Luminescence Dosimeter). The results of the analysis revealed that as the higher score of knowledge and conduct was shown, the radiation exposure decreased in female groups, and as the higher score of conduct was shown, the radiation exposure decreased in male groups. In the correlation analysis of female groups, the non-experienced in pregnancy showed decreasing amount of radiation exposure as the score of knowledge and conduct was higher and the experienced in pregnancy showed decreasing amount of radiation exposure as the score of recognition and conduct was higher. In the regression analysis on related factors of radiation exposure dose of nuclear medicine radiation workers, the gender caused the meaningful result and the amount of radiation exposure of female groups compared to male groups. In the regression analysis on related factors of radiation exposure dose of female groups, the factor of conduct showed a meaningful result and the amount of radiation exposure of the experienced in pregnancy was lower compared to the non-experienced. The conclusion of this study revealed that radiation exposure of female groups was lower than that of male groups. Therefore, male groups need to more actively defend themselves against radiation exposure. Among the female groups, the experienced in pregnancy who have an active defense tendency showed a lower radiation exposure. Thus

  19. Radiation protection on nuclear medicine services

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    Nuclear medicine is a sector of the medicine that studies and applies radionuclide in diagnosis and therapy. Nuclear medicine is a very specific area of the medicine, making use of non-sealed radioactive sources which are prescribed to the patient orally or are injected. Special procedures in radiation protection are required in nuclear medicine to manipulate these kind of sources and to produce technetium-99m through molybdenum generator. The present paper addresses the them radiation protection in a Nuclear Medicine Department (NMD), showing the main requirements of the CNEN- National Commission of Nuclear Energy and the Public Health. Radiation protection procedures adopted in assembling a NMD, as well the daily techniques for monitoring and for individual dosimetry are discussed. Past and present analyses in a level of radiation protection are presented. (author)

  20. Radiation exposure of workers in nuclear medicine

    International Nuclear Information System (INIS)

    Bujnova, A.

    2008-01-01

    Nuclear medicine is an interdisciplinary department that deals with diagnosis and therapy using open sources. Therefore workers in nuclear medicine are in daily contact with ionizing radiation and thus it is essential to monitor a radiation load. Each work must therefore carry out monitoring of workers. It monitors compliance with the radiation limits set by law, allows an early detection of deviations from normal operation and to demonstrate whether the radiation protection at the workplace is optimized. This work describes the principles of monitoring of workers in nuclear medicine and monitoring methods for personal dosimetry. In the next section the author specifically deals with personal dosimetry at the Department of Nuclear Medicine St. Elizabeth Cancer Institute, Bratislava (KNM-Ba-OUSA). The main part of the work is to evaluate the results of a one-year monitoring of radiation workers KNM-Ba-OUSA. (author)

  1. Chambers nuclear energy and radiation dictionary

    International Nuclear Information System (INIS)

    Walker, P.M.B.

    1992-01-01

    This Dictionary is designed to make it easier for those who are concerned about nuclear power and radiation to learn more about nuclear energy and to come to an informed opinion. The first two of the 11 chapters which precede the dictionary proper describe the properties of the atomic nucleus which make nuclear energy possible and then the problems which have to be overcome in harnessing this energy. The next two chapters discuss the many different kinds of power stations which rely on fission and then the methods of fusion which may produce power in the next century. There are then two chapters on nuclear safety and on the production and enrichment of uranium fuel, together with methods for its eventual disposal. These are followed by a chapter on nuclear bombs of various kinds and one on how nuclear and other forms of radiation can be detected. There is then a chapter which relates the radiation resulting from nuclear fission to other kinds of radiation. The next chapter discusses some basic biology particularly cancer. Finally, the biological effects of radiation are described before comparing the amounts of man-made radiation to that which comes naturally from outer space and from the rocks beneath us. This then leads to the radiation limits which are determined by the various regulartory authorities and the kinds of evidence upon which their decisions are based. (Author)

  2. Detection of nuclear radiations; Deteccion de Radiaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Tanarro Sanz, A

    1967-07-01

    A summary of the lectures about the ordinary detectors of nuclear radiations explained by the author in the courses of Nuclear Engineering held at the J.E.N. up to the date of publication is given. Those lectures are considered to be a necessary introduction to Nuclear Instrumentation and Applied Electronics to Nuclear Engineering so it has been intended to underline those characteristics of radiation detectors that must be taken in consideration in choosing or designing the electronic equipment associated to them in order to take advantage of each detector possibilities. (Author)

  3. Detection of nuclear radiations; Detectores de radiaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Tanarro Sanz, A

    1959-07-01

    A summary of the lectures about the ordinary detectors of nuclear radiations given by the author in the Courses of Introduction to Nuclear Engineering held at the JEN up to the date of publication is given. Those lectures are considered to be a necessary introduction to Nuclear Instrumentation and Applied electronics to Nuclear Engineering so it has been intent to underline those characteristics of radiation detectors that must be taken in consideration in choosing or designing the electronic equipment associated to them in order to take advantage of each detector possibilities. (Author) 8 refs.

  4. Radiation protection in nuclear reactors

    International Nuclear Information System (INIS)

    El-Ashkar, Mohamed

    2008-01-01

    Full text: People are exposed to ionizing radiation in many different forms: cosmic rays that penetrate earth atmosphere or radiation from soil and mineral resources are natural forms of ionizing radiation. Other forms are produced artificially using radioactive materials for various beneficial applications in medicine, industry and other fields. The greatest concerns about ionizing radiation are tied to its potential health effects and a system of radiation protection has been developed to protect people from harmful radiation. The promotion of radiation protection is one of the International Atomic Energy Agency main activities. Radiation protection concerns the protection of workers, members of public, and patients undergoing diagnosis and therapy against the harmful effects of ionizing radiation. The report covers the responsibility of radiation protection officer in Egypt Second Research Reactor (ETRR-2) in Inshas - Egypt, also presents the protection against ionizing radiation from external sources, including types of radiation, sources of radiation (natural - artificial), and measuring units of dose equivalent rate. Also covers the biological effects of ionizing radiation, personal monitoring and radiation survey instruments and safe transport of radioactive materials. The report describes the Egypt Second Research Reactor (ETRR-2), the survey instruments used, also presents the results obtained and gave a relations between different categories of data. (author)

  5. Nuclear and radiation safety in Mongolia

    International Nuclear Information System (INIS)

    Batjargala, Erdev

    2010-01-01

    The main purpose of the paper is to assess legal environment of Mongolia for development of nuclear and radiation safety and security. The Nuclear Energy Agency, regulatory agency of the Government of Mongolia, was founded in the beginning of 2009. Since then, it has formulated the State Policy for Utilization of Radioactive Minerals and Nuclear Energy and the Nuclear Energy Law, regulatory law of the field. The State Great Khural of Mongolia has enacted these acts. By adopting the State Policy and Nuclear Energy Law, which together imported the international standards for nuclear and radiation safety and security, it is possible to conclude that legal environment has formed in Mongolia to explore and process radioactive minerals and utilize nuclear energy and introduce technologies friendly to human health and environment. (author)

  6. Radiation hazards in the nuclear medicine

    International Nuclear Information System (INIS)

    Roo, M.J.K. de

    1981-01-01

    After a survey of the actual situation of nuclear medicine in Belgium, the evolution of nuclear medicine is studied with regard to quantitative aspects (tracerquantities, number of radioisotopic explorations, number of certified doctors) and qualitative aspects (use of short living isotopes emitting low energy radiation, introduction of in vitro tests). Taking these data into consideration, the exposure of nuclear medicine staff by external or internal radiation is evaluated. From this study it appears that the radiation exposure of the personnel of nuclear medicine departments remains low if proper manipulation methods and simple protective devices are used and if there is an efficient collaboration with an active health physics department or radiation control organism. (author)

  7. Radiation, ionization, and detection in nuclear medicine

    International Nuclear Information System (INIS)

    Gupta, Tapan K.

    2013-01-01

    Up-to-date information on a wide range of topics relating to radiation, ionization, and detection in nuclear medicine. In-depth coverage of basic radiophysics relating to diagnosis and therapy. Extensive discussion of instrumentation and radiation detectors. Detailed information on mathematical modelling of radiation detectors. Although our understanding of cancer has improved, the disease continues to be a leading cause of death across the world. The good news is that the recent technological developments in radiotherapy, radionuclide diagnostics and therapy, digital imaging systems, and detection technology have raised hope that cancer will in the future be combatted more efficiently and effectively. For this goal to be achieved, however, safe use of radionuclides and detailed knowledge of radiation sources are essential. Radiation, Ionization, and Detection in Nuclear Medicine addresses these subjects and related issues very clearly and elaborately and will serve as the definitive source of detailed information in the field. Individual chapters cover fundamental aspects of nuclear radiation, including dose and energy, sources, and shielding; the detection and measurement of radiation exposure, with detailed information on mathematical modelling; medical imaging; the different types of radiation detector and their working principles; basic principles of and experimental techniques for deposition of scintillating materials; device fabrication; the optical and electrical behaviors of radiation detectors; and the instrumentation used in nuclear medicine and its application. The book will be an invaluable source of information for academia, industry, practitioners, and researchers.

  8. Radiation, ionization, and detection in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Tapan K. [Radiation Monitoring Devices Research, Nuclear Medicine, Watertown, MA (United States)

    2013-08-01

    Up-to-date information on a wide range of topics relating to radiation, ionization, and detection in nuclear medicine. In-depth coverage of basic radiophysics relating to diagnosis and therapy. Extensive discussion of instrumentation and radiation detectors. Detailed information on mathematical modelling of radiation detectors. Although our understanding of cancer has improved, the disease continues to be a leading cause of death across the world. The good news is that the recent technological developments in radiotherapy, radionuclide diagnostics and therapy, digital imaging systems, and detection technology have raised hope that cancer will in the future be combatted more efficiently and effectively. For this goal to be achieved, however, safe use of radionuclides and detailed knowledge of radiation sources are essential. Radiation, Ionization, and Detection in Nuclear Medicine addresses these subjects and related issues very clearly and elaborately and will serve as the definitive source of detailed information in the field. Individual chapters cover fundamental aspects of nuclear radiation, including dose and energy, sources, and shielding; the detection and measurement of radiation exposure, with detailed information on mathematical modelling; medical imaging; the different types of radiation detector and their working principles; basic principles of and experimental techniques for deposition of scintillating materials; device fabrication; the optical and electrical behaviors of radiation detectors; and the instrumentation used in nuclear medicine and its application. The book will be an invaluable source of information for academia, industry, practitioners, and researchers.

  9. Radiation protection programme for nuclear gauges

    International Nuclear Information System (INIS)

    Muzongomerwa, A.

    2014-04-01

    Ionizing radiation including the use of nuclear gauges can be very hazardous to humans and steps must be taken to minimize the risks so as to prevent deterministic effects and limiting chances for stochastic effects. The availability of a Radiation Protection Programme and its effective implementation ensures appropriate safety and security provisions for sealed radiation sources and promotes a safety culture within a facility that utilizes these sources. This study aims at establishing a guide on the radiation protection programme in nuclear gauges that comply with national requirements derived from current international recommendations. Elements that form part of a radiation protection programme are covered in detail as well as recommendations. The overall objective is to protect people (operators and the public) and the environment from the harmful effects of these sources if they are not properly controlled. Nuclear gauges for well logging and X-ray based gauges are outside the scope of this study. (au)

  10. Nuclear radiation moisture gauge calibration standard

    International Nuclear Information System (INIS)

    1977-01-01

    A hydrophobic standard for calibrating nuclear radiation moisture gauges is described. Each standard has physical characteristics and dimensions effective for representing to a nuclear gauge undergoing calibration, an infinite mass of homogeneous hydrogen content. Calibration standards are discussed which are suitable for use with surface gauges and with depth gauges. (C.F.)

  11. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo; Choi, Geun Sik and others

    2001-02-01

    Environmental Radiation Monitoring was carried out with measurement of environment. Radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul Research Reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul Research Reactor are the follows : The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost same level compared with the past years. Gross {alpha}, {beta} radioactivity in environmental samples showed a environmental level. {gamma}-radionuclides in water samples were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul Research Reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by {gamma}-spectrometry.

  12. Environmental radiation monitoring around the nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Chang Woo; Choi, Young Ho

    2000-02-01

    Environmental radiation monitoring was carried out with measurement of environment radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul Research Reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul Research Reactor are the follows: The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost some level compared with the past years. Gross α, β radioactivity in environmental samples showed a environmental level. γ-radionuclides in water sample were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul Research Reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by γ-spectrometry. (author)

  13. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo; Choi, Young Ho

    2000-02-01

    Environmental radiation monitoring was carried out with measurement of environment radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul Research Reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul Research Reactor are the follows: The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost some level compared with the past years. Gross {alpha}, {beta} radioactivity in environmental samples showed a environmental level. {gamma}-radionuclides in water sample were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul Research Reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by {gamma}-spectrometry. (author)

  14. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo; Choi, Young Ho; Lee, M.H. [and others

    1999-02-01

    Environmental radiation monitoring was carried out with measurement of environment radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul research reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul research reactor are the follows : The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost same level compared with the past years. Gross {alpha}, {beta} radioactivity in environmental samples showed a environmental level. {gamma}-radionuclides in water samples were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul research reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by {gamma}-spectrometry. (author). 3 refs., 50 tabs., 12 figs.

  15. Environmental radiation monitoring around the nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Chang Woo; Choi, Geun Sik and others

    2001-02-01

    Environmental Radiation Monitoring was carried out with measurement of environment. Radiation and environmental radioactivity analysis around KAERI nuclear facilities and Seoul Research Reactor. The results of environmental radiation monitoring around KAERI nuclear facilities and Seoul Research Reactor are the follows : The average level of environmental radiation dose measured by NaI scintillation counter and accumulated radiation dose by TLD was almost same level compared with the past years. Gross α, β radioactivity in environmental samples showed a environmental level. γ-radionuclides in water samples were not detected. But only radionuclide K-40, which is natural radionuclide, was detected in the all samples and Cs-137 was detected in the surface soil and discharge sediment. The average level of environmental radiation dose around Seoul Research Reactor was almost same level compared with the past years, and Be-7 and Cs-137 were detected in some surface soil and discharge sediment by γ-spectrometry

  16. A nuclear radiation actuated valve for a nuclear reactor

    International Nuclear Information System (INIS)

    Christiansen, D.W.; Schively, D.P.

    1983-01-01

    The valve has a first part (such as a valve rod with piston) and a second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics which are different. The valve parts are positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system. (author)

  17. Nuclear radiation detection by a variband semiconductor

    International Nuclear Information System (INIS)

    Volkov, A.S.

    1981-01-01

    Possibilities of using a variband semiconductor for detecting nuclear radiations are considered. It is shown that the variaband quasielectric field effectively collects charges induced by a nuclear particle only at a small mean free path in the semiconductor (up to 100 μm), the luminescence spectrum of the variband semiconductor when a nuclear particle gets into it, in principle, permits to determine both the energy and mean free path in the semiconductor (even at large mean free paths) [ru

  18. Radiation protection in nuclear energy. V.1

    International Nuclear Information System (INIS)

    1988-01-01

    The conference was convened to provide a forum for the exchange of international views on the principles of radiation protection for regulators and practitioners, to highlight issues of current importance, to examine the problems encountered in applying the principles of radiation protection, and, where possible, to identify generic solutions. A special session entitled ''The dose-response relationship: implications for nuclear energy'', and a panel on ''Radiation protection education and training'' were included in the conference programme. Refs, figs and tabs

  19. Origin, characteristics and detection of nuclear radiation

    International Nuclear Information System (INIS)

    Goettel, K.

    1975-06-01

    The report is an introduction into the physical principles of radiation protection. After a brief summary of the most significant experimental results and data on the atomic structure of the matter and after explaining the principles of atomic and nuclear structure, radioactive decay and its laws are dealt with. This is followed by a representation of the characteristics of nuclear radiation, its interaction with the matter as well as the biological effects. After a description of the measurement units for radioactivity and doses the most inportant methods for radiation detection and the principles of how detectors function are explained. (ORU/LN) [de

  20. Research on crisis communication of nuclear and radiation safety

    International Nuclear Information System (INIS)

    Cao Yali; Zhang Ying

    2013-01-01

    Insufficient public cognition of nuclear and radiation safety and absence of effective method to handle crisis lead to common crisis events of nuclear and radiation safety, which brings about unfavorable impact on the sound development of nuclear energy exploring and application of nuclear technology. This paper, based on crisis communication theory, analyzed the effect of current situation on nuclear and radiation safety crisis, discussed how to handle crisis, and tried to explore the effective strategies for nuclear and radiation safety crisis handling. (authors)

  1. Nuclear data for radiation shielding

    International Nuclear Information System (INIS)

    Miyasaka, Shunichi; Takahashi, Hiroshi.

    1976-01-01

    The third shielding expert conference was convened in Paris in Oct. 1975 for exchanging informations about the sensitivity evaluation of nuclear data in shielding calculation and integral bench mark experiment. The requirements about nuclear data presented at present from the field of nuclear design do not reflect sufficiently the requirements of shielding design, therefore it was the object to gather the requirements about nuclear data from the field of shielding. The nuclides used for shielding are numerous, and the nuclear data on these isotopes are required. Some of them cannot be ignored as the source of secondary γ-ray or in view of the radioactivation of materials. The requirements for the nuclear data of neutrons in the field of shielding are those concerning the reaction cross sections producing secondary γ-ray, the reaction cross sections including the production of secondary neutrons, elastic scattering cross sections, and total cross sections. The topics in the Paris conference about neutron shielding data are described, such as the methodology of sensitivity evaluation, the standardization of group constant libraries, the bench mark experiment on iron and sodium, and the cross section of γ-ray production. In the shielding of nuclear fission reactors, the γ-ray production owing to nuclear fission reaction is also important. In (d, t) fusion reactors, high energy neutrons are generated, and high energy γ-ray is emitted through giant E1 resonance. (Kako, I.)

  2. Radiation hazards of nuclear engineering

    International Nuclear Information System (INIS)

    Oster, H.

    1981-01-01

    The basic mechanisms and principles of nuclear power plants are discussed, since their knowledge is mandatory for the understanding of the true risk associated with nuclear technology. Differences between predictable and catastrophic accidents are compared, terms which have been frequently confused to the extent that the public has become unjustifiably and irresponsibly alarmed. A description of the jobs and their responsibilities is also given. Known accidents are reported and the role of the physician in the care of accidents and the scheduling of emergency situations is described. Finally, the usefullness, necessity and risk associated with nuclear power are discussed. (orig.) [de

  3. Radiation damage studies of nuclear structural materials

    International Nuclear Information System (INIS)

    Barat, P.

    2012-01-01

    Maximum utilization of fuel in nuclear reactors is one of the important aspects for operating them economically. The main hindrance to achieve this higher burnups of nuclear fuel for the nuclear reactors is the possibility of the failure of the metallic core components during their operation. Thus, the study of the cause of the possibility of failure of these metallic structural materials of nuclear reactors during full power operation due to radiation damage, suffered inside the reactor core, is an important field of studies bearing the basic to industrial scientific views.The variation of the microstructure of the metallic core components of the nuclear reactors due to radiation damage causes enormous variation in the structure and mechanical properties. A firm understanding of this variation of the mechanical properties with the variation of microstructure will serve as a guide for creating new, more radiation-tolerant materials. In our centre we have irradiated structural materials of Indian nuclear reactors by charged particles from accelerator to generate radiation damage and studied the some aspects of the variation of microstructure by X-ray diffraction studies. Results achieved in this regards, will be presented. (author)

  4. Nuclear Radiation and the Thyroid

    Science.gov (United States)

    ... told to evacuate? Nuclear releases are unpredictable and traffic jams are likely to delay speedy evacuation. People ... patient information section on the American Thyroid Association ® website at www.thyroid.org .

  5. Regulatory aspects for nuclear and radiation applications

    International Nuclear Information System (INIS)

    Duraisamy, S.

    2014-01-01

    The Atomic Energy Regulatory Board (AERB) is the national authority for ensuring that the use of ionizing radiation and nuclear energy does not cause any undue risk to the health of workers, members of the public and to the environment. AERB was constituted on November 15, 1983 and derives its regulatory power from the rules and notifications promulgated under the Atomic Energy Act, 1962 and the Environment (Protection) Act, 1986. AERB is provided with the necessary powers and mandate to frame safety policies, lay down safety standards and requirements for monitoring and enforcing the safety provisions. AERB follows multi-tier system for its review and assessment, safety monitoring, surveillance and enforcement. While regulating various nuclear and radiation facilities, AERB adopts a graded approach taking into account the hazard potential associated with the facilities being regulated. The regulatory process has been continuous evolving to cater to the new developments in reactor and radiation technologies. The regulatory effectiveness and efficiency of AERB have grown over the last three decades to make it into a robust organization. The radiation protection infrastructure in the country is on a sound footing and is constantly being strengthened based on experience and continued research and development. As one of its mandates AERB prescribes radiation dose limits for the occupational workers and the public, in line with the IAEA Safety Standard and ICRP recommendations. The current dose limits and the radiation safety requirements are more stringent than past. To meet the current safety standards, it is important for the facilities to have state of art radiation monitoring system and programme in place. While recognizing the current system in place, this presentation also highlights certain key radiation protection challenges associated with the implementation of radiation protection standards in the nuclear and radiation facilities especially in the areas of

  6. Radiation doses and radiation risk in foreign nuclear objects

    International Nuclear Information System (INIS)

    Tvehlov, Yu.

    2001-01-01

    Data on levels of irradiation on NPP operating in different regions of the world obtained from the data of the International Information System ISOE created by IAEA in association with the Nuclear Energetic Agency OECD are performed. Effect of commissioning new NPP, sacrifice of radiation situation at the Ignalina NPP in 1996, importance of the development and introduction of programs on perfecting of radiation protection and culture of safety are noted [ru

  7. Ecological radiation protection criteria for nuclear power

    International Nuclear Information System (INIS)

    Kryshev, I.I.

    1993-01-01

    By now a large quantity of radioactive hazards of all sizes and shapes has accumulated in Russia. They include RBMK, VVER, and BN (fast-neutron) nuclear power plants, nuclear fuel processing plants, radioactive waste dumps, ships with nuclear power units, etc. In order to evaluate the radioecological situation correctly, the characteristics of the radioactive contamination must be compiled in these areas with some system of criteria which will provide an acceptable level of ecological safety. Currently health criteria for radiation protection are, which are oriented to man's radiation protection, predominate. Here the concept of a thresholdless linear dose-response dependence, which has been confirmed experimentally only at rather high doses (above 1 Gy), is taken as the theoretical basis for evaluating and normalizing radiation effects. According to one opinion, protecting people against radiation is sufficient to protect other types of organisms, although they are not necessarily of the same species. However, from the viewpoint of ecology, this approach is incorrect, because it does not consider radiation dose differences between man and other living organisms. The article discusses dose-response dependences for various organisms, biological effects of ionizing radiation, and appropriate radiation protection criteria

  8. Radiation dose assessment in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.

    2002-01-01

    In any application involving the use of ionizing radiation in humans, risks and benefits must be properly evaluated and balanced. Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. Recently, interest has grown in therapeutic agents for a number of applications in nuclear medicine, particularly in the treatment of hematologic and non-hematologic malignancies. This has heightened interest in the need for radiation dose calculations and challenged the scientific community to develop more patient-specific and relevant dose models. Consideration of radiation dose in such studies is central to efforts to maximize dose to tumor while sparing normal tissues. In many applications, a significant absorbed dose may be received by some radiosensitive organs, particularly the active marrow. This talk will review the methods and models used in internal dosimetry in nuclear medicine, and discuss some current trends and challenges in this field

  9. Radiation Protection Programme in Nuclear Medicine Practice

    International Nuclear Information System (INIS)

    Alarfaj, Abd-I.M.

    2003-01-01

    This paper specifies the main elements of the radiation protection programma (RPP) that should be estabished for each practice, which involves radiation exposure. Practices of nuclear medicine have been considered as an example, since among the 245 installations which are conducting different practices with radiation sources in the Kingdom of Saudi Arabia, there are 78 installations dealing with nuclear medicine practices. Reviewing the RPP in these nuclear medicine installations, it may be easily concluded that the RPPs for the majority of these installations do not respond to the requirements of the regulatory body of the Kingdom, which is King Abdulaziz City for Science and Technology (KACST). This may be attributed to a set of different reasons, such as shortage in understanding the main elements of the RPP as well as in applying methodologies

  10. Nuclear power and low level radiation hazards

    International Nuclear Information System (INIS)

    Myers, D.K.; Newcombe, H.B.

    1979-03-01

    Even in the future, nuclear power is expected to contribute less than 1/10th of the present total population exposure to man-made radiation. By the best estimates available, the current health risks of nuclear power generation appear to be much less than those associated with the major alternative sources of energy, with the exception of natural gas which is about equally safe. Uncertainties concerning the radiation risks from nuclear power, from medical x-rays and from the effects of reduced ventillation to conserve heat appear to be less than those associated with estimates of risks from the use of coal and various other sources of energy. This is in part because of the large amount of effort devoted to studies of radiation effects. The benefits in terms of current life expectancy associated with any of the conventional or unconventional methods of power production appear to greatly outweigh the associated current health hazards. (author)

  11. Interface between radiation protection and nuclear safety

    International Nuclear Information System (INIS)

    Bengtsson, G.; Hoegberg, L.

    1991-01-01

    Interface issues concern the character and management of overlaps between radiation protection and nuclear safety in nuclear power plants. Typical examples include the selection of inspection and maintenance volumes in order to balance occupational radiation doses versus the safety status of the plant, and the intentional release to the environment in the course of an accident in order to secure better plant control. The paper discusses whether it is desirable and possible to employ a consistent management of interface issues with trade-offs between nuclear safety and radiation protection. Illustrative examples are quoted from a major Nordic research programme on risk analysis and safety rationale. These concern for instance in-service inspections, modifications of plant systems and constructions after the plant has been taken into operation, and studies on the limitations of probabilistic safety assessment. They indicate that in general there are no simple rules for such trade-offs

  12. Nuclear radiation and its role in general nuclear medicine

    International Nuclear Information System (INIS)

    Kempaiah, A.; Ravi, C.

    2012-01-01

    Radiation is really nothing more than the emission of energy through space, as well as through physical objects. Nuclear radiations are emitted due to decay of nuclei of radioactive materials and damage cells and the DNA inside them through its ionizing effect. That causes melanoma and other cancers. Nuclear radiation has a number of beneficial uses especially in medical field with low levels of radioactive compounds, better than X-rays. There are some 440 nuclear reactors worldwide, people around will be under the effect of radiation. In nuclear medicine (medical imaging) small amount of radioactive materials were used to diagnose and determine the severity of or treat a variety of disease, including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body it is painless and cost-effective techniques and provides information about both structure and function. Nuclear medicine diagnostic procedures called Gamma camera, single photon emission computed tomography (SPECT) and positron emission tomography (PET) were discussed in this paper. (author)

  13. Radiation effects, nuclear energy and comparative risks

    International Nuclear Information System (INIS)

    Gopinath, D.V.

    2007-01-01

    Nuclear energy had a promising start as an unlimited, inexpensive and environmentally benign source of energy for electricity generation. However, over the decades its growth was severely retarded due to concerns about its possible detrimental effects on the well-being of mankind and the environment. Since such concerns are essentially due to the gigantic magnitude of radioactivity and ionizing radiations associated with nuclear energy, this article starts with a comprehensive account of effects of the ionizing radiation on living systems. Quantitative description of types of radiation exposure and their varied effects is given. The origin, type and magnitude of mutagenic effects of radiation are described. The concept of radiation risk factors, basis for their evaluation and their currently accepted values are presented. With this background, origin and magnitude of radioactivity and associated ionizing radiations in nuclear reactors are presented and the elaborate measures to contain them are described. It is recognized that notwithstanding all the measures taken in the nuclear industry, certain amount of radiation exposure, however small, is inevitable and the values, based on the experience world over, are presented. Estimated health risk due to such exposures is evaluated. For a comparative analysis, risks in other options of electricity generation such as hydel and fossil-fuelled plants are described. It is seen that on an overall basis, the nuclear option is no more risky than the other commonly employed options, and is in fact, significantly less. Lastly, since every option of electricity generation entails some risk, the case of 'no addition of electricity, and its impact on the society are considered. Based on the analysis of extensive data provided by UNDP on the human development parameters for different countries in the world, it is shown that at least for developing countries, any option of addition of electricity would be far more desirable than the

  14. Environmental radiation monitoring around the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo

    2012-03-15

    Environmental Radiation Monitoring was carried out with measurement of environment. radiation and environmental radioactivity analysis on the sites of KAERI nuclear facilities and Seoul Research Reactors and their environments. The average level of environmental radiation dose measured by an ERM and the accumulated radiation dose by a TLD were almost same level compared with the previous years. The activity of gross {alpha} and gross {beta}, Tritium, Uranium and Strontium in environmental samples showed a environmental level. The {gamma}-radionuclides such as natural radionuclides 40K or 7Be were detected in pine needle and food. The nuclear radionuclides 134Cs, 137Cs or 131I were temporarily detected in the samples of air particulate and rain in April and of fall out in 2nd quarter from the effect of Fukusima accident.

  15. Radiation shield for nuclear reactors

    International Nuclear Information System (INIS)

    Weissenfluh, J.A.

    1980-01-01

    A reusable radiation shield for use in a reactor installation comprises a thin-walled, flexible and resilient container, made of plastic or elastomeric material, containing a hydrogenous fluid with boron compounds in solution. The container can be filled and drained in position and the fluid can be recirculated if required. When not in use the container can be folded and stored in a small space. The invention relates to a shield to span the top of the annular space between a reactor vessel and the primary shield. For this purpose a continuous toroidal container or a series of discrete segments is used. Other forms can be employed for different purposes, e.g. mattress- or blanket-like forms can be draped over potential sources of radiation or suspended from a mobile carrier and placed between a worker and a radiation source. (author)

  16. Radiation levels in nuclear diagnostic examinations

    International Nuclear Information System (INIS)

    Vermeulen, A.M.T.I.

    1987-01-01

    To estimate the risks for a pregnant radiological worker, radiation level measurements are executed for common nuclear diagnostic techniques. These measurements are combined with the time which the radiologic worker is present during the performance of the diagnostic techniques. It is concluded that a radiologic worker is receiving less than 5 mSv during pregnancy. This is the case with in vivo determination in a department of nuclear medicine with common diagnostic techniques. Reduction of radiation doses during pregnancy is possible by reduction of heart function examinations, skeletal examinations and brain scans. 1 figure; 13 tabs

  17. Personal radiation protection in nuclear industry

    International Nuclear Information System (INIS)

    Gol'dshtejn, D.S.; Koshcheev, V.S.

    1983-01-01

    Specific peculiarities of organization of personal radiation protection at various nuclear industry enterprises when dealing with radioactive and other toxic substances are illuminated. Effect of heatin.g and cooling microclimate is discussed. Medical and technical requirements for personal protection means and tasks of personal protection in the field of nuclear industry are considered in short along with some peculiarities of application of different kinds of personal protection means and psychological aspects of personnel protection

  18. Natural radiation, nuclear wastes and chemical pollutants

    International Nuclear Information System (INIS)

    Christensen, T.; Ehdwall, H.; Stranden, E.

    1990-01-01

    Doses from natural radiation to the population in the Nordic Countries are summarized and man made modifications of the natural radiation environment are discussed. An account is given of the radiological consequences of energy conservation by reduced ventilation. Risks from possible future releases of radioactivity from final repositories of spent nuclear fuel are compared to the risks from present natural radioactivity in the environment. The possibilities for comparison between chemical and radiological risks are discussed. (author) 13 refs

  19. Nuclear radiation applications in hydrological investigations

    International Nuclear Information System (INIS)

    Rao, S.M.

    1978-01-01

    The applications of radiation sources for the determination of water and soil properties in hydrological investigations are many and varied. These include snow gauging, soil moisture and density determinations, measurement of suspended sediment concentrations in natural streams and nuclear well logging for groundwater exploitation. Besides the above, many radiation physics aspects play an important role in the development of radiotracer techniques, particularly in sediment transport studies. The article reviews the above applications with reference to their limitations and advantages. (author)

  20. Radiation detector for use in nuclear reactors

    International Nuclear Information System (INIS)

    Cisco, T.C.; Grimaila, A.G.

    1981-01-01

    A multi-sensor radiation detection system for removable insertion into a nuclear reactor is described in which one conductor of all the sensors is a single, common element. This single common element is contained within a tubular metallic sheath and in crosssection comprises a multiple radial armed metallic conductor having a star shaped cross-section dimensioned to form wedgeshaped compartments throughout the active radiation detecting length of the metallic sheath

  1. Nuclear and radiation safety in Kazakhstan

    International Nuclear Information System (INIS)

    Kim, A.A.

    2001-01-01

    Major factors by which the radiation situation in Kazakhstan is formed are: enterprises of nuclear fuel cycle, including uranium mining and milling activity and geological exploration of uranium; nuclear power plant and research reactors; residues of atmospheric and underground nuclear explosions, which were conducted for military and peaceful purposes at different test sites; mining and milling of commercial minerals accompanied by radioactive substances; use of radioactive sources in industry, medicine, agriculture and scientific research. Since 1991, after getting sovereignty, creation was started of an own legislative basis of the country for the field of atomic energy use. It includes laws, regulations and standards for nuclear and radiation safety of nuclear installations, personnel, involved in the activity with using of atomic energy, population and environment. An applicable system of state regulation in this area (including a central regulatory body in the field of atomic energy use) and various ministries, agencies and committees, was created. As a result of these reforms, regulatory activities were improved in the country. This paper presents the current matters of nuclear and radiation safety in Kazakhstan and some difficulties which Kazakhstan encountered during the transition to an independent state. (author)

  2. Design of radiation shields in nuclear reactor core

    International Nuclear Information System (INIS)

    Mousavi Shirazi, A.; Daneshvar, Sh.; Aghanajafi, C.; Jahanfarnia, Gh.; Rahgoshay, M.

    2008-01-01

    This article consists of designing radiation shields in the core of nuclear reactors to control and restrain the harmful nuclear radiations in the nuclear reactor cores. The radiation shields protect the loss of energy. caused by nuclear radiation in a nuclear reactor core and consequently, they cause to increase the efficiency of the reactor and decrease the risk of being under harmful radiations for the staff. In order to design these shields, by making advantages of the O ppenheim Electrical Network m ethod, the structure of the shields are physically simulated and by obtaining a special algorithm, the amount of optimized energy caused by nuclear radiations, is calculated

  3. Electronic detection of nuclear radiations

    International Nuclear Information System (INIS)

    Campos, J.

    1972-01-01

    This report is the first draft of one of the chapters of a book being prepared under the title: Topics on Practical Nuclear Physics. It is published as a report because of i ts immediate educational value and in order to include in its final draft the suggestions of the readers. (Author)

  4. Biological effects of nuclear radiation

    International Nuclear Information System (INIS)

    Hotz, G.

    1975-01-01

    After a brief survey about the main radiobiological effects caused by ionizing radiation, human symptoms after irradiation and incorporation are shown. The special radiotoxic effect of radionuclides which are chemically associated with metabolism-specific elements such as calcium and potassium is shown and methods of treatment are indicated. (ORU) [de

  5. Nuclear and radiation studies and environmental concerns

    International Nuclear Information System (INIS)

    McEwan, A.C.

    1998-01-01

    Over the three days 22-24 September 1998 a Science Forum was convened under the general heading of 'Nuclear technology in relation to water resources and the aquatic environment' at the International Atomic Energy Agency, Vienna. Some points of interest, or points of more particular relevance to radiation protection, are noted from the five sessions of the Forum: Session 1: water resources; Session 2: sea transport of radioactive and nuclear materials; Session 3: monitoring radioactivity in the aquatic environment; Session 4: nuclear technology in relation to waste resources and the aquatic environment, Session 5: impact assessment. (author)

  6. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.

    2005-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  7. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.; Wang, Lumin; Hess, Nancy J.; Icenhower, Jonathan P.; Thevuthasan, Suntharampillai

    2003-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  8. Power components behavior under nuclear radiations

    International Nuclear Information System (INIS)

    Jaureguy, J.C.; Azais, B.

    1989-01-01

    Many apparatus, either fixed or on-board of vehicles, use power converters. The most common scheme includes chopper with bipolar transistors. In case of nuclear radiations, these equipments may be severely damaged. Depending on the disturbance level, the need for changes in power transistor technology has to be considered or not [fr

  9. Radiation Protection, Nuclear Safety and Security

    International Nuclear Information System (INIS)

    Faye, Ndeye Arame Boye; Ndao, Ababacar Sadikhe; Tall, Moustapha Sadibou

    2014-01-01

    Senegal has put in place a regulatory framework which allows to frame legally the use of radioactive sources. A regulatory authority has been established to ensure its application. It is in the process of carrying out its regulatory functions. It cooperates with appropriate national or international institutions operating in fields related to radiation protection, safety and nuclear safety.

  10. Nuclear Bragg diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Rueffer, R.; Gerdau, E.; Grote, M.; Hollatz, R.; Roehlsberger, R.; Rueter, H.D.; Sturhahn, W.

    1990-01-01

    Nuclear Bragg diffraction with synchrotron radiation as source will become a powerful new X-ray source in the A-region. This source exceeds by now the brilliance of conventional Moessbauer sources giving hyperfine spectroscopy further momentum. As examples applications to yttrium iron garnet (YIG) and iron borate will be discussed. (author)

  11. Nuclear Forensics and Radiochemistry: Radiation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-08

    Radiation detection is necessary for isotope identification and assay in nuclear forensic applications. The principles of operation of gas proportional counters, scintillation counters, germanium and silicon semiconductor counters will be presented. Methods for calibration and potential pitfalls in isotope quantification will be described.

  12. Nuclear Forensics and Radiochemistry: Radiation Detection

    International Nuclear Information System (INIS)

    Rundberg, Robert S.

    2017-01-01

    Radiation detection is necessary for isotope identification and assay in nuclear forensic applications. The principles of operation of gas proportional counters, scintillation counters, germanium and silicon semiconductor counters will be presented. Methods for calibration and potential pitfalls in isotope quantification will be described.

  13. Nuclear radiation moisture gauge calibration standard

    International Nuclear Information System (INIS)

    Berry, R.L.

    1981-01-01

    A hydrophobic standard for calibrating radiation moisture gauges is described. This standard has little or no affinity for water and accordingly will not take up or give off water under ambient conditions of fluctuating humidity in such a manner as to change the hydrogen content presented to a nuclear gauge undergoing calibration. (O.T.)

  14. Optical Fibers in Nuclear Reactor Radiation Environments.

    Science.gov (United States)

    Holcomb, David Eugene

    1992-01-01

    A performance evaluation of fiber optics under radiation conditions similar to those encountered in nuclear power plants is reported. The evaluation was accomplished by the creation of an analytical model for atomic scale radiation damage in silica glass and by the execution of an extensive fiber performance measurement program. The analytic model calculates displacement and electronic damage rates for silica glass subjected to a specified nuclear reactor radiation environment. It accomplishes this by first generating the primary charged particle spectrum produced in silica irradiated in a nuclear reactor. The resultant spectra are then applied to the integral equations describing radiation damage in polyatomic solids. The experimental measurements were selected to span the range of fiber types, radiation environments, temperatures, and light powers expected to be used in nuclear power plants. The basic experimental protocol was to expose the optical fibers to either a nuclear reactor or a ^{60}Co radiation environment while simultaneously monitoring fiber light transmission. Experimental temperatures were either ~23 ^circC or ~100 ^circC and light powers were either -30 dBm or -60 dBm. Measurements were made at each of the three standard communications wavelengths (850 nm, 1300 nm, and 1550 nm). Several conclusions are made based on these performance measurements. First, even near the core of a nuclear reactor the vast majority of the dose to silica glass is due to gamma rays. Even with the much lower doses (factor of roughly 40) neutrons cause much more displacement damage than gamma rays (35 times the oxygen displacement rate and 500 times the silicon displacement rate). Even with neutrons having many times the displacement rate as compared with gamma rays, little if any difference is observed in the transmission losses for gamma only as compared to mixed neutron/gamma transmission losses. Therefore, atomic displacement is not a significant damage mechanism for

  15. Radiation damage in nuclear waste materials

    International Nuclear Information System (INIS)

    Jencic, I.

    2000-01-01

    Final disposal of high-level radioactive nuclear waste is usually envisioned in some sort of ceramic material. The physical and chemical properties of host materials for nuclear waste can be altered by internal radiation and consequently their structural integrity can be jeopardized. Assessment of long-term performance of these ceramic materials is therefore vital for a safe and successful disposal. This paper presents an overview of studies on several possible candidate materials for immobilization of fission products and actinides, such as spinel (MgAl 2 O 4 ), perovskite (CaTiO 3 ), zircon (ZrSiO 4 ), and pyrochlore (Gd 2 Ti 2 O 7 and Gd 2 Zr 2 O 7 ). The basic microscopic picture of radiation damage in ceramics consists of atomic displacements and ionization. In many cases these processes result in amorphization (metaminctization) of irradiated material. The evolution of microscopic structure during irradiation leads to various macroscopic radiation effects. The connection between microscopic and macroscopic picture is in most cases at least qualitatively known and studies of radiation induced microscopic changes are therefore an essential step in the design of a reliable nuclear waste host material. The relevance of these technologically important results on our general understanding of radiation damage processes and on current research efforts in Slovenia is also addressed. (author)

  16. Imaging plates for nuclear radiations

    International Nuclear Information System (INIS)

    Abe, Ken; Takebe, Masahiro

    1997-01-01

    Full text. The imaging plate (IP, hereafter) is a new opto-electronic X-ray film developed by Fuji Photo Film Co. Ltd., formed with a large area of thin flexible plastic plate coated with photo-estimulable storage phosphor (e.g. Ba F Br: Eu 2+ ). Recently, it has been found highly sensitive to soft X-ray (SR), soft electrons, and also usual alpha, beta, gamma rays and others, e.g. cosmic rays, energy heavy ions, and moreover neutrons through suitable converters inside or outside of the IP. Many types of IP are now used in various fields, such as medical examinations, auto-radiography in vivo/ in situ/ in vitro, X-ray/neutron diffraction/ radiography, electron microscopy. RI contamination, assay of ore. The IP has other striking performances, e.e. extremely low intrinsic noises, a high position resolution, high detection efficiency (100-1000 times) as high as an X-ray film), extremely wide dynamic range of dose (more than 10 5 ). Besides the thermal fading yet left unresolved materially, the only feature lacking and that one has ben longing for is the radiation identification by itself. We found out that the IP has a full potential ability of radiation identification in itself. One evidence found is that the ratio of the twin peaks of the PSL (photo-stimulated luminescence) excitation spectra indicates simply the particle energies, studied and now established. Another is that the photo-beaching provides the fluorescent responses different enough to discriminate the radiations, yet in progress with cyclotron experiments, into the usage of double labeled bio tracers

  17. Nuclear Power and Radiation in Public Acceptance

    International Nuclear Information System (INIS)

    Vastchenko, S. V.

    2002-01-01

    The special knowledge deficiency does not give the possibility to the majority of people to pattern their behaviour in a correct way on radiation problems and to estimate faithfully the possible damage rate to the health of a human being from the different radiation sources effects. Studying of the public opinion in Belarus has shown that one of the results of the Chernobyl NPP accident consequences is inseparability of nuclear and radiation danger in public consciousness. The anonymous questionnaire of the inhabitants living in various Belarus regions has been carried out aiming at definition of a general radiation erudition, as well as revealing the knowledge of the population about the effect of power stations (nuclear and thermal) on the environment and the human being health. Answers on questions connected with power have shown a very poor erudition of population about ecological advantages and drawbacks inherent in thermal and nuclear power plants. The majority of the respondents (about 80%) does not know about the absence of CO 2 discharge and oxygen preservation in the air. The questionnaire analysis shows that people are exclusively frightened with radiation from NPPs, but the rest sources of radiation effect do not cause so anxiety and apprehension. People in Belarus have learnt well that the reason of the majority of the diseases is radiation, so it can be frequently heard not only from mass media, but also at scientific conferences and seminars. Most of medical workers are sure that all diseases are caused by radiation. The deficiency of special knowledge on nuclear technologies in the people majority and availability of a great amount of contradictory and untrue information supplied by mass media result in overestimation of danger from energy objects and underestimation of the increased radiation dose from other sources consequences, for example, under roentgen medical examination and treatment. The investigations carried out will help to arrange

  18. Nuclear safety and radiation protection in France in 2011

    International Nuclear Information System (INIS)

    2012-01-01

    The first part of this voluminous report describe the different ASN (Nuclear Safety Authority) actions: nuclear activities (ionising radiation and health and environmental risks), principles and stakeholders in nuclear safety regulation, radiation protection and protection of the environment, regulation, regulation of nuclear activities and exposure to ionizing radiation, radiological emergencies, public information and transparency, international relations. It also gives an overview of nuclear safety and radiation protection activities in the different French regions. The second part addresses activities regulated by the ASN: medical uses of ionizing radiation, non-medical uses of ionizing radiation, transport of radioactive materials, nuclear power plants, nuclear fuel cycle installations, nuclear research facilities and various nuclear installations, safe decommissioning of basic nuclear installations, radioactive waste and contaminated sites and soils

  19. Environmental Radiation Monitoring Around the Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Geun Sik; Lee, Chang Woo

    2008-05-15

    Environmental Radiation Monitoring was carried out with measurement of environment. radiation and environmental radioactivity analysis on the sites of KAERI nuclear facilities and Seoul Research Reactors and their environments. The average level of environmental radiation dose measured by an ERM and the accumulated radiation dose by a TLD were almost same level compared with the previous years. The activity of gross {alpha} and gross {beta}, Tritium, Uraniu and Strontium in environmental samples showed a environmental level. The radioactivities of most {gamma}-radionuclides in air particulate, surface water and ground water were less than MDA except {sup 40}K or {sup 7}Be which are natural radionuclides. However, not only {sup 40}K or {sup 7}Be but also {sup 137}Cs were detected at the background level in surface soil, discharge sediment and fallout or pine needle.

  20. Nuclear energy, radiation and environment

    International Nuclear Information System (INIS)

    Rajan, M.P.

    2013-01-01

    Over the past few decades, energy has been the subject of much debate. Energy is the backbone of technology and economic development. Today, most machines run on electricity and they are needed to make anything and everything. Hence, our energy requirements have spiraled in the years following the industrial revolution. This rapid increase in use of energy has created problems of demand and supply in addition to the environmental consciousness which picked momentum in last decades of 20 th century. The impending crisis the world over due to overuse of nonrenewable energy sources to reduce this gap shall soon lead to a situation for all concerned to take a prudent decision to tap other sources of energy, including relatively new renewable sources. Future economic growth crucially depends on the long-term availability of energy from sources that are affordable, accessible and environmentally friendly. The drive for more energy has had the happy consequences of spawning new technologies and improving earlier ones. Emphasis on renewable sources has resulted in viable harnessing of solar, wind and tidal energies. Even though these sources offer relatively clean energy, their potential to supply reliable energy in large scale in an economically viable way is limited. Nuclear energy offers a major source of commercial energy, which is economic, reliable and environmentally benign

  1. Radiation protection in nuclear energy. V.2

    International Nuclear Information System (INIS)

    1988-01-01

    The conference was convened to provide a forum for the exchange of international views on the principles of radiation protection for regulators and practitioners, to highlight issues of current importance, to examine the problems encountered in applying the principles of radiation protection, and, where possible, to identify generic solutions. The highlights of the conference were the sessions on the interface between nuclear safety and radiation protection, the evolution of radiation protection principles, exemption rules and accident experiences. The special session on the practical implications of the linear dose-response relationships also provoked particular interest. Although the session on optimization and decision aiding did not reveal any new developments, it did indicate an increasing emphasis on the optimization of radiation protection. A clear trend towards attaining lower collective doses per unit practice over a given time period, despite the increase in nuclear power plant capacity, is also apparent, although very few data on job-related worker doses have been published to date in the open literature. From the regulators' viewpoint, a very strong desire was expressed for a move towards regulatory strategies that exempt practices and sources causing insignificant individual and collective doses. Refs, figs and tabs

  2. Radiation exposure in German nuclear power plants

    International Nuclear Information System (INIS)

    Mueller, W.

    1981-01-01

    The individual and collective doses in German nuclear power stations have decreased remarkably since the beginning of the commercial nuclear power production. The paper discusses the influencing factors, that have caused this development and points out areas where improvements are possible in the future. Moreover the interaction between radiation protection practice and the relevant legal regulations is considered. Usually the recording of job related doses is regarded as the most direct access to possible improvements. Concluding, it is therefore demonstrated by some examples how the evaluation of such information has taken effect in practice. (orig.) [de

  3. Some radiation chemical aspects of nuclear engineering

    International Nuclear Information System (INIS)

    Pikaev, A.K.; Kabakchi, S.A.; Egorov, G.F.

    1988-01-01

    Some radiation chemical aspects of nuclear engineering are discussed (predominantly on the base of the works performed in the Soviet Union). The data on the influence of temperature within the range of 0-300 0 C on the yields of water radiolysis products are considered. The results obtained from the study of reactivity of actinide ions towards inorganic free radicals in acid aqueous solutions are summarized. The information on composition and properties of the products of radiolytic transformations of different extragents and diluents and on their influence on the behaviour of extraction systems during processing of irradiated nuclear fuel is presented. (author)

  4. Radiation damage in nuclear waste ceramics

    International Nuclear Information System (INIS)

    Turcotte, R.P.; Roberts, F.P.; Rusin, J.M.; Wald, J.W.

    1982-01-01

    The text contains a number of specific observations about the radiation-induced changes in glass, glass-ceramic, and supercalcine nuclear waste forms. Other, more general conclusions can be summarized: Radiation-induced property changes follow an exponential ingrowth curve to saturation. Actinide host phases in both crystalline waste forms become X-ray amorphous. The magnitudes of the waste-form density changes observed could not be directly related to observed changes in the primary actinide phases. Although large crystal-structure changes occur in the materials studied, obvious physical degradation was not observed

  5. Ionizing radiation, nuclear energy and radiation protection for school

    International Nuclear Information System (INIS)

    Lucena, E.A.; Reis, R.G.; Pinho, A.S.; Alves, A.S.; Rio, M.A.P.; Reis, A.A.; Silva, J.W.S.; Paula, G.A. de; Goncalves Junior, M.A.

    2017-01-01

    Since the discovery of X-rays in 1895, ionizing radiation has been applied in many sectors of society, such as medicine, industry, safety, construction, engineering and research. However, population is unaware of both the applications of ionizing radiation and their risks and benefits. It can be seen that most people associate the terms 'radiation' and 'nuclear energy' with the atomic bomb or cancer, most likely because of warlike applications and the stealthy way radioactivity had been treated in the past. Thus, it is necessary to clarify the population about the main aspects related to the applications, risks and associated benefits. These knowledge can be disseminated in schools. Brazilian legislation for basic education provides for topics such as nuclear energy and radioactivity to high school students. However, some factors hamper such an educational practice, namely, few hours of class, textbooks do not address the subject, previous concepts obtained in the media, difficulty in dealing with the subject in the classroom, phobia, etc. One solution would be the approximation between schools and institutions that employ technologies involving radioactivity, which would allow students to know the practices, associated radiological protection, as well as the risks and benefits to society. Currently, with the increasing application of ionizing radiation, especially in medicine, it is necessary to demystify the use of radioactivity. (author)

  6. Radiation monitor system for nuclear power plants

    International Nuclear Information System (INIS)

    Wu Bingzhe; Guo Shusheng

    1990-12-01

    The system has 8 kinds of radiation monitors and 2 stage microcomputers designed for processing the data from each monitor, storaging the information, printing out and displaying on the colour CRT. The function of the system includes high-value alarm, warm alarm and failure alarm, so called t hree-level alarms . Two functions of the alarms are the threshold alarm and the tendency alarm, so that this system is an intelligency system. This system has high reliability and very wide range when LOCA accident takes place. It is aseismic and immune to industrial interference. The system can meet IEC-761-1 standard and is of nuclear safety 3rd class. Also the following monitors were designed: 133 Xe monitor, 131 I monitor, low-level liquid monitor and high radiation γ area monitor. The system can meet the requirements of nuclear power plants

  7. Radiation protection at nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Endo, K.; Momose, T.; Furuta, S.

    2011-01-01

    Radiation protection methodologies concerning individual monitoring, workplace monitoring and environmental monitoring in nuclear fuel facilities have been developed and applied to facilities in the Nuclear Fuel Cycle Engineering Laboratories (NCL) of Japan Atomic Energy Agency (JAEA) for over 40 y. External exposure to photon, beta ray and neutron and internal exposure to alpha emitter are important issues for radiation protection at these facilities. Monitoring of airborne and surface contamination by alpha and beta/photon emitters at workplace is also essential to avoid internal exposure. A critical accident alarm system developed by JAEA has been proved through application at the facilities for a long time. A centralised area monitoring system is effective for emergency situations. Air and liquid effluents from facilities are monitored by continuous monitors or sampling methods to comply with regulations. Effluent monitoring has been carried out for 40 y to assess the radiological impacts on the public and the environment due to plant operation. (authors)

  8. Radiation control system of nuclear power plants

    International Nuclear Information System (INIS)

    Kapisovsky, V.; Kosa, M.; Melichar, Z.; Moravek, J.; Jancik, O.

    1977-01-01

    The SYRAK system is being developed for in-service radiation control of the V-1 nuclear power plant. Its basic components are an EC 1010 computer, a CAMAC system and communication means. The in-service release of radionuclides is measured by fuel can failure detection, by monitoring rare gases in the coolant, by gamma spectrometric coolant monitoring and by iodine isotopes monitoring in stack disposal. (O.K.)

  9. Radiation safely culture in nuclear facilities

    International Nuclear Information System (INIS)

    Coates, R.

    2018-01-01

    The importance of developing a sound radiation safety culture is a relatively new development in the practical application of radiation protection in operational facilities. It is instructive to trace the evolution of the fundamental approaches to controlling operational exposures, staring with the engineering-based 'Distance, Shielding and Time' mantra, through the growing emphasis on ALARA and systematic management-based approaches, towards a recognition of the importance of developing a more 'hearts and minds' approach based within the wider safety culture of the organization. The underlying requirements for developing a strong radiation safety culture are not novel, and are largely identical to those necessary for nuclear safety culture, which is why an integrated approach to culture within the organization is essential

  10. Radiation emergency preparedness in nuclear power plants

    International Nuclear Information System (INIS)

    Geetha, P.V.; Ramamirtham, B.; Khot, P.

    2008-01-01

    The purpose of planning for radiation emergency response is to ensure adequate preparedness for protection of the plant personnel and members of the public from significant radiation exposures in the unlikely event of an accident. With a number of safety features in the reactor design and sound operating procedures, the probability of a major accident resulting in the releases of large quantities of radioactivity is extremely small. However, as an abundant cautious approach a comprehensive radiation emergency response preparedness is in place in all the nuclear power plants (NPPs). Radiation Emergency in NPPs is broadly categorized into three types; plant emergency, site emergency and off-site emergency. During off site emergency conditions, based on levels of radiation in the environment, Civil Authorities may impose several counter measures such as sheltering, administering prophylaxis (stable iodine for thyroid blocking) and evacuation of people from the affected area. Environmental Survey Laboratory (ESL) carries out environmental survey extensively in the affected sector identified by the meteorological survey laboratory. To handle emergency situations, Emergency Control Centre with all communication facility and Emergency Equipment Centre having radiation measuring instruments and protective equipment are functional at all NPPs. AERB stipulates certain periodicity for conducting the exercises on plant, site and off site emergency. These exercises are conducted and deficiencies corrected for strengthening the emergency preparedness system. In the case of off site emergency exercise, observers are invited from AERB and Crisis Management Group of Department of Atomic Energy (DAE). The emergency exercises conducted by Nuclear Power Plant Sites have been very satisfactory. (author)

  11. RADIATION EFFECTS IN NUCLEAR WASTE MATERIALS

    International Nuclear Information System (INIS)

    Weber, William J.

    2000-01-01

    The objective of this research was to develop fundamental understanding and predictive models of radiation effects in glasses and ceramics at the atomic, microscopic, and macroscopic levels, as well as an understanding of the effects of these radiation-induced solid-state changes on dissolution kinetics (i.e., radionuclide release). The research performed during the duration of this project has addressed many of the scientific issues identified in the reports of two DOE panels [1,2], particularly those related to radiation effects on the structure of glasses and ceramics. The research approach taken by this project integrated experimental studies and computer simulations to develop comprehensive fundamental understanding and capabilities for predictive modeling of radiation effects and dissolution kinetics in both glasses and ceramics designed for the stabilization and immobilization of high-level tank waste (HLW), plutonium residues and scraps, surplus weapons plutonium, other actinides, and other highly radioactive waste streams. Such fundamental understanding is necessary in the development of predictive models because all experimental irradiation studies on nuclear waste materials are ''accelerated tests'' that add a great deal of uncertainty to predicted behavior because the damage rates are orders of magnitude higher than the actual damage rates expected in nuclear waste materials. Degradation and dissolution processes will change with damage rate and temperature. Only a fundamental understanding of the kinetics of all the physical and chemical processes induced or affected by radiation will lead to truly predictive models of long-term behavior and performance for nuclear waste materials. Predictive models of performance of nuclear waste materials must be scientifically based and address both radiation effects on structure (i.e., solid-state effects) and the effects of these solid-state structural changes on dissolution kinetics. The ultimate goal of this

  12. Nuclear dynamical diffraction using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Dennis Eugene [Stanford Univ., CA (United States)

    1993-05-01

    The scattering of synchrotron radiation by nuclei is extensively explored in this thesis. From the multipole electric field expansion resulting from time-dependent nonrelativistic perturbation theory, a dynamical scattering theory is constructed. This theory is shown, in the many particle limit, to be equivalent to the semi-classical approach where a quantum mechanical scattering amplitude is used in the Maxwell inhomogeneous wave equation. The Moessbauer specimen whose low-lying energy levels were probed is a ferromagnetic lattice of 57Fe embedded in a yttrium iron garnet (YIG) crystal matrix. The hyperfine fields in YIG thin films were studied at low and room temperature using time-resolved quantum beat spectroscopy. Nuclear hyperfine structure quantum beats were measured using a fast plastic scintillator coincidence photodetector and associated electronics having a time resolution of 2.5 nsec. The variation of the quantum beat patterns near the Bragg [0 0 2] diffraction peak gave a Lamb-Moessbauer factor of 8.2±0.4. Exploring characteristic dynamical features in the higher order YIG [0 0 10] reflection revealed that one of the YIG crystals had bifurcated into two different layers. The dynamics of nuclear superradiance was explored. This phenomenon includes the radiative speedup exhibited by a collective state of particles, and, in striking concurrence, resonance frequency shifts. A speedup of a factor of 4 in the total decay rate and a beat frequency shift of 11/2 natural resonance linewidths were observed. Nuclear resonance scattering was also found to be a useful way of performing angular interferometry experiments, and it was used to observe the phase shift of a rotated quantum state. On the whole, nuclear dynamical diffraction theory has superbly explained many of the fascinating features of resonant magnetic dipole radiation scattered by a lattice of nuclei.

  13. Nuclear dynamical diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Brown, D.E.

    1993-05-01

    The scattering of synchrotron radiation by nuclei is extensively explored in this thesis. From the multipole electric field expansion resulting from time-dependent nonrelativistic perturbation theory, a dynamical scattering theory is constructed. This theory is shown, in the many particle limit, to be equivalent to the semi-classical approach where a quantum mechanical scattering amplitude is used in the Maxwell inhomogeneous wave equation. The Moessbauer specimen whose low-lying energy levels were probed is a ferromagnetic lattice of 57 Fe embedded in a yttrium iron garnet (YIG) crystal matrix. The hyperfine fields in YIG thin films were studied at low and room temperature using time-resolved quantum beat spectroscopy. Nuclear hyperfine structure quantum beats were measured using a fast plastic scintillator coincidence photodetector and associated electronics having a time resolution of 2.5 nsec. The variation of the quantum beat patterns near the Bragg [0 0 2] diffraction peak gave a Lamb-Moessbauer factor of 8.2±0.4. Exploring characteristic dynamical features in the higher order YIG [0 0 10] reflection revealed that one of the YIG crystals had bifurcated into two different layers. The dynamics of nuclear superradiance was explored. This phenomenon includes the radiative speedup exhibited by a collective state of particles, and, in striking concurrence, resonance frequency shifts. A speedup of a factor of 4 in the total decay rate and a beat frequency shift of 1 1/2 natural resonance linewidths were observed. Nuclear resonance scattering was also found to be a useful way of performing angular interferometry experiments, and it was used to observe the phase shift of a rotated quantum state. On the whole, nuclear dynamical diffraction theory has superbly explained many of the fascinating features of resonant magnetic dipole radiation scattered by a lattice of nuclei

  14. Nuclear energy - Radioprotection - Procedure for radiation protection monitoring in nuclear installations for external exposure to weakly penetrating radiation, especially to beta radiation

    International Nuclear Information System (INIS)

    2002-01-01

    This International Standard specifies a procedure for radiation protection monitoring in nuclear installations for external exposure to weakly penetrating radiation, especially to beta radiation and describes the procedure in radiation protection monitoring for external exposure to weakly penetrating radiation in nuclear installations. This radiation comprises β - radiation, β + radiation and conversion electron radiation as well as photon radiation with energies below 15 keV. This International Standard describes the procedure in radiation protection planning and monitoring as well as the measurement and analysis to be applied. It applies to regular nuclear power plant operation including maintenance, waste handling and decommissioning. The recommendations of this International Standard may also be transferred to other nuclear fields including reprocessing, if the area-specific issues are considered. This International Standard may also be applied to radiation protection at accelerator facilities and in nuclear medicine, biology and research facilities

  15. Radiation dosimetry in nuclear medicine - recent developments

    International Nuclear Information System (INIS)

    Hetherington, E.L.R.; Wood, N.R.

    1976-01-01

    This paper reviews developments in radiation dosimetry in Nuclear Medicine over the past few years. The practical scope of the Medical Internal Radiation Dose (MIRD) Committee's Schema for dose determination has been extended by the development of more realistic mathematical models of the human body, together with the improvement in basic physical data used in dose calculations. Apart from the use of the Adult Human Phantom as the basis for dose determination, models have been developed for the estimation of doses to children and to the developing foetus. The Schema has been extended to permit calculations of the dose to dynamic organs, particularly the bladder. The principle of Monte Carlo photon history simulation, which forms the basis of much of the MIRD Schema's published data, has been used at the Australian Atomic Energy Commission for the determination of complete photon dose distributions. These are more meaningful in many cases than the average doses determined by the absorbed fraction method. (author)

  16. Radiation monitoring instrumentation for nuclear power plants

    International Nuclear Information System (INIS)

    Bharath Kumar, M.

    2013-01-01

    Measurement of nucleonic signals is required to control and operate the reactor in a safe and reliable manner. To achieve this, parameters like Neutron flux, other radiation fields, contamination levels, source strength, release thru stack etc. are required to be monitored and controlled. The above are required to be monitored throughout the life of the reactor whether it is operational or in shutdown condition. In addition such monitoring is also required during decommissioning phase of the reactor as needed. To measure these parameters a large number of instruments are used in Nuclear Power Plants (NPP) which includes sensors and electronics for detecting alpha, beta, gamma and neutron radiation with qualification to withstand harsh environment

  17. Environmental radiation monitoring around the nuclear facilities

    International Nuclear Information System (INIS)

    Lee, H.D.; Lee, Y.B.; Lee, W.Y.; Park, D.W.; Chung, B.G.

    1980-01-01

    For the KAERI site, various environmental samples were collected three times a month, and the natural environmental radiation levels were also measured at each sampling point. Measurements for gross alpha and beta radioactivities of the samples were routinely measured for all samples. Strontium-90 concentrations were also analysed for the fallout and air samples collected daily basis on the roof of the main building. Accumulated exposure including the possibility of determination of low level environmental radiation field by employing thermoluminescent dosimeter, CaSO 4 : Dsub(y)-0.4 teflon disc type, at 6 posts in on-site of the KAERI. As for Kori site, at 19 points of ON, OFF-site, and at the same time the environmental radiation exposure rate at each sampling point were measured. Several environmental samples such as surface soil, pine needles, water samples, milk sample and pasture samples were collected and analysed on a quarterly basis. As a result of the survey it can be said that no significant release of radiation to the environment due to the operations of nuclear facilities including research reactor at the KAERI and power reactor at the Kori has been found during the period of the survey and monitoring. (author)

  18. Evaluation of radiation protection in nuclear medicine diagnostic procedures

    International Nuclear Information System (INIS)

    Mohammed, Ezzeldien Mohammed Nour

    2013-05-01

    This study conducted to evaluate the radiation protection in nuclear medicine diagnostic procedures in four nuclear medicine departments in Sudan. The evaluated procedures followed in these departments were in accordance with the standards, International Recommendations and code of practice for radiation protection in nuclear medicine. The evolution included the optimum design for diagnostic nuclear medicine departments, dealing with radioactive sources, quality assurance and quality control, training and responsibilities for radiation worker taking into account economic factors in Sudan. Evaluation of radiation protection procedures in diagnostic investigations was carried out by taken direct measurements of dose rate and the contamination level in some areas where radiation sources, radiation workers and public are involved. Designated questionnaires covered thirteen areas of radiation protection based on inspection check list for nuclear medicine prepared by the International Atomic Energy Agency (IAEA) and American Association of Physicist in Medicine (AAPM) were used in the evaluation. This questionnaire has been Filled by Radiation Protection Officer (RPO), nuclear medicine technologist, nuclear medicine specialist in the nuclear medicine departments. Four hospitals, two governmental hospital and two private hospitals, have been assisted, the assessment shows that although the diagnostic nuclear medicine department in Sudan are not applying a fully safety and radiation protection procedures, but the level of radiation dose and the contamination level were found within acceptable limits. The private hospital D scored the higher level of protection (85.25%) while the governmental hospital C scored the lower level of protection (59.02%). Finally, this study stated some recommendations that if implemented could improve the level of radiation protection in nuclear medicine department. One of the most important recommendations is that a proper radiation protection

  19. Summary of Prometheus Radiation Shielding Nuclear Design Analyses , for information

    International Nuclear Information System (INIS)

    J. Stephens

    2006-01-01

    This report transmits a summary of radiation shielding nuclear design studies performed to support the Prometheus project. Together, the enclosures and references associated with this document describe NRPCT (KAPL and Bettis) shielding nuclear design analyses done for the project

  20. Radiation protection organization in Guangdong Nuclear Power Station (GNPS)

    International Nuclear Information System (INIS)

    Yang Maochun

    1993-01-01

    The French way of radiation protection management has been adopted by Guangdong Nuclear Power Station (GNPS) but there are some differences. In this paper author describes radiation protection organization in GNPS, special measures having been taken and the present status

  1. Radiation safety and protection on the nuclear power plants

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Bogorad, V.I.; Vasil'chenko, V.N.; Klyuchnikov, A.A.; Litvinskaya, T.V.; Slepchenko, A.Yu.

    2008-01-01

    The main issues of the radiation safety and protection provision on the nuclear power plants are considered in this monograph. The description of the basic sources of the radiation danger on NPPs, the principles, the methods and the means of the safety and radiation monitoring provision are shown. The special attention is paid to the issues of the ionizing radiation regulation

  2. Radiation protection in Swiss nuclear installations; Strahlenschutz in Schweizer Kernanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, J.; Brunell, M. [Eidgenoessisches Nuklearsicherheitsinspektorat ENSI, Brugg (Switzerland)

    2015-07-01

    Well developed measures on operational radiation protection within Swiss nuclear installations will be presented. The focus lays on competent authority actions. Results of the last ten years, including events on radiation issues, will be discussed. Finally a view on challenges for radiation protection personnel with respect to a renewed Swiss radiation protection legislation based on recent ICRP recommendations will be given.

  3. Excitation of nuclear states by synchrotron radiation

    International Nuclear Information System (INIS)

    Olariu, Albert

    2003-01-01

    We study the excitation of nuclear states by gamma ray beams of energy up to 200 keV produced as synchrotron radiation. We consider the possibility to populate an excited state |i> in two steps, from the ground state |g> to an intermediary state |n> which decays by gamma emission or internal conversion to a lower state |i>. The aim of this study is to establish that the probability P 2 of the two-step transition |g> → |n> → |i> should be greater than the probability P 1 of the direct transition |g> → |i>. The probabilities P 1 and P 2 correspond to a radiation pulse of duration equal to the half-time of the state |i>. We have written a computer program in C++ which computes the probability P 2 , the ratio P 2 /P 1 and the rate C 2 of the two-step transitions for any nuclei and different configurations of states. The program uses a database which contains information on the energy levels, half-lives, spins and parities of nuclear states and on the relative intensities of the nuclear transitions. If the half-lives or the relative intensities are not known the program uses the Weisskopf estimates for the transition half-lives. An interpolation program of internal conversion coefficients has also been used. We listed the values obtained for P 2 , P 2 /P 1 and C 2 in a number of cases in which P 2 is significant from the 2900 considered cases. The states |i> and |n> have the energies E i and E n , the corresponding half-lives being t i and t n . The spectral density of the synchrotron radiation has been considered to be 10 12 photons cm -2 s -1 eV -1 . We listed only the cases for which the relative intensities of the transitions from levels |n> and |i> to lower states are known. The calculations carried out in this study allowed us to identify nuclei for which P 2 has relatively great values. In the listed cases P 2 /P 1 >>1, so that the two-step excitation by synchrotron radiation is more efficient than the direct excitation |g> → |i>. For a sample having 10

  4. Radiation Monitoring - A Key Element in a Nuclear Power Program

    International Nuclear Information System (INIS)

    Hussein, A.S.; El-dally, T.A.

    2008-01-01

    For a nuclear power plant, radiation is especially of great concern to the public and the environment. Therefore, a radiation monitoring program is becoming a critical importance. This program covers all phases of the nuclear plant including preoperational, normal operation, accident and decommissioning. The fundamental objective of radiation monitoring program is to ensure that the health and safety of public inside and around the plant and to confirm the radiation doses are below the dose limits for workers and the public. This paper summarizes the environmental radiation monitoring program for a nuclear power plant

  5. Ascertaining directionality information from incident nuclear radiation

    Energy Technology Data Exchange (ETDEWEB)

    Archambault, Brian C. [Purdue University (United States); Lapinskas, Joseph R. [QSA Global, Inc. (United States); Wang Jing; Webster, Jeffrey A. [Purdue University (United States); McDeavitt, Sean [Texas A and M University (United States); Taleyarkhan, Rusi P., E-mail: rusi@purdue.edu [Purdue University (United States)

    2011-10-15

    Highlights: > Use of tensioned metastable fluids for detection of fast neutron radiation. > Monitored neutrons with 100% gamma photon blindness capability. > Monitored direction of incoming neutron radiation from special nuclear material emissions. > Ascertained directionality of neutron source to within 30 deg. and with 80% confidence with 2000 detection events at rate of 30-40 per second. > Conducted successful blind test for determining source of neutrons from a hidden neutron emitting source. > Compared results with MCNP5-COMSOL based multi-physics model. - Abstract: Unprecedented capabilities for the detection of nuclear particles via tailored resonant acoustic systems such as the acoustic tensioned metastable fluid detection (ATMFD) systems were assessed for determining directionality of incoming fast neutrons. This paper presents advancements that expand on these accomplishments, thereby increasing the accuracy and precision of ascertaining directionality information utilizing enhanced signal processing-cum-signal analysis, refined computational algorithms, and on demand enlargement of the detector sensitive volume. Advances in the development of ATMFD systems were accomplished utilizing a combination of experimentation and theoretical modeling. Modeling methodologies include Monte-Carlo based nuclear particle transport using MCNP5 and multi-physics based assessments accounting for acoustic, structural, and electromagnetic coupling of the ATMFD system via COMSOL's multi-physics simulation platform. Benchmarking and qualification studies have been conducted with a 1 Ci Pu-Be neutron-gamma source. These results show that the specific ATMFD system used for this study can enable detection of directionality of incoming fast neutrons from the neutron source to within 30{sup o} with 80% confidence; this required {approx}2000 detection events which could be collected within {approx}50 s at a detection rate of {approx}30-40 per second. Blind testing was

  6. Ascertaining directionality information from incident nuclear radiation

    International Nuclear Information System (INIS)

    Archambault, Brian C.; Lapinskas, Joseph R.; Wang Jing; Webster, Jeffrey A.; McDeavitt, Sean; Taleyarkhan, Rusi P.

    2011-01-01

    Highlights: → Use of tensioned metastable fluids for detection of fast neutron radiation. → Monitored neutrons with 100% gamma photon blindness capability. → Monitored direction of incoming neutron radiation from special nuclear material emissions. → Ascertained directionality of neutron source to within 30 deg. and with 80% confidence with 2000 detection events at rate of 30-40 per second. → Conducted successful blind test for determining source of neutrons from a hidden neutron emitting source. → Compared results with MCNP5-COMSOL based multi-physics model. - Abstract: Unprecedented capabilities for the detection of nuclear particles via tailored resonant acoustic systems such as the acoustic tensioned metastable fluid detection (ATMFD) systems were assessed for determining directionality of incoming fast neutrons. This paper presents advancements that expand on these accomplishments, thereby increasing the accuracy and precision of ascertaining directionality information utilizing enhanced signal processing-cum-signal analysis, refined computational algorithms, and on demand enlargement of the detector sensitive volume. Advances in the development of ATMFD systems were accomplished utilizing a combination of experimentation and theoretical modeling. Modeling methodologies include Monte-Carlo based nuclear particle transport using MCNP5 and multi-physics based assessments accounting for acoustic, structural, and electromagnetic coupling of the ATMFD system via COMSOL's multi-physics simulation platform. Benchmarking and qualification studies have been conducted with a 1 Ci Pu-Be neutron-gamma source. These results show that the specific ATMFD system used for this study can enable detection of directionality of incoming fast neutrons from the neutron source to within 30 o with 80% confidence; this required ∼2000 detection events which could be collected within ∼50 s at a detection rate of ∼30-40 per second. Blind testing was successfully

  7. The Australian radiation protection and Nuclear Safety Agency

    International Nuclear Information System (INIS)

    Macnab, D.; Burn, P.; Rubendra, R.

    1998-01-01

    The author talks about the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), the new regulatory authority which will combine the existing resources of the Australian Radiation Laboratory and the Nuclear Safety Bureau. Most uses of radiation in Australia are regulated by State or Territory authorities, but there is presently no regulatory authority for Commonwealth uses of radiation. To provide for regulation of the radiation practices of the Commonwealth, the Australian Government has decided to establish the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) and a Bill has passed through the House of Representatives and will go to the Spring sitting of the Senate. The new agency will subsume the resources and functions of the Nuclear Safety Bureau and the Australian Radiation Laboratory, with additional functions including the regulation of radiation protection and nuclear safety of Commonwealth practices. Another function of ARPANSA will be the promotion of uniform regulatory requirements for radiation protection across Australia. This will be done by developing, in consultation with the States and Territories, radiation health policies and practices for adoption by the Commonwealth, States and Territories. ARPANSA will also provide research and services for radiation health, and in support of the regulatory and uniformity functions. The establishment of ARPANSA will ensure that the proposed replacement research reactor, the future low level radioactive waste repository and other Commonwealth nuclear facilities and radiation practices are subject to a regulatory regime which reflects the accumulated experience of the States and Territories and best international practice, and meets public expectations

  8. Physics of nuclear radiations concepts, techniques and applications

    CERN Document Server

    Rangacharyulu, Chary

    2013-01-01

    Physics of Nuclear Radiations: Concepts, Techniques and Applications makes the physics of nuclear radiations accessible to students with a basic background in physics and mathematics. Rather than convince students one way or the other about the hazards of nuclear radiations, the text empowers them with tools to calculate and assess nuclear radiations and their impact. It discusses the meaning behind mathematical formulae as well as the areas in which the equations can be applied. After reviewing the physics preliminaries, the author addresses the growth and decay of nuclear radiations, the stability of nuclei or particles against radioactive transformations, and the behavior of heavy charged particles, electrons, photons, and neutrons. He then presents the nomenclature and physics reasoning of dosimetry, covers typical nuclear facilities (such as medical x-ray machines and particle accelerators), and describes the physics principles of diverse detectors. The book also discusses methods for measuring energy a...

  9. Code of practice of radiation protection in fixed nuclear gauges

    International Nuclear Information System (INIS)

    Eltayeb, M. A. M.

    2012-09-01

    The present work aims at developing and updating a code of practice of radiation protection in fixed nuclear gauges that comply with current international recommendations. The work also intended to evaluate the current radiation protection situation in two selected companies using nuclear gauges in Sudan. A draft of the code is proposed which includes the basic principle of protection such as source construction and gauges radiation monitoring, storage maintenance and leak testing as well as specific issues related to nuclear gauges. The practical part of this study included investigation of radiation protection in the comparisons using nuclear gauges for level detection, to evaluate the level of radiation protection and the compliance to the regulatory authority regulations. The result revealed that the two companies do not have an effective radiation protection program and that can lead to exposure of workers to unnecessary doses. Some recommendations were stated, if implemented they could improve the status of radiation protection in those companies. (Author)

  10. Regulation of nuclear radiation exposures in India

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, U.C. E-mail: ucmishra@yahoo.com

    2004-07-01

    India has a long-term program of wide spread applications of nuclear radiations and radioactive sources for peaceful applications in medicine, industry, agriculture and research and is already having several thousand places in the country where such sources are being routinely used. These places are mostly outside the Department of Atomic Energy (DAE) installations. DAE supplies such sources. The most important application of nuclear energy in DAE is in electricity generation through nuclear power plants. Fourteen such plants are operating and many new plants are at various stages of construction. In view of the above mentioned wide spread applications, Indian parliament through an Act, called Atomic Energy Act, 1964 created an autonomous body called Atomic Energy Regulatory Board (AERB) with comprehensive authority and powers. This Board issues codes, guides, manuals, etc., to regulate such installations so as to ensure safe use of such sources and personnel engaged in such installations and environment receives radiation exposures within the upper bounds prescribed by them. Periodic reports are submitted to AERB to demonstrate compliance of its directives. Health, Safety and Environment Group of Bhabha Atomic Research Centres, Mumbai carries out necessary surveillance and monitoring of all installations of the DAE on a routine basis and also periodic inspections of other installations using radiation sources. Some of the nuclear fuel cycle plants like nuclear power plants and fuel reprocessing involve large radioactive source inventories and have potential of accidental release of radio activity into the environment, an Environmental Surveillance Laboratory (ESL) is set up at each such site much before the facility goes into operation. These ESL's collect baseline data and monitor the environment throughout the life of the facilities including the de- commissioning stage. The data is provided to AERB and is available to members of the public. In addition, a

  11. Regulation of nuclear radiation exposures in India

    International Nuclear Information System (INIS)

    Mishra, U.C.

    2004-01-01

    India has a long-term program of wide spread applications of nuclear radiations and radioactive sources for peaceful applications in medicine, industry, agriculture and research and is already having several thousand places in the country where such sources are being routinely used. These places are mostly outside the Department of Atomic Energy (DAE) installations. DAE supplies such sources. The most important application of nuclear energy in DAE is in electricity generation through nuclear power plants. Fourteen such plants are operating and many new plants are at various stages of construction. In view of the above mentioned wide spread applications, Indian parliament through an Act, called Atomic Energy Act, 1964 created an autonomous body called Atomic Energy Regulatory Board (AERB) with comprehensive authority and powers. This Board issues codes, guides, manuals, etc., to regulate such installations so as to ensure safe use of such sources and personnel engaged in such installations and environment receives radiation exposures within the upper bounds prescribed by them. Periodic reports are submitted to AERB to demonstrate compliance of its directives. Health, Safety and Environment Group of Bhabha Atomic Research Centres, Mumbai carries out necessary surveillance and monitoring of all installations of the DAE on a routine basis and also periodic inspections of other installations using radiation sources. Some of the nuclear fuel cycle plants like nuclear power plants and fuel reprocessing involve large radioactive source inventories and have potential of accidental release of radio activity into the environment, an Environmental Surveillance Laboratory (ESL) is set up at each such site much before the facility goes into operation. These ESL's collect baseline data and monitor the environment throughout the life of the facilities including the de- commissioning stage. The data is provided to AERB and is available to members of the public. In addition, a multi

  12. Practical methods for radiation survey in nuclear installations

    International Nuclear Information System (INIS)

    Shweikani, R.

    2001-12-01

    This study is placed to those who are responsible to perform radiation survey in the nuclear installations, especially the beginners. Therefore, it gives a comprehensive view to all-important aspects related to their work starting from the structure of atoms to the practical steps for radiation survey works. So, it clarify how to perform personal monitoring, methods for monitoring surface contamination, methods for measuring radioactivity of gases and radioactive aerosols in air, monitoring radiation doses, measuring radiation influences in workplaces and finally measuring internal exposure of radiation workers in nuclear installations. Finally, The study shows some cases of breaches of radiation protection rules in some American nuclear installations and describes the final results of these breaches. The aim of this is to assure that any breach or ignore to radiation protection principles may produce bad results, and there is no leniency in implementing environmental radiation protection principles. (author)

  13. Internal radiation dose in diagnostic nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Roedler, H D; Kaul, A; Hine, G J

    1978-01-01

    Absorbed dose values per unit administered activity for the most frequently used radipharmaceuticals and methods were calculated according to the MIRD concept or compiled from literature and were tabulated in conventional as well as in the SI-units recently introduced. The data are given for critical or investigated organs, ovaries, testes and red bone marrow. Where available, dose values for newborns, infants and children are included. Additionally, mean values of administered activity are listed. The manner in which to estimate the radiation dose to the patient is to multiply the tabulated dose values per unit administered activity with the corresponding mean or the actually administered activity. The methods are arranged in correlation with the following nuclear medical subspecialities: 1. Endocrinology 2. Neurology, 3. Osteomyology, 4. Gastroenterology, 5. Nephrology, 6. Pulmonology, 7. Hematology, 8. Cardiology/Angiology.

  14. Nuclear Cross Sections for Space Radiation Applications

    Science.gov (United States)

    Werneth, C. M.; Maung, K. M.; Ford, W. P.; Norbury, J. W.; Vera, M. D.

    2015-01-01

    The eikonal, partial wave (PW) Lippmann-Schwinger, and three-dimensional Lippmann-Schwinger (LS3D) methods are compared for nuclear reactions that are relevant for space radiation applications. Numerical convergence of the eikonal method is readily achieved when exact formulas of the optical potential are used for light nuclei (A = 16) and the momentum-space optical potential is used for heavier nuclei. The PW solution method is known to be numerically unstable for systems that require a large number of partial waves, and, as a result, the LS3D method is employed. The effect of relativistic kinematics is studied with the PW and LS3D methods and is compared to eikonal results. It is recommended that the LS3D method be used for high energy nucleon-nucleus reactions and nucleus-nucleus reactions at all energies because of its rapid numerical convergence and stability for both non-relativistic and relativistic kinematics.

  15. The new law on radiation and nuclear power

    International Nuclear Information System (INIS)

    Niittylae, A.

    1990-01-01

    The Law on Nuclear Energy, which entered into force in 1988, controls the use of nuclear power. The new Law on Radiation is under consideration in the Parliament. The internationally approved main principles on radiation protection are the basis of the law. In the article, these principles and the contents of the law are described

  16. Review of radiation effects in solid-nuclear-waste forms

    International Nuclear Information System (INIS)

    Weber, W.J.

    1981-09-01

    Radiation effects on the stability of high-level nuclear waste (HLW) forms are an important consideration in the development of technology to immobilize high-level radioactive waste because such effects may significantly affect the containment of the radioactive waste. Since the required containment times are long (10 3 to 10 6 years), an understanding of the long-term cumulative effects of radiation damage on the waste forms is essential. Radiation damage of nuclear waste forms can result in changes in volume, leach rate, stored energy, structure/microstructure, and mechanical properties. Any one or combination of these changes might significantly affect the long-term stability of the nuclear waste forms. This report defines the general radiation damage problem in nuclear waste forms, describes the simulation techniques currently available for accelerated testing of nuclear waste forms, and reviews the available data on radiation effects in both glass and ceramic (primarily crystalline) waste forms. 76 references

  17. Radiation safety in nuclear industry in retrospect and perspective

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1993-01-01

    More than 30 years have passed since the starting up of nuclear industry in China from the early 1950's. Over the past 30-odd years, nuclear industry has always kept a good record in China thanks to the policy of 'quality first, safety first' clearly put forward for nuclear industry from the outset and a lot of suitable effective measures taken over that period. Internationally, there is rapid progress in radiation protection and nuclear safety (hereafter refereed to as radiation safety) and a number of new concepts in the field of radiation protection have been advanced. Nuclear industry is developing based on the international standardization. To ensure the further development of nuclear utility, radiation safety needs to be further strengthened

  18. Dictionary of radiation protection, radiobiology and nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Sube, R [comp.

    1986-01-01

    Radiation protection, including aspects of radiobiology, nuclear medicine, and nuclear legislation, has an important role within nuclear research and the use of radioactive materials. Radiation protection comprises all measures and efforts to prevent the unwanted distribution and negative influence of ionizing radiation, especially where the human organism and the living environment are involved. The increasing role of radiation protection is reflected by the foundation of institutes in all industrial countries to control such radiant energy and prevent radiation damage. Nowadays ionizing radiation is employed on a large scale for basic investigations in biochemistry, molecular biology and genetics, in soil tests, fertilization problems and pest control in agriculture, as well as for medicinal diagnoses and therapy. This dictionary is a thematic enlargement of the four-language 'Dictionary of Nuclear Engineering', compiled by the same author. It comprises about 12,000 terms in each language.

  19. Dictionary of radiation protection, radiobiology and nuclear medicine

    International Nuclear Information System (INIS)

    Sube, R.

    1986-01-01

    Radiation protection, including aspects of radiobiology, nuclear medicine, and nuclear legislation, has an important role within nuclear research and the use of radioactive materials. Radiation protection comprises all measures and efforts to prevent the unwanted distribution and negative influence of ionizing radiation, especially where the human organism and the living environment are involved. The increasing role of radiation protection is reflected by the foundation of institutes in all industrial countries to control such radiant energy and prevent radiation damage. Nowadays ionizing radiation is employed on a large scale for basic investigations in biochemistry, molecular biology and genetics, in soil tests, fertilization problems and pest control in agriculture, as well as for medicinal diagnoses and therapy. This dictionary is a thematic enlargement of the four-language 'Dictionary of Nuclear Engineering', compiled by the same author. It comprises about 12,000 terms in each language. (orig.)

  20. GPU Nuclear Corporation's radiation exposure management system

    International Nuclear Information System (INIS)

    Slobodien, M.J.; Bovino, A.A.; Perry, O.R.; Hildebrand, J.E.

    1984-01-01

    GPU Nuclear Corporation has developed a central main frame (IBM 3081) based radiation exposure management system which provides real time and batch transactions for three separate reactor facilities. The structure and function of the data base are discussed. The system's main features include real time on-line radiation work permit generation and personnel exposure tracking; dose accountability as a function of system and component, job type, worker classification, and work location; and personnel dosemeter (TLD and self-reading pocket dosemeters) data processing. The system also carries the qualifications of all radiation workers including RWP training, respiratory protection training, results of respirator fit tests and medical exams. A warning system is used to prevent non-qualified persons from entering controlled areas. The main frame system is interfaced with a variety of mini and micro computer systems for dosemetry, statistical and graphics applications. These are discussed. Some unique dosemetry features which are discussed include assessment of dose for up to 140 parts of the body with dose evaluations at 7,300 and 1000 mg/cm 2 for each part, tracking of MPC hours on a 7 day rolling schedule; automatic pairing of TLD and self-reading pocket dosemeter values, creation and updating of NRC Forms 4 and 5, generation of NRC required 20.407 and Reg Guide 1.16 reports. As of July 1983, over 20 remote on-line stations were in use with plans to add 20-30 more by May 1984. The system provides response times for on-line activities of 2-7 seconds and 23 1/2 hours per day ''up time''. Examples of the various on-line and batch transactions are described

  1. Guideline on radiation protection requirements for ionizing radiation shielding in nuclear power plants

    International Nuclear Information System (INIS)

    1988-01-01

    The guideline which entered into force on 1 May 1988 stipulates the radiation protection requirements for shielding against ionizing radiation to be met in the design, construction, commissioning, operation, and decommissioning of nuclear power plants

  2. New aspects regarding to radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Shabestani Monfared, A.; Amiri, M.

    2002-01-01

    Introduction and objectives: The society has been concerned about nuclear energy usage and nuclear environment pollution for ages. The necessity of using radiation and its applications in modern life especially in medicine is undeniable. Some interesting properties such as the potential for non-destructive tests, detection simplicity, and penetrability into substances and having reactions with them cause radiation to be known as a useful tool for peace purposes. Nuclear weapons' experiments (1945-1973) and nuclear accidents in Three-Mile Island in USA, Goiania in Brazil and Chernobyl in Ukraine Republic have enhanced man's worries towards nuclear radiation and radioactivity in environment, and founding associations and groups which are against nuclear energy, such as green peace society, can be related with above mentioned concerns. Today, nuclear medicine has rapidly been developed so that in some cases plays a unique role in diagnosis but unfortunately in spite of diagnostic and therapeutic advantages, the term N UCLEAR c an induce worries in patients and society. In this article, base on new documents we intend to show that this worries has no scientific basis. Material and Methods: To produce a realistic view, regarding to radiation protection we used several ways such as natural origin of radiation, high natural background radiation areas' data non-linear dose-effect model, risk versus benefit, use of arbitrary unit for measurement of radiation, radio adaptive response and radiation hormesis. Discussion and conclusion: Harmful effects of radiation on biologic systems has obviously been shown, but most of related documents are based on receiving high doses in nuclear and atomic accidents and explosions and radiation protection regulations are based on this observations. So, it sometimes causes patients are afraid of low doses of radiation in medical diagnostic procedures so that some of them even resist against performing this procedures. Thus, being aware of

  3. Nuclear energy and radiation protection law: no. 14 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The full text of Jordan's Nuclear Energy and Radiation Protection Law, no. 14 1987. The law's 39 articles govern all aspects organizing the utilization of nuclear energy and radiation protection activities in the country; including terms and conditions for licensing activities and personnel, and the import, export, and disposal of radioactive sources. The law establishes for the purpose of implementing its regulations, a consultative technical committee and a radiation protection board, both in the Ministry of Energy and Mineral Resources

  4. Nuclear science in the 20th century. Radiation chemistry and radiation processing

    International Nuclear Information System (INIS)

    Fu Tao; Xu Furong; Zheng Chunkai

    2003-01-01

    The application of nuclear science and technology to chemistry has led to two important subjects, radiation chemistry and radiation processing, which are playing important roles in many aspects of science and society. We review the development and major applications of radiation chemistry and radiation processing, including the basic physical and chemical mechanisms involved

  5. Genetical effects of radiations from products of nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Spiers, F W

    1955-01-01

    Relative radiation dose-rates to man and to Drosophila are discussed. Data previously presented by Prof. J.B.S. Haldane on the genetical effects of radiation resulting from nuclear explosions are reviewed. A reply from Prof. Haldane presents revised calculations of radiation dose rates.

  6. Nuclear safety and radiation protection in the German Democratic Republic

    International Nuclear Information System (INIS)

    Sitzlack, G.; Scheel, H.

    1976-01-01

    The radiation protection organization in the GDR is outlined laying emphasis on the tasks of the National Board of Nuclear Safety and Radiation Protection. In addition to the basic tasks, the various forms of radiation protection monitoring, the management of radioactive wastes, and international responsibilities are briefly explained. (author)

  7. Radiation protection databases of nuclear safety regulatory authority

    International Nuclear Information System (INIS)

    Janzekovic, H.; Vokal, B.; Krizman, M.

    2003-01-01

    Radiation protection and nuclear safety of nuclear installations have a common objective, protection against ionising radiation. The operational safety of a nuclear power plant is evaluated using performance indicators as for instance collective radiation exposure, unit capability factor, unplanned capability loss factor, etc. As stated by WANO (World Association of Nuclear Operators) the performance indicators are 'a management tool so each operator can monitor its own performance and progress, set challenging goals for improvement and consistently compare performance with that of other plants or industry'. In order to make the analysis of the performance indicators feasible to an operator as well as to regulatory authorities a suitable database should be created based on the data related to a facility or facilities. Moreover, the international bodies found out that the comparison of radiation protection in nuclear facilities in different countries could be feasible only if the databases with well defined parameters are established. The article will briefly describe the development of international databases regarding radiation protection related to nuclear facilities. The issues related to the possible development of the efficient radiation protection control of a nuclear facility based on experience of the Slovenian Nuclear Safety Administration will be presented. (author)

  8. Basic radiation effects in nuclear power electronics technology

    International Nuclear Information System (INIS)

    Gover, J.E.; Srour, J.R.

    1985-05-01

    An overview is presented of the effects of radiation in microelectronics technology. The approach taken throughout these notes is to review microscopic phenomena associated with radiation effects and to show how these lead to macroscopic effects in semiconductor devices and integrated circuits. Bipolar integrated circuits technology is reviewed in Appendix A. Appendix B gives present and future applications of radiation-tolerant microelectronics in nuclear power applications as well as the radiation tolerance requirements of these applications

  9. Conception and activity directions of journal ''Nuclear and radiation safety''

    International Nuclear Information System (INIS)

    Olena, M.; Volodymyr, S.

    2000-01-01

    In connection with the State Scientific and Technical Centre onr Nuclear and Radiation Safety (SSTC NRA) and Odessa State Polytechnic University the journal 'Nuclear and Radiation Safety' was established in 1998. In Ukraine many people are interested in nuclear energy problems. The accident in Chernobyl NPP unit 4 touches all Ukrainians and brings about strong and regular attention to nuclear and radiation safety of nuclear installations and nuclear technology, on the other side more than 50 per cent of electric power is produced in 5 NPPs and as following national power supply depends on stability of NPPs work. Main goals of the journal are: Support to Nuclear Regulatory Administration (NRA) of MEPNS of Ukraine, creation of information space for effective exchange of results of scientific, scientific and technical, scientific and analytical work in the field of Nuclear and Radiation Safety, assistance in integrated development of research for Nuclear and Radiation Safety by publication in a single issue of scientific articles, involvement of state scientific potential in resolving actual problems, participation in international collaboration in the framework of agreements, programs and plans. (orig.)

  10. Organization of nuclear safety and radiation protection in Switzerland

    International Nuclear Information System (INIS)

    Pretre, S.

    1995-01-01

    In Switzerland an important distinction is made between radiation protection (in charge of the use of ionizing radiations for medical uses or non nuclear industry), and nuclear safety (in charge of nuclear industry, including prevention or limitation of any risk of nuclear accident). In the eighties, it has been decided to make two laws for these two topics. The law for radioprotection, voted in 1991 is enforced since 1994 by OFSP (Office Federal de la Sante Publique). It performs any radiation monitoring outside nuclear industry plants. The law for nuclear safety, that should be enforced by OFEN (Office Federal de l'ENergie), is still not voted. The only existing legislation is the 1959 atomic law. (D.L.). 1 fig., 1 map

  11. Electromagnetic and nuclear radiation detector using micromechanical sensors

    Science.gov (United States)

    Thundat, Thomas G.; Warmack, Robert J.; Wachter, Eric A.

    2000-01-01

    Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

  12. Radiation protection problems by diagnostic procedures of pediatric nuclear medicine

    International Nuclear Information System (INIS)

    Kletter, K.

    1994-01-01

    Special dosimetry considerations are necessary in the application of radiopharmaceuticals in pediatric nuclear medicine. The influence of differences in irradiation geometry and biokinetic parameters on the radiation dose in children and adults is discussed. Assuming an equal activity concentration, both factors lead rather to a reduced radiation dose than an increased radiation burden in children compared to adults. However, the same radiation dose in children and adults may lead to a different detriment. This is explained by differences in life expectancy and radiation sensitivity for both groups. From special formulas an age dependent reduction factor can be calculated for the application of radiopharmaceuticals in pediatric nuclear medicine. Radiation exposure to hospital staff and parents from children, undergoing nuclear medicine diagnostic or therapeutic procedures, is low. (author)

  13. Distributing radiation management system of nuclear power plants

    International Nuclear Information System (INIS)

    Mihoya, Eiichi; Akashi, Michio

    1999-01-01

    The importance of radiation management for nuclear facilities including nuclear power plants has increased as the general public understanding has progressed, and necessary information for management must be processed exactly and quickly. In nuclear power plants, radiation management is performed by each individual operation, and collected information is managed by the system of each operation. The distributing radiation management system has been developed aiming to use a general-purpose LAN and make quick and efficient use of information managed by individual operations. This paper describes the system configuration and functions. (author)

  14. Personnel radiation safety in nuclear power plants

    International Nuclear Information System (INIS)

    Elkert, J.

    1979-05-01

    The principal contributions to the radiation doses of the Swedish power reactor personnel are identified. The possi bilities to reduce these doses are examined. The radiation doses are analyzed according to different personnel categories, specific maintenance operations or inspections and to different radiation activities. Suggestions are given for reducing the radiation doses. (L.E.)

  15. History of radiation and nuclear disasters in the former USSR

    International Nuclear Information System (INIS)

    Malko, M.V.

    2013-01-01

    The report describes the history of radiation and nuclear accidents in the former USSR. These accidents accompanied development of military and civilian use of nuclear energy. Some of them as testing of the first Soviet nuclear, Kyshtym radiation accident, radiation contamination of the Karachai lake and the Techa river, nuclear accidents at the Soviet submarine on August 10, 1985 in the Chazhma Bay (near Vladivostok) as well as nuclear accidents on April 26, 1986 at the Chernobyl NPP were of large scale causing significant radiological problems for many hundreds thousands of people. There were a number of important reasons of these and other accidents. The most important among them were time pressure by development of nuclear weapon, an absence of required financial and material means for adequate management of problems of nuclear and radiation safety, and inadequate understanding of harmful interaction of ionizing radiation on organism as well as a hypersecrecy by realization of projects of military and civilian use of nuclear energy in the former USSR. (author)

  16. Nuclear radiation sensors and monitoring following a nuclear or radiological emergencies

    International Nuclear Information System (INIS)

    Bhatnagar, P.K.

    2009-01-01

    Management of Nuclear and Radiological Emergencies arising from Radiological Dispersive Device (RDD), Improvised Nuclear Devices (IND), Nuclear Reactors/Power plants and Nuclear War require measurement of ionizing radiations and radioactivity on an enhanced scale relative to the levels encountered in peaceful uses of ionizing radiations and radioactivity. It is heartening that since Hiroshima, Nagasaki nuclear disaster, the world has been quiet but since early 2000 there has been a fear of certain devices to be used by terrorists, which could lead to panic, and disaster due to dispersal of radioactivity by RDD, IND. Nuclear attack would lead to blast, thermal, initial nuclear radiation, nuclear fall out leading to gamma and neutron dose, dose rates in range from few R, R/h to kR, kR/h, and determinations of k Bq or higher order. Such situations have been visualized at national levels and National Disaster Management Authority NDMA has been established and Disaster Management Act 2005 has come into existence. NDMA has prepared guidelines for Nuclear and radiological emergency management highlighting preparedness, mitigation, response, capacity building, etc. Critical point in all these issues is detection of emergency, quick intimation to the concerned for action in shortest possible time. Upper most requirement by those involved in pursuing action, is radiation sensor based radiation monitors for personnel, area, and to assess contamination due to radioactivity.This presentation briefly describes the Indian scenario in the development of the radiation sensors and the sensor-based radiation monitors. (author)

  17. Nuclear radiation sensors and monitoring following a nuclear or radiological emergencies

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, P K [Defence Laboratory, Jodhpur (India)

    2009-01-15

    Management of Nuclear and Radiological Emergencies arising from Radiological Dispersive Device (RDD), Improvised Nuclear Devices (IND), Nuclear Reactors/Power plants and Nuclear War require measurement of ionizing radiations and radioactivity on an enhanced scale relative to the levels encountered in peaceful uses of ionizing radiations and radioactivity. It is heartening that since Hiroshima, Nagasaki nuclear disaster, the world has been quiet but since early 2000 there has been a fear of certain devices to be used by terrorists, which could lead to panic, and disaster due to dispersal of radioactivity by RDD, IND. Nuclear attack would lead to blast, thermal, initial nuclear radiation, nuclear fall out leading to gamma and neutron dose, dose rates in range from few R, R/h to kR, kR/h, and determinations of k Bq or higher order. Such situations have been visualized at national levels and National Disaster Management Authority NDMA has been established and Disaster Management Act 2005 has come into existence. NDMA has prepared guidelines for Nuclear and radiological emergency management highlighting preparedness, mitigation, response, capacity building, etc. Critical point in all these issues is detection of emergency, quick intimation to the concerned for action in shortest possible time. Upper most requirement by those involved in pursuing action, is radiation sensor based radiation monitors for personnel, area, and to assess contamination due to radioactivity.This presentation briefly describes the Indian scenario in the development of the radiation sensors and the sensor-based radiation monitors. (author)

  18. Radiation-related impacts for nuclear plant physical modifications

    International Nuclear Information System (INIS)

    Sciacca, F.; Knudson, R.; Simion, G.; Baca, G.; Behling, H.; Behling, K.; Britz, W.; Cohen, S.

    1989-10-01

    The radiation fields in nuclear power plants present significant obstacles to accomplishing repairs and modifications to many systems and components in these plants. The NRC's generic cost estimating methodology attempts to account for radiation-related impacts by assigning values to the radiation labor productivity factor. This radiation labor productivity factor is then used as a multiplier on the greenfield or new nuclear plant construction labor to adjust for the actual operating plant conditions. The value assigned to the productivity factor is based on the work-site radiation levels. The relationship among ALARA practices, work-place radiation levels, and radiation-related cost impacts previously had not been adequately characterized or verified. The assumptions made concerning the use and application of radiation-reduction measures such as system decontamination and/or the use of temporary shielding can significantly impact estimates of both labor requirements and radiation exposure associated with a particular activity. Overall guidance was needed for analysts as to typical ALARA practices at nuclear power plants and the effects of these practices in reducing work-site dose rates and overall labor requirements. This effort was undertaken to better characterize the physical modification cost and radiological exposure impacts related to the radiation environment of the work place. More specifically, this work sought to define and clarify the quantitative relationships between or among: radiation levels and ALARA practices, such as the use of temporary shielding, decontamination efforts, or the use of robots and remote tools; radiation levels and labor productivity factors; radiation levels, in-field labor hours, and worker radiation exposure; radiation levels and health physics services costs; and radiation levels, labor hours, and anti-contamination clothing and equipment. 48 refs., 4 figs., 4 tabs

  19. Titanium Loop Heat Pipes for Space Nuclear Radiators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop titanium Loop Heat Pipes (LHPs) that can be used in low-mass space nuclear radiators, such as...

  20. Response of high Tc superconducting Josephson junction to nuclear radiation

    International Nuclear Information System (INIS)

    Ding Honglin; Zhang Wanchang; Zhang Xiufeng

    1992-10-01

    The development of nuclear radiation detectors and research on high T c superconducting nuclear radiation detectors are introduced. The emphases are the principle of using thin-film and thick-film Josephson junctions (bridge junction) based on high T c YBCO superconductors to detect nuclear radiation, the fabrication of thin film and thick-film Josephson junction, and response of junction to low energy gamma-rays of 59.5 keV emitted from 241 Am and beta-rays of 546 keV. The results show that a detector for measuring nuclear radiation spectrum made of high T c superconducting thin-film or thick-film, especially, thick-film Josephson junction, certainly can be developed

  1. Requirements of radiation protection and safety for nuclear medicine services

    International Nuclear Information System (INIS)

    1989-01-01

    The requirements of radiation protection and safety for nuclear medicine services are established. The norms is applied to activities related to the radiopharmaceuticals for therapeutics and 'in vivo' diagnostics purposes. (M.C.K.) [pt

  2. The design of intelligentized nuclear radiation monitoring detector

    International Nuclear Information System (INIS)

    Meng Yan; Fang Zongliang; Wen Qilin; Li Lirong; Hu Jiewei; Peng Jing

    2010-01-01

    This paper introduced an intelligentized nuclear radiation monitoring detector. The detector contains GM tubes, high voltage power supply and MCU circuit. The detector connect terminal via reformative serial port to provide power, accept the data and sent the command. (authors)

  3. Verifying a nuclear weapon`s response to radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Dean, F.F.; Barrett, W.H.

    1998-05-01

    The process described in the paper is being applied as part of the design verification of a replacement component designed for a nuclear weapon currently in the active stockpile. This process is an adaptation of the process successfully used in nuclear weapon development programs. The verification process concentrates on evaluating system response to radiation environments, verifying system performance during and after exposure to radiation environments, and assessing system survivability.

  4. Introduction to symposium 'radiation protection at nuclear facilities'

    International Nuclear Information System (INIS)

    Stricker, L.

    1996-01-01

    An introduction to the symposium 'radiation protection of nuclear facilities' on Wednesday, April 17, 1996 in Vienna has been given. The number of operating reactors and the total collective dose per reactor in OECD countries has been discussed. The evolution of the total collective dose associated with the replacement of steam generators at nuclear power reactors from 1979 to 1995 is presented. The background and culture of radiation protection, regulatory aspects, strategic formulation, plan management policy and organization responsibilities are discussed generally. (Suda)

  5. INSAG's ongoing work on nuclear, radiation and waste safety

    International Nuclear Information System (INIS)

    Baer, A.J.

    1999-01-01

    The International Nuclear Safety Advisory Group (INSAG) is an advisory group to the Director General of the IAEA. It identifies current nuclear safety issues, draws conclusions from its analyses and gives advice on those issues. INSAG is currently working on four documents: a complete revision of INSAG-3, the classical paper on safety principles for nuclear plants, published in 1988; 'Safety Management', the effective system for the management of operational strategy; 'Safe Management of the Life Cycle of Nuclear Power Plants'; and the fourth document in preparation entitled 'The Safe Management of Sources of Radiation: Principles and Strategies'. The fourth document is aimed primarily at political decision makers who have no knowledge of radiation safety or of nuclear matters generally but are called upon to make important decisions in this field. INSAG has attempted to present them with a 'unified doctrine' of the management of all radiation sources, even though, for historical reasons radiation protection and nuclear safety have evolved largely independently of each other. The major conclusion to be drawn from the paper is that a systematic application of protection and safety principles, and of appropriate strategies, goes a long way towards ensuring the safe management of technologies involving radiation. Furthermore, the management of sources of radiation could benefit from the experience accumulated in other industries facing comparable challenges

  6. Concrete alkali-silica reaction and nuclear radiation damage

    International Nuclear Information System (INIS)

    Ichikawa, Tsuneki

    2008-01-01

    The deterioration of concrete by alkali-silica reaction of aggregates (ASR) and the effect of nuclear radiations on the ASR have been reviewed based on our studies on the mechanism of ASR and the effect of nuclear radiations on the resistivity of minerals to alkaline solution. It has been found that the ASR is initiated by the attack of alkaline solution in concrete to silicious aggregates to convert them into hydrated alkali silicate. The consumption of alkali hydroxide by the aggregates induces the dissolution of Ca 2+ ions into the solution. The alkali silicate surrounding the aggregates then reacts with Ca 2+ ions to convert to insoluble tight and rigid reaction rims. The reaction rim allows the penetration of alkaline solution but prevents the leakage of viscous alkali silicate, so that alkali silicate generated afterward is accumulated in the aggregate to give an expansive pressure enough for cracking the aggregate and the surrounding concrete. The effect of nuclear radiation on the reactivity of quartz and plagioclase, a part of major minerals composing volcanic rocks as popular aggregates, to alkaline solution has been examined for clarifying whether nuclear radiations accelerates the ASR. It has been found that the irradiation of these minerals converts them into alkali-reactive amorphous ones. The radiation dose for plagioclase is as low as 10 8 Gy, which suggests that the ASR of concrete surrounding nuclear reactors is possible to be accelerated by nuclear radiation. (author)

  7. Nuclear Safety and Radiation Protection in Europe - a common approach

    International Nuclear Information System (INIS)

    McGarry, Ann

    2010-01-01

    In Europe, the European Union has adopted directives and implemented other measures which form the basis of a common approach to nuclear safety and radiation protection across all Member States. In particular, there are EU directives setting out radiation protection standards and establishing a Community framework for the nuclear safety of nuclear installations. There are also arrangements in place to provide for an effective response to nuclear emergencies and to facilitate high quality research into nuclear and radiation protection related topics. Inevitably the stage of development in each area is somewhat different, but generally progress is ongoing in each area. From the point of view of a small country like Ireland, the development of common standards and arrangements across Europe is beneficial as they are based on the best available knowledge and expertise; they provide for greater transparency; they facilitate public confidence and make best use of the available resources. However, there are some areas in which common approaches could be further advanced. For example, the medical exposure of patients is increasingly of concern across Europe and the further development of common approaches in this area would be helpful. It would also be useful to develop a more integrated approach to nuclear safety and radiation protection regulation and to better integrate nuclear and radiation issues with other public health and environment concerns. (author)

  8. Education in radiation, radioactivity, and nuclear science

    Energy Technology Data Exchange (ETDEWEB)

    Faubert, I.; Wohrizek, J.; Donev, J., E-mail: Isaac.faubert@gmail.com [Univ. of Calgary, Alberta (Canada)

    2013-07-01

    Nuclear science and nuclear energy are not widely understood topics. A lack of understanding for a potentially dangerous technology can be the cause for avoidance and even fear. In order to break down the barriers of a misunderstood industry, high energy learning is an initiative to change the perspective of nuclear science and technology. Through explanation of the fundamental concepts surrounding nuclear science, we reconstruct a trust within the communities and cultures across the nation. Being able to change the perspective of uninformed and misinformed people may not only benefit the nuclear industry, but the state of our global environment. (author)

  9. Education in radiation, radioactivity, and nuclear science

    International Nuclear Information System (INIS)

    Faubert, I.; Wohrizek, J.; Donev, J.

    2013-01-01

    Nuclear science and nuclear energy are not widely understood topics. A lack of understanding for a potentially dangerous technology can be the cause for avoidance and even fear. In order to break down the barriers of a misunderstood industry, high energy learning is an initiative to change the perspective of nuclear science and technology. Through explanation of the fundamental concepts surrounding nuclear science, we reconstruct a trust within the communities and cultures across the nation. Being able to change the perspective of uninformed and misinformed people may not only benefit the nuclear industry, but the state of our global environment. (author)

  10. Pakistan nuclear safety and radiation protection regulation 1990

    International Nuclear Information System (INIS)

    1990-01-01

    In this act regulations of nuclear safety and radiation protection in Pakistan has been explained. A legal and licensing procedure to handle protection of nuclear materials, processing storage of radioactive products has been described under this regulation. In these regulations full explanation of accidental exposure, delegation of powers and record keeping/waste disposal of radioactive has been given. (A.B.)

  11. Nuclear and radiation safety assurance federal target programme management system

    International Nuclear Information System (INIS)

    Kryukov, O.V.; Vasil'ev, V.A.; Nikishin, D.A.; Linge, I.I.; Obodinskij, A.N.

    2012-01-01

    The Federal Program Nuclear and Radiation Safety Assurance for 2008-2015 is presented. Specifics of Federal target program management as well as changes to program management are discussed. Data on evaluation of management effectiveness is given. Further efforts to resolve the nuclear legacy problem in Russia are also presented [ru

  12. Report on nuclear and radiation safety in Slovenia in 1999

    International Nuclear Information System (INIS)

    Lovincic, D.

    2000-09-01

    The Slovenian Nuclear Safety Administration (SNSA) has prepared Report on Nuclear and Radiation Safety in Slovenia in 1999. This is one of the regular forms of reporting on the work of the Administration to the Government and National Assembly of the Republic of Slovenia.

  13. Pakistan nuclear safety and radiation protection ordinance-1984

    International Nuclear Information System (INIS)

    1984-01-01

    An act to provide the regulations of nuclear safety and radiation protection in Pakistan has been explained. A legal and licensing procedure to handle production of nuclear materials, processing, storage of radioactive products and wastes has been described under this regulation. (A.B.)

  14. Regulatory inspections in nuclear plants in the field of radiation protection

    International Nuclear Information System (INIS)

    Hort, M.; Fuchsova, D.

    2014-01-01

    State Office for Nuclear Safety executes state administration and performs inspections at peaceful use of nuclear energy and ionizing radiation in the field of radiation protection and nuclear safety. Inspections on radiation protection at nuclear power plants are secured by inspectors of the Department of Radiation Protection in Fuel Cycle, who work at the Regional centre Brno and Ceske Budejovice. (authors)

  15. Nuclear and radiation techniques - state of art and development trends

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1995-01-01

    The state of art and development trends of nuclear and radiation techniques in Poland and worldwide have been presented. Among them the radiometric gages, radiation technologies, radiotracer methods and measuring systems for pipeline and vessels, brightness control have been described and their applications in industry, agriculture, health and environment protection have been shown and discussed. 35 refs, 1 fig

  16. Is natural background or radiation from nuclear power plants leukemogenic?

    International Nuclear Information System (INIS)

    Cronkite, E.P.

    1989-01-01

    The objective in this review is to provide some facts about normal hemopoietic cell proliferation relevant to leukemogenesis, physical, chemical, and biological facts about radiation effects with the hope that each person will be able to decide for themselves whether background radiation or emissions from nuclear power plants and facilities significantly add to the spontaneous leukemia incidence. 23 refs., 1 tab

  17. A radiation monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Iwai, Masaru; Nakamori, S.; Ikeda, H.; Oda, M.

    1974-01-01

    Safety with respect to radiation is vital factor, particularly in view of the increasing number of nuclear power plants. For this purpose, a radiation monitoring system is provided to perform constant supervision. This article describes the purpose, installation location, specifications and circuitry of a system which is divided into three units: the process monitor, area monitor and off-site monitor. (auth.)

  18. Radiation and ecological safety of nuclear fuel cycle installations

    International Nuclear Information System (INIS)

    Barbasheva, S.V.

    1995-01-01

    Nuclear power plants (NPP) and radioactive waste facilities safety issues are discussed; Chernobyl NPP personnel radiation doses for 1986 are indicated; radiation contamination of environment by Am-241 is investigated; data on radioactive contamination in southern part of Kiev Poles'e are considered

  19. Organization of radiation protection in German nuclear power stations

    International Nuclear Information System (INIS)

    1989-01-01

    Using the operating handbooks of the nuclear power stations in West Germany, an examination was carried out of how far the existing organisational structure for radiation protection fulfils the requirements for protection and whether a standardisation of the organisation would provide improvements for the protection of the personnel and for the practicability of the radiation protection organisation. In particular, the parts 'Personnel operating organisation', 'Radiation protection order' and 'Maintenance order' of the operating handbook were evaluated and an audit was made of the radiation protection organisation. In general, the result of the assessment is that the organisation of radiation protection does not contradict the orders, guidelines and regulations in any of the nuclear power stations examined. Corresponding to the possibilities of regulating details of the radiation protection organisation within the undertaking, the target of 'protection of the personnel against radioactive irradiation' is achieved by the various organisation structures which are largely equal to the given example. (orig./HP) [de

  20. A National Institute of Radiation Protection and Nuclear Safety?

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1993-01-01

    The practice of radiation protection within Australia is fragmented on a number of different levels. Each state has its own radiation protection organisation. Within the Commonwealth there is also a large number of bodies which deal with different aspects of radiation protection or nuclear safety. There is also an interest in occupational radiation protection by Departments responsible for Occupational Health and Safety. It is estimated that this fragmentation affects the practice of radiation protection at a State level and also the role which Australia can play internationally. The establishment of a National Institute of Radiation Protection and Nuclear Safety is therefore proposed. Possible structures and organizational arrangements for such an institute are discussed. 4 refs., 4 tabs., 3 figs

  1. Neutron spectrometry by diamond detector for nuclear radiation

    International Nuclear Information System (INIS)

    Kozlov, S.F.; Konorova, E.A.; Barinov, A.L.; Jarkov, V.P.

    1975-01-01

    Experiments on fast neutron spectrometry using the nuclear radiation diamond detector inside a horizontal channel of a water-cooled and water-moderated reactor are described. It is shown that the diamond detector enables neutron spectra to be measured within the energy range of 0.3 to 10 MeV against reactor gamma-radiation background and has radiation resistance higher than that of conventional semiconductor detectors. (U.S.)

  2. Fundamental Technology Development for Radiation Damage in Nuclear Materials

    International Nuclear Information System (INIS)

    Kwon, Sang Chul; Kwon, J. H.; Kim, E. S. and others

    2005-04-01

    This project was performed to achieve technologies for the evaluation of radiation effects at materials irradiated at HANARO and nuclear power plants, to establish measurement equipment and software for the analysis of radiation defects and to set up facilities for the measurements of radiation damage with non-destructive methods. Major targets were 1) establishment of hot laboratories and remote handling facilities/ technologies for the radioactive material tests, 2) irradiation test for the simulation of nuclear power plant environment and measurement/calculation of physical radiation damage, 3) evaluation and analysis of nano-scale radiation damage, 4) evaluation of radiation embrittlement with ultrasonic resonance spectrum measurement and electromagnetic measurement and 5) basic research of radiation embrittlement and radiation damage mechanism. Through the performance of 3 years, preliminary basics were established for the application research to evaluation of irradiated materials of present nuclear power plants and GEN-IV systems. Particularly the results of SANS, PAS and TEM analyses were the first output in Korea. And computer simulations of radiation damage were tried for the first time in Korea. The technologies will be developed for the design of GEN-IV material

  3. Ordinance on the Finnish Centre of Radiation and Nuclear Safety

    International Nuclear Information System (INIS)

    1990-01-01

    This Ordinance was adopted in implementation of the 1983 Act setting up the Finnish Centre for Radiation and Nuclear Safety and the 1987 Nuclear Energy Act and entered into force on 1 November 1990. The Ordinance specifies the tasks of the Centre, as provided under both Acts, and gives it several supplementary responsibilities. In addition to its overall competence in respect of radiation safety, the Centre will carry out research into and supervise the health effects of radiation and maintain a laboratory for national measurements in that field. The Ordinance also sets out the Centre's organisation chart and the staff duties [fr

  4. Provision of operational radiation protection services at nuclear power plants

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of this publication is to provide practical guidance on establishing and maintaining a radiation protection programme for a nuclear power plant that is consistent with the optimization process recommended in the Basic Safety Standards. This publication is written with a view to providing guidance to every person associated with the radiation protection programme for a nuclear power plant and develops the theme that radiation protection requires the commitment of all plant staff, including higher levels of executive management. 12 refs, 2 figs

  5. Radioactive clearance discharge of effluent from nuclear and radiation facilities

    International Nuclear Information System (INIS)

    Liu Xinhua; Xu Chunyan

    2013-01-01

    On the basis of the basic concepts of radiation safety management system exemption, exclusion and clearance, we expound that the general industrial gaseous and liquid effluent discharges are exempted or excluded, gaseous and liquid effluent discharged from nuclear and radiation facilities are clearance, and non-radioactive. The main purpose of this paper is to clarify the concepts, reach a consensus that the gaseous and liquid effluent discharged from nuclear and radiation facilities are non-radioactive and have no hazard to human health and natural environment. (authors)

  6. Radiation exposure of nuclear medicine procedures in Germany

    International Nuclear Information System (INIS)

    Hacker, M.

    2005-01-01

    Nuclear Medicine procedures offer the possibility to detect abnormalities on the basis of physiological and metabolic changes and to treat a growing number of diseases in human beings. However, the use of radiopharmaceuticals for nuclear medicine examinations causes a significant component of the total radiation exposure of populations. In Germany it is an essential task of the Federal Office for Radiation Protection to determinate and assess radiation exposure of the population due to nuclear medicine diagnostics and therapy. An important input for this task is the frequency of nuclear-medical examinations with application of ionising radiation and the radiation exposure of patients related to the various procedures. Additional implementation of age- and gender-specific data today allows more exact risk stratification in focusing on different subgroups of patients. Moreover, the collective effective dose as well as the per caput effective dose of the German population may be estimated and compared with earlier collected data or foreign countries. These data reveal where the indication should be questioned particularly critically and if the dose for the various examinations can be reduced and, thus, contribute to the definition of diagnostic reference levels for nuclear medicine procedures in Germany with the aim of both a sufficient image quality and a minimum of radiation exposure. Exceeding the high- as well as the low-values requires documentation and explanation. (orig.)

  7. Dating ancient monuments by nuclear radiation

    International Nuclear Information System (INIS)

    Goedicke, C.

    2000-01-01

    In the fifties and sixties several disciplines dealing with chronologies but lacking precise methods of measurements (geology, biology, archaeology and art history) became aware of the radioactive decay as a tool of measuring elapsed time. Among the disciplines that benefit most from physical methods archaeology has to be named first. So was archaeological work revolutionised by the introduction of the C-14 dating method. A wider selection of material became datable after the introduction of luminescence techniques using the effect of nuclear radiation on semiconductors. These minerals are widespread among archaeological materials. In ancient monuments, the objective of this paper, semiconductors almost exclusively form the material basis. Over the last four millennia wood, stone, mortar and fired bricks have been used for the construction of buildings. After discussing methods taking wood as a dating material, a broader view will be given on the results achieved by luminescence dating of fired bricks, mortar and stone. For many years brick dating was performed by thermoluminescence, the recipes followed those of ceramic dating. Preferably multiple aliquot additive dose protocols were used on polymineral fine grain fractions (1-10 μm). It was expected that the error in dating monuments would be smaller compared to ceramic dating, because of the constancy of the environmental conditions which a brick experiences during its lifetime. However, the variability of firing temperatures in brick kilns overthrows this advantage. Therefore, the demands of art historians to fall short of an error margin of 5% could generally not be fulfilled. Especially in medieval or renaissance times the temporal resolution of thermoluminescence is inferior to traditional stylistic dating as long as specific stylistic forms are present. New optical luminescence techniques and a new philosophy of dose evaluation, based on single aliquot regeneration protocols, produce less scatter, and in

  8. Effects of beta/gamma radiation on nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Weber, W.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-07-01

    A key challenge in the disposal of high-level nuclear waste (HLW) in glass waste forms is the development of models of long-term performance based on sound scientific understanding of relevant phenomena. Beta decay of fission products is one source of radiation that can impact the performance of HLW glasses through the interactions of the emitted {beta}-particles and g-rays with the atoms in the glass by ionization processes. Fused silica, alkali silicate glasses, alkali borosilicate glasses, and nuclear waste glasses are all susceptible to radiation effects from ionization. In simple glasses, defects (e.g., non-bridging oxygen and interstitial molecular oxygen) are observed experimentally. In more complex glasses, including nuclear waste glasses, similar defects are expected, and changes in microstructure, such as the formation of bubbles, have been reported. The current state of knowledge regarding the effects of {beta}/{gamma} radiation on the properties and microstructure of nuclear waste glasses are reviewed. (author)

  9. Effects of beta/gamma radiation on nuclear waste glasses

    International Nuclear Information System (INIS)

    Weber, W.J.

    1997-01-01

    A key challenge in the disposal of high-level nuclear waste (HLW) in glass waste forms is the development of models of long-term performance based on sound scientific understanding of relevant phenomena. Beta decay of fission products is one source of radiation that can impact the performance of HLW glasses through the interactions of the emitted β-particles and g-rays with the atoms in the glass by ionization processes. Fused silica, alkali silicate glasses, alkali borosilicate glasses, and nuclear waste glasses are all susceptible to radiation effects from ionization. In simple glasses, defects (e.g., non-bridging oxygen and interstitial molecular oxygen) are observed experimentally. In more complex glasses, including nuclear waste glasses, similar defects are expected, and changes in microstructure, such as the formation of bubbles, have been reported. The current state of knowledge regarding the effects of β/γ radiation on the properties and microstructure of nuclear waste glasses are reviewed. (author)

  10. Perspective on radiation from the nuclear power industry

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1990-01-01

    Methods for estimating the risk of radiation induced cancer mortality to members of the public are outlined for each element of the nuclear power industry - reactor accidents, routine releases from nuclear plants, transport, mining and milling of uranium, and escape of buried radioactive waste (high level and low level). The results are compared with mortality risks from the air pollution and chemical carcinogens released into the ground in generating the same amount of electricity by coal burning - the latter are thousands of times larger. Radiation from nuclear power is also 1,000 times smaller than that from radon in homes. The amount of money spent to avert a death from nuclear power radiation is in the billion dollar range, whereas lives could be saved from radon in homes for 0.00001 times that cost. Medical screening and highway safety programs can save lives for a similarly low cost

  11. Teaching Nuclear Radiation and the Poisoning of Alexander Litvinenko

    Science.gov (United States)

    Lapp, David R.

    2008-03-01

    The recent international story about the death of the former KGB agent Alexander Litvinenko has more than just a few wondering about radiation poisoning and the sinister sounding polonium-210. I was preparing to begin a nuclear radiation unit the Monday after Thanksgiving 2006. As it turned out, Litvinenko died Thanksgiving Day after a short and terrible three-week illness. Having the story continue to unfold throughout the next two weeks of the new unit provided a daily opportunity for students to see the relevance of what we were doing in class. My students were able to have meaningful and informed conversations with their peers and parents over an important international event. They even began to feel a bit like authorities themselves when listening to experts respond to media questions about polonium-210 and nuclear radiation in general. This paper discusses some of the ways that the story of Litvinenko was used while presenting the topic of nuclear radiation.

  12. Radiation protection for population in case of nuclear weapon terrorism

    International Nuclear Information System (INIS)

    Takada, Jun

    2004-01-01

    A radiation disaster was predicted in case of 1 kt nuclear weapon terrorism on the surface. Despite small size, serious radiation exposure became clear in a range more than 10 km that can't be by an aerial explosion. This kind of exposure comes from radioactive fallout of fission products, not from direct nuclear radiation. This spreads to a lee area. More than 1,000,000 population receive a serious dose including fatal dose if the nuclear disaster occurs in Tokyo is expected. If adequate radiation protection applies to the population, 70% of victim may be saved. A method to be effective as this kind of protection is escape from a danger zone by the subway after more than one hour sheltering in a concrete building. (author)

  13. Code of practice for radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Hamed, M. I.

    2010-05-01

    In aim of this study was to develop a draft for a new code practice for radiation protection in nuclear medicine that meets the current relevant international recommendation. The draft includes the following main fields: methods of radiation protection for workers, patients and public. Also, the principles of safe design of nuclear medicine departments, quality assurance program, proper manipulation of radiation sources including radioactive waste and emergency preparedness and response. The practical part of this study includes inspections of three nuclear medicine departments available in Sudan so as to assess the degree of compliance of those departments with what is stated in this code. The inspection missions have been conducted using a checklist that addresses all items that may affect radiation raincoat issues in addition to per formin area radiation monitoring around the installation of the radioactive sources. The results of this revealed that most of the departments do not have effective radiation protection program which in turn could lead to unnecessary exposure to patients, public and workers. Finally, some recommendations are given that - if implemented - could improve the status of radiation protection in nuclear medicine department. (Author)

  14. Nuclear power plant radiation: personnel safety aspects

    International Nuclear Information System (INIS)

    Roekmantara, Roestan

    1975-01-01

    Reactor using water as coolant, moderator, and heat transfer can produce a sufficiently great internal and external radiation caused by contamination. The process of contamination and actions that must be taken to avoid radiation workers from receiving more than the maximum permissible dose are presented. (author)

  15. Science, society, and America's nuclear waste: Unit 2, Ionizing radiation

    International Nuclear Information System (INIS)

    1992-01-01

    ''Science, Society and America's Nuclear Waste'' is a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  16. Basis for radiation protection of the nuclear worker

    International Nuclear Information System (INIS)

    Guevara, F.A.

    1982-01-01

    A description is given of the standards for protection of persons who work in areas that have a potential for radiation exposure. A review is given of the units of radiation exposure and dose equivalent and of the value of the maximum permissible dose limits for occupational exposure. Federal Regulations and Regulatory Guides for radiation protection are discussed. Average occupational equivalent doses experienced in several operations typical of the United States Nuclear Industry are presented and shown to be significantly lower than the maximum permissible. The concept of maintaining radiation doses to As-Low-As-Reasonably-Achievable is discussed and the practice of imposing engineering and administrative controls to provide effective radiation protection for the nuclear worker is described

  17. Radiation

    International Nuclear Information System (INIS)

    2013-01-01

    The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter

  18. Nuclear and radiation safety in Slovenia. Annual report 1997

    International Nuclear Information System (INIS)

    1998-01-01

    The Slovenian Nuclear Safety Administration (SNSA), in co-operation with the Health Inspectorate of the Republic of Slovenia, the Administration for Civil Protection and Disaster Relief and the Ministry of the Interior, has prepared a Report on Nuclear and Radiation Safety in the Republic of Slovenia for 1997. This is one of the regular forms of reporting on the work of the Administration to the Government and National Assembly of the Republic of Slovenia. Contributions to the report were furthermore prepared by competent authorities in the field of nuclear safety: the Agency for Radwaste Management (ARAO), the Milan Copic Nuclear Training Centre, etc. The report contains 17 chapters. (author)

  19. Report on nuclear and radiation safety in Slovenia in 1997

    International Nuclear Information System (INIS)

    1998-06-01

    The Slovenian Nuclear Safety Administration (SNSA), in co-operation with the Health Inspectorate of the Republic of Slovenia, the Administration for Civil Protection and Disaster Relief and the Ministry of the Interior, has prepared a Report on Nuclear and Radiation Safety in the Republic of Slovenia for 1997. This is one of the regular forms of reporting on the work of the Administration to the Government and National Assembly of the Republic of Slovenia. Contributions to the report were furthermore prepared by competent authorities in the field of nuclear safety: the Agency for Radwaste Management (ARAO), the Milan Copic Nuclear Training Centre, etc. The report contains 19 chapters.

  20. Establishing control over nuclear materials and radiation sources in Georgia

    International Nuclear Information System (INIS)

    Basilia, G.

    2010-01-01

    Regulatory control over radiation sources in Georgia was lost after disintegration of the Soviet Union. A number of radiation accidents and illegal events occurred in Georgia. From 1999 Nuclear and Radiation Safety Service of the Ministry of Environmental Protection and Natural Resources is responsible for regulatory control over radiation sources in Georgia. US NRC Regulatory Assistance Program in Georgia Assist the Service in establishing long term regulatory control over sources. Main focuses of US NRC program are country-wide inventory, create National Registry of sources, safe storage of disused sources, upgrade legislation and regulation, implementation licensing and inspection activities

  1. What Students Think About (Nuclear) Radiation - Before and After Fukushima

    Science.gov (United States)

    Neumann, S.

    2014-06-01

    Preparing successful science lessons is very demanding. One important aspect a teacher has to consider is the students' previous knowledge about the specific topic. This is why research about students' preconceptions has been, and continues to be, a major field in science education research. Following a constructivistic approach [R. Duit et al., International handbook of research on conceptual change, p. 629 (2008)], helping students learn is only possible if teachers know about students' ideas beforehand. Studies about students' conceptions regarding the major topics in physics education (e.g. mechanics, electrodynamics, optics, thermodynamics), are numerous and well-documented. The topic radiation, however, has seen very little empirical research about students' ideas and misconceptions. Some research was conducted after the events of Chernobyl [P. Lijnse et al., International Journal of Science Education 12, 67 (1990); B. Verplanken, Environment and Behavior 21, 7 (1989)] and provided interesting insight into some of the students' preconceptions about radiation. In order to contribute empirical findings to this field of research, our workgroup has been investigating the conceptions students have about the topic radiation for several years [S. Neumann et al., Journal of Science Education and Technology 21, 826 (2012)]. We used children's drawings and conducted short follow-up interviews with students (9 - 12 years old) and more detailed interviews with 15-year-old students. Both studies were originally done before the events in Fukushima and replicated a year later. We not only asked students about their general associations and emotions regarding the term radiation, but also examined the students' risk perceptions of different types of radiation. Through the use of open-ended questions we were able to examine students' conceptions about different types of radiation (including nuclear) that could be a hindrance to student learning. Our results show that students

  2. Current Trends in Nuclear and Radiation Sensing

    International Nuclear Information System (INIS)

    McHugh, Harold R.; Quam, William

    2009-01-01

    This paper provides a brief overview of radiation detector history, a summary of the present state of the art, and some speculation on future developments in this field. Trends in the development of radiation detectors over the years are analyzed. Rapid progress in detection technology was experienced between WWII and the 1970s. Since then, fewer dramatic improvements have been seen. The authors speculate about the reasons for this trend and where the technology might take us in the next 20 years. Requirements for radiation detection equipment have changed drastically since 9/11; this demand is likely to accelerate detector development in the near future

  3. Nuclear radiation in warfare. A SIPRI publication. Strahlungswirkungen beim Einsatz von Kernwaffen. Eine SIPRI-Publikation

    Energy Technology Data Exchange (ETDEWEB)

    Rotblat, J.

    1986-01-01

    The subject is covered in chapters, entitled: introduction; digest of nuclear weaponry (characteristics of nuclear weapons; effects of nuclear weapons other than ionizing radiation (fire-ball, fall-out, thermal radiation, blast wave, electromagnetic pulse); the nuclear arms race; war scenarios; biological effects of radiations on man (radiation doses; natural sources of radiation; acute effects of radiation; long-term somatic effects; genetic effects; factors affecting the biological response to radiation; internal exposure; synergistic effects; protection against radiation effects); radiations from nuclear explosions (initial radiation; fall-out; effects of fall-out on animal and plant life; contamination of water and food supplies by fall-out); radiation casualties in a nuclear war; effectiveness of civil defence; other warlike uses of radiation (attacks on civilian nuclear power installations; radiological warfare; terrorist activities); conclusion.

  4. Occupational radiation exposure in nuclear medicine

    International Nuclear Information System (INIS)

    Gloebel, B.; Muth, H.; Keller, K.D.; Hector, G.; Lehnen, H.

    1982-01-01

    In a large hospital (University Hospital, Homburg/Saar, 2000 beds) the use of radionuclides was determined with the aim of a balance of the radionuclide flow through the clinic and the resulting radiation exposure for the persons involved. (author)

  5. Data for radiation protection and nuclear data

    International Nuclear Information System (INIS)

    Yamaguchi, Yasuhiro; Endo, Akira; Sakamoto, Yukio

    2001-01-01

    Various conversion coefficients have been used in external and internal dosimetry in radiation protection practices. Radiation doses in the human body cannot be directly measured in general situation and the conversion coefficient has been used to correlate the human body dose with physical quantities such as radioactivity, particle fluence and other dosimetric quantities to be used to describe the radiation field. Fluence-to-organ dose conversion coefficients have been calculated using Monte Carlo radiation transport codes in conjunction with an anthropomorphic mathematical phantom. Neutron and photon interaction cross-section libraries are indispensable for these calculations. ICRP Publication 74 gives tables of conversion coefficients for estimation of organ doses and effective dose for photons, neutrons and electrons. Based on these results, shielding calculation parameters have been prepared for simple and easy dose estimation in radiation facilities. Dose factors, organ doses and effective dose per unit intake of radionuclide, have been also calculated for internal dosimetry purpose. ICRP Publications 68 and 72 give tables of dose factors for a variety of radionuclides. Revision of radiation data library has been made to reflect updated information on radionuclides to internal dosimetry. (author)

  6. Environmental radiation monitoring around Korea nuclear fuel company

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Ho; Lee, Chang Woo; Choi, Gyun Sik; Lee, Won Yun; Park, Hyu Gok; Park, Do Won [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-01-01

    Environmental Radiation Monitoring was carried out with measurement of environmental radiation and environmental radioactivity analysis around Korea Nuclear Fuel Company. Environmental Radiation rates measured by portable ERM and accumulated dose rates measured by TLD were on the same level as those measured in the previous years. Total alpha and beta concentrations in the air particulates showed the similar values in all sampling points. The concentration of uranium isotopes in soils and underground waters were measured similar to natural uranium values. The concentration of uranium isotopes in surface waters and sediments around the nuclear facilities were somewhat higher than those from reference site. The concentrations of uranium isotopes in rain water and foods such as rices and vegetables were similar to natural uranium level, the environment around the nuclear facilities has been contaminated only to an insignificant extent. It is estimated that the environmental impact resulting from the operation of KNFC in 2001 was negligible. 31 refs., 30 figs., 41 tabs. (Author)

  7. Discussions about nuclear and radiation risk information communication

    International Nuclear Information System (INIS)

    Yang Bo; Wang Erqi; Peng Xianxun

    2013-01-01

    This paper described the definition and the objective of risk communication and the development of the risk communication research. It stated that how to establish a trustworthy relationship with public and the 8 aspects that should be done for keeping the relationship. With the analysis of the cognition and the influencing of the nuclear and radiation risk, this article figured out the factors which could influence the cognition of public on nuclear and radiation risk. Moreover, it explained the principles for enhancing the efficiency of the risk communication and the specific works in each phase of the risk communication. Finally, the suggestions for the development of the risk communication of the nuclear and radiation in China had been provided. (authors)

  8. Radiation exposure from nuclear medicine studies in children

    International Nuclear Information System (INIS)

    Hach, A.; Reber, H.; Hahn, K.

    1994-01-01

    Nuclear medical examinations of children have to be performed with special regard to the problems of radiation protection because of the high radiation sensitivity esp. of infants and young children. The present contribution describes how any unnecessary radiation exposure can be avoided by the correct choice and planning of a nuclear medical study, by using the appropriate radiopharmaceutical as well as by the exact calculation of the amount of activity applied, depending on body surface resp. body weight of the child. A technically optimized method which employs the best technical equipment and personnel, being specially trained for working with children, are important conditions to achieve optimal results of nuclear medical tests. Due to the difficulties of direct dose measurements, large variations in the biokinetic behaviour of radiopharmaceuticals and the restriction to standard phantoms, individual dose calculations or dose estimations in pediatrics cause great problems. This is reflected by often large variations of dosimetrical data given in the literature. (orig.) [de

  9. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1981-05-01

    The current knowledge of the carcinogenic effect of radiation in man is considered. The discussion is restricted to dose-incidence data in humans, particularly to certain of those epidemiological studies of human populations that are used most frequently for risk estimation for low-dose radiation carcinogenesis in man. Emphasis is placed solely on those surveys concerned with nuclear explosions and medical exposures

  10. Role of visualization of nuclear radiation in public education on atomic energy. Visualization of natural nuclear radiation using a cloud chamber

    International Nuclear Information System (INIS)

    Kaneko, Junichi H.; Fujita, Fumiyuki; Narabayashi, Tadashi

    2008-01-01

    Nuclear radiation is indispensable tool, i.e., medical diagnostic systems and industrial nondestructive measurement systems, for our life. On the other hand, ordinary people sometimes have bad image for nuclear radiation. To improve this undesirable situation, many individuals and groups keep holding public educational meeting on nuclear radiation. For this purpose, visualization of natural nuclear radiation by a cloud chamber is very effective way; participants feel existence of nuclear radiation directly. In this talk, public educational activity of Hokkaido University and Japan Atomic Energy Society Hokkaido branch will be reported. (author)

  11. Radiation effects on organic materials in nuclear plants. Final report

    International Nuclear Information System (INIS)

    Bruce, M.B.; Davis, M.V.

    1981-11-01

    A literature search was conducted to identify information useful in determining the lowest level at which radiation causes damage to nuclear plant equipment. Information was sought concerning synergistic effects of radiation and other environmental stresses. Organic polymers are often identified as the weak elements in equipment. Data on radiation effects are summarized for 50 generic name plastics and 16 elastomers. Coatings, lubricants, and adhesives are treated as separate groups. Inorganics and metallics are considered briefly. With a few noted exceptions, these are more radiation resistant than organic materials. Some semiconductor devices and electronic assemblies are extremely sensitive to radiation. Any damage threshold including these would be too low to be of practical value. With that exception, equipment exposed to less than 10 4 rads should not be significantly affected. Equipment containing no Teflon should not be significantly affected by 10 5 rads. Data concerning synergistic effects and radiation sensitization are discussed. The authors suggest correlations between the two effects

  12. Nuclear radiation-warning detector that measures impedance

    Science.gov (United States)

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  13. Nuclear medicine and the environment: radiation interactions

    International Nuclear Information System (INIS)

    Schmelter, R.F.

    1986-01-01

    The effect of radiation interactions on the environment may be considered from the perspective of the purely physical phenomena occurring or from the effects the interactions produce in organized biological systems. The physical processes by which radiation interacts with the environment are quite well defined. Although these processes differ depending upon the nature (either electromagnetic or particulate) of the primary radiation, the ultimate result is the production in the medium of high-speed, secondary charged particles. Some of the energy of these particles is absorbed by the medium, while a portion may be lost as bremsstrahlung. The energy that is absorbed produces excitation and ionization, which can be disruptive to biological systems. The effects produced by ionizing radiations at the biochemical, cellular, and organ level are less well defined. Nevertheless, available data indicate that certain generalizations are possible. For example, given the ubiquitous nature of water in tissues, macromolecules, regardless of their structural types, tend to serve as acceptors of the energy and products of water radiolysis. However, a deeper insight into the consequences of irradiation requires an understanding of the interplay of such parameters as the type and energy of the radiation, and the dose and rate of its application. Furthermore, at the cellular level, the type and age of the irradiated cells, the concentration of oxygen in their environment, and their cell-cycle phase are all important factors in determining the consequences of irradiation. 72 references

  14. Recent advances in MEMS radiation detectors for improving radiation safety in nuclear reactors

    International Nuclear Information System (INIS)

    Bhisikar, Abhay

    2016-01-01

    MEMS (micro-electro-mechanical-system) is a core technology that leverages integrated circuit (IC) fabrication technology, builds ultra-miniaturized components and, enables radical new system applications. When considering MEMS radiation detectors; they are the specific micromechanical structures which are designed to sense doses of radiations. The present article reviews the most recent progress made in the domain of MEMS ionizing radiation sensors at international level for nuclear reactors which can be relevant to Indian context. (author)

  15. Radiation shielding activities at the OECD/Nuclear Energy Agency

    International Nuclear Information System (INIS)

    Sartori, Enrico; Vaz, Pedro

    2000-01-01

    The OECD Nuclear Energy Agency (NEA) has devoted considerable effort over the years to radiation shielding issues. The issues are addressed through international working groups. These activities are carried out in close co-ordination and co-operation with the Radiation Safety Information Computational Center (RSICC). The areas of work include: basic nuclear data activities in support of radiation shielding, computer codes, shipping cask shielding applications, reactor pressure vessel dosimetry, shielding experiments database. The method of work includes organising international code comparison exercises and benchmark studies. Training courses on radiation shielding computer codes are organised regularly including hands-on experience in modelling skills. The scope of the activity covers mainly reactor shields and spent fuel transportation packages, but also fusion neutronics and in particular shielding of accelerators and irradiation facilities. (author)

  16. Environmental radiation monitoring system in nuclear power station

    International Nuclear Information System (INIS)

    Matsuoka, Sadazumi; Tadachi, Katsuo; Endo, Mamoru; Yuya, Hiroshi

    1983-01-01

    At the time of the construction of nuclear power stations, prior to their start of operation, the state of environmental radiation must be grasped. After the start of the power stations, based on those data, the system of environmental radiation monitoring is established. Along with the construction of Kashiwazaki-Kariwa Nuclear Power Station, The Tokyo Electric Power Co., Inc. jointly with Fujitsu Ltd. has developed a high-reliability, environmental radiation monitoring system, and adopted ''optical data highways'' using optical fiber cables for communication. It consists of a central monitoring station and 11 telemeter observation points, for collecting both radiation and meteorological data. The data sent to the central station through the highways are then outputted on a monitoring panel. They are analyzed with a central processor, and the results are printed out. (Mori, K.)

  17. Microstructural characterization of radiation effects in nuclear materials

    CERN Document Server

    2017-01-01

    Microstructural Characterization of Radiation Effects in Nuclear Materials provides an overview into experimental techniques that can be used to examine those effects (both neutron and charged particle) and can be used by researchers, technicians or students as a tool to introduce them to the various techniques. The need to examine the effect of radiation on materials is becoming increasingly important as nuclear energy is emerging as a growing source of renewable energy. The book opens with a discussion of why it is important to study the effects of radiation on materials and looks at current and future reactor designs and the various constraints faced by materials as a result of those designs. The book also includes an overview of the radiation damage mechanisms. The next section explores the various methods for characterizing damage including transmission electron microscopy, scanning transmission electron microscopy, analytical electron microscopy, electron backscatter diffraction, atom probe tomography,...

  18. Radiation protection in the Czechoslovak nuclear power plants

    International Nuclear Information System (INIS)

    Singer, J.; Koc, J.; Hynek, J.; Trousil, J.

    1987-01-01

    The radiation monitoring by means of the central information system and of autonomous, portable and laboratory devices as well as a brief characteristic of the nuclear power plant radiation fields are described. The new personal dosimetric film and thermoluminescent badges and the method (including the block diagram) for personal dose evaluation are also introduced. Internal contamination monitoring is performed by means of a whole-body counter and excreta sample analysis. Monitoring the influence of effluents from nuclear power plants on environment in Czechoslovakia is based on significant radionuclide measurements in ventilation stacks and in the environment, also by means of the telemetric system, all in connection with mathematical models. (author)

  19. Education in radiation and nuclear technology. Ready for the future?

    International Nuclear Information System (INIS)

    Schoenmuth, T.; Alt, S.; Wodarczack, F.; Heidrich, U.; Kratzsch, A.

    2013-01-01

    The revision of teaching strategies for the field of study 'Radiation and Nuclear Engineering' at the University of Applied Sciences Zittau/Goerlitz is an attractive design with excellent career opportunities to choose from. Thus, the students benefit not least from solid foundations of the general power engineering undergraduates. Additionally it should be noted that on one hand the current developments (e.g. regenerative power generation, power transmission system requirements and energy storage) are increasingly in demand. On the other hand the use of radiation and nuclear installations and facilities is essential - but this will respectively by social constraints currently not represented or shown as an attractive career field. (orig.)

  20. Electronic detection of nuclear radiations; Deteccion Electronica de radiaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Campos, J

    1972-07-01

    This report is the first draft of one of the chapters of a book being prepared under the title: Topics on Practical Nuclear Physics. It is published as a report because of i ts immediate educational value and in order to include in its final draft the suggestions of the readers. (Author)

  1. Report on nuclear and radiation safety in Slovenia in 2000

    International Nuclear Information System (INIS)

    Lovincic, D.

    2001-09-01

    The Slovenian Nuclear Safety Administration (SNSA), in co-operation with the Health Inspectorate of the Republic of Slovenia, the Administration for Civil Protection and Disaster Relief and the Ministry of the Interior, has prepared a Report on Nuclear and Radiation Safety in the Republic of Slovenia for 2000. This is one of the regular forms of reporting on the work of the Administration to the Government and National Assembly of the Republic of Slovenia.

  2. Nuclear and radiation safety in Slovenia. Annual report 2000

    International Nuclear Information System (INIS)

    Lovincic, D.

    2001-09-01

    The Slovenian Nuclear Safety Administration (SNSA), in co-operation with the Health Inspectorate of the Republic of Slovenia, the Administration for Civil Protection and Disaster Relief and the Ministry of the Interior, has prepared a Report on Nuclear and Radiation Safety in the Republic of Slovenia for 2000. This is one of the regular forms of reporting on the work of the Administration to the Government and National Assembly of the Republic of Slovenia. (author)

  3. The computerized radiation control system for the nuclear power plant

    International Nuclear Information System (INIS)

    Hunamoto, H.; Sato, T.; Taniguchi, K.

    1993-01-01

    Major works of Radiation control in nuclear power plant consist of occupational exposure control, radiation monitoring of working areas and surveillance of monitoring equipment, environmental monitoring and so on. Since a large amount of data will be generated from these works, therefore use of high performance computers will be indispensable. The systematization is presently being advanced in The Japan Atomic Power Company from this viewpoint and the project is being realized smoothly. The actual state is introduced

  4. Radiation protection philosophy and control of radiation doses from nuclear waste disposal

    International Nuclear Information System (INIS)

    Bryant, P.M.

    1981-01-01

    The author has reviewed the concurrent developments in each of the three decades from 1950 to the present day in radiation protection philosophy and in the control of radioactive waste disposals, with particular reference to the control of radiation doses to the public from disposals from nuclear installations. In addition, the author has summarised the OECD Nuclear Energy Agency's optimisation study which is a generic analysis of the quantitative factors pertinent to the management of tritium, carbon-14, krypton-85 and iodine-129, identified as being the radionuclides in fuel cycle effluents likely to be significant in the radiation exposure of large populations. (author)

  5. Calculation of heat generation due to nuclear radiation in nuclear reactors

    International Nuclear Information System (INIS)

    Torres, L.M.R.; Gomes, I.C.; Maiorino, J.R.

    1986-01-01

    The study is performed for caculating nuclear heating due to the interaction of neutrons and gamma-rays with matter. Modifications were implemented in the ANISN code, that solves the one-dimensional transport equation using the discrete ordinate method, to include nuclear heating calculations. Tests of the implemented modifications were performed in problems of nuclear heating due to radiation energy deposition in a fusion reactor. (Author) [pt

  6. Innovation research on the safety supervision system of nuclear and radiation safety in Jiangsu province

    International Nuclear Information System (INIS)

    Zhang Qihong; Lu Jigen; Zhang Ping; Wang Wanping; Dai Xia

    2012-01-01

    As the rapid development of nuclear technology, the safety supervision of nuclear and radiation becomes very important. The safety radiation frame system should be constructed, the safety super- vision ability for nuclear and radiation should be improved. How to implement effectively above mission should be a new subject of Provincial environmental protection department. Through investigating the innovation of nuclear and radiation supervision system, innovation of mechanism, innovation of capacity, innovation of informatization and so on, the provincial nuclear and radiation safety supervision model is proposed, and the safety framework of nuclear and radiation in Jiangsu is elementally established in the paper. (authors)

  7. Radiation leakage in nuclear ship 'MUTSU'

    International Nuclear Information System (INIS)

    Ando, Yoshio; Miyasaka, Shun-ichi; Takeuchi, Kiyoshi.

    1975-01-01

    Associated with the radiation leakage in MUTSU occurred in September 1974, this report reviews the shielding design for MUTSU, radiation measurement and inspection activities by a survey group, and 2 dimensional analysis on the behavior of fast neutrons to shielding based on Ssub(N) codes. In the first part, the purpose and the structure of the primary and the secondary shields of MUTSU are briefly illustrated. In the second part, the progress of the series of affairs is explained, starting from zero power criticality experiment, through discovery of radiation leakage in output-increasing test, sending of a survey group for various measurement and inspection, and finally to the conclusion drawn by the survey group. In the third part, various numerical analyses performed to investigate into the leakage are illustrated with their results. The transport codes used were ANISN, TWOTRAN, SPAN, and PALLAS-2DCY. As a result of those inspection and calculation, it was found that the radiation leakage was due to fast neutrons coming through the gap between the reactor vessel and the primary shield. (Aoki, K.)

  8. Initial Human Response to Nuclear Radiation

    Science.gov (United States)

    1982-04-01

    symptomatic response to radiation. In the second phase, the models will be used to infer performance effects. DNA staff members Cyrus Knowles and David ...P. Setty ATTN: K. Schwartz ATTN: J. NcGahan Kamn Tempo System Planning Corp ATTN: R. Miller ATTN: J. JonesATTN: G. Perks Kamen Tempo AiT: S. Shrier

  9. Estimates of the radiation environment for a nuclear rocket engine

    International Nuclear Information System (INIS)

    Courtney, J.C.; Manohara, H.M.; Williams, M.L.

    1992-01-01

    Ambitious missions in deep space, such as manned expeditions to Mars, require nuclear propulsion if they are to be accomplished in a reasonable length of time. Current technology is adequate to support the use of nuclear fission as a source of energy for propulsion; however, problems associated with neutrons and gammas leaking from the rocket engine must be addressed. Before manned or unmanned space flights are attempted, an extensive ground test program on the rocket engine must be completed. This paper compares estimated radiation levels and nuclear heating rates in and around the rocket engine for both a ground test and space environments

  10. The design of nuclear radiation measuring instrument of embedded network

    International Nuclear Information System (INIS)

    Zhang Huaiqiang; Ge Liangquan; Xiong Shengqing

    2009-01-01

    The design and realization of nuclear radiation measuring instrument is introduced. Due to the current nuclear instrument often used serial interface to communicate the PC, it is widely used for simple design and easy operation. However, as the demand of remote data acquisition and the call of sharing resources, the design of embedded the TCP/IP protocol stack into MCU, it may send the nuclear signal in Internet. Some devices that link each other with the network can be networked. The design is not only realizing remote data acquisition and sharing resources, but also reducing costs and improving the maintainability of the system. (authors)

  11. Telephone consultations on exposure to nuclear disaster radiation

    International Nuclear Information System (INIS)

    Yashima, Sachiko; Chida, Koichi

    2014-01-01

    The Fukushima nuclear disaster occurred on March 11, 2011. For about six weeks, I worked as a counselor for phone consultations regarding radiation risk. I analyzed the number of consultations, consultations by telephone, and their changing patterns with elapse of time, to assist with consultations about risk in the future. There were a large number of questions regarding the effects of radiation, particularly with regard to children. We believe that counseling and risk communication are the key to effectively informing the public about radiation risks. (author)

  12. Some problems concerning the radiation protection in nuclear power stations

    International Nuclear Information System (INIS)

    Bozoky, L.

    1977-01-01

    The appearance and fast spreading of the nuclear power stations raised new and difficult questions in connection with the theoretical bases of radiation protection. The new standpoint of the International Commission on Radiological Protection is that both the workers at a pile and the inhabitants take less risk because of ionizing radiation than they usually take in everyday life. The maximum dose which can be permitted remained 5 rem/year for those who professionally deal with ionizing radiation and 0.5 rem/year for the groups in special situation. (V.N.)

  13. Radiation doses to patients from nuclear medicine examinations

    International Nuclear Information System (INIS)

    Boehm, K.; Boehmova, I.

    2014-01-01

    Public Health Authority of the Slovak Republic, Bratislava The exposure of the population to ionizing radiation is rising rapidly, nearly exclusively due to increasing medical use of radiation, including diagnostic methods of nuclear medicine. In 2012 Public health authority of the Slovak republic (PHA SR) performed a survey about the population exposure from nuclear medicine procedures. The primary objectives of this survey were to assess the frequency of different nuclear medicine procedures, determine the average activities administered by nuclear medicine procedures and compare them with the national diagnostic reference levels and determine the annual collective effective dose to the Slovak population from nuclear medicine. The effective dose calculation was based on the methodology of the ICRP32, ICRP80 and ICRP106. In Slovak republic are 11 nuclear medicine departments. The collected data of activities administered by different procedures correspond to 100 % of nuclear medicine departments. The total number of procedures included in the study was 36 250. The most commonly performed procedure was bone scintigraphy (35.9%), followed by lung perfusion and ventilation scintigraphy (17.0%), static and dynamic renal scintigraphy (13.0%), whole-body positron emission tomography of tumors with PET radiopharmaceuticals (11.6%), myocardial perfusion (8.8%), thyroid scintigraphy (6.2%), parathyroid scintigraphy (2.1%), scintigraphy of tumors (2.1%), scintigraphy of the liver and spleen (0.8%), brain perfusion (0.7%) and examination of the gastrointestinal system (0.3%). (authors)

  14. Radiation Detection System for Prevention of Radiological and Nuclear Terrorism

    International Nuclear Information System (INIS)

    Kwak, Sung-Woo; Yoo, Ho-Sik; Jang, Sung-Sun; Kim, Jae-Kwang; Kim, Jung-Soo

    2007-01-01

    After the September 11 terrorist attack, the threat of a potential for a radiological or nuclear terrorist attack became more apparent. The threats relating to radiological or nuclear materials include a Radiological Dispersion Device (RDD), an Improved Nuclear Device (IND) or a State Nuclear Device (such as a Soviet manufactured suitcase nuclear weapon). For more effective countermeasures against the disaster, multilayer protection concept - prevention of smuggling of radioactive or nuclear material into our country through seaports or airports, detection and prevention of the threat materials in transit on a road, and prevention of their entry into a target building - is recommended. Due to different surrounding circumstances of where detection system is deployed, different types of radiation detection systems are required. There have been no studies on characteristics of detection equipment required under Korean specific conditions. This paper provides information on technical requirements of radiation detection system to achieve multi-layer countermeasures for the purpose of protecting the public and environment against radiological and nuclear terrorism

  15. Effective nuclear and radiation emergency planning

    International Nuclear Information System (INIS)

    Grlicarev, I.

    2000-01-01

    The paper describes how to develop a balanced emergency plan, which realistically reflect the interfaces with various emergency organizations. The use of resources should be optimized with focusing on the most likely accidents. The pitfalls of writing an emergency plan without ''big picture'' in mind should be avoided. It is absolutely essential to have a clear definition of responsibilities and to have proper understanding of the tasks in between all counterparts in the emergency preparedness. Special attention should be paid to off-site part of the nuclear emergency preparedness, because the people involved in it usually receive less training than the on-site personnel and they are not specialized for nuclear emergencies but deal with all sorts of emergencies. (author)

  16. Report on nuclear and radiation safety in Slovenia in 2001

    International Nuclear Information System (INIS)

    Janzekovic, H.

    2002-01-01

    The Slovenian Nuclear Safety Administration (SNSA) has prepared a Report on Nuclear and Radiation Safety in Slovenia for 2001 as a regular form of reporting to the citizens of the Republic of Slovenia on the activities related to the nuclear fuel cycle and the use of the ionising sources. The report has been prepared in collaboration with the Health Inspectorate of the Republic of Slovenia (HIRS), the Administration for Civil Protection and Disaster Relief (ACPDR), the Pool for Assurance and Reinsurance of Liability for Nuclear Damage and the Pool for Decommissioning of the NPP Krsko and for the Radwaste Disposal from the NPP Krsko. The reports of the Agency for Radioactive Waste Management (ARAO), the Institute of Oncology, the Department of Nuclear Medicine of the Medical Centre Ljubljana and the technical support organisations are also included. The SNSA made no crucial modifications to the reports of the above mentioned institutions. The modifications were made just facilitate a reading of the reports.

  17. Nuclear and radiation safety in Slovenia. Annual report 2001

    International Nuclear Information System (INIS)

    Janzekovic, H.

    2002-01-01

    The Slovenian Nuclear Safety Administration (SNSA) has prepared a Report on Nuclear and Radiation Safety in Slovenia for 2001 as a regular form of reporting to the citizens of the Republic of Slovenia on the activities related to the nuclear fuel cycle and the use of the ionising sources. The report has been prepared in collaboration with the Health Inspectorate of the Republic of Slovenia (HIRS), the Administration for Civil Protection and Disaster Relief (ACPDR), the Pool for Assurance and Reinsurance of Liability for Nuclear Damage and the Pool for Decommissioning of the NPP Krsko and for the Radwaste Disposal from the NPP Krsko. The reports of the Agency for Radioactive Waste Management (ARAO), the Institute of Oncology, the Department of Nuclear Medicine of the Medical Centre Ljubljana and the technical support organisations are also included. The SNSA made no crucial modifications to the reports of the above mentioned institutions. The modifications were made just facilitate a reading of the reports. (author)

  18. Micronuclei Frequencies in Lymphocytes of Nuclear Malaysia Radiation Workers

    International Nuclear Information System (INIS)

    Mohd Rodzi Ali; Aisyah Mohd Yusof; Rahimah Abdul Rahim; Juliana Mahamat Napiah; Yahaya Talib; Shafii Khamis

    2016-01-01

    The objective of the study is to investigate the frequency of cell aberration in lymphocytes of the Nuklear Malaysia radiation workers. A total of 58 blood samples were collected from the radiation workers during their routine medical examination. The donor age range is between 23 to 58 years, 31 male and 27 female. Blood samples were cultured according to the standard protocol recommended by the International Atomic Energy Agency. The mean micronuclei (MN) is 23.5 ± 0.9 MN/ 1000 binucleate, with the median value of 24 MN/ 1000 binucleate. The lowest number of MN was 9, and the highest was 43. There is no correlation between the number of MN in blood and yearly cumulative dose for radiation workers. The results indicate the MN expression due to small radiation exposure is almost negligible in Nuclear Malaysia radiation workers. (author)

  19. Physics contributions to radiation protection in nuclear power plants

    International Nuclear Information System (INIS)

    Krueger, F.W.

    1980-01-01

    Physical research and physical methods can essentially contribute to radiation protection in nuclear power plants. With their aid, properties of radiation sources can be determined, and calculations of radiation shields can be performed. In the present paper, such tasks are analyzed, the state of the art of their solution is evaluated, and trends of further work are shown. Focal points of the present study are the calculation of properties of radiation sources outside the reactor (fission products, activated corrosion products, decontamination facilities for contaminated media), exact and engineering methods for calculating radiation fields also in inhomogeneous shields, and classification of concretes for gamma-ray shielding. Objectives, possibilities, and problems of standardization of such activities are discussed. (author)

  20. Nuclear radiation detection with superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Kurakado, Masahiko

    1984-01-01

    Since the gap energy of superconductors is as small as 1 meV and 1/1000 of that of semiconductors, it is expected that the number of electron-hole pairs produced in superconductors by radiation is several thousands times as many as the pairs in semiconductors. Therefore, high sensitivity and high resolution radiation detectors may be manufactured by using superconductors. A computer simulation of the cascade excitation process of electrons was carried out. The experimental study was performed by using Sn junctions. The variation of transient voltage was measured by the constant current method. The alpha particles from Po-210 were measured, and the generation of quasi particles was confirmed. The relaxation time of signals was measured by using pulsed laser beam. It was found that the superconductors just after the incidence of radiation became nonequilibrium. The typical alpha spectra were obtained by cooling the superconductors to 0.32 K. The detector is still under development. The problem is leakage current. (Kato, T.)

  1. Considerations on radiation protection and accidents in nuclear medicine

    International Nuclear Information System (INIS)

    Lima, Carla Flavia de; Avelar, Artur Canella; Campos, Tarcisio P.R.

    2001-01-01

    The present study presents the radiation protection in the services of nuclear medicine in relation to the design of the services, manipulation of sources, cares with the patient, accomplishment of procedures and definition of accidents and incidents; besides approaching the CNEN requirements

  2. Nuclear data for radiation damage assessment and related safety aspects

    International Nuclear Information System (INIS)

    Kocherov, N.P.

    1989-12-01

    The IAEA Advisory Group Meeting on Nuclear Data for Radiation Damage Assessment and Related Safety Aspects was held at the IAEA Headquarters in Vienna, 19-22 September 1989. This report contains the conclusions and recommendations of this meeting. The papers which the participants prepared for and presented at the meeting will be published as an IAEA Technical Document. (author)

  3. Radiation protection courses in the Milan Copic Nuclear Training Centre

    International Nuclear Information System (INIS)

    Kozelj, M.; Stritar, A.

    1998-01-01

    We have briefly described the legal framework for the radiation protection training in Slovenia. The history of that activity at the Milan Copic Nuclear Training Center in Ljubljana is than described with the detailed description and summary of all performed courses.(author)

  4. Australian Radiation Protection and Nuclear Safety Regulations 1999

    International Nuclear Information System (INIS)

    1999-01-01

    This document contains statutory rules made under the Australian Radiation and Nuclear Safety Act 1998 defining how specified standards to be observed, practices and procedures to be followed and measures to be taken by controlled persons in relation to activities relating to controlled facilities, as well as in relation to dealings with controlled apparatus or controlled material

  5. Australian Radiation Protection and Nuclear Safety Regulations 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    This document contains statutory rules made under the Australian Radiation and Nuclear Safety Act 1998 defining how specified standards to be observed, practices and procedures to be followed and measures to be taken by controlled persons in relation to activities relating to controlled facilities, as well as in relation to dealings with controlled apparatus or controlled material

  6. Single-chip microcomputer application in nuclear radiation monitoring instruments

    International Nuclear Information System (INIS)

    Zhang Songshou

    1994-01-01

    The single-chip microcomputer has advantage in many respects i.e. multiple function, small size, low-power consumption,reliability etc. It is widely used now in industry, instrumentation, communication and machinery. The author introduced usage of single-chip microcomputer in nuclear radiation monitoring instruments for control, linear compensation, calculation, changeable parameter presetting and military training

  7. Non-combustible nuclear radiation shields with high hydrogen content

    International Nuclear Information System (INIS)

    Hall, W.C.; Peterson, J.M.

    1978-01-01

    The invention relates to compositions, methods of production, and uses of non-combustible nuclear radiation shields, with particular emphasis on those containing a high concentration of hydrogen atoms, especially effective for moderating neutron energy by elastic scatter, dispersed as a discontinuous phase in a continuous phase of a fire resistant matrix

  8. The IAEA safety standards for radiation, waste and nuclear safety

    International Nuclear Information System (INIS)

    Gonzalez, Abel J.

    1997-01-01

    This paper presents a brief description of the standards for radiation, waste and nuclear safety established by the International Atomic Energy Agency (IAEA). It provides a historical overview of their development and also summarizes the standards' current preparation and review process. The final paragraphs offer an outlook on future developments. (author)

  9. Design of instrument for monitoring nuclear radiation and baneful gas

    International Nuclear Information System (INIS)

    Xiong Jianping; Chen Jun; Zhu Wenkai

    2006-01-01

    Counters and ionization chambers are applied to sensors, and microprocessor based on ARM IP is applied to center controller in the instrument. It is achieved to monitor nuclear radiation and baneful gas in an instrument. The instrument is capable of LCD displaying, menu operating and speech alarming. (authors)

  10. Research on international cooperation for nuclear and radiation safety

    International Nuclear Information System (INIS)

    Cheng Jianxiu

    2013-01-01

    This paper describes the importance and related requirements of international cooperation on nuclear and radiation safety, analyzes the current status, situation and challenges faced, as well as the existing weakness and needs for improvement, and gives some proposals for reference. (author)

  11. Towards an international regime on radiation and nuclear safety

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    2000-01-01

    The 1990s have seen the de facto emergence of what might be called an 'international regime on nuclear and radiation safety'. It may be construed to encompass three key elements: legally binding international undertakings among States; globally agreed international safety standards; and provisions for facilitating the application of those standards. While nuclear and radiation safety are national responsibilities, governments have long been interested in formulating harmonised approaches to radiation and nuclear safety. A principal mechanism for achieving harmonisation has been the establishment of internationally agreed safety standards and the promotion of their global application. The development of nuclear and radiation safety standards is a statutory function of the IAEA, which is unique in the United Nations system. The IAEA Statute expressly authorises the Agency 'to establish standards of safety' and 'to provide for the application of these standards'. As the following articles and supplement in this edition of the IAEA Bulletin point out, facilitating international conventions; developing safety standards; and providing mechanisms for their application are high priorities for the IAEA. (author)

  12. Medical intervention in case of nuclear or radiation event

    International Nuclear Information System (INIS)

    Blanc, J.; Bourguignon, M.; Carli, P.; Carosella, E.; Challeton de Vathaire, C.; Court, L.; Ducousso, R.; Facon, A.; Fleutot, J.B.; Goldstein, P.; Gourmelon, P.; Herbelet, G.; Kolodie, H.; Lallemand, J.; Martin, J.C.; Menthonnex, P.; Masse, R.; Origny, S.; Pasnon, J.; Peton Klein, D.; Rougy, C.; Schoulz, D.; Romet, G.; Telion, C.; Vrousos, C.

    2002-01-01

    This guide aims to be a practical tool for intervenors in case of nuclear or radiation accident. It proposes many sheets to favor the reactivity and the implementing of adapted measures. It concerns the course of action to take in case of irradiation accident or contamination and the reception in medical structure or a hospital. (A.L.B.)

  13. Radiation protection monitoring for #betta#-radiation at the Juelich Nuclear Research Centre

    International Nuclear Information System (INIS)

    Keller, M.; Heinzelmann, M.

    1983-01-01

    A complete system for radiation protection monitoring also includes #betta#-radiation monitoring. This requires suitable dose rate meters, personal dosemeters and last but not least detailed information about possible radiation exposure due to #betta#-radiation. Since there are at present no suitable #betta#-dosemeters available on the market yet, a large nuclear research centre such as the KFA Juelich, where radioactive substances are being handled by more than 1600 persons, has the task of developing and deploying suitable dosemeters. The centre's accomplishments in this area are described

  14. Reporting nuclear power plant operation to the Finnish Centre for Radiation and Nuclear Safety

    International Nuclear Information System (INIS)

    1997-01-01

    The Finnish Centre for Radiation and Nuclear safety (STUK) is the authority in Finland responsible for controlling the safety of the use of nuclear energy. The control includes, among other things, inspection of documents, reports and other clarification submitted to the STUK, and also independent safety analyses and inspections at the plant site. The guide presents what reports and notifications of the operation of the nuclear facilities are required and how they shall be submitted to the STUK. The guide does not cover reports to be submitted on nuclear material safeguards addressed in the guide YVL 6.10. Guide YVL 6.11 presents reporting related to the physical protection of nuclear power plants. Monitoring and reporting of occupational exposure at nuclear power plants is presented in the guide YVL 7.10 and reporting on radiological control in the environment of nuclear power plants in the guide YVL 7.8

  15. Provenance of nuclear radioactivity radiation and hazardous health risks

    International Nuclear Information System (INIS)

    Sakhuja, Geeta

    2016-01-01

    This assessment has an important consideration for nuclear energy upon the creation of radioactivity being generated and mobilized through various energy agencies. The term 'Radioactivity' or the rate of nuclear decay is measured in units called 'Becquerel' (Bq), where 1 Bq= 1 event (disintegration) per second. Another commonly used unit of radioactivity is the Curie (Ci), where 1 Ci = 3.70 x 10"1"0 Bq. Radiation is all around us. It is in our environment and has been since the earth was formed. As a result, life has evolved in the presence of significant levels of ionizing radiation. It comes from outer space (cosmic), ground (terrestrial) and even from within our own bodies. It is in the air we breathe, the food we eat, the water we drink, and the state of our wellbeing. However, the entire system is related to human and human-health issues. This paper examines the empirical evidence incorporated with human-made nuclear radioactivity from nuclear energy sources, especially while maintaining the viability of radioactive mechanisms, which may cause the uncontrolled highly dangerous harmful effects of radionuclides in human body and these radiations can even damage the DNA in the cells of people when exposed to it, because it is the DNA that passes on instructions for growth and development to the next generation. This, in turn, is the paradigm for the health risks of various sources of nuclear radioactivity. (author)

  16. The use of nuclear reactor in radiation biology

    International Nuclear Information System (INIS)

    Ujeno, Yowri

    1991-01-01

    The Kyoto University Reactor (KUR) is widely used not only in biology, but also in applied biology, today. These studies were surveyed in the present paper and the future possibility to use KUR in radiation biology was discussed. The researches on the effects of thermal neutrons on various normal tissues, the biological effects of neutrons except thermal neutrons, especially intermediate neutrons between thermal and high speed neutrons or cold neutrons, the adaptive response of cells to thermal neutron radiation, the application of nuclear reactor-produced radionuclides including 195m Pt to biology, and the mutation in botanical science and so on, should be continued using nuclear reactor. The necessity of nuclear reactor in biology and applied biology is emphasized. (author)

  17. Controlling occupational radiation exposure at operating nuclear power stations

    International Nuclear Information System (INIS)

    Dickson, H.W.; Oakes, T.W.; Shank, K.E.

    1977-01-01

    The historical development of the philosophy of keeping the radiation exposure of workers at light-water reactors as low as reasonably achievable (ALARA) is presented. A review is made of some of the ALARA activities of the Nuclear Regulatory Commission, the Energy Research and Development Administration, and various nuclear installations. Data compiled by the NRC show that routine and special maintenance at light-water reactors accounts for 72 percent of all occupational exposure at these sites. The role that Oak Ridge National Laboratory has taken in ALARA research is presented, with emphasis placed on a study of valve malfunctions at light-water reactors. The valve study indicates a trend toward decreasing valve reliability over the past few years. Finally a cost--benefit analysis of radiation dose reduction is discussed. The rationale for assigning a cost per man-rem based on the radiation exposure level that is encountered is presented

  18. Measurement of gamma radiation doses in nuclear power plant environment

    International Nuclear Information System (INIS)

    Bochvar, I.A.; Keirim-Markus, I.B.; Sergeeva, N.A.

    1976-01-01

    Considered are the problems of measuring gamma radiation dose values and the dose distribution in the nuclear power plant area with the aim of estimating the extent of their effect on the population. Presented are the dosimeters applied, their distribution throughout the controlled area, time of measurement. The distribution of gamma radiation doses over the controlled area and the dose alteration with the increase of the distance from the release source are shown. The results of measurements are investigated. The conclusion is made that operating nuclear power plants do not cause any increase in the gamma radiation dose over the area. Recommendations for clarifying the techniques for using dose-meters and decreasing measurement errors are given [ru

  19. Prospects for coherently driven nuclear radiation by Coulomb excitation

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Carroll, J.J.

    2006-01-01

    Possible experiments are discussed in which the Coulomb excitation of nuclear isomers would be followed by sequential energy release. The possibility of the coherent Coulomb excitation of nuclei ensconced in a crystal by channeled relativistic heavy projectiles is considered. The phase shift between neighbor-nuclei excitations can be identical to the photon phase shift for emission in forward direction. Thus, the elementary string of atoms can radiate coherently with emission of characteristic nuclear γ rays and the intensity of the radiation could be increased due to the summation of amplitudes. The Moessbauer conditions should be important for this new type of collective radiation that could be promising in the context of the γ-lasing problem

  20. Radiation and Thermal Ageing of Nuclear Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J [ORNL

    2014-01-01

    The radioactive decay of fission products and actinides incorporated into nuclear waste glass leads to self-heating and self-radiation effects that may affect the stability, structure and performance of the glass in a closed system. Short-lived fission products cause significant self-heating for the first 600 years. Alpha decay of the actinides leads to self-radiation damage that can be significant after a few hundred years, and over the long time periods of geologic disposal, the accumulation of helium and radiation damage from alpha decay may lead to swelling, microstructural evolution and changes in mechanical properties. Four decades of research on the behavior of nuclear waste glass are reviewed.

  1. Environmental radiation monitoring around Korea Nuclear Fuel Company

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Ho; Lee, Chang Woo; Choi, Yong Ho; Cho, Yueng Hyun; Choi, Gyun Sik [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    Environmental Radiation Monitoring was carried out with measurement of environmental radiation and environmental radioactivity analysis around Korea Nuclear Fuel Company. Environmental Radiation rates measured by Portable ERM and accumulated dose rates measured by TLD were same level compared with past years. Total alpha and beta concentrations in the air particulates showed the similar values in all sampling points. The concentration of uranium isotopes in soils and underground waters were measured similar to natural uranium values. The concentration of uranium isotopes in surface waters and sediments decreased with increasing distances from the point of discharge. The concentrations of uranium isotopes in rain water and foods such as rices and vegetables were not detected or measured similar to natural uranium level. Hence, the environment around the nuclear facilities in Korea has been contaminated only to an insignificant extent, although a small amount of disequilibated uranium was detected within 4 km downstream of the point of discharge of KNFC. 31 refs., 26 figs., 42 tabs. (Author)

  2. Calibration of radiation monitors at nuclear power plants

    International Nuclear Information System (INIS)

    Boudreau, L.; Miller, A.D.; Naughton, M.D.

    1994-03-01

    This work was performed to provide guidance to the utilities in the primary and secondary calibration of the radiation monitoring systems (RMS) installed in nuclear power plants. These systems are installed in nuclear power plants to monitor ongoing processes, identify changing radiation fields, predict and limit personnel radiation exposures and measure and control discharge of radioactive materials to the environment. RMS are checked and calibrated on a continuing basis to ensure their precision and accuracy. This report discusses various approaches towards primary and secondary calibrations of the RMS equipment in light of accepted practices at typical power plants and recent interpretations of regulatory guidance. Detailed calibration techniques and overall system responses, trends, and practices are discussed. Industry, utility, and regulatory sources were contacted to create an overall consensus of the most reasonable approaches to optimizing the performance of this equipment

  3. Radiation dosimetry for medical management in nuclear/radiological disaster

    International Nuclear Information System (INIS)

    Narayan, Pradeep

    2012-01-01

    ; quartz, sand, stones and man made materials such as glasses, bricks, tiles and ceramics from the close proximity of exposed individual can be examined using TL techniques for estimating the radiation doses to the public. TL techniques have been employed to these materials after exposing them with gamma radiation and the results have been found promising. The current trends in methodologies and techniques of radiation dosimetry for medical management of nuclear/radiological disaster will be presented. (author)

  4. Environmental radiation monitoring around the nuclear facilities

    International Nuclear Information System (INIS)

    Lee, H.D.; Lee, W.Y.; Park, D.W.

    1981-01-01

    Measurements and monitoring of the environmental radiation levels, as well as radioactivity of the various environmental samples were carried out three times a month in the on-site and the off-site around the KAERI site. Measurements were made for both gross alpha and beta radioactivity of all environmental samples. Gross beta measurements were made for radioactivity of the fallout, airborne particulates and precipitations which were collected on a daily basis on the roof of the main building. Measurements of the accumulated doses were also carried out at 10 posts on a bimonthly basis by employing thermoluminescent dosimeters

  5. Calculating the cost of research and Development in nuclear and radiation safety

    International Nuclear Information System (INIS)

    Matsulevich, N.Je.; Nosovs'ka, A.A.

    2010-01-01

    Methodological support assessing the cost of research and development in the area of nuclear and radiation safety regulation is considered. Basic methodological recommendations for determining labor expenditures for research and development in nuclear and radiation safety are provided.

  6. Establishment of radiation protection and safety programme in Nuclear Medicine

    International Nuclear Information System (INIS)

    Chene, E.

    2014-04-01

    Radiation is useful because of its ability to penetrate tissue, allowing imaging of internal structures. However radiation may produce harmful biological effects. Observations of exposed human populations and animal experimentation indicate that exposure to low levels of radiation over a period of time may lead to stochastic radiation effects. Exposures to high levels of radiation above threshold also leads to deterministic effects. Establishment of radiation protection and safety programme and implement it without fail may help prevent deterministic effect and limit chances of stochastic effects. This is achieved by assigning responsibilities to the proposed organizational structure, management commitment to safety culture by providing continuous education and training to employees, regular reviewing and auditing of radiation safety policies. Occupational, public and environmental radiation exposure is further achieved by implementation of set local rules and operational procedures, proper management of radioactive waste and safe transport of radioactive material. Medical radiation exposure is achieved by justified procedures, optimization of doses, guidance levels, quality assurance and quality control programme through image quality, radiopharmaceutical quality and records keeping of radiation doses, calibration certificates of equipment used, equipment service and test certificates. Diagnostic radiopharmaceuticals must deliver the minimum possible radiation dose to the patient while therapeutic radiopharmaceuticals must deliver the maximum dose to the target organ or tissue, while minimizing the dose to non-target tissues such as the bone marrow. Special considerations shall be given to pregnant and breast-feeding patients. The proper facility design and shielding of a nuclear medicine facility shall further provide for the radiation protection to the worker, the patient, public and the environment. Precautions should be given to radioactive patients as there

  7. Analysis and characterization. Nuclear resonant scattering with the synchrotron radiation

    International Nuclear Information System (INIS)

    Ruffer, R.; Teillet, J.

    2003-01-01

    The nuclear resonant scattering using the synchrotron radiation combines the uncommon properties of the Moessbauer spectroscopy and those of the synchrotron radiation. Since its first observation in 1984, this technique and its applications have been developed rapidly. The nuclear resonant scattering is now a standard technique for all the synchrotron radiation sources of the third generation. As the Moessbauer spectroscopy, it is a method of analysis at the atomic scale and a non destructive method. It presents the advantage not to require the use of radioactive sources of incident photons which can be difficult to make, of a lifetime which can be short and of an obviously limited intensity. The current applications are the hyperfine spectroscopy and the structural dynamics. In hyperfine spectroscopy, the nuclear resonant scattering can measure the same size than the Moessbauer spectroscopy. Nevertheless, it is superior in the ranges which exploit the specific properties of the synchrotron radiation, such as the very small samples, the monocrystals, the measures under high pressures, the geometry of small angle incidence for surfaces and multilayers. The structural dynamics, in a time scale of the nanosecond to the microsecond can be measured in the temporal scale. Moreover, the nuclear inelastic scattering gives for the first time a tool which allows to have directly the density of states of phonons and then allow to deduce the dynamical and thermodynamical properties of the lattice. The nuclear resonant scattering technique presented here, which corresponds to the Moessbauer spectroscopy technique (SM), is called 'nuclear forward scattering' (NFS). Current applications in physics and chemistry are develop. The NFS is compared to the usual SM technique in order to reveal its advantages and disadvantages. (O.M.)

  8. Biological aspects of radiation in nuclear medicine

    International Nuclear Information System (INIS)

    Kotzerke, J.; Universitaetsklinikum Dresden; Forschungszentrum Dresden-Rossendorf e.V.; Oehme, L.; Forschungszentrum Dresden-Rossendorf e.V.

    2010-01-01

    Radiotherapy with unsealed radionuclides differs from external radiotherapy with regard to the radiation quality and energy range, the regional dose uniformity and the time course of irradiation regimen. External radiotherapy is planned precisely and can be applied to a target volume independently from blood flow during a course of irradiation fractions. In contrary, administered radiopharmaceuticals distribute according to their pharmacokinetic properties and generate a continuous irradiation corresponding to the effective halflife. The resulting dose rates are approximately 1 Gy/min and 1 Gy/h, respectively. The bio-kinetics of radiopharmaceuticals involves cellular accumulation and retention with highly variable affinity to specific organs that can be modulated as well. A remarkable dose gradient is found at the edge of volumes with enhanced uptake. The biological effect of an irradiation with decreasing intensity can be compared with the radiation effect caused by conventional fractionation with 2 Gy a day in external beam therapy by means of the linear-quadratic model. However, the experimental validation of this translation is still under investigation. Radionuclide therapy is usually performed in several cycles some month apart. This procedure fails to meet external radiotherapy. The vision of a combined external-internal radiotherapy requires efforts for a common dosimetry approach both in vitro and in vivo with a physical and biological verification of the results. (orig.)

  9. Role of radiation standards in peaceful uses of nuclear energy

    International Nuclear Information System (INIS)

    Mahant, A.K.; Sathian, V.; Joseph, L.

    2009-01-01

    Radiation standards play an acute role in all the peaceful applications of nuclear energy, which is not limited to generation of electrical power anymore. Radioactive sources are being used in a very wide variety of applications, which can be broadly classified as medicine, agriculture, industry and scientific research. All these applications involve the use of radiation in a well-controlled manner and hence require accurate characterization and quantification of the radiation. Radiation Standards Section of Radiation Safety Systems Division at BARC is the apex national laboratory for all the radiological quantities related to various types of radiation sources. The laboratory develops, maintains and disseminates the standards to the users of the radiation sources all over the country and some of the neighbouring countries viz. Nepal, Bangladesh, Sri Lanka and Myanmar with an essential objective to bring homogeneity in all radiological measurements and make them compatible with the international standards. Various services provided by the Radiation Standards Section have been briefly described in the following sections. (author)

  10. Occupational radiation exposure in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: This symposium forms an essential part of the continuing tradition of subjecting nuclear energy to periodic review to assess the adequacy of radiation protection practices and experiences and to identify those areas needing further study and development. Specifically, the symposium focused on a review of statistical data on radiation exposure experience to workers in the nuclear fuel cycle through 1978. The technical sessions were concerned with occupational exposures: experienced in Member States; in research and development facilities; in nuclear power plants; in nuclear Fuel reprocessing facilities; in waste management facilities; and techniques to minimize doses. A critical review was made of internal and external exposures to the following occupational groups: uranium miners; mill workers; fuel fabricators; research personnel, reactor workers; maintenance staff; hot cell workers; reprocessing plant personnel; waste management personnel. In particular, attention was devoted to the work activities causing the highest radiation exposures and successful techniques which have been used to minimize individual and collective doses. Also there was an exchange of information on the trends of occupational exposure over the lifespan of individual nuclear power plants and other facilities in the nuclear fuel cycle. During the last session there was a detailed panel discussion on the conclusions and future needs highlighted during the symposium. While past symposia on nuclear power and its fuel cycle have presented data on occupational dose statistics, this symposium was the first to focus attention on the experience and trends of occupational exposure in recent years. The papers presented an authoritative account of the status of the levels and trends of the average annual individual dose as well as the annual collective dose for occupational workers in most of the world up to 1979. From the data presented it became evident that considerable progress has been

  11. The main goals and principles of nuclear and radiation safety

    International Nuclear Information System (INIS)

    Huseynov, V.

    2015-01-01

    The use of modern radiation technology expands in various fields of human activity. The most advanced approach, methods and technologies and also radiation technologies are of great importance in industrial, medical, agricultural, construction, science, education, and etc. areas of the fastest growing Azerbaijan Republic. Ensuring of nuclear and radiation safety, safety standards, main principles and conception of safety play a crucial role. The following ten principles are taken as a basis to ensure safety measures. 1. Responsible for ensuring safety; 2. The role of government; 3. Leadership and management of security interests; 4. Devices and justification of activity; 5. Optimization of preservation; 6. Limiting of risks for physical persons; 7. The protection of present and future generations; 8. The prevention of accidents; 9. Emergency preparedness and response; 10. Reducing of risks of existing and unregulated radiation protection measures. The safety principles are applied together

  12. Radiation protection during operation of nuclear power plants

    International Nuclear Information System (INIS)

    1983-01-01

    This Guide describes a Radiation Protection Programme for nuclear power plants. It includes: (1) An outline of the basic principles as well as practical aspects of the programme; (2) A description of the responsibilities of the operating organization to establish an effective programme based upon these principles; (3) A description of the administrative and technical measures to establish and implement the programme. This Guide also deals with the operational aspects to be considered by the operating organization in reviewing design in order to facilitate implementation of the Radiation Protection Programme. This Guide covers the requirements for a Radiation Protection Programme for all operational states of the nuclear power plant. It also includes guidelines for handling planned special exposures and for coping with unplanned exposures and contamination of personnel, areas, and equipment. Additional information concerning emergency situations involving releases of radioactive materials is given in Safety Guides 50-SG-O6, ''Preparedness of the Operating Organization (Licensee) for Emergencies at Nuclear Power Plants'', and 50-SG-G6, ''Preparedness of Public Authorities for Emergencies at Nuclear Power Plants''. This Guide covers the principles of dose limitation to site personnel and to the public, but it does not include detailed instructions on the techniques used for the actual measurement and evaluation of the exposures. This Guide does not include detailed instructions on environmental surveys, but it does mention principal steps in environmental monitoring which may be required for confirmation of the acceptability of radioactive discharges

  13. Radiation Monitoring in a Newly Established Nuclear Medicine Facility

    International Nuclear Information System (INIS)

    Afroj, Kamila; Anwar-Ul-Azim, Md.; Nath, Khokon Kumar; Khan, Md. Rezaul Karim

    2010-05-01

    A study of area monitoring in a nuclear medicine department's new physical facility was performed for 3 months to ascertain the level of radiation protection of the staff working in nuclear medicine and that of the patients and patient's attendants. Exposure to nuclear medicine personnel is considered as occupational exposure, while exposure to patients is considered medical exposure and exposure to patients' attendants is considered public exposure. The areas for the sources of radiation considered were the hot laboratory, where unsealed isotopes, radionuclides, generators are stored and dosages are prepared, the patients' waiting room, where the radioactive nuclides are administered orally and intravenously for diagnosis and treatment and the SPECT rooms, where the patients' acquisition are taken. The monitoring process was performed using the TLD supplied and measured by the Health Physics Division of Bangladesh Atomic Energy Commission. The result shows no over-exposure of radiation from any of the working areas. The environment of the department is safe for work and free from unnecessary radiation exposure risk. (author)

  14. Radiation effects on power cables for nuclear power plants

    International Nuclear Information System (INIS)

    Arora, R.; Munshi, P.; Badshah, M.G.Q.

    1988-01-01

    A large number of power and control cables, insulated with organic/polymeric materials, are installed quite near the reactor in nuclear power plants. The reliability of electrical equipment, receiving power through these cables, is critically important for the design and safety of the power stations. The radiation intensity inside the containment varies significantly from one location to another. The extent of material degradation is associated with the local radiation intensity. The cables used in the nuclear environment require several unique properties, the most obvious of these being radiation resistance, fire resistance, and the ability to withstand the loss-of-coolant accident in a nuclear power plant as specified in Institute of Electrical and Electronics Engineers (IEEE) Standard 383. In this study, four specific electrical power cable samples insulated with polyethylene, polyvinyl chloride, ethylene propylene rubber, and silicone rubber were chosen to investigate the effect of radiation in reactor environments on the electrical properties of the samples. Voltage breakdown tests and dielectric loss factor (tan δ) and conductor resistance measurements were carried out on each sample before and after irradiating them to near lifetime doses at ambient temperatures in atmospheric conditions

  15. Radiation risk to patients from nuclear medicine procedures in Cuba

    International Nuclear Information System (INIS)

    Brigido, O.; Montalván, A.; Barreras, A.; Hernández, J.

    2015-01-01

    Man-made radiation exposure to the Cuban population predominantly results from the medical use of ionizing radiation. It was therefore the aim of the present study, to provide public health information concerning diagnostic nuclear medicine procedures carried out in Camagüey and Ciego de Ávila provinces between 2000 and 2005. Population radiation dose estimation due to administration of radiopharmaceuticals in Camagüey and Ciego de Ávila provinces was carried out using Medical Internal Radiation Dose scheme (MIRD). Data were gathered on the type of radiopharmaceuticals used, the administered activity, the numbers of each kind of examination, and the age and sex of the patients involved during the period 2000 – 2005. The average annual frequency of examinations was estimated to be 3.34 per 1000 population. The results show that imaging nuclear medicine techniques of thyroid and bone explorations with 13.3 and 12.9%, respectively and iodide uptake with 50% are the main techniques implicated in the relative contribution to the total annual effective collective dose which averaged 95 man⋅Sv for the studied period. Radiation risks for the Camagüey-Ciego de Avila population caused by nuclear medicine examinations in the period studied were calculated: the total number of fatal and non-fatal cancers was 34.2 and the number of serious hereditary disturbance was 7.4 as a result of 24139 nuclear medicine procedures, corresponding a total detriment of 1.72 per 1000 examination. (authors)

  16. Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Zhang, Yanwen [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering

    2016-09-20

    This is the final report of the NEUP project “Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms.” This project started on July 1, 2012 and was successfully completed on June 30, 2016. This report provides an overview of the main achievements, results and findings through the duration of the project. Additional details can be found in the main body of this report and in the individual Quarterly Reports and associated Deliverables of this project, which have been uploaded in PICS-NE. The objective of this research was to advance understanding and develop validated models on the effects of self-radiation from beta and alpha decay on the response of used nuclear fuel and nuclear waste forms during high-temperature interim storage and long-term permanent disposition. To achieve this objective, model used-fuel materials and model waste form materials were identified, fabricated, and studied.

  17. Response of nuclear emulsions to ionizing radiations

    International Nuclear Information System (INIS)

    Katz, R.; Pinkerton, F.E.

    1975-01-01

    Heavy ion tracks in Ilford K-2 emulsion are simulated with a computer program which makes use of the delta-ray theory of track structure, and the special assumption that the response of this emulsion to gamma-rays is 8-or-more hit. The Ilford K-series of nuclear emulsions is produced from a parent stock called K.0 emulsion, sensitized to become K.1 to K.5, and desensitized to become K-1 to K-3. Our simulations demonstrate that the emulsions K.5 through K.0 to K-1 are 1-or-more hit detectors, while K-2 is an 8-or-more hit detector. We have no data for K-3 emulsion. It would appear that emulsions of intermediate hittedness might be produced by an intermediate desensitization, to mimic or match the RBE-LET variations of biological cells, perhaps to produce a ''rem-dosimeter''. In the K-2 emulsion no developable gains are produced by stopping H, He, and Li ions. The emulsion has ''threshold-like'' properties, resembling etchable track detectors. It should prove useful in the measurement of high LET dose in a strong low LET background, as for pions or neutrons. Since it can be expected to accumulate and repair ''sub-lethal damage'', to display the ion-kill and gamma-kill inactivation modes, the grain-count and track width regimes, it may serve to model biological effects. (auth)

  18. Portable apparatus for measurement of nuclear radiation

    International Nuclear Information System (INIS)

    Whitlock, G.D.

    1975-01-01

    The apparatus described is stated to be particularly applicable to the measurement of tritium contamination of a surface, although it may have other applications to the determination of radioactivity on surfaces. The mean range of a tritium β particle in air at normal atmospheric pressure is only 1.5 mm. and when monitoring such radiation with the apparatus it is necessary to exclude light. The apparatus comprises a plastic scintillator sheet located in the base of a housing, with a sealing ring mounted in the base so as to make a hermetic and light-tight seal between a support surface and the base of the housing. Photomultiplier means are optically coupled to the scintillator sheet to detect and amplify the scintillations, and a pump device is provided to reduce the air pressure in the vicinity of the sheet to below atmospheric pressure. The scintillator sheet and the photomultiplier means are movable as one unit within the housing, the unit being arranged to be acted upon by atmospheric pressure so as to move the unit into an operative position against a spring when the air pressure in the vicinity of the sheet is reduced to below atmospheric pressure. A shutter is provided to prevent exposure of the scintillator sheet to light when the apparatus is not in use. (U.K.)

  19. Radiation and nuclear technologies in the Institute for Nuclear Research NAS of Ukraine

    International Nuclear Information System (INIS)

    Vishnevs'kij, Yi.M.; Gajdar, G.P.; Kovalenko, O.V.; Kovalyins'ka, T.V.; Kolomyijets', M.F.; Lips'ka, A.Yi.; Litovchenko, P.G.; Sakhno, V.Yi.; Shevel', V.M.

    2014-01-01

    The monograph describes some of the important developments of radiation and nuclear technology, made in INR NAS Ukraine. The first section describes radiation producing new materials and services using electrons with energies up to 5 MeV and Bremsstrahlung X-rays. We describe the original technology using ion emissions of the low and very low energies. In the second section the nuclear technologies, where ions, neutrons and other high-energy particles with energies are used, provide modification of the structure of matter nuclei in particular - radioactive isotopes for industrial and medical supplies and devices based on them.

  20. Evaluation of integrity of radiation sources of nuclear gauges

    International Nuclear Information System (INIS)

    Torohate, Wiclif Francisco

    2016-01-01

    Nuclear equipment meters are mainly used in the industry in quality control and process control. The principle of operation consists in a shielded radioactive source together with a radiation detector such that the radiation interacts with the material to be analyzed before reaching the detector, providing real time data. Can be as their fixed and mobile mobility, the unique properties of ionizing radiation are used in three basic modes, transmission, backscatter or dispersion or induced (reactive). With the advancement and technological modernization in the world, the demand for nuclear gauges becomes increasingly larger. Currently in Brazil there are about 465 process control plants and 21 portable systems and Mozambique about 45 facilities using nuclear gauges. This font registration is done through a process called source inventory that allows also to know the category of the source, the danger or risk to human health that the source offers. The handling of this equipment requires personnel, certified, skilled and well trained in radiation protection area in accordance with the requirements of the various CNEN Rules. Due to the presence of radioactive source and because these devices are used by workers risk because there external radiation. In this context, we made the smear test in two fixed meters from the IRD industry laboratory, which determines the integrity of the source package, mandatory item in periodic integrity testing of the radiation source of this type of device. A set of procedures is made for its implementation as an evaluation of the radiological risk by radiological survey. It was intended to contribute to the learning handling and safe use of these meters. (author)

  1. Pediatric radiation exposure from diagnostic nuclear medicine examinations in Tehran

    International Nuclear Information System (INIS)

    Neshandar Asli, I.; Tabeie, F.

    2005-01-01

    As a part of a nationwide survey to estimate population exposure to radiation from diagnostic nuclear medicine in Iran, this paper presents the pediatric population radiation exposure due to nuclear medicine examinations in Tehran. Patients and methods: the effective dose equivalent, H E , was used to calculate the collective effective dose in pediatric patients undergoing nuclear medicine procedures, and the corresponding data were obtained from thirty out of thirty seven active nuclear medicine departments in Tehran. Results: annually about 5.26% of nuclear medicine examinations were performed on patients under 15 years of age in Tehran. The most frequent was renal examinations (38.2%), followed y thyroid (27.4%) and bone (26.7%). The annual collective H E for patients under 15 was 19.03 human-Sv, which contributed 3.96% to the collective H E for all patients. The contribution of renal, bone and thyroid examinations to the pediatric collective H E were 24.6% 48.8% and 13.5% respectively. The mean effective dose equivalent per pediatric patient was 3.75 mSv.Conclusion: Among the three most frequent examinations, the bone with a relative frequency of 27.4% constituted 48.8% of the collective H E , which was the highest absorbed dose per examination. The mean effective dose per examination for patients younger than 15 years was 67.9% of the adults

  2. Occupational radiation exposures at radioactive and nuclear facilities in Argentina

    International Nuclear Information System (INIS)

    Curti, A.; Pardo, G.; Melis, H.

    1998-01-01

    This paper presents an evaluation of occupational radiation exposures at relevant radioactive and nuclear facilities in Argentina, for 1996. The facilities send this information to the Nuclear Regulatory Authority due to the requirements included in their operation licenses and authorizations. Dose distributions of 1891 workers and their parameters are presented. The analysis is performed for each type of the following practices: nuclear power plants, research reactors, radioisotope production, fuel fabrication, industrial irradiation and research in the nuclear fuel cycle. Trends of occupational exposure in different practices are analysed and the highest doses have been identified. Following the 1990 recommendations of the International Commission on Radiological Protection (ICRP 60), the Nuclear Regulatory Authority of Argentina updated the dose limits for workers in 1995. The individual dose limits are 20 mSv per year averaged over five consecutive years (100 mSv in 5 years), not exceeding 50 mSv in a single year. To evaluate the occupational radiation exposure trend, without taking into account practices, an analysis of the distribution of individual doses accumulated in the period 1995/96, for all workers, is performed. Individual doses received during 1996 were all below 50 mSv and doses accumulated in the period 1995/96 were below 100 mSv. (author). 7 refs., 16 figs., 5 tabs

  3. Radiation doses to the staff of a nuclear cardiology department

    International Nuclear Information System (INIS)

    Tsapaki, V.; Koutelou, M.; Theodorakos, A.; Kouzoumi, A.; Kitziri, S.; Tsiblouli, S.; Vardalaki, E.; Kyrozi, E.; Kouttou, S.

    2002-01-01

    The last years, new radiopharmaceuticals are used in a Nuclear Medicine (NM) Department. Nowadays, Single Photon Emission Computed Tomography (SPECT) is a method of routine imaging, a fact that has required increased levels of radioactivity in certain patient examinations. The staff that is more likely to receive the greatest radiation dose in a NM Department is the technologist who deals with performance of patient examination and injection of radioactive material and the nurse who is caring for the patients visiting the Department some of which being totally helpless. The fact that each NM Dept possesses equipment with certain specifications, deals with various kind of patients, has specific design and radiation protection measures which can differ from other NM Depts and uses various examination protocols, makes essential the need to investigate the radiation doses received by each member of the staff, so as to continuously monitor doses and take protective measures if required, control less experienced staff and ensure that radiation dose levels are kept as low as possible at all times. The purpose of the current study was to evaluate radiation dose to the nuclear cardiology department staff by thermoluminescent dosemeters (TLDs) placed on the the skin at thyroid and abdominal region as well as evaluating protection measures taken currently in the Dept

  4. Radiation resistant polymers and coatings for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.; Mallika, C.; Lawrence, Falix

    2014-01-01

    Polymer based materials are extensively used in the nuclear industry for the reprocessing of spent fuels in highly radioactive and corrosive environment. Hence, these polymer materials are susceptible to damage by ionizing radiation, resulting in the degradation in properties. Polymers containing aromatic molecules generally possess higher resistance to radiation degradation than the aliphatic polymers. For improving the radiation resistance of polymers various methods are reported in the literature. Among the aromatic polymers, polyetheretherketone (PEEK) has the radiation tolerance up to 10 Mega Grey (MGy). To explore the possibility of enhancing the radiation resistance of PEEK, a study was initiated to develop PEEK - ceramic composites and evaluate the effect of radiation on the properties of the composites. PEEK and PEEK - alumina (micron size) composites were irradiated in a gamma chamber using 60 Co source and the degradation in mechanical, structural, electrical and thermal properties, gel fraction, coefficient of friction and morphology were investigated. The degradation in the mechanical properties owing to radiation could be reduced by adding alumina filler to PEEK. Nano alumina filler was observed to be more effective in suppressing the damage caused by radiation on the polymer, when compared to micron alumina filler. For the protection of aluminium components in the manipulators and the rotors and stators of the motors of the centrifugal extractors employed in the plant from the attack by nitric acid vapour, PEEK coating based on liquid dispersion was developed, which has resistance to radiation, chemicals and wear. The effect of radiation and chemical vapour on the properties of the PEEK coating was estimated. The performance of the coating in the plant was evaluated and the coating was found to give adequate protection to the motors of centrifugal extractors against corrosion. (author)

  5. Radiation protection in connection with the decommissioning of nuclear plants

    International Nuclear Information System (INIS)

    1997-04-01

    This document presents the SSI preliminary views and position concerning the decommissioning of nuclear plants. To prevent the exposure of the decommissioning personnel and the general public to unacceptable levels of radiation and to protect the environment and future generations, it is SSI's task to formulate and issue the necessary terms and regulations with which the reactor licensees must comply during the decommissioning work. The views and principles presented here are the basis of SSI's continued work on guidelines and regulations for the decommissioning of nuclear plants

  6. Radiation processing program at the Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Khairul Zaman

    2007-01-01

    Radiation processing technology has been proven to enhance industrial efficiency and productivity, improve product quality and competitiveness. For many years, variety of radiation crosslinkable materials based on synthetic polymers have been studied at the Malaysian Nuclear Agency either in the form of thermoplastic resins, polymer blends or composites. At present, effort is focused towards developing new materials based on natural polymers such as natural rubber and rubber based products, palm oil and palm oil based products and polysaccharide. In this respect, the most challenging issues are to develop new materials/products that have commercial value and to bring the products from laboratory to market. (author)

  7. Design aspects of radiation protection for nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    This Safety Guide deals with the provisions to be made in the design of thermal neutron reactor power plants to protect site personnel and the public from undue exposure to ionizing radiation during operational states and accident conditions. The effective radiation protection is a combination of good design, high quality construction and proper operation. The document gives guidance on how to satisfy the objectives contained in Subsection 2.2 and Section 9 of the Code of Practice on Design for Safety of Nuclear Power Plants

  8. Possible radiation injury at Koeberg Nuclear Power Station

    International Nuclear Information System (INIS)

    Van Rensburg, L.C.J.; De Villiers, B.; Van Zyl, C.J.

    1986-01-01

    Any injured patient from Koeberg Nuclear Power Station will be treated in the conventional manner as an acute surgical emergency; this has priority over decontamination. The ideal situation is decontamination at Koeberg before ambulance transferral to the Tygerberg Radiation Casualty Facility, but if this is not possible or complete, decontamination can be accomplished by a trained team in the unit. Teamwork is the essence at the place of injury, during transfer, in the decontamination area, in the operating theatre and during the postoperative phase. No surgical management is appropriate or complete without the very necessary guidance and advice from a physicist and the Advisory Group for Radiation Casualties

  9. DNA-nuclear matrix interactions and ionizing radiation sensitivity

    International Nuclear Information System (INIS)

    Schwartz, J.L.; Vaughan, A.T.M.

    1993-01-01

    The association between inherent ionizing radiation sensitivity and DNA supercoil unwinding in mammalian cells suggests that the organization of the DNA in chromosomes plays an important role in radiation responses. In this paper, a model is proposed which suggests that these DNA unwinding alterations reflect differences in the attachment of DNA to the nuclear matrix. In radioresistant cells, the MAR structure might exist in a more stable, open configuration, limiting DNA unwinding following strand break induction and influencing the rate and nature of DNA double-strand break rejoining

  10. DNA-nuclear matrix interactions and ionizing radiation sensitivity

    International Nuclear Information System (INIS)

    Schwartz, J.L.; Chicago Univ., IL; Vaughan, A.T.M.

    1993-01-01

    The association between inherent ionizing radiation sensitivity and DNA supercoil unwinding in mammalian cells suggests that the DNA-nuclear matrix attachment region (MAR) plays an important role in radiation response. In radioresistant cells, the MAR structure may exist in a more stable, open configuration, limiting DNA unwinding following strand break induction and maintaining DNA ends in close proximity for more rapid and accurate rejoining. In addition, the open configuration at these matrix attachment sites may serve to facilitate rapid DNA processing of breaks by providing (1) sites for repair proteins to collect and (2) energy to drive enzymatic reactions

  11. Radiation-induced invagination of the nuclear envelope

    International Nuclear Information System (INIS)

    Szekely, J.G.; Copps, T.P.; Morash, B.D.

    1980-01-01

    Using electron microscopy, we have measured radiation-induced invagination of the nuclear envelope of Chinese hamster V-79 and mouse L cells to produce a quantifiable radiation endpoint on a membrane system. In the dose ranges measured (800 to 3000 rad in L cells and 1270 to 5700 rad in V-79 cells), the amount of invagination increased with dose and continued to develop in intact cells for up to 72 hr after the original population was irradiated. Small vacuoles, which sometimes appeared in the nuclei of L cells, were also more numerous in irradiated cells and increased with dose and incubation time in a similar fashion to invagination development

  12. Radiation burden of population in nuclear power plant siting

    International Nuclear Information System (INIS)

    Navratil, J.

    The significance is discussed of the determination of the radiobiological consequences of normal operation and design basis accidents in nuclear power plant siting. The basic diagram and brief description is given of the programme for calculating the radiation load of the population in the surroundings of the nuclear power plant. The programme consists of two subprogrammes, i.e., the dispersion of radioactive gases (for normal operation and for accidents), the main programme for the determination of biological consequences and one auxiliary programme (the distribution of the population in the surroundings of the power plant). The four most important types of exposure to ionizing radiation are considered, namely inhalation, external irradiation from a cloud, ingestion (water, milk, vegetables), external irradiation from the deposit. (B.S.)

  13. Double gated-integrator for shaping nuclear radiation detector signals

    International Nuclear Information System (INIS)

    Gal, J.

    2001-01-01

    A new shaper, the double gated-integrator, for shaping nuclear radiation detector signals is investigated both theoretically and experimentally. The double gated-integrator consists of a pre-filter and two cascaded gated integrators. Two kinds of pre-filters were considered: a rectangular one and an exponential one. The results of the theoretical calculation show that the best figure of demerit for the double gated-integrator with exponential pre-filter is 1.016. This means that its noise to signal ratio is only 1.6% worse than that it is for infinite cusp shaping. The practical realization of the exponential pre-filter and that of the double gated integrator, both in analogue and in digital way, is very simple. Therefore, the double gated-integrator with exponential pre-filter could be a promising solution for shaping nuclear radiation detector signals

  14. Thermal radiation in gas core nuclear reactors for space propulsion

    International Nuclear Information System (INIS)

    Slutz, S.A.; Gauntt, R.O.; Harms, G.A.; Latham, T.; Roman, W.; Rodgers, R.J.

    1994-01-01

    A diffusive model of the radial transport of thermal radiation out of a cylindrical core of fissioning plasma is presented. The diffusion approximation is appropriate because the opacity of uranium is very high at the temperatures of interest (greater than 3000 K). We make one additional simplification of assuming constant opacity throughout the fuel. This allows the complete set of solutions to be expressed as a single function. This function is approximated analytically to facilitate parametric studies of the performance of a test module of the nuclear light bulb gas-core nuclear-rocket-engine concept, in the Annular Core Research Reactor at Sandia National Laboratories. Our findings indicate that radiation temperatures in range of 4000-6000 K are attainable, which is sufficient to test the high specific impulse potential (approximately 2000 s) of this concept. 15 refs

  15. to control the nuclear safety and the radiation protection

    International Nuclear Information System (INIS)

    Lacoste, A.C.; Bordarier, Ph.; Saint-Raymond, Ph.; Repussard, J.; Gouze, J.R.; Degos, L.; Massart, S.; Wiroth, P.; Thezee, Ch.; Petit, G.; Cahen, B.; Hubert, I.; Wiroth, P.; Thezee, Ch.; Petit, G.; Kaufer, B.; Taniguchi, T.; Revol, H.

    2005-01-01

    Publishing this dossier, the aim is to present the principles and the variety of issues linked to nuclear safety and radiation protection supervision, and the main strategic choices made to use efficiently and effectively A.S.N. supervision means. A.S.N. is responsible for nuclear safety and radiation protection supervision. A.S.N. has to be itself evaluated and supervised by external bodies. The Parliament Office for Evaluation of Scientific and Technological Options (O.P.E.C.S.T.) supervises it; the foreign peers watch and A.S.N. has to be the object of an international audit conducted by its peers under the leadership of I.A.E.A. by the beginning of 2007. (N.C.)

  16. Nuclear radiation monitoring instruments for personnel in nuclear disaster for defence needs

    International Nuclear Information System (INIS)

    Bhatnagar, P.K.; Vaijapurkar, S.G.; Yadav, Ashok

    2005-01-01

    Ever since the tragedy of nuclear device exploding over Japan by USA in 1945 awareness exists amongst the armed forces personnel all over the world that a requirement of implementing radiological protection is imminent. Towards this adoption of radiological safety programme is a criterion. In a nuclear war disaster scenario, one encounters initial nuclear radiation (gamma and neutron radiations), gamma radiations from fallout, heat and blast. At certain distances Tanks/ armoured vehicles will survive and 4 R/s radiation level sensing to actuate relays for closing the ports of vehicles is essential, leading to reduction in inhalation, ingestion of fallout radioactivity and reduction in radiation dose received by occupants of the vehicle. Towards this sturdy radiation monitors to indicate gamma dose rate of the order of 1000 R/h, gamma and neutron dosimeters of the order of 1000 cGy with reading instruments are to be developed. These must work in harsh environment and sustain JSS 55555 conditions of army. Defence Laboratory, Jodhpur over past one decade has been involved in developing personnel, area and field monitoring instruments like dosimeters, survey meters, which are useful, acceptable to army personnel, armoured and personnel carrier vehicles, field structures/shelters. Technology transfer after satisfaction of armed forces, product ionisation and supply, maintenance, training has been the endeavor of the DRDO. Herein it is proposed to highlight the techno electronics nuclear radiation monitoring sensors and associated electronics systems developed first time in the country and productionised in bulk for Services for implementing personnel protection. The sensors developed and described are - Radiophotoluminescent Glass (RPLG) for gamma radiation dosimetry , neutron sensitive PIN diode for fast neutron dosimetry, gamma radiation sensitive PIN diode, superheated liquid neutron and gamma sensors. The dosimeter, dose rate meter and field/area instruments are

  17. [Socio-psychological and ecological aspects within the system of nuclear radiation risk mitigation].

    Science.gov (United States)

    Davydov, B I; Ushakov, I B; Zuev, V G

    2004-01-01

    The authors bring into light several aspects of nuclear radiation risks, i.e. physical safety of nuclear technologies and ecology, place of operator within the nuclear radiation safety system (proficiency, protective culture, safety guides) and consider approaches to the human factor quantification within the system of mitigation of risks from nuclear technologies, and IAEA recommendations on probable risk estimation. Future investigations should be aimed at extension of the radiation sensitivity threshold, personnel selection as by psychological so genetic testing for immunity to ionizing radiation, development of pharmachemical and physical protectors and methods of enhancing nonspecific resistance to extreme, including radiation, environments, and building of radiation event simulators for training.

  18. Development of radiation shielding standards in the American Nuclear Society

    International Nuclear Information System (INIS)

    Trubey, D.K.

    1975-11-01

    The American Nuclear Society (ANS) is a standards-writing organization-member of the American National Standards Institute (ANSI). The ANS Standards Committee has a subcommittee denoted ANS-6, Shielding, whose charge is to establish standards in connection with radiation protection and shielding, to provide shielding information to other standards writing groups, and to prepare recommended sets of shielding data and test problems. This paper is a progress report of this subcommittee

  19. Study concerning an integrated radiation monitoring systems for nuclear facilities

    International Nuclear Information System (INIS)

    Oprea, I.; Oprea, M.; Stoica, M.; Cerga, V.; Pirvu, V; Badea, E.

    1996-01-01

    This paper presents an integrated radiation monitoring system designed to assess the effects of nuclear accidents and to provide a basis for making right decisions and countermeasures in order to reduce health damages. The system implies a number of stationary monitoring equipment, data processing unit and a communication network. The system meets the demands of efficiency and reliability, providing the needed tools to easily create programs able to process simple input data filling the information management system. (author). 10 refs

  20. The research of nuclear experiment radiation environment wireless alarm device

    International Nuclear Information System (INIS)

    Wang Xiaoqiong; Wang Pan; Fang Fang

    2009-01-01

    This article introduces based on monolithic integrated circuit's nuclear experiment radiation environment wireless alarm device's software and hardware design. The system by G-M tube, high-pressured module, signal conditioning circuit, power source module, monolithic integrated circuit and wireless transmission module is composed. The device has low power consumption, high performance, high accuracy detection, easy maintenance, small size, simple operation, and other features, and has a broad application prospects. (authors)

  1. Supervision of radiation environment management of nuclear facilities

    International Nuclear Information System (INIS)

    Luo Mingyan

    2013-01-01

    Through literature and documents, the basis, content and implementation of the supervision of radiation environment management of nuclear facilities were defined. Such supervision was extensive and complicated with various tasks and overlapping duties, and had large social impact. Therefore, it was recommend to make further research on this supervision should be done, clarify and specify responsibilities of the executor of the supervision so as to achieve institutionalization, standardization and routinization of the supervision. (author)

  2. Radiation safety in the nuclear medicine department: impact of the UK Ionising Radiations Regulations

    International Nuclear Information System (INIS)

    Harding, L.K.

    1987-01-01

    The new 1985 regulations and guidance on radiation protection in the U.K. are discussed in relation to the needs for controlled areas in the nuclear medicine department and patient wards, admittance to hospital to comply with legislation, classification of workers, patient waiting rooms, handling flood sources, pregnancy and breast feeding. (U.K.)

  3. Results of activities of the State Office for Nuclear Safety in state supervision of nuclear safety of nuclear facilities and radiation protection in 2003

    International Nuclear Information System (INIS)

    Kovar, P.

    2004-01-01

    The report summarises results of activities of the State Office for Nuclear Safety (SUJB) in the supervision of nuclear safety and radiation protection in the Czech Republic. The first part of the report evaluates nuclear safety of nuclear installations and contains information concerning the results of supervision of radiation protection in 2003 in the Czech Republic. The second part of the report describes new responsibilities of the SUJB in the domain of nuclear, chemical, bacteriological (biological) and toxin weapons ban. (author)

  4. Radiation processing of biological tissues for nuclear disaster management

    International Nuclear Information System (INIS)

    Singh, Rita

    2012-01-01

    A number of surgical procedures require tissue substitutes to repair or replace damaged or diseased tissues. Biological tissues from human donor like bone, skin, amniotic membrane and other soft tissues can be used for repair or reconstruction of the injured part of the body. Tissues from human donor can be processed and banked for orthopaedic, spinal, trauma and other surgical procedures. Allograft tissues provide an excellent alternative to autografts. The use of allograft tissue avoids the donor site morbidity and reduces the operating time, expense and trauma associated with the acquisition of autografts. Further, allografts have the added advantage of being available in large quantities. This has led to a global increase in allogeneic transplantation and development of tissue banking. However, the risk of infectious disease transmission via tissue allografts is a major concern. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Radiation processing has well appreciated technological advantages and is the most suitable method for sterilization of biological tissues. Radiation processed biological tissues can be provided by the tissue banks for the management of injuries due to a nuclear disaster. A nuclear detonation will result in a large number of casualties due to the heat, blast and radiation effects of the weapon. Skin dressings or skin substitutes like allograft skin, xenograft skin and amniotic membrane can be used for the treatment of thermal burns and radiation induced skin injuries. Bone grafts can be employed for repairing fracture defects, filling in destroyed regions of bone, management of open fractures and joint injuries. Radiation processed tissues have the potential to repair or reconstruct damaged tissues and can be of great assistance in the treatment of injuries due to the nuclear weapon. (author)

  5. Preliminary radiation criteria and nuclear analysis for ETF

    International Nuclear Information System (INIS)

    Engholm, B.A.

    1980-09-01

    Preliminary biological and materials radiation dose criteria for the Engineering Test Facility are described and tabulated. In keeping with the ETF Mission Statement, a key biological dose criterion is a 24-hour shutdown dose rate of 2 mrem/hr on the surface of the outboard bulk shield. Materials dose criteria, which primarily govern the inboard shield design, include 10 9 rads exposure limit to epoxy insulation, 3 x 10 -4 dpa damage to the TF coil copper stabilizer, and a total nuclear heating rate of 5 kW in the inboard TF coils. Nuclear analysis performed during FY 80 was directed primarily at the inboard and outboard bulk shielding, and at radiation streaming in the neutral beam drift ducts. Inboard and outboard shield thicknesses to achieve the biological and materials radiation criteria are 75 cm inboard and 125 cm outboard, the configuration consisting of alternating layers of stainless steel and borated water. The outboard shield also includes a 5 cm layer of lead. NBI duct streaming analyses performed by ORNL and LASL will play a key role in the design of the duct and NBI shielding in FY 81. The NBI aluminum cryopanel nuclear heating rate during the heating cycle is about 1 milliwatt/cm 3 , which is far less than the permissible limit

  6. Lightweight Radiator for in Space Nuclear Electric Propulsion

    Science.gov (United States)

    Craven, Paul; Tomboulian, Briana; SanSoucie, Michael

    2014-01-01

    Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Advanced power conversion technologies may require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Game-changing propulsion systems are often enabled by novel designs using advanced materials. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow advances in operational efficiency and high temperature feasibility. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities making use of constrained input parameter space. A description of this effort is presented.

  7. Reliability and radiation tolerance of robots for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, K [Risoe National Lab. (Denmark); Decreton, M [SCK.CEN (Belgium); Seifert, C C [Siemens AG (Germany); Sharp, R [AEA Technology (United Kingdom)

    1996-10-01

    The reliability of a robot for nuclear applications will be affected by environmental factors such as dust, water, vibrations, heat, and, in particular, ionising radiation. The present report describes the work carried out in a project addressing the reliability and radiation tolerance of such robots. A widely representative range of components and materials has been radiation tested and the test results have been collated in a database along with data provided by the participants from earlier work and data acquired from other sources. A radiation effects guide has been written for the use by designers of electronic equipment for robots. A generic reliability model has been set up together with generic failure strategies, forming the basis for specific reliability modelling carried out in other projects. Modelling tools have been examined and developed for the prediction of the performance of electronic circuits subjected to radiation. Reports have been produced dealing with the prediction and detection of upcoming failures in electronic systems. Operational experience from the use of robots in radiation work in various contexts has been compiled in a report, and another report has been written on cost/benefit considerations about the use of robots. Also the possible impact of robots on the safety of the surrounding plant has been considered and reported. (au) 16 ills., 236 refs.

  8. Reliability and radiation tolerance of robots for nuclear applications

    International Nuclear Information System (INIS)

    Lauridsen, K.; Decreton, M.; Seifert, C.C.; Sharp, R.

    1996-10-01

    The reliability of a robot for nuclear applications will be affected by environmental factors such as dust, water, vibrations, heat, and, in particular, ionising radiation. The present report describes the work carried out in a project addressing the reliability and radiation tolerance of such robots. A widely representative range of components and materials has been radiation tested and the test results have been collated in a database along with data provided by the participants from earlier work and data acquired from other sources. A radiation effects guide has been written for the use by designers of electronic equipment for robots. A generic reliability model has been set up together with generic failure strategies, forming the basis for specific reliability modelling carried out in other projects. Modelling tools have been examined and developed for the prediction of the performance of electronic circuits subjected to radiation. Reports have been produced dealing with the prediction and detection of upcoming failures in electronic systems. Operational experience from the use of robots in radiation work in various contexts has been compiled in a report, and another report has been written on cost/benefit considerations about the use of robots. Also the possible impact of robots on the safety of the surrounding plant has been considered and reported. (au) 16 ills., 236 refs

  9. Evaluation of radiation protection in some nuclear medicine department

    International Nuclear Information System (INIS)

    Abdelrahim, Yassir Mohammed

    2015-12-01

    This study was carryout to evaluate the radiation protection in nuclear medicine department in Sudan, accordance with the standards international recommendation and code of practice for radiation protection in nuclear medicine, the evaluation was done for three nuclear medicine departments, included direct measurement of dose rate and the contamination level in some areas, were radiation sources, radiation workers and public are involved. The data was collected and analyzed from the results for three nuclear medicine departments that the average reading of ambient dose rate in : outside the door of imaging room (SPECT) 0.18μSv/h in hospital (1)& and 0.19μSv/h in hospital(2) and 0.19μSv/h hospital(3), inside control of imaging room (SPECT) 27.8μSv/h in hospital(1)& 0.14μSv/h in hospital(2)& 14μSv/h in hospital(3), inside the injection room 28.81μSv/h in hospital(1), 0.36μSv/h in hpspital(2), 0.06μSv/h in hospital(3) outside the door of lap, 0.65μSv/h in hospital(1), 0.13μSv/h in hospital(2) & 0.12μSv/h in hospital(3), inside the hot lap, 9.68μSv/h in hospital(1) & 0.30μSv/h in hospital(2) & 0.85 μSv/h in hospital(3), in outsidee the door of waiting room of injected patient 1.41μSv/h in hospital(1)& 0.16μSv/h in hospital(2) & 1.08μSv/h in hospital(3). Avaerge reading of contamination in: Floor of hot lap 44.50 B/cm"2 hospital(1) & 4.42B/cm"2in hospital(2) & 6.22 B/cm"2 in hospital (3) . on the bench tap 186.30 B/cm"2 hospital(1), 19.91 B/cm"2 in hospital(2) & 8.77B/cm"2 in hospital(3) floor of injection room 12.60 B/cm"2 in hospital(1) & 11.70 B/cm"2 in hospital(2) & 13.73 B/cm"2 hospital(3) & table of injection room 13.00 B/cm"2 in hospital(1)& 11.70 B/cm"2in hospital(2)& 13.73 B/cm"2 in hospital & tble of injection room 13.00 B/cm"2 in hospital(1) & 20.40 B/cm"2 in hospital(2) & 23.23 B/cm"2 B/cm"2 in hospital(3) on the shield of working surface 144.30 B/cm in hospital(1)& 47.00 B/cm"2 in hospital(2) & 52.33 B/cm"2 in hospital(3) , and makes check

  10. Radiation transport methods for nuclear log assessment - an overview

    International Nuclear Information System (INIS)

    Badruzzaman, A.

    1996-01-01

    Methods of radiation transport have been applied to well-logging problems with nuclear sources since the early 1960s. Nuclear sondes are used in identifying rock compositions and fluid properties in reservoirs to predict the porosity and oil saturation. Early computational effort in nuclear logging used diffusion techniques. As computers became more powerful, deterministic transport methods and, finally, Monte Carlo methods were applied to solve these problems in three dimensions. Recently, the application has been extended to problems with a new generation of devices, including spectroscopic sondes that measure such quantities as the carbon/oxygen ratio to predict oil saturation and logging-while-drilling (LWD) sondes that take neutron and gamma measurements as they rotate in the borehole. These measurements present conditions that will be difficult to calibrate in the laboratory

  11. Relative radiation hazards of coal based and nuclear power plants

    International Nuclear Information System (INIS)

    Mishra, U.C.

    1983-04-01

    Coal, like most materials found in nature, contains trace quantities of naturally occurring radionuclides. However, low concentrations may become important if large quantities of coal are burnt in thermal power plants. Therefore a study was performed to determine the radioactivity in coal, in fly-ash and slag and assess the importance of radioactive emissions from thermal power plants. The results were compared to the radiological impact of nuclear power stations. Based on these data, theoretical estimates for the population living within 80km from power stations indicate that the collective dose commitments of coal-fired plants are one order of magnitude higher than those for BWR-type nuclear plants. Measurements taken in the vicinity of coal-fired plants were comparable to those for nuclear plants, i.e. within the range of variation of natural background radiation in India

  12. Role of American Nuclear Insurers in reducing occupational radiation exposure

    International Nuclear Information System (INIS)

    Forbes, J.L.

    1980-01-01

    Since 1957 the nuclear insurance pools have provided liability and property insurance for the nation's nuclear power generating stations as mandated by the Price-Anderson Act. Although the insurance was originally structured to give financial protection to the insured in the event of a major accident, the potential for third-party claims arising from routine occupational exposure is becoming a more realistic pathway for a loss to the pools. In order to give maximum protection to the pools' assets, the Liability Engineering Department of American Nuclear Insurers (ANI) performs periodic inspections of the power plants. By concentrating on programs and management areas, ANI inspections complement regulatory inspections so that all major areas of common interest are reviewed. This paper presents the nature, results, and findings of those periodic inspections particularly in the general area of plant radiation protection

  13. Multi-MGy Radiation Hardened Camera for Nuclear Facilities

    International Nuclear Information System (INIS)

    Girard, Sylvain; Boukenter, Aziz; Ouerdane, Youcef; Goiffon, Vincent; Corbiere, Franck; Rolando, Sebastien; Molina, Romain; Estribeau, Magali; Avon, Barbara; Magnan, Pierre; Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Raine, Melanie

    2015-01-01

    There is an increasing interest in developing cameras for surveillance systems to monitor nuclear facilities or nuclear waste storages. Particularly, for today's and the next generation of nuclear facilities increasing safety requirements consecutive to Fukushima Daiichi's disaster have to be considered. For some applications, radiation tolerance needs to overcome doses in the MGy(SiO 2 ) range whereas the most tolerant commercial or prototypes products based on solid state image sensors withstand doses up to few kGy. The objective of this work is to present the radiation hardening strategy developed by our research groups to enhance the tolerance to ionizing radiations of the various subparts of these imaging systems by working simultaneously at the component and system design levels. Developing radiation-hardened camera implies to combine several radiation-hardening strategies. In our case, we decided not to use the simplest one, the shielding approach. This approach is efficient but limits the camera miniaturization and is not compatible with its future integration in remote-handling or robotic systems. Then, the hardening-by-component strategy appears mandatory to avoid the failure of one of the camera subparts at doses lower than the MGy. Concerning the image sensor itself, the used technology is a CMOS Image Sensor (CIS) designed by ISAE team with custom pixel designs used to mitigate the total ionizing dose (TID) effects that occur well below the MGy range in classical image sensors (e.g. Charge Coupled Devices (CCD), Charge Injection Devices (CID) and classical Active Pixel Sensors (APS)), such as the complete loss of functionality, the dark current increase and the gain drop. We'll present at the conference a comparative study between these radiation-hardened pixel radiation responses with respect to conventional ones, demonstrating the efficiency of the choices made. The targeted strategy to develop the complete radiation hard camera

  14. Multi-MGy Radiation Hardened Camera for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Sylvain; Boukenter, Aziz; Ouerdane, Youcef [Universite de Saint-Etienne, Lab. Hubert Curien, UMR-CNRS 5516, F-42000 Saint-Etienne (France); Goiffon, Vincent; Corbiere, Franck; Rolando, Sebastien; Molina, Romain; Estribeau, Magali; Avon, Barbara; Magnan, Pierre [ISAE, Universite de Toulouse, F-31055 Toulouse (France); Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Raine, Melanie [CEA, DAM, DIF, F-91297 Arpajon (France)

    2015-07-01

    There is an increasing interest in developing cameras for surveillance systems to monitor nuclear facilities or nuclear waste storages. Particularly, for today's and the next generation of nuclear facilities increasing safety requirements consecutive to Fukushima Daiichi's disaster have to be considered. For some applications, radiation tolerance needs to overcome doses in the MGy(SiO{sub 2}) range whereas the most tolerant commercial or prototypes products based on solid state image sensors withstand doses up to few kGy. The objective of this work is to present the radiation hardening strategy developed by our research groups to enhance the tolerance to ionizing radiations of the various subparts of these imaging systems by working simultaneously at the component and system design levels. Developing radiation-hardened camera implies to combine several radiation-hardening strategies. In our case, we decided not to use the simplest one, the shielding approach. This approach is efficient but limits the camera miniaturization and is not compatible with its future integration in remote-handling or robotic systems. Then, the hardening-by-component strategy appears mandatory to avoid the failure of one of the camera subparts at doses lower than the MGy. Concerning the image sensor itself, the used technology is a CMOS Image Sensor (CIS) designed by ISAE team with custom pixel designs used to mitigate the total ionizing dose (TID) effects that occur well below the MGy range in classical image sensors (e.g. Charge Coupled Devices (CCD), Charge Injection Devices (CID) and classical Active Pixel Sensors (APS)), such as the complete loss of functionality, the dark current increase and the gain drop. We'll present at the conference a comparative study between these radiation-hardened pixel radiation responses with respect to conventional ones, demonstrating the efficiency of the choices made. The targeted strategy to develop the complete radiation hard camera

  15. Method for monitoring irradiated nuclear fuel using cerenkov radiation

    International Nuclear Information System (INIS)

    Caldwell, J.T.; Dowdy, E.J.; Nicholson, N.

    1983-01-01

    A method is provided for monitoring irradiated nuclear fuel inventories located in a water-filled storage pond wherein the intensity of the cerenkov radiation emitted from the water in the vicinity of the nuclear fuel is measured. This intensity is then compared with the expected intensity for nuclear fuel having a corresponding degree of irradiation exposure and time period after removal from a reactor core. Where the nuclear fuel inventory is located in an assembly having fuel pins or rods with intervening voids, the cerenkov light intensity measurement is taken at selected bright spots corresponding to the water-filled interstices of the assembly in the water storage, the waterfilled interstices acting as cerenkov light channels so as to reduce cross-talk. On-line digital analysis of an analog video signal is possible, or video tapes may be used for later measurement using a video editor and an electrometer. Direct measurement of the cerenkov radiation intensity also is possible using spot photometers pointed at the assembly

  16. Patient absorbed dose and radiation risk in nuclear medicine

    International Nuclear Information System (INIS)

    Hetherington, E.; Cochrane, P.

    1992-01-01

    Since the introduction of technetium-99m labelled radiopharmaceuticals used as imaging agents in the nuclear medicine departments of Australian hospitals, patients have voiced concern about the effect of having radioactive materials injected into their bodies. The danger of X-ray exposure is widely known and well accepted, as is exposure to ultrasound, computed tomography scans and other imaging techniques. However, radioactivity is an unknown, and fear of the unknown can occasionally lead to patients refusing to undergo a nuclear medicine procedure. The authors emphasised that the radiation dose to a patient from a typical procedure would depend on the patient's medical history and treatment; the average dose being approximately 50 times the exposure received from the natural environmental background radiation. Furthermore, over an extended period the body can repair most minor damage caused by radiation, just as the body can repair the damage caused by sunburn resulting from too much exposure to sunlight. The risk of genetic effects as a result of a medical radiation dose is than very small

  17. Investigation of inactivation of Clostridium botulinum toxin by nuclear radiation

    International Nuclear Information System (INIS)

    Kaltenhaeuser, A.; Werner, K.H.

    1989-01-01

    The effect of nuclear radiation on the toxicity and the molecular structure of the toxin produced by the microorganism Clostridium botulinum type A was investigated. The radiation induced changes in the structure of the toxin molecule. This effect is influenced by the composition or the medium above the toxin solution as well as by the temperature during the irradiation. The results of the investigation indicate that with increasing irradiation dose a new molecule was formed with immunological properties similar to the properties of the original molecule however with a greater molecular weight. After exposure to a radiation dose of 3,4 Mrad at normal temperature in air, complete detoxification of the substance was found. Immunizing experiments with the toxoid with two guinea-pigs indicated a pronounced increase of the antibody titer in the serum after 4 weeks. Vaccination experiments with the toxoid on animals show, that the protection against the effect of the toxin corresponds to the demands of the European Pharmacopoeia. The efficiency of the toxoid shows a similar efficiency as toxoids produced by chemical methods. The production of a toxoid-viccine with the relatively simple method of nuclear radiation appears possible. (orig./MG) With 12 refs., 3 tabs., 11 figs [de

  18. Radiation stability of fluorite-type nuclear oxides

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, Frederico [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, Batiments 104-108, 91405 Orsay Campus (France)], E-mail: Frederico.Garrido@csnsm.in2p3.fr; Vincent, Laetitia [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, Batiments 104-108, 91405 Orsay Campus (France); Nowicki, Lech [Andrzej Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland); Sattonnay, Gael [Laboratoire d' Etudes des Materiaux Hors-Equilibre, Institut de Chimie Moleculaire et des Materiaux d' Orsay, UMR 8182, Universite Paris-Sud, Batiment 410, 91405 Orsay Cedex (France); Thome, Lionel [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, Batiments 104-108, 91405 Orsay Campus (France)

    2008-06-15

    Oxides with the fluorite-type structure are radiation tolerant materials. They are widely used or envisaged in hostile nuclear environments, such as nuclear fuels or inert transmutation matrices for actinide burning. Study of the radiation stability of this class of solids in various radiative fields is of major importance. Two issues which may affect the stability of materials are considered in this work: the production of radiation damage (ballistic contribution); the modification of the matrix composition by doping (chemical contribution). Both contributions may drastically affect the solid stability. Urania and zirconia single crystals were chosen as fluorite-type canonical systems. They were implanted with low-energy inert gases (He or Xe). The damage in-growth, due to both ballistic and chemical contributions, was investigated by in situ RBS/C experiments in the channelling mode and TEM. Two main steps in the disordering kinetics were observed for both inert gases. Relevant key parameters were found to be: the number of displaced lattice atoms created by the slowing-down of energetic ions during the implantation process; the concentration of noble gas atoms in the solid which cause the formation of large stress fields surrounding gas aggregates.

  19. Hosting and operation of world nuclear University Radiation School

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. J.; Nam, Y. M.; Sun, J. B.; Lee, B. J.; Kim, H. J.; Yoo, B. D.; Noh, S. P.; Lee, Y. K.

    2012-07-15

    The purpose of this project is to cultivate new-generation global leaders in the radiation fields through hosting and managing WNU RT School and create globalization foundation in the radiation technology and industry. The scope of this project is to develop the WNU RT school programme, strengthen the promotion for oversea participants' involvement, open the WNU RT School on the endeavor, and thus analyze and evaluate the result of the WNU RT School. The WNU RT school, so as to change radiation-field young scientists in the world to new global leaders in the future, successfully opened from May 12 to June 1 at Deajeon. The WNU, WNA(World Nuclear Association) leads, managed the event, and KAERI, KINS, KHNP, and KRA co-holded the event as well. Many 39 scientists from Russia, Australia, Netherlands, and other 16 countries joined in the event and they were satisfied with a lot of lectures, practices, lab-training, etc.

  20. Review of Nuclear Physics Experiments for Space Radiation

    Science.gov (United States)

    Norbury, John W.; Miller, Jack; Adamczyk, Anne M.; Heilbronn, Lawrence H.; Townsend, Lawrence W.; Blattnig, Steve R.; Norman, Ryan B.; Guetersloh, Stephen B.; Zeitlin, Cary J.

    2011-01-01

    Human space flight requires protecting astronauts from the harmful effects of space radiation. The availability of measured nuclear cross section data needed for these studies is reviewed in the present paper. The energy range of interest for radiation protection is approximately 100 MeV/n to 10 GeV/n. The majority of data are for projectile fragmentation partial and total cross sections, including both charge changing and isotopic cross sections. The cross section data are organized into categories which include charge changing, elemental, isotopic for total, single and double differential with respect to momentum, energy and angle. Gaps in the data relevant to space radiation protection are discussed and recommendations for future experiments are made.

  1. Special nuclear material radiation monitors for the 1980's

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1985-01-01

    During the two decades that automatic gamma-radiation monitors have been applied to detecting special nuclear material (SNM), little attention has been devoted to how well the monitors perform in plant environments. Visits to 11 DOE facilities revealed poor information flow between developers, manufacturers, and maintainers of SNM radiation monitors. To help users achieve best performance from their monitors or select new ones, Los Alamos National Laboratory developed a hand-held monitor user's guide, calibration manuals for some commercial SNM pedestrian monitors, and an application guide for SNM pedestrian monitors. In addition, Los Alamos evaluated new commercial SNM monitors, considered whether to apply neutron detection to SNM monitoring, and investigated the problem of operating gamma-ray SNM monitors in variable plutonium gamma-radiation fields. As a result, the performance of existing SNM monitors will improve and alternative monitoring methods will become commerciallly available during the 1980s. 9 refs., 6 figs., 1 tab

  2. Training in radiation protection for personnels in nuclear power plants

    International Nuclear Information System (INIS)

    Constancis, J.; Gauthier, A.

    1980-01-01

    For more than 10 years, in order to meet the wishes of their members, the A.P.A.V.E. associations have organised training courses in personnel radiation protection, as a consequence of their activities in the inspection of ionizing radiation sources in industrial or medical environments. Because of their experience, the A.P.A.V.E. associations were asked to provide for the training of the film personnel likely to work in nuclear power stations, in the field of occupational radiation protection. For the last 3 years, nearly 5,000 people have attended these training sessions. The present report describes the approach, draws the first conclusions and state some considerations on this subject [fr

  3. Mass casualties of radiation injuries after nuclear weapon explosion

    International Nuclear Information System (INIS)

    Messerschmidt, O.

    1980-01-01

    Burns, mechanical lesions, radiation injuries as well as combinations of these types of injuries as a consequence of a nuclear explosion demand different basic lines of triage. The lack of a suitable physical dosimetry is a special problem for the evaluation of radiation injuries. While in cases of wounds and burns treatment, like surgery, is recommended to take place early, for example, within hours or days after those injuries, treatment of radiation victims is necessary only in the stage of severe haematologic changes including disturbances of coagulation and occurrence of high fever which appears after one or two weeks subsequent to exposure. The lack of medical personnel and medical equipment result in even a worse prognosis for the various injuries than in peace time accidents. (orig.) [de

  4. Nuclear safety and radiation protection report of the Cruas-Meysse nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 111 and 112). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  5. Nuclear safety and radiation protection report of the Belleville-sur-Loire nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 127 and 128). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  6. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 103, 104, 114 and 115). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  7. Nuclear safety and radiation protection report of the Belleville-sur-Loire nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 127 and 128). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  8. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  9. Nuclear safety and radiation protection report of Belleville-Sur-Loire nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 127 and 128). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  10. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 108, 109 and 167 (under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  11. Nuclear safety and radiation protection report of Fessenheim nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INB no. 75). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  12. Nuclear safety and radiation protection report of Blayais nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 86 and 110). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  13. Nuclear safety and radiation protection report of Nogent-Sur-Seine nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 129 and 130). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  14. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 103, 104, 114 and 115). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  15. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  16. Nuclear safety and radiation protection report of Cruas-Meysse nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 111 and 112). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  17. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 84 and 85). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  18. Nuclear safety and radiation protection report of Dampierre-En-Burly nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 84 and 85). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  19. Nuclear safety and radiation protection report of Civaux nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  20. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  1. Nuclear safety and radiation protection report of Golfech nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 135 and 142). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  2. Nuclear safety and radiation protection report of Penly nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  3. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INB no. 75). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  4. Nuclear safety and radiation protection report of Saint-Alban Saint-Maurice nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 119 and 120). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  5. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 135 and 142). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  6. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  7. Nuclear safety and radiation protection report of the Nogent-sur-Seine nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 129 and 130). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  8. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 84 and 85). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  9. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  10. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  11. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  12. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  13. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 108, 109 and 167 (under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  14. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 86 and 110). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  15. Regulatory aspects of radiation protection in Indian nuclear plants

    International Nuclear Information System (INIS)

    Chander, Vipin; Pawar, S.K.; Duraisamy, S.

    2012-01-01

    Atomic Energy Act of 1962 covers the radiation safety aspects in the development, control and use of atomic energy. To carry out certain regulatory and safety functions under this act, Atomic Energy Regulatory Board (AERB) was constituted in November 15, 1983. Operating Nuclear Power Plants (NPPs) account for about 60% of occupational collective dose and about 65% of the number of radiation workers in the nuclear fuel cycle facilities. Therefore radiation protection aspects in NPPs are of prime importance. In 1970s and 1980s the high radiation exposures in NPPs was an issue with TAPS-1 and 2 reaching annual collective dose of 50 Person-Sv. In response to this, AERB constituted an expert committee to investigate the possibility of reducing collective doses in NPPs in 1988. Subsequently the recommendations of this committee were implemented in all NPPs. In 1990, International Commission on Radiological Protection (ICRP) recommended a downward revision of occupational dose limit to 20 mSv/yr from the earlier limit of 50 mSv/yr. Regulatory body endorsed these recommendations and gradually brought down the annual dose limits from 40 mSv in 1991 to 30 mSv in 1994 with the limit of 100 mSv averaged over a five year period in line with ICRP recommendations. Over the years, the regulatory body has put in place a sound regulatory frame work and mechanism to ensure adequate protection of occupational workers, members of public and environment due to operation of NPPs. Vast experiences in the field of radiation protection vis-à-vis stringent regulatory requirements such as review of exposure cases and special regulatory inspections during Biennial Shut Down (BSD) has helped in downward trends in occupational and public doses. This paper highlights the role of regulatory body in controlling the radiation doses to both occupational workers and members of public in the NPPs through a three-tier review system. The regulatory oversight, inspections and reviews has resulted in

  16. Radiation Hardened Electronics Destined For Severe Nuclear Reactor Environments

    Energy Technology Data Exchange (ETDEWEB)

    Holbert, Keith E. [Arizona State Univ., Tempe, AZ (United States); Clark, Lawrence T. [Arizona State Univ., Tempe, AZ (United States)

    2016-02-19

    Post nuclear accident conditions represent a harsh environment for electronics. The full station blackout experience at Fukushima shows the necessity for emergency sensing capabilities in a radiation-enhanced environment. This NEET (Nuclear Energy Enabling Technologies) research project developed radiation hardened by design (RHBD) electronics using commercially available technology that employs commercial off-the-shelf (COTS) devices and present generation circuit fabrication techniques to improve the total ionizing dose (TID) hardness of electronics. Such technology not only has applicability to severe accident conditions but also to facilities throughout the nuclear fuel cycle in which radiation tolerance is required. For example, with TID tolerance to megarads of dose, electronics could be deployed for long-term monitoring, inspection and decontamination missions. The present work has taken a two-pronged approach, specifically, development of both board and application-specific integrated circuit (ASIC) level RHBD techniques. The former path has focused on TID testing of representative microcontroller ICs with embedded flash (eFlash) memory, as well as standalone flash devices that utilize the same fabrication technologies. The standalone flash devices are less complicated, allowing better understanding of the TID response of the crucial circuits. Our TID experiments utilize biased components that are in-situ tested, and in full operation during irradiation. A potential pitfall in the qualification of memory circuits is the lack of rigorous testing of the possible memory states. For this reason, we employ test patterns that include all ones, all zeros, a checkerboard of zeros and ones, an inverse checkerboard, and random data. With experimental evidence of improved radiation response for unbiased versus biased conditions, a demonstration-level board using the COTS devices was constructed. Through a combination of redundancy and power gating, the demonstration

  17. Safety and radiation protection in Indian nuclear power plants

    International Nuclear Information System (INIS)

    Ghadge, S.G.

    2008-01-01

    Full text: Nuclear energy, an important option for electricity generation is environment friendly, technologically proven, economically competitive and associated with the advantages of energy security and diversity. At present, India has an installed nuclear power generation capacity of 4120 M We with 6 more reactors are under construction/ commissioning at 4 sites. Nuclear power program, in India, as of now is primarily based on pressurized heavy water technology and these reactors are designed with safety features, such as, independent and diverse shut down systems, emergency core cooling system, double containment; pressure suppression pool etc. The principles of redundancy, diversity, fail-safe and passive systems are used in the design. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. In this regard the prime responsibility for safety rests with the organization responsible for facilities and activities that give rise to radiation risks and is achieved by establishing and maintaining the necessary competence, providing adequate training and information, establishing procedures and arrangements to maintain safety under all conditions; verifying appropriate design and the adequate quality of facilities and activities and of their associated equipment; ensuring the safe control of all radioactive material that is used, produced, stored or transported, ensuring the safe control of all radioactive waste that is generated. 'Radiation Protection for Nuclear Facilities', issued by Atomic Energy Regulatory Board (the regulatory authority for NPPs in India) is the basic document for following radiation protection procedures in NPPs. Approved work procedures for all radiation jobs exist. Pre job briefing and post job analysis are carried out. Radiation protection is integrated with plant operation. Radiation levels indicate the performance of several systems. Several measures are adopted in design and

  18. Ionizing radiation, nuclear energy and radiation protection for school; Radiacao ionizante, energia nuclear e protecao radiologica para a escola

    Energy Technology Data Exchange (ETDEWEB)

    Lucena, E.A.; Reis, R.G.; Pinho, A.S.; Alves, A.S.; Rio, M.A.P.; Reis, A.A., E-mail: arlene@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Silva, J.W.S. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Paula, G.A. de; Goncalves Junior, M.A. [Escola Sesc de Ensino Medio, Rio de Janeiro, RJ (Brazil)

    2017-04-01

    Since the discovery of X-rays in 1895, ionizing radiation has been applied in many sectors of society, such as medicine, industry, safety, construction, engineering and research. However, population is unaware of both the applications of ionizing radiation and their risks and benefits. It can be seen that most people associate the terms 'radiation' and 'nuclear energy' with the atomic bomb or cancer, most likely because of warlike applications and the stealthy way radioactivity had been treated in the past. Thus, it is necessary to clarify the population about the main aspects related to the applications, risks and associated benefits. These knowledge can be disseminated in schools. Brazilian legislation for basic education provides for topics such as nuclear energy and radioactivity to high school students. However, some factors hamper such an educational practice, namely, few hours of class, textbooks do not address the subject, previous concepts obtained in the media, difficulty in dealing with the subject in the classroom, phobia, etc. One solution would be the approximation between schools and institutions that employ technologies involving radioactivity, which would allow students to know the practices, associated radiological protection, as well as the risks and benefits to society. Currently, with the increasing application of ionizing radiation, especially in medicine, it is necessary to demystify the use of radioactivity. (author)

  19. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1981-01-01

    The present review provides an understanding of our current knowledge of the carcinogenic effect of low-dose radiation in man, and surveys the epidemiological studies of human populations exposed to nuclear explosions and medical radiation. Discussion centers on the contributions of quantitative epidemiology to present knowledge, the reliability of the dose-incidence data, and those relevant epidemiological studies that provide the most useful information for risk estimation of cancer induction in man. Reference is made to dose-incidence relationships from laboratory animal experiments where they may obtain, for problems and difficulties in extrapolation from data obtained at high doses to low doses, and from animal data to the human situation. The paper describes the methods of application of such epidemiological data for estimation of excess risk of radiation-induced cancer in exposed human populations and discusses the strengths and limitations of epidemiology in guiding radiation protection philosophy and public health policy

  20. Progress report: nuclear safety and radiation protection in 2006

    International Nuclear Information System (INIS)

    2007-01-01

    For the French Nuclear Safety Authority (Asn), the year 2006 was marked by two important nuclear laws being passed, one of which brought about a major change in its status. The year was a relatively satisfactory one with regard to nuclear safety, although the picture was more contrasted concerning radiation protection: in this area, more particularly in the medical field, the overall impression of good progress is offset by the declaration of a number of radiotherapy accidents. Given the benefits expected from radiotherapy treatment by the patient suffering from cancer, the conditions in which this activity is carried out are a subject of major concern for Asn, in the light of the serious risks linked to patient over-exposure. ( some important points as follows: the law on transparency and security in the nuclear field, the law on sustainable management of radioactive materials and waste, Asn: an independent administrative authority, EPR reactor project safety, I.R.R.S.: an international audit of Asn in 2006, harmonization of nuclear safety, cancer radiotherapy, improved information of the public after the T.S.N. law, taking account of organisational and human factors). (N.C.)

  1. Gamma radiation scanning of nuclear waste storage tile holes

    International Nuclear Information System (INIS)

    Das, A.; Yue, S.; Sur, B.; Johnston, J.; Gaudet, M.; Wright, M.; Burton, N.

    2010-01-01

    Nuclear waste management facilities at Chalk River Laboratories use below-ground 'tile holes' to store solid waste from various activities such as medical radioisotope production. A silicon PIN (p-type-intrinsic-n-type semiconductor) diode based gamma radiation scanning system has been developed and used to profile the gamma radiation fields along the depth of waste storage tile holes by deploying the sensor into verification tubes adjacent to the tile holes themselves. The radiation field measurements were consistent with expected radiation fields in the tile holes based on administrative knowledge of the radioactive contents and their corresponding decay rates. Such measurements allow non-invasive verification of tile hole contents and provide input to the assessment of radiological risk associated with removal of the waste. Using this detector system, radioactive waste that has decayed to very low levels may be identified based on the radiation profile. This information will support planning for possible transfer of this waste to a licensed waste storage facility designed for low level waste, thus freeing storage space for possible tile hole re-use for more highly radioactive waste. (author)

  2. Reduction of radiation exposure in Japanese BWR Nuclear Power Plants

    International Nuclear Information System (INIS)

    Morikawa, Yoshitake

    1995-01-01

    The reduction of occupational exposure to radiation during the annual inspection and maintenance outages of Japanese boiling water reactors (BWR) is one of the most important objectives for stable and reliable operation. It was shown that this radiation exposure is caused by radionuclides, such as Co-60, Co-58 and Mn-54 which are produced from the metal elements Co, Ni, and Fe present in the corrosion products of structural materials that had been irradiated by neutrons. Therefore, to reduce radiation sources and exposures in Japanese BWRs, attempts have been reinforced to remove corrosion products and activated corrosion products from the primary coolant system. This paper describes the progress of the application of these measures to Japanese BWRs. Most Japanese BWR-4 and BWR-5 type nuclear power plants started their commercial operations during the 1970s. With the elapse of time during operations, a problem came to the forefront, namely that occupational radiation exposure during plant outages gradually increased, which obstructed the smooth running of inspections and maintenance work. To overcome this problem, extensive studies to derive effective countermeasures for radiation exposure reduction were undertaken, based on the evaluation of the plants operation data

  3. Occupational radiation exposure in nuclear medicine department in Kuwait

    Science.gov (United States)

    Alnaaimi, M.; Alkhorayef, M.; Omar, M.; Abughaith, N.; Alduaij, M.; Salahudin, T.; Alkandri, F.; Sulieman, A.; Bradley, D. A.

    2017-11-01

    Ionizing radiation exposure is associated with eye lens opacities and cataracts. Radiation workers with heavy workloads and poor protection measures are at risk for vision impairment or cataracts if suitable protection measures are not implemented. The aim of this study was to measure and evaluate the occupational radiation exposure in a nuclear medicine (NM) department. The annual average effective doses (Hp[10] and Hp[0.07]) were measured using calibrated thermos-luminescent dosimeters (TLDs; MCP-N [LiF:Mg,Cu,P]). Five categories of staff (hot lab staff, PET physicians, NM physicians, technologists, and nurses) were included. The average annual eye dose (Hp[3]) for NM staff, based on measurements for a typical yearly workload of >7000 patients, was 4.5 mSv. The annual whole body radiation (Hp[10]) and skin doses (Hp[0.07]) were 4.0 and 120 mSv, respectively. The measured Hp(3), Hp(10), and Hp(0.07) doses for all NM staff categories were below the dose limits described in ICRP 2014 in light of the current practice. The results provide baseline data for staff exposure in NM in Kuwait. Radiation dose optimization measures are recommended to reduce NM staff exposure to its minimal value.

  4. Reduction of radiation exposure in Japanese BWR Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Yoshitake [ISOGO Nuclear Engineering Center, Yokohama (Japan)

    1995-03-01

    The reduction of occupational exposure to radiation during the annual inspection and maintenance outages of Japanese boiling water reactors (BWR) is one of the most important objectives for stable and reliable operation. It was shown that this radiation exposure is caused by radionuclides, such as Co-60, Co-58 and Mn-54 which are produced from the metal elements Co, Ni, and Fe present in the corrosion products of structural materials that had been irradiated by neutrons. Therefore, to reduce radiation sources and exposures in Japanese BWRs, attempts have been reinforced to remove corrosion products and activated corrosion products from the primary coolant system. This paper describes the progress of the application of these measures to Japanese BWRs. Most Japanese BWR-4 and BWR-5 type nuclear power plants started their commercial operations during the 1970s. With the elapse of time during operations, a problem came to the forefront, namely that occupational radiation exposure during plant outages gradually increased, which obstructed the smooth running of inspections and maintenance work. To overcome this problem, extensive studies to derive effective countermeasures for radiation exposure reduction were undertaken, based on the evaluation of the plants operation data.

  5. Radiation-hardened micro-electronics for nuclear instrumentation

    International Nuclear Information System (INIS)

    Van Uffelen, M.

    2007-01-01

    The successful development and deployment of future fission and thermonuclear fusion reactors depends to a large extent on the advances of different enabling technologies. Not only the materials need to be custom engineered but also the instrumentation, the electronics and the communication equipment need to support operation in this harsh environment, with expected radiation levels during maintenance up to several MGy. Indeed, there are yet no commercially available electronic devices available off-the-shelf which demonstrated a satisfying operation at these extremely high radiation levels. The main goal of this task is to identify commercially available radiation tolerant technologies, and to design dedicated and integrated electronic circuits, using radiation hardening techniques, both at the topological and architectural level. Within a stepwise approach, we first design circuits with discrete components and look for an equivalent integrated technology. This will enable us to develop innovative instrumentation and communication tools for the next generation of nuclear reactors, where both radiation hardening and miniaturization play a dominant role

  6. ASN report on the status of nuclear safety and radiation protection in France in 2011

    International Nuclear Information System (INIS)

    2012-01-01

    The first part of this huge report proposes a detailed overview of ASN activities in different fields: ionizing radiations related to nuclear activities and risks for health and the environment, principles and actors of nuclear safety control, of radiation protection and of protection of the environment, regulation, control of nuclear activities and exposures to ionizing radiations, emergency situations, public information and transparency, international relationships, regional overview of nuclear safety and radiation protection. The second part addresses the activities controlled by the ASN: medical use of ionizing radiations, non medical use of ionizing radiations, transport of radioactive materials, electronuclear power stations, facilities involved in the nuclear fuel cycle, research facilities and other nuclear installations, the safety of dismantling of nuclear base installations, radioactive wastes and polluted sites and soils

  7. Radiation exposure on residents due to semipalatinsk nuclear tests

    International Nuclear Information System (INIS)

    Takada, J.; Hoshi, M.; Nagatomo, T.

    2000-01-01

    Accumulated external radiation doses for residents near Semipalatinsk nuclear test site of the former USSR are presented as a results of the first study by thermoluminescence technique for bricks sampled at several settlements between 1995 and 1997. The external doses which we evaluated from brick dose were up to ∼100 cGy for resident. The external doses at several points in the center of Semipalatinsk city were ∼60 cGy that was remarkably high comparing with the previously reported value based on the military data. A total of 459 nuclear explosions were conducted by the former Union of Soviet Socialist Republics (USSR) from 1949 to 1989 at the Semipalatinsk nuclear test site (SNTS) Kazakhstan, including 87 atmospheric, 26 on the ground, and 364 underground explosions. Total energy release of about 18 Mt equivalent of trinitrotoluene is eleven hundreds times of Hiroshima atomic bomb. However previous reports concerning the effects of radiation on residents near the SNTS based on data provided by the Defense Department of the former USSR do not have direct experimental data concerning effective equivalent dose. They just measured some doses for particular settlements after some nuclear explosions. These do not indicate integrated dose for the residents due to the whole explosions. The technique of thermoluminescence dosimetry (TLD) which had been successfully applied to the dosimetry on Hiroshima and Nagasaki atomic bombs, enabled us to evaluate accumulated external gamma ray doses at specific places due to whole nuclear explosions in the Semipalatinsk test site. TLD technique is well-established one for not only instantaneous exposure like in A-bombs (Hiroshima and Nagasaki) but also prolonged exposure like in dating. Moreover this technique was applicable for dosimetry study of radioactive fallout as shown in studies of Chernobyl accident. The way of external dose estimation from TLD doses for brick will be discussed in case of radioactive fallout. We will

  8. Present status of Radiation and Nuclear Education at High School in Japan

    International Nuclear Information System (INIS)

    Kudo, Kazuhiko

    1999-01-01

    A special committee for 'Radiation and Nuclear Education' made an investigation into textbooks for social and science courses at high school in 1996. The committee concluded that descriptions of subjects related to energy, radiation and nuclear power in textbooks should be more substantial . In textbooks for social course, nuclear power was described from the point of view of resource, energy and environment. Some of the textbooks described that Chernobyl power plant's accident and nuclear weapons testing contaminated and destructed the earth environment. Descriptions about nuclear power were perceptional and one-sided . In textbooks for science course, subjects related to radiation, nucleus, nuclear reactor and nuclear power plant were described in detail to a certain extent . Descriptions about radiation hazard and radiation utilization were objective and balanced. In order that high school students can understand objectively nuclear power as a energy resource and conservation of the earth environment, the committee recommended the government course guidelines to be revised. (M. Suetake)

  9. Exposure of ionizing radiation to non-radiation workers from nuclear medicine patients

    International Nuclear Information System (INIS)

    Janssen, J.; Smart, R.C.; McKay, E.

    1999-01-01

    Full text: Occasionally, patients are required to have several tests in one day. They may be injected with radio-isotopes in the morning, have other investigations during the absorption period and then return to nuclear medicine for imaging later in the day. Recently, the NSW Department of Health issued a circular concerning exposure to sonographers from ionizing radiation emitted from nuclear medicine patients. The object of this study is to establish a model of emissions from nuclear medicine patients and to measure the exposure to other health workers who may be in close contact with these patients. Dose rate measurements were acquired for patients injected with 99 Tc m and 67 Ga for the following studies: heart, thyroid, lung, bone, biliary and lymphoma. Measurements were taken at 10 cm increments to 1 m and at time intervals of 0,1,2 and 24 h post-injection. In addition, 5 sonographers were issued with TLDs to be worn on the waist and fingers for a period of 3 months. The dose limit for a non-radiation worker is 1000 μSv (ICRP 60). The external dose rate measurements indicate that, assuming a sonographer is seated approximately 30 cm from a patient injected with 800 MBq 99 Tc m -HDP for a bone scan, 1 h post-injection, the sonographer would receive a dose of 11 μSv for a 30 min ultrasound scan. In practice, only 4 nuclear medicine patients were scanned in the ultrasound department during the 5 week monitoring period and the sonographers' TLDs recorded no radiation dose. In conclusion, the average exposure to sonographers from nuclear medicine patients is well within the limits recommended by the ICRP. However, in accordance with the ALARA principle where practicable, any ultrasound examination should be performed prior to nuclear medicine studies

  10. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  11. Nuclear safety and radiation protection report of the Tricastin nuclear facility (BCOT) - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, if some, are reported as well as the effluents discharge in the environment. Finally, the management of the radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  12. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Fessenheim nuclear power plant (INB 75, Haut-Rhin, 68 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  13. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cattenom nuclear power plant (INB 124, 125, 126 and 137, Moselle (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  14. Nuclear safety and radiation protection report of the Saint-Laurent-des-Eaux nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Saint-Laurent-des-Eaux nuclear power plant (Saint-Laurent-Nouan (FR)): 2 partially dismantled graphite-gas reactors and a graphite sleeves storage silo (INB 46 and 74), and 2 PWR reactors in operation (INB 100). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  15. Nuclear safety and radiation protection report of the Saint-Laurent-des-Eaux nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Saint-Laurent-des-Eaux nuclear power plant (Saint-Laurent-Nouan (FR)): 2 partially dismantled graphite-gas reactors and a graphite sleeves storage silo (INB 46 and 74), and 2 PWR reactors in operation (INB 100). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  16. Nuclear safety and radiation protection report of the CNPE EDF nuclear facilities of Tricastin - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Tricastin nuclear power plant (INB 87 and 88, Saint-Paul-Trois-Chateaux, Drome (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  17. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  18. Nuclear safety and radiation protection report of the Creys-Malville nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Creys-Malville nuclear power plant (also known as Superphenix power plant, INB no. 91, Creys-Mepieu - Isere (FR)) and the other fuel and waste storage facilities of the site (INB no. 141). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  19. Nuclear safety and radiation protection report of the Chinon nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chinon nuclear power plant (Indre-et-Loire, 37 (FR)): 4 PWR reactors in operation (Chinon B, INB 107 and 132), 3 partially dismantled graphite-gas reactors (Chinon A, INB 133, 153 and 161), a workshop for irradiated materials (AMI, INB 94), and an inter-regional fuel storage facility (MIR, INB 99). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  20. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Penly nuclear power plant (INB 136 and 140, Seine-Maritime, 76 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  1. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Fessenheim nuclear power plant (INB 75, Haut-Rhin, 68 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  2. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chooz nuclear power plant (Ardennes (FR)): 2 PWR reactors in operation (Chooz B, INB 139 and 144) and one partially dismantled PWR reactor (Chooz A, INB 163). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary followed by the viewpoint of the Committees for health, safety and working conditions. (J.S.)

  3. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Blayais nuclear power plant (INB 86 and 110, Gironde (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  4. Nuclear safety and radiation protection report of the Nogent-sur-Seine nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Nogent-sur-Seine nuclear power plant (INB 129 and 130, Aube (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  5. Nuclear safety and radiation protection report of the Cruas-Meysse nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cruas-Meysse nuclear power plant (INB 111 and 112, Ardeche (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  6. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  7. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Paluel nuclear power plant (INB no. 103 - Paluel 1, no. 104 - Paluel 2, no. 114 - Paluel 3 and no. 115 - Paluel 4, Cany-Barville - Seine-Maritime (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document ends with a glossary and no recommendation from the Committees for health, safety and working conditions. (J.S.)

  8. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Paluel nuclear power plant (INB no. 103 - Paluel 1, no. 104 - Paluel 2, no. 114 - Paluel 3 and no. 115 - Paluel 4, Cany-Barville - Seine-Maritime (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  9. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Dampierre-en-Burly nuclear power plant (INB 84 and 85, Loiret, 45 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  10. Nuclear safety and radiation protection report of the Creys-Malville nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Creys-Malville nuclear power plant (also known as Superphenix power plant, INB no. 91, Creys-Mepieu - Isere (FR)) and the other fuel and waste storage facilities of the site (INB no. 141). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2012, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  11. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  12. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Golfech nuclear power plant (INB 135 and 142, Tarn-et-Garonne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  13. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Penly nuclear power plant (INB 136 and 140, Seine-Maritime, 76 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  14. Nuclear safety and radiation protection report of the Cruas-Meysse nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cruas-Meysse nuclear power plant (INB 111 and 112, Ardeche (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  15. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  16. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Civaux nuclear power plant (INB 158 and 159, Vienne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  17. Nuclear safety and radiation protection report of the Chinon nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chinon nuclear power plant (Indre-et-Loire, 37 (FR)): 4 PWR reactors in operation (Chinon B, INB 107 and 132), 3 partially dismantled graphite-gas reactors (Chinon A, INB 133, 153 and 161), a workshop for irradiated materials (AMI, INB 94), and an inter-regional fuel storage facility (MIR, INB 99). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  18. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Blayais nuclear power plant (INB 86 and 110, Gironde (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  19. Nuclear safety and radiation protection report of the Tricastin operational hot base nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if some, are reported as well as the effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  20. Nuclear safety and radiation protection report of the Dampierre-en-Burly nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Dampierre-en-Burly nuclear power plant (INB 84 and 85, Loiret, 45 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  1. Nuclear safety and radiation protection report of the nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if some, are reported as well as the effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  2. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cattenom nuclear power plant (INB 124, 125, 126 and 137, Moselle (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  3. Nuclear safety and radiation protection report of the Saint-Alban-Saint-Maurice nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Saint-Alban-Saint-Maurice nuclear power plant (INB 119 and 120, Isere (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  4. Nuclear safety and radiation protection report of the Nogent-sur-Seine nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Nogent-sur-Seine nuclear power plant (INB 129 and 130, Aube (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  5. Nuclear safety and radiation protection report of the Belleville-sur-Loire nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Belleville-sur-Loire nuclear power plant (INB no. 127 - Belleville 1 and no. 128 - Belleville 2, Belleville-sur-Loire and Sury-pres-Lere - Cher (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  6. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Civaux nuclear power plant (INB 158 and 159, Vienne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  7. Nuclear safety and radiation protection report of the Bugey nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Bugey nuclear power plant (Ain (FR)): 4 PWR reactors in operation (INB 78 and 89), one partially dismantled graphite-gas reactor (INB 45), an inter-regional fuel storage facility (MIR, INB 102), and a radioactive waste storage and conditioning facility under construction (ICEDA, INB 173). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  8. Nuclear safety and radiation protection report of the Saint-Alban-Saint-Maurice nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Saint-Alban-Saint-Maurice nuclear power plant (INB 119 and 120, Isere (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  9. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Golfech nuclear power plant (INB 135 and 142, Tarn-et-Garonne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  10. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Flamanville nuclear power plant (Manche (FR)): 2 PWR reactors in operation (INB 108 and 109), and 1 PWR under construction (Flamanville 3, INB 167). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, water consumption and waste management at Flamanville 3 construction site) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  11. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Flamanville nuclear power plant (Manche (FR)): 2 PWR reactors in operation (INB 108 and 109), and 1 PWR under construction (Flamanville 3, INB 167). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, water consumption and waste management at Flamanville 3 construction site) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  12. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chooz nuclear power plant (Ardennes (FR)): 2 PWR reactors in operation (Chooz B, INB 139 and 144) and one partially dismantled PWR reactor (Chooz A, INB 163). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  13. Radiation embrittlement of Spanish nuclear reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Bros, J.; Ballesteros, A.; Lopez, A.

    1993-01-01

    Commercial pressurized water reactor (PWR) and boiling water reactor (BWR) nuclear power plants contain a series of pressure vessel steel surveillance capsules as the principal means of monitoring radiation effects on the pressure vessel. Changes in fracture toughness are more severe in surveillance capsules than in reactor vessel materials because of their proximity of the reactor core. Therefore, it is possible to predict changes in fracture toughness of the reactor vessel materials. This paper describes the status of the reactor vessel surveillance program relating to Spanish nuclear power plants. To date, twelve capsules have been removed and analyzed from seven of the nine Spanish reactors in operation. The results obtained from the analysis of these capsules are compared with the predictions of the Nuclear Regulatory Commission (NRC) Regulatory Guide 1.99, Rev. 2, by means of measured and expected increase of the nil-ductility transition reference temperature (RT NDT ). The comparison is made considering the different variables normally included in the studies of radiation response of reactor pressure vessel materials, such as copper content of steel, level of neutron fluence above 1 MeV, base metal or weld metal, and so forth. The surveillance data have been used for determining the adjusted reference temperatures and upper shelf energies at any time. The results have shown that the seven pressure vessels are in excellent condition to continue operating with safety against brittle fracture beyond the design life, without the need to recuperate the degraded properties of the materials by annealing of the vessel

  14. Nuclear radiation detected optical pumping of neutron deficient Hg isotopes

    International Nuclear Information System (INIS)

    Bonn, J.

    1975-01-01

    The extension of the Nuclear Radiation Detected Optical Pumping method to mass-separated samples of isotopes far off stability is presented for a series of light Hg isotopes produced at the ISOLDE facility at CERN. The isotope under investigation is transferred by an automatic transfer system into the optical pumping apparatus. Zeeman scanning of an isotopically pure Hg spectral lamp is used to reach energetic coincidence with the hyperfine structure components of the 6s 2 1 S 0 -6s6p 3 P 1 (lambda = 2537 A) resonance line of the investigated isotope and the Hg lamp. The orientation build up by optical pumping is monitored via the asymmetry or anisotropy of the nuclear radiation. Nuclear spins, magnetic moments, electric quadrupole moments and isotopic shift are obtained for 181 Hg- 191 Hg using the β-asymmetry as detector. The extension of the method using the γ-anisotropy is discussed and measurements on 193 Hg are presented. (orig./HK)

  15. Proceedings of the First Seminar on Radiation Safety Technology and Nuclear Biomedicine

    International Nuclear Information System (INIS)

    Suprihadi, Topo

    2003-01-01

    The First Seminar on Radiation Safety Technology and Nuclear Biomedicine was held on 10-11 April 2001 at the Center for Research and Development of Radiation Safety and Nuclear Biomedicine have presented 19 papers about upgrading manpower resources, researcher, investigator, manager, and user of nuclear facilities, to go out against free market era

  16. The introduction of radiation monitor produced by several nuclear instrument factories

    International Nuclear Information System (INIS)

    Yu Liying

    2005-01-01

    The paper introduce some radiation monitor products of several nuclear instrument factories include Xi'an Nuclear Instrument Factory, MGP Instruments Inc, and Canberra Industries Inc. The introduction aspects include the range, configuration, and application of products. So, the paper is reference for the designer with responsibility for radiation monitoring system of new nuclear project. (authors)

  17. Survey of cognition on nuclear and radiation in Beijing high school students

    International Nuclear Information System (INIS)

    Wang Chao; He Jianrong; Zhu Xiayang; Yang Guoliang; Cong Huiling; Hu Qinfang

    2014-01-01

    Objective: To explore cognition level on nuclear and radiation in Beijing high school students, which may provide evidence for promoting science popularization on nuclear and radiation. Methods: Questionnaire-based survey was conducted in Beijing high school students, randomized cluster sampling was used to recruit study participants. Demographic information was collected, and cognition level on nuclear and radiation was evaluated by questionnaire. Results: A total of 1029 pieces of eligible questionnaires were collected. The correct rate for answering common sense about nuclear and radiation was 58%, with score of boys significantly higher than that of girls (t = 4.131, P < 0.05). About subjective cognition of nuclear and radiation knowledge, 87 (8.5%) indicated 'quite clear', 779 (75.7%) indicated 'know a little', 163 (15.8%) indicated 'know nothing'. There was significant difference in score of common sense about nuclear and radiation among people with various subjective cognition level of nuclear and radiation (J-T = 8.279, P < 0.05). There was a linear correlation between support degree for nuclear power and subjective cognition level of nuclear and radiation (r = 0.161, P < 0.05). There was significant difference in score of common sense about nuclear and radiation among people with various support degree for nuclear power (J-T = 7.508, P < 0.05), whereas those who had got high scores tended to support nuclear power to a higher degree. Conclutions: Students knew little about knowledge on nuclear and radiation. It is necessary to strengthen propaganda and education on nuclear and radiation, which may help enhance the students' comprehensive quality, and sustainable expansion of nuclear power more support in the long run. (authors)

  18. ASN report of the status of nuclear safety and radiation protection in France in 2012

    International Nuclear Information System (INIS)

    Chevet, Pierre-Franck; Delmestre, Alain; Bardet, Marie-Christine; Covard, Fabienne; Landrin, Sophie

    2013-01-01

    After a presentation of the French Nuclear Safety Authority (ASN), its missions, some key figures illustrating its activities and its organisation, this report proposes an overview of marking events and of actions undertaken by the ASN after the Fukushima accident. Then, the report proposes a detailed and commented overview of actions undertaken by the ASN in different fields and domains: nuclear activities, principles and actors of nuclear safety and radiation protection control, regulation, control of nuclear activities and of exposures to ionizing radiations, radiological and post-accidental emergency situations, public information and transparency, international relationships, regional overview of nuclear safety and radiation protection. The last part addresses activities controlled by the ASN: medical use of ionizing radiations, industrial, research and veterinary uses and source safety, transport of radioactive materials, electronuclear plants, installations related to nuclear fuel cycle, nuclear research and other nuclear installations, safety of dismantling of base nuclear installations, radioactive wastes and polluted sites

  19. Workshop on radiation protection of patient. Workshop on radiation protection of worker in nuclear medicine and biomedicine

    International Nuclear Information System (INIS)

    1998-01-01

    In these workshops, information on the following subjects was presented: biological and prenatal effects of ionizing radiation, excretion of radiopharmaceuticals in human breast milk, fetal doses assessment, final disposal of radioactive waste in medical applications, regulatory functions for installations in nuclear medicine, workers doses in nuclear medicine and biomedicine, radioprotection of their nuclear installations, programs of quality assurance, etc

  20. Radiation safety in industrial applications of nuclear techniques

    International Nuclear Information System (INIS)

    Lam, E.S.

    1981-01-01

    The hazards associated with the use of industrial equipment is one of the undesirable by-products of advanced technology. The use of nuclear techniques is a good example. Due to the usefulness of such techniques, one may accept the risks involved if they can be brought down to manageable levels. Most of the nuclear techniques in use in industries in Malaysia require only minimal safety precautions as they make use of only small amounts of radioactive material. However, some large sources are also being used and safety precautions have to be strictly enforced. The management plays a critical role in these industries. The requirements for radiation safety include the monitoring of workers and work areas, the medical surveillance of workers and the provision of barriers and other safety precautions. The management should also look to the training of the workers and be prepared for any emergencies that may arise. (author)

  1. Radiation safety in industrial applications of nuclear techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lam, E S [Ministry of Health, Kuala Lumpur (Malaysia)

    1981-01-01

    The hazards associated with the use of industrial equipment is one of the undesirable by-products of advanced technology. The use of nuclear techniques is a good example. Due to the usefulness of such techniques, one may accept the risks involved if they can be brought down to manageable levels. Most of the nuclear techniques in use in industries in Malaysia require only minimal safety precautions as they make use of only small amounts of radioactive material. However, some large sources are also being used and safety precautions have to be strictly enforced. The management plays a critical role in these industries. The requirements for radiation safety include the monitoring of workers and work areas, the medical surveillance of workers and the provision of barriers and other safety precautions. The management should also look to the training of the workers and be prepared for any emergencies that may arise.

  2. Nuclear data needed for applications in radiation oncology

    International Nuclear Information System (INIS)

    White, R.M.; Chadwick, M.B.; Siantar, C.L.H.; Chandler, W.P.

    1994-03-01

    Fast neutrons have been used to treat over 15,000 cancer patients in approximately twenty centers worldwide and proton therapy is emerging as a potential treatment of choice for tumors near critical anatomical structures. Neutron therapy requires reaction data to ∼70 MeV while proton therapy requires data to ∼250 MeV. The cross section databases require energy- and angle-dependent cross sections for secondary neutrons, charged-particles and recoil nuclei. We discuss expansion of our nuclear databases and development of a three-dimensional radiation transport package that uses CT images as the input mesh to an all-particle Monte Carlo code. Called PEREGRINE, this code calculates dose distributions in the human body and can be used as a tool to determine the dependence of dose on details of the evaluated nuclear data

  3. Radiation management for infectious waste from nuclear medicine studies

    International Nuclear Information System (INIS)

    Kondo, Yuji; Takeuchi, Yasuyuki; Masumoto, Kazuya

    2003-01-01

    An industrial waste management service has refused to collect medical waste from our hospital owing to radioactive contamination found in the waste in July 2000. An investigation revealed that the ''three-way stopcock'' and handling diapers used for radioisotope examination were the radioactive contaminants. We therefore reconsidered the system of medical waste maintenance especially for radioactive materials. Since February 2001, we have resumed radiation maintenance by following the manual for the handling diapers of patients administered radiopharmaceuticals issued by five organizations associated with Japan Radiological Society (JRS), Japanese Society of Radiological Technology (JSRT), the Japanese Society of Nuclear Medicine (JSNM), the Japanese Society of Nuclear Medicine Technology (JSNMT), and Japan Association on Radiological Protection in Medicine (JARPM). A major change was to check the radioactive waste at the individual departments and at a centralized check system. This eliminated the problem of dumping radioactive material into medical waste as well as resolving the concerns of the industrial waste management service. (author)

  4. Duties and responsibilities of the Nuclear Power Inspectorate and the National Radiation Protection Institute in connection with nuclear power plants

    International Nuclear Information System (INIS)

    Eckered, T.

    1977-01-01

    The two Swedish bodies competent for the control of nuclear energy are the Swedish Nuclear Power Inspectorate (SKI) and the National Swedish Institute on Radiation Protection (SSI). The duties of both bodies in respect of inspection stem from the provisions of the Atomic Energy Act and the Radiation Protection Act. The procedure to be followed for construction and operation of nuclear power plants is described from the viewpoint of the responsibilities entrusted to SKI and SSI. (NEA) [fr

  5. Cryopump behavior in the presence of beam or nuclear radiation

    International Nuclear Information System (INIS)

    Law, P.K.

    1977-12-01

    Cryocondensation pumping has been proposed to be the method of gas removal for neutral-beam refueled fusion reactors. A cryocondensation pumping unit has been constructed to test design concepts and compatibility with conditions under actual beam operation and nuclear radiation environment. Various operating parameters for this test pumping unit have been measured, including pumping speeds for various gases and beam desorption effects. An experiment has been planned at the Berkeley Research Reactor to measure the desorption effects of high energy neutrons and gamma radiation. A foil activation method has been devised to accurately assess the energy spectrum of this neutron source, which is expected to be comparable to that of the Tokamak Fusion Test Reactor

  6. Radiation risk and its estimation for nuclear facilities

    International Nuclear Information System (INIS)

    Krueger, F.W.

    1979-01-01

    The level of knowledge achieved in estimating risks due to the operation of nuclear facilities is discussed. In this connection it is analyzed to what extent risk estimates may be used for establishing requirements for facilities and measures of radiation protection and accident prevention. At present, estimates of risks are subject to great uncertainties. However, the results attainable already permit to discern the causes of possible accidents and to develop effective measures for preventing such accidents. For the time being (and maybe in principle) risk estimation is possible only with more or less arbitrary premises. Within the foreseeable future, cost-benefit comparisons cannot compensate for discretionary decisions in establishing requirements for measures of radiation protection and accident prevention. In preparing such decisions based on experience, expert opinions, political and socio-economic reflections and views, comparison of the risk of novel technologies with existing ones or accepted risks may be a useful means. (author)

  7. Radiation exposure in nuclear medicine: real-time measurement

    International Nuclear Information System (INIS)

    Sylvain, Iara; Bok, Bernard; X. Bichat University, Paris

    2002-01-01

    French regulations have introduced the use of electronic dosimeters for personnel monitoring of workers. In order to evaluate the exposure from diagnostic procedures to nuclear medicine staff, individual whole-body doses were measured daily with electronic (digital) personal dosimeters during 20 consecutive weeks and correlated with the work load of each day. Personal doses remained always below 20 mu Sv/d under normal working conditions. Radiation exposure levels were highest to tech staff, nurses and stretcher-bearers. The extrapolated annual cumulative doses for all staff remained less than 10% of the maximum legal limit for exposed workers (2 mSv/yr). Electronic dosimeters are not technically justified for routine survey of staff. The high sensitivity and immediate reading of electronic semiconductor dosimeters may become very useful for exposure control under risky working conditions. It may become an important help for optimising radiation protection. (author)

  8. Radiation protection in nuclear emergencies, including thyroid blockage with iodine

    International Nuclear Information System (INIS)

    Niklas, K.

    1991-01-01

    The Government of the Federal Republic of Germany has set emergency reference levels of radiation doses at which countermeasures such as sheltering, evacuation, iodine prophylaxis and resettlement should be considered in case of severe accidents in nuclear installations. Emergency facilities are to be set up for a range of meausres to protect the public, such as assessment of contamination and subsequent decontamination. Recommendations as to further therapeutic measures will be made by medical personnel. The administration of stable iodine can block or reduce the accumulation of radioiodine in the thyroid gland. Stable potassium iodine tablets (100 mg each) will be distributed by the local authorities. Since iodine deficiency is still prevalent in large parts of the Federal Republic of Germany, iodine prophylaxis will be recommended only when relatively high radiation doses to the thyroid gland are to be expected. Resettlement of the population must be considered if an excessive dose is expected in the affected area over a long period. (orig.) [de

  9. Intervention criteria in a nuclear or radiation emergency

    International Nuclear Information System (INIS)

    1994-01-01

    In September 1993, the IAEA convened a Technical Committee Meeting on intervention and accidents. This technical committee modified the text and values from member states and international organizations, and combined them with the draft revision of Safety Series No. 72. This Safety Guide is the result of that process and represents an international understanding on the principles for intervention and numerical values for generic intervention levels. The recommendations of the present Safety Guide are the basis for the International Basic Safety Standards for Protection against Ionizing Radiations and for the Safety of Radiation Sources of the FAO, the IAEA, the International Labour Organisations, the Nuclear Energy Agency of the Organisation for Economic Cooperation and Development, the Pan American Health Organization and the WHO. Refs, figs and tabs

  10. Radiation exposures from nuclear tests at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, G M

    1958-12-01

    A summary of the pertinent data on radiation exposures from nuclear tests in Nevada is presented. The data are presented in categories of external ..gamma.. radiation, activity concentrations in air, and activity concentrations in water. Methods used to estimate exposure and to evaluate data are described. The data are tabulated. The maximum external exposure was 7 to 8 r for 15 persons involved. In terms of relatively large populations, the average exposure for the 1,000,000 people living nearest the site was at the rate of 1/2 r/30 yr. The highest concentration of fallout activity in the air was about 1.3 ..mu..c/m/sup 3/ averaged over the 30 hr that the activity was present in significant quantities. The highest concentration of fallout activity in a potential drinking water supply was about 1.4 x 10/sup -/ ..mu..c/me extrapolated to D + 3 days. Evaluation of these data is given.

  11. Introduction to workshop on radiation effects in nuclear waste materials

    International Nuclear Information System (INIS)

    Matzke, H.

    1988-01-01

    The workshop consisted of an invited lecture for REI-4, treating radiation damage in nuclear fuels as well as giving an introduction to the field of damage in waste matrices, of invited and contributed lectures to the workshop and to REI as well as of discussions and round table meetings. The contributions available as manuscripts are included on the following pages of these proceedings. At the end, a short summary with recommendations for future work has been added. It is hoped that the stimulating discussions of the workshop will help to continue the work in the field of radiation effects in waste matrices in an effective way. The organizer believes that there are good reasons for this hope and he thanks all scientists who contributed to the success of the workshop, as well as members of the organizing committee of REI-4 for their help. (orig.)

  12. Validation of nuclear models used in space radiation shielding applications

    International Nuclear Information System (INIS)

    Norman, Ryan B.; Blattnig, Steve R.

    2013-01-01

    A program of verification and validation has been undertaken to assess the applicability of models to space radiation shielding applications and to track progress as these models are developed over time. In this work, simple validation metrics applicable to testing both model accuracy and consistency with experimental data are developed. The developed metrics treat experimental measurement uncertainty as an interval and are therefore applicable to cases in which epistemic uncertainty dominates the experimental data. To demonstrate the applicability of the metrics, nuclear physics models used by NASA for space radiation shielding applications are compared to an experimental database consisting of over 3600 experimental cross sections. A cumulative uncertainty metric is applied to the question of overall model accuracy, while a metric based on the median uncertainty is used to analyze the models from the perspective of model development by examining subsets of the model parameter space.

  13. A universal measuring and monitoring system for nuclear radiation

    International Nuclear Information System (INIS)

    Genrich, V.

    1988-01-01

    Genitron Instruments, Frankfurt/Main, committed themselves to revise the 'conventional' concept of counting tube metrology. The goal was to develop a modular system that would allow large-area measuring tasks. The contribution in hand explains this development, which consists of a highly integrated measuring head that can be combined with various detector types, and complemented by various system components, to form a universal measuring and monitoring system for nuclear radiation. This modular design concept is capable of fulfilling a multitude of tasks, ranging from single, specific applications to non-stop monitoring tasks within a large-area measuring network. (orig./DG) [de

  14. Radiation protection in nuclear medicine; Strahlenschutz in der Nuklearmedizin

    Energy Technology Data Exchange (ETDEWEB)

    Lassmann, Michael [Universitaetsklinikum Wuerzburg (Germany). Klinik und Poliklinik fuer Nuklearmedizin

    2017-07-01

    Nuclear medicine operates with open radioactive substances in diagnostics and therapeutics. Diagnostic methods (as scintiscanning, SPECT, PET/CT) use so called radioactive tracer isotopes, their chemical exchange with stable isotopes is bound to metabolic processes. Beta or alpha emitting substances are used for therapeutic purposes. The 3D activity distribution is calculated using libraries and weighting factors recommended by ICRP based on phantom measurements. The contribution summarizes possible exposures of the medical personnel and radiation hygienic measures for personnel and patients' relatives. Further issues are the recommended threshold value measurements and the radioactive waste disposal.

  15. Types and effects of radiation coming from nuclear weapons

    International Nuclear Information System (INIS)

    Messerschmidt, O.

    1974-01-01

    The article shows which effects can be expected from an atomic explosion, such as neutron and gamma rays, pressure surge, thermal radiation and at which KT-values and at which distance from the centre influence the individual noxious substances is most pronounced. Combined effects and delayed effects are discussed. The results of the numerous studies on the effects of the A-bomb dropping on Hiroshima and Nagazaki are shown. Results of animal experiments are used for explanation. Furthermore, the effect of radioactive fallout is described. As an example, the author points out the Marshall islands on which radioactive fallout was noticed after a nuclear weapon test by the Americans. (MG) [de

  16. Graphical user interfaces for McClellan Nuclear Radiation Center

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S.A.; Power, M.; Forsmann, H.

    1998-01-01

    The control console of the TRIGA reactor at McClellan's Nuclear Radiation Center (MNRC) is in the process of being replaced because of spurious scrams, outdated software, and obsolete parts. The intent of the new control console is to eliminate the existing problems by installing a UNIX-based computer system with industry-standard interface software and by incorporating human factors during all stages of the graphical user interface (GUI) development and control console design. This paper gives a brief description of some of the guidelines used in developing the MNRC's GUIs as continuous, real-time displays

  17. Method of fabricating self-powered nuclear radiation detector assemblies

    International Nuclear Information System (INIS)

    Playfoot, K.; Bauer, R.F.; Sekella, Y.M.

    1982-01-01

    In a method of fabricating a self-powered nuclear radiation detector assembly an emitter electrode wire and signal cable center wire are connected and disposed within the collector electrode tubular sheath with compressible insulating means disposed between the wires and the tubular sheath. The above assembly is reduced in diameter while elongating the tubular sheath and the emitter wire and signal cable wire. The emitter wire is reduced to a predetermined desired diameter, and is trimmed to a predetermined length. An end cap is hermetically sealed to the tubular sheath at the extending end of the emitter with insulating means between the emitter end and the end cap. (author)

  18. Integration of radiation monitoring for nuclear emergency response teams

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, J T; Thompson, N Y [Royal Military Coll. of Canada, Kingston, ON (Canada)

    1994-12-31

    The Canadian Forces have established Nuclear Emergency Response Teams to cope with potential radiation accidents. Previously, only gamma and high-energy beta radiation could be detected. Recently, new radiation sampling, detecting, and analytical equipment has been bought, including air samplers, beta counters, high-purity germanium gamma detectors, and multi-channel analyzers together with Gamma Vision Software to analyze gamma spectra. The purpose of the present study is to propose a way to use the new equipment, to analyze the results from the gamma and beta detectors, and to integrate the results into a format for decision making. Integration is achieved through the creation of a computer program, Radiation Integration Program (RIP). This program analyzes gross beta counts, and uses them to estimate danger to the thyroid. As well the results from Gamma Vision are converted from Bq to dose rate for several parts of the body. Overall gamma results affecting the thyroid are compared to the beta results to verify the initial estimations.

  19. Nuclear Safety and Radiation Protection in France in 2005

    International Nuclear Information System (INIS)

    2006-04-01

    In 2005, the Asn pursued its significant investment in radiation protection and reaffirms its ambition to become as efficient in radiation protection as it is in nuclear safety as of 2009. 2005 was a year of great progress for the Asn as it consolidated its organisation and working methods, in accordance with the 2005-2007 strategic plan it set for itself. The Asn continued progress in the field of radiation protection has given rise to various new regulations to improve the legislative and regulatory framework in this area. The Asn plans to step up its efforts to ensure better monitoring of patient exposure to ionizing radiation and to provide better management of radon-related risks, particularly in housing. Fully aware that its newfound power in this area requires outside evaluation, the Asn has asked the International Atomic Energy Agency (IAEA) to organize an I.R.R.S. (Integrated Regulatory Review Service) assignment consisting of a peer-conducted audit. The IAEA has confirmed that this audit will take place in November 2006. (N.C.)

  20. Cancer near the Three Mile Island nuclear plant: radiation emissions.

    Science.gov (United States)

    Hatch, M C; Beyea, J; Nieves, J W; Susser, M

    1990-09-01

    As a public charge, cancers among the 159,684 residents living within a 10-mile (16-km) radius of the Three Mile Island nuclear plant were studied relative to releases of radiation during the March 28, 1979, accident as well as to routine plant emissions. The principal cancers considered were leukemia and childhood malignancies. Estimates of the emissions delivered to small geographic study tracts were derived from mathematical dispersion models which accounted for modifying factors such as wind and terrain; the model of accident emissions was validated by readings from off-site dosimeters. Incident cancers among area residents for the period 1975-1985 (n = 5,493) were identified by a review of the records at all local and regional hospitals; preaccident and postaccident trends in cancer rates were examined. For accident emissions, the authors failed to find definite effects of exposure on the cancer types and population subgroups thought to be most susceptible to radiation. No associations were seen for leukemia in adults or for childhood cancers as a group. For leukemia in children, the odds ratio was raised, but cases were few (n = 4), and the estimate was highly variable. Moreover, rates of childhood leukemia in the Three Mile Island area are low compared with national and regional rates. For exposure to routine emissions, the odds ratios were raised for childhood cancers as a whole and for childhood leukemia, but confidence intervals were wide and included 1.0. For leukemia in adults, there was a negative trend. Trends for two types of cancer ran counter to expectation. Non-Hodgkin's lymphoma showed raised risks relative to both accident and routine emissions; lung cancer (adjusted only indirectly for smoking) showed raised risks relative to accident emissions, routine emissions, and background gamma radiation. Overall, the pattern of results does not provide convincing evidence that radiation releases from the Three Mile Island nuclear facility influenced

  1. Safety and Radiation Protection at Swedish Nuclear Power Plants 2005

    International Nuclear Information System (INIS)

    2006-05-01

    -to-date and documented safety analyses must be prepared and actively be included in both the preventive safety work and in connection with plant modifications. The licensees have implemented design analysis projects for a long period of time and clarified and stringent regulations for safety analyses have entered into force in 2005. As a result, updated safety reports exist for many of the facilities and schedules exist for the supplementary work that remains to be done. SKI's reinforced supervision of Barsebaeck 2 continued until the closure of the reactor on May 31, 2005. In SKI's opinion, BKAB mainly handled the lengthy facility closure in a satisfactory manner. The handling of nuclear waste at the nuclear facilities has mainly functioned well. The same applies to the operation of the Repository for Low and Intermediate-level Operational Waste (SFR-1) and the Central Interim Storage Facility for Spent Nuclear Fuel (CLAB). The overall evaluation of the Swedish Radiation Protection Authority (SSI) is that radiation protection at Swedish nuclear power plants has functioned well in 2005. The total radiation dose to the personnel at Swedish nuclear power plants was 9.2 manSv, which agrees with the average value of the total radiation doses over the last five years (9 manSv). No-one received a radiation dose in excess of the established dose limits and the radiation levels in the facilities are largely unchanged compared with previous years. The radiation doses to the public from the Swedish nuclear power plants continue to be low. SSI considers that continuous work is also needed in the future at the facilities to further reduce radioactive releases by applying the best available technique (BAT) and other measures. The control measurements that SSI is conducting on environmental samples from around the nuclear power facilities as well as on radioactive releases to water show a good agreement with the licensees' own measurements

  2. Safety and Radiation Protection at Swedish Nuclear Power Plants 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    other things. Up-to-date and documented safety analyses must be prepared and actively be included in both the preventive safety work and in connection with plant modifications. The licensees have implemented design analysis projects for a long period of time and clarified and stringent regulations for safety analyses have entered into force in 2005. As a result, updated safety reports exist for many of the facilities and schedules exist for the supplementary work that remains to be done. SKI's reinforced supervision of Barsebaeck 2 continued until the closure of the reactor on May 31, 2005. In SKI's opinion, BKAB mainly handled the lengthy facility closure in a satisfactory manner. The handling of nuclear waste at the nuclear facilities has mainly functioned well. The same applies to the operation of the Repository for Low and Intermediate-level Operational Waste (SFR-1) and the Central Interim Storage Facility for Spent Nuclear Fuel (CLAB). The overall evaluation of the Swedish Radiation Protection Authority (SSI) is that radiation protection at Swedish nuclear power plants has functioned well in 2005. The total radiation dose to the personnel at Swedish nuclear power plants was 9.2 manSv, which agrees with the average value of the total radiation doses over the last five years (9 manSv). No-one received a radiation dose in excess of the established dose limits and the radiation levels in the facilities are largely unchanged compared with previous years. The radiation doses to the public from the Swedish nuclear power plants continue to be low. SSI considers that continuous work is also needed in the future at the facilities to further reduce radioactive releases by applying the best available technique (BAT) and other measures. The control measurements that SSI is conducting on environmental samples from around the nuclear power facilities as well as on radioactive releases to water show a good agreement with the licensees' own measurements.

  3. Nuclear safety and radiation protection report of the basic nuclear facilities of the Tricastin nuclear power plant - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Tricastin nuclear power plant (INB 87 and 88, Saint-Paul-Trois-Chateaux, Drome (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  4. The Radiation Safety Information Computational Center (RSICC): A Resource for Nuclear Science Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Bernadette Lugue [ORNL

    2009-01-01

    The Radiation Safety Information Computational Center (RSICC) has been in existence since 1963. RSICC collects, organizes, evaluates and disseminates technical information (software and nuclear data) involving the transport of neutral and charged particle radiation, and shielding and protection from the radiation associated with: nuclear weapons and materials, fission and fusion reactors, outer space, accelerators, medical facilities, and nuclear waste management. RSICC serves over 12,000 scientists and engineers from about 100 countries.

  5. Nuclear and radiation technologies in Ukraine: opportunities, status and problems of implementation

    International Nuclear Information System (INIS)

    Gorbulyin, V.P.

    2011-01-01

    The collection contains research materials and information presented at the Scientific Conference 'Nuclear and radiation technologies in Ukraine' (September 17, 2009, Kyiv). The articles offered specific ways to address a number of issues relevant to nuclear energy, science, technology, medicine and related to the radiation and environmental safety, the use of radiation technologies in medicine, development of uranium and uranium processing industry, safety on factories of NFC, nuclear physical instrumentation, behaviour with radioactive wastes.

  6. The nuclear safety and the radiation protection in France in 2003

    International Nuclear Information System (INIS)

    2004-03-01

    Nine points are reviewed: the law project relative to the safety and openness in nuclear field, the safety of the European PWR type Reactor, the priorities in radiation protection, inspection of radiation protection, the surveillance of patients exposure to ionizing radiations, the hot days and dryness of summer 2003 and the functioning of nuclear power plant, the national planning of radioactive waste management, the becoming of high level and years living radioactive waste, the European nuclear policy. (N.C.)

  7. Nuclear safety and radiation protection report of the nuclear facility of Brennilis - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Monts d'Arree (EL4-D or Brennilis) site (INB 162 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  8. Nuclear safety and radiation protection report of the nuclear facilities of Brennilis - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Monts d'Arree (EL4-D or Brennilis) site (INB 162 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  9. What You Should Know About Pediatric Nuclear Medicine and Radiation Safety

    Science.gov (United States)

    ... What is nuclear medicine? Nuclear medicine uses radioactive isotopes to create pictures of the human body. These ... The Society for Pediatric Radiology and the Pediatric Imaging Council of ... medical physics and radiation protection. More information can be ...

  10. Hessen: ordinance concerning competences in the field of nuclear protection and radiation protection

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Competences for: 1) Licensing of nuclear facilities; 2) use of nuclear fuels; 3) plan approval procedure; 4) supervisory authorities; 5) Radiation Protection Ordinance; 6) X-Ray Ordinance; 7) proceedings and disciplinary action against breaches of the rules. (HP) [de

  11. Ecological aspects of the nuclear age: selected readings in radiation ecology

    International Nuclear Information System (INIS)

    Schultz, V.; Whicker, F.W.

    1971-01-01

    A compilation of selected readings is presented in the areas of radiation ecology, radionuclide cycling, ionizing radiation effects, radioisotope tracer techniques in ecology, and military and peaceful uses of nuclear energy

  12. Optimization of radiation protection (OPR) of workers in nuclear medicine department occupationally to ionizing radiation

    International Nuclear Information System (INIS)

    Ugrinska, Ana; Crcareva, Biljana; Andonovski, Boris

    2010-01-01

    Occupational radiation exposure of nuclear medicine personnel arise either from external irradiation during the handling or from the entry of radioactive substances in the body; the major source of external irradiation is the patient that has received a radiopharmaceutical for diagnostic or therapeutic purposes. In this study we present the dosimetry monitoring of the personnel at the Institute of Pathophysiology and Nuclear Medicine in Skopje (IPNM) before and after the implementation the methods of ORP. Twenty-seven employees were optimized with standard TLD card, monthly, expressed as whole body personal dose in the period of use of dosimeter. Annual Effective Doses (AED) are presented for years: 2001, 2004, 2005, 2006, 2007, 2008. In the year 2005, after measurement from Technical Service Organization, IPNM Radiation Protection Officer (RPO) designed and implemented new recommendation and modality such as: designation of areas, introducing ambiental dose measurements, classification of employees, personnel rotation, risk assessment, occupational dose constraints, education of personnel, compliance with written procedures and establishing the Programme for Radiation Protection (RP). ORP measures were applied during the year of 2006, so the results of 2001, 2004 and 2005 correspond to unopimized RP. We were evaluated three groups: radiopharmacy laboratory (RPL), nuclear medicine technologist (NMT) and medical doctors. The third group was further divided according to the AED in group with AED bellow 1.6 mSv (MD1), and group with AED above this level (MD2). The average AED in the NMT group for 2005 was 3.59 mSv, while in 2008 it was 1.8 mSv; for MD1 group in 2005 was 1.5 mSv and in MD2 was 3.0 mSv. The average AED in 2008 for MD1 was 1.1 mSv, while MD2 group comprised of only one subject with annual effective dose of 1.76 mSv. The most exposed groups were nuclear medicine technologists (NMT) and medical doctors routinely involved in everyday nuclear medicine

  13. E-Alerts: Nuclear science and technology (radiation shielding, protection, and safety). E-mail newsletter

    International Nuclear Information System (INIS)

    1999-01-01

    Topics include: Shielding design, nuclear radiation transport properties of materials, decontamination; Container design and transportation requirements for radioactive materials; and Fallout shelters

  14. Damage-Tolerant, Lightweight, High-Temperature Radiator for Nuclear Powered Spacecraft

    Data.gov (United States)

    National Aeronautics and Space Administration — Game-changing propulsion systems are often enabled by novel designs using advanced materials. Radiator performance dictates power output for nuclear electric...

  15. Legislation for radiation protection and nuclear safety in the Republic of Croatia

    International Nuclear Information System (INIS)

    Novosel, N.

    1994-01-01

    The main prerequisite of radiation protection and nuclear safety development and improvement in the Republic of Croatia are: national legislation for radiation protection and nuclear safety in accordance with international recommendations; and development of state infrastructure for organization and management of radiation protection and nuclear safety measures. In this paper I the following topics are present: inherited legislation for radiation protection and nuclear safety; modern trends in world nowadays; and what is done and has to be done in the Republic of Croatia to improve this situation

  16. A preliminary study on the design in architecture of nuclear and radiation safety standard system

    International Nuclear Information System (INIS)

    Song Dahu; Zhang Chi; Yang Lili; Li Bin; Liu Yingwei; An Hongzhen; Gao Siyi; Liu Ting; Meng De

    2014-01-01

    The connotation and function of nuclear and radiation safety standards are analyzed, and their relationships with the relevant laws and regulations are discussed in the paper. Some suggestions and blue print of overall architecture to build nuclear and radiation safety standard system are proposed, on the basis of researching the application status quo, existing problems and needs for nuclear and radiation safety standards in China. This work is a beneficial exploration and attempt to establish China's nuclear and radiation safety standards. (authors)

  17. Selecting a radiation tolerant piezoelectric material for nuclear reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Parks, D. A.; Reinhardt, B. T.; Tittmann, B. R. [Department of Engineering Science and Mechanics, Penn State, University Park, PA 16803 (United States)

    2013-01-25

    Bringing systems for online monitoring of nuclear reactors to fruition has been delayed by the lack of suitable ultrasonic sensors. Recent work has demonstrated the capability of an AlN sensor to perform ultrasonic evaluation in an actual nuclear reactor. Although the AlN demonstrated sustainability, no loss in signal amplitude and d{sub 33} up to a fast and thermal neutron fluence of 1.85 Multiplication-Sign 1018 n/cm{sup 2} and 5.8 Multiplication-Sign 1018 n/cm{sup 2} respectively, no formal process to selecting a suitable sensor material was made. It would be ideal to use first principles approaches to somehow reduce each candidate piezoelectric material to a simple ranking showing directly which materials one should expect to be most radiation tolerant. However, the complexity of the problem makes such a ranking impractical and one must appeal to experimental observations. This should not be of any surprise to one whom is familiar with material science as most material properties are obtained in this manner. Therefore, this work adopts a similar approach, the mechanisms affecting radiation tolerance are discussed and a good engineering sense is used for material qualification of the candidate piezoelectric materials.

  18. Radiation exposure of inhabitants around Semipalatinsk nuclear weapon test site

    International Nuclear Information System (INIS)

    Takada, Jun; Hoshi, Masaharu

    1997-01-01

    This paper described and reviewed the data reported by Russia and Kazakhstan and authors' studies on the exposed doses as follows. History of nuclear explosion tests in Semipalatinsk: From 1949 to 1989 in old Russia, 459 explosion tests involving 26 on the ground, 87 in the air and 346 in underground were performed, of which TNT equivalence was 0.6 Mt, 6 Mt and 11 Mt, respectively. A mystery in the reports of radiation doses by Russia and Kazakhstan. Present status of the regions after the end of nuclear weapon tests: Environment radiation doses in μSv/h in following regions were 0.06 in Mostik, 0.1 in Dolon and Semipalatinsk, 0.07 in Izvyestka and Znamenka, 0.08 in Tchagan and 21 in Atomic Lake. Evaluation of external exposure dose of the living regions with thermoluminescence method: External exposure dose was estimated to be about 90 cGy in a certain village and 40 cGy in Semipalatinsk which being 150 km far from the test site. (K.H.)

  19. Impact of phonon coupling on the radiative nuclear reaction characteristics

    Directory of Open Access Journals (Sweden)

    Achakovskiy Oleg

    2016-01-01

    Full Text Available The pygmy dipole resonance and photon strength functions (PSF in stable and unstable Ni and Sn isotopes are calculated within the microscopic self-consistent version of the extended theory of finite Fermi systems in the quasiparticle time blocking approximation. The approach includes phonon coupling (PC effects in addition to the standard QRPA approach. The Skyrme force SLy4 is used. A pygmy dipole resonance in 72Ni is predicted at the mean energy of 12.4 MeV exhausting 25.7% of the total energy-weighted sum rule. With our microscopic E1 PSFs in the EMPIRE 3.1 code, the following radiative nuclear reaction characteristics have been calculated for several stable and unstable even-even Sn and Ni isotopes: 1 neutron capture cross sections, 2 corresponding neutron capture gamma-spectra, 3 average radiative widths of neutron resonances. Here, three variants of the microscopic nuclear level density models have been used and a comparison with the phenomenological generalized superfluid model has been performed. In all the considered properties, including the recent experimental data for PSF in Sn isotopes, the PC contributions turned out to be significant, as compared with the QRPA one, and necessary to explain the available experimental data.

  20. Epidemiological studies of radiation workers in nuclear facilities

    International Nuclear Information System (INIS)

    Iwai, Satoshi; Semba, Tsuyoshi; Ishida, Kenji; Takagi, Syunji; Igari, Takafumi

    2017-01-01

    Regarding workers at nuclear facilities, this paper described INWORKS epidemiological research published in 2015, cooperative cohort epidemiological research of IARC 15 countries 10 years before that (15-country study), and the flow of radiation epidemiological research in the period from 15-country study to INWORKS. INWORKS is a retrospective cohort study to investigate the correlation between mortality due to solid cancer, blood cancer, and cardiovascular diseases in workers in three countries of France / the U.K. / the U.S. and low dose exposure through long-term photon external exposure. It obtained the data showing the statistical significance of increased cancer death rate. However, from the subjects of the analysis, no significant evaluation was made on neutron exposure and internal exposure. Statistically significant cancer mortality was confirmed in 15-country study at low dose, low dose rate, and prolonged exposure, but significant cancer mortality rate could not be confirmed excluding Canadian data, which had problems in dose evaluation. In the epidemiological studies of cancer mortality rates of radiation workers in nuclear power industries performed in France / the U.K. / the U.S. in the period ranging from 15-country study to INWORKS, significant difference was not recognized between cancer death rate and excessive relative risk (ERR) compared with LSS epidemiological research studies that handled acute exposure. Several tasks are still remaining. (A.O.)

  1. Radiation processing program at the Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Khairul Zaman Hj. Mohd Dahlan

    2008-01-01

    Radiation processing technology has been proven to enhance industrial efficiency and productivity, improve product quality and competitiveness. For many years, varieties of radiation crosslinkable materials based on synthetic polymers have been studied at the Malaysian Nuclear Agency either in the form of thermoplastic resins, polymer blends or composites. At present, effort is focused towards developing new materials based on natural polymers such as natural rubber and rubber based products, palm oil and palm oil based products and polysaccharide. Hydrogel based on sago starch has been developed and commercialized for face mask. As for wound dressing application, sago hydrogel is still subjected to the clinical evaluation. Sago starch has also been modified for biodegradable products such as bio-film and bio-foam for packaging purposes. On the other hand palm oil based acrylate resins have been synthesized at the Nuclear Malaysia for pressure sensitive adhesive and printing ink applications. Meanwhile, natural rubber is used in a polymer blend and composites for automotive components. All of these products are at various stages of commercialization. (author)

  2. Protecting agriculture against nuclear radiations: conception and measures

    International Nuclear Information System (INIS)

    Lehmann Hans-Joerg

    1997-01-01

    In case of atomic and chemical (AC) accident or attacks the agriculture is severely affected. This became clearly after the Chernobyl disaster, after which the authorities mobilized and increased the efforts to protect the agriculture. In Switzerland the Federal Commission for AC protection has undertaken the necessary actions in collaboration with the Federal Office for Agriculture. The protection of agriculture against radioactive fallout has many aspects. One of these concerns the requirement of informing farmers with all the necessary instruction to ensure the protection of rural population and animals, foods and forages, to make them able to take essential protection measures without exterior assistance, and to provide the agriculture buildings with simple and durable tools necessary in case of emergency intervention. To implement these requirements on Confederation level educational programs were developed to instruct agriculture agents and advisors on basic notions of radioactivity and radiation protection. These programs are thought to make the farmer aware with the implications of nuclear chemical and nuclear menace and the measures of protecting its enterprise by own means. Special instructions are to be applied by the enterprise chiefs to ensure first that the personnel protection is the top priority and then how to minimize and limit the damage produced by the radiation accident

  3. Application of γ field theory based calculation method to the monitoring of mine nuclear radiation environment

    International Nuclear Information System (INIS)

    Du Yanjun; Liu Qingcheng; Liu Hongzhang; Qin Guoxiu

    2009-01-01

    In order to find the feasibility of calculating mine radiation dose based on γ field theory, this paper calculates the γ radiation dose of a mine by means of γ field theory based calculation method. The results show that the calculated radiation dose is of small error and can be used to monitor mine environment of nuclear radiation. (authors)

  4. Radiation legacy of nuclear tests at the Semipalatinsk test site in the light of requirements ensuring radiation safety performance

    International Nuclear Information System (INIS)

    Logachev, V.A.; Logacheva, L.A.

    2005-01-01

    Peculiarities of nuclear tests radiation legacy at the Semipalatinsk test site (STS) are shown in the light of performance of requirements ensuring radiation safety, decrease radiation contamination levels in environment and minimize exposure of radiation for population residing contaminated areas by radioactive fallout. The paper provides data on characterization of peculiarities of the STS operation legacy based on review of archival data of the former 3-d General Administration under USSR Ministry of Health. (author)

  5. Present situation of occupational radiation exposure in nuclear power plants

    International Nuclear Information System (INIS)

    Imabori, Akira

    1979-01-01

    The present situation of the radiation exposure of workers, including both employes and subcontractors, in the nuclear power plants in Japan, is presented. Twenty seven nuclear power reactors in operation and under construction are tabulated with the name, the owner, the electric output and the commissioning year of each plant. The results of exposure of the workers in these plants are shown, classifying the dose rate into less than 0.5 rem, 0.5 - 1.5 rem, 1.5 - 2.5 rem, 2.5 - 5 rem and more than 5 rem, and the workers into employes and subcontractors. It is noted that the exposure dose of the subcontractors occupies about 88% of all exposure dose, and the exposure is concentrated during regular inspection period. The exposure dose of about 80% of the workers is less than 0.5 rem, and no one was irradiated more than 5 rem in a year. The total exposure dose, which has especially the tendency of increasing with extended maintenance period and decreasing during plant operation period, shows also the trend of increasing with the lapse of operation years. As for the point of view of whole exposure dose, the value is 0.06 -- 0.43 man-rem/10 6 kWh in 1976 FY. It is considered to be necessary to grasp the total exposure dose of each worker wandering from one plant to another, and the central registration center for the workers in radioactive environment was established in 1978. The whole exposure dose data of each worker are stored in the central computer in this center. This system is highly appreciated in radiation exposure management. The total exposure dose is related to the rate of utilization of nuclear plants, and it is expected to decrease with the decrease of plant outage. (Nakai, Y.)

  6. External radiation levels in installations of nuclear technology center

    International Nuclear Information System (INIS)

    Maletta, Paulo Guilherme M.; Filipetto, Joao; Wakabayashi, Tetsuaki; Silva, Teogenes A. da

    2005-01-01

    The radiological protection is a basic activity of nuclear technology center so that can carry through its activities with security, having to be planned and executed with total effectiveness. One of the basic tools of the radiological protection is the adoption of monitoring programs, that have as objective generality to evaluate the radiological conditions of the workstation and to assure that these conditions are acceptable safe for the displayed individuals, either workers or members of the public, as established in the basic norms of radiological protection. The Centro de Desenvolvimento da Tecnologia Nuclear - CDTN, first institution in Brazil, created in 1952 to entirely dedicate the related works to the nuclear area, to own 39 building, of which they are kept the Triga Reactor, Irradiation Gamma Laboratory, Reject Laboratory, Calibration Dosemeters Laboratory and others. In such installations, radioactive materials are produced, handled, processed and stored, being necessary the levels of external radiation ambient monitoring. As part of the radioprotection plan, monitoring 63 points on strategically located in the external areas to the building of CDTN, using characterized and calibrated thermoluminescence dosemeters. This work describes the dose distribution of the points, the doses evaluation procedure and the 4 results carried through between 2001 and 2004. The data demonstrate the attendance to the level of security established in the basic norm, what it contributed for the operation licensing of to the IBAMA. (author)

  7. Nuclear and radiation applications in industry: Tools for innovation

    International Nuclear Information System (INIS)

    Machi, S.; Iyer, R.

    1994-01-01

    Applications of nuclear and radiation technologies have been contributing to industrial efficiency, energy conservation, and environmental protection for many years. Some of these are: Manufacturing industries: Radiation processing technologies are playing increasing roles during manufacturing of such everyday products as wire and cable, automobile tires, plastic films and sheets, and surface materials. Production processes: Other techniques employing radioisotope gauges are indispensable for on-line thickness measurements during paper, plastic, and steel plate production. Processing and quality checks are made using nucleonic control systems that are common features of industrial production lines. Sterilization of medical products using electron beam accelerators or cobalt-60 radiation is better than the conventional methods. Industrial safety and product quality: Non-destructive examination or testing using gamma- or X-ray radiography is widely used for checking welds, casting, machinery, and ceramics to ensure quality and safety. Additionally, radiotracer techniques are unique tools for the optimization of chemical processes in reactors, leakage detection, and wear and corrosion studies, for example. Environmental protection: An innovative technology using electron beams to simultaneously remove sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ) has been under development. The electron beam technology is very cost competitive and its byproduct can be used as agricultural fertilizer

  8. Evolution of radiation resistant hollow fibers membranes for nuclear

    International Nuclear Information System (INIS)

    Neelam Kumari; Raut, D.R.; Bhardwaj, Y.K.; Mohapatra, P.K.

    2014-01-01

    We have evaluated hollow fiber supported liquid membrane (HFSLM) technique for the separation of actinides, fission products and other valuables from the nuclear waste solutions. In this technique, ligand responsible for separation of metal ion is held in tiny pores of membrane. Any drastic change as a consequence of irradiation, like change in pore size, change in hydrophobicity of polymeric material can be fatal for separation process as it may lead dislodging of carrier ligands from the pores. It was therefore needed to study the irradiation stability of hollow fibers. We have earlier showed that polypropylene fibers were stable up to 500 radiation dose and we therefore need to look into other options. In the present work, hollow fiber membranes made from polyether ether ketone (PEEK), polysulphone (PS). Polymers were evaluated for their radiation stability after exposing to varying absorbed dose of gamma radiation. The hollow fibers were irradiated to 100 KGy, 200 KGy, 500 KGy and 1000 KGy and its changes in hydrophobicity were measured using contact angle measurement studies

  9. ASN report on the status of nuclear safety and radiation protection in France in 2015. Extracts

    International Nuclear Information System (INIS)

    2016-01-01

    After a recall of ASN missions, key figures and organisation, an overview of main events for 2015, and a presentation of the French law related to energy transition for a green growth, a first part of this huge document presents actions undertaken by the ASN in 2015 in different fields: ionizing radiations and risks for health and the environment, principles and actors of control of nuclear safety and radiation protection, regulation, control of nuclear activities and of exposures to ionizing radiations, emergency radiological and post-accidental situations, public information transparency and participation, international relationships, regional overview of nuclear safety and radiation protection. The second part addresses activities controlled by the ASN: medical uses of ionizing radiations, industrial, research and veterinary uses and source safety, transportation of radioactive materials, EDF nuclear power plants, installations related to nuclear fuel cycle, various industrial and research installations, safety of basic nuclear installation dismantling, radioactive wastes and polluted sites and soils

  10. Safety and Radiation Protection at Swedish Nuclear Power Plants 2004

    International Nuclear Information System (INIS)

    2005-05-01

    higher inspector presence than normal and more stringent reporting requirements. In SKI's opinion, Barsebaeck Kraft AB (BKAB), with the measures that have been implemented, is maintaining safety at the Barsebaeck nuclear power plant. In December, Studsvik Nuclear AB decided to close down the two reactors at Studsvik. Therefore, SKI immediately initiated an intensified supervision of the decommissioning process at the reactors. The handling of nuclear waste at nuclear power plants, including the operation of the Repository for Low and Intermediate-level Operational Waste (SFR-1) and the Central Interim Storage Facility for Spent Nuclear Fuel (CLAB) has largely functioned well for the most part. In 2004, the total radiation dose to the personnel at nuclear power plants was 6.4 manSv, which is lower than in 2003. The average value for the past five years is 9 manSv. The shutdown periods were shorter at a few reactors due to the fact that work progress surpassed expectations. Technical problems and unplanned repair work resulted in a somewhat higher dose than expected at a few reactors. No individual received a radiation dose greater than 20 mSv. The fuel defects that occurred in 2004 did not result in any significant impact on radiation protection. The dose to people living in the vicinity of the nuclear power plants in 2004 was below 1 per cent of the permitted dose. The control measurements that SSI conducts on environmental samples around nuclear power plants and on the radioactive releases to water show a good agreement with the licensees' own measurements

  11. Report of the State Office for Nuclear Safety on state supervision of nuclear safety of nuclear facilities and radiation protection in 1998

    International Nuclear Information System (INIS)

    1999-05-01

    The legislative basis of the authority of the State Office for Nuclear Safety as the Czech national regulatory body is outlined, its organizational scheme is presented, and the responsibilities of the various departments are highlighted. The operation of major Czech nuclear facilities, including the Dukovany NPP which is in operation and the Temelin NPP which is under construction, is described with respect to nuclear safety. Since the Office's responsibilities also cover radiation protection in the Czech Republic, a survey of ionizing radiation sources and their supervision is given. Other topics include, among other things, nuclear material transport, the state system for nuclear materials accountancy and control, central registries for radiation protection, nuclear waste management, the National Radiation Monitoring Network, personnel qualification and training, emergency planning, legislative activities, international cooperation, and public information. (P.A.)

  12. Dismantlement of nuclear facilities decommissioned from the Russian navy: Enhancing regulatory supervision of nuclear and radiation safety

    International Nuclear Information System (INIS)

    Sneve, M.K.

    2013-01-01

    The availability of up to date regulatory norms and standards for nuclear and radiation safety, relevant to the management of nuclear legacy situations, combined with effective and efficient regulatory procedures for licensing and monitoring compliance, are considered to be extremely important. Accordingly the NRPA has set up regulatory cooperation programs with corresponding authorities in the Russian Federation. Cooperation began with the civilian regulatory authorities and was more recently extended to include the military authority and this joint cooperation supposed to develop the regulatory documents to improve supervision over nuclear and radiation safety while managing the nuclear military legacy facilities in Northwest Russia and other regions of the country. (Author)

  13. Dismantlement of nuclear facilities decommissioned from the Russian navy: Enhancing regulatory supervision of nuclear and radiation safety

    Energy Technology Data Exchange (ETDEWEB)

    Sneve, M.K.

    2013-03-01

    The availability of up to date regulatory norms and standards for nuclear and radiation safety, relevant to the management of nuclear legacy situations, combined with effective and efficient regulatory procedures for licensing and monitoring compliance, are considered to be extremely important. Accordingly the NRPA has set up regulatory cooperation programs with corresponding authorities in the Russian Federation. Cooperation began with the civilian regulatory authorities and was more recently extended to include the military authority and this joint cooperation supposed to develop the regulatory documents to improve supervision over nuclear and radiation safety while managing the nuclear military legacy facilities in Northwest Russia and other regions of the country. (Author)

  14. Personnel Radiation Protection at the ITER Nuclear Fusion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Coniglio, A.; Sandri, S. [ENEA, Radiation Protection Institute, Frascati (Italy); D' Arienzo, M. [RFX, Padova (Italy)

    2006-07-01

    The hosting site for the ITER nuclear fusion experiment was finally chosen in France (Cadarache). The radiation protection program for the ITER personnel involved into operation and maintenance activities will be then tested in the near future. Related studies were mainly carried out during the last ten years and important assessments were performed at the Frascati ENEA Research Center in Italy. In this ambit individual and collective doses to the operators were calculated for different categories of working activities involving more and less critical systems. The radiation protection organization was outlined and the related program was proposed. A short review of the analyses performed in this field by the Italian investigators of the ENEA Radiation Protection Institute is shown here. The principal parameter taken into account in these evaluations was the collective dose due to the different working activities. This quantity has been assessed considering the following radiological source terms: a) the prompt radiation during the plasma burning phase, b) the gamma radiation due to the neutron activation of the solid structures, c) the activated corrosion products (ACPs) generated in the water cooling system (WCS) by corrosion of the inner wall of the piping under the neutron flux, d) tritium concentration in the atmosphere of the working premises. Individual doses have been integrated over the different worker typology, considering the design evolution for the different systems and the required person power. Ordinary, inspection and maintenance activities were taken into account to assess the person power, sometime also construction, plant modifications and unscheduled maintenance were included in the working activities list. The collective dose assessed for ITER fusion projects has been compared with that of the fission power stations and analogies and differences have been pointed out. In this review the dose assessment process is recalled starting from the

  15. Personnel Radiation Protection at the ITER Nuclear Fusion Facility

    International Nuclear Information System (INIS)

    Coniglio, A.; Sandri, S.; D'Arienzo, M.

    2006-01-01

    The hosting site for the ITER nuclear fusion experiment was finally chosen in France (Cadarache). The radiation protection program for the ITER personnel involved into operation and maintenance activities will be then tested in the near future. Related studies were mainly carried out during the last ten years and important assessments were performed at the Frascati ENEA Research Center in Italy. In this ambit individual and collective doses to the operators were calculated for different categories of working activities involving more and less critical systems. The radiation protection organization was outlined and the related program was proposed. A short review of the analyses performed in this field by the Italian investigators of the ENEA Radiation Protection Institute is shown here. The principal parameter taken into account in these evaluations was the collective dose due to the different working activities. This quantity has been assessed considering the following radiological source terms: a) the prompt radiation during the plasma burning phase, b) the gamma radiation due to the neutron activation of the solid structures, c) the activated corrosion products (ACPs) generated in the water cooling system (WCS) by corrosion of the inner wall of the piping under the neutron flux, d) tritium concentration in the atmosphere of the working premises. Individual doses have been integrated over the different worker typology, considering the design evolution for the different systems and the required person power. Ordinary, inspection and maintenance activities were taken into account to assess the person power, sometime also construction, plant modifications and unscheduled maintenance were included in the working activities list. The collective dose assessed for ITER fusion projects has been compared with that of the fission power stations and analogies and differences have been pointed out. In this review the dose assessment process is recalled starting from the

  16. Radiations and regulation (of ionizing radiations from nuclear sources); Radiaciones y regulacion (de las radiaciones ionizantes de origen nuclear)

    Energy Technology Data Exchange (ETDEWEB)

    Ferreri, Juan C., E-mail: jcferreri@gmail.com [ARN Autoridad Regulatoria Nuclear, Buenos Aires (Argentina); CONICET Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina)

    2009-07-01

    Some contextual aspects of the regulatory action regarding the use of ionizing radiations (X-rays excluded) are made explicit. Some sociological aspects establishing the framework for the regulatory action, a tentative definition of what a regulator is and the role of precaution on his acting are discussed. Furthermore, a unified definition of human nature and physical nature (i.e. nature) is introduced, aimed at allowing its protection regarding ionizing radiation and, at the same time, the ethical framework for the application of radiation protection actions is defined. (author) [Spanish] Se explicitan algunos aspectos de contexto del accionar regulatorio asociado con el uso de las Radiaciones Ionizantes de origen nuclear (RI). Se muestran cuales son las consideraciones de tipo sociologico que permiten enmarcar la actividad de un regulador, se intenta una definicion del mismo y se discute cual es el rol de la precaucion en su accionar. Se introduce ademas una definicion abarcadora en la consideracion de la naturaleza humana y la naturaleza fisica (es decir la naturaleza) al efecto de su proteccion con respecto a las RI, al tiempo que se define el marco etico adecuado para su consideracion. (autor)

  17. Nuclear safety and radiation protection report of the Bugey nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 78, 89 (NPPs in operation), 465 (NPP under deconstruction), 102 (fuel storage facility), and 173 (radioactive waste conditioning and storage facility under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  18. Nuclear safety and radiation protection report of the Bugey nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 78, 89 (NPPs in operation), 465 (NPP under deconstruction), 102 (fuel storage facility), and 173 (radioactive waste conditioning and storage facility under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  19. Nuclear safety and radiation protection report of the Saint-Laurent-Des-Eaux nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 46, 74 and 100). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures carried out in 2014. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process) as well as the other pollutions. The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  20. Nuclear safety and radiation protection report of the Chinon nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 94 (irradiated materials workshop), 99 (fuel storage facility), 107 and 132 (NPPs in operation), 133, 153 and 161 (NPPs under deconstruction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  1. Nuclear safety and radiation protection report of Flamanville nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 108, 109 and 167 (under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  2. Nuclear safety and radiation protection report of the Saint-Laurent-Des-Eaux nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 46, 74 and 100). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures carried out in 2012. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process) as well as the other pollutions. The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  3. Nuclear safety and radiation protection report of Tricastin nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the Tricastin NPPs (INBs no. 87 and 88). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  4. Nuclear safety and radiation protection report of Cattenom nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  5. Nuclear safety and radiation protection report of Chinon nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 94 (irradiated materials workshop), 99 (fuel storage facility), 107 and 132 (NPPs in operation), 133, 153 and 161 (NPPs under deconstruction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  6. Nuclear safety and radiation protection report of Chooz nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  7. Nuclear safety and radiation protection report of the Saint-Laurent-Des-Eaux nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 46, 74 and 100). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures carried out in 2013. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process) as well as the other pollutions. The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  8. Nuclear safety and radiation protection report of the Chinon nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 94 (irradiated materials workshop), 99 (fuel storage facility), 107 and 132 (NPPs in operation), 133, 153 and 161 (NPPs under deconstruction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  9. Harmonization of nuclear and radiation safety regulations for nuclear power plants with reference levels of Western European Nuclear Regulators Association (WENRA)

    International Nuclear Information System (INIS)

    Bojchuk, V.S.; Mikolajchuk, O.A.; Gromov, G.V.; Dibach, O.M.; Godovanyuk, G.M.; Nosovs'kij, A.V.

    2014-01-01

    Self-evaluation of the Ukrainian regulations on nuclear and radiation safety that apply to nuclear power plants for compliance with the reference levels of the Western European Nuclear Regulators Association (WENRA) is presented. Proposals on improvement of the regulations upon self-evaluation are provided

  10. Survey of radiation protection, radiation transport, and shielding information needs of the nuclear power industry. Final report

    International Nuclear Information System (INIS)

    Maskewitz, B.F.; Trubey, D.K.; Roussin, R.W.; McGill, B.L.

    1976-04-01

    The Radiation Shielding Information Center (RSIC) is engaged in a program to seek out, organize, and disseminate information in the area of radiation transport, shielding, and radiation protection. This information consists of published literature, nuclear data, and computer codes and advanced analytical techniques required by ERDA, its contractors, and the nuclear power industry to improve radiation analysis and computing capability. Information generated in this effort becomes a part of the RSIC collection and/or data base. The purpose of this report on project 219-1 is to document the results of the survey of information and computer code needs of the nuclear power industry in the area of radiation analysis and protection

  11. Survey of radiation protection, radiation transport, and shielding information needs of the nuclear power industry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Maskewitz, B.F.; Trubey, D.K.; Roussin, R.W.; McGill, B.L.

    1976-04-01

    The Radiation Shielding Information Center (RSIC) is engaged in a program to seek out, organize, and disseminate information in the area of radiation transport, shielding, and radiation protection. This information consists of published literature, nuclear data, and computer codes and advanced analytical techniques required by ERDA, its contractors, and the nuclear power industry to improve radiation analysis and computing capability. Information generated in this effort becomes a part of the RSIC collection and/or data base. The purpose of this report on project 219-1 is to document the results of the survey of information and computer code needs of the nuclear power industry in the area of radiation analysis and protection.

  12. Radiation Authority and Nuclear Safety in Finland (STUK); La autoridad de Radiacion y Seguridad Nuclear de Finlandia (STUK)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Created in 1958 as an institute in charge of inspecting radioactive equipment used in hospitals, STUK is nowadays a specialised organisation whose functions cover all fields for applying radiation and nuclear safety. (Author)

  13. Electromagnetic radiation from nuclear collisions at RHIC energies

    CERN Document Server

    Turbide, Simon; Frodermann, Evan; Heinz, Ulrich

    2008-01-01

    The hot and dense strongly interacting matter created in collisions of heavy nuclei at RHIC energies is modeled with relativistic hydrodynamics, and the spectra of real and virtual photons produced at mid-rapidity in these events are calculated. Several different sources are considered, and their relative importance is compared. Specifically, we include jet fragmentation, jet-plasma interactions, the emission of radiation from the thermal medium and from primordial hard collisions. Our calculations consistently take into account jet energy loss, as evaluated in the AMY formalism. We obtain results for the spectra, the nuclear modification factor (R_AA), and the azimuthal anisotropy (v_2) that agree with the photon measurements performed by the PHENIX collaboration at RHIC.

  14. Applications of radiations, radioisotopes and nuclear techniques in biotechnology

    International Nuclear Information System (INIS)

    Bhatia, C.R.

    1994-01-01

    Applications of radiations, radioisotopes and other nuclear techniques has contributed a great deal in our understanding of microbial plant and animal biochemistry and molecular biology. Electron microscopy has provided visual evidence for molecular events. Developments in cell tissue culture of both plants and animals and immunology have contributed to advances in what we now refer as biotechnology. This paper focuses on the applications in the high-tech end of biotechnology, limited to the use of recombinant-DNA techniques. Molecular identification of the genes, their cloning and horizontal transfer across the species of microbes, plants and animals and expression of the transferred genes is the major strength of modern biotechnology. The techniques described in this paper have played a significant role in the development of biotechnology. 6 refs

  15. Occupational radiation exposure at commercial nuclear power reactors, 1978

    International Nuclear Information System (INIS)

    Brooks, B.G.

    1979-11-01

    An updated compilation is presented of occupational radiation exposures at commercial nuclear power reactors for the years 1969 through 1978. Data received from the 64 light water cooled reactors (LWRs) that had completed at least one year of commercial operation as of December 31, 1978 are included. This represents an increase of seven reactors over the number contained in last year's report. The total number of personnel monitored at LWRs during 1978 increased by approximately 12% to 76,121. The number of workers that received measurable doses, however, increased only 8% to 45,978. The total collective dose for 1978 is estimated to be 31,806 man-rems, a small decrease from last year's value of 32,511, which results in the average dose per worker decreasing slightly to 0.69 rems. The average collective dose per reactor also decreased, by approximately 15%, to a value of 497 man-rems

  16. Continuous monitoring system for environmental {gamma} radiation near nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Jin; Qingyu, Yue; Wenhai, Wang [Academia Sinica, Beijing, BJ (China). Inst. of Atomic Energy

    1996-06-01

    The continuous monitoring system which is used for the environmental routine and accident emergency {gamma} radiation monitoring near nuclear facility is described. The continuous monitoring system consists of a high pressurized ionization chamber, integrated weak current amplifier, V/F converter and intelligent data recorder. The data gained by recorder can be transmitted to a PC through a standard RS-232-C interface for the data handling and graph plotting. This continuous monitoring system has the functions of alarm over threshold and recorded output signal of detector and temperature. The measuring range is from 10 nGy{center_dot}h{sup -1} to 10 mGy{center_dot}h{sup -1} because a high insulation switch atomically changed measuring ranges is used. The monitoring system has been operating continuously for a long time with high stability and reliability. (5 figs., 2 tabs.).

  17. Continuous monitoring system for environmental γ radiation near nuclear facility

    International Nuclear Information System (INIS)

    Jin Hua; Yue Qingyu; Wang Wenhai

    1996-06-01

    The continuous monitoring system which is used for the environmental routine and accident emergency γ radiation monitoring near nuclear facility is described. The continuous monitoring system consists of a high pressurized ionization chamber, integrated weak current amplifier, V/F converter and intelligent data recorder. The data gained by recorder can be transmitted to a PC through a standard RS-232-C interface for the data handling and graph plotting. This continuous monitoring system has the functions of alarm over threshold and recorded output signal of detector and temperature. The measuring range is from 10 nGy·h -1 to 10 mGy·h -1 because a high insulation switch atomically changed measuring ranges is used. The monitoring system has been operating continuously for a long time with high stability and reliability. (5 figs., 2 tabs.)

  18. Continuous monitoring system of environmental γ radiation near nuclear facility

    International Nuclear Information System (INIS)

    Jin Hua; Yue Qingyu; Wang Wenhai

    1996-01-01

    The continuous monitoring system for the environmental γ radiation and accident emergency near nuclear facility is described. The continuous monitoring system consists of high pressurized ionization chamber, integrated weak current amplifier, V-F converter and intelligent data recorder. PC 486 microcomputer with standard RS-232C interface is used for data handling and graph plotting. This intelligent data recorder has the functions of alarm over threshold and records the output signal of detector and temperature. The measuring range is from 10 nGy h -1 to 10 mGy h -1 because a high insulation switch automatical changing the measuring ranges is used. The monitoring system has been operating continuously for a long time with high stability and reliability

  19. Australian Radiation Protection and Nuclear Safety Act 1998. Act No 133

    International Nuclear Information System (INIS)

    1999-01-01

    A set of legislation consisting of three Acts in the field of radiation protection and nuclear safety was passed by both Houses of Parliament on 10 December 1998 and was proclaimed on 5 February 1999. Act No. 133 - Australian Radiation Protection and Nuclear Safety Act, which is a framework Law, established the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) as the regulatory body for radiation protection and nuclear safety, in place of the Nuclear Safety Bureau. The Chief Executive Officer of ARPANSA, who is appointed by the Governor-General for a term of up to 5 years, is obliged to submit annual and quarterly reports to the Minister on the operations of the Chief Executive Officer, ARPANSA, the Council, the Radiation Health Committee and the Nuclear Safety Committee. The Council is a consultative body which examines issues relating to radiation protection and nuclear safety and advises the Chief Executive Officer on these issues as well as on the adoption of recommendations, policies and codes. The Radiation Health Committee and the Nuclear Safety Committee are to be established as advisory committees to the Chief Executive Officer or the Council. Both committees should draft national policies, codes and standards in their respective fields and review their effectiveness periodically. The second in this series of legislation, Act No. 134, Australian Radiation Protection and Nuclear Safety (License Charges) Act requires holders of both facility and source licenses to pay an annual charge, to be prescribed by the regulations. The third, Act No. 135 , Australian Radiation Protection and Nuclear Safety (Consequential Amendments) Act repeals those provisions of the 1987 Australian Nuclear Science and Technology Organisation Act which concern the Nuclear Safety Bureau, and the 1978 Environment Protection Act as a whole

  20. Australian Radiation Protection and Nuclear Safety Act 1998. Act No 133

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A set of legislation consisting of three Acts in the field of radiation protection and nuclear safety was passed by both Houses of Parliament on 10 December 1998 and was proclaimed on 5 February 1999. Act No. 133 - Australian Radiation Protection and Nuclear Safety Act, which is a framework Law, established the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) as the regulatory body for radiation protection and nuclear safety, in place of the Nuclear Safety Bureau. The Chief Executive Officer of ARPANSA, who is appointed by the Governor-General for a term of up to 5 years, is obliged to submit annual and quarterly reports to the Minister on the operations of the Chief Executive Officer, ARPANSA, the Council, the Radiation Health Committee and the Nuclear Safety Committee. The Council is a consultative body which examines issues relating to radiation protection and nuclear safety and advises the Chief Executive Officer on these issues as well as on the adoption of recommendations, policies and codes. The Radiation Health Committee and the Nuclear Safety Committee are to be established as advisory committees to the Chief Executive Officer or the Council. Both committees should draft national policies, codes and standards in their respective fields and review their effectiveness periodically. The second in this series of legislation, Act No. 134, Australian Radiation Protection and Nuclear Safety (License Charges) Act requires holders of both facility and source licenses to pay an annual charge, to be prescribed by the regulations. The third, Act No. 135 , Australian Radiation Protection and Nuclear Safety (Consequential Amendments) Act repeals those provisions of the 1987 Australian Nuclear Science and Technology Organisation Act which concern the Nuclear Safety Bureau, and the 1978 Environment Protection Act as a whole