WorldWideScience

Sample records for mc3493 fused-salt fast-rise

  1. Fused salt electrolysis

    International Nuclear Information System (INIS)

    Ares, Osvaldo; Botbol, Jose.

    1989-01-01

    Working conditions for zirconium preparation by fused salt electrolysis were studied. For such purpose, a cell was built for operation under argon atmosphere. A graphite crucible served as anode, with steel cathodes. Proper design allowed cathode rechange under the inert atmosphere. Cathodic deposits of zirconium powder occluded salts from the bath. After washing with both water and hydrochloric acid, the metallic powder was consolidated by fusion. Optimum operating conditions were found to arise from an electrolyte of 12% potassium hexafluorzirconate -88% sodium chloride, at 820 deg C and 5 A/cm 2 cathodic current density. Deposits contained 35% of metal and current efficiency reached 66%. The powder contained up to 600 ppm of chlorine and 1.700 ppm of fluorine; after fusion, those amounts decreased to 2 ppm and 3 ppm respectively, with low proportion of metallic impurities. Though oxygen proportion was 4.500 ppm, it should be lowered by improving working conditions, as well as working on an ampler scale. (Author)

  2. Neutronic study of a nuclear reactor of fused salts

    International Nuclear Information System (INIS)

    Garcia B, F. B.; Francois L, J. L.

    2012-10-01

    The reactors of fused salts called Molten Salt Reactor have presented a resurgence of interest in the last decade, due to they have a versatility in particular to operate, either with a thermal or fast neutrons spectrum. The most active development was by the middle of 1950 and principles of 1970 in the Oak Ridge National Laboratory. In this work some developed models are presented particularly and studied with the help of the MCNPX code, for the development of the neutronic study of this reactor, starting of proposed models and from a simple and homogeneous geometry until other more complex models and approximate to more real cases. In particular the geometry conditions and criticality of each model were analyzed, the isotopic balance, as well as the concentrations of the salts and different assigned fuel types. (Author)

  3. Barium titanate coated with magnesium titanate via fused salt method and its dielectric property

    International Nuclear Information System (INIS)

    Chen Renzheng; Cui Aili; Wang Xiaohui; Li Longtu

    2003-01-01

    Barium titanate fine particles were coated homogeneously with magnesium titanate via the fused salt method. The thickness of the magnesium titanate film is 20 nm, as verified by TEM and XRD. The mechanism of the coating is that: when magnesium chloride is liquated in 800 deg. C, magnesium will replace barium in barium titanate, and form magnesium titanate film on the surface of barium titanate particles. Ceramics sintered from the coated particles show improved high frequency ability. The dielectric constant is about 130 at the frequency from 1 to 800 MHz

  4. Analysis of cell performance and thermal regeneration of a lithium-tin cell having an immobilized fused-salt electrolyte

    Science.gov (United States)

    Cairns, E. J.; Shimotake, H.

    1969-01-01

    Cell performance and thermal regeneration of a thermally regenerative cell uses lithium and tin and a fused-salt electrolyte. The emf of the Li-Sn cell, as a function of cathode-alloy composition, is shown to resemble that of the Na-Bi cell.

  5. Process and apparatus for extraction of gases produced during operation of a fused-salt nuclear reactor

    International Nuclear Information System (INIS)

    Blum, J.; Marie, J.

    1976-01-01

    The present invention relates to the field of fused-salt nuclear reactors and its object is the extraction of the gases produced in the course of operation of these reactors. The process according to the invention consists in placing into position a piece of material permeable for gases and impermeable for the used fused salts, for instance, a piece of graphite, in such a way that part of the surface of this piece is in contact with the circuit of the radioactive salts and another part connected to a gas suction device. The piece could also be scavenged in its mass by a flow of inert gas. Application is contemplated in reactors using a mixture of lithium fluoride, beryllium fluoride, and uranium and/or thorium fluoride. 10 claims, 2 drawing figures

  6. Fast rise time IR detectors for lepton colliders

    International Nuclear Information System (INIS)

    Drago, A.; Bini, S.; Guidi, M. Cestelli; Marcelli, A.; Pace, E.

    2016-01-01

    Diagnostics is a fundamental issue for accelerators whose demands are continuously increasing. In particular bunch-by-bunch diagnostics is a key challenge for the latest generation of lepton colliders and storage rings. The Frascati Φ-factory, DAΦNE, colliding at 1.02 GeV in the centre of mass, hosts in the main rings few synchrotron radiation beamlines and two of them collect the synchrotron radiation infrared emission: SINBAD from the electron ring and 3+L from the positron ring. At DAΦNE each bucket is 2.7 ns long and particles are gathered in bunches emitting pulsed IR radiation, whose intensity in the long wavelength regime is directly proportional to the accumulated particles. Compact uncooled photoconductive HgCdTe detectors have been tested in both beamlines using dedicated optical layouts. Actually, the fast rise time of HgCdTe semiconductors give us the chance to test bunch-by-bunch devices for both longitudinal and transverse diagnostics. For the longitudinal case, single pixel detectors have been used, while for the transverse diagnostics, multi-pixel array detectors, with special custom design, are under test. This contribution will briefly describe the status of the research on fast IR detectors at DAΦNE, the results obtained and possible foreseen developments.

  7. Neutronic study of a nuclear reactor of fused salts; Estudio neutronico de un reactor nuclear de sales fundidas

    Energy Technology Data Exchange (ETDEWEB)

    Garcia B, F. B.; Francois L, J. L., E-mail: faviolabelen@gmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-10-15

    The reactors of fused salts called Molten Salt Reactor have presented a resurgence of interest in the last decade, due to they have a versatility in particular to operate, either with a thermal or fast neutrons spectrum. The most active development was by the middle of 1950 and principles of 1970 in the Oak Ridge National Laboratory. In this work some developed models are presented particularly and studied with the help of the MCNPX code, for the development of the neutronic study of this reactor, starting of proposed models and from a simple and homogeneous geometry until other more complex models and approximate to more real cases. In particular the geometry conditions and criticality of each model were analyzed, the isotopic balance, as well as the concentrations of the salts and different assigned fuel types. (Author)

  8. Assay of uranium in fused salt cake generated at the natural uranium metal fuel fabrication plants by gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Kalsi, P.C.; Bhanu, A.U.; Sahoo, S.; Iyer, R.H.

    1986-01-01

    A passive gamma-ray spectroscopic method is employed for the assay of uranium in fused salt cake, a scrap produced at the natural uranium metal fuel fabrication plants. The method makes use of NaI(TI) detector coupled with a multichannel analyser. The 1 MeV gamma-ray of 238 U was used for the calibration. The calibration curve was made by counting synthetic mixtures made of U 3 O 8 powder, the heat treatment salt and iron in the form of fine powder. The uranium content in these synthetic mixtures was kept in the range of 1-11 per cent. 23 lots of the fused salt cake taken from three different batches of the salt cake were then analysed by this method. The uranium content of fused salt cake was found to be in the range of 1.70-11.43 per cent. To compare the gamma spectrometric results with a completely independent method, chemical analysis of all the fused salt cakes were also carried out. The NDA results were found to agree within ± 17 per cent with the chemical analysis results. (author)

  9. A study on the separation of Neodymium and zirconium from impure uranium by fused-salt electrolysis

    International Nuclear Information System (INIS)

    Lee, Won Joon; Lee, Seong Ho; Lee, Jae Heon; Lee, Eung Cho

    1997-01-01

    A study on the electrorefining of an impure uranium containing zirconium and neodymium at 500 deg C by KCl-LiCl fused salt electrolysis was performed. The reduction potentials of uranium and neodymium were 0.12V and 0.64V (vs. Ag/AgCl electrode), respectively. When a 1wt% Nd of uranium was added as an impurity, 0.001wt% Nd was deposited onto the cathode below 0.5V after electrolysis. When a 10.5wt% Zr of uranium was added to liquid cadmium anode as an impurity, zirconium was evaporated as ZrCl 4 at 500 deg C during electrolysis, and consequently uranium was deposited onto the cathode as a purity of 99.98wt% U. The morphology of purified uranium was appeared as dendritic structure. The activity coefficient of metallic neodymium for the displacement reaction of UCl 3 + Nd (cd) = NdCl 3 + U ( -c d) was calculated to be 3.67 x 10 -10 at 500 deg C. (author)

  10. Generation of fast-rise time, repetitive, (sub) nanosecond, high-voltage pulses

    NARCIS (Netherlands)

    Huiskamp, T.; Pemen, A.J.M.

    2017-01-01

    In this contribution we present our fast-rise time nanosecond pulse generator, capable of generating up to 50 kV (positive and negative) rectangular pulses at a repetition rate of up to 1 kHz and with a rise time of less than 200 picoseconds. We focus on the general concepts involved in the design

  11. Development of a fast rise-time, high-voltage pulse generator

    International Nuclear Information System (INIS)

    Zhang Yanxia; Zhu Jie; Li Xianyou

    2006-01-01

    In order to test the attenuation of the system, a fast rise-time, high-voltage pulse generator is required for the fast pulse signal measurement. The paper presents the development of the generator. More emphasis is paid on the discussion of the difficulties occurring in the circuit debugging and their resolutions. The output rise-time of the generator is 700 ps, the amplitude is adjustable in the range of 0 to 500 V, the pulse-width is adjustable in the range of 4ns to 1μs. (authors)

  12. A LUMINOUS, FAST RISING UV-TRANSIENT DISCOVERED BY ROTSE: A TIDAL DISRUPTION EVENT?

    International Nuclear Information System (INIS)

    Vinkó, J.; Wheeler, J. C.; Chatzopoulos, E.; Marion, G. H.; Yuan, F.; Akerlof, C.; Quimby, R. M.; Ramirez-Ruiz, E.; Guillochon, J.

    2015-01-01

    We present follow-up observations of an optical transient (OT) discovered by ROTSE on 2009 January 21. Photometric monitoring was carried out with ROTSE-IIIb in the optical and Swift in the UV up to +70 days after discovery. The light curve showed a fast rise time of ∼10 days followed by a steep decline over the next 60 days, which was much faster than that implied by 56 Ni— 56 Co radioactive decay. The Sloan Digital Sky Survey Data Release 10 database contains a faint, red object at the position of the OT, which appears slightly extended. This and other lines of evidence suggest that the OT is of extragalactic origin, and this faint object is likely the host galaxy. A sequence of optical spectra obtained with the 9.2 m Hobby-Eberly Telescope between +8 and +45 days after discovery revealed a hot, blue continuum with no visible spectral features. A few weak features that appeared after +30 days probably originated from the underlying host. Fitting synthetic templates to the observed spectrum of the host galaxy revealed a redshift of z = 0.19. At this redshift, the peak magnitude of the OT is close to –22.5, similar to the brightest super-luminous supernovae; however, the lack of identifiable spectral features makes the massive stellar death hypothesis less likely. A more plausible explanation appears to be the tidal disruption of a Sun-like star by the central supermassive black hole. We argue that this transient likely belongs to a class of super-Eddington tidal disruption events

  13. THE Ep EVOLUTIONARY SLOPE WITHIN THE DECAY PHASE OF 'FAST RISE AND EXPONENTIAL DECAY' GAMMA-RAY BURST PULSES

    International Nuclear Information System (INIS)

    Peng, Z. Y.; Ma, L.; Yin, Y.; Zhao, X. H.; Fang, L. M.; Bao, Y. Y.

    2009-01-01

    Employing two samples containing of 56 and 59 well-separated fast rise and exponential decay gamma-ray burst pulses whose spectra are fitted by the Band spectrum and Compton model, respectively, we have investigated the evolutionary slope of E p (where E p is the peak energy in the νFν spectrum) with time during the pulse decay phase. The bursts in the samples were observed by the Burst and Transient Source Experiment on the Compton Gamma Ray Observatory. We first test the E p evolutionary slope during the pulse decay phase predicted by Lu et al. based on the model of highly symmetric expanding fireballs in which the curvature effect of the expanding fireball surface is the key factor concerned. It is found that the evolutionary slopes are normally distributed for both samples and concentrated around the values of 0.73 and 0.76 for Band and Compton model, respectively, which is in good agreement with the theoretical expectation of Lu et al.. However, the inconsistency with their results is that the intrinsic spectra of most of bursts may bear the Comptonized or thermal synchrotron spectrum, rather than the Band spectrum. The relationships between the evolutionary slope and the spectral parameters are also checked. We show that the slope is correlated with E p of time-integrated spectra as well as the photon flux but anticorrelated with the lower energy index α. In addition, a correlation between the slope and the intrinsic E p derived by using the pseudo-redshift is also identified. The mechanisms of these correlations are unclear currently and the theoretical interpretations are required.

  14. Titanium metal obtention by fused salts electrolysis

    International Nuclear Information System (INIS)

    Perillo, P.M.; Ares, Osvaldo; Botbol, Jose.

    1989-01-01

    Potassium fluorotitanate dissolved in fused sodium chloride or potassium chloride may be electrolyzed under an inert gas atmosphere. Solid electrolysis products are formed on the cathode which contains titanium metal, sodium chloride, lower fluorotitanates and small quantities of alkali metal fluorotitanate. The extraction of titanium from the electrolysis products may be carried out by aqueous leaching (removal of chloride salts of alkali metals and a certain amount of fluorotitanates). Titanium metal obtained is relatively pure. (Author)

  15. Electrolysis of uranium tetrafluorure fused salts

    International Nuclear Information System (INIS)

    Perillo, P.M.; Botbol, J.

    1991-01-01

    Electrolytic preparation of U has been unsuccessful because the metal formed is in easily oxidized state. Electrolytic depositions were made under various conditions from fused NaCl-KCl baths containing UF 4 . X-ray diffraction studies were made of the products. The results indicate that mixed U with several oxides phases are produced. It was concluded that the method was unlikely to be efficient for the production of U metal. (Author) [es

  16. FUSED SALT METHOD FOR COATING URANIUM WITH A METAL

    Science.gov (United States)

    Eubank, L.D.

    1959-02-01

    A method is presented for coating uranium with a less active metal such as Cr, Ni, or Cu comprising immersing the U in a substantially anhydrous molten solution of a halide of these less active metals in a ternary chloride composition which consists of selected percentages of KCl, NaCl and another chloride such as LiCl or CaCl/sub 2/.

  17. Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators

    Science.gov (United States)

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  18. Rugged calorimeter with a fast rise time

    International Nuclear Information System (INIS)

    McMurtry, W.M.; Dolce, S.R.

    1980-01-01

    An intrinsic 1-mil-thick gold foil calorimeter has been developed which rises to 95% of the energy deposited in less than 2 microseconds. This calorimeter is very rugged, and can withstand rough handling without damage. The time constant is long, in the millisecond range, because of its unique construction. Use of this calorimeter has produced 100% data recovery, and agreement with true deposition to less than 10%

  19. Fast rise times and the physical mechanism of deep earthquakes

    Science.gov (United States)

    Houston, H.; Williams, Q.

    1991-01-01

    A systematic global survey of the rise times and stress drops of deep and intermediate earthquakes is reported. When the rise times are scaled to the seismic moment release of the events, their average is nearly twice as fast for events deeper than about 450 km as for shallower events.

  20. Fused salt processing of impure plutonium dioxide to high-purity plutonium metal

    International Nuclear Information System (INIS)

    Mullins, L.J.; Christensen, D.C.; Babcock, B.R.

    1982-01-01

    A process for converting impure plutonium dioxide (approx. 96% pure) to high-purity plutonium metal (>99.9%) was developed. The process consists of reducing the oxide to an impure plutonium metal intermediate with calcium metal in molten calcium chloride. The impure intermediate metal is cast into an anode and electrorefined to produce high-purity plutonium metal. The oxide reduction step is being done now on a 0.6-kg scale with the resulting yield being >99.5%. The electrorefining is being done on a 4.0-kg scale with the resulting yield being 80 to 85%. The purity of the product, which averages 99.98%, is essentially insensitive to the purity of the feed metal. The yield, however, is directly dependent on the chemical composition of the feed. To date, approximately 250 kg of impure oxide has been converted to pure metal by this processing sequence. The availability of impure plutonium dioxide, together with the need for pure plutonium metal, makes this sequence a valuable plutonium processing tool

  1. Fused salt power reactor study: Minutes of discussion meeting No. 2

    International Nuclear Information System (INIS)

    Alexander, L. G.

    1956-01-01

    Remarks made by participants in a 1956 meeting are sketched. Economics was a major concern. Significant topics included development of a new alloy for use in the heat exchanger, conversion ratios in a U-233 breeder, the effects of ThF 4 on corrosion, and means of producing various transmutation products other than U-233.

  2. Contribution to the knowledge of the mechanism of the electrorefining of uranium in fused salt baths (1961)

    International Nuclear Information System (INIS)

    Boisde, G.; Chauvin, G.; Coriou, H.; Hure, J.

    1961-01-01

    Very pure uranium can be obtained by electrorefining under the following conditions: electrolyte: UCl 3 (ca. 30 per cent wt.) dissolved in LiCl-KCl eutectic, cathode: molybdenum, atmosphere: argon, temperature: 400-450 deg. C. The detailed mechanism of the refining process has been hitherto unknown. Electrode-potential studies undertaken to fill this gap have shown that: 1. UCl prepared according to Newton contains an impurity (perhaps UH 3 ) that interferes with the yield of the cathode deposit. We propose a treatment to eliminate this impurity. 2. The quasi-reversible character of the system U +3 ↔U 0 is the principal reason for the production of high purity uranium. The cathodic deposition and anodic dissolution seem to be primary reactions. 3. The presence of moisture in the molten bath has a very harmful influence on the overall electrorefining process: the uranium obtained contains many impurities; the cathode current efficiency falls from 80 to about 10 per cent; and the anode is substantially corroded, the apparent anode current efficiency rising from 90 to about 120 per cent. An interpretation of these effects is given, based on the experimental polarization curves. (authors) [fr

  3. Rapid further heating of tokamak plasma by fast-rising magnetic pulse

    International Nuclear Information System (INIS)

    Inoue, N.; Nihei, H.; Yamazaki, K.; Ichimura, M.; Morikawa, J.; Hoshino, K.; Uchida, T.

    1977-01-01

    The object of the experiment was to study the rapid further heating of a tokamak plasma and its influence on confinement. For this purpose, a high-voltage theta-pinch pulse was applied to a tokamak plasma and production of a high-temperature (keV) plasma was ensured within a microsecond. The magnetic pulse is applied at the plasma current maximum parallel or antiparallel to the study toroidal field. In either case, the pulsed field quickly penetrates the plasma and the plasma resistivity estimated from the penetration time is about 100 times larger than the classical. A burst of energetic neutrals of approximately 1 μs duration was observed and the energy distribution had two components of the order of 1 keV and 0.1 keV in the antiparallel case. Doppler broadening measurement shows heating of ions to a temperature higher than 200 eV; however, the line profile is not always Maxwellian distribution. The X-rays disappear at the moment of applying the magnetic pulse and reappear about 100 μs later with an intensive burst, while both energy levels are the same (approximately 100 keV). (author)

  4. Design of a fast-rise slow-fall magnet modulator

    International Nuclear Information System (INIS)

    Lambiase, R.F.

    1982-01-01

    Brookhaven National Laboratory is now in the process of expanding the capability of the AGS to include the acceleration of polarized protons. One of the requirements to accomplish this is to pulse twelve quadrupole magnets to rapidly cross depolarizing resonances. Having crossed the resonance, the field in the magnet must be maintained so as not to re-cross the resonance. The problem is addressed with two mirror image circuits, one to produce positive pulses, and the other negative. Each of these circuits are further divided into two sections, one to cause the rapid rise, and the other to maintain the slow fall

  5. Low-Impedance Compact Modulators Capable of Generating Intense Ultra-fast Rising Nanosecond Waveforms

    Science.gov (United States)

    2006-10-31

    spark gap is shown in Fig. 1. The Blumleins were constructed from copper plates separated by laminated layered Kapton (polyimide) dielectrics. Scaling... convolution factor. The diamond/GaAs heterojunction response is limited to a very thin layer across the cross section between amorphic diamond and GaAs...were fastened to electrode mounts and passed through the cast material of the base before it hardened. A thick kapton laminate 1.2 cm wide separated

  6. Preparation of coherent deposits of metallic titanium and zirconium by fused salts electrolysis. Preparacion de depositos coherentes de titanio y circonio metalicos por electrolisis de sales fundidas

    Energy Technology Data Exchange (ETDEWEB)

    Perillo, P.M.; Botbol, J. (Comision Nacional de Energia Atomica, Departamento de Desarrollo de Procesos, Buenos Aires (Argentina))

    1994-01-01

    The production of coherent deposits of metallic titanium and zirconium bath composition and operating conditions were studied. The cathode was a striated iron cylinder and a graphite crucible served as anode. K[sub 2]TiF[sub 6] and K[sub 2]ZrF[sub 6] dissolved in fused NaCl at 800 degree centigree may be electrolyzed under an insert gas atmosphere. It was found that the deposits depend on the electrolytic composition of the bath while other variables in the studied values do not influence significantly. (Author) 11 refs.

  7. Gas Control and Thermal Modeling Methods for Pressed Pellet and Fast Rise Thin-Film Thermal Batteries

    Science.gov (United States)

    2015-09-01

    high operating battery case temperatures. Acceptable hermetic seals for thermal batteries ordinarily use laser welding , tungsten inert gas ( TIG ...20 Fig. 16 Sierra TABS Internal Plotter – Final pre- processing step for Low Cost Competent Munition (LCCM) thermal battery (battery shown drawn to...of experimental and DOE statistical methods. Such studies could be used to identify 2 electrochemical and thermodynamic processes that occur

  8. Contribution to the knowledge of the mechanism of the electrorefining of uranium in fused salt baths (1961); Contribution a la connaissance du mecanisme de l'electroraffinage de l'uranium en bains de sels fondus (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Boisde, G; Chauvin, G; Coriou, H; Hure, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    Very pure uranium can be obtained by electrorefining under the following conditions: electrolyte: UCl{sub 3} (ca. 30 per cent wt.) dissolved in LiCl-KCl eutectic, cathode: molybdenum, atmosphere: argon, temperature: 400-450 deg. C. The detailed mechanism of the refining process has been hitherto unknown. Electrode-potential studies undertaken to fill this gap have shown that: 1. UCl prepared according to Newton contains an impurity (perhaps UH{sub 3}) that interferes with the yield of the cathode deposit. We propose a treatment to eliminate this impurity. 2. The quasi-reversible character of the system U{sup +3}{r_reversible}U{sup 0} is the principal reason for the production of high purity uranium. The cathodic deposition and anodic dissolution seem to be primary reactions. 3. The presence of moisture in the molten bath has a very harmful influence on the overall electrorefining process: the uranium obtained contains many impurities; the cathode current efficiency falls from 80 to about 10 per cent; and the anode is substantially corroded, the apparent anode current efficiency rising from 90 to about 120 per cent. An interpretation of these effects is given, based on the experimental polarization curves. (authors) [French] De l'uranium a un tres haut degre de purete peut etre obtenu par electroraffinage clans les conditions suivantes: electrolyte = UCl{sub 3} (30 pour cent en poids env.) dissous dans l'eutectique LiCl-KCl, cathode = tige de molybdene, atmosphere = argon, temperature = 400 a 450 deg. C. Toutefois, on ne connaissait pas, jusqu'a present, le mecanisme intime du processus de raffinage. Des etudes de potentiels d'electrodes, entreprises pour tenter de combler cette lacune, nous ont permis de mettre en evidence differents points : 1. UCl{sub 3} prepare selon la methode de Newton contient une impurete (peut-etre UH{sub 3}) qui nuit au rendement du depot cathodique. Nous proposons un traitement d'elimination de cette impurete. 2. Le caractere de quasi-reversibilite du systeme U{sup +3}{r_reversible}U{sup 0} serait la principale cause de l'obtention de l'uranium de haute purete. Le depot cathodique et la dissolution anodique semblent etre des reactions primaires. 3. La presence d'humidite dans le bain fondu a une influence tres nocive sur le processus global d'electroraffinage: L'uranium n'est plus purifie mais contamine par un grand nombre d'impuretes. Le rendement cathodique subit une chute de 80 a 10 pour cent environ. L'anode est le siege d'une corrosion importante: le rendement anodique apparent est releve de 90 a 120 pour cent environ. On suggere, a l'aide des courbes de polarisation, une interpretation du mecanisme de ces perturbations. (auteurs)

  9. Method of reducing zirconium

    International Nuclear Information System (INIS)

    Megy, J.A.

    1980-01-01

    A method was developed for making nuclear-grade zirconium from a zirconium compound, which ismore economical than previous methods since it uses aluminum as the reductant metal rather than the more expensive magnesium. A fused salt phase containing the zirconium compound to be reduced is first prepared. The fused salt phase is then contacted with a molten metal phase which contains aluminum and zinc. The reduction is effected by mutual displacment. Aluminum is transported from the molten metal phase to the fused salt phase, replacing zirconium in the salt. Zirconium is transported from the fused salt phase to the molten metal phase. The fused salt phase and the molten metal phase are then separated, and the solvent metal and zirconium are separated by distillation or other means. (DN)

  10. The Institute of Radiochemistry, University of Liege, (Sart-Tilman), Belgium

    International Nuclear Information System (INIS)

    Duyckaerts, G.

    1977-01-01

    The Institute of Radiochemistry, erected in the new Sart-Tilman campus of the University of Liege has been especially planned and equipped for research on actinide chemistry. The two-floor building is well adapted for work in glove-boxes and well ventilated hoods with highly radioactive α-emitters. For the last ten years, research has been carried out in the following directions: synthesis and structural analysis of actinide compounds, thermodynamic evaluations on actinide compounds by microcalorimetry, electrochemistry of actinides in fused salts, redox properties of actinides in fused salts by absorption spectrophotometry, solution chemistry of actinides by solvent extraction, ion exchange and electrochemistry. (T.G.)

  11. Method of separating hafnium from zirconium

    International Nuclear Information System (INIS)

    Megy, J.A.

    1980-01-01

    English. A new anhydrous method was developed for separating zirconium and hafnium, which gives higher separation factors and is more economical than previous methods. A molten phase, comprising a solution of unseparated zirconium and hafnium and a solvent metal, is first prepared. The molten metal phase is contacted with a fused salt phase which includes a zirconium salt. Zirconium and hafnium separation is effected by mutual displacement with hafnium being transported from the molten metal phase to the fused salt phase, while zirconium is transported from the fused salt phase to the molten metal phase. The solvent metal is less electropositive than zirconium. Zinc was chosen as the solvent metal, from a group which also included cadmium, lead, bismuth, copper, and tin. The fused salt phase cations are more electropositive than zirconium and were selected from a group comprising the alkali elements, the alkaline earth elements, the rare earth elements, and aluminum. A portion of the zirconium in the molten metal phase was oxidized by injecting an oxidizing agent, chlorine, to form zirconium tetrachlorid

  12. Process for making rare earth metal chlorides

    International Nuclear Information System (INIS)

    Kruesi, P.R.

    1981-01-01

    An uncombined metal or a metal compound such as a sulfide, oxide, carbonate or sulfate is converted in a liquid salt bath to the corresponding metal chloride by reacting it with chlorine gas or a chlorine donor. The process applies to metals of groups 1b, 2a, 2b, 3a, 3b, 4a, 5a and 8 of the periodic table and to the rare earth metals. The chlorine donor may be ferric or sulfur chloride. The liquid fused salt bath is made up of chlorides of alkali metals, alkaline earth metals, ammonia, zinc and ferric iron. Because the formed metal chlorides are soluble in the liquid fused salt bath, they can be recovered by various conventional means

  13. URANIUM SEPARATION PROCESS

    Science.gov (United States)

    Lyon, W.L.

    1962-04-17

    A method of separating uranium oxides from PuO/sub 2/, ThO/sub 2/, and other actinide oxides is described. The oxide mixture is suspended in a fused salt melt and a chlorinating agent such as chlorine gas or phosgene is sparged through the suspension. Uranium oxides are selectively chlorinated and dissolve in the melt, which may then be filtered to remove the unchlorinated oxides of the other actinides. (AEC)

  14. Electrolytic method for the production of lithium using a lithium-amalgam electrode

    Science.gov (United States)

    Cooper, John F.; Krikorian, Oscar H.; Homsy, Robert V.

    1979-01-01

    A method for recovering lithium from its molten amalgam by electrolysis of the amalgam in an electrolytic cell containing as a molten electrolyte a fused-salt consisting essentially of a mixture of two or more alkali metal halides, preferably alkali metal halides selected from lithium iodide, lithium chloride, potassium iodide and potassium chloride. A particularly suitable molten electrolyte is a fused-salt consisting essentially of a mixture of at least three components obtained by modifying an eutectic mixture of LiI-KI by the addition of a minor amount of one or more alkali metal halides. The lithium-amalgam fused-salt cell may be used in an electrolytic system for recovering lithium from an aqueous solution of a lithium compound, wherein electrolysis of the aqueous solution in an aqueous cell in the presence of a mercury cathode produces a lithium amalgam. The present method is particularly useful for the regeneration of lithium from the aqueous reaction products of a lithium-water-air battery.

  15. Direct reading fast microwave interferometer for EBT

    International Nuclear Information System (INIS)

    Uckan, T.

    1984-10-01

    A simple and inexpensive 4-mm direct reading fast (rise time approx. 100 μs) microwave interferometer is described. The system is particularly useful for density measurements on the ELMO Bumpy Torus (EBT) during pulsed operation

  16. Molten salts in nuclear reactors

    International Nuclear Information System (INIS)

    Dirian, J.; Saint-James

    1959-01-01

    Collection of references dealing with the physicochemical studies of fused salts, in particular the alkali and alkali earth halides. Numerous binary, ternary and quaternary systems of these halides with those of uranium and thorium are examined, and the physical properties, density, viscosity, vapour pressure etc... going from the halides to the mixtures are also considered. References relating to the corrosion of materials by these salts are included and the treatment of the salts with a view to recuperation after irradiation in a nuclear reactor is discussed. (author) [fr

  17. Ionic Liquids in HPLC and CE: A Hope for Future.

    Science.gov (United States)

    Ali, Imran; Suhail, Mohd; Sanagi, Mohd Marsin; Aboul-Enein, Hassan Y

    2017-07-04

    The ionic liquids (ILs) are salts with melting points below 100°C. These are called as ionic fluids, ionic melts, liquid electrolytes, fused salts, liquid salts, ionic glasses, designer solvents, green solvents and solvents of the future. These have a wide range of applications, including medical, pharmaceutical and chemical sciences. Nowadays, their use is increasing greatly in separation science, especially in chromatography and capillary electrophoresis due to their remarkable properties. The present article describes the importance of ILs in high-performance liquid chromatography and capillary electrophoresis. Efforts were also made to highlight the future expectations of ILs.

  18. Compatibility studies of type 316 stainless steel and Hastelloy N in KNO3--NaNO2--NaNO3

    International Nuclear Information System (INIS)

    Devan, J.H.; Keiser, J.R.

    1978-01-01

    The nitrate-based fused salt mixture KNO 3 --NaNO 2 --NaNO 3 (44--49--7 mol %) has been widely used as a heat transport fluid and for metallurgical heat-treating. We have measured the corrosion rate of this salt in the presence of a temperature gradient for an iron-base material, type 316 stainless steel, and a nickel-base material, Hastelloy N. Corrosion rates were measured with maximum loop temperatures of 431 and 504 0 C. Measured corrosion rates were in all cases less than 8 μm/year

  19. The integral fast reactor fuels reprocessing laboratory at Argonne National Laboratory, Illinois

    International Nuclear Information System (INIS)

    Wolson, R.D.; Tomczuk, Z.; Fischer, D.F.; Slawecki, M.A.; Miller, W.E.

    1986-09-01

    The processing of Integral Fast Reactor (IFR) metal fuel utilizes pyrochemical fuel reprocessing steps. These steps include separation of the fission products from uranium and plutonium by electrorefining in a fused salt, subsequent concentration of uranium and plutonium for reuse, removal, concentration, and packaging of the waste material. Approximately two years ago a facility became operational at Argonne National Laboratory-Illinois to establish the chemical feasibility of proposed reprocessing and consolidation processes. Sensitivity of the pyroprocessing melts to air oxidation necessitated operation in atmosphere-controlled enclosures. The Integral Fast Reactor Fuels Reprocessing Laboratory is described

  20. On the Tetragonal Forms of KMo 4O 6

    Science.gov (United States)

    McCarroll, W. H.; Ramanujachary, K. V.; Greenblatt, M.; Marsh, Richard E.

    1995-06-01

    A reexamination of the X-ray diffraction data for the tetragonal form of KMo4O6 prepared by fused salt electrolysis leads to the conclusion that the crystal structure is better described by using space group P 4/mbm and not P4¯ as previously reported. However, refinement in the new space group does not result in any significant changes in the atomic arrangement. Possible reasons for the significant difference between the c lattice parameter of this form of KMo4O6 and that prepared at high pressures are also discussed.

  1. Study of the coefficient of separation for some processes which are applied to lithium isotopes

    International Nuclear Information System (INIS)

    Perret, L.; Rozand, L.; Saito, E.

    1958-01-01

    The fundamental separation factors of some processes are investigated: the distillation of metallic lithium, counter current electromigration in fused salts (particularly in lithium nitrate) electrolysis in aqueous solution and ion exchange. The chemical transfer between a lithium amalgam and lithium salts in a dimethylformamide solution (a solvent which is not attacked by the amalgam) is also studied. Finally a description is given of isotopic analyses carried out either by scintillation counting or by mass spectrography using apparatus specially designed for this particular task. (author) [fr

  2. Development of IFR pyroprocessing technology

    International Nuclear Information System (INIS)

    Laidler, J.J.; Battles, J.E.; Miller, W.E.; Gay, E.C.

    1993-01-01

    A metallic fuel alloy, nominally U-20Pu-10Zr, is the key element of the IFR fuel cycle. This metallic fuel permits the use of an innovative reprocessing method, known as ''pyoprocessing,'' featuring fused-salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The fuel product is contaminated with the higher actinides and with a minor amount of rare earth fission products, making it self-protecting and thus diversion-resistant while still perfectly suitable as a fuel material in the fast spectrum of the IFR core

  3. Pyrochemical head-end treatment for fast reactor fuel elements

    International Nuclear Information System (INIS)

    Avogadro, A.

    1978-01-01

    The paper presents the R and D work performed at Ispra and Mol during the period 1965-1975 in order to find a way to overcome technical and economical difficulties arising when the conventional reprocessing is applied to fast reactor fuel elements. The work had been directed towards 3 specific topics: a) liquid-metal decladding of spent stainless steel - clad fuels (solinox process). b) oxidative pulverisation by fused salts and extraction of volatile fission products (satex process). c) Pyrochemical separation of plutonium from the bulk of the fuel

  4. Thermodynamic properties of uranium--mercury system

    International Nuclear Information System (INIS)

    Lee, T.S.

    1979-01-01

    The EMF values in the fused salt cells of the type U(α)/KCl--LiCl--BaCl 2 eutectic, UCl 3 /U--Hg alloy, for the different two-phase alloys in the uranium--mercury system have been measured and the thermodynamic properties of this system have been calculated. These calculated values are in good agreement with values based on mercury vapor pressure measurements made by previous investigators. The inconsistency of the thermodynamic properties with the phase diagram determined by Frost are also confirmed. A tentative phase diagram based on the thermodynamic properties measured in this work was constructed

  5. Research of fluidized medium treatment

    International Nuclear Information System (INIS)

    Chishiro, Ryo; Higashi, Tatsuhiro; Yamazaki, Seiichiro

    2002-03-01

    The activity coefficient of uranium fluoride in fluoride was determined by a cyclic voltammetry and equilibrium potential measurement. The kind of uranium compound in NaF-AlF 3 -Al 2 O 3 -F 4 system was determined by the cyclic voltammetry. With reducing from U(3) to U(0) by the reduction reaction during uranium precipitation, the activity coefficient of UF 3 in cryolite fused salt with uranium metal and uranium fluoride was measured by the electron motive force (EMF) method. The results showed that the redox potential of uranium is almost same value of aluminum, so that, both uranium and aluminum are collected by electrolytic recovery, because the concentration of aluminum is higher than uranium in the fused salt. It is necessary to add the after-treatment such as distillation. Alumina was soluble in fluoride molten salt and oxidized uranium fluoride to uranium oxide. The results showed separation and collection of uranium is possible, because uranium oxide was not soluble and precipitated in fluoride molten salt. (S.Y.)

  6. Dynamic Reference Electrode development for redox potential measurements in fluoride molten salt at high temperature

    International Nuclear Information System (INIS)

    Durán-Klie, Gabriela; Rodrigues, Davide; Delpech, Sylvie

    2016-01-01

    Measurement of redox potential in fluoride media is a major problem due to the difficulty to design a reference electrode with high stability, high mechanical resistance and high accuracy. In the frame of molten salt reactor studies, a dynamic reference electrode (DRE) is developed to measure redox potential in fluoride molten salt at high temperature. DRE is based on the in-situ generation of a transient redox system. The choice of the redox couple corresponds to the cathodic limit of the molten salt considered. As a preliminary step, the demonstration of feasibility of generating a DRE was done in LiF-NaF-KF (46.5–11.5–42 mol%) media at 500 °C. In this salt, the reference redox system generated by coulometry at applied current is KF/K, metallic potassium being electrodeposited on a tungsten wire electrode. The validation of the DRE response and the experimental optimization parameters for DRE generation were realized by following the NiF 2 /Ni redox potential evolution as a function of NiF 2 concentration in the fused salt. The current value applied for DRE generation was optimized. It depends on the amount of metallic cations contained in the fused salt and which can be electrochemically reduced simultaneously during the DRE generation. The current corresponding to the DRE generation has to be 4 times greater than the current corresponding to the reduction of the other elements.

  7. Chemistry and melting characteristics of fireside deposits taken from boiler tubes in waste incinerators

    International Nuclear Information System (INIS)

    Otsuka, Nobuo

    2011-01-01

    Highlights: → We examine tube deposits taken from boilers of municipal solid waste incinerators. → Literature survey is done on the corrosion mechanism of tube steels. → Chemical analyses, X-ray diffraction, DSC, and corrosion test were conducted. → Melting behavior of salt constituents affected the corrosiveness of the deposits. - Abstract: Twenty-three tube deposits taken from seven heat-recovery boilers of municipal solid waste incinerators were examined by chemical analyses and X-ray diffraction. These deposits were measured by Differential Scanning Calorimeter (DSC) in N 2 to investigate their melting characteristics. Sixteen deposits were used to evaluate their corrosiveness to carbon steel by high-temperature corrosion test conducted at 400 o C for 20 h in 1500 ppm HCl - 300 ppm SO 2 - 7.5%O 2 - 7.5%CO 2 - 20%H 2 O - N 2 . Total heat of endothermic reactions of the deposits taking place between 200 and 400 o C can be related to the corrosion rate of carbon steel at 400 o C. Corrosion initiated at temperatures when the deposits started to melt, became severe when fused salt constituents increased, and alleviated when the majority of the deposits became fused. The corrosion can be interpreted as fused salt corrosion caused by chloride and sulfate salts.

  8. Cost estimates supporting West Valley DEIS

    International Nuclear Information System (INIS)

    Pirro, J.

    1981-01-01

    An Environmental Impact Statement (EIS) is being prepared which considers alternate means for solidifying the high level liquid wastes (HLLW) at the Western New York Nuclear Service Center (WNYNSC). For this purpose three basic scenarios were considered. In the first scenario, the HLLW is converted into terminal waste form of borosilicate glass. Before vitrification, the non-radioactive chemical salts are separated from the radioactive and transuranic (TRU) constituents in the HLLW. In the second scenario, the HLLW is converted into an intermediate form-fused salt. The stored HLLW is dewatered and melted and the solids are transported to a Department of Energy (DOE) site. The fused salt will be processed of the DOE site at a later date where it will be converted to a vitrified form in a facility that will be constructed to treat HLLW stored at that site. The vitrified salt will be eventually removed for permanent disposal at a Federal repository. In the third scenario, the HLLW is solidified in the existing HLLW storage tanks with cement and returned for on-site disposal in the existing tanks or additional tanks as needed to accommodate the volume. To support the EIS, the costs to accomplish each of the alternatives is provided. The purpose of this cost estimate is to provide a common basis to evaluate the expenditures required to immobilize the HLLW presently stored at the WNYNSC

  9. A dielectric relaxation approach

    Indian Academy of Sciences (India)

    The complex permittivity spectra were studied using the time domain reflectometry [6,7] method. The Hewlett Packard HP 54750 sampling oscilloscope with HP 54754A TDR plug in module has been used. A fast rising step voltage pulse of about 40 ps rise time was propagated through a coaxial line system. Transmission ...

  10. The UFFO (Ultra Fast Flash Observatory) Pathfinder: Science and Mission

    DEFF Research Database (Denmark)

    Chen, P.; Ahmad, S.; Ahn, K.

    in a more rigorous test of current internal shock models, probe the extremes of bulk Lorentz factors, provide the first early and detailed measurements of fast-rise GRB optical light curves, and help verify the prospect of GRB as a new standard candle. We will describe the science and the mission...

  11. Ultra-high efficiency, fast graphene micro-heater on silicon

    DEFF Research Database (Denmark)

    Yan, Siqi; Zhu, Xiaolong; Frandsen, Lars Hagedorn

    2017-01-01

    We demonstrate an ultra-high efficiency and fast graphene microheater on silicon photonic crystal waveguide. By taking advantage of slow-light effect, a tuning efficiency of 1.07 nm/mW and power consumption per free spectral range of 3.99 mW. A fast rise and decay times (10% to 90%) of only 750 ns...

  12. Charge preamplifier

    International Nuclear Information System (INIS)

    Chaminade, R.; Passerieux, J.P.

    1961-01-01

    We describe a charge preamplifier having the following properties: - large open loop gain giving both stable gain and large input charge transfer; - stable input grid current with aging and without any adjustment; - fairly fast rise; - nearly optimum noise performance; - industrial material. (authors)

  13. Design of a ns-pulse generator with microwave studio

    NARCIS (Netherlands)

    Huiskamp, T.; Voeten, S.J.; Pemen, A.J.M.

    2012-01-01

    In this paper we present a design approach of a nanosecond pulse generator by using CST MICROWAVE STUDIO R . Through detailed simulation we arrive at a design for a fast rise-time variable pulse duration pulse generator which is able to produce 1–10 nanosecond pulses with tens of kilovolt amplitude.

  14. 25-ps neutron detector for measuring ICF-target burn history

    International Nuclear Information System (INIS)

    Lerche, R.A.; Phillion, D.W.; Tietbohl, G.L.

    1994-01-01

    We have developed a fast, sensitive neutron detector for recording the fusion reaction-rate history of inertial-confinement fusion (ICF) experiments. The detector is based on the fast rise-time of a commercial plastic scintillator (BC-422) and has a response 8 and 2 x 10 13 neutrons

  15. Characterization of Thin Film Photoanodes for Solar Water Splitting

    NARCIS (Netherlands)

    Enache, C.S.

    2012-01-01

    For centuries, mankind has mostly used fossil fuels, i.e., natural gas, coal, and oil for its energy needs. With the fast rise of the world population and the rising standards of living in the developing countries, the amount of energy the world is going to need in the coming decades will grow

  16. A high current, high speed pulser using avalanche transistors

    International Nuclear Information System (INIS)

    Hosono, Yoneichi; Hasegawa, Ken-ichi

    1985-01-01

    A high current, high speed pulser for the beam pulsing of a linear accelerator is described. It uses seven avalanche transistors in cascade. Design of a trigger circuit to obtain fast rise time is discussed. The characteristics of the pulser are : (a) Rise time = 0.9 ns (FWHM) and (d) Life time asymptotically equals 2000 -- 3000 hr (at 50 Hz). (author)

  17. Improved-Bandwidth Transimpedance Amplifier

    Science.gov (United States)

    Chapsky, Jacob

    2009-01-01

    The widest available operational amplifier, with the best voltage and current noise characteristics, is considered for transimpedance amplifier (TIA) applications where wide bandwidth is required to handle fast rising input signals (as for time-of-flight measurement cases). The added amplifier inside the TIA feedback loop can be configured to have slightly lower voltage gain than the bandwidth reduction factor.

  18. Trade-offs between electrification and climate change mitigation : An analysis of the Java-Bali power system in Indonesia

    NARCIS (Netherlands)

    Handayani, Kamia; Krozer, Yoram; Filatova, Tatiana

    2017-01-01

    The power sector in many developing countries face challenges of a fast-rising electricity demand in urban areas and an urgency of improved electricity access in rural areas. In the context of climate change, these development needs are challenged by the vital goal of CO2 mitigation. This paper

  19. Efficiency Enhancement in DC Pulsed Gas Discharge Memory Panel

    Science.gov (United States)

    Okamoto, Yukio

    1983-01-01

    Much improvement in the luminous efficiency of a dc pulsed gas discharge memory panel for color TV display was achieved by shortening the sustaining pulse duration. High energy electrons can thus be produced in the pulsed discharge with fast rise times. Calculated optimum value of E/P in a Xe gas discharge is 7-8 V/cm\\cdotTorr.

  20. Neutron detector for fusion reaction-rate measurements

    International Nuclear Information System (INIS)

    Lerche, R.A.; Phillion, D.W.; Tietbohl, G.L.

    1993-01-01

    We have developed a fast, sensitive neutron detector for recording the fusion reaction-rate history of inertial-confinement fusion (ICF) experiments. The detector is based on the fast rise-time of a commercial plastic scintillator (BC-422) and has a response 7 neutrons

  1. The physics of photoconductive spark gap switching : pushing the frontiers

    NARCIS (Netherlands)

    Hendriks, J.

    2006-01-01

    Photoconductive switching of an atmospheric, air-¯lled spark gap by a high-power fem- tosecond laser is a novel approach for switching high voltages into pulses with a very fast rise time (order ps) and almost no shot-to-shot time variation (jitter). Such a switch makes it possible to synchronize

  2. Time-resolved characterization of InAs/InGaAs quantum dot gain material for 1.3 µm lasers on gallium arsenide

    DEFF Research Database (Denmark)

    Fiore, Andrea; Borri, Paola; Langbein, Wolfgang

    2000-01-01

    The time-resolved optical characterization of InAs/InGaAs quantum dots emitting at 1.3 ìm is presented. A photoluminescence decay time of 1.8 ns and a fast rise time of 10ps are measured close to room temperature....

  3. Doubled-ended ceramic thyratron

    CERN Multimedia

    1974-01-01

    The double-ended ceramic thyratron CX 1171 B, with its coaxial voltage divider for the SPS. Such a switch, paralleled by three ignitrons in series forms the "thyragnitron" arrangement, and can switch 10 kA, 25 ms pulses, with very fast rise times.

  4. Preparation and certification of a reference uranium

    International Nuclear Information System (INIS)

    Anon.

    1979-06-01

    The CEA Analysis Coordination has produced a reference uranium metal of guaranteed minimum uranium content. The metal was purified by electro-refining in fused salt baths and the dendrites obtained were cast in the form of an ingot by electron bombardment. The ingot was rolled and cut into pieces of mass between 0.5 g and 1.5 g, and each piece conditioned in a glass ampoule under primary vacuum. The total number of reference samples is about 4500. The uranium content was inferred from the impurity concentration determined by spark mass spectrometry and atomic or molecular adsorption spectrophotometry and from the gas concentration determined by specific methods. A certificate of guarantee gives instructions for the use of these reference samples [fr

  5. Thermodynamics of natural and industrial waters

    Energy Technology Data Exchange (ETDEWEB)

    Pitzer, K.S.

    1991-08-01

    The most effective general formulations of thermodynamic equations for multicomponent aqueous solutions are discussed with respect to various ranges of temperature, pressure and composition with emphasis on solutes important in natural or industrial waters. A familiar equation in molality and in excess Gibbs energy is very successful up to 300{degree}C and ionic strength 6 mol{center dot}kg{sup {minus}1}, and can often be extended to 350{degree}C or above at high pressure and in favorable cases to ionic strength 12 or even 20. Alternate methods valid to higher solute compositions, even to pure fused salts, are described. A more difficult situation arises near the critical point of water where the compressibility becomes infinite and a Helmholtz energy basis must be adopted. Existing equations for this range and still higher temperatures and pressures are considered and possible improvements discussed. 85 refs., 13 figs., 3 tabs.

  6. Electrochemistry in molten borates (Na2B4O7). Electroanalytical study of oxidoreducing systems

    International Nuclear Information System (INIS)

    Gregori de Pinochet, Ida de

    1978-01-01

    The results of a study developing suitable electroanalytical means of investigation such as linear sweep voltametry and chronopotentiometry in molten borates are described. It has been shown that the reduction of U (VI) to U (V) proceeds reversibly at a platinum electrode. The diffusion coefficient for the U (VI) species at 800 0 C and the activation energy of diffusion are respectively 4 10 -7 cm 2 s -1 and (34,8+-0,8) k cal mol -1 . UO 2 is an insoluble oxide in this fused salt. Electrochemical studies of As (V) and Cu (II) show a two step reduction process at a platinum electrode. According to the solvent system definitions, the 'acid-base' equilibrium B 4 O 7 2- reversible 2 BO 2 - + B 2 O 3 is characterised at 820 0 C by the constant Ksub(D)=10sup(0,4)molsup(3)kgsup(-3) estimated by potentiometric study at a boron electrode [fr

  7. The effect of boriding on wear resistance of cold work tool steel

    International Nuclear Information System (INIS)

    Anzawa, Y; Koyama, S; Shohji, I

    2017-01-01

    Recently, boriding has attracted extensive attention as surface stiffening processing of plain steel. In this research, the influence of processing time on the formation layer of cold work tool steel (KD11MAX) by Al added fused salt bath was examined. In addition, in order to improve the abrasion resistance of KD11MAX, the effect of the treatment of boronization on the formation layer has been investigated. Boriding were performed in molten borax which contained about 10 mass% Al at processing time of 1.8 ∼ 7.2 ks (processing temperature of 1303 K). As a result of the examination, the hardness of the boriding layer becomes about 1900 HV when the processing time of 3.6 ks. Also the abrasion resistance has improved remarkably. Furthermore, it was revealed that the formation layer was boronized iron from the Vickers hardness and analysis of the X-ray diffraction measurement. (paper)

  8. Preparation of hafnium metal by calciothermic reduction of HfO2

    International Nuclear Information System (INIS)

    Sharma, I.G.; Vijay, P.L.; Sehra, J.C.; Sundaram, C.V.

    1975-01-01

    Hafnium metal powder has been produced by the calciothermic reduction of hafnium oxide. The influence of various experimental parameters - such as amount of calcium in excess of stoichiometric requirement, temperature, and time of reduction - on the yield and purity of the metal has been studied. The metal powder obtained by reduction at 960 0 C (two hours) with a calcium excess of 70% analysed 600 ppm of oxygen and 147 ppm of nitrogen. A reduction efficiency of 96% has been achieved under these conditions. The refining of the powder by electron beam melting, fused salt electrolysis, and iodide process has been studied. The oxygen content in the metal could be brought down from 6900 to 148 ppm by electron beam melt-refining. (author)

  9. Solubility of uranium in liquid gallium, indium and their alloys

    International Nuclear Information System (INIS)

    Volkovich, Vladimir A.; Maltsev, Dmitry S.; Yamschikov, Leonid F.; Osipenko, Alexander G.; Kormilitsyn, Mikhail V.

    2014-01-01

    Pyrochemical reprocessing of spent nuclear fuels (SNF) employing molten salts and liquid metals as working media is considered as a possible alternative to the existing liquid extraction (PUREX) processes. Liquid salts and metals allow reprocessing highly irradiated high burn-up fuels with short cooling times, including the fuels of fast neutron reactors. Pyrochemical technology opens a way to practical realization of short closed fuel cycle. Liquid low-melting metals are immiscible with molten salts and can be effectively used for separation (or selective extraction) of SNF components dissolved in fused salts. Binary or ternary alloys of eutectic compositions can be employed to lower the melting point of the metallic phase. However, the information on SNF components behaviour and properties in ternary liquid metal alloys is very scarce

  10. Synchronized and configurable source of electrical pulses for x-ray pump-probe experiments

    International Nuclear Information System (INIS)

    Strachan, J. P.; Chembrolu, V.; Yu, X. W.; Tyliszczak, T.; Acremann, Y.

    2007-01-01

    A method is described for the generation of software tunable patterns of nanosecond electrical pulses. The bipolar, high repetition rate (up to 250 MHz), fast rise time (<30 ps), square pulses are suitable for applications such as the excitation sequence in dynamic pump-probe experiments. Synchronization with the time structure of a synchrotron facility is possible as well as fine control of the relative delay in steps of 10 ps. The pulse generator described here is used to excite magnetic nanostructures with current pulses. Having an excitation system which can match the high repetition rate of a synchrotron allows for utilization of the full x-ray flux and is needed in experiments which require a large photon flux. The fast rise times allow for picosecond time resolution in pump-probe experiments. All pulse pattern parameters are configurable by software

  11. Solid-state pulse modulator for a 1.7-MW X-band magnetron

    International Nuclear Information System (INIS)

    Choi, Jaegu; Shin, Yongmoon; Choi, Youngwook; Kim, Kwanho

    2014-01-01

    Medical linear accelerators (LINAC) for cancer treatment require pulse modulators to generate high-power pulses with a fast rise time, flat top and short duration to drive high-power magnetrons. Solid-state pulse modulators (SSPM) for medical LINACs that use high power semiconductor switches with high repetition rates, high stability and long lifetimes have been introduced to replace conventional linear-type pulse generators that use gaseous discharge switches. In this paper, the performance of a developed SSPM, which mainly consists of a capacitor charger, an insulated-gate bipolar transistor (IGBT) - capacitor stack and a pulse transformer, is evaluated with a dummy load and an X-band magnetron load. A theoretical analysis of the pulse transformer, which is a critical element of the SSPM, is carried out. The output pulse has a fast rise time and low droop, such that the modulator can drive the X-band magnetron.

  12. A real scale simulator for high frequency LEMP

    Science.gov (United States)

    Gauthier, D.; Serafin, D.

    1991-01-01

    The real scale simulator is described which was designed by the Centre d'Etudes de Gramat (CEG) to study the coupling of fast rise time Lightning Electromagnetic pulse in a fighter aircraft. The system capability of generating the right electromagnetic environment was studied using a Finite Difference Time Domain (FDTD) computer program. First, data of inside stresses are shown. Then, a time domain and a frequency domain approach is exposed and compared.

  13. A distributed firewall for multimedia applications

    OpenAIRE

    Roedig, Utz; Ackermann, Ralf; Rensing, Christoph; Steinmetz, Ralf

    2000-01-01

    Firewalls are a widely used security mechanism to provide access control and auditing at the border between "open" and private networks or administrative domains. As part of the network infrastructure they are strongly affected by the development and deployment of new communication paradigms and applications. Currently we experience a very fast rise in the use of multimedia applications. These differ in many aspects from "traditional applications", for example concerning bandwidth usage, dyna...

  14. Downhole pulse radar

    Science.gov (United States)

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  15. Recovery of calcium from the effluent of direct oxide reduction process

    International Nuclear Information System (INIS)

    Ferro, P.; Mishra, B.; Olson, D.L.; Moore, J.J.; Averill, W.A.

    1992-01-01

    This paper reports that the production of plutonium by Direct Oxide Reduction [DOR] process using calcium generates significant amount of contaminated waste as calcium oxide saturated calcium chloride salt mix with calcium oxide content of up to 15 wt. pct. Fused salt electrolysis of a simulated slat mix [CaCl 2 + 15 wt. pct. CaO] is being carried out to election calcium, which can be recycled to the DOR rector along with the calcium chloride salt or may be used in-situ in an combined DOR and electrowinning process. The technology will resolve a major contaminated waste disposal problem, besides improving the cost and process efficiency in radioactive metal production. The process is being optimized in terms of the calcium solubility, cell temperature, current density and cell design to maximize the current efficiency. Scattered information is available regarding the solubility of calcium in calcium chloride salt in the present of calcium oxide. The solubility has also been found to depend on the use of graphite as the anode material. A porous ceramic sheath is being used around the anode to prevent the dissolution of electrowon calcium as oxide or carbonate and to prevent the contamination of salt by the anodic carbon. The electrode reactions are affected by the electrolyte composition and its viscosity which varies with time in this process and, therefore, electrochemical impedance is being measured to understand this time-dependent mechanisms

  16. Electrolytic recovery of calcium from molten CaO-CaCl2 salt-mix

    International Nuclear Information System (INIS)

    Mishra, B.; Olson, D.L.

    1993-01-01

    Calciothermic reduction of plutonium oxide is an industrial process for producing plutonium metal. The process is carried out in a molten calcium chloride medium which has a significantly high solubility for calcium oxide. However, the CaO-CaCl 2 salt-mix is radioactively contaminated and can not be discarded as such. Fused salt electrolysis of a simulated mix has been carried out using graphite anode and steel cathode to produce calcium. The dissolved calcium in CaCl 2 salt can be used insitu to reduce plutonium oxide. The primary difficulty in obtaining a cathodic calcium deposit was the use of graphite anose which indirectly controls all the back-reactions in the cell through which the deposited calcium is lost. A porous ceramic sheath has been used to essentially keep the anodic and cathodic products separate. The porosity of the sheath has been optimized by measuring its diffusion coefficient as a function of temperature. The influence of a porous sheath on the cell potential has been also analyzed

  17. Reduction of titanium dioxide and other metal oxides by electro-deoxidation

    International Nuclear Information System (INIS)

    Fray, Derek J.

    2003-01-01

    Titanium dioxide and other reactive metal compounds are reduced by more reactive metals to form pure metals. These, are expensive and time consuming processes which makes these metals very expensive. Many of these metals and alloys have excellent properties, high strength, low density and very good corrosion resistance, but their use is restricted by its high cost. Electro-deoxidation is a very simple technique where an oxide is made cathodic in a fused salt of an alkaline earth chloride. By applying a voltage, below the decomposition potential of the salt, it has been found that the cathodic reaction is the ionization of oxygen from the oxide to leave a pure metal, rather than the reduction of the ion alkaline earth ion element. Laboratory experiments have shown that this approach can be applied to the reduction of a large number of metal oxides. Another important observation is that when a mixture of oxides is used as the cathode, the product is an alloy of uniform composition. This is a considerable advantage for many alloys that are difficult to prepare using conventional technology. (Original)

  18. Contribution to the simultaneous determination of several light elements in alkalin metals by gamma photon and charged particle activation. Application to carbon and nitrogen determination in sodium

    International Nuclear Information System (INIS)

    Bock, Patrice.

    1976-10-01

    A new γ activation method for the simultaneous determination of carbon and nitrogen in sodium is described. It makes use of the nuclear reactions: 12 C(γ,n) 11 C and 14 N(γ,n) 13 N. The process used to separate carbone-11 and nitrogen-13 from sodium with a view to their radio-activity determination is based on vacuum dissolution of the sample in a mixture of oxidizing and acid fused salts. The oxidized carbon is trapped as CO 2 on soda asbestos and the nitrogen as N 2 on molecular sieve at -196 deg C. The efficiency of the technique is estimated by means of tracer tests and by proton activation. The relative influence of competitive nuclear reactions on elements close to the above two impurities, or even on the matrix itself, is examined. The method described has a theoretical detection limit of some 10 -8 g.g -1 for the two elements in question and mean concentrations of 0.3+-0.1x10 -6 g.g -1 carbon and 1.0+-0.5x10 -6 g.g -1 nitrogen have in fact been measured in a batch of 0.5 g sodium samples [fr

  19. Molybdenum carbide coating electrodeposited from molten fluoride bath

    International Nuclear Information System (INIS)

    Topor, D.C.; Selman, J.R.

    1987-01-01

    Molybdenum carbide has been recently considered as a candidate material for the protection of common steel-based substrates in high-temperature high-sulfur activity applications. Methods to produce coatings of materials such as Mo/sub 2/C are scarce and only the electrodeposition from molten salts can yield dense, pore-free layers on various metallic profiles. Recently Stern reported the deposition of a Mo/sub 2/C coating on nickel substrate form, FLINAK + K/sub 2/MoCl/sub 6/ + Na/sub 2/CO/sub 3/ mixture at 850 0 C. Electrodeposition of Mo/sub 2/C on a cathode surface proceeds according to a rather complicated mechanism which may involve simultaneous reduction of carbonate to C, of molybdate to Mo and a subsequent chemical reaction between both species. The deposit grows further as a coherent coating. Reduction of CO/sub 2/ or carbonate to carbon in a fused salt medium could follow different paths but Li/sup +/ ions or other highly polarizing ions must be present. A similar situation in which a polyatomic anion discharges at the cathode is encountered when molybdates are used as source of molybdenum. In fluoride melts the chemistry of Mo(VI) species is considered to be much simpler due to the hard fluoride ions. These ions form strong complexes with molybdenum and the resulting solution is more stable

  20. Solution chemistry of Mo(III) and Mo(IV): Thermodynamic foundation for modeling localized corrosion

    International Nuclear Information System (INIS)

    Wang Peiming; Wilson, Leslie L.; Wesolowski, David J.; Rosenqvist, Joergen; Anderko, Andrzej

    2010-01-01

    To investigate the behavior of molybdenum dissolution products in systems that approximate localized corrosion environments, solubility of Mo(III) in equilibrium with solid MoO 2 has been determined at 80 deg. C as a function of solution acidity, chloride concentration and partial pressure of hydrogen. The measurements indicate a strong increase in solubility with acidity and chloride concentration and a weak effect of hydrogen partial pressure. The obtained results have been combined with literature data for systems containing Mo(III), Mo(IV), and Mo(VI) in solutions to develop a comprehensive thermodynamic model of aqueous molybdenum chemistry. The model is based on a previously developed framework for simulating the properties of electrolyte systems ranging from infinite dilution to solid saturation or fused salt limit. To reproduce the measurements, the model assumes the presence of a chloride complex of Mo(III) (i.e., MoCl 2+ ) and hydrolyzed species (MoOH 2+ , Mo(OH) 2 + , and Mo(OH) 3 0 ) in addition to the Mo 3+ ion. The model generally reproduces the experimental data within experimental scattering and provides a tool for predicting the phase behavior and speciation in complex, concentrated aqueous solutions. Thus, it provides a foundation for simulating the behavior of molybdenum species in localized corrosion environments.

  1. Symposium on the reprocessing of irradiated fuels. Book 2, Session IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    1958-12-31

    Book two of this conference has a single-focused session IV entitled Nonaqueous Processing, with 8 papers. The session deals with fluoride volatility processes and pyrometallurgical or pyrochemical processes. The latter involves either an oxide drossing or molten metal extraction or fused salt extraction technique and results in only partial decontamination. Fluoride volatility processes appear to be especially favorable for recovery of enriched uranium and decontamination factors of 10/sup 7/ to 10/sup 8/ would be achieved by simpler means than those employed in solvent extraction. Data from lab research on the BrF/sub 3/ process and the ClF/sub 3/ process are given and discussed and pilot plant experience is described, all in connection with natural uranium or slightly enriched uranium processing. Fluoride volatility processes for enriched or high alloy fuels are described step by step. The economic and engineering considerations of both types of nonaqueous processing are treated separately and as fully as present knowledge allows. A comprehensive review of the chemistry of pyrometallurgical processes is included.

  2. Chemistry and technology of Molten Salt Reactors - history and perspectives

    International Nuclear Information System (INIS)

    Uhlir, Jan

    2007-01-01

    Molten Salt Reactors represent one of promising future nuclear reactor concept included also in the Generation IV reactors family. This reactor type is distinguished by an extraordinarily close connection between the reactor physics and chemical technology, which is given by the specific features of the chemical form of fuel, representing by molten fluoride salt and circulating through the reactor core and also by the requirements of continuous 'on-line' reprocessing of the spent fuel. The history of Molten Salt Reactors reaches the period of fifties and sixties, when the first experimental Molten Salt Reactors were constructed and tested in ORNL (US). Several molten salt techniques dedicated to fresh molten salt fuel processing and spent fuel reprocessing were studied and developed in those days. Today, after nearly thirty years of discontinuance, a renewed interest in the Molten Salt Reactor technology is observed. Current experimental R and D activities in the area of Molten Salt Reactor technology are realized by a relatively small number of research institutions mainly in the EU, Russia and USA. The main effort is directed primarily to the development of separation processes suitable for the molten salt fuel processing and reprocessing technology. The techniques under development are molten salt/liquid metal extraction processes, electrochemical separation processes from the molten salt media, fused salt volatilization techniques and gas extraction from the molten salt medium

  3. Study of the coefficient of separation for some processes which are applied to lithium isotopes; Etude du coefficient de separation de quelques processus concernant les isotopes du lithium

    Energy Technology Data Exchange (ETDEWEB)

    Perret, L.; Rozand, L.; Saito, E. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The fundamental separation factors of some processes are investigated: the distillation of metallic lithium, counter current electromigration in fused salts (particularly in lithium nitrate) electrolysis in aqueous solution and ion exchange. The chemical transfer between a lithium amalgam and lithium salts in a dimethylformamide solution (a solvent which is not attacked by the amalgam) is also studied. Finally a description is given of isotopic analyses carried out either by scintillation counting or by mass spectrography using apparatus specially designed for this particular task. (author) [French] Les facteurs de separation elementaires de quelques processus connus sont etudies: distillation du lithium metallique, electromigration a contre-courant en sels fondus (en particulier le nitrate), electrolyse en solution aqueuse et echange d'ions. L'echange chimique entre l'amalgame de lithium et les sels de lithium en solution dans la dimethylformamide - solvant non attaque par l'amalgame - est egalement etudie. Enfin, on decrit les methodes d 'analyse isotopique, soit par comptage par scintillation, soit par spectrometrie de masse au moyen d'un appareil specialement concu pour cet usage particulier. (auteur)

  4. Phase Behavior of Aqueous NA-K-MG-CA-CI-NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling

    Energy Technology Data Exchange (ETDEWEB)

    M.S. Gruszkiewiez; D.A. Palmer; R.D. Springer; P. Wang; A. Anderko

    2006-09-14

    A comprehensive model has been established for calculating thermodynamic properties of multicomponent aqueous systems containing the Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup -}, and NO{sub 3}{sup -} ions. The thermodynamic framework is based on a previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 C and concentrations ranging from infinite dilution to the fused salt limit. The model has been parameterized using a combination of an extensive literature database and new isopiestic measurements for thirteen salt mixtures at 140 C. The measurements have been performed using Oak Ridge National Laboratory's (ORNL) previously designed gravimetric isopiestic apparatus, which makes it possible to detect solid phase precipitation. Water activities are reported for mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system, i.e., the activity of water as a function of solution concentration and the occurrence of solid-liquid transitions. The thermodynamic model accurately reproduces the new isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Because of its high accuracy in calculating vapor-liquid and solid-liquid equilibria, the model is suitable for studying deliquescence behavior of multicomponent salt systems.

  5. The determination of UO2 and UF4 in fused fluoride salts

    International Nuclear Information System (INIS)

    Batiste, D.J.; Lee, D.A.

    1989-01-01

    The determination of uranium oxide solubilities in fused fluoride salts is important in the electrolytic preparation of uranium metal. This project was initiated to develop a method for the determination of UO 2 separately from UF 4 in UF 4 -CaF 2 -LiF fused salts. Previous methods used for the determination of UO 2 in fused fluoride salts involved inert gas fusions where oxygen was liberated as CO 2 , and hydrofluorination where oxygen was released as H 2 O; but the special equipment used for these procedures was no longer available. These methods assumed that all of the oxygen liberated was due to UO 2 and does not consider impurities from reagents and other oxygen sources that amount to a bias of approximately 0.3 wt %. This titrimetric method eliminates the bias by selectively extracting the UF 4 with a Na 2 EDTA-H 3 BO 3 solution. The remaining uranium oxide residue is treated and titrated gravimetrically to a potentiometric endpoint with NBS standard K 2 Cr 2 O 7 . An aliquot of the Na 2 EDTA-H 3 BO 3 extract is also titrated gravimetrically to a potentiometric endpoint, this uranium component is determined and calculated as UF 4 . 4 refs., 2 figs., 2 tabs

  6. Study of the coefficient of separation for some processes which are applied to lithium isotopes; Etude du coefficient de separation de quelques processus concernant les isotopes du lithium

    Energy Technology Data Exchange (ETDEWEB)

    Perret, L; Rozand, L; Saito, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The fundamental separation factors of some processes are investigated: the distillation of metallic lithium, counter current electromigration in fused salts (particularly in lithium nitrate) electrolysis in aqueous solution and ion exchange. The chemical transfer between a lithium amalgam and lithium salts in a dimethylformamide solution (a solvent which is not attacked by the amalgam) is also studied. Finally a description is given of isotopic analyses carried out either by scintillation counting or by mass spectrography using apparatus specially designed for this particular task. (author) [French] Les facteurs de separation elementaires de quelques processus connus sont etudies: distillation du lithium metallique, electromigration a contre-courant en sels fondus (en particulier le nitrate), electrolyse en solution aqueuse et echange d'ions. L'echange chimique entre l'amalgame de lithium et les sels de lithium en solution dans la dimethylformamide - solvant non attaque par l'amalgame - est egalement etudie. Enfin, on decrit les methodes d 'analyse isotopique, soit par comptage par scintillation, soit par spectrometrie de masse au moyen d'un appareil specialement concu pour cet usage particulier. (auteur)

  7. Molten salts in nuclear reactors; Les sels fondus dans les reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Dirian, J; Saint-James, [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    Collection of references dealing with the physicochemical studies of fused salts, in particular the alkali and alkali earth halides. Numerous binary, ternary and quaternary systems of these halides with those of uranium and thorium are examined, and the physical properties, density, viscosity, vapour pressure etc... going from the halides to the mixtures are also considered. References relating to the corrosion of materials by these salts are included and the treatment of the salts with a view to recuperation after irradiation in a nuclear reactor is discussed. (author) [French] Bibliographie regroupant l'etude physico-chimique des sels fondus, en particulier des halogenures alcalins et alcalino-terreux. On etudie de nombreux systemes binaires, ternaires et quaternaires de ces halogenures avec des halogenures d'uranium, et de thorium. On etudie egalement les proprietes physiques des halogenures ou des melanges d'halogenures (densite, viscosite, tension de vapeur, etc...). On donne egalement des references quant a la corrosion des materiaux par ces sels, et le traitement de ceux-ci en vue de recuperation, apres irradiation dans un reacteur nucleaire. (auteur)

  8. Phase Stability Diagrams for High Temperature Corrosion Processes

    Directory of Open Access Journals (Sweden)

    J. J. Ramos-Hernandez

    2013-01-01

    Full Text Available Corrosion phenomena of metals by fused salts depend on chemical composition of the melt and environmental conditions of the system. Detail knowledge of chemistry and thermodynamic of aggressive species formed during the corrosion process is essential for a better understanding of materials degradation exposed to high temperature. When there is a lack of kinetic data for the corrosion processes, an alternative to understand the thermodynamic behavior of chemical species is to utilize phase stability diagrams. Nowadays, there are several specialized software programs to calculate phase stability diagrams. These programs are based on thermodynamics of chemical reactions. Using a thermodynamic data base allows the calculation of different types of phase diagrams. However, sometimes it is difficult to have access to such data bases. In this work, an alternative way to calculate phase stability diagrams is presented. The work is exemplified in the Na-V-S-O and Al-Na-V-S-O systems. This system was chosen because vanadium salts is one of the more aggressive system for all engineering alloys, especially in those processes where fossil fuels are used.

  9. Symposium on the reprocessing of irradiated fuels. Book 2, Session IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    1959-12-31

    Book two of this conference has a single-focused session IV entitled Nonaqueous Processing, with 8 papers. The session deals with fluoride volatility processes and pyrometallurgical or pyrochemical processes. The latter involves either an oxide drossing or molten metal extraction or fused salt extraction technique and results in only partial decontamination. Fluoride volatility processes appear to be especially favorable for recovery of enriched uranium and decontamination factors of 10/sup 7/ to 10/sup 8/ would be achieved by simpler means than those employed in solvent extraction. Data from lab research on the BrF/sub 3/ process and the ClF/sub 3/ process are given and discussed and pilot plant experience is described, all in connection with natural uranium or slightly enriched uranium processing. Fluoride volatility processes for enriched or high alloy fuels are described step by step. The economic and engineering considerations of both types of nonaqueous processing are treated separately and as fully as present knowledge allows. A comprehensive review of the chemistry of pyrometallurgical processes is included.

  10. NOEL: a no-leak fusion blanket concept

    International Nuclear Information System (INIS)

    Powell, J.R.; Yu, W.S.; Fillo, J.A.; Horn, F.L.; Makowitz, H.

    1980-01-01

    Analysis and tests of a no-leak fusion blanket concept (NOEL-NO External Leak) are described. Coolant cannot leak into the plasma chamber even if large through-cracks develop in the first wall. Blanket modules contain a two-phase material, A, that is solid (several cm thick) on the inside of the module shell, and liquid in the interior. The solid layer is maintained by imbedded tubes carrying a coolant, B, below the freezing point of A. Most of the 14-MeV neutron energy is deposited as heat in the module interior. The thermal energy flow from the module interior to the shell keeps the interior liquid. Pressure on the liquid A interior is greater than the pressure on B, so that B cannot leak out if failures occur in coolant tubes. Liquid A cannot leak into the plasma chamber through first wall cracks because of the intervening frozen layer. The thermal hydraulics and neutronics of NOEL blankets have been investigated for various metallic (e.g., Li, Pb 2 , LiPb, Pb) and fused salt choices for material A

  11. Thermodynamics of aqueous electrolytes at various temperatures, pressures, and compositions. [Virial coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Pitzer, K.S.

    1979-09-01

    It is shown that the properties of fully ionized aqueous electrolyte systems can be represented by relatively simple equations over wide ranges of composition. There are only a few systems for which data are available over the full range to fused salt. A simple equation commonly used for nonelectrolytes fits the measured vapor pressure of water reasonably well and further refinements are clearly possible. Over the somewhat more limited composition range up to saturation of typical salts such as NaCl, the equations representing thermodynamic properties with a Debye-Hueckel term plus second and third virial coefficients are very successful and these coefficients are known for nearly 300 electrolytes at room temperature. These same equations effectively predict the properties of mixed electrolytes. A stringent test is offered by the calculation of all of the solubility relationships of the system Na-K-Mg-Ca-Cl-So{sub 4}-H{sub 2}0 and the calculated results of Harvie and Weare show excellent agreement with

  12. Pyroprocessing of IFR Metal Fuel

    International Nuclear Information System (INIS)

    Laidler, J.J.

    1993-01-01

    The Integral Fast Reactor (IFR) fuel cycle features the use of an innovative reprocessing method, known as open-quotes pyroprocessingclose quotes featuring fused-salt electrofining of the spent fuel. Electrofining of IFR spent fuel involves uranium recovery by electro-transport to a solid steel cathode. The thermodynamics of the system preclude plutonium recovery in the same way, so a liquid cadmium cathode located in the electrolyte salt phase is utilized. The deposition of Pu, Am, Np, and Cm takes place at the liquid cadmium cathode in the form of cadmium intermetallic compounds (e.g, PuCd 6 ), and uranium deposits as the pure metal when cadmium saturation is reached. A small amount of rare earth fission products deposit together with the heavy metals at both the solid and liquid cadmium cathodes, providing a significant degree of self-protection. A full scope demonstration of the IFR fuel cycle will begin in 1993, using fuel irradiated in EBR-II

  13. Crystal Structure and Properties of Imidazo-Pyridine Ionic Liquids.

    Science.gov (United States)

    Farren-Dai, Marco; Cameron, Stanley; Johnson, Michel B; Ghandi, Khashayar

    2018-07-05

    Computational studies were performed on novel protic ionic liquids imidazolium-[1,2-a]-pyridine trifluoroacetate [ImPr][TFA] synthesized by the reaction of imidazo-[1,2a]-pyridine (ImPr) with trifluoroacetic acid (TFA), and on fused salt imidazolium-[1,2-a]-pyridine maleamic carbonate [ImPr][Mal] synthesized by reaction of ImPr with maleamic acid (Mal). Synthesis was performed as one-pot reactions, which applies green chemistry tenets. Both these compounds begin to decompose at 180°C. Our computational studies suggest another thermal reaction channel, in which [ImPr][Mal] can also thermally polymerizes to polyacrylamide which then cyclizes. This is thermal product remains stable up to 700 degrees, consistent with our thermogravimetric studies. [ImPr][TFA] exhibited good conductivity and ideal ionic behavior, as evaluated by a Walden plot. X-ray crystallography of [ImPr][TFA] revealed a tightly packed system for the crystals as a result of strong ionic interaction, pi-stacking, and fluorine-CH interactions. Both synthesized compounds exhibited some CO 2 absorptivity, with [ImPr][Mal] outperforming [ImPr][TFA] in this regard. The quantum chemistry based computational methods can shed light on many properties of these ionic liquids, but they are challenged in fully describing their ionic nature. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Evaluation of process alternatives for solidification of the West Valley high-level liquid wastes

    International Nuclear Information System (INIS)

    Holton, L.K.; Larson, D.E.

    1982-01-01

    The Department of Energy (DOE) established the West Valley Solidification Project (WVSP) in 1980. The project purpose is to demonstrate removal and solidification of the high-level liquid wastes (HLLW) presently stored in tanks at the Western New York Nuclear Service Center (WNYNSC), West Valley, New York. As part of this effort, the Pacific Northwest Laboratory (PNL) conducted a study to evaluate process alternatives for solidifcation of the WNYNSC wastes. Two process approaches for waste handling before solidification, together with solidification processes for four terminal and four interim waste forms, were considered. The first waste-handling approach, designated the salt/sludge separation process, involves separating the bulk of the nonradioactive nuclear waste constituents from the radioactive waste constituents, and the second waste-handling approach, designated the combined-waste process, involves no waste segregation prior to solidification. The processes were evaluated on the bases of their (1) readiness for plant startup by 1987, (2) relative technical merits, and (3) process cost. The study has shown that, based on these criteria, the salt/sludge separation process with a borosilicate glass waste form is preferred when producing a terminal waste form. It was also concluded that if an interim waste form is to be used, the preferred approach would be the combined waste process with a fused-salt waste form

  15. New experimental possibilities for the study of the molecular structure and the dynamics of liquids

    International Nuclear Information System (INIS)

    Versmold, H.

    1981-01-01

    The general space-time-pair distribution function G(Rsub(A)(0), Ωsub(A)(0), Rsub(B)(t), Ωsub(B)(t) plays an important role for the theoretical description of liquids. In this report first the relationship between the space-time-pair distribution function and static pair distribution functions, which characterize the liquid structure, and time correlation functions, which can be used to comprehend the dynamics of liquids, will be introduced. As an experimental method, which is particularly suited to determine the static pair distribution function, coherent neutron scattering is discussed. The power of this method for the determination of the liquid structure is demonstrated by considering the examples of a fused salt and a molecular liquid. For investigations of the dynamics of liquids incoherent neutron scattering and several spectroscopic experiments have been in use during the last few years. The relationship between these experiments and time correlation functions is presented. A discussion concerning the possibility to study translational and rotational dynamics by incoherent neutron scattering follows. Finally, by referring to a depolarized Rayleigh experiment, the relationship between spectroscopic experiments and orientational correlation functions, which describe the reorientational dynamics in liquids, is illustrated. (orig.)

  16. Concentration of remote-handled, transuranic, sodium nitrate-based sludge using agitated thin-film evaporators

    International Nuclear Information System (INIS)

    Walker, J.F. Jr.; Youngblood, E.L.; Berry, J.B.; Pen, Ben-Li

    1991-01-01

    The Waste Handling and Packaging Plant (WHPP) is being designed at Oak Ridge National Laboratory (ORNL) to prepared transuranic waste for final disposal. Once operational, this facility will process, package, and certify remote-handled transuranic waste for ultimate shipment and disposal at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. One of the wastes that will be handled at WHIPP is the transuranic sludge currently stored at ORNL in eight 50,000-gal underground tanks. The use of an Agitated Thin-Film Evaporator (ATFE) for concentration of this waste is being investigated. Tests have shown that the ATFE can be used to produce a thick slurry, a powder, or a fused salt. A computer model developed at the Savannah River Plant (SRP) to simulate the operation of ATFE's on their waste is being modified for use on the ORNL transuranic sludge. This paper summarizes the results of the test with the ATFEs to date, discusses the changes in the SRP model necessary to use this model with the ORNL waste, and compares the results of the model with the actual data taken from the operation of ATFEs at vendors' test facilities. 8 refs., 1 fig., 3 tabs

  17. Subnanosecond-rise-time, low-impedance pulse generator

    International Nuclear Information System (INIS)

    Druce, R.; Vogtlin, G.

    1983-01-01

    This paper describes a fast rise, low-impedance pulse generator that has been developed at the Lawrence Livermore National Laboratory. The design specifications of this generator are: 50-kV operating voltage, 1-ohm output impedance, subnanosecond rise time, and a 2 to 10 nanosecond pulse length. High repetition rate is not required. The design chosen is a parallel-plate, folded Blumlein generator. A tack switch is utilized for its simple construction and high performance. The primary diagnostic is a capacitive voltage divider with a B probe used to measure the current waveform

  18. Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: fast imaging and spectroscopic measurements of electric field.

    Science.gov (United States)

    Liu, Chong; Dobrynin, Danil; Fridman, Alexander

    2014-06-25

    In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge.

  19. Compact field programmable gate array-based pulse-sequencer and radio-frequency generator for experiments with trapped atoms

    Energy Technology Data Exchange (ETDEWEB)

    Pruttivarasin, Thaned, E-mail: thaned.pruttivarasin@riken.jp [Quantum Metrology Laboratory, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Katori, Hidetoshi [Quantum Metrology Laboratory, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Innovative Space-Time Project, ERATO, JST, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-11-15

    We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.

  20. Notes on Laser Acceleration

    International Nuclear Information System (INIS)

    Tajima, T.

    2008-01-01

    This note intends to motivate our effort toward the advent of new methods of particle acceleration, utilizing the fast rising laser technology. By illustrating the underlying principles in an intuitive manner and thus less jargon-clad fashion, we seek a direction in which we shall be able to properly control and harness the promise of laser acceleration. First we review the idea behind the laser wakefield. We then go on to examine ion acceleration by laser. We examine the sheath acceleration in particular and look for the future direction that allows orderly acceleration of ions in high energies

  1. Beam emittance and output waveforms of high-flux laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, M.; Asahina, M.; Horioka, K. [Tokyo Inst. of Technology, Dept. of Energy Sciences, Yokohama, Kanagawa (Japan); Yoshida, M.; Hasegawa, J.; Ogawa, M. [Tokyo Inst. of Technology, Research Laboratory for Nuclear Reactors, Tokyo (Japan)

    2002-06-01

    A laser ion source with short drift distance has been developed for a driver of heavy ion fusion (HIF). It supplies a copper ion beam of 200 mA (255 mA/cm{sup 2}) with duration of 400 ns and beam emittance is about 0.8{pi} mm{center_dot}mrad. Moreover it has fast rising (30 ns), flat-top current waveform and a potential to deliver pure charge states between 1{sup +} - 3{sup +}. Experimental results indicate that the laser ion source is a good candidate for the HIF driver. (author)

  2. Subnanosecond-rise-time, low-impedance pulse generator

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.; Vogtlin, G.

    1983-06-03

    This paper describes a fast rise, low-impedance pulse generator that has been developed at the Lawrence Livermore National Laboratory. The design specifications of this generator are: 50-kV operating voltage, 1-ohm output impedance, subnanosecond rise time, and a 2 to 10 nanosecond pulse length. High repetition rate is not required. The design chosen is a parallel-plate, folded Blumlein generator. A tack switch is utilized for its simple construction and high performance. The primary diagnostic is a capacitive voltage divider with a B probe used to measure the current waveform.

  3. Subnanosecond-rise-time, low-impedance pulse generator

    Science.gov (United States)

    Druce, R.; Vigtlin, G.

    1983-06-01

    A fast rise, low impedance pulse generator developed at the Lawrence Livermore National Laboratory is described. The design specifications of this generator are: 50-kV operating voltage, 1-ohm output impedance, subnanosecond rise time, and a 2 to 10 nanosecond pulse length. High repetition rate is not required. The design chosen is a parallel plate, folded Blumlein generator. A tack switch is utilized for its simple construction and high performance. The primary diagnostic is a capacitive voltage divider with a B probe used to measure the current waveform.

  4. PULSE SYNTHESIZING GENERATOR

    Science.gov (United States)

    Kerns, Q.A.

    1963-08-01

    >An electronlc circuit for synthesizing electrical current pulses having very fast rise times includes several sinewave generators tuned to progressively higher harmonic frequencies with signal amplitudes and phases selectable according to the Fourier series of the waveform that is to be synthesized. Phase control is provided by periodically triggering the generators at precisely controlled times. The outputs of the generators are combined in a coaxial transmission line. Any frequency-dependent delays that occur in the transmission line can be readily compensated for so that the desired signal wave shape is obtained at the output of the line. (AEC)

  5. Performance and reliability of TPE-2 device with pulsed high power source

    International Nuclear Information System (INIS)

    Sato, Y.; Takeda, S.; Kiyama, S.

    1987-01-01

    The performance and the reliability of TPE-2 device with pulsed high power sources are described. To obtain the stable high beta plasma, the reproducibility and the reliability of the pulsed power sources must be maintained. A new power crowbar system with high efficiency and the switches with low jitter time are adopted to the bank system. A monitor system which always watches the operational states of the switches is developed too, and applied for the fast rising capacitor banks of TPE-2 device. The reliable operation for the bank has been realized, based on the data of switch monitor system

  6. Laser heating and magnetic compression of plasma in a fast solenoid

    International Nuclear Information System (INIS)

    Hoida, H.W.; Vlases, G.C.

    1978-01-01

    A low-β plasma column a few mm in diameter by 22 cm in length is heated by an axially directed CO 2 laser to a high-β state in a fast rising solenoidal field. Successful heating depends on proper timing between the laser pulse and rising field. Typical conditions attained are a line energy density of 6 J/cm, T-barapprox. =40 eV, and n/sub e/approx. =3 x 10 17 e - /cm 3 , with conditions quite uniform along the length. The heating suppresses instabilities which appear under certain conditions in the non-laser-heated case

  7. Engineering aspects of radiometric logging

    International Nuclear Information System (INIS)

    Huppert, P.

    1982-01-01

    Engineering problems encountered in the development of nuclear borehole logging techniques are discussed. Spectrometric techniques require electronic stability of the equipment. In addition the electronics must be capable of handling high count rates of randomly distributed pulses of fast rise time from the detector and the systems must be designed so that precise calibration is possible under field operating conditions. Components of a logging system are discussed in detail. They include the logging probe (electronics, detector, high voltage supply, preamplifier), electronic instrumentation for data collection and processing and auxiliary equipment

  8. IMITATING MODEL OF ASSIMILATION AND FORGETTING OF THE LOGICALLY CONNECTED INFORMATION

    Directory of Open Access Journals (Sweden)

    Robert Valerievich Mayer

    2017-09-01

    Full Text Available The educational material we present as a set of a number of information blocks consisting of learning material elements (LMEs; therefore its assimilation and forgetting occurs differently, than in the Ebbinghaus’s experiments. The purpose of the article is constructing of a computer model of assimilation and forgetting of the logically connected information allowing: 1 to prove the fast rise of understanding while training; 2 to receive the forgetting curve for the comprehended information. The modeling methods help to receive the graphs of the knowledge level dependence on time. It is shown, that the processes of assimilation and forgetting occurs according to the logistic law.

  9. Development of a beam current monitor by using an amorphous magnetic core

    International Nuclear Information System (INIS)

    Kobayashi, T.; Ueda, T.; Yoshida, Y.; Miya, K.; Tagawa, S.; Kobayashi, H.

    1993-01-01

    The high performance amorphous magnetic core monitor (ACM) for the measurement of electron beam currents has been developed. This monitor is composed of an amorphous magnetic core, radiation shields, a winding, magnetic absorbers, a ceramic vacuum duct and a SMA connecter. The ACM showed the very fast rise and fall times (< 1 ns), the high sensitivity (5 V/A at 50 Ω load), the good linearity, and good S/N ratio due to the high permeability of the amorphous magnetic core. The monitor works as a primary transformer. The time-response was simulated by an electric circuit analysis code. (orig.)

  10. Remediation of water and wastewater by using engineered nanomaterials: A review.

    Science.gov (United States)

    Bishoge, Obadia K; Zhang, Lingling; Suntu, Shaldon L; Jin, Hui; Zewde, Abraham A; Qi, Zhongwei

    2018-05-12

    Nanotechnology is currently a fast-rising socioeconomic and political knowledge-based technology owing to the unique characteristics of its engineered nanomaterials. This branch of technology is useful for water and wastewater remediation. Many scientists and researchers have been conducting different studies and experiments on the applications of engineered nanomaterials at the local to international level. This review mainly aims to provide a current overview of existing knowledge on engineered nanomaterials and their applications in water and wastewater remediation. Furthermore, the present risks and challenges of nanotechnology are examined.

  11. A compact nanosecond pulse generator for DBD tube characterization

    Science.gov (United States)

    Rai, S. K.; Dhakar, A. K.; Pal, U. N.

    2018-03-01

    High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.

  12. Identifying the Academic Rising Stars via Pairwise Citation Increment Ranking

    KAUST Repository

    Zhang, Chuxu

    2017-08-02

    Predicting the fast-rising young researchers (the Academic Rising Stars) in the future provides useful guidance to the research community, e.g., offering competitive candidates to university for young faculty hiring as they are expected to have success academic careers. In this work, given a set of young researchers who have published the first first-author paper recently, we solve the problem of how to effectively predict the top k% researchers who achieve the highest citation increment in Δt years. We explore a series of factors that can drive an author to be fast-rising and design a novel pairwise citation increment ranking (PCIR) method that leverages those factors to predict the academic rising stars. Experimental results on the large ArnetMiner dataset with over 1.7 million authors demonstrate the effectiveness of PCIR. Specifically, it outperforms all given benchmark methods, with over 8% average improvement. Further analysis demonstrates that temporal features are the best indicators for rising stars prediction, while venue features are less relevant.

  13. Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Steven; Rapp, Robert

    2014-08-31

    coal-fired boilers resulting from the coexistence of sulfur and chlorine in the fuel. A new corrosion mechanism, i.e., “Active Sulfidation Corrosion Mechanism,” has been proposed to account for the accelerated corrosion wastage observed on the furnace walls of utility boilers burning coals containing sulfur and chlorine. In addition, a second corrosion mechanism, i.e., “Active Sulfide-to-Oxide Corrosion Mechanism,” has been identified to account for the rapid corrosion attack on superheaters and reheaters. Both of the newly discovered corrosion mechanisms involve the formation of iron chloride (FeCl2) vapor from iron sulfide (FeS) and HCl, followed by the decomposition of FeCl2 via self-sustaining cycling reactions. For higher alloys containing sufficient chromium, the attack on superheaters and reheaters is dominated by Hot Corrosion in the presence of a fused salt. Furthermore, two stages of the hot corrosion mechanism have been identified and characterized in detail. The initiation of hot corrosion attack induced by molten sulfate leads to Stage 1 “acidic” fluxing and re-precipitation of the protective scale formed initially on the deposit-covered alloy surfaces. Once the protective scale is penetrated, Stage 2 Hot Corrosion is initiated, which is dominated by “basic” fluxing and re-precipitation of the scale in the fused salt. Based on the extensive corrosion information generated from this project, corrosion modeling was performed using non-linear regression analysis. As a result of the modeling efforts, two predictive equations have been formulated, one for furnace walls and the other for superheaters and reheaters. These first-of-the-kind equations can be used to estimate the corrosion rates of boiler tubes based on coal chemistry, alloy compositions, and boiler operating conditions for advanced boiler systems.

  14. Processing of effluent salt from the direct oxide reduction process

    International Nuclear Information System (INIS)

    Mishra, B.; Olson, D.L.

    1992-01-01

    The production of reactive metals by Direct Oxide Reduction (DOR) process using calcium in a molten calcium salt system generates significant amount of contaminated waste as calcium oxide saturated calcium chloride salt mix with calcium oxide content of up to 15 wt. pct. Fused salt electrolysis of a simulated salt mix has been carried out to electrowin calcium, which can be recycled to the DOR reactor along with the calcium chloride salt or may be used in-situ in a combined DOR and electrowinning process. Many reactive metal oxides could thus be reduced in a one-step process without generating a significant amount of waste. The process has been optimized in terms of the calcium solubility, cell temperature, current density and the cell design to maximize the current efficiency. Based on the information available regarding the solubility of calcium in calcium chloride salt in the presence of calcium oxide, and the back reactions occurring in-situ between the electrowon calcium and other components present in the cell, e.g. carbon, oxygen, carbon dioxide and calcium oxide, it is difficult to recover elemental calcium within the system. However, a liquid cathode or a rising cathode has been used in the past to recover calcium. The solubility has also been found to depend on the use of graphite as the anode material as evidenced by the presence of calcium carbonate in the final salt. The rate of recovery for metallic calcium has to be enhanced to levels that overcome the back reactions in a system where quick removal of anodic gases is achieved. Calcium has been detected by the hydrogen evolution technique and the amount of calcia has been determined by titration. A porous ceramic sheath has been used in the cell to prevent the chemical reaction of electrowon calcium to produce oxide or carbonate and to prevent the contamination of salt by the anodic carbon

  15. The precious metal effect in high temperature corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Wit, J.H.W. de (Lab. for Materials Science, Delft Univ. of Technology (Netherlands)); Manen, P.A. van (Lab. for Materials Science, Delft Univ. of Technology (Netherlands))

    1994-01-01

    Additions of platinum and to a smaller extent rhodium, to aluminium oxide forming alloys are known to improve the high temperature corrosion resistance of the alloys. This effect is known as the ''precious metal effect''. The expensive Pt-additions are used because of the increased lifetime of turbine-vanes especially in marine environments. Only a limited number of coating systems is commercially available, as JML-1, LDC-2 and RT22. Normally Pt is deposited electrochemically or by a fused salt method. After deposition the high or low activity pack-cementation-process is applied to obtain a PtNiAl-coating. In this paper the effect of platinum on the oxidation mechanism is discussed by comparing the oxidation mechanism of [beta]-NiAl and Pt20Ni30Al50. This composition agrees with the average composition of a platinum modified aluminide coating. The alloys were oxidized at temperatures from 1000 to 1200 C. The growth of the oxide scale on the NiAl alloy proceeds both by aluminium and by oxygen diffusion through the scale resulting in growth within the scale. On Pt20Ni30Al50 the growth of the scale is limited to the oxide/gas interface due to a predominant aluminium transport through the scale. The morphology of the oxide scales did not show large differences. However, the extensive void formation at the [beta]-NiAl/oxide interface was not observed on the Pt20Ni30Al50 samples. The absence of voids at the interface and the reduction of growth stresses, as a result of the outward growth of the scale, are the two likely reasons for the improved oxide scale adherence and can thus be considered, to be two elements of the ''precious metal effect''. (orig.)

  16. Dry boxes and inert atmosphere techniques

    International Nuclear Information System (INIS)

    Bartak, D.E.

    1987-01-01

    Practitioners need to conduct experiments with molten salts in an inert atmosphere owing to the chemical reactivity of these media. Most fused salt solvent systems show reactivity to water and/or oxygen, which results in significant chemical changes in the properties of these solvents. Although several studies on the nature of an oxygen/oxide electrode in this melt have been reported, the reactions have not been fully understood because of apparent water contamination in many cases. Nitrate melt systems are also hygroscopic; for example, the LiNO 3 -KNO 3 eutectic (177 0 C) absorbs water to at least 0.2% by weight. The result is that the electrochemistry of heavier, electropositive metal ions has been significantly altered. In addition, trace amounts of water have been shown to significantly affect the oxygen-oxide redox chemistry in NaNO 3 -KNO 3 melts (250 0 C). The haloaluminates, which include AlCl 3 -NaCl (175 0 C), as well as AlCl 3 -organic salt binaries are particularly sensitive to the presence of both oxygen and moisture. Oxygen is a strong oxidant in the fused hydroxide systems with formation of superoxide ion from either oxide or water. This chapter describes general, inert atmosphere techniques which can be used by the molten salt experimentalist. Because of the limitations of volatility, vacuum manipulations are not considered. Rather, the use of glove boxes, glove bags, and inert bench-top techniques are discussed. The areas covered are: glove box and bag equipment, operation and maintenance of glove boxes and glove bags, and common operations conducted inside glove boxes

  17. IFR fuel cycle--pyroprocess development

    International Nuclear Information System (INIS)

    Laidler, J.J.; Miller, W.E.; Johnson, T.R.; Ackerman, J.P.; Battles, J.E.

    1992-01-01

    The Integral Fast Reactor (IFR) fuel cycle is based on the use of a metallic fuel alloy, with nominal composition U-2OPu-lOZr. In its present state of development, this fuel system offers excellent high-burnup capabilities. Test fuel has been carried to burnups in excess of 20 atom % in EBR-II irradiations, and to peak burnups over 15 atom % in FFTF. The metallic fuel possesses physical characteristics, in particular very high thermal conductivity, that facilitate a high degree of passive inherent safety in the IFR design. The fuel has been shown to provide very large margins to failure in overpower transient events. Rapid overpower transient tests carried out in the TREAT reactor have shown the capability to withstand up to 400% overpower conditions before failing. An operational transient test conducted in EBR-II at a power ramp rate of 0.1% per second reached its termination point of 130% of normal power without any fuel failures. The IFR metallic fuel also exhibits superior compatibility with the liquid sodium coolant. Equally as important as the performance advantages offered by the use of metallic fuel is the fact that this fuel system permits the use of an innovative reprocessing method, known as ''pyroprocessing,'' featuring fused-salt electrorefining of the spent fuel. Development of the IFR pyroprocess has been underway at the Argonne National Laboratory for over five years, and great progress has been made toward establishing a commercially-viable process. Pyroprocessing offers a simple, compact means for closure of the fuel cycle, with anticipated significant savings in fuel cycle costs

  18. Pyrometallurgical processes for recovery of actinide elements

    International Nuclear Information System (INIS)

    Battles, J.E.; Laidler, J.J.; McPheeters, C.C.; Miller, W.E.

    1994-01-01

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository

  19. Pyrometallurgical processes for recovery of actinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Laidler, J.J.; McPheeters, C.C.; Miller, W.E.

    1994-01-01

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository.

  20. Bipolar pulse generator for intense pulsed ion beam accelerator

    International Nuclear Information System (INIS)

    Ito, H.; Igawa, K.; Kitamura, I.; Masugata, K.

    2007-01-01

    A new type of pulsed ion beam accelerator named ''bipolar pulse accelerator'' (BPA) has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator for the bipolar pulse experiment, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the first experimental result of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PFL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time

  1. Generation and amplification of nanaosecond duration multiline hf laser pulses

    International Nuclear Information System (INIS)

    Getzinger, R.L.; Ware, K.D.; Carpenter, J.P.

    1976-01-01

    High-power, fast-rising pulses of hydrogen fluoride laser energy suitable for laser-fusion target interaction experiments can in principle be generated by directing an electro-optically shuttered oscillator pulse through one or more electron-beam driven amplifiers. A three-stage HF master oscillator-power amplifier (MOPA) configuration was constructed and tested using SF 6 -C 2 H 6 in which an E-O generated 4-ns-FWHM pulse was amplified in an electron-beam-excited third stage and subsequently isolated with a Brewster angle splitter. Independent experiments in which a 100-ns-FWHM pilot pulse interacted with the power amplifier demonstrated for the first time complete extraction of the available laser energy. These two results provide strong evidence that with upgrading to H 2 -F 2 , it should be possible to obtain nanosecond duration pulses with power levels sufficient for meaningful laser fusion target coupling experiments

  2. Improving the efficiency of a fluorescent Xe dielectric barrier light source using short pulse excitation

    International Nuclear Information System (INIS)

    Beleznai, Sz; Mihajlik, G; Richter, P; Maros, I; Balazs, L

    2008-01-01

    Operation of a Xe dielectric barrier discharge lamp producing 147-172 nm VUV radiation is investigated both theoretically and experimentally. Xe gas pressure varies between 100 and 300 mbar, and the glass body of the lamp is coated with LAP (green) phosphor to convert radiation into the visible part of the spectrum. Simulation results predict improved discharge efficiencies reaching 67% when excited by a fast rise-time, short pulse (∼200 ns) driving waveform. In this case most power deposited into the plasma efficiently produces Xe 2 * excimers, while other energy dissipation processes (ion heating, e-Xe elastic collision) are kept at a low rate. Simulation and experimental results are compared in terms of discharge efficacy and show good agreement. A lamp efficacy value as high as 80 lm W -1 is demonstrated experimentally

  3. Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: fast imaging and spectroscopic measurements of electric fields

    International Nuclear Information System (INIS)

    Liu, Chong; Dobrynin, Danil; Fridman, Alexander

    2014-01-01

    In this study, we report experimental results on fast intensified charge-coupled device (ICCD) imaging of the development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of the electric field in the discharge. The uniformity of the discharge images obtained with nanosecond exposure times was analysed using chi-square test. The results indicate that DBD uniformity strongly depends on the applied (global) electric field in the discharge gap, which is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is a transition from filamentary to uniform DBD mode that correlates to the corresponding decrease of the maximum local electric field in the discharge. (fast track communication)

  4. Silver-Nanowire-Embedded Transparent Metal-Oxide Heterojunction Schottky Photodetector.

    Science.gov (United States)

    Abbas, Sohail; Kumar, Mohit; Kim, Hong-Sik; Kim, Joondong; Lee, Jung-Ho

    2018-05-02

    We report a self-biased and transparent Cu 4 O 3 /TiO 2 heterojunction for ultraviolet photodetection. The dynamic photoresponse improved 8.5 × 10 4 % by adding silver nanowires (AgNWs) Schottky contact and maintaining 39% transparency. The current density-voltage characteristics revealed a strong interfacial electric field, responsible for zero-bias operation. In addition, the dynamic photoresponse measurement endorsed the effective holes collection by embedded-AgNWs network, leading to fast rise and fall time of 0.439 and 0.423 ms, respectively. Similarly, a drastic improvement in responsivity and detectivity of 187.5 mAW -1 and of 5.13 × 10 9 Jones, is observed, respectively. The AgNWs employed as contact electrode can ensure high-performance for transparent and flexible optoelectronic applications.

  5. Design of the ESCAR injection beam line

    International Nuclear Information System (INIS)

    Tanabe, J.; Staples, J.; Yourd, R.

    1975-01-01

    The design features of the elements of the ESCAR (Experimental Superconducting Accelerator Ring) injection beam line are described. The junction of the proton transport system with the ESCAR injection straight section requires the design of mechanical elements compatible with the 10 -11 torr vacuum requirements of the main ring. These elements include a novel septum magnet whose salient design features include a current-carrying septum of tapered thicknesses to reduce the overall power requirements and total enclosure of the magnet coil in a metal can for vacuum compatibility. Other elements are a wire electro-static septum and several fast-rise ''bump magnets''. A transition cryopump is designed to separate the main ring vacuum from the relatively poor 10 -6 torr vacuum of the conventional beam transport line. A brief description of the conventional beam transport line from the 50 MeV proton linac, recently installed for Bevatron injection,is also included. (U.S.)

  6. Development of the pulse transformer for NLC klystron pulse modulator

    International Nuclear Information System (INIS)

    Akemoto, M.; Gold, S.; Koontz, R.; Krasnykh, A.

    1997-05-01

    We have studied a conventional pulse transformer for the NLC klystron pulse modulator. The transformer has been analyzed using a simplified lumped circuit model. It is found that a fast rise time requires low leakage inductance and low distributed capacitance and can be realized by reducing the number of secondary turns, but it produces larger pulse droop and core size. After making a tradeoff among these parameters carefully, a conventional pulse transformer with a rise time of 250ns and pulse droop of 3.6% has been designed and built. The transmission characteristics and pulse time-response were measured. The data were compared with the model. The agreement with the model was good when the measured values were used in the model simulation. The results of the high voltage tests are also presented

  7. Design and Testing of a Fast, 50 kV Solid-State Kicker Pulser

    International Nuclear Information System (INIS)

    Cook, E G; Hickman, B C; Lee, B S; Hawkins, S A; Gower, E J; Allen, F V; Walstrom, P L

    2002-01-01

    The ability to extract particle beam bunches from a ring accelerator in arbitrary order can greatly extend an accelerator's capabilities and applications. A prototype solid-state kicker pulser capable of generating asynchronous bursts of 50 kV pulses has been designed and tested into a 50(Omega) load. The pulser features fast rise and fall times and is capable of generating an arbitrary pattern of pulses with a maximum burst frequency exceeding 5 MHz If required, the pulse-width of each pulse in the burst is independently adjustable. This kicker modulator uses multiple solid-state modules stacked in an inductive-adder configuration where the energy is switched into each section of the adder by a parallel array of MOSFETs. Test data, capabilities, and limitations of the prototype pulser are described

  8. 600 kV modulator design for the SLAC Next Linear Collider Test Accelerator

    International Nuclear Information System (INIS)

    Harris, K.; de Lamare, J.; Nesterov, V.; Cassel, R.

    1992-07-01

    Preliminary design for the SLAC Next Linear Collider Test Accelerator (NLCTA) requires a pulse power source to produce a 600 kV, 600 A, 1.4 μs, 0.1% flat top pulse with rise and fall times of approximately 100 ns to power an X-Band klystron with a microperveance of 1.25 at ∼ 100 MW peak RF power. The design goals for the modulator, including those previously listed, are peak modulator pulse power of 340 MW operating at 120 Hz. A three-stage darlington pulse-forming network, which produces a >100 kV, 1.4 μs pulse, is coupled to the klystron load through a 6:1 pulse transformer. Careful consideration of the transformer leakage inductance, klystron capacitance, system layout, and component choice is necessary to produce the very fast rise and fall times at 600 kV operating continuously at 120 Hz

  9. Yo-Yo Intermittent Endurance Test-Level 1 to monitor changes in aerobic fitness in pre-pubertal boys

    DEFF Research Database (Denmark)

    Fernandes, Luís; Krustrup, Peter; Silva, Gustavo

    2016-01-01

    Abstract The present study aimed to examine the performance and heart rate responses during the Yo-Yo Intermittent Endurance Test-Level 1 (Yo-Yo IE1) in children under the age of 10. One hundred and seven male children (7-9 years) performed the Yo-Yo IE1 at the beginning (M1), middle (M2) and end...... (M3) of the school year. Data from individual heart rate curves of the Yo-Yo IE1 were analysed in order to detect the inflection point between an initial phase of fast rise in heart rate values and a second phase in which the rise of the heart rate values is much smaller. The distance covered...

  10. Speed of response, pile-up and signal to noise ratio in liquid ionization calorimeters

    International Nuclear Information System (INIS)

    Colas, J.

    1989-11-01

    Although liquid ionization calorimeters have been mostly used up to now with slow readout, their signals have a fast rise time. However, it is not easy to get this fast component of the pulse out of the calorimeter. For this purpose a new connection scheme of the electrodes, the electrostatic transformer, is presented and discussed. This technique reduces the detector capacitance while keeping the number of channels at an acceptable level. Also it allows the use of transmission lines to bring signals from the electrodes to the preamplifiers which could be located in an accessible area. With room temperature liquids the length of these cables can be short, keeping the added noise at a reasonable level. Contributions to the error on the energy measurement from pile up and electronics noise are studied in detail. Even on this issue, room temperature liquids (TMP/TMS) are found to be competitive with cold liquid argon at the expense of a moderately higher gap voltage

  11. Probing Neutrino Mass Hierarchy with Supernova

    International Nuclear Information System (INIS)

    Chakraborty, Sovan

    2013-01-01

    The rise time of electron antineutrino lightcurve from a Galactic supernova (SN), observable at the IceCube Cherenkov detector, can provide signature of the neutrino mass hierarchy at “large” 1-3 leptonic mixing angle ϑ 13 . In the early accretion phase of the SN, the neutrino oscillations are nontrivial. Due to the matter suppression of collective effects at these early post bounce times, only the MSW resonances in the outer layers of the SN influence the neutrino flux. When the oscillations are taken into account, the signal in IceCube shows sufficiently fast rise time for the inverted mass hierarchy compared to the normal hierarchy. An investigation with an extensive set of stellar core-collapse simulations, provides both qualitative and quantitative robustness of these features. Thus opening another avenue to explore the neutrino mass hierarchy with the rise time of a supernova burst

  12. The belt-shaped screw-pinch reactor

    International Nuclear Information System (INIS)

    Bustraan, M.; Klippel, H.Th.; Veringa, H.J.; Verschuur, K.A.; Lievense, K.

    1981-12-01

    The belt-shaped screw pinch is a pulsed toroidal plasma with an elongated cross-section. Force-free currents in an outer plasma envelope of low density allow beta to rise to high values in the order of 50%. This is a potential possibility to develop an economically attractive reactor. The physical requirements of its realization are described: formation, heating and ignition of a very small amount of the fuel to be burnt in one pulse by the fields generated by normal or superconducting coils. Then follows injection of the greater part of the fuel by D-T pellets and consequent plasma heating and expansion by nuclear reactions without undue disturbing of the plasma current configuration. Technical requirements include an insulating first wall and fast rising magnetic fields produced by superconducting coils. This reactor system is compared with the tokamak and the reversed-field pinch system

  13. The readout system and the trigger algorithm implementation for the UFFO Pathfinder

    DEFF Research Database (Denmark)

    Na, G.W.; Ahmad, S.; Barrillon, P.

    2012-01-01

    ) Pathfinder, to take the sub-minute data for the early photons from GRB. The UFFO Pathfinder has a coded-mask X-ray camera to search the GRB location by the UBAT trigger algorithm. To determine the direction of GRB as soon as possible it requires the fast processing. We have ultimately implemented all...... have been measured within a minute after the gamma ray signal. This lack of sub-minute data limits the study for the characteristics of the UV-optical light curve of the short-hard type GRB and the fast-rising GRB. Therefore, we have developed the telescope named the Ultra-Fast Flash Observatory (UFFO...

  14. Treatment of renal osteopathy by Rocaltrol, with special reference to parathormone levels and X-ray examinations

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, R.L.

    The effects of treatment of renal osteopathy with 1.25 (OH)/sub 2/D/sub 3/ was evaluated in 24 chronic hemodialysis patients. The best results of treatment were displayed in patients in whom 1.25 (OH)/sub 2/D/sub 3/ determined only a slow rise in plasma calcium levels. In these patients iPTH, alkaline phosphatase levels, and osteoblast counts in bone biopsies were initially high. Definite improvement of bone resorption was found on X-ray examination. In contrast in patients with low iPTH, low alkaline phosphatase levels, and low osteoblast counts, administration of 1.25 (OH)/sub 2/D/sub 3/ determined a fast rise of plasma calcium levels. No X-ray modifications could be detected.

  15. Treatment of renal osteopathy by Rocaltrol, with special reference to parathormone levels and X-ray examinations

    International Nuclear Information System (INIS)

    Schmitt, R.L.

    1981-01-01

    The effects of treatment of renal osteopathy with 1.25 (OH) 2 D 3 was evaluated in 24 chronic hemodialysis patients. The best results of treatment were displayed in patients in whom 1.25 (OH) 2 D 3 determined only a slow rise in plasma calcium levels. In these patients iPTH, alkaline phosphatase levels, and osteoblast counts in bone biopsies were initially high. Definite improvement of bone resorption was found on X-ray examination. In contrast in patients with low iPTH, low alkaline phosphatase levels, and low osteoblast counts, administration of 1.25 (OH) 2 D 3 determined a fast rise of plasma calcium levels. No X-ray modifications could be detected. (orig.) [de

  16. SHIVA star inductive pulse compression system

    International Nuclear Information System (INIS)

    Reinovsky, R.E.; Baker, W.L.; Chen, Y.G.; Holmes, J.; Lopez, E.

    1983-01-01

    The SHIVA star capacitor bank, a 120 kv parallel bank storing 9.5 mj with a short circuit current of almost 90 ma, at the AFWL is the world's highest energy, fast capacitor bank. The approximately 3 microsecond short circuit risetime is shortened by an inductive store/opening switch power conditioning system in which a total inductance of about 10 nh is charged with 35 ma currents. Electrically exploded conductor (fuse) opening switches are employed to interrupt the current in a few hundred nanoseconds to deliver a fast rising current to the load. The system is in operation at the AFWL and is used for a variety of plasma physics experiments. Performance of the bank and pulse compression system are discussed

  17. High-efficiency dielectric barrier Xe discharge lamp: theoretical and experimental investigations

    International Nuclear Information System (INIS)

    Beleznai, Sz; Mihajlik, G; Agod, A; Maros, I; Juhasz, R; Nemeth, Zs; Jakab, L; Richter, P

    2006-01-01

    A dielectric barrier Xe discharge lamp producing vacuum-ultraviolet radiation with high efficiency was investigated theoretically and experimentally. The cylindrical glass body of the lamp is equipped with thin strips of metal electrodes applied to diametrically opposite sides of the outer surface. We performed a simulation of discharge plasma properties based on one-dimensional fluid dynamics and also assessed the lamp characteristics experimentally. Simulation and experimental results are analysed and compared in terms of voltage and current characteristics, power input and discharge efficiency. Using the proposed lamp geometry and fast rise-time short square pulses of the driving voltage, an intrinsic discharge efficiency around 56% was predicted by simulation, and more than 60 lm W -1 lamp efficacy (for radiation converted into visible green light by phosphor coating) was demonstrated experimentally

  18. Extraction of a long-pulsed intense electron beam from a pulsed plasma based on hollow cathode discharge

    International Nuclear Information System (INIS)

    Uramoto, Johshin.

    1977-05-01

    An intense electron beam (up to 1.0 kV, 0.8 kA in 0.8 cm phi) is extracted along a uniform magnetic field with a long decay time (up to 2 msec) from a pulsed high density plasma source which is produced with a fast rise time (< 100 μsec) by a secondary discharge based on a dc hollow cathode discharge. Through a back stream of ionized ions from a beam-extracting anode region where a neutral gas is fed, a space charge limit of the electron beam is so reduced that the beam current is determined by an initially injected electron flux and concentrated in a central aperture of the extracting anode. Moreover, the beam pulse width is much extended by the neutral gas feed into the anode space. (auth.)

  19. Pulsed power supply system for the fast quadrupoles in the AGS

    International Nuclear Information System (INIS)

    Nawrocky, R.J.; Lambiase, R.F.

    1983-01-01

    In the acceleration of polarized protons in the AGS, a number of depolarizing resonances will be encountered. Depolarization due to the so-called intrinsic resonances will be minimized by crossing each resonance in less than one beam revolution period (approx. 2 μs). This will be accomplished with a set of twelve fast tune-shifting quadrupoles distributed symmetrically around the ring. During a typical acceleration cycle, the fast quads will be energized with a burst of alternating polarity, fast rise/slow fall triangular current pulses. The amplitude of these pulses will vary from 160 A to about 2700 A peak. This paper describes the development of the pulsed power supply for the fast quads, the construction of a prototype modulator, and some of the initial test results obtained with the prototype

  20. Design of a Solid-State Fast Voltage Compensator for klystron modulators requiring constant AC power consumption

    CERN Document Server

    Aguglia, Davide; Viarouge, Philippe; Cros, Jerome

    2014-01-01

    This paper proposes a novel topological solution for klystron modulators integrating a Fast Voltage Compensator which allows an operation at constant power consumption from the utility grid. This kind of solution is mandatory for the CLIC project under study, which requires several hundreds of synchronously operated klystron modulators for a total pulsed power of 39 GW. The topology is optimized for the challenging CLIC specifications, which require a very precise output voltage flat-top as well as fast rise and fall times (3µs). The Fast Voltage Compensator is integrated in the modulator such that it only has to manage the capacitor charger current and a fraction of the charging voltage. Consequently, its dimensioning power and cost is minimized.

  1. Wall current monitor for SPring-8 linac

    International Nuclear Information System (INIS)

    Yanagida, Kenichi; Yamada, Kouji; Yokoyama, Minoru

    1994-06-01

    A fast rise time, broad band width and wide dynamic range wall current monitor was developed for SPring-8 linac. The performances are a rise time of ∼250ps, an effective impedance of 1.4Ω (output of ∼1.4V/A) and a bandwidth of 18kHz-2GHz. From a result of examination using 40ns electron beam, a significant change of effective impedance was not observed when a peak current was changed up to 12A or when a beam was moved by 8mm in a vacuum pipe. A circuit model that includes a core inductor loop was constructed. Using this model effective impedance and band width were calculated and compared to measured ones. They agreed very well except one part. In consequence the mechanism of wall current monitor can be explained by means of this model. (author)

  2. Investigation of stability and x-ray spectrum in gas-puff z-pinch plasmas diriven by inductive energy storage pulsed power generator with a plasma opening switch

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, K.; Fukudome, I. [Yatsushiro National College of Technology, Dept. of Mechanical and Electrical Engineering, Yatsushiro, Kumamoto (Japan); Teramoto, Y.; Katsuki, S.; Akiyama, H. [Kumamoto Univ., Dept. of Electrical and Computer Engineering, Kumamoto (Japan)

    2002-06-01

    Gas-puff z-pinch plasmas are driven by an inductive voltage adder - inductive energy storage pulsed power generator ''ASO-X''. ASO-X has the performance of the maximum output voltage and current are 180 kV and 400 kA respectively and can provide a fast rise time current with operating POS. The stability of the plasma column, spectrum radiated from z-pinch plasmas and the spatial distribution of hot spots are investigated in the case with and without operating POS. By driving ASO-X with operating POS the kink instability is restrained and the stability of plasma column is improved about three times in regard to the average dispersion. Furthermore the duration of soft x-ray radiation is increased and the spatial distribution of hot spots is 50% improved with regard to kurtosis of the intensity profile of pinhole photographs compared to those without operating POS. (author)

  3. Investigation of stability and x-ray spectrum in gas-puff z-pinch plasmas diriven by inductive energy storage pulsed power generator with a plasma opening switch

    International Nuclear Information System (INIS)

    Murayama, K.; Fukudome, I.; Teramoto, Y.; Katsuki, S.; Akiyama, H.

    2002-01-01

    Gas-puff z-pinch plasmas are driven by an inductive voltage adder - inductive energy storage pulsed power generator ''ASO-X''. ASO-X has the performance of the maximum output voltage and current are 180 kV and 400 kA respectively and can provide a fast rise time current with operating POS. The stability of the plasma column, spectrum radiated from z-pinch plasmas and the spatial distribution of hot spots are investigated in the case with and without operating POS. By driving ASO-X with operating POS the kink instability is restrained and the stability of plasma column is improved about three times in regard to the average dispersion. Furthermore the duration of soft x-ray radiation is increased and the spatial distribution of hot spots is 50% improved with regard to kurtosis of the intensity profile of pinhole photographs compared to those without operating POS. (author)

  4. A One-Dimensional Relativistic Shock Model for the Light Curve of Gamma-ray Bursts

    Institute of Scientific and Technical Information of China (English)

    Cheng-Yue Su; Yi-Ping Qin; Jun-Hui Fan; Zhang-Yu Han

    2006-01-01

    We investigate the forming of gamma-ray burst pulses with a simple onedimensional relativistic shock model. The mechanism is that a "central engine" drives forward the nearby plasma inside the fireball to generate a series of pressure waves. We give a relativistic geometric recurrence formula that connects the time when the pressure waves are produced and the time when the corresponding shocks occurred. This relation enables us to relate the pulse magnitude with the observation time. Our analysis shows that the evolution of the pressure waves leads to a fast rise and an exponential decay pulses. In determining the width of the pulses, the acceleration time is more important than that of the deceleration.

  5. SYNTHESIS AND ANTIMICROBIAL ACTIVITIES OF NEW 1,2,4- TRIAZOLES, MANNICH BASES, CONAZOLES, AND FLUOROQUINOLONES

    Directory of Open Access Journals (Sweden)

    Şule CEYLAN

    2016-09-01

    Full Text Available Abstract: Triazoles are heterocyclic compounds which have been of interest in the development of novel compounds with antidepressant, anti-inflammatory, analgesic, antibacterial, antimycobacterial, antifungal, antiviral, anticancer, and other activities. In this article, a series of fluorine- and piperazine-containing some novel biologically active 1,2,4-triazole-3-one derivatives were synthesized by the Mannich reaction of triazole intermediates. The structures for novel synthesized compounds were elucidated using elemental analysis and FT IR, 13C NMR, 1H NMR, EI MS techniques. These compounds were investigated in vitro for their antimicrobial properties and several compounds have fungicidal activity against Candida albicans and Saccharomyces cerevisiae. And also some of the compounds exhibited excellent activity on Mycobacterium smegmatis, a nonpigmented fast-rising mycobacterium, at the concentration of <1 μg/mL is better than standard drug streptomycin.

  6. Helmet blastometer

    Energy Technology Data Exchange (ETDEWEB)

    Moss, William C; King, Michael J

    2015-03-24

    A helmet blastometer for characterizing the direction, speed, magnitude, and duration of a blast event to determine the likelihood of blast-induced traumatic brain injury (biTBI). Time of arrival (TOA) gage sensors are mounted on a rigid outer shell of the helmet each producing a TOA signal in response to a fast rising blast induced positive pressure change above a predetermined threshold. A receiver analyzes the positive pressure changes from the gages to determine direction, speed, and magnitude of a blast. Other TOA gauge sensors can be used to produce a TOA signal in response to a negative pressure change below a predetermined threshold. The positive and negative pressure change TOA signals are used to determine blast duration. A second set of internal contact pressure sensors is connected to an inner liner of the helmet to detect contact pressure on a user's head to determine if biTBI has been sustained.

  7. Injection and extraction techniques in circular accelerators

    International Nuclear Information System (INIS)

    Tang Jingyu

    2008-01-01

    Injection and extraction are usually the key systems in circular accelerators. They play important roles in transferring the beam from one stage acceleration to the other or to experimental stations. It is also in the injection and extraction regions where beam losses happen mostly. Due to the tight space and to reduce the perturbation to the circulating orbit, the devices are usually designed to meet special requirements such as compactness, small stray field, fast rise time or fall time, etc. Usual injection and extraction devices include septum magnets, kicker magnets, electrostatic deflectors, slow bump magnets and strippers. In spite of different accelerators and specification for the injection and extraction devices, many techniques are shared in the design and manufacturing. This paper gives a general review on the techniques employed in the major circular accelerators in China. (authors)

  8. Test model of the fast thyristor circuit breaker, for TORE SUPRA

    International Nuclear Information System (INIS)

    Bareyt, B.; Leloup, C.; Rijnoudt, E.

    1984-01-01

    The tokamak TORE SUPRA, permits, owing to the toroidal superconducting coils and to the poloidal field system performances, long discharges (30 s and more), for a plasma current of typically 2 MA. The poloidal field system uses the magnetic energy initially stored, for the ignition and the fast rise of the plasma current, by forcing the primary current to flow through a resistor after breaking the main rectifier current by a fast thyristor circuit breaker. In order to test the technical capabilities of such a breaker system made of fast thyristors, in series and in parallel, after a single thyristor test model T1 the series arrangement was studied on a 24 thyristor test model T2 and the parallel arrangement problems, led the manufacturer CGEE Alsthom, to build a new test model T3. (author)

  9. A study of timing properties of Silicon Photomultipliers

    Science.gov (United States)

    Avella, Paola; De Santo, Antonella; Lohstroh, Annika; Sajjad, Muhammad T.; Sellin, Paul J.

    2012-12-01

    Silicon Photomultipliers (SiPMs) are solid-state pixelated photodetectors. Lately these sensors have been investigated for Time of Flight Positron Emission Tomography (ToF-PET) applications, where very good coincidence time resolution of the order of hundreds of picoseconds imply spatial resolution of the order of cm in the image reconstruction. The very fast rise time typical of the avalanche discharge improves the time resolution, but can be limited by the readout electronics and the technology used to construct the device. In this work the parameters of the equivalent circuit of the device that directly affect the pulse shape, namely the quenching resistance and capacitance and the diode and parasitic capacitances, were calculated. The mean rise time obtained with different preamplifiers was also measured.

  10. Assaying the proton transport and regulation of UCP1 using solid supported membranes.

    Science.gov (United States)

    Blesneac, Iulia; Ravaud, Stéphanie; Machillot, Paul; Zoonens, Manuela; Masscheylen, Sandrine; Miroux, Bruno; Vivaudou, Michel; Pebay-Peyroula, Eva

    2012-08-01

    The uncoupling protein 1 (UCP1) is a mitochondrial protein that carries protons across the inner mitochondrial membrane. It has an important role in non-shivering thermogenesis, and recent evidence suggests its role in human adult metabolism. Using rapid solution exchange on solid supported membranes, we succeeded in measuring electrical currents generated by the transport activity of UCP1. The protein was purified from mouse brown adipose tissue, reconstituted in liposomes and absorbed on solid supported membranes. A fast pH jump activated the ion transport, and electrical signals could be recorded. The currents were characterized by a fast rise and a slow decay, were stable over time, inhibited by purine nucleotides and activated by fatty acids. This new assay permits direct observation of UCP1 activity in controlled cell-free conditions, and opens up new possibilities for UCP1 functional characterization and drug screening because of its robustness and its potential for automation.

  11. Université de Genève | Séminaire de physique corpusculaire | 24 April

    CERN Multimedia

    2013-01-01

    Ultra low-noise amplifiers for silicon and diamond detectors, by Dr Roberto Cardarelli, University Tor Vergata. Wednesday 24 April 2013 at 11:15 a.m. Science III, Auditoire 1S081 30, quai Ernest-Ansermet, 1211 Genève 4 Abstract: Thanks to the SiGe heterojunction, in the last years the BJT transistor technology has been experiencing a great development for high frequency and low-noise operation. The performance of an ultra-low-noise preamplifier (500 e- RMS) with low frequency (100 MHz BW) will be shown. This amplifier, given the low dependence of the noise from the source capacitance (up to 1 nF), the very fast rise time (up to 100 ps) and the 50 Ohm input impedance, is particularly promising for silicon, diamond and high rate gas detectors. More information here.

  12. Zero-biased solar-blind photodetector based on ZnBeMgO/Si heterojunction

    International Nuclear Information System (INIS)

    Yang, C; Li, X M; Yu, W D; Gao, X D; Cao, X; Li, Y Z

    2009-01-01

    An n-type Zn 1-x-y Be x Mg y O thin film was deposited on a p-type Si substrate by pulsed laser deposition to obtain a solar-blind photodetector. The spectral response characteristic with a cutoff wavelength of 280 nm was demonstrated to realize the photodetection of the solar-blind wave zone. The responsivity of the device was improved by inserting an Al-doped ZnO (AZO) contact layer, which was expected to enhance the carrier collection efficiency significantly. Correspondingly, the peak responsivity was improved from 0.003 to 0.11 A W -1 at zero bias, and a high external quantum efficiency of 53% at 270 nm was achieved. The fast rise time reached 20 ns. This work demonstrated the possibility of a wurtzite ZnO based oxide system to realize high performance zero-biased solar-blind photodetectors. (fast track communication)

  13. Design of Amplifier Circuit for the HT-7 Tokamak Thomson Scattering System

    International Nuclear Information System (INIS)

    Shi Lingwei; Ling Bili; Zhao Junyu; Yang Li; Zang Qing; Hu Qingsheng; Jia Yanqing

    2008-01-01

    Thomson scattering diagnostic is important for measuring electron temperature and density profiles. To improve the signal-to-noise ratio, a silicon avalanche photodiode (APD) with high quantum efficiency, high sensitivity, and high gain up to 100 was adopted to measure the Thomson scattering spectrum. A preamplifier, which has low noise, high bandwidth, and high sensitivity, was designed with suitable transimpedance. Using AD8367 as the post-amplifier, good performance of the APD readout electronics have been obtained. A discussion is presented on the performance of the amplifier using a laser diode to simulate the Thomson scattering light. The test results indicate that the designed circuit has a high amplifying factor and fast rising edge. So reduction of the integral gate of the CAMAC ADC converter can improve the signal-to-noise ratio. (brief communication and research note)

  14. Radiation hardness of plastic scintillators for the Tile Calorimeter of the ATLAS detector

    CERN Document Server

    Jivan, Harshna; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter of the ATLAS detector, is a hadronic calorimeter responsible for detecting hadrons as well as accommodating for the missing transverse energy that result from the p-p collisions within the LHC. Plastic scintillators form an integral component of this calorimeter due to their ability to undergo prompt fluorescence when exposed to ionising particles. The scintillators employed are specifically chosen for their properties of high optical transmission and fast rise and decay time which enables efficient data capture since fast signal pulses can be generated. The main draw-back of plastic scintillators however is their susceptibility to radiation damage. The damage caused by radiation exposure reduces the scintillation light yield and introduces an error into the time-of flight data acquired. During Run 1 of the LHC data taking period, plastic scintillators employed within the GAP region between the Tile Calorimeter’s central and extended barrels sustained a significant amount of damage. Wit...

  15. Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: fast imaging and spectroscopic measurements of electric field

    Science.gov (United States)

    Liu, Chong; Dobrynin, Danil; Fridman, Alexander

    2014-01-01

    In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge. PMID:25071294

  16. Modified one-dimensional snowplow-model for the description of plasmadynamics in belt-pinch HECTOR

    International Nuclear Information System (INIS)

    Konle, W.

    1979-03-01

    In a Belt-Pinch device a hot, high-β-plasma is produced by the method of fast shock-compression. For this heating method the radial equilibrium depends upon the time evolution of the fast rising magnetic fields outside the plasma. A simple mathematical model for plasma compression and relaxation toward radial equilibrium in the case β = 1 including the external electric circuit is presented in this paper. The numerical solution for different experimental parameters leads to information on values of these parameters for reaching a radial equilibrium. For the plasma compression a snowplow-bounce-model is used which gives the initial values for the equations of the relaxation phase. In this phase the plasma is described by three thin sheaths containing the total mass of the plasma, whose motions are damped by viscosity terms. (orig.) 891 HT/orig. 892 HIS

  17. Pulse transformer R and D for NLC klystron pulse modulator

    International Nuclear Information System (INIS)

    Akemoto, M.; Gold, S.; Krasnykh, A.; Koontz, R.

    1997-07-01

    The authors have studied a conventional pulse transformer for the NLC klystron pulse modulator. The transformer has been analyzed using a simplified lumped circuit model. It is found that a fast rise time requires low leakage inductance and low distributed capacitance and can be realized by reducing the number of secondary turns, but it produces larger pulse droop and requires a larger core size. After making a tradeoff among these parameters carefully, a conventional pulse transformer with a rise time of 250ns and a pulse droop of 3.6% has been designed and built. The transmission characteristics and pulse time-response were measured. The data were compared with the model. The agreement with the model was good when the measured values were used in the model simulation. The results of the high voltage tests using a klystron load are also presented

  18. Side-detecting optical fiber coated with Zn(OH)2 nanorods for ultraviolet sensing applications

    Science.gov (United States)

    Azad, S.; Parvizi, R.; Sadeghi, E.

    2017-09-01

    This paper presents an improved coupling efficiency and side detecting of UV radiation induced by light scattering and luminescent features of Zn(OH)2 nanorods coated multimode optical fibers. Uniform and high density Zn(OH)2 nanorods were grown hydrothermally on the core of chemically etched multimode optical fibers. The prepared samples were characterized through x-ray diffraction patterns, scanning electron microscopy and photoluminescence spectroscopy. The detecting technique was based on the intensity modulation of the side coupled light through the Zn(OH)2 nanorods. A simple and cost-effective UV radiation detecting setup has been designed. Experimentally estimated coupling efficiency of the proposed setup was obtained near 11%. The proposed device exhibited stable and reversible responses with a fast rising and decaying time of about 1.4 s and 0.85 s, respectively.

  19. Impact of climate change and anthropogenic pressure on the water resources of India: challenges in management

    Directory of Open Access Journals (Sweden)

    K. Shadananan Nair

    2016-10-01

    Full Text Available Freshwater resources of India are getting fast degraded and depleted from the changing climate and pressure of fast rising population. Changing intensity and seasonality of rainfall affect quantity and quality of water. Most of the rivers are polluted far above safety limits from the untreated domestic, industrial and agricultural effluents. Changes in the intensity, frequency and tracks of storms salinate coastal aquifers. Aquifers are also under the threat from rising sea level. Groundwater in urban limits and industrial zones are far beyond safety limits. Large-scale destruction of wetlands for industries and residential complexes has affected the quality of surface and groundwater resources in most parts of India. Measures to maintain food security and the new developments schemes such as river linking will further deteriorate the water resources. Falling water availability leads to serious health issues and various socio-economic issues. India needs urgent and appropriate adaptation strategies in the water sector.

  20. Impact of climate change and anthropogenic pressure on the water resources of India: challenges in management

    Science.gov (United States)

    Shadananan Nair, K.

    2016-10-01

    Freshwater resources of India are getting fast degraded and depleted from the changing climate and pressure of fast rising population. Changing intensity and seasonality of rainfall affect quantity and quality of water. Most of the rivers are polluted far above safety limits from the untreated domestic, industrial and agricultural effluents. Changes in the intensity, frequency and tracks of storms salinate coastal aquifers. Aquifers are also under the threat from rising sea level. Groundwater in urban limits and industrial zones are far beyond safety limits. Large-scale destruction of wetlands for industries and residential complexes has affected the quality of surface and groundwater resources in most parts of India. Measures to maintain food security and the new developments schemes such as river linking will further deteriorate the water resources. Falling water availability leads to serious health issues and various socio-economic issues. India needs urgent and appropriate adaptation strategies in the water sector.

  1. Experimental studies of microwave interaction with a plasma-covered planar conducting surface

    International Nuclear Information System (INIS)

    Destler, W.W.; Rodgers, J.; DeGrange, J.E.; Segalov, Z.

    1990-01-01

    The authors present experimental studies of the reflection and absorption of microwave radiation from a plasma-covered planar conducting surface. In the experiments, microwave radiation from both highpower, short pulse (10 GHz, 100 MW, 30 ns) and low power (10 GHz, 10 mW, CW) sources is radiated at a 30 cm diameter conducting plate. A time-varying plasma is created on the surface of the conductor by 19 coaxial plasma guns embedded in the surface of the plate and discharged using a fast-rise capacitor bank. The plasma density distribution on the conducting surface is a function of time and the charging voltage on the capacitor bank. Incident and reflected microwave radiation has been measured for a wide variety of experimental conditions

  2. Temporal laser pulse shaping for RF photocathode guns: the cheap and easy way using UV birefringent crystals

    International Nuclear Information System (INIS)

    Power, J.G.; Jing, C.

    2009-01-01

    We report experimental investigations into a new technique for achieving temporal laser pulse shaping for RF photocathode gun applications using inexpensive UV birefringent crystals. Exploiting the group velocity mismatch between the two different polarizations of a birefringent crystal, a stack of UV pulses can be assembled into the desired temporal pulse shape. The scheme is capable of generating a variety of temporal pulse shapes including: (i) flat-top pulses with fast rise-time and variable pulse duration. (ii) microbunch trains, and (iii) ramped pulse generation. We will consider two applications for beam generation at the Argonne Wakefield Accelerator (AWA) including a flat-top laser pulse for low emittance production and matched bunch length for enhanced transformer ratio production. Streak camera measurements of the temporal profiles generated with a 2-crystal set and a 4-crystal set are presented.

  3. Experimental investigation of thermal conduction and related phenomena in a laser heated plasma

    International Nuclear Information System (INIS)

    Gray, D.R.

    1979-02-01

    Thermal conduction in plasmas is of major importance especially in controlled nuclear fusion studies. Direct measurements are rare. When the temperature gradient in a plasma becomes large enough classical thermal conduction (Heat flux q = -kΔT) no longer applies and it is thought that q is limited to some fraction of the free streaming limit qsub(m). The main experiment is the heating of a z-pinch plasma by a fast rising, intense carbon dioxide laser pulse. Electron temperature and density in time and space are diagnosed by ruby laser scattering. The profiles obtained were consistent with a flux limited to approximately 3% of the free streaming limit. Ion acoustic turbulence is observed along the temperature gradient. It is shown that the observed turbulence level is consistent with the heat flux limitation. At electron densities > 10 17 cm -3 backscattered light is observed from the plasma whose growth rate implies that it is Brillouin scattered. (author)

  4. A systematic desaturation method for images from the Atmospheric Imaging Assembly in the Solar Dynamics Observatory.

    Science.gov (United States)

    Torre, Gabriele; Schwartz, Richard; Piana, Michele; Massone, Anna Maria; Benvenuto, Federico

    2016-05-01

    The fine spatial resolution of the SDO AIA CCD's is often destroyed by the charge in saturated pixels overflowing into a swath of neighboring cells during fast rising solar flares. Automated exposure control can only mitigate this issue to a degree and it has other deleterious effects. Our method addresses the desaturation problem for AIA images as an image reconstruction problem in which the information content of the diffraction fringes, generated by the interaction between the incoming radiation and the hardware of the spacecraft, is exploited to recover the true image intensities within the primary saturated core of the image. This methodology takes advantage of some well defined techniques like cross-correlation and the Expectation Maximization method to invert the direct relation between the diffraction fringes intensities and the true flux intensities. During this talk a complete overview on the structure of the method will be provided, besides some reliability tests obtained by its application against synthetic and real data.

  5. AN OVERVIEW OF HIGH VOLTAGE DIELECTRIC MATERIAL FOR TRAVELING WAVE KICKER MAGNET APPLICATION

    International Nuclear Information System (INIS)

    ZHANG, W.; SANDBERG, J.; TUOZZOLO, J.; CASSEL, R.; DUCIMETIERE, L.; JENSEN, C.; BARNES, M.; WAIT, G.; WANG, J.

    2002-01-01

    Pulsed high power fast kickers are being used to change beam trajectories in particle accelerators. The fast rise and fall time of pulse waveform demands a transmission line structure for the kicker deflector design. The ideal design will be parallel metal plates. However, it uses very long straight sections to achieve the required deflection. In accelerators with constrained straight sections, high permeability materials such as ferrite have to be used to gain deflection efficiency. The transmission line kicker magnet is also referred as traveling wave kicker magnet. Its construction is based on distributed 1-C cells along the longitudinal direction. The magnetic cells and capacitive cells are interleaved to simulate the characteristic impedance of a transmission line to minimize pulse reflection, and provide adequate frequency bandwidth to transmit the kicker pulse with fast rise and fall time. The magnetic cells are usually made of ferrite ceramics, but the capacitive cells have been made with different materials. For traveling wave kickers with higher impedance, the parallel plate vacuum capacitor has been used in CERN and KEK design. Others have used ceramic capacitors, printed circuit boards, and high permittivity ceramics as the capacitive cell. The high dielectric material has the advantage of compactness for low impedance kicker magnet construction. It continues to be very attractive for future kicker magnet applications. The high voltage phenomena associated with high dielectric ceramic materials have been widely reported in many industrial application areas. Their implication in the traveling wave magnet application has to be well understood. In this presentation, the areas requiring further quantitative study will be outlined

  6. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  7. SHOCK BREAKOUT AND EARLY LIGHT CURVES OF TYPE II-P SUPERNOVAE OBSERVED WITH KEPLER

    International Nuclear Information System (INIS)

    Garnavich, P. M.; Tucker, B. E.; Rest, A.; Shaya, E. J.; Olling, R. P.; Kasen, D; Villar, A.

    2016-01-01

    We discovered two transient events in the Kepler field with light curves that strongly suggest they are type II-P supernovae (SNe II-P). Using the fast cadence of the Kepler observations we precisely estimate the rise time to maximum for KSN2011a and KSN2011d as 10.5 ± 0.4 and 13.3 ± 0.4 rest-frame days, respectively. Based on fits to idealized analytic models, we find the progenitor radius of KSN2011a (280 ± 20 R ⊙ ) to be significantly smaller than that for KSN2011d (490 ± 20 R ⊙ ), but both have similar explosion energies of 2.0 ± 0.3 × 10 51 erg. The rising light curve of KSN2011d is an excellent match to that predicted by simple models of exploding red supergiants (RSG). However, the early rise of KSN2011a is faster than the models predict, possibly due to the supernova shock wave moving into pre-existing wind or mass-loss from the RSG. A mass-loss rate of 10 −4 M ⊙ yr −1 from the RSG can explain the fast rise without impacting the optical flux at maximum light or the shape of the post-maximum light curve. No shock breakout emission is seen in KSN2011a, but this is likely due to the circumstellar interaction suspected in the fast rising light curve. The early light curve of KSN2011d does show excess emission consistent with model predictions of a shock breakout. This is the first optical detection of a shock breakout from a SNe II-P

  8. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge.

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  9. Assessment of the feasibility and advantages of beryllium recycling

    International Nuclear Information System (INIS)

    Druyts, F.; Braet, J.; Ooms, L.

    2006-01-01

    This paper proposes a generic route for the recycling of beryllium from fusion reactors, based on critical issues associated with beryllium pebbles after their service life in the HCPB breeding blanket. These critical issues are the high tritium inventory, the presence of long-lived radionuclides (among which transuranics due to traces of uranium in the base metal), and the chemical toxicity of beryllium. On the basis of the chemical and radiochemical characteristics of the neutron irradiated beryllium pebbles, we describe a possible recycling route. The first step is the detritiation of the material. This can be achieved by heating the pebbles to 800 o C under an argon flow. The argon gas avoids oxidation of the beryllium, and at the proposed temperature the tritium inventory is readily released from the pebbles. In a second step, the released tritium can be oxidised on a copper oxide bed to produce tritiated water, which is consistent with the current international strategy to convert all kinds of tritiated waste into tritiated water, which can subsequently be treated in a water detritiation plant. Removal of radionuclides from the beryllium pebbles may be achieved by several types of chloride processes. The first step is to pass chlorine gas (in an argon flow) over the pebbles, thus yielding volatile BeCl 2 . This beryllium chloride can then be purified by fractional distillation. As a small fraction of the beryllium chloride contains the long-lived 10 Be isotope, 10BeCl 2 has to be separated from 9BeCl 2 , which could be achieved by centrifugal techniques. The product can then be reduced to obtain high-purity metallic beryllium. Two candidate reduction methods were identified: fused salt electrolysis and thermal decomposition. Both these methods require laboratory parametric studies to maximise the yield and achieve a high purity metal, before either process can be upgraded to a larger scale. The eventual product of the chloride reduction process must be a high

  10. Stretched exponential relaxation in molecular and electronic glasses

    Science.gov (United States)

    Phillips, J. C.

    1996-09-01

    der Waals supercooled liquids and glasses, orientational glasses, water, fused salts, and heme proteins. In the intrinsic cases the theory of 0034-4885/59/9/003/img5 is often accurate to 2%, which is often better than the quoted experimental accuracies 0034-4885/59/9/003/img12. The extrinsic cases are identified by explicit structural signatures which are discussed at length. The discussion also includes recent molecular dynamical simulations for metallic glasses, spin glasses, quasicrystals and polymers which have achieved the intermediate relaxed Kohlrausch state and which have obtained values of 0034-4885/59/9/003/img2 in excellent agreement with the prediction of the microscopic theory.

  11. Stretched exponential relaxation in molecular and electronic glasses

    International Nuclear Information System (INIS)

    Phillips, J.C.

    1996-01-01

    Stretched exponential relaxation, exp[-(t/τ) β ], fits many relaxation processes in disordered and quenched electronic and molecular systems, but it is widely believed that this function has no microscopic basis, especially in the case of molecular relaxation. For electronic relaxation the appearance of the stretched exponential is often described in the context of dispersive transport, where β is treated as an adjustable parameter, but in almost all cases it is generally assumed that no microscopic meaning can be assigned to 0 g , a glass transition temperature. We show that for molecular relaxation β(T g ) can be understood, providing that one separates extrinsic and intrinsic effects, and that the intrinsic effects are dominated by two magic numbers, β SR =3/5 for short-range forces, and β K =3/7 for long-range Coulomb forces, as originally observed by Kohlrausch for the decay of residual charge on a Leyden jar. Our mathematical model treats relaxation kinetics using the Lifshitz-Kac-Luttinger diffusion to traps depletion model in a configuration space of effective dimensionality, the latter being determined using axiomatic set theory and Phillips-Thorpe constraint theory. The experiments discussed include ns neutron scattering experiments, particularly those based on neutron spin echoes which measure S(Q, t) directly, and the traditional linear response measurements which span the range from μs to s, as collected and analysed phenomenologically by Angell, Ngai, Boehmer and others. The electronic materials discussed include a-Si:H, granular C 60 , semiconductor nanocrystallites, charge density waves in TaS 3 , spin glasses, and vortex glasses in high-temperature semiconductors. The molecular materials discussed include polymers, network glasses, electrolytes and alcohols, Van der Waals supercooled liquids and glasses, orientational glasses, water, fused salts, and heme proteins. In the intrinsic cases the theory of β(T g ) is often accurate to 2%, which

  12. Chemical Engineering Division Fuel Cycle Programs. Quarterly progress report, January-March 1979

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M J; Ader, M; Barletta, R E

    1980-01-01

    In the program on pyrochemical and dry processing methods (PDPM) for nuclear fuel, corrosion testing of refractory metals and alloys, graphite, and SiC in PDPM environments was done. A tungsten-metallized Al/sub 2/O/sub 3/-3% Y/sub 2/O/sub 3/ crucible was successfully fabricated. Tungsten microstructure of a plasma-sprayed tungsten crucible was stabilized by nickel infiltration and heat treatment. Solubility measurements of Th in Cd and Cd-Mg alloys were continued, as were experiments to study the reduction of high-fired ThO/sub 2/. Work on the fused salt electrolysis of CaO also was continued. The method of coprocessing of U and Pu by a salt transport process was modified. Tungsten-coated molybdenum crucibles were fabricated. The proliferation resistance of chloride volatility processing of thorium-based fuels is being evaluated by studying the behavior of fission product elements during chlorination of U and Th. Thermodynamic analysis of the phase relationships in the U-Pu-Zn system was initiated. The Pyro-Civex reprocessing method is being reviewed. Reactivity of UO/sub 2/ and PuO/sub 2/ with molten equimolar NaNO/sub 3/-KNO/sub 3/ is being studied along with the behavior of selected fission product elements. Work was continued on the reprocessing of actinide oxides by extracting the actinides from a bismuth solution. Rate of dissolution of UO/sub 2/ microspheres in LiCl/AlCl/sub 3/ was measured. Nitriding rates of Th and U dissolved in molten tin were measured. In work on the encapsulation of radioactive waste in metal, leach rates of a simulated waste glass were studied. Rates of dissolution of metals (potential barrier materials) in aqueous media are being studied. In work on the transport properties of nuclear waste in geologic media, the adsorption of iodate by hematite as a function of pH and iodate concentration was measured. The migration behavior of cesium in limestone was studied in relation to the cesium concentration and pH of simulated groundwater

  13. High reliability low jitter 80 kV pulse generator

    International Nuclear Information System (INIS)

    Savage, Mark Edward; Stoltzfus, Brian Scott

    2009-01-01

    Switching can be considered to be the essence of pulsed power. Time accurate switch/trigger systems with low inductance are useful in many applications. This article describes a unique switch geometry coupled with a low-inductance capacitive energy store. The system provides a fast-rising high voltage pulse into a low impedance load. It can be challenging to generate high voltage (more than 50 kilovolts) into impedances less than 10 (Omega), from a low voltage control signal with a fast rise time and high temporal accuracy. The required power amplification is large, and is usually accomplished with multiple stages. The multiple stages can adversely affect the temporal accuracy and the reliability of the system. In the present application, a highly reliable and low jitter trigger generator was required for the Z pulsed-power facility [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats,J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K.W. Struve, W.A. Stygar, L.K. Warne, and J. R. Woodworth, 2007 IEEE Pulsed Power Conference, Albuquerque, NM (IEEE, Piscataway, NJ, 2007), p. 979]. The large investment in each Z experiment demands low prefire probability and low jitter simultaneously. The system described here is based on a 100 kV DC-charged high-pressure spark gap, triggered with an ultraviolet laser. The system uses a single optical path for simultaneously triggering two parallel switches, allowing lower inductance and electrode erosion with a simple optical system. Performance of the system includes 6 ns output rise time into 5.6 (Omega), 550 ps one-sigma jitter measured from the 5 V trigger to the high voltage output, and misfire probability less than 10 -4 . The design of the system and some key measurements will be shown in the paper. We will discuss the design goals related to high reliability and low jitter. While

  14. Evaluation of bipolar pulse generator for high-purity pulsed ion beam

    International Nuclear Information System (INIS)

    Ito, H.; Kitamura, I.; Masugata, K.

    2008-01-01

    A new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)' has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the experimental results of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PEL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time. At present the bipolar pulse generator is installed in the B y type magnetically insulated ion diode and we carry out the experiment on the production of an intense pulsed ion beam by the bipolar pulse accelerator. (author)

  15. Study of current oscillations and hard x-ray emissions in pre-cursor phase of major disruptions in Damavand tokamak

    International Nuclear Information System (INIS)

    Amrollahi, R.

    2002-01-01

    We notice that the hard x-ray activity before disruption consists of a series of spikes, uniformly distributed in time domain forming an orderly periodic series of oscillations at a frequency of 6.0 kHz. Disruption starts with an initial fast rise followed by decay. Current decay occurs in two regimes: the first corresponds to slow decay, in which the current is oscillating and reducing down to ∼70% its max value, and the second corresponds to fast decay, in which it totally vanishes abruptly in about 0.2 ms. In the first regime, the loop voltage also oscillates with considerable amplitude. The frequency of oscillations in the first regime is measured to be also about 6.0 kHz. As well, they follow the oscillation phase of hard x-rays. Thus the micro-instabilities driven by runaway electrons, being responsible for the production of hard x-rays bursts and small current oscillations, play a significant role in the disruption. (author)

  16. Sol-to-Gel Transition in Fast Evaporating Systems Observed by in Situ Time-Resolved Infrared Spectroscopy.

    Science.gov (United States)

    Innocenzi, Plinio; Malfatti, Luca; Carboni, Davide; Takahashi, Masahide

    2015-06-22

    The in situ observation of a sol-to-gel transition in fast evaporating systems is a challenging task and the lack of a suitable experimental design, which includes the chemistry and the analytical method, has limited the observations. We synthesise an acidic sol, employing only tetraethylorthosilicate, SiCl4 as catalyst and deuterated water; the absence of water added to the sol allows us to follow the absorption from the external environment and the evaporation of deuterated water. The time-resolved data, obtained by attenuated total reflection infrared spectroscopy on an evaporating droplet, enables us to identify four different stages during evaporation. They are linked to specific hydrolysis and condensation rates that affect the uptake of water from external environment. The second stage is characterized by a decrease in hydroxyl content, a fast rise of condensation rate and an almost stationary absorption of water. This stage has been associated with the sol-to-gel transition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. SUPERNOVA PTF 09UJ: A POSSIBLE SHOCK BREAKOUT FROM A DENSE CIRCUMSTELLAR WIND

    International Nuclear Information System (INIS)

    Ofek, E. O.; Neill, J. D.; Kulkarni, S. R.; Forster, K.; Kasliwal, M. M.; Law, N.; Martin, C.; Quimby, R. M.; Rabinak, I.; Arcavi, I.; Waxman, E.; Gal-Yam, A.; Cenko, S. B.; Bloom, J. S.; Filippenko, A. V.; Poznanski, D.; Nugent, P. E.; Jacobsen, J.; Bildsten, L.; Howell, D. A.

    2010-01-01

    Type-IIn supernovae (SNe IIn), which are characterized by strong interaction of their ejecta with the surrounding circumstellar matter (CSM), provide a unique opportunity to study the mass-loss history of massive stars shortly before their explosive death. We present the discovery and follow-up observations of an SN IIn, PTF 09uj, detected by the Palomar Transient Factory (PTF). Serendipitous observations by Galaxy Evolution Explorer (GALEX) at ultraviolet (UV) wavelengths detected the rise of the SN light curve prior to the PTF discovery. The UV light curve of the SN rose fast, with a timescale of a few days, to a UV absolute AB magnitude of about -19.5. Modeling our observations, we suggest that the fast rise of the UV light curve is due to the breakout of the SN shock through the dense CSM (n ∼ 10 10 cm -3 ). Furthermore, we find that prior to the explosion the progenitor went through a phase of high mass-loss rate (∼0.1 M sun yr -1 ) that lasted for a few years. The decay rate of this SN was fast relative to that of other SNe IIn.

  18. 1995 second modulator-klystron workshop: A modulator-klystron workshop for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This second workshop examined the present state of modulator design and attempted an extrapolation for future electron-positron linear colliders. These colliders are currently viewed as multikilometer-long accelerators consisting of a thousand or more RF sources with 500 to 1,000, or more, pulsed power systems. The workshop opened with two introductory talks that presented the current approaches to designing these linear colliders, the anticipated RF sources, and the design constraints for pulse power. The cost of main AC power is a major economic consideration for a future collider, consequently the workshop investigated efficient modulator designs. Techniques that effectively apply the art of power conversion, from the AC mains to the RF output, and specifically, designs that generate output pulses with very fast rise times as compared to the flattop. There were six sessions that involved one or more presentations based on problems specific to the design and production of thousands of modulator-klystron stations, followed by discussion and debate on the material.

  19. A Neuronal Network Model for Pitch Selectivity and Representation.

    Science.gov (United States)

    Huang, Chengcheng; Rinzel, John

    2016-01-01

    Pitch is a perceptual correlate of periodicity. Sounds with distinct spectra can elicit the same pitch. Despite the importance of pitch perception, understanding the cellular mechanism of pitch perception is still a major challenge and a mechanistic model of pitch is lacking. A multi-stage neuronal network model is developed for pitch frequency estimation using biophysically-based, high-resolution coincidence detector neurons. The neuronal units respond only to highly coincident input among convergent auditory nerve fibers across frequency channels. Their selectivity for only very fast rising slopes of convergent input enables these slope-detectors to distinguish the most prominent coincidences in multi-peaked input time courses. Pitch can then be estimated from the first-order interspike intervals of the slope-detectors. The regular firing pattern of the slope-detector neurons are similar for sounds sharing the same pitch despite the distinct timbres. The decoded pitch strengths also correlate well with the salience of pitch perception as reported by human listeners. Therefore, our model can serve as a neural representation for pitch. Our model performs successfully in estimating the pitch of missing fundamental complexes and reproducing the pitch variation with respect to the frequency shift of inharmonic complexes. It also accounts for the phase sensitivity of pitch perception in the cases of Schroeder phase, alternating phase and random phase relationships. Moreover, our model can also be applied to stochastic sound stimuli, iterated-ripple-noise, and account for their multiple pitch perceptions.

  20. The RHIC injection fast kicker

    International Nuclear Information System (INIS)

    Forsyth, E.B.; Pappas, G.C.; Tuozzolo, J.E.; Zhang, W.

    1995-01-01

    The purpose of the injection kicker is to provide the ultimate deflection to the incoming beam from the Alternating Gradient Synchrotron (AGS) into the Relativistic Heavy Ion Collider (RHIC). The beam is kicked in the vertical direction to place it on the equilibrium orbit of RHIC. Each bunch in the AGS is transferred separately, and stacked box-car fashion in the appropriate RHIC rf bucket. In order to achieve the required deflection angle four magnets powered by four pulsers will be used for each ring of RHIC. When the bunches are stacked in RHIC the last few rf buckets are left unfilled in order to provide a gap in the beam to facilitate the ejection or beam abort process. This also means there is not a severe constraint on the fall-time of the injection kicker. One prototype pulser has been built and tested. Much of the development effort has gone into the magnet design. Although lumped ferrite magnets are simpler to build and require less power to reach full field, a transmission line magnet was developed because of the very fast rise-time requirement and the tolerances imposed on the field variation and ripple

  1. NuSTAR Hard X-Ray Observation of a Sub-A Class Solar Flare

    Energy Technology Data Exchange (ETDEWEB)

    Glesener, Lindsay [School of Physics and Astronomy, University of Minnesota, Minneapolis (United States); Krucker, Säm; Hudson, Hugh [Space Sciences Laboratory, University of California at Berkeley, Berkeley (United States); Hannah, Iain G. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Grefenstette, Brian W. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena (United States); White, Stephen M. [Air Force Research Laboratory, Albuquerque (United States); Smith, David M.; Marsh, Andrew J. [Santa Cruz Institute of Particle Physics and Department of Physics, University of California at Santa Cruz, Santa Cruz (United States)

    2017-08-20

    We report a Nuclear Spectroscopic Telescope Array ( NuSTAR ) observation of a solar microflare, SOL2015-09-01T04. Although it was too faint to be observed by the GOES X-ray Sensor, we estimate the event to be an A0.1 class flare in brightness. This microflare, with only ∼5 counts s{sup −1} detector{sup −1} observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager ( RHESSI ), is fainter than any hard X-ray (HXR) flare in the existing literature. The microflare occurred during a solar pointing by the highly sensitive NuSTAR astrophysical observatory, which used its direct focusing optics to produce detailed HXR microflare spectra and images. The microflare exhibits HXR properties commonly observed in larger flares, including a fast rise and more gradual decay, earlier peak time with higher energy, spatial dimensions similar to the RHESSI microflares, and a high-energy excess beyond an isothermal spectral component during the impulsive phase. The microflare is small in emission measure, temperature, and energy, though not in physical size; observations are consistent with an origin via the interaction of at least two magnetic loops. We estimate the increase in thermal energy at the time of the microflare to be 2.4 × 10{sup 27} erg. The observation suggests that flares do indeed scale down to extremely small energies and retain what we customarily think of as “flare-like” properties.

  2. Generation of programmable temporal pulse shape and applications in micromachining

    Science.gov (United States)

    Peng, X.; Jordens, B.; Hooper, A.; Baird, B. W.; Ren, W.; Xu, L.; Sun, L.

    2009-02-01

    In this paper we presented a pulse shaping technique on regular solid-state lasers and the application in semiconductor micromachining. With a conventional Q-switched laser, all of the parameters can be adjusted over only limited ranges, especially the pulse width and pulse shape. However, some laser link processes using traditional laser pulses with pulse widths of a few nanoseconds to a few tens of nanoseconds tend to over-crater in thicker overlying passivation layers and thereby cause IC reliability problems. Use of a laser pulse with a special shape and a fast leading edge, such as tailored pulse, is one technique for controlling link processing. The pulse shaping technique is based on light-loop controlled optical modulation to shape conventional Q-switched solid-state lasers. One advantage of the pulse shaping technique is to provide a tailored pulse shape that can be programmed to have more than one amplitude value. Moreover, it has the capability of providing programmable tailored pulse shapes with discrete amplitude and time duration components. In addition, it provides fast rising and fall time of each pulse at fairly high repetition rate at 355nm with good beam quality. The regular-to-shaped efficiency is up to 50%. We conclude with a discussion of current results for laser processing of semiconductor memory link structures using programmable temporal pulse shapes. The processing experiments showed promising results with shaped pulse.

  3. Feedforward inhibitory control of sensory information in higher-order thalamic nuclei.

    Science.gov (United States)

    Lavallée, Philippe; Urbain, Nadia; Dufresne, Caroline; Bokor, Hajnalka; Acsády, László; Deschênes, Martin

    2005-08-17

    Sensory stimuli evoke strong responses in thalamic relay cells, which ensure a faithful relay of information to the neocortex. However, relay cells of the posterior thalamic nuclear group in rodents, despite receiving significant trigeminal input, respond poorly to vibrissa deflection. Here we show that sensory transmission in this nucleus is impeded by fast feedforward inhibition mediated by GABAergic neurons of the zona incerta. Intracellular recordings of posterior group neurons revealed that the first synaptic event after whisker deflection is a prominent inhibition. Whisker-evoked EPSPs with fast rise time and longer onset latency are unveiled only after lesioning the zona incerta. Excitation survives barrel cortex lesion, demonstrating its peripheral origin. Electron microscopic data confirm that trigeminal axons make large synaptic terminals on the proximal dendrites of posterior group cells and on the somata of incertal neurons. Thus, the connectivity of the system allows an unusual situation in which inhibition precedes ascending excitation resulting in efficient shunting of the responses. The dominance of inhibition over excitation strongly suggests that the paralemniscal pathway is not designed to relay inputs triggered by passive whisker deflection. Instead, we propose that this pathway operates through disinhibition, and that the posterior group forwards to the cerebral cortex sensory information that is contingent on motor instructions.

  4. Spin injection in self-assembled quantum dots coupled with a diluted magnetic quantum well

    International Nuclear Information System (INIS)

    Murayama, A.; Asahina, T.; Souma, I.; Koyama, T.; Hyomi, K.; Nishibayashi, K.; Oka, Y.

    2007-01-01

    Spin injection is studied in self-assembled quantum dots (QDs) of CdSe coupled with a diluted magnetic semiconductor quantum well (DMS-QW) of Zn 1- x - y Cd x Mn y Se, by means of time-resolved circularly polarized photoluminescence (PL). Excitonic PL from the CdSe QDs shows σ - -circular polarization in magnetic fields, mainly due to negative g-values of individual dots, when the energy difference of excitons between the QDs and DMS-QW is large as 300 meV. However, when such energy difference is comparable with LO-phonon energy in the QD, we observe an additional PL peak with the long lifetime as 3.5 ns and σ + -polarization in magnetic fields. It can be attributed to a type-II transition between the down-spin electron injected from the DMS-QW into the QDs, via LO-phonon-assisted resonant tunneling, and the down-spin heavy hole in the DMS-QW. In addition, the electron spin-injection is also evidenced by σ + -polarized PL with the fast rise-time of 20 ps in the QDs

  5. Study of protection devices against the effects of electric discharges inside a very high voltage generator: the Vivitron accelerator

    International Nuclear Information System (INIS)

    Nolot, E.

    1996-01-01

    The Vivitron tandem is a large electrostatic accelerator comprising a Van de Graaff generator designed to reach terminal voltages of around 30 MV. The machine is limited at rather lower nominal voltages (about 20 MV) due to the sensitivity of the insulating column structure to transient overvoltages. These are induced by electrical discharges in compressed SF 6 . This thesis first aims at analysing the fundamental reasons of electrical discharges in order to limit the probability of their occurrence. Then we simulate the transient overvoltages induced and present some improvements which may lead to a stable behaviour of the Vivitron at nominal voltages higher than 20 MV. Initially we deduce discharge onset voltages and actual breakdown field limitations in the different gap geometries from analysis of possible breakdown mechanisms in compressed SF 6 . In a second part, some electrical characteristics of the insulating column structure are measured at high voltage. Fast rising oscillating waves induced by sparking in the Vivitron, along with the associated energies,are determined in the third part. The last part deals with new surge protections of the insulating column structure. Spark gaps with precise onset voltage and optimized shielding electrodes are discussed. ZnO-based varistors designed for operation at very high fields have also been developed in order to reduce transient overvoltage values. (author)

  6. Radio-frequency wave excitation and damping on a high β plasma column

    International Nuclear Information System (INIS)

    Meuth, H.

    1984-01-01

    Azimuthally symmetric (m = 0) radio-frequency (RF) waves for zero and for finite axial wave number k/sub z/ are investigated on the High BETA Q Machine, a two-meter, 20 cm-diameter, low-compression linear theta pinch (T greater than or equal to 200 eV, n approx. = 10 15 cm -3 ) fast rising (0.4 μs) compression field. The (k/sub z/ = 0) modes occur spontaneously following the implosion phase of the discharge. A novel 100-MW 1 to 1.3 MHz, short wavelength current drive excites the plasma column in the vicinity of the lowest fast magnetoacoustic mode at various filling pressures. This current drive is designed as an integral part of the compression coil, which is segmented with a 20-cm axial wavelength (k/sub z/ = 0.314 cm -1 ). The electron density oscillations along major and minor chords at various positions are measured by interferometry perpendicular to the pinch axis. The oscillatory radial magnetic field component between pinch wall and hot plasma edge is measured by probes. Phases, amplitudes and radial mode structure are studied for the free (k = 0) modes and the externally driven (k does not equal 0) modes for various filling pressures of deuterium. The energy deposition from the externally driven RF wave leads to a radial expansion of the plasma column, as observed by axial interferometry and by excluded flux measurements

  7. Search for Physics beyond the Standard Model with the ATLAS detector and the development of radiation detectors

    CERN Document Server

    Silver, Yiftah

    We are investigating a radiation detector based on plasma display panel technology, the principal component of plasma television displays. This Plasma Panel Sensor (PPS) technology is a variant of micro-pattern gas radiation detectors. Based on the properties of existing plasma display panels, we expect eventually to be able to build a sealed array of plasma discharge gas cells to detect ionizing radiation with fast rise time of less than 10ns and high spatial resolution using a pixel pitch of less than 100 micrometer. In this thesis I shall describe our program of testing plasma display panels as detectors, including simulations, design and the first laboratory and beam studies that demonstrate the detection of cosmic ray muons, beta rays and medium energy protons. The ATLAS detector is used to search for high-mass resonances, in particular heavy neutral gauge bosons (Z') and excited states of Kaluza-Klein γ/Z bosons decaying to an electron-positron pair or a muon-antimuon pair. Results are presented based ...

  8. Consumption, Not CO2 emissions: Reframing Perspectives on Climate Change and Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Harriss, Robert; Shui, Bin

    2010-12-01

    A stunning documentary film titled “Mardi Gras: Made in China” provides an insightful and engaging perspective on the globalization of desire for material consumption. Tracing the life cycle of Mardi Gras beads from a small factory in Fuzhou, China to the streets of the Mardi Gras celebration in New Orleans the viewer grasps the near universal human desire to strive for an affluent lifestyle. David Redmon, an independent film maker, follows the beads' genealogy back to the industrial town of Fuzhou, China, to the factory that is the world's largest producer of Mardi Gras beads and related party trinkets. He explores how these frivolous and toxic products affect the people who make them and those who consume them. Redmon captures the daily reality of a Chinese manufacturing facility. It’s workforce of approximately 500 teenage girls, and a handful of boys, live like prisoners in a fenced-in compound. These young people, often working 16-hour days, are constantly exposed to styrene, a chemical known to cause cancer — all for about 10 cents an hour. In addition to indoor pollution, the decrepit coal-fired manufacturing facilities are symbolic of China’s fast rise to the world’s top producer of carbon dioxide (CO2) emissions.1 The process of industrialization and modernization in China is happening at an unprecedented rate and scale.

  9. LONG-TERM LIGHT CURVE OF HIGHLY VARIABLE PROTOSTELLAR STAR GM CEP

    International Nuclear Information System (INIS)

    Xiao Limin; Kroll, Peter; Henden, Arne A.

    2010-01-01

    We present data from the archival plates at Harvard College Observatory and Sonneberg Observatory showing the field of the solar-type pre-main-sequence star GM Cep. A total of 186 magnitudes of GM Cep have been measured on these archival plates, with 176 in blue sensitivity, six in visible, and four in red. We combine our data with data from the literature and from the American Association of Variable Star Observers to depict the long-term light curves of GM Cep in both B and V wavelengths. The light curves span from 1895 until now, with two densely sampled regions (1935-1945 in the B band, and 2006 until now in the V band). The long-term light curves do not show any fast rise behavior as predicted by an accretion mechanism. Both the light curves and the magnitude histograms confirm the conclusion that the light curves are dominated by dips (possibly from extinction) superposed on some quiescence state, instead of outbursts caused by accretion flares. Our result excludes the possibility of GM Cep being a FUor, EXor, or McNeil's Nebula-type star. Several special cases of T Tauri stars were checked, but none of these light curves were compatible with that of GM Cep. The lack of periodicity in the light curve excludes the possibility of GM Cep being a KH 15D system.

  10. Numerical modeling of the transition from low to high confinement in magnetically confined plasma

    DEFF Research Database (Denmark)

    Rasmussen, Jens Juul; Nielsen, Anders Henry; Madsen, Jens

    2016-01-01

    The transition dynamics from low (L) to high (H) mode confinement in magnetically confined plasmas is investigated using a four-field drift fluid model—HESEL (Hot Edge-Sol-Electrostatic). The model includes profile evolution and is solved in a 2D domain at the out-board mid-plane of a tokamak......–I–H transition with an intermediate I-phase displaying limit-cycle oscillations (LCO). The model recovers the power threshold for the L–H transition, the scaling of the threshold with the density and with the loss-rate in the SOL, indicating a decrease in power threshold when switching from single to double null...... including both open and closed field lines. The results reveal different types of L–H-like transitions in response to ramping up the input power by increasing the ion temperature in the edge region. For a fast rising input power we obtain an abrupt transition, and for a slow rising power we obtain a L...

  11. First results with a microcavity plasma panel detector

    Energy Technology Data Exchange (ETDEWEB)

    Ball, R. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Ben-Moshe, M.; Benhammou, Y.; Bensimon, R. [Tel Aviv University, School of Physics and Astronomy, Tel Aviv (Israel); Chapman, J.W. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Davies, M.; Etzion, E. [Tel Aviv University, School of Physics and Astronomy, Tel Aviv (Israel); Ferretti, C., E-mail: claudiof@umich.edu [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Friedman, P.S. [Integrated Sensors, LLC, Ottawa Hills, OH 43606 (United States); Levin, D.S. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Silver, Y. [Tel Aviv University, School of Physics and Astronomy, Tel Aviv (Israel); Varner, R.L. [Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN 737831 (United States); Weaverdyck, C.; Zhou, B. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States)

    2015-06-01

    A new type of gaseous micropattern particle detector based on a closed-cell microcavity plasma panel sensor is reported. The first device was fabricated with 1×1×2 mm cells. It has shown very clean signals of 0.6–2.5 V amplitude, fast rise time of approximately 2 ns and FWHM of about 2 ns with very uniform signal shapes across all pixels. From initial measurements with β particles from a radioactive source, a maximum pixel efficiency greater than 95% is calculated, for operation of the detector over a 100 V wide span of high voltages (HV). Over this same HV range, the background rate per pixel was measured to be 3–4 orders of magnitude lower than the rate with which the cell was illuminated by the β source. Pixel-to-pixel count rate uniformity is within 3% and stable within 3% for many days. The time resolution is 2.4 ns, and a very low cell-to-cell crosstalk has been measured between cells separated by 2 mm.

  12. Methane and sulfate dynamics in sediments from mangrove-dominated tropical coastal lagoons, Yucatan, Mexico

    Science.gov (United States)

    Chuang, P. C.; Young, Megan B.; Dale, Andrew W.; Miller, Laurence G.; Herrera-Silveira, Jorge A.; Paytan, Adina

    2016-01-01

    Porewater profiles in sediment cores from mangrove-dominated coastal lagoons (Celestún and Chelem) on the Yucatán Peninsula, Mexico, reveal the widespread coexistence of dissolved methane and sulfate. This observation is interesting since dissolved methane in porewaters is typically oxidized anaerobically by sulfate. To explain the observations we used a numerical transport-reaction model that was constrained by the field observations. The model suggests that methane in the upper sediments is produced in the sulfate reduction zone at rates ranging between 0.012 and 31 mmol m−2 d−1, concurrent with sulfate reduction rates between 1.1 and 24 mmol SO42− m−2 d−1. These processes are supported by high organic matter content in the sediment and the use of non-competitive substrates by methanogenic microorganisms. Indeed sediment slurry incubation experiments show that non-competitive substrates such as trimethylamine (TMA) and methanol can be utilized for microbial methanogenesis at the study sites. The model also indicates that a significant fraction of methane is transported to the sulfate reduction zone from deeper zones within the sedimentary column by rising bubbles and gas dissolution. The shallow depths of methane production and the fast rising methane gas bubbles reduce the likelihood for oxidation, thereby allowing a large fraction of the methane formed in the sediments to escape to the overlying water column.

  13. Investigation of the dielectric recovery in synthetic air in a high voltage circuit breaker

    International Nuclear Information System (INIS)

    Seeger, M; Naidis, G; Steffens, A; Nordborg, H; Claessens, M

    2005-01-01

    The dielectric recovery of an axially blown arc in an experimental set-up based on a conventional HV circuit breaker was investigated both experimentally and theoretically. As a quenching gas, synthetic air was used. The investigated time range was from 10 μs to 10 ms after current zero (CZ). A fast rise in the dielectric strength during the first 100 μs, followed by a plateau and further rise later was observed. The dependences on the breaking current and pressure were determined. The measured dielectric recovery during the first 100 μs after CZ could be reproduced with good accuracy by computational fluid dynamics simulations. From that it could be deduced that the temperature decay in the axis does not depend sensitively on the pressure. The dielectric recovery during the first 100 μs scales therefore mainly with the filling pressure. The plateau in the breakdown characteristic is due to a hot vapour layer from the still evaporating PTFE nozzle surface

  14. Study of protection devices against the effects of electric discharges inside a very high voltage generator: the Vivitron accelerator; Etude de dispositifs de protection contre les effets des decharges electriques au sein d`un generateur de tres haute tension: l`accelerateur Vivitron

    Energy Technology Data Exchange (ETDEWEB)

    Nolot, E

    1996-10-31

    The Vivitron tandem is a large electrostatic accelerator comprising a Van de Graaff generator designed to reach terminal voltages of around 30 MV. The machine is limited at rather lower nominal voltages (about 20 MV) due to the sensitivity of the insulating column structure to transient overvoltages. These are induced by electrical discharges in compressed SF{sub 6}. This thesis first aims at analysing the fundamental reasons of electrical discharges in order to limit the probability of their occurrence. Then we simulate the transient overvoltages induced and present some improvements which may lead to a stable behaviour of the Vivitron at nominal voltages higher than 20 MV. Initially we deduce discharge onset voltages and actual breakdown field limitations in the different gap geometries from analysis of possible breakdown mechanisms in compressed SF{sub 6}. In a second part, some electrical characteristics of the insulating column structure are measured at high voltage. Fast rising oscillating waves induced by sparking in the Vivitron, along with the associated energies,are determined in the third part. The last part deals with new surge protections of the insulating column structure. Spark gaps with precise onset voltage and optimized shielding electrodes are discussed. ZnO-based varistors designed for operation at very high fields have also been developed in order to reduce transient overvoltage values. (author). 122 refs.

  15. Experimental study of collective acceleration of light and heavy ions from a localized gas cloud

    International Nuclear Information System (INIS)

    Floyd, L.E. IV.

    1984-01-01

    An experimental investigation into the collective acceleration of various gaseous atoms (H, D, He, N, Ne, Ar, Kr, Xe) is presented. A localized gas cloud is formed using a fast rise puff valve immediately downstream of an intense relativistic electron beam diode. The diode consists of a tungsten needle cathode and a stainless steel anode with a hole on axis. The diode is driven by an electron beam generator system consisting of a Marx generator, Blumlein line, and transmission line transformer. It produces a 1.5 MV, 35 kA, 30 ns FWHM electrical pulse measured at the diode. The resulting electron beam has nu/γ approx. 1 and is about six times the vacuum space charge limiting current in the downstream drift chamber. Ions are produced during the impact of the electron beam with the gas cloud and are accelerated to high energy by collective effects associated with the electron beam space charge. Ion energy diagnostics include fast neutron counting, nuclear activation of stacked foils, measurement of time of flight using direct intercept current collector probes, and range/energy analysis of nuclear track plates. The principal result of the experiments was that all ion species were accelerated to a maximum velocity of 0.1c, corresponding to an energy of 4.7 MeV/nucleon. Energy spectra obtained from stacked foil activation for accelerated hydrogen and deuterium were found to be approximately exponential in character

  16. Some fast beam kicker magnet systems at SLAC

    International Nuclear Information System (INIS)

    Bulos, F.; Cassel, R.L.; Donaldson, A.R.

    1987-01-01

    The Stanford Linear Collider requires very fast rise and fall times from its kicker magnets. The damping rings and positron source need either one or two bunches deflected from two or three that are separated in time by about 59 ns. The final focus region kicker magnets need a rise time of less than 700 ns and each one deflects only one bunch. This paper discusses the design and characteristics of a thyratron-switched, castor-oil-filled, coaxial, Blumlein line used for one bunch kicking. It discharges a 118 ns (at the base), 50 kV, 3 kA pulse into a 33 cm long, ferrite-loaded, kicker magnet of rectangular coaxial-line geometry, which in turn is terminated by a matched load. Reference is made to a Fermilab (FNAL) designed magnet and a dual-thyratron pulsar that will deflect two serial bunches in or out of the electron ring. Also, a brief description of the final focus magnet is given. Work is continuing on the various subsystem components to decrease the pulse rise and fall time, flattop ripple and jitter and to reduce some of the sources of noise and hv breakdown

  17. Heterogeneous Cytoskeletal Force Distribution Delineates the Onset Ca2+ Influx Under Fluid Shear Stress in Astrocytes

    Directory of Open Access Journals (Sweden)

    Mohammad M. Maneshi

    2018-03-01

    Full Text Available Mechanical perturbations increase intracellular Ca2+ in cells, but the coupling of mechanical forces to the Ca2+ influx is not well understood. We used a microfluidic chamber driven with a high-speed pressure servo to generate defined fluid shear stress to cultured astrocytes, and simultaneously measured cytoskeletal forces using a force sensitive actinin optical sensor and intracellular Ca2+. Fluid shear generated non-uniform forces in actinin that critically depended on the stimulus rise time emphasizing the presence of viscoelasticity in the activating sequence. A short (ms shear pulse with fast rise time (2 ms produced an immediate increase in actinin tension at the upstream end of the cell with minimal changes at the downstream end. The onset of Ca2+ rise began at highly strained areas. In contrast to stimulus steps, slow ramp stimuli produced uniform forces throughout the cells and only a small Ca2+ response. The heterogeneity of force distribution is exaggerated in cells having fewer stress fibers and lower pre-tension in actinin. Disruption of cytoskeleton with cytochalasin-D (Cyt-D eliminated force gradients, and in those cells Ca2+ elevation started from the soma. Thus, Ca2+ influx with a mechanical stimulus depends on local stress within the cell and that is time dependent due to viscoelastic mechanics.

  18. Magnetic reconnection and precursor effect in coaxial discharge

    International Nuclear Information System (INIS)

    Masoud, M.M.; Soliman, H.M.; El-Khalafawy, T.A.

    1988-01-01

    A precursor pulse was observed ahead of the plasma sheath produced by a coaxial electrode discharge system. The velocity of the precursor pulse was 4x10 7 cmS -1 and the velocity of the plasma sheath was 6x10 6 cmS -1 . The precursor pulse was unaffected when an axial magnetic field of 6 K.G. was applied to the propagation chamber, while the plasma sheath velocity increased and downstream structure were changed. The precursor pulse was split, sometimes, into two or more peaks, had the same shape and structure of the original one. The rest gas was heated up to 20 e.V. when the precursor pulse was destructed. The precursor pulse propagation mechanism and parameters showed that it had a solitary wave structure and behaviour. A reversed magnetic field was detected, when the plasma sheath had diamagnetic properties, where magnetic reconnection took place. Magnetic reconnection was responsible for energy transfiguration and wave generation. This was due to acceleration mechanism of charged particles occurred by the induced electric field at the moment of magnetic reconnection. The detected induced electric field had a high field intensity and fast rise time pulse. Several instabilities were referred to magnetic reconnection and the precursor pulse observed was a result of such instabilities

  19. Elastic-Plastic Behavior of U6Nb Under Ramp Wave Loading

    Science.gov (United States)

    Hayes, D. B.; Hall, C.; Hixson, R. S.

    2005-07-01

    Prior shock experiments on the alloy uranium-niobium-6 wt.% (U6Nb) were absent an elastic precursor when one was expected (A. K. Zurek, et. al., Journal de Physique IV, 10 (#9) p677-682). This was later explained as a consequence of shear stress relaxation from time-dependent twinning that prevented sufficient shear stress for plastic yielding. (D. B. Hayes, et. al., Shock Compression of Condensed Matter-2003, p1177, American Institute of Physics 2004) Pressure was ramped to 13 GPa in 150-ns on eight U6Nb specimens with thicknesses from 0.5 -- 1.1-mm and the back surface velocities were measured with laser interferometry. This pressure load produces a stress wave with sufficiently fast rise time so that, according to the prior work, twins do not have time to form. Four of the U6Nb specimens had been cold-rolled which increased the yield stress. Each velocity history was analyzed with a backward integration analysis to give the stress-strain response of the U6Nb. Comparison of these results with prior Hugoniot measurements shows that the U6Nb in the present experiments responds as an elastic-plastic material and the deduced yield strength of the baseline and of the cold-rolled material agree with static results.

  20. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron

    International Nuclear Information System (INIS)

    Jones, Kevin C.; Solberg, Timothy D.; Avery, Stephen; Vander Stappen, François; Janssens, Guillaume; Prieels, Damien; Bawiec, Christopher R.; Lewin, Peter A.; Sehgal, Chandra M.

    2015-01-01

    Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring

  1. Three-dimensional calculations for a 4 kA, 3.5 MV, 2 microsecond injector with asymmetric power feed

    Directory of Open Access Journals (Sweden)

    Thomas P. Hughes

    1999-11-01

    Full Text Available The DARHT-2 accelerator under construction at Los Alamos National Laboratory requires a long flattop (2μs 2–4 kA, 3.5 MV, low-emittance electron beam source. The injector is being constructed at Lawrence Berkeley National Laboratory and consists of a large-area thermionic cathode mounted atop a vertical column. The 90° bend between the horizontally emitted beam and the column produces dipole and higher-pole fields which must be corrected. In addition, the fast rise of the current flowing into the vacuum tank excites rf modes which cause transverse oscillations of the beam centroid. We have modeled these effects with the 3D electromagnetic code LSP. The code has models for pulsed power transmission lines, space-charge-limited emission and transport of charged particles, externally applied magnetic fields, and frequency-dependent absorption of rf. We calculate the transverse displacement of the beam as a function of time during the current pulse, and the positioning and thickness of ferrite absorber needed to damp the rf modes. The numerical results are compared to analytic calculations.

  2. Speed of response, pile-up, and signal to noise ratio in liquid ionization calorimeters

    International Nuclear Information System (INIS)

    Colas, J.

    1989-06-01

    Although liquid ionization calorimeters have been mostly used up to now with slow readout, their signals have a fast rise time. However, it is not easy to get this fast component of the pulse out of the calorimeter. For this purpose a new connection scheme of the electrodes, the ''electrostatic transformer,'' is presented. This technique reduces the detector capacitance while keeping the number of channels at an acceptable level. Also it allows the use of transmission lines to bring signals from the electrodes to the preamplifiers which could be located in an accessible area. With room temperature liquids the length of these cables can be short, keeping the added noise at a reasonable level. Contributions to the error on the energy measurement from pile up and electronics noise are studied in detail. Even on this issue, room temperature liquids (TMP/TMS) are found to be competitive with cold liquid argon at the expense of a moderately higher gap voltage. 5 refs., 9 figs., 2 tabs

  3. Electrochemical cell and electrode designs for high-temperature/high-pressure kinetic measurements

    International Nuclear Information System (INIS)

    Nagy, Z.; Yonco, R.M.

    1987-05-01

    Many corrosion processes of interest to the nuclear power industry occur in high-temperature/high-pressure aqueous systems. The investigation of the kinetics of the appropriate electrode reactions is a serious experimental challenge, partially because of the high temperatures and pressures and partially because many of these reactions are very rapid, requiring fast relaxation measurements. An electrochemical measuring system is described which is suitable for measurements of the kinetics of fast electrode reactions at temperatures extending to at least 300 0 C and pressures to at least 10 MPa (100 atmospheres). The system includes solution preparation and handling equipment, the electrochemical cell, and several electrode designs. One of the new designs is a coaxial working electrode-counter electrode assembly; this electrode can be used with very fast-rising pulses, and it provides a well defined, repeatedly-polishable working surface. Low-impedance reference electrodes are also described, based on electrode concepts responding to the pH or the redox potential of the test solution. Additionally, a novel, long-life primary reference electrode design is reported, based on a modification of the external, pressure-balanced Ag/AgCl reference electrode

  4. Compact sub-nanosecond pulse seed source with diode laser driven by a high-speed circuit

    Science.gov (United States)

    Wang, Xiaoqian; Wang, Bo; Wang, Junhua; Cheng, Wenyong

    2018-06-01

    A compact sub-nanosecond pulse seed source with 1550 nm diode laser (DL) was obtained by employing a high-speed circuit. The circuit mainly consisted of a short pulse generator and a short pulse driver. The short pulse generator, making up of a complex programmable logic device (CPLD), a level translator, two programmable delay chips and an AND gate chip, output a triggering signal to control metal-oxide-semiconductor field-effect transistor (MOSFET) switch of the short pulse driver. The MOSFET switch with fast rising time and falling time both shorter than 1 ns drove the DL to emit short optical pulses. Performances of the pulse seed source were tested. The results showed that continuously adjustable repetition frequency ranging from 500 kHz to 100 MHz and pulse duration in the range of 538 ps to 10 ns were obtained, respectively. 537 μW output was obtained at the highest repetition frequency of 100 MHz with the shortest pulse duration of 538 ps. These seed pulses were injected into an fiber amplifier, and no optical pulse distortions were found.

  5. Pulsed klystrons with feedback controlled mod-anode modulators

    Energy Technology Data Exchange (ETDEWEB)

    Reass, William A [Los Alamos National Laboratory; Baca, David M [Los Alamos National Laboratory; Jerry, Davis L [Los Alamos National Laboratory; Rees, Daniel E [Los Alamos National Laboratory

    2009-01-01

    This paper describes a fast rise and fall, totem-pole mod-anode modulators for klystron application. Details of these systems as recently installed utilizing a beam switch tube ''on-deck'' and a planar triode ''off-deck'' in a grid-catch feedback regulated configuration will be provided. The grid-catch configuration regulates the klystron mod-anode voltage at a specified set-point during switching as well as providing a control mechanism that flat-top regulates the klystron beam current during the pulse. This flat-topped klystron beam current is maintained while the capacitor bank droops. In addition, we will review more modern on-deck designs using a high gain, high voltage planar triode as a regulating and switching element. These designs are being developed, tested, and implemented for the Los Alamos Neutron Science Center (LANSCE) accelerator refurbishment project, ''LANSCE-R''. An advantage of the planar triode is that the tube can be directly operated with solid state linear components and provides for a very compact design. The tubes are inexpensive compared to stacked semiconductor switching assemblies and also provide a linear control capability. Details of these designs are provided as well as operational and developmental results.

  6. Current density monitor for intense relativistic electron beams

    International Nuclear Information System (INIS)

    Fiorito, R.B.; Raleigh, M.; Seltzer, S.M.

    1986-01-01

    We describe a new type of electric probe which is capable of measuring the time-resolved current density profile of a stable, reproducible, high-energy (>4-MeV) high-current (>1-kA) electron beam. The sensing element of this probe is an open-ended but capped-off 50-Ω coaxial line constructed of graphite. The graphite sensor is 4.3 mm in diameter, 6 cm long, and is range thin to the primary beam electrons. The probe produces a signal proportional to the intercepted beam current. When the sensor is scanned radially through the beam during repeated pulses, a curve of signal versus depth of insertion is produced from which the radial current density profile can be determined. Measurements are presented of the profile of the electron beam from the Experimental Test Accelerator (4.5 MeV, 10 kA) at Lawrence Livermore National Laboratory. Good agreement is shown between measurements made with this probe and the beam radius as predicted by transport codes. The advantage of the electric probe lies in its ruggedness, simplicity, inherent fast rise time, and low cost. In contrast to other systems it requires no radiation shielding, water cooling, or auxiliary support equipment to operate in an intense beam environment

  7. Assessment of renewables for energy security and carbon mitigation in Southeast Asia: The case of Indonesia and Thailand

    International Nuclear Information System (INIS)

    Kumar, Subhash

    2016-01-01

    Highlights: • Energy sector of Southeast Asia (Indonesia and Thailand) is modeled. • LEAP energy model is used. • Least cost optimization method is used to estimate the future electric supply. • CO_2 mitigation and electricity production costs are also estimated. - Abstract: Due to fast rising energy demand, Southeast Asia has become a larger energy consumer and bigger player in global energy markets. Energy security and environmental emissions reduction have become higher priorities to ensure energy supply at affordable costs, for continued economic growth and development. To address these issues renewable energy plays a vital role in the long-term future for sustainable development. This paper estimates and analyzes the renewable energy potential in the energy mix in two Southeast Asian countries, Indonesia and Thailand. The LEAP energy model is used to develop different renewable energy policy scenarios from base year 2010 to 2050. The results of the simulation show that a large proportion of electricity must be produced by renewables by 2050 if full potential of renewables is to be exploited. In this case, 81% and 88% of CO_2 emissions are reduced in Indonesia and Thailand respectively. In implementing renewables at large scale in both these countries the cost of production increases substantially.

  8. Penetration of magnetic fields into plasmas

    International Nuclear Information System (INIS)

    Bengtson, R.D.

    1976-01-01

    A pulsed plasma experiment was constructed to study the penetration of a fast-rising magnetic pulse into an initially unmagnetized, weakly ionized plasma of density 10 11 to 10 13 cm -3 . Magnetic probe data was analyzed using a magnetohydrodynamic approach to obtain detailed information about the dynamics of the penetration mechanism. In particular it is possible to obtain the local resistivity and thus the collision frequency from this data. These collision frequencies compare favorably with theoretical estimates of turbulent collision frequencies. The data indicates that sufficient energy is absorbed to heat the bulk of the plasma to temeratures in excess of 1 keV. A differential rotation of a collisionless theta-pinch column during implosion has been observed and explained by a model in which the driving mechanism is the off-diagonal element p/sub r theta/ of the pressure tensor. Rotational motion was detected by directional probes and spectroscopic techniques. Experimental data were modeled by a one-dimensional hybrid code which included ionization and charge exchange of protons with neutral H atoms

  9. Numerical modeling of the transition from low to high confinement in magnetically confined plasma

    International Nuclear Information System (INIS)

    Rasmussen, J Juul; Nielsen, A H; Madsen, J; Naulin, V; Xu, G S

    2016-01-01

    The transition dynamics from low (L) to high (H) mode confinement in magnetically confined plasmas is investigated using a four-field drift fluid model—HESEL (Hot Edge-Sol-Electrostatic). The model includes profile evolution and is solved in a 2D domain at the out-board mid-plane of a tokamak including both open and closed field lines. The results reveal different types of L–H-like transitions in response to ramping up the input power by increasing the ion temperature in the edge region. For a fast rising input power we obtain an abrupt transition, and for a slow rising power we obtain a L–I–H transition with an intermediate I-phase displaying limit-cycle oscillations (LCO). The model recovers the power threshold for the L–H transition, the scaling of the threshold with the density and with the loss-rate in the SOL, indicating a decrease in power threshold when switching from single to double null configuration. The results hold promises for developing full predictive modeling of the L–H transition, which is an essential step in understanding and optimizing fusion devices. (paper)

  10. Solar filament material oscillations and drainage before eruption

    International Nuclear Information System (INIS)

    Bi, Yi; Jiang, Yunchun; Yang, Jiayan; Hong, Junchao; Li, Haidong; Yang, Dan; Yang, Bo

    2014-01-01

    Both large-amplitude longitudinal (LAL) oscillations and material drainage in a solar filament are associated with the flow of material along the filament axis, often followed by an eruption. However, the relationship between these two motions and a subsequent eruption event is poorly understood. We analyze a filament eruption using EUV imaging data captured by the Atmospheric Imaging Array on board the Solar Dynamics Observatory and the Hα images from the Global Oscillation Network Group. Hours before the eruption, the filament was activated, with one of its legs undergoing a slow rising motion. The asymmetric activation inclined the filament relative to the solar surface. After the active phase, LAL oscillations were observed in the inclined filament. The oscillation period increased slightly over time, which may suggest that the magnetic fields supporting the filament evolve to be flatter during the slow rising phase. After the oscillations, a significant amount of filament material was drained toward one filament endpoint, followed immediately by the violent eruption of the filament. The material drainage may further support the change in magnetic topology prior to the eruption. Moreover, we suggest that the filament material drainage could play a role in the transition from a slow to a fast rise of the erupting filament.

  11. Neutron temporal diagnostic for high-yield deuterium–tritium cryogenic implosions on OMEGA

    Energy Technology Data Exchange (ETDEWEB)

    Stoeckl, C.; Boni, R.; Ehrne, F.; Forrest, C. J.; Glebov, V. Yu.; Katz, J.; Lonobile, D. J.; Magoon, J.; Regan, S. P.; Shoup, M. J.; Sorce, A.; Sorce, C.; Sangster, T. C.; Weiner, D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

    2016-05-15

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic deuterium–tritium (DT) implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ∼16 m to a streak camera in a well-shielded location. An ∼200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ∼40 ± 10 ps was measured in a dedicated experiment using hard x-rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. The measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.

  12. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

    Directory of Open Access Journals (Sweden)

    Y.-M. Chiang

    2011-01-01

    Full Text Available Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS and counterpropagation fuzzy neural network for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.

  13. Predictors of life satisfaction among Asian American adolescents- analysis of add health data.

    Science.gov (United States)

    Huang, Jui-Yen; Wang, Kuan-Yuan; Ringel-Kulka, Tamar

    2015-01-01

    Life satisfaction correlates with adolescent risk taking behavior and their outcomes in adulthood. Despite the fast rise in numbers of Asian adolescents in the U.S., the predictors of their life satisfaction are not well understood. This study examined the relationship between several demographic and contextual factors and global life satisfaction among this population. Data were derived from the National Longitudinal Study of Adolescent Health (Add Health), a nationally representative probability sample of US adolescents. Bivariate and multivariable logistic regression was conducted to evaluate hypothesized predictors of global life satisfaction of Asian American adolescents. All analyses were conducted using STATA version 11. After exclusion of cases with missing values, 1021 Asian American adolescents were studied. Self- rated health, self-esteem, perceived neighborhood quality, parental support and peer support were significantly and positively related to better global life satisfaction. However, after controlling for other factors, only self-esteem (adjusted odds ratio [aOR]: 4.76; 95% confidence interval [CI]: 2.86-8.33) and perceived peer support (aOR: 2.76; 95% CI: 1.33-5.76) significantly predicted higher life satisfaction. Peer support and adolescents' self-concept are strongly correlated with Asian American adolescents' subjective well-being. To promote the wellness of this population, culturally sensitive strategies in developing peer relationship and healthy self-concept may be effective. More studies are needed for subgroup comparison of various ethnicities among Asian American adolescents.

  14. The effect of coronae on leader initiation and development under thunderstorm conditions and in long air gaps

    International Nuclear Information System (INIS)

    Aleksandrov, N.L.; Bazelyan, E.M.; Carpenter Jr, R.B.; Drabkin, M.M.; Raizer, Yu P.

    2001-01-01

    The initiation and development of a leader is theoretically studied by considering an electrode which is embedded in a cloud of space charge injected by a corona discharge. The focus is on the initiation of upward lightning from a stationary grounded object in a thundercloud electric field. The main results are also applicable to the leader process in long laboratory air gaps at direct voltage. Simple physical models of non-stationary coronae developing in free space near a solitary stressed sphere and of a leader propagating in the space charge cloud of coronae are suggested. It is shown that the electric field redistribution due to the space charge released by the long corona discharge near the top of a high object hinders the initiation and development of an upward leader from the object in a thundercloud electric field. The conditions for the formation of corona streamers that are required to initiate a leader are derived. The criteria are obtained for a leader to be initiated and propagate in the space charge cloud. A hypothesis is proposed that the streamers are never initiated near the top of a high object under thunderstorm conditions if at ground level there is only a slowly-varying electric field of the thundercloud. The streamers may be induced by the fast-rising electric field of distant downward leaders or intracloud discharges. (author)

  15. Mechanism of ultraviolet photoconductivity in zinc oxide nanoneedles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjeev [School of Information and Communication Engineering, and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Gil-Ho [School of Information and Communication Engineering, and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Sreenivas, K [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Tandon, R P [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India)

    2007-11-28

    Ultraviolet photoconductivity in zinc oxide (ZnO) nanoneedles grown on the surface of a multilayer structure comprised of ZnO film (50 nm)/Zn layer (20 nm)/ZnO film (2 {mu}m) fabricated on a stainless steel substrate using an unbalanced magnetron sputtering technique is reported. It was observed that the multilayered structure with ZnO nanoneedles exhibited enhanced ultraviolet photoconductivity in comparison to the ZnO films that were without nanoneedles. The enhancement in the photoconductivity is attributed to the increase in the quantum yield of the photogenerated charge carriers due to the presence of nanoneedles. A successive slow photoresponse transient following after a fast rise is due to the establishment of equilibrium between the charge carriers in the conduction band and the trapping centers created due to the shallow defects in the ZnO film. The observed photoresponse is critically analyzed on the basis of trapping levels created by the oxygen species during the high pressure deposition of the ZnO multilayer. Results show the promise of ZnO nanostructures in ultraviolet detection applications. (fast track communication)

  16. Mechanism of ultraviolet photoconductivity in zinc oxide nanoneedles

    International Nuclear Information System (INIS)

    Kumar, Sanjeev; Kim, Gil-Ho; Sreenivas, K; Tandon, R P

    2007-01-01

    Ultraviolet photoconductivity in zinc oxide (ZnO) nanoneedles grown on the surface of a multilayer structure comprised of ZnO film (50 nm)/Zn layer (20 nm)/ZnO film (2 μm) fabricated on a stainless steel substrate using an unbalanced magnetron sputtering technique is reported. It was observed that the multilayered structure with ZnO nanoneedles exhibited enhanced ultraviolet photoconductivity in comparison to the ZnO films that were without nanoneedles. The enhancement in the photoconductivity is attributed to the increase in the quantum yield of the photogenerated charge carriers due to the presence of nanoneedles. A successive slow photoresponse transient following after a fast rise is due to the establishment of equilibrium between the charge carriers in the conduction band and the trapping centers created due to the shallow defects in the ZnO film. The observed photoresponse is critically analyzed on the basis of trapping levels created by the oxygen species during the high pressure deposition of the ZnO multilayer. Results show the promise of ZnO nanostructures in ultraviolet detection applications. (fast track communication)

  17. Analog front-end cell designed in a commercial 025 mu m process for the ATLAS pixel detector at LHC

    CERN Document Server

    Blanquart, L; Comes, G; Denes, P; Einsweiler, Kevin F; Fischer, P; Mandelli, E; Meddeler, G; Peric, I; Richardson, J

    2002-01-01

    A new analog pixel front-end cell has been developed for the ATLAS detector at the future Large Hadron Collider (LHC) at the European Laboratory for Particle Physics (CERN). This analog cell has been submitted in two commercial 0.25 mu m CMOS processes (in an analog test chip format), using special layout techniques for radiation hardness purposes. It is composed of two cascaded amplifiers followed by a fast discriminator featuring a detection threshold within the range of 1000 to 10000 electrons. The first preamplifier has the principal role of providing a large bandwidth, low input impedance, and fast rise time in order to enhance the time-walk and crosstalk performance, whereas the second fully differential amplifier is aimed at delivering a sufficiently high-voltage gain for optimum comparison. A new do feedback concept renders the cell tolerant of sensor leakage current up to 300 nA and provides monitoring of this current. Two 5-bit digital-to-analog converters tolerant to single- event upset have been i...

  18. Diffractive Photoproduction of J/psi Mesons with Large Momentum Transfer at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Beglarian, A.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, C.; Berndt, T.; Bizot, J.C.; Bohme, J.; Boenig, M.O.; Boudry, V.; Bracinik, J.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Burrage, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Chekelian, V.; Clarke, D.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Grabski, V.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Haidt, D.; Hajduk, L.; Haller, J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, C.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Katzy, J.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Koutouev, R.; Koutov, A.; Kroseberg, J.; Kruger, K.; Kueckens, J.; Kuhr, T.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lueders, H.; Luders, S.; Luke, D.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michine, S.; Mikocki, S.; Milstead, D.; Mohrdieck, S.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Newman, Paul R.; Niebergall, F.; Niebuhr, C.; Nikitin, D.; Nowak, G.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Petrukhin, A.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Povh, B.; Raicevic, N.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Uraev, A.; Urban, Marcel; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vassiliev, S.; Vazdik, Y.; Veelken, C.; Vest, A.; Vichnevski, A.; Volchinski, V.; Wacker, K.; Wagner, J.; Wallny, R.; Waugh, B.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Winde, M.; Winter, G.G.; Wissing, C.; Woehrling, E.E.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; zur Nedden, M.

    2003-01-01

    The diffractive photoproduction of J/psi mesons is measured with the H1 detector at the ep collider HERA using an integrated luminosity of 78 pb^-1. The differential cross section d sigma(gamma p -> J/psi Y) / d t is studied in the range 2 < |t| < 30 GeV^2, where t is the square of the four-momentum transferred at the proton vertex. The cross section is also presented as a function of the photon-proton centre-of-mass energy W in three t intervals, spanning the range 50 < W < 200 GeV. A fast rise of the cross section with W is observed for each t range and the slope for the effective linear Pomeron trajectory is measured to be alpha^\\prime= -0.0135 \\pm 0.0074 (stat.) \\pm 0.0051 (syst.) GeV^-2. The measurements are compared with perturbative QCD models based on BFKL and DGLAP evolution. The data are found to be compatible with s-channel helicity conservation.

  19. Study of built-in amplifier performance on HV-CMOS sensor for the ATLAS phase-II strip tracker upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Z., E-mail: zhijun.liang@cern.ch [University of California Santa Cruz, Santa Cruz Institute for Particle Physics (SCIPP) (United States); Institute of High Energy Physics, Beijing (China); Affolder, A. [University of Liverpool (United Kingdom); Arndt, K. [University of Oxford (United Kingdom); Bates, R. [SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Benoit, M.; Di Bello, F. [University of Geneva (Switzerland); Blue, A. [SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Bortoletto, D. [University of Oxford (United Kingdom); Buckland, M. [University of Liverpool (United Kingdom); CERN, European Center for Nuclear Research (Switzerland); Buttar, C. [SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Caragiulo, P. [SLAC National Accelerator Laboratory (United States); Das, D.; Dopke, J. [Rutherford Appleton Laboratory, Didcot (United Kingdom); Dragone, A. [SLAC National Accelerator Laboratory (United States); Ehrler, F. [Karlsruhe Institute of Technology (Germany); Fadeyev, V.; Galloway, Z.; Grabas, H. [University of California Santa Cruz, Santa Cruz Institute for Particle Physics (SCIPP) (United States); Gregor, I.M. [Deutsches Elektronen-Synchrotron (Germany); Grenier, P. [SLAC National Accelerator Laboratory (United States); and others

    2016-09-21

    This paper focuses on the performance of analog readout electronics (built-in amplifier) integrated on the high-voltage (HV) CMOS silicon sensor chip, as well as its radiation hardness. Since the total collected charge from minimum ionizing particle (MIP) for the CMOS sensor is 10 times lower than for a conventional planar sensor, it is crucial to integrate a low noise built-in amplifier on the sensor chip to improve the signal to noise ratio of the system. As part of the investigation for the ATLAS strip detector upgrade, a test chip that comprises several pixel arrays with different geometries, as well as standalone built-in amplifiers and built-in amplifiers in pixel arrays has been fabricated in a 0.35 μm high-voltage CMOS process. Measurements of the gain and the noise of both the standalone amplifiers and built-in amplifiers in pixel arrays were performed before and after gamma radiation of up to 60 Mrad. Of special interest is the variation of the noise as a function of the sensor capacitance. We optimized the configuration of the amplifier for a fast rise time to adapt to the LHC bunch crossing period of 25 ns, and measured the timing characteristics including jitter. Our results indicate an adequate amplifier performance for monolithic structures used in HV-CMOS technology. The results have been incorporated in the next submission of a large-structure chip.

  20. Some fast beam kicker magnet systems at SLAC

    International Nuclear Information System (INIS)

    Bulos, F.; Cassel, R.L.; Donaldson, A.R.; Genova, L.F.; Grant, J.A.; Mihalka, A.M.; Sukiennicki, B.A.; Tomlin, W.T.; Veldhuizen, F.T.; Walz, D.R.

    1987-01-01

    The Stanford Linear Collider requires very fast rise and fall times from its kicker magnets. The damping rings and positron source need either one or two bunches deflected from two or three that are separated in time by about 59 ns. The final focus region kicker magnets need a rise time of less than 700 ns and each one deflects only one bunch. This paper discusses the design and characteristics of a thyratron-switched, castor-oil-filled, coaxial, Blumlein line used for one bunch kicking. It discharges a 118 ns (at the base), 50 kV, 3 kA pulse into a 33 cm long, ferrite-loaded, kicker magnet of rectangular coaxial-line geometry, which in turn is terminated by a matched load. Reference is made to a Fermilab (FNAL) designed magnet and a dual-thyratron pulser that deflects two serial bunches in or out of the electron ring. Also, a brief description of the final focus magnet is given

  1. Swift Detection of a 65 Day X-Ray Period from the Ultraluminous Pulsar NGC 7793 P13

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Chin-Ping; Ng, C.-Y. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Li, K. L. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Kong, Albert K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lin, Lupin Chun-Che, E-mail: cphu@hku.hk, E-mail: liliray@pa.msu.edu [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China)

    2017-01-20

    NGC 7793 P13 is an ultraluminous X-ray source harboring an accreting pulsar. We report on the detection of a ∼65 day period X-ray modulation with Swift observations in this system. The modulation period found in the X-ray band is P = 65.05 ± 0.10 days and the profile is asymmetric with a fast rise and a slower decay. On the other hand, the u -band light curve collected by Swift UVOT confirmed an optical modulation with a period of P = 64.24 ± 0.13 days. We explored the phase evolution of the X-ray and optical periodicities and propose two solutions. A superorbital modulation with a period of ∼2700–4700 days probably caused by the precession of a warped accretion disk is necessary to interpret the phase drift of the optical data. We further discuss the implication if this ∼65 day periodicity is caused by the superorbital modulation. Estimated from the relationship between the spin-orbital and orbital-superorbital periods of known disk-fed high-mass X-ray binaries, the orbital period of P13 is roughly estimated as 3–7 days. In this case, an unknown mechanism with a much longer timescale is needed to interpret the phase drift. Further studies on the stability of these two periodicities with a long-term monitoring could help us to probe their physical origins.

  2. Determinants of food price inflation in Finland—The role of energy

    International Nuclear Information System (INIS)

    Irz, Xavier; Niemi, Jyrki; Liu, Xing

    2013-01-01

    The agricultural commodity crisis of 2006–2008 and the recent evolution of commodity markets have reignited anxieties in Finland over fast-rising food prices and food security. Little is known about the strength of the linkages between food markets and input markets, such as the energy market. Using monthly series of price indices from 1995 to 2010, we estimate a vector error-correction (VEC) model in a cointegration framework in order to investigate the short-term and long-term dynamics of food price formation. The results indicate that a statistically significant long-run equilibrium relationship exists between the prices of food and those of the main variable inputs consumed by the food chain, namely agricultural commodities, labour, and energy. When judged by the magnitude of long-run pass-through rates, farm prices represent the main determinant of food prices, followed by wages in food retail and the price of energy. The parsimonious VEC model suggests that the dynamics of food price formation are dominated by a relatively quick process of adjustment to the long-run equilibrium, the half life of the transitional dynamics being six to eight months following a shock. - Highlights: • We investigate the dynamics of food price formation in Finland. • We establish the existence of a long-run equilibrium relationship between the prices of food, energy, agricultural commodities, and wages. • Energy price plays a significant but limited role in determining the equilibrium level of food prices

  3. Experimental investigations of argon spark gap recovery times by developing a high voltage double pulse generator.

    Science.gov (United States)

    Reddy, C S; Patel, A S; Naresh, P; Sharma, Archana; Mittal, K C

    2014-06-01

    The voltage recovery in a spark gap for repetitive switching has been a long research interest. A two-pulse technique is used to determine the voltage recovery times of gas spark gap switch with argon gas. First pulse is applied to the spark gap to over-volt the gap and initiate the breakdown and second pulse is used to determine the recovery voltage of the gap. A pulse transformer based double pulse generator capable of generating 40 kV peak pulses with rise time of 300 ns and 1.5 μs FWHM and with a delay of 10 μs-1 s was developed. A matrix transformer topology is used to get fast rise times by reducing L(l)C(d) product in the circuit. Recovery Experiments have been conducted for 2 mm, 3 mm, and 4 mm gap length with 0-2 bars pressure for argon gas. Electrodes of a sparkgap chamber are of rogowsky profile type, made up of stainless steel material, and thickness of 15 mm are used in the recovery study. The variation in the distance and pressure effects the recovery rate of the spark gap. An intermediate plateu is observed in the spark gap recovery curves. Recovery time decreases with increase in pressure and shorter gaps in length are recovering faster than longer gaps.

  4. Dispersion of breakdown voltage of liquid helium

    International Nuclear Information System (INIS)

    Ishii, Itaru; Noguchi, Takuya

    1978-01-01

    As for the electrical insulation characteristics of liquid helium, the discrepancy among the measured values by each person is very large even in the fundamental DC breakdown voltage in uniform electric field. The dispersion of experimental values obtained in the experiments by the same person is also large. Hereafter, the difference among the mean values obtained by each experimenter will be referred to as ''deviation of mean values'', and the dispersion of measured values around the mean value obtained by the same person as ''deviation around the man value''. The authors have mainly investigated on the latter experimentally. The cryostat was made of stainless steel, and the innermost helium chamber was of 500 mm I.D. and approximately 1200 mm deep. The high voltage electrode was of brass sphere of 25 mm diameter, and the low voltage electrode was of brass plate. The experiment was conducted for liquid helium boiling at 4.2 K and 1 atm, and the breakdown voltage and time lag were measured by applying the approximately square wave impulses of fast rise and long tail, ramp and DC voltages. The cause of the deviation of mean values may be the presence of impurity particles or the effect of electrode shape. As for the deviation around the mean value, the dispersion is large, and its standard deviation may amount to 10 to 20% of the man value. The dispersion is not due to the statistical time lag, but is due to parameters that vary with breakdown. (Wakatsuki, Y.)

  5. The current-voltage relation of a pore and its asymptotic behavior in a Nernst-Planck model

    Directory of Open Access Journals (Sweden)

    Marius Birlea

    2012-08-01

    Full Text Available A model for current-voltage nonlinearity and asymmetry is a good starting point for explaining the electrical behavior of the nanopores in synthetic or biological membranes. Using a Nernst-Planck model, we found three behaviors for the current density in a membrane's pore as a function of voltage: a quasi-ohmic, slow rising linear current at low voltages, a nonlinear current at intermediate voltages, and a non-ohmic, fast rising linear current at large voltages. The slope of the quasi-ohmic current depends mainly on the height of energy barrier inside the pore, w, through an exponential term, ew. The magnitude of the non-ohmic linear current is controlled by the potential energy gradient at the pore entrance, w/r. The current-voltage relation is asymmetric if the ion's potential energy inside the pore has an asymmetric triangular profile. The model has only two assumed parameters, the energy barrier height, w, and the relative size of the entrance region of the pore, r, which is a useful feature for fitting and interpreting experimental data.

  6. Two-Dimensional Physical and CFD Modelling of Large Gas Bubble Behaviour in Bath Smelting Furnaces

    Directory of Open Access Journals (Sweden)

    Yuhua Pan

    2010-09-01

    Full Text Available The behaviour of large gas bubbles in a liquid bath and the mechanisms of splash generation due to gas bubble rupture in high-intensity bath smelting furnaces were investigated by means of physical and mathematical (CFD modelling techniques. In the physical modelling work, a two-dimensional Perspex model of the pilot plant furnace at CSIRO Process Science and Engineering was established in the laboratory. An aqueous glycerol solution was used to simulate liquid slag. Air was injected via a submerged lance into the liquid bath and the bubble behaviour and the resultant splashing phenomena were observed and recorded with a high-speed video camera. In the mathematical modelling work, a two-dimensional CFD model was developed to simulate the free surface flows due to motion and deformation of large gas bubbles in the liquid bath and rupture of the bubbles at the bath free surface. It was concluded from these modelling investigations that the splashes generated in high-intensity bath smelting furnaces are mainly caused by the rupture of fast rising large gas bubbles. The acceleration of the bubbles into the preceding bubbles and the rupture of the coalescent bubbles at the bath surface contribute significantly to splash generation.

  7. Generation of intense, high-energy ion pulses by magnetic compression of ion rings

    International Nuclear Information System (INIS)

    Kapetanakos, C.A.

    1981-01-01

    A system based on the magnetic compression of ion rings, for generating intense (High-current), high-energy ion pulses that are guided to a target without a metallic wall or an applied external magnetic field includes a vacuum chamber; an inverse reflex tetrode for producing a hollow ion beam within the chamber; magnetic coils for producing a magnetic field, bo, along the axis of the chamber; a disc that sharpens a magnetic cusp for providing a rotational velocity to the beam and causing the beam to rotate; first and second gate coils for producing fast-rising magnetic field gates, the gates being spaced apart, each gate modifying a corresponding magnetic mirror peak (Near and far peaks) for trapping or extracting the ions from the magnetic mirror, the ions forming a ring or layer having rotational energy; a metal liner for generating by magnetic flux compression a high, time-varying magnetic field, the time-varying magnetic field progressively increasing the kinetic energy of the ions, the magnetic field from the second gate coil decreasing the far mirror peak at the end of the compression for extracting the trapped rotating ions from the confining mirror; and a disc that sharpens a magnetic half-cusp for increasing the translational velocity of the ion beam. The system utilizes the self-magnetic field of the rotating, propagating ion beam to prevent the beam from expanding radially upon extraction

  8. Fast response double series resonant high-voltage DC-DC converter

    International Nuclear Information System (INIS)

    Lee, S S; Iqbal, S; Kamarol, M

    2012-01-01

    In this paper, a novel double series resonant high-voltage dc-dc converter with dual-mode pulse frequency modulation (PFM) control scheme is proposed. The proposed topology consists of two series resonant tanks and hence two resonant currents flow in each switching period. Moreover, it consists of two high-voltage transformer with the leakage inductances are absorbed as resonant inductor in the series resonant tanks. The secondary output of both transformers are rectified and mixed before supplying to load. In the resonant mode operation, the series resonant tanks are energized alternately by controlling two Insulated Gate Bipolar Transistor (IGBT) switches with pulse frequency modulation (PFM). This topology operates in discontinuous conduction mode (DCM) with all IGBT switches operating in zero current switching (ZCS) condition and hence no switching loss occurs. To achieve fast rise in output voltage, a dual-mode PFM control during start-up of the converter is proposed. In this operation, the inverter is started at a high switching frequency and as the output voltage reaches 90% of the target value, the switching frequency is reduced to a value which corresponds to the target output voltage. This can effectively reduce the rise time of the output voltage and prevent overshoot. Experimental results collected from a 100-W laboratory prototype are presented to verify the effectiveness of the proposed system.

  9. Simulations of a dense plasma focus on a high impedance generator

    Science.gov (United States)

    Beresnyak, Andrey; Giuliani, John; Jackson, Stuart; Richardson, Steve; Swanekamp, Steve; Schumer, Joe; Commisso, Robert; Mosher, Dave; Weber, Bruce; Velikovich, Alexander

    2017-10-01

    We study the connection between plasma instabilities and fast ion acceleration for neutron production on a Dense Plasma Focus (DPF). The experiments will be performed on the HAWK generator (665 kA), which has fast rise time, 1.2 μs, and a high inductance, 607 nH. It is hypothesized that high impedance may enhance the neutron yield because the current will not be reduced during the collapse resulting in higher magnetization. To prevent upstream breakdown, we will inject plasma far from the insulator stack. We simulated rundown and collapse dynamics with Athena - Eulerian 3D, unsplit finite volume MHD code that includes shock capturing with Riemann solvers, resistive diffusion and the Hall term. The simulations are coupled to an equivalent circuit model for HAWK. We will report the dynamics and implosion time as a function of the initial injected plasma distribution and the implications of non-ideal effects. We also traced test particles in MHD fields and confirmed the presence of stochastic acceleration, which was limited by the size of the system and the strength of the magnetic field. Supported by DOE/NNSA and the Naval Research Laboratory Base Program.

  10. Well-observed dynamics of flaring and peripheral coronal magnetic loops during an M-class limb flare

    International Nuclear Information System (INIS)

    Shen, Jinhua; Zhou, Tuanhui; Ji, Haisheng; Feng, Li; Wiegelmann, Thomas; Inhester, Bernd

    2014-01-01

    In this paper, we present a variety of well-observed dynamic behaviors for the flaring and peripheral magnetic loops of the M6.6 class extreme limb flare that occurred on 2011 February 24 (SOL2011-02-24T07:20) from EUV observations by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory and X-ray observations by RHESSI. The flaring loop motion confirms the earlier contraction-expansion picture. We find that the U-shaped trajectory delineated by the X-ray corona source of the flare roughly follows the direction of a filament eruption associated with the flare. Different temperature structures of the coronal source during the contraction and expansion phases strongly suggest different kinds of magnetic reconnection processes. For some peripheral loops, we discover that their dynamics are closely correlated with the filament eruption. During the slow rising to abrupt, fast rising of the filament, overlying peripheral magnetic loops display different responses. Two magnetic loops on the elbow of the active region had a slow descending motion followed by an abrupt successive fast contraction, while magnetic loops on the top of the filament were pushed outward, slowly being inflated for a while and then erupting as a moving front. We show that the filament activation and eruption play a dominant role in determining the dynamics of the overlying peripheral coronal magnetic loops.

  11. Initial measurements on a prototype inductive adder for the CLIC kicker systems

    CERN Document Server

    Holma, Janne

    2013-01-01

    The CLIC study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings will produce, through synchrotron radiation, ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the damping ring kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the extraction kickers of the DRs are particularly demanding: the flattops of the pulses must be ±12.5 kV with a combined ripple and droop of not more than ±0.02 % (±2.5 V). An inductive adder is a very promising approach to meeting the specifications. To achieve ultra-flat pulses with a fast rise time the output impedance of the inductive adder needs to be well matched to the system impedance. The parasitic circuit elements of the inductive adder have a significant effect upon the output impedance and these values are very difficult to calculate accurately analytically. To predict these paramet...

  12. Electrochemical cell and electrode designs for high-temperature/high-pressure kinetic measurements

    International Nuclear Information System (INIS)

    Nagy, Z.; Yonco, R.M.

    1988-01-01

    Many corrosion processes of interest to the nuclear power industry occur in high-temperature/high-pressure aqueous systems. The investigation of the kinetics of the appropriate electrode reactions is a serious experimental challenge, partially because of the high temperatures and pressures and partially because many of these reactions are very rapid, requiring fast relaxation measurements. An electrochemical measuring system is described which is suitable for measurements of the kinetics of fast electrode reactions at temperatures extending to at least 300 0 C and pressures to at least 10 MPa (100 atmospheres). The system includes solution preparation and handling equipment, the electrochemical cell, and several electrode designs. One of the new designs is a coaxial working electrode-counter electrode assembly; this electrode can be used with very fast-rising pulses, and it provides a well defined, repeatedly-polishable working surface. Low-impedance reference electrodes are also described, based on electrode concepts responding to the pH or the redox potential of the test solution. Additionally, a novel, long-life primary reference electrode design is reported, based on a modification of the external, pressure-balanced Ag/AgCl reference electrode

  13. High reliability low jitter 80 kV pulse generator

    Directory of Open Access Journals (Sweden)

    M. E. Savage

    2009-08-01

    Full Text Available Switching can be considered to be the essence of pulsed power. Time accurate switch/trigger systems with low inductance are useful in many applications. This article describes a unique switch geometry coupled with a low-inductance capacitive energy store. The system provides a fast-rising high voltage pulse into a low impedance load. It can be challenging to generate high voltage (more than 50 kilovolts into impedances less than 10  Ω, from a low voltage control signal with a fast rise time and high temporal accuracy. The required power amplification is large, and is usually accomplished with multiple stages. The multiple stages can adversely affect the temporal accuracy and the reliability of the system. In the present application, a highly reliable and low jitter trigger generator was required for the Z pulsed-power facility [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats,J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, and J. R. Woodworth, 2007 IEEE Pulsed Power Conference, Albuquerque, NM (IEEE, Piscataway, NJ, 2007, p. 979]. The large investment in each Z experiment demands low prefire probability and low jitter simultaneously. The system described here is based on a 100 kV DC-charged high-pressure spark gap, triggered with an ultraviolet laser. The system uses a single optical path for simultaneously triggering two parallel switches, allowing lower inductance and electrode erosion with a simple optical system. Performance of the system includes 6 ns output rise time into 5.6  Ω, 550 ps one-sigma jitter measured from the 5 V trigger to the high voltage output, and misfire probability less than 10^{-4}. The design of the system and some key measurements will be shown in the paper. We will discuss the

  14. New Aspects of a Lid-Removal Mechanism in the Onset of a SEP-Producing Eruption Sequence

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David; Knox, Javon M

    2014-06-01

    We examine a sequence of two ejective eruptions from a single active region on 2012 January 23, using magnetograms and EUV images from SDO/HMI and SDO/AIA, and EUV images from STEREO. Cheng et al. (2013) showed that the first eruption's (``Eruption 1'') flux rope was apparent only in ``hotter'' AIA channels, and that it removed overlying field that allowed the second eruption (``Eruption 2'') to begin via ideal MHD instability; here we say Eruption 2 began via a ``lid removal'' mechanism. We show that during Eruption-1's onset, its flux rope underwent ``tether weakening'' (TW) reconnection with the field of an adjacent active region. Standard flare loops from Eruption 1 developed over Eruption-2's flux rope and enclosed filament, but these overarching new loops were unable to confine that flux rope/filament. Eruption-1's flare loops, from both TW reconnection and standard-flare-model internal reconnection, were much cooler than Eruption-2's flare loops (GOES thermal temperatures of ~9 MK compared to ~14 MK). This eruption sequence produced a strong solar energetic particle (SEP) event (10 MeV protons, >10^3 pfu for 43 hrs), apparently starting when Eruption-2's CME blasted through Eruption-1's CME at 5---10 R_s. This occurred because the two CMEs originated in close proximity and in close time sequence: Eruption-1's fast rise started soon after the TW reconnection; the lid removal by Eruption-1's ejection triggered the slow onset of Eruption 2; and Eruption-2's CME, which started ~1 hr later, was three times faster than Eruption-1's CME.

  15. Composition and variation of noise recorded at the Yellowknife Seismic Array, 1991-2007

    Science.gov (United States)

    Koper, K.D.; De Foy, B.; Benz, H.

    2009-01-01

    We analyze seismic noise recorded on the 18 short-period, vertical component seismometers of the Yellowknife Seismic Array (YKA). YKA has an aperture of 23 km and is sited on cratonic lithosphere in an area with low cultural noise. These properties make it ideal for studying natural seismic noise at periods of 1-3 s. We calculated frequency-wave number spectra in this band for over 6,000 time windows that were extracted once per day for 17 years (1991-2007). Slowness analysis reveals a rich variety of seismic phases originating from distinct source regions: Rg waves from the Great Slave Lake; Lg waves from the Atlantic, Pacific, and Arctic Oceans; and teleseismic P waves from the north Pacific and equatorial mid-Atlantic regions. The surface wave energy is generated along coastlines, while the body wave energy is generated at least in part in deep-water, pelagic regions. Surface waves tend to dominate at the longer periods and, just as in earthquake seismograms, Lg is the most prominent arrival. Although the periods we study are slightly shorter than the classic double-frequency microseismic band of 4-10 s, the noise at YKA has clear seasonal behavior that is consistent with the ocean wave climate in the Northern Hemisphere. The temporal variation of most of the noise sources can be well fit using just two Fourier components: yearly and biyearly terms that combine to give a fast rise in microseismic power from mid-June through mid-October, followed by a gradual decline. The exception is the Rg energy from the Great Slave Lake, which shows a sharp drop in noise power over a 2-week period in November as the lake freezes. The L g noise from the east has a small but statistically significant positive slope, perhaps implying increased ocean wave activity in the North Atlantic over the last 17 years. Copyright 2009 by the American Geophysical Union.

  16. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator.

  17. Flare-related color effects in UV Ceti stars

    International Nuclear Information System (INIS)

    Flesch, T.R.

    1975-01-01

    The UV Ceti flare stars YZ CMi, BD+16 0 2708, EV Lac, and AD Leo were monitored photoelectrically for flare activity with the 76 centimeter reflecting telescope of the University of Florida's Rosemary Hill Observatory. Observations were carried out from January, 1973 to April, 1975. The instrumentation allowed simultaneous readings to be taken at 3500, 4632, and 6496A with a time resolution of 2 seconds. A total of 15 major events were observed, with 14 of these being observed in all three colors. All events showed the classical fast rise and slower decline that is typical of this type of activity. One event showed peculiar behavior in the red bandpass that may indicate strong dependence of the flare light in some cases on line emission. The data were applied to the fast electron model of flare activity proposed by Gurzadyan. Several serious inconsistencies in the theory were found that would not have been evident in single-channel monitoring. No event could be fitted in all three colors using consistent values of the unknown parameters in the theory. The most serious deficiencies in the theory were the wavelength dependence of the optical depth of the electron cloud and the lack of treatment of line emission behavior. Differential color indices for flare light are calculated and are shown to be essentially constant throughout the entire event for the stronger flares. A color-color plot of the flare light at maximum reveals that 11 of the flares show a linear relation. This relation indicates that the smaller the u-b index, the larger is the b-r index. This is probably directly involved with line emission during flare events. Future research possibilities are discussed, with spectroscopic studies and simultaneous multicolor observations being stressed

  18. The Booster to AGS beam transfer fast kicker systems

    International Nuclear Information System (INIS)

    Zhang, W.; Bunicci, J.; Soukas, A.V.; Zhang, S.Y.

    1992-01-01

    The Brookhaven AGS Booster has a very successful commissioning period in June 1991. The third phase of that commissioning was a beam extraction test. The Booster extraction fast kicker (F3) deflected a 1.2 GeV proton beam from the Booster circulating orbit into the extraction septum aperture, partially down the extraction line to a temporary beam stop. Now, the Booster is committed to the AGS operations program for both heavy ion and proton beams. Thus, the Booster extraction and the corresponding AGS injection systems must operate routinely up to a pulse repetition frequency of 7.5 Hertz, and up to a beam energy of 1.5 Gev. The injection fast kicker is located in the A5 section of the AGS ring and is used to deflect the proton or heavy ion beam into its final AGS closed orbit. A distinctive feature of the AGS injection fast kicker modulators is the tail-bitting function required for proton beam injection. This enables the system to produce a fast current fall time to go along with the high current pulse amplitude with a fast rise time. The AGS injection fast kicker system has three pulse modulators, and each modulator consists of two thyratrons. The main PFN thyratrons switch on the current, and the tail bitting thyratrons are used to force the magnet current to decrease rapidly. Two digital pulse delay generators are used to align the main thyratrons and the tail bitting thyratrons respectively. The system has been tested and installed. The final commissioning of the Booster to AGS beam transfer line and injection is currently being undertaken. In this article, the system design, realization techniques and performance data will be presented

  19. Poloidal inhomogeneity of the particle fluctuation induced fluxes near of the LCFS at lower hybrid heating and improved confinement transition at the FT-2 tokamak

    International Nuclear Information System (INIS)

    Lashkul, S.I.; Altukhov, A.B.; Gurchenko, A.D.; Gusakov, E.Z.; Dyachenko, V.V.; Esipov, L.A.; Kantor, M.Y.; Kouprienko, D.V.; Stepanov, A.Y.; Sharpeonok, A.P.; Shatalin, S.V.; Vekshina, E.O.

    2004-01-01

    This paper present our observations and conclusions about development of the transport process at the plasma periphery of the small tokamak FT-2 during additional Lower Hybrid Heating (LHH), when external (ETB) transport barrier followed by Internal (ITB) transport barrier is observed. The peculiarities of the variations of the fluctuation fluxes near periphery are measured by three moveable multi-electrode Langmuir probes (L-probe) located in the same poloidal cross-section of the chamber. So the observed L-H transition and ETB formation after LHH and the associated negative E r rise result mainly from the decrease of the electron temperature (T e ) near inner region of the LCFS (last close flux surface) by greater extent than in SOL (scrape-off layer). This effect is stimulated by decrease of the input power and decrease of the radial correlation coefficient (for r equals 74-77 mm) (and radial particle fluctuation-induced Γ(t)) resulted from ITB formation mechanism during LHH. T e variation in the SOL after LH heating pulse takes place to a lesser extent. Observed non-monotonic radial profile of T e near LCFS with positive δT e /δr rise is kept constant obviously by large longitudinal conductivity and poloidal fluxes from the hotter limiter shadow regions because of the poloidal inhomogeneity of the T e (SOL) and n e (SOL). Such induced negative E r after RF pulse gives fast rise to a quasi-steady-state Γ 0 (t) drift fluxes with reversed direction structure, like 'zonal flows', which may inhibit transport across the flow. Large rise of grad(n e ) after LHH near LCFS with L-H transition is observed after the end of LH pulse for a long time - about 10-15 ms

  20. Discharges and impacts from la Hague plant: history and recent achievements

    International Nuclear Information System (INIS)

    Kalimbadjian, J.; Rincel, X.

    1998-01-01

    Industrial reprocessing at La Hague was started in 1966. During 30 years. the annual rate of production gradually increased, up to more than 1,600 tons. Simultaneously, considerable innovative design and technology was introduced at all steps of the process, including effluent treatment and waste management. The characteristics of reprocessed fuel elements also changed. from low burn-up metallic fuel to high burn-up oxides. Reflecting all those evolutions, the plant discharges to the atmosphere and to the sea have shown significant variations in quantity and in composition. The complete history of liquid and gaseous releases displays a broad spectrum of situations, as to the relative weight of each radionuclide. However, the level of discharge has always remained significantly lower than the authorized limits. whatever radionuclide. Moreover, discharges to the sea have continuously decreased for 10 years, in spite of fast rising rate of production. As to the total radiological impact of discharges. it was permanently maintained well within the acceptable level of 0.15 mSv/year for the reference groups of neighbouring population, as decided for the level of authorizations. Since 1988, several actions have been decided in order to minimize the present and future impacts: improved liquid effluent treatment, extended recycling of liquid effluents towards vitrification, supplementary filtration of gaseous effluents for iodine scavenging. As a result, the plant will be able to maintain the overall impact from all discharges at less than the present acceptable level, in spite of projected wider domain of operations: - modified grades of reprocessed fuel, - decommissioning operations; - treatment of older waste stocks. (author)

  1. Breast cancer and human papillomavirus infection: No evidence of HPV etiology of breast cancer in Indian women

    International Nuclear Information System (INIS)

    Hedau, Suresh; Mir, Mohammad Muzaffar; Chakraborty, Sekhar; Singh, Y Mohan; Kumar, Rakesh; Somasundaram, Kumaravel; Bharti, Alok C; Das, Bhudev C; Kumar, Umesh; Hussain, Showket; Shukla, Shirish; Pande, Shailja; Jain, Neeraj; Tyagi, Abhishek; Deshpande, Trivikram; Bhat, Dilafroze

    2011-01-01

    Two clinically relevant high-risk HPV (HR-HPV) types 16 and 18 are etiologically associated with the development of cervical carcinoma and are also reported to be present in many other carcinomas in extra-genital organ sites. Presence of HPV has been reported in breast carcinoma which is the second most common cancer in India and is showing a fast rising trend in urban population. The two early genes E6 and E7 of HPV type 16 have been shown to immortalize breast epithelial cells in vitro, but the role of HPV infection in breast carcinogenesis is highly controversial. Present study has therefore been undertaken to analyze the prevalence of HPV infection in both breast cancer tissues and blood samples from a large number of Indian women with breast cancer from different geographic regions. The presence of all mucosal HPVs and the most common high-risk HPV types 16 and 18 DNA was detected by two different PCR methods - (i) conventional PCR assays using consensus primers (MY09/11, or GP5+/GP6+) or HPV16 E6/E7 primers and (ii) highly sensitive Real-Time PCR. A total of 228 biopsies and corresponding 142 blood samples collected prospectively from 252 patients from four different regions of India with significant socio-cultural, ethnic and demographic variations were tested. All biopsies and blood samples of breast cancer patients tested by PCR methods did not show positivity for HPV DNA sequences in conventional PCRs either by MY09/11 or by GP5+/GP6+/HPV16 E6/E7 primers. Further testing of these samples by real time PCR also failed to detect HPV DNA sequences. Lack of detection of HPV DNA either in the tumor or in the blood DNA of breast cancer patients by both conventional and real time PCR does not support a role of genital HPV in the pathogenesis of breast cancer in Indian women

  2. Energy policy review of Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-11-21

    The Republic of Indonesia is the world's fourth most populous nation and a developing economy in transition. It is now consolidating its democratic government and implementing governance and financial reforms. After the Asian financial crisis of 1997-99, Indonesia's economy has returned to a strong and stable 5-6% annual growth. Over recent decades, its resource wealth, openness to trade and investment, and a strategically favourable location in East Asia have made Indonesia a key global exporter of oil, gas, and coal. However, Indonesia now faces the serious challenge of fast-rising domestic energy demand with declining oil and gas production. The country's energy policy makers are looking closely at domestic energy requirements and best policies to meet these needs. This includes moving prices towards international parity, improving the energy sector investment climate, and developing electricity generation capacity. While some very difficult decisions have been made over recent years, many challenges remain. This study assesses the country's major energy issues. The study was conducted by a team of IEA member country specialists - an approach which has also been used for national and sectoral reviews of other non-IEA countries, including Angola, China, India, Russia, and Ukraine, as well as the Western Balkan region. The Review offers an analysis of Indonesia's energy sector, with findings and recommendations that draw on experience in IEA member countries. Six areas are suggested for priority attention, including progressive reduction in fuel and electricity subsidies, better implementation of policy, improving clarity of the investment framework, helping the energy regulators do their job more effectively, and harnessing a sustainable development agenda particularly renewable energy and energy efficiency.

  3. Virtual Machine Logbook - Enabling virtualization for ATLAS

    International Nuclear Information System (INIS)

    Yao Yushu; Calafiura, Paolo; Leggett, Charles; Poffet, Julien; Cavalli, Andrea; Frederic, Bapst

    2010-01-01

    ATLAS software has been developed mostly on CERN linux cluster lxplus or on similar facilities at the experiment Tier 1 centers. The fast rise of virtualization technology has the potential to change this model, turning every laptop or desktop into an ATLAS analysis platform. In the context of the CernVM project we are developing a suite of tools and CernVM plug-in extensions to promote the use of virtualization for ATLAS analysis and software development. The Virtual Machine Logbook (VML), in particular, is an application to organize work of physicists on multiple projects, logging their progress, and speeding up ''context switches'' from one project to another. An important feature of VML is the ability to share with a single 'click' the status of a given project with other colleagues. VML builds upon the save and restore capabilities of mainstream virtualization software like VMware, and provides a technology-independent client interface to them. A lot of emphasis in the design and implementation has gone into optimizing the save and restore process to makepractical to store many VML entries on a typical laptop disk or to share a VML entry over the network. At the same time, taking advantage of CernVM's plugin capabilities, we are extending the CernVM platform to help increase the usability of ATLAS software. For example, we added the ability to start the ATLAS event display on any computer running CernVM simply by clicking a button in a web browser. We want to integrate seamlessly VML with CernVM unique file system design to distribute efficiently ATLAS software on every physicist computer. The CernVM File System (CVMFS) download files on-demand via HTTP, and cache it locally for future use. This reduces by one order of magnitude the download sizes, making practical for a developer to work with multiple software releases on a virtual machine.

  4. Biomechanics of Heading a Soccer Ball: Implications for Player Safety

    Directory of Open Access Journals (Sweden)

    Charles F. Babbs

    2001-01-01

    Full Text Available To better understand the risk and safety of heading a soccer ball, the author created a set of simple mathematical models based upon Newton�s second law of motion to describe the physics of heading. These models describe the player, the ball, the flight of the ball before impact, the motion of the head and ball during impact, and the effects of all of these upon the intensity and the duration of acceleration of the head. The calculated head accelerations were compared to those during presumably safe daily activities of jumping, dancing, and head nodding and also were related to established criteria for serious head injury from the motor vehicle crash literature. The results suggest heading is usually safe but occasionally dangerous, depending on key characteristics of both the player and the ball. Safety is greatly improved when players head the ball with greater effective body mass, which is determined by a player�s size, strength, and technique. Smaller youth players, because of their lesser body mass, are more at risk of potentially dangerous headers than are adults, even when using current youth size balls. Lower ball inflation pressure reduces risk of dangerous head accelerations. Lower pressure balls also have greater “touch” and “playability”, measured in terms of contact time and contact area between foot and ball during a kick. Focus on teaching proper technique, the re-design of age-appropriate balls for young players with reduced weight and inflation pressure, and avoidance of head contact with fast, rising balls kicked at close range can substantially reduce risk of subtle brain injury in players who head soccer balls.

  5. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    International Nuclear Information System (INIS)

    Chacon-Golcher, E.

    2002-01-01

    This dissertation develops diverse research on small (diameter ∼ few mm), high current density (J ∼ several tens of mA/cm 2 ) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield ( ) at different operating conditions are presented for K + and Cs + contact ionization sources and potassium aluminum silicate sources. Maximum values for a K + beam of ∼90 mA/cm 2 were observed in 2.3 (micro)s pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (∼ 1 (micro)s), high current densities (∼ 100 mA/cm 2 ) and low operating pressures ( e psilon) n (le) 0.006 π mm · mrad) although measured currents differed from the desired ones (I ∼ 5mA) by about a factor of 10

  6. MINIFILAMENT ERUPTIONS THAT DRIVE CORONAL JETS IN A SOLAR ACTIVE REGION

    International Nuclear Information System (INIS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-01-01

    We present observations of eruptive events in an active region adjacent to an on-disk coronal hole on 2012 June 30, primarily using data from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA), SDO /Helioseismic and Magnetic Imager (HMI), and STEREO - B . One eruption is of a large-scale (∼100″) filament that is typical of other eruptions, showing slow-rise onset followed by a faster-rise motion starting as flare emissions begin. It also shows an “EUV crinkle” emission pattern, resulting from magnetic reconnections between the exploding filament-carrying field and surrounding field. Many EUV jets, some of which are surges, sprays and/or X-ray jets, also occur in localized areas of the active region. We examine in detail two relatively energetic ones, accompanied by GOES M1 and C1 flares, and a weaker one without a GOES signature. All three jets resulted from small-scale (∼20″) filament eruptions consistent with a slow rise followed by a fast rise occurring with flare-like jet-bright-point brightenings. The two more-energetic jets showed crinkle patters, but the third jet did not, perhaps due to its weakness. Thus all three jets were consistent with formation via erupting minifilaments, analogous to large-scale filament eruptions and to X-ray jets in polar coronal holes. Several other energetic jets occurred in a nearby portion of the active region; while their behavior was also consistent with their source being minifilament eruptions, we could not confirm this because their onsets were hidden from our view. Magnetic flux cancelation and emergence are candidates for having triggered the minifilament eruptions.

  7. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chacon-Golcher, Edwin [Univ. of California, Berkeley, CA (United States)

    2002-06-01

    This dissertation develops diverse research on small (diameter ~ few mm), high current density (J ~ several tens of mA/cm2) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield () at different operating conditions are presented for K+ and Cs+ contact ionization sources and potassium aluminum silicate sources. Maximum values for a K+ beam of ~90 mA/cm2 were observed in 2.3 μs pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (~ 1 μs), high current densities (~ 100 mA/cm+) and low operating pressures (< 2 mtorr) were verified. For the latter, high but acceptable levels of beam emittance were measured (εn ≤ 0.006 π· mm · mrad) although measured currents differed from the desired ones (I ~ 5mA) by about a factor of 10.

  8. Measuring Velocities in the Early Stage of an Eruption: Using “Overlappogram” Data from Hinode EIS

    Energy Technology Data Exchange (ETDEWEB)

    Harra, Louise K.; Matthews, Sarah; Culhane, J. Leonard; Woods, Magnus M. [UCL-Mullard Space Science Laboratory Holmbury St Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Hara, Hirohisa [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Doschek, George A.; Warren, Harry, E-mail: l.harra@ucl.ac.uk [Space Science Division, Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC 20375 (United States)

    2017-06-10

    In order to understand the onset phase of a solar eruption, plasma parameter measurements in the early phases are key to constraining models. There are two current instrument types that allow us to make such measurements: narrow-band imagers and spectrometers. In the former case, even narrow-band filters contain multiple emission lines, creating some temperature confusion. With imagers, however, rapid cadences are achievable and the field of view can be large. Velocities of the erupting structures can be measured by feature tracking. In the spectrometer case, slit spectrometers can provide spectrally pure images by “rastering” the slit to build up an image. This method provides limited temporal resolution, but the plasma parameters can be accurately measured, including velocities along the line of sight. Both methods have benefits and are often used in tandem. In this paper we demonstrate for the first time that data from the wide slot on the Hinode EUV Imaging Spectrometer, along with imaging data from AIA, can be used to deconvolve velocity information at the start of an eruption, providing line-of-sight velocities across an extended field of view. Using He ii 256 Å slot data at flare onset, we observe broadening or shift(s) of the emission line of up to ±280 km s{sup −1}. These are seen at different locations—the redshifted plasma is seen where the hard X-ray source is later seen (energy deposition site). In addition, blueshifted plasma shows the very early onset of the fast rise of the filament.

  9. Energy policy review of Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-11-21

    The Republic of Indonesia is the world's fourth most populous nation and a developing economy in transition. It is now consolidating its democratic government and implementing governance and financial reforms. After the Asian financial crisis of 1997-99, Indonesia's economy has returned to a strong and stable 5-6% annual growth. Over recent decades, its resource wealth, openness to trade and investment, and a strategically favourable location in East Asia have made Indonesia a key global exporter of oil, gas, and coal. However, Indonesia now faces the serious challenge of fast-rising domestic energy demand with declining oil and gas production. The country's energy policy makers are looking closely at domestic energy requirements and best policies to meet these needs. This includes moving prices towards international parity, improving the energy sector investment climate, and developing electricity generation capacity. While some very difficult decisions have been made over recent years, many challenges remain. This study assesses the country's major energy issues. The study was conducted by a team of IEA member country specialists - an approach which has also been used for national and sectoral reviews of other non-IEA countries, including Angola, China, India, Russia, and Ukraine, as well as the Western Balkan region. The Review offers an analysis of Indonesia's energy sector, with findings and recommendations that draw on experience in IEA member countries. Six areas are suggested for priority attention, including progressive reduction in fuel and electricity subsidies, better implementation of policy, improving clarity of the investment framework, helping the energy regulators do their job more effectively, and harnessing a sustainable development agenda particularly renewable energy and energy efficiency.

  10. Hardness ratio evolutionary curves of gamma-ray bursts expected by the curvature effect

    International Nuclear Information System (INIS)

    Qin, Y.-P.; Su, C.-Y.; Fan, J. H.; Gupta, A. C.

    2006-01-01

    We have investigated the gamma-ray bursts (GRBs) pulses with a fast rise and an exponential decay phase, assumed to arise from relativistically expending fireballs, and found that the curvature effect influences the evolutionary curve of the corresponding hardness ratio (hereafter HRC). We find, due to the curvature effect, the evolutionary curve of the pure hardness ratio (when the background count is not included) would peak at the very beginning of the curve, and then would undergo a drop-to-rise-to-decay phase. In the case of the raw hardness ratio (when the background count is included), the curvature effect would give rise to several types of evolutionary curve, depending on the hardness of a burst. For a soft burst, an upside down pulse of its raw HRC would be observed; for a hard burst, its raw HRC shows a pulselike profile with a sinkage in its decaying phase; for a very hard burst, the raw HRC possesses a pulselike profile without a sinkage in its decaying phase. For a pulselike raw HRC as shown in the case of the hard and very hard bursts, its peak would appear in advance of that of the corresponding light curve, which was observed previously in some GRBs. For illustration, we have studied here the HRC of GRB 920216, GRB 920830, and GRB 990816 in detail. The features of the raw HRC expected in the hard burst are observed in these bursts. A fit to the three bursts shows that the curvature effect alone could indeed account for the predicted characteristics of HRCs. In addition, we find that the observed hardness ratio tends to be harder at the beginning of the pulses than what the curvature effect could predict and be softer at the late time of the pulses. We believe this is an evidence showing the existence of intrinsic hard-to-soft radiation which might be due to the acceleration-to-deceleration mode of shocks

  11. Influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure

    Science.gov (United States)

    Pechereau, François; Bonaventura, Zdeněk; Bourdon, Anne

    2016-08-01

    This paper presents simulations of an atmospheric pressure air discharge in a point-to-plane geometry with a dielectric layer parallel to the cathode plane. Experimentally, a discharge reignition in the air gap below the dielectrics has been observed. With a 2D fluid model, it is shown that due to the fast rise of the high voltage applied and the sharp point used, a first positive spherical discharge forms around the point. Then this discharge propagates axially and impacts the dielectrics. As the first discharge starts spreading on the upper dielectric surface, in the second air gap with a low preionization density of {{10}4}~\\text{c}{{\\text{m}}-3} , the 2D fluid model predicts a rapid reignition of a positive discharge. As in experiments, the discharge reignition is much slower, a discussion on physical processes to be considered in the model to increase the reignition delay is presented. The limit case with no initial seed charges in the second air gap has been studied. First, we have calculated the time to release an electron from the cathode surface by thermionic and field emission processes for a work function φ \\in ≤ft[3,4\\right] eV and an amplification factor β \\in ≤ft[100,220\\right] . Then a 3D Monte Carlo model has been used to follow the dynamics of formation of an avalanche starting from a single electron emitted at the cathode. Due to the high electric field in the second air gap, we have shown that in a few nanoseconds, a Gaussian cloud of seed charges is formed at a small distance from the cathode plane. This Gaussian cloud has been used as the initial condition of the 2D fluid model in the second air gap. In this case, the propagation of a double headed discharge in the second air gap has been observed and the reignition delay is in rather good agreement with experiments.

  12. Repletion of zinc in zinc-deficient cells strongly up-regulates IL-1β-induced IL-2 production in T-cells.

    Science.gov (United States)

    Daaboul, Doha; Rosenkranz, Eva; Uciechowski, Peter; Rink, Lothar

    2012-10-01

    Mild zinc deficiency in humans negatively affects IL-2 production resulting in declined percentages of cytolytic T cells and decreased NK cell lytic activity, which enhances the susceptibility to infections and malignancies. T-cell activation is critically regulated by zinc and the normal physiological zinc level in T-cells slightly lies below the optimal concentration for T-cell functions. A further reduction in zinc level leads to T-cell dysfunction and autoreactivity, whereas high zinc concentrations (100 μM) were shown to inhibit interleukin-1 (IL-1)-induced IL-1 receptor kinase (IRAK) activation. In this study, we investigated the molecular mechanism by which zinc regulates the IL-1β-induced IL-2 expression in T-cells. Zinc supplementation to zinc-deficient T-cells increased intracellular zinc levels by altering the expression of zinc transporters, particularly Zip10 and Zip12. A zinc signal was observed in the murine T-cell line EL-4 6.1 after 1 h of stimulation with IL-1β, measured by specific zinc sensors FluoZin-3 and ZinPyr-1. This signal is required for the phosphorylation of MAPK p38 and NF-κB subunit p65, which triggers the transcription of IL-2 and strongly increases its production. These results indicate that short-term zinc supplementation to zinc-deficient T-cells leads to a fast rise in zinc levels which subsequently enhance cytokine production. In conclusion, low and excessive zinc levels might be equally problematic for zinc-deficient subjects, and stabilized zinc levels seem to be essential to avoid negative concentration-dependent zinc effects on T-cell activation.

  13. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    International Nuclear Information System (INIS)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun

    2016-01-01

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator

  14. Spiny Neurons of Amygdala, Striatum and Cortex Use Dendritic Plateau Potentials to Detect Network UP States

    Directory of Open Access Journals (Sweden)

    Katerina D Oikonomou

    2014-09-01

    Full Text Available Spiny neurons of amygdala, striatum, and cerebral cortex share four interesting features: [1] they are the most abundant cell type within their respective brain area, [2] covered by thousands of thorny protrusions (dendritic spines, [3] possess high levels of dendritic NMDA conductances, and [4] experience sustained somatic depolarizations in vivo and in vitro (UP states. In all spiny neurons of the forebrain, adequate glutamatergic inputs generate dendritic plateau potentials (dendritic UP states characterized by (i fast rise, (ii plateau phase lasting several hundred milliseconds and (iii abrupt decline at the end of the plateau phase. The dendritic plateau potential propagates towards the cell body decrementally to induce a long-lasting (longer than 100 ms, most often 200 – 800 ms steady depolarization (~20 mV amplitude, which resembles a neuronal UP state. Based on voltage-sensitive dye imaging, the plateau depolarization in the soma is precisely time-locked to the regenerative plateau potential taking place in the dendrite. The somatic plateau rises after the onset of the dendritic voltage transient and collapses with the breakdown of the dendritic plateau depolarization. We hypothesize that neuronal UP states in vivo reflect the occurrence of dendritic plateau potentials (dendritic UP states. We propose that the somatic voltage waveform during a neuronal UP state is determined by dendritic plateau potentials. A mammalian spiny neuron uses dendritic plateau potentials to detect and transform coherent network activity into a ubiquitous neuronal UP state. The biophysical properties of dendritic plateau potentials allow neurons to quickly attune to the ongoing network activity, as well as secure the stable amplitudes of successive UP states.

  15. Overview of medium heterogeneity and transport processes

    International Nuclear Information System (INIS)

    Tsang, Y.; Tsang, C.F.

    1993-11-01

    Medium heterogeneity can have significant impact on the behavior of solute transport. Tracer breakthrough curves from transport in a heterogeneous medium are distinctly different from that in a homogeneous porous medium. Usually the shape of the breakthrough curves are highly non-symmetrical with a fast rise at early times and very long tail at late times, and often, they consist of multiple peaks. Moreover, unlike transport in a homogeneous medium where the same transport parameters describe the entire medium, transport through heterogeneous media gives rise to breakthrough curves which have strong spatial dependence. These inherent characteristics of transport in heterogeneous medium present special challenge to the performance assessment of a potential high level nuclear waste repository with respect to the possible release of radio nuclides to the accessible environment. Since an inherently desirable site characteristic for a waste repository is that flow and transport should be slow, then transport measurements in site characterization efforts will necessarily be spatially small and temporally short compare to the scales which are of relevance to performance assessment predictions. In this paper we discuss the role of medium heterogeneity in site characterization and performance assessment. Our discussion will be based on a specific example of a 3D heterogeneous stochastic model of a site generally similar to, the Aespoe Island, the site of the Hard Rock Laboratory in Southern Sweden. For our study, alternative 3D stochastic fields of hydraulic conductivities conditioned on ''point'' measurements shall be generated. Results of stochastic flow and transport simulations would be used to address the issues of (1) the relationship of tracer breakthrough with the structure of heterogeneity, and (2) the inference from small scale testing results to large scale and long term predictions

  16. Probing the neutrino mass hierarchy with the rise time of a supernova burst

    Science.gov (United States)

    Serpico, Pasquale D.; Chakraborty, Sovan; Fischer, Tobias; Hüdepohl, Lorenz; Janka, Hans-Thomas; Mirizzi, Alessandro

    2012-04-01

    The rise time of a Galactic supernova (SN) ν¯e light curve, observable at a high-statistics experiment such as the Icecube Cherenkov detector, can provide a diagnostic tool for the neutrino mass hierarchy at “large” 1-3 leptonic mixing angle ϑ13. Thanks to the combination of matter suppression of collective effects at early post-bounce times on one hand and the presence of the ordinary Mikheyev-Smirnov-Wolfenstein effect in the outer layers of the SN on the other hand, a sufficiently fast rise time on O(100)ms scale is indicative of an inverted mass hierarchy. We investigate results from an extensive set of stellar core-collapse simulations, providing a first exploration of the astrophysical robustness of these features. We find that for all the models analyzed (sharing the same weak interaction microphysics) the rise times for the same hierarchy are similar not only qualitatively, but also quantitatively, with the signals for the two classes of hierarchies significantly separated. We show via Monte Carlo simulations that the two cases should be distinguishable at IceCube for SNe at a typical Galactic distance 99% of the time. Finally, a preliminary survey seems to show that the faster rise time for inverted hierarchy as compared to normal hierarchy is a qualitatively robust feature predicted by several simulation groups. Since the viability of this signature ultimately depends on the quantitative assessment of theoretical/numerical uncertainties, our results motivate an extensive campaign of comparison of different code predictions at early accretion times with implementation of microphysics of comparable sophistication, including effects such as nucleon recoils in weak interactions.

  17. High-efficiency VCSEL arrays for illumination and sensing in consumer applications

    Science.gov (United States)

    Seurin, Jean-Francois; Zhou, Delai; Xu, Guoyang; Miglo, Alexander; Li, Daizong; Chen, Tong; Guo, Baiming; Ghosh, Chuni

    2016-03-01

    There has been increased interest in vertical-cavity surface-emitting lasers (VCSELs) for illumination and sensing in the consumer market, especially for 3D sensing ("gesture recognition") and 3D image capture. For these applications, the typical wavelength range of interest is 830~950nm and power levels vary from a few milli-Watts to several Watts. The devices are operated in short pulse mode (a few nano-seconds) with fast rise and fall times for time-of-flight applications (ToF), or in CW/quasi-CW for structured light applications. In VCSELs, the narrow spectrum and its low temperature dependence allows the use of narrower filters and therefore better signal-to-noise performance, especially for outdoor applications. In portable devices (mobile devices, wearable devices, laptops etc.) the size of the illumination module (VCSEL and optics) is a primary consideration. VCSELs offer a unique benefit compared to other laser sources in that they are "surface-mountable" and can be easily integrated along with other electronics components on a printed circuit board (PCB). A critical concern is the power-conversion efficiency (PCE) of the illumination source operating at high temperatures (>50 deg C). We report on various VCSEL based devices and diffuser-integrated modules with high efficiency at high temperatures. Over 40% PCE was achieved in broad temperature range of 0-70 °C for either low power single devices or high power VCSEL arrays, with sub- nano-second rise and fall time. These high power VCSEL arrays show excellent reliability, with extracted mean-time-to-failure (MTTF) of over 500 years at 60 °C ambient temperature and 8W peak output.

  18. Feasibility analysis of a novel hybrid-type superconducting circuit breaker in multi-terminal HVDC networks

    International Nuclear Information System (INIS)

    Khan, Umer Amir; Lee, Jong-Geon; Seo, In-Jin; Amir, Faisal; Lee, Bang-Wook

    2015-01-01

    Highlights: • A novel hybrid-type superconducting circuit breaker (SDCCB) is proposed. • SDCCB has SFCL located in the main current path to limit the fault current until the final trip signal. • SFCL in SDCCB suppressed the fast rising DC fault current for a predefined time. • SFCL significantly reduced the DC current breaking stress on SDCCB components. • SDCCB isolated the HVDC faulty line in three, four, and five converter stations MTDC. - Abstract: Voltage source converter-based HVDC systems (VSC-HVDC) are a better alternative than conventional thyristor-based HVDC systems, especially for developing multi-terminal HVDC systems (MTDC). However, one of the key obstacles in developing MTDC is the absence of an adequate protection system that can quickly detect faults, locate the faulty line and trip the HVDC circuit breakers (DCCBs) to interrupt the DC fault current. In this paper, a novel hybrid-type superconducting circuit breaker (SDCCB) is proposed and feasibility analyses of its application in MTDC are presented. The SDCCB has a superconducting fault current limiter (SFCL) located in the main current path to limit fault currents until the final trip signal is received. After the trip signal the IGBT located in the main line commutates the current into a parallel line where DC current is forced to zero by the combination of IGBTs and surge arresters. Fault simulations for three-, four- and five-terminal MTDC were performed and SDCCB performance was evaluated in these MTDC. Passive current limitation by SFCL caused a significant reduction of fault current interruption stress in the SDCCB. It was observed that the DC current could change direction in MTDC after a fault and the SDCCB was modified to break the DC current in both the forward and reverse directions. The simulation results suggest that the proposed SDCCB could successfully suppress the DC fault current, cause a timely interruption, and isolate the faulty HVDC line in MTDC.

  19. Partial Accretion in the Propeller Stage of Low-mass X-Ray Binary Aql X–1

    International Nuclear Information System (INIS)

    Güngör, C.; Ekşi, K. Y.; Göğüş, E.; Güver, T.

    2017-01-01

    Aql X–1 is one of the most prolific low-mass X-ray binary transients (LMXBTs) showing outbursts almost annually. We present the results of our spectral analyses of Rossi X-Ray Timing Explorer /proportional counter-array observations of the 2000 and 2011 outbursts. We investigate the spectral changes related to the changing disk-magnetosphere interaction modes of Aql X–1. The X-ray light curves of the outbursts of LMXBTs typically show phases of fast rise and exponential decay. The decay phase shows a “knee” where the flux goes from the slow-decay to the rapid-decay stage. We assume that the rapid decay corresponds to a weak propeller stage at which a fraction of the inflowing matter in the disk accretes onto the star. We introduce a novel method for inferring, from the light curve, the fraction of the inflowing matter in the disk that accretes onto the neutron star depending on the fastness parameter. We determine the fastness parameter range within which the transition from the accretion to the partial propeller stage is realized. This fastness parameter range is a measure of the scale height of the disk in units of the inner disk radius. We applied the method to a sample of outbursts of Aql X–1 with different maximum flux and duration times. We show that different outbursts with different maximum luminosity and duration follow a similar path in the parameter space of accreted/inflowing mass flux fraction versus fastness parameter.

  20. Distributional justice in Swedish wind power development – An odds ratio analysis of windmill localization and local residents’ socio-economic characteristics

    International Nuclear Information System (INIS)

    Liljenfeldt, Johanna; Pettersson, Örjan

    2017-01-01

    With a fast rise in large-scale wind power development in Sweden and other countries in recent years, issues related to energy justice generally and distributional justice specifically have become concerns in windmill siting. Some research, for instance, has indicated that it is easier to build windmills in economically marginalized communities. The evidence for this, however, is still limited. Thus, this study aims to statistically evaluate the extent to which the decisions to approve or reject windmill proposals in Sweden can be explained by factors related to the socio-economic characteristics of people living in the areas surrounding windmill sites. The study is based on an odds ratio analysis of decisions on all windmill proposals in Sweden, in which geo-referenced socio-economic data on an individual level for all inhabitants within 3 and 10 km of the windmill sites are studied. The results show skewness in the distribution of windmills, with a higher likelihood of rejection in areas with more highly educated people and people working in the private sector, compared to a higher likelihood of approval in areas with more unemployed people. This skewness, while not necessarily unjust, warrants further policy and research attention to distributional justice issues when developing wind power. - Highlights: • The distributional justice of windmill siting in Sweden is statistically evaluated. • Windmill siting decisions are related to people's socio-economic characteristics. • The results indicate some distributional skewness for wind power development. • The study gives statistical rigour and generalisability to energy justice findings. • The results warrant follow-ups and policy guides for how to handle benefit-sharing.

  1. Extracorporeal shock wave therapy in inflammatory diseases: molecular mechanism that triggers anti-inflammatory action.

    Science.gov (United States)

    Mariotto, Sofia; de Prati, Alessandra Carcereri; Cavalieri, Elisabetta; Amelio, Ernesto; Marlinghaus, Ernst; Suzuki, Hisanori

    2009-01-01

    Shock waves (SW), defined as a sequence of single sonic pulses characterised by high peak pressure (100 MPa), a fast rise in pressure (conveyed by an appropriate generator to a specific target area at an energy density ranging from 0.03 to 0.11 mJ/mm(2). Extracorporeal SW (ESW) therapy was first used on patients in 1980 to break up kidney stones. During the last ten years, this technique has been successfully employed in orthopaedic diseases such as pseudoarthosis, tendinitis, calcarea of the shoulder, epicondylitis, plantar fasciitis and several inflammatory tendon diseases. In particular, treatment of the tendon and muscle tissues was found to induce a long-time tissue regeneration effect in addition to having a more immediate anthalgic and anti-inflammatory outcome. In keeping with this, an increase in neoangiogenesis in the tendons of dogs was observed after 4-8 weeks of ESW treatment. Furthermore, clinical observations indicate an immediate increase in blood flow around the treated area. Nevertheless, the biochemical mechanisms underlying these effects have yet to be fully elucidated. In the present review, we briefly detail the physical properties of ESW and clinical cases treated with this therapy. We then go on to describe the possible molecular mechanism that triggers the anti-inflammatory action of ESW, focusing on the possibility that ESW may modulate endogenous nitric oxide (NO) production either under normal or inflammatory conditions. Data on the rapid enhancement of endothelial NO synthase (eNOS) activity in ESW-treated cells suggest that increased NO levels and the subsequent suppression of NF-kappaB activation may account, at least in part, for the clinically beneficial action on tissue inflammation.

  2. Flux Cancellation Leading to CME Filament Eruptions

    Science.gov (United States)

    Popescu, Roxana M.; Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-01-01

    Solar filaments are strands of relatively cool, dense plasma magnetically suspended in the lower density hotter solar corona. They trace magnetic polarity inversion lines (PILs) in the photosphere below, and are supported against gravity at heights of up to approx.100 Mm above the chromosphere by the magnetic field in and around them. This field erupts when it is rendered unstable, often by magnetic flux cancellation or emergence at or near the PIL. We have studied the evolution of photospheric magnetic flux leading to ten observed filament eruptions. Specifically, we look for gradual magnetic changes in the neighborhood of the PIL prior to and during eruption. We use Extreme Ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA), and magnetograms from the Helioseismic and Magnetic Imager (HMI), both on board the Solar Dynamics Observatory (SDO), to study filament eruptions and their photospheric magnetic fields. We examine whether flux cancellation or/and emergence leads to filament eruptions. We find that continuous flux cancellation was present at the PIL for many hours prior to each eruption. We present two CME-producing eruptions in detail and find the following: (a) the pre-eruption filament-holding core field is highly sheared and appears in the shape of a sigmoid above the PIL; (b) at the start of the eruption the opposite arms of the sigmoid reconnect in the middle above the site of (tether-cutting) flux cancellation at the PIL; (c) the filaments first show a slow-rise, followed by a fast-rise as they erupt. We conclude that these two filament eruptions result from flux cancellation in the middle of the sheared field, and thereafter evolve in agreement with the standard model for a CME/flare filament eruption from a closed bipolar magnetic field [flux cancellation (van Ballegooijen and Martens 1989 and Moore and Roumelrotis 1992) and runaway tether-cutting (Moore et. al 2001)].

  3. Partial Accretion in the Propeller Stage of Low-mass X-Ray Binary Aql X–1

    Energy Technology Data Exchange (ETDEWEB)

    Güngör, C.; Ekşi, K. Y. [İstanbul Technical University, Faculty of Science and Letters, Physics Engineering Department, 34469, İstanbul (Turkey); Göğüş, E. [Sabancı University, Faculty of Engineering and Natural Science, Orhanlı—Tuzla, 34956, İstanbul (Turkey); Güver, T., E-mail: gungorcan@itu.edu.tr [İstanbul University, Science Faculty, Department of Astronomy and Space Sciences, Beyazıt, 34119, İstanbul (Turkey)

    2017-10-10

    Aql X–1 is one of the most prolific low-mass X-ray binary transients (LMXBTs) showing outbursts almost annually. We present the results of our spectral analyses of Rossi X-Ray Timing Explorer /proportional counter-array observations of the 2000 and 2011 outbursts. We investigate the spectral changes related to the changing disk-magnetosphere interaction modes of Aql X–1. The X-ray light curves of the outbursts of LMXBTs typically show phases of fast rise and exponential decay. The decay phase shows a “knee” where the flux goes from the slow-decay to the rapid-decay stage. We assume that the rapid decay corresponds to a weak propeller stage at which a fraction of the inflowing matter in the disk accretes onto the star. We introduce a novel method for inferring, from the light curve, the fraction of the inflowing matter in the disk that accretes onto the neutron star depending on the fastness parameter. We determine the fastness parameter range within which the transition from the accretion to the partial propeller stage is realized. This fastness parameter range is a measure of the scale height of the disk in units of the inner disk radius. We applied the method to a sample of outbursts of Aql X–1 with different maximum flux and duration times. We show that different outbursts with different maximum luminosity and duration follow a similar path in the parameter space of accreted/inflowing mass flux fraction versus fastness parameter.

  4. Feasibility analysis of a novel hybrid-type superconducting circuit breaker in multi-terminal HVDC networks

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Umer Amir [Hanyang University, Sa-3dong, Sangrok-gu, Ansan 426-791 (Korea, Republic of); National University of Sciences and Technology, PNEC Campus, Habib Rehmatullah Road, Karachi (Pakistan); Lee, Jong-Geon; Seo, In-Jin [Hanyang University, Sa-3dong, Sangrok-gu, Ansan 426-791 (Korea, Republic of); Amir, Faisal [National University of Sciences and Technology, PNEC Campus, Habib Rehmatullah Road, Karachi (Pakistan); Lee, Bang-Wook, E-mail: bangwook@hanyang.ac.kr [Hanyang University, Sa-3dong, Sangrok-gu, Ansan 426-791 (Korea, Republic of)

    2015-11-15

    Highlights: • A novel hybrid-type superconducting circuit breaker (SDCCB) is proposed. • SDCCB has SFCL located in the main current path to limit the fault current until the final trip signal. • SFCL in SDCCB suppressed the fast rising DC fault current for a predefined time. • SFCL significantly reduced the DC current breaking stress on SDCCB components. • SDCCB isolated the HVDC faulty line in three, four, and five converter stations MTDC. - Abstract: Voltage source converter-based HVDC systems (VSC-HVDC) are a better alternative than conventional thyristor-based HVDC systems, especially for developing multi-terminal HVDC systems (MTDC). However, one of the key obstacles in developing MTDC is the absence of an adequate protection system that can quickly detect faults, locate the faulty line and trip the HVDC circuit breakers (DCCBs) to interrupt the DC fault current. In this paper, a novel hybrid-type superconducting circuit breaker (SDCCB) is proposed and feasibility analyses of its application in MTDC are presented. The SDCCB has a superconducting fault current limiter (SFCL) located in the main current path to limit fault currents until the final trip signal is received. After the trip signal the IGBT located in the main line commutates the current into a parallel line where DC current is forced to zero by the combination of IGBTs and surge arresters. Fault simulations for three-, four- and five-terminal MTDC were performed and SDCCB performance was evaluated in these MTDC. Passive current limitation by SFCL caused a significant reduction of fault current interruption stress in the SDCCB. It was observed that the DC current could change direction in MTDC after a fault and the SDCCB was modified to break the DC current in both the forward and reverse directions. The simulation results suggest that the proposed SDCCB could successfully suppress the DC fault current, cause a timely interruption, and isolate the faulty HVDC line in MTDC.

  5. Chemical Recovery of Energy in a Combined MHD-Steam Power Station; Recuperation Chimique d'Energie dans une Centrale Combinee MHD-Vapeur

    Energy Technology Data Exchange (ETDEWEB)

    Carrasse, J. [Societe Alsthom, Paris (France)

    1966-12-15

    This paper studies the energetic and chemical aspects of the operation of a combined MHD-steam power station using the combustion gases from a fossil fuel in an open circuit with potassium seeding. It describes a process for the recovery of energy by endothermal chemical gasification of the fuel. The author first recalls briefly the thermal and chemical conditions to be met throughout the length of the gas flow and points out that it is vital to ensure as much recycling of energy as possible from below to above the MHD generator, at the expense of the conventional power station located further on in the system. The paper then describes the various processes intended to ensure the thermal operating conditions required, including preheating of the air, oxygen enrichment etc. The last part of the paper, which goes into greater detail while taking the foregoing considerations into account, explains the principle and various feasible methods of application of a process at present under study and experimentation. In this process some of the heat energy of the gases discharged from the MHD duct is recycled, partly in chemical form and partly as a limited amount of gas preheat. For this purpose the fuel, mixed with oxidizing agents such as water vapour or carbon dioxide, is gasified, at about 950 Degree-Sign C and after a series of collectively endothermal reactions, into a gas composed mainly of carbon monoxide, hydrogen, nitrogen and excess water vapour and carbon dioxide. It is thus possible to avoid the employment of very high temperature heat exchangers working with seeded gas. The paper stresses the extraction of seeding material, which is simple and can here take place to a great extent in liquid form (fused salts) due to the fact that operation is in the temperature range around 1000 Degree-Sign C. Consideration is finally given to the use after treatment (cooling, extraction of seeding material, absorption of excess H{sub 2}O and CO{sub 2}, compression and re

  6. Decay of a laser generated shock wave in an aluminium target

    International Nuclear Information System (INIS)

    Werdiger, M.

    1993-09-01

    When a shock wave arrives at the near surface of a solid material, a radical and fast change occurs in the reflection properties of the material. The phenomenon is used in the present work in order to develop a new way to measure the transit time of a shock wave in a target. A 10 milliwatt He:Ne laser is directed toward the rear surface of the target. The reflected beam arrives at a photo-diode with a fast rise time of 150 psec which detects the instant of the change in the reflection. This technique, called 'continuous back lightning', is used in experiments with aluminium foil thickness in the range of 40μm ≤x≥ 1000μm. The shock wave is induced by a laser pulse of an intensity of 3*10 13 W/cm 2 . The results show two main physical regimes: in the first one 40μ ≤x≥ 210μm, there is a constant shock wave velocity which in our experiments was measured to be (12.81±0.67)km/s. In the second range of the thickness where 300μm there is a decay of the shock velocity. For x ≥ 210μm the geometry is one dimensional for our experimental conditions, while for x ≥ 300μm the 1-D geometry changes to 2 dimensional (2-D) geometry. The 2-D shock wave decay asymptotically (x→∞ to an acoustic wave. shock wave is described by a pressure scaling as x -n (n is a positive constant). The phenomenological equation of the state is taken to be P=A**u s + B*u s 2 +Bu s , where P is the pressure, u s - the shock velocity, A and B are constants. Applying our experimental results to the solution of the differential equation in this model A*x 2 ± B*x=C*x -n yields a value of n in the range 3.16 ≤n≥ 3.51. This pressure scaling law agrees with the self-similar solution of a concentrated impact on a surface between two media. This situation is well simulated by the laser deposition energy on a metal surface. In the experiment a 5% accuracy is achieved. Such a good accuracy has not been achieved so far in a laser induced shock-wave measurements in solids. (author). 52 refs

  7. Investigation of a Multi-Anode Microchannel Plate PMT for Time-of-Flight PET

    Science.gov (United States)

    Choong, Woon-Seng

    2010-10-01

    We report on an investigation of a mulit-anode microchannel plate PMT for time-of-flight PET detector modules. The primary advantages of an MCP lie in its excellent timing properties (fast rise time and low transit time spread), compact size, and reasonably large active area, thus making it a good candidate for TOF applications. In addition, the anode can be segmented into an array of collection electrodes with fine pitch to attain good position sensitivity. In this paper, we investigate using the Photonis Planacon MCP-PMT with a pore size of 10 μm to construct a PET detector module, specifically for time-of-flight applications. We measure the single electron response by exciting the Planacon with pulsed laser diode. We also measure the performance of the Planacon as a PET detector by coupling a 4 mm×4 mm×10 mm LSO crystal to individual pixel to study its gain uniformity, energy resolution, and timing resolution. The rise time of the Planacon is 440 ps with pulse duration of about 1 ns. A transit time spread of 120 ps FWHM is achieved. The gain is fairly uniform across the central region of the Planacon, but drops off by as much as a factor of 2.5 around the edges. The energy resolution is fairly uniform across the Planacon with an average value of 18.6 ± 0.7% FWHM. While the average timing resolution of 252 ± 7 ps FWHM is achieved in the central region of the Planacon, it degrades to 280 ± 9 ps FWHM for edge pixels and 316 ± 15 ps FWHM for corner pixels. We compare the results with measurements performed with a fast timing conventional PMT (Hamamatsu R-9800). We find that the R9800, which has significantly higher PDE, has a better timing resolution than the Planacon. Furthermore, we perform detector simulations to calculate the improvement that can be achieved with a higher PDE Planacon. The calculation shows that the Planacon can achieve significantly better timing resolution if it can attain the same PDE as the R-9800, while only a 30% improvement is

  8. A multiscale approach to blast neurotrauma modeling:Part II: Methodology for inducing blast injury to in vitro models

    Directory of Open Access Journals (Sweden)

    Gwen B. Effgen

    2012-02-01

    Full Text Available Due to the prominent role of improvised explosive devices (IEDs in wounding patterns of U.S. war-fighters in Iraq and Afghanistan, blast injury has risen to a new level of importance and is recognized to be a major cause of injuries to the brain. However, an injury risk-function for microscopic, macroscopic, behavioral, and neurological deficits has yet to be defined. While operational blast injuries can be very complex and thus difficult to analyze, a simplified blast injury model would facilitate studies correlating biological outcomes with blast biomechanics to define tolerance criteria. Blast-induced traumatic brain injury (bTBI results from the translation of a shock wave in air, such as that produced by an IED, into a pressure wave within the skull-brain complex. Our blast injury methodology recapitulates this phenomenon in vitro, allowing for control of the injury biomechanics via a compressed-gas shock tube used in conjunction with a custom-designed, fluid-filled receiver that contains the living culture. The receiver converts the air shock wave into a fast-rising pressure transient with minimal reflections, mimicking the intracranial pressure history in blast. We have developed an organotypic hippocampal slice culture model that exhibits cell death when exposed to a 530  17.7 kPa peak overpressure with a 1.026 ± 0.017 ms duration and 190 ± 10.7 kPa-ms impulse in-air. We have also injured a simplified in vitro model of the blood-brain barrier, which exhibits disrupted integrity immediately following exposure to 581  10.0 kPa peak overpressure with a 1.067 ms ± 0.006 ms duration and 222 ± 6.9 kPa-ms impulse in-air. To better prevent and treat bTBI, both the initiating biomechanics and the ensuing pathobiology must be understood in greater detail. A well-characterized, in vitro model of bTBI, in conjunction with animal models, will be a powerful tool for developing strategies to mitigate the risks of bTBI.

  9. Temporal Trends of the Clinical, Resource Use and Outcome Attributes of ICU-Managed Candidemia Hospitalizations: A Population-Level Analysis.

    Science.gov (United States)

    Oud, Lavi

    2016-04-01

    There are mixed findings on the longitudinal patterns of the incidence of intensive care unit (ICU)-managed candidemia, with scarcity of reports on the corresponding evolving patterns of patients' clinical characteristics and outcomes. No population-level data were reported on the temporal trends of the attributes, care and outcomes of ICU-managed adults with candidemia. The Texas Inpatient Public Use Data File was used to identify hospitalizations aged 18 years or older with a diagnosis of candidemia and ICU admission (C-ICU hospitalizations) between 2001 and 2010. Temporal trends of the demographics, clinical features, use of healthcare resources, and short-term outcomes were examined. Average annual percent changes (AAPCs) were derived. C-ICU hospitalizations (n = 7,552) became (AAPC) increasingly younger (age ≥ 65 years: -1.0%/year). The Charslon comorbidity index rose 4.2%/year, while the mean number of organ failures (OFs) increased by 8.2%/year, with a fast rise in the rate of those developing ≥ 3 OFs (+15.5%/year). Between 2001 and 2010, there was no significant change in utilization of mechanical ventilation and new hemodialysis among C-ICU hospitalizations with reported respiratory and renal failures (68.9% vs. 73.3%, P = 0.3653 and 15.5% vs. 21.8%, P = 0.8589, respectively). Hospital length of stay or total hospital charges remained unchanged during study period. Hospital mortality decreased between 2001 and 2010 from 39.3% to 23.8% (-5.2%/year). The majority of hospital survivors (61.6%) were discharged to another facility, and increasingly to long-term acute care hospitals, with routine home discharge decreasing to 11% by 2010. C-ICU hospitalizations demonstrated increasing comorbidity burden and rising development of OF, and matching rise in use of selected life-support interventions, though with unchanged in-hospital fiscal impact. There has been marked decrease in hospital mortality, but survivors had substantial residual morbidity with the

  10. External and Internal Reconnection in Two Filament-Carrying Magnetic-Cavity Solar Eruptions

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.

    2004-01-01

    We observe two near-limb solar filament eruptions, one of 2000 February 26 and the other of 2002 January 4. For both we use 195 A Fe XII images from the Extreme-Ultraviolet Imaging Telescope (EIT) and magnetograms from the Michelson Doppler Imager (MDI), both of which are on the Solar and Heliospheric Observatory (SOHO). For the earlier event we also use soft X-ray telescope (SXT), hard X-ray telescope (HXT), and Bragg Crystal Spectrometer (BCS) data from the Yohkoh satellite, and hard X-ray data from the BATSE experiment on the Compton Gamma Ra.v Observatory (CGRO). Both events occur in quadrupolar magnetic regions, and both have coronal features that we infer belong to the same magnetic cavity structures as the filaments. In both cases, the cavity and filament first rise slowly at approx.10 km/s prior to eruption and then accelerate to approx.100 km/s during the eruption, although the slow-rise movement for the higher altitude cavity elements is clearer in the later event. We estimate that both filaments and both cavities contain masses of approx.10(exp 14)-10(exp 15) and approx.10(exp 15)-10(exp 16) g, respectively. We consider whether two specific magnetic reconnection-based models for eruption onset, the "tether cutting" and the "breakout" models, are consistent with our observations. In the earlier event, soft X-rays from SXT show an intensity increase during the 12 minute interval over which fast eruption begins, which is consistent with tether- cutting-model predictions. Substantial hard X-rays, however, do not occur until after fast eruption is underway, and so this is a constraint the tether-cutting model must satisfy. During the same 12 minute interval over which fast eruption begins, there are brightenings and topological changes in the corona indicative of high-altitude reconnection early in the eruption, and this is consistent with breakout predictions. In both eruptions, the state of the overlying loops at the time of onset of the fast-rise phase of

  11. External and Internal Reconnection in Two Filament-Carrying Magnetic Cavity Solar Eruptions

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.

    2004-01-01

    We observe two near-limb solar filament eruptions. one of 2000 February 26 and the other of 2002 January 4. For both we use 195 A Fe XII images from the Extreme-Ultraviolet Imaging Telescope (EIT) and magnetograms from the Michelson Doppler Imager (MDI). both of which are on the Solar and Heliospheric Observatory. (SOHO). For the earlier event we also use soft X-ray telescope (SXT). hard X-ray telescope (HXT). and Bragg Crystal Spectrometer (BCS) data from the Yohkoh satellite. and hard X-ray data from the BATSE experiment on the Compton Gamma Ray Observatory. (CGRO). Both events occur in quadrupolar magnetic regions. and both have coronal features that we infer belong to the same magnetic cavity structures as the filaments. In both cases. the cavity and filament first rise slowly at approx. 10 km/s prior to eruption and then accelerate to approx. 100 km/s during the eruption. although the slow-rise movement for the higher altitude cavity elements is clearer in the later event. We estimate that both filaments and both cavities contain masses of approx. 10(exp14) - 1 0(exp 15) and approx. l0(exp 15) - l0(exp 16) g. respectively. We consider whether two specific magnetic reconnection-based models for eruption onset. the "tether cutting" and the "breakout" models. are consistent with our observations. In the earlier event, soft X-rays from SXT show an intensity increase during the 12 minute interval over which fast eruption begins. which is consistent with tether- cutting-model predictions. Substantial hard X-ray. however. do not occur until after fast eruption is underway. and so this is a constraint the tether-cutting model must satisfy. During the same 12 minute interval over which fast eruption begins, there are brightenings and topological changes in the corona indicative of high-altitude reconnection early in the eruption. and this is consistent with breakout predictions. In both eruptions. the state of the overlying loops at the time of onset of the fast-rise

  12. Search for interplanetary shock signals using the Tupi telescope at the ascending phase of the solar cycle 24

    International Nuclear Information System (INIS)

    Augusto, C.R.A.; Kopenkin, V.; Navia, C.E.; Tsui, K.H.; Shigueoka, H.; Fauth, A.C.; Kemp, E.; Manganote, E.J.T.; Oliveira, M.A. Leigui de; Miranda, P.; Ticona, R.; Velarde, A.

    2012-01-01

    Full text: This paper presents the results of an on-going survey on the association between the muon flux variation at ground level registered by the Tupi telescopes (Niteroi-Brazil, 22.9 deg S; 43.2 deg W, 3 m above sea level) in the South Atlantic Anomaly (SAA) region and interplanetary shocks detected by space-borne detectors (SOHO, ACE, GOES). The SAA provides favorable conditions for observation of shock driven geomagnetic storms, including those of very small scale. Geomagnetic storms are usually originated by the transient events such as solar flares, coronal mass ejections (CMEs) and corotating interaction regions (CIRs). In most cases scientific research showed variation in the cosmic particle flux at ground level in correlation with large scale CMEs solar flares characterized by high absolute values of geomagnetic activity Kp index. In our analysis we found that the muon flux associated with the interplanetary shock signals changes also in response to low solar activity and to fast rise in Kp index. We report experimental data obtained by the Tupi telescopes in the period from June 2010 to December 2011. This time period corresponds to the rising phase of the solar cycle 24. These observations are compared with publicly available observations from the CELIAS/MTOF Proton Monitor on SOHO satellite in order to study the origin of the shocks. Among 28 interplanetary shocks reported in present analysis, there are 12 possibly associated with the CMEs and solar flares, 2 events - with the CIR related shocks (forward or reverse shocks), and the origin of the remaining 13 events has not been determined by the satellite detectors. By comparing the observed time (delayed or anticipated) of the shock related signal on Earth (the Tupi telescopes) with the trigger time of the shock registered by satellites located at the Lagrange point L1 (SOHO, ACE), we find that it is possible to estimate the type of the shock (forward or reverse). This method can be useful in

  13. Attività solare, effetti ionosferici e servizi NRTK: quali connessioni?

    Directory of Open Access Journals (Sweden)

    Francesco Mancini

    2012-06-01

    disturbance. The 11-years long cycle of solar activity is expected to reach the peak by the middle of the year 2013 and possible effects on the GNSS (Global Navigation Satellite System services have to be accounted for. This is because of the properties by the ionospheric layers to delay the GNSS signals depending on the electron density within the ionospheric strata. This study focuses on the effects of the ionospheric disturbance on the NRTK (Network Real Time Kinematic services through the analysis of the performances achieved by the users during the year 2011, when a fast rising in ionospheric activity was recorded by the end of the year. A relationship between the reliability of positioning and the ionospheric activity was found. 

  14. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP (VOL. 71)

    Energy Technology Data Exchange (ETDEWEB)

    KHARZEEV, D.; STASTO, A.; TUCHIN, K.; VOGELSANG, W.

    2005-03-07

    The high energy limit of Quantum Chromodynamics is one of the most fascinating areas in the theory of strong interactions. Over a decade ago the HERA experiment at DESY in Hamburg provided strong evidence for the rise of the proton structure function at small values of the Bjorken variable x. This behavior can be explained as an increase of the gluon density of the proton with energy or correspondingly with smaller values of x. This increase can be attributed on the other hand to the large probability of gluon splitting in QCD. The natural framework for describing the gluon dynamics at small x is the Balitskii-Fadin-Kuraev-Lipatov formalism developed some 30 years ago. It predicts that the gluon density grows very fast with increasing energy, as a power with a large intercept. This increase has to be tamed in order to satisfy the unitarily bound. Over two decades ago, Gribov, Levin and Ryskin proposed the mechanism called the parton saturation, which slows down the fast rise of the gluon density. This formalism accounts for an additional gluon recombination apart from the pure gluon splitting. It leads to the very interesting non-linear modification of the evolution equations for the gluon distributions. Since then, much progress has been made in the theoretical formulation of the parton saturation. Currently the most complete theory for parton saturation is the Color Glass Condensate (CGC) with the corresponding renormalization group functional evolution equation, the JIMWLK equation, which describes the nonlinear evolution of the gluon density at small values of x and in the regime where gluon fields are strong. The simpler form of the JIMWLK equation, the Balitskii-Kovchegov (BK) equation has been successfully used to explain the experimental data on proton structure function. The models, which include the parton saturation, have been applied to explain the experimental data at Tevatron and RHIC. In the latter case the Color Glass Condensate can be thought of as

  15. Search for interplanetary shock signals using the Tupi telescope at the ascending phase of the solar cycle 24

    Energy Technology Data Exchange (ETDEWEB)

    Augusto, C.R.A.; Kopenkin, V.; Navia, C.E.; Tsui, K.H.; Shigueoka, H. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Fauth, A.C.; Kemp, E.; Manganote, E.J.T. [Universidade Estadual de Campinas (IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin; Oliveira, M.A. Leigui de [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Miranda, P.; Ticona, R.; Velarde, A. [Universidad Mayor de San Andres (UMSA), La Paz (Bolivia, Plurinational State of). Inst. de Investigaciones Fisicas

    2012-07-01

    Full text: This paper presents the results of an on-going survey on the association between the muon flux variation at ground level registered by the Tupi telescopes (Niteroi-Brazil, 22.9 deg S; 43.2 deg W, 3 m above sea level) in the South Atlantic Anomaly (SAA) region and interplanetary shocks detected by space-borne detectors (SOHO, ACE, GOES). The SAA provides favorable conditions for observation of shock driven geomagnetic storms, including those of very small scale. Geomagnetic storms are usually originated by the transient events such as solar flares, coronal mass ejections (CMEs) and corotating interaction regions (CIRs). In most cases scientific research showed variation in the cosmic particle flux at ground level in correlation with large scale CMEs solar flares characterized by high absolute values of geomagnetic activity Kp index. In our analysis we found that the muon flux associated with the interplanetary shock signals changes also in response to low solar activity and to fast rise in Kp index. We report experimental data obtained by the Tupi telescopes in the period from June 2010 to December 2011. This time period corresponds to the rising phase of the solar cycle 24. These observations are compared with publicly available observations from the CELIAS/MTOF Proton Monitor on SOHO satellite in order to study the origin of the shocks. Among 28 interplanetary shocks reported in present analysis, there are 12 possibly associated with the CMEs and solar flares, 2 events - with the CIR related shocks (forward or reverse shocks), and the origin of the remaining 13 events has not been determined by the satellite detectors. By comparing the observed time (delayed or anticipated) of the shock related signal on Earth (the Tupi telescopes) with the trigger time of the shock registered by satellites located at the Lagrange point L1 (SOHO, ACE), we find that it is possible to estimate the type of the shock (forward or reverse). This method can be useful in

  16. THE 2011 ERUPTION OF THE RECURRENT NOVA T PYXIDIS: THE DISCOVERY, THE PRE-ERUPTION RISE, THE PRE-ERUPTION ORBITAL PERIOD, AND THE REASON FOR THE LONG DELAY

    International Nuclear Information System (INIS)

    Schaefer, Bradley E.; Landolt, Arlo U.; Linnolt, Michael; Stubbings, Rod; Pojmanski, Grzegorz; Plummer, Alan; Kerr, Stephen; Nelson, Peter; Carstens, Rolf; Streamer, Margaret; Richards, Tom; Myers, Gordon; Dillon, William G.

    2013-01-01

    We report the discovery by M. Linnolt on JD 2,455,665.7931 (UT 2011 April 14.29) of the sixth eruption of the recurrent nova T Pyxidis. This discovery was made just as the initial fast rise was starting, so with fast notification and response by observers worldwide, the entire initial rise was covered (the first for any nova), and with high time resolution in three filters. The speed of the rise peaked at 9 mag day –1 , while the light curve is well fit over only the first two days by a model with a uniformly expanding sphere. We also report the discovery by R. Stubbings of a pre-eruption rise starting 18 days before the eruption, peaking 1.1 mag brighter than its long-time average, and then fading back toward quiescence 4 days before the eruption. This unique and mysterious behavior is only the fourth known (with V1500 Cyg, V533 Her, and T CrB) anticipatory rise closely spaced before a nova eruption. We present 19 timings of photometric minima from 1986 to 2011 February, where the orbital period is fast increasing with P/ P-dot =+313,000 yr. From 2008 to 2011, T Pyx had a small change in this rate of increase, so that the orbital period at the time of eruption was 0.07622950 ± 0.00000008 days. This strong and steady increase of the orbital period can only come from mass transfer, for which we calculate a rate of (1.7-3.5) × 10 –7 M ☉ yr –1 . We report 6116 magnitudes between 1890 and 2011, for an average B = 15.59 ± 0.01 from 1967 to 2011, which allows for an eruption in 2011 if the blue flux is nearly proportional to the accretion rate. The ultraviolet-optical-infrared spectral energy distribution is well fit by a power law with f ν ∝ν 1.0 , although the narrow ultraviolet region has a tilt with a fit of f ν ∝ν 1/3 . We prove that most of the T Pyx light is not coming from a disk, or any superposition of blackbodies, but rather is coming from some nonthermal source. We confirm the extinction measure from IUE with E(B – V) = 0.25 ± 0.02 mag

  17. A dependência da política: Fernando Henrique Cardoso e a sociologia no Brasil

    Directory of Open Access Journals (Sweden)

    Afrânio Garcia Jr.

    2004-06-01

    Full Text Available Este artigo analisa a trajetória social, intelectual e profissional de Fernando Henrique Cardoso para entender os diferentes recursos sociais e disposições pessoais utilizados em sua carreira como sociólogo e em suas atividades como especialista da política. Busca demonstrar que os capitais sociais e as disposições responsáveis pelo prestígio como pesquisador e professor de ciências sociais foram distintos dos aplicados no domínio da política, permitindo sua rápida ascensão à presidência da República. Depois de estudar suas origens familiares, focaliza seus investimentos escolares e a escolha do ofício de sociólogo, a carreira promissora sendo bloqueada pelo golpe de 1964. O exílio permitiu a extensão das atividades e o reconhecimento internacional, reinvestidos em novo concurso para a USP; o AI-5 o conduzirá à dupla condição de cientista social e de um dos líderes da frente de oposições aos militares. Por fim, analisa-se a reconversão de seus recursos sociais e pessoais na profissão política.This article analyzes Fernando Henrique Cardoso's social, intellectual and professional trajectory in order to understand the different social resources and personal dispositions carried out in his career as sociologist or in his activities as a professional politician. It seeks to prove that the social capitals and the dispositions that might explain his prestige as researcher and professor of social sciences were very different from those required in the political domain, the ones allowing his fast rise to be the president of the Republic. After having examined his family origins, it focuses his scholar investments and the choice of the sociologist's occupation, a promising career suddenly blocked by the 1964 military coup. The exile encouraged new initiatives and brought him international appraisal, this moment being crowned with his access to the chair of political science at the University of São Paulo; the AI-5 enforced

  18. Suppressing Thermal Energy Drift In The LLNL Flash X-Ray Accelerator Using Linear Disk Resistor Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Kreitzer, B R; Houck, T L; Luchterhand, O C

    2011-07-19

    This paper addresses thermal drift in sodium thiosulfate liquid resistors and their replacement with linear disk resistors from HVR Advanced Power Components. Sodium thiosulfate resistors in the FXR induction linear accelerator application have a temperature coefficient of {approx}1.8%/C. The FXR Marx banks send an 8kJ pulse through eight 524 cm{sup 3} liquid resistors at a repetition rate of up to 1 every 45 seconds. Every pulse increases the temperature of the solution by {approx}0.4 C which produces a 0.7% change in resistance. The typical cooling rate is {approx}0.4 C per minute which results in {approx}0.1% energy drop per pulse during continuous pulsed operations. A radiographic accelerator is extraordinarily sensitive to energy variations. Changes in beam energy produce movement in beam transport, changes in spot size, and large dose variations. If self-heating were the only problem, we could predict the increase in input voltage required to compensate for the energy loss. However, there are other variables that influence the temperature of the resistors such as focus magnet heating, changes in room temperature, changes in cooling water, where the cell is located, etc. Additionally not all of the resistors have equivalent cooling rates and as many as 32 resistors are driven from a single power source. The FXR accelerator group elected to replace the sodium thiosulfate resistors with HVR Linear Disk Resistors in a stack type configuration. With data limited for these resistors when used in oil and at low resistance values, a full characterization needed to be performed. High currents (up to 15kA), high voltages (up to 400kV), and Fast Rise times (<10ns) made a resistor choice difficult. Other solid resistors have been tried and had problems at the connection points and with the fact that the resistivity changed as they absorbed oil. The selected HVR resistors have the advantage of being manufactured with the oil impregnated in to them so this characteristic

  19. Suppressing Thermal Energy Drift In The LLNL Flash X-Ray Accelerator Using Linear Disk Resistor Stacks

    International Nuclear Information System (INIS)

    Kreitzer, B.R.; Houck, T.L.; Luchterhand, O.C.

    2011-01-01

    This paper addresses thermal drift in sodium thiosulfate liquid resistors and their replacement with linear disk resistors from HVR Advanced Power Components. Sodium thiosulfate resistors in the FXR induction linear accelerator application have a temperature coefficient of ∼1.8%/C. The FXR Marx banks send an 8kJ pulse through eight 524 cm 3 liquid resistors at a repetition rate of up to 1 every 45 seconds. Every pulse increases the temperature of the solution by ∼0.4 C which produces a 0.7% change in resistance. The typical cooling rate is ∼0.4 C per minute which results in ∼0.1% energy drop per pulse during continuous pulsed operations. A radiographic accelerator is extraordinarily sensitive to energy variations. Changes in beam energy produce movement in beam transport, changes in spot size, and large dose variations. If self-heating were the only problem, we could predict the increase in input voltage required to compensate for the energy loss. However, there are other variables that influence the temperature of the resistors such as focus magnet heating, changes in room temperature, changes in cooling water, where the cell is located, etc. Additionally not all of the resistors have equivalent cooling rates and as many as 32 resistors are driven from a single power source. The FXR accelerator group elected to replace the sodium thiosulfate resistors with HVR Linear Disk Resistors in a stack type configuration. With data limited for these resistors when used in oil and at low resistance values, a full characterization needed to be performed. High currents (up to 15kA), high voltages (up to 400kV), and Fast Rise times (<10ns) made a resistor choice difficult. Other solid resistors have been tried and had problems at the connection points and with the fact that the resistivity changed as they absorbed oil. The selected HVR resistors have the advantage of being manufactured with the oil impregnated in to them so this characteristic is minimized while still

  20. THE 2011 ERUPTION OF THE RECURRENT NOVA T PYXIDIS: THE DISCOVERY, THE PRE-ERUPTION RISE, THE PRE-ERUPTION ORBITAL PERIOD, AND THE REASON FOR THE LONG DELAY

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Bradley E.; Landolt, Arlo U. [Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Linnolt, Michael [American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138 (United States); Stubbings, Rod [Tetoora Observatory, Tetoora Road, Victoria (Australia); Pojmanski, Grzegorz [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Plummer, Alan [Variable Stars South, Linden Observatory, 105 Glossop Road, Linden, NSW (Australia); Kerr, Stephen [American Association of Variable Star Observers, Variable Stars South, Astronomical Association of Queensland, 22 Green Avenue, Glenlee, Queensland (Australia); Nelson, Peter [Ellinbank Observatory, 1105 Hazeldean Road, Ellinbank 3821, Victoria (Australia); Carstens, Rolf [American Association of Variable Star Observers, Variable Stars South, CBA, Geyserland Observatory, 120 Homedale Street, Rotorua 3015 (New Zealand); Streamer, Margaret [Lexy' s Palace Observatory, 3 Lupin Place, Murrumbateman, NSW (Australia); Richards, Tom [Variable Stars South, Pretty Hill Observatory, P.O. Box 323, Kangaroo Ground 3097, Victoria (Australia); Myers, Gordon [Center for Backyard Astrophysics, Columbia University, 538 West 120th Street, New York, NY 10027 (United States); Dillon, William G. [American Association of Variable Star Observers, 4703 Birkenhead Circle, Missouri City, TX 77459 (United States)

    2013-08-10

    We report the discovery by M. Linnolt on JD 2,455,665.7931 (UT 2011 April 14.29) of the sixth eruption of the recurrent nova T Pyxidis. This discovery was made just as the initial fast rise was starting, so with fast notification and response by observers worldwide, the entire initial rise was covered (the first for any nova), and with high time resolution in three filters. The speed of the rise peaked at 9 mag day{sup -1}, while the light curve is well fit over only the first two days by a model with a uniformly expanding sphere. We also report the discovery by R. Stubbings of a pre-eruption rise starting 18 days before the eruption, peaking 1.1 mag brighter than its long-time average, and then fading back toward quiescence 4 days before the eruption. This unique and mysterious behavior is only the fourth known (with V1500 Cyg, V533 Her, and T CrB) anticipatory rise closely spaced before a nova eruption. We present 19 timings of photometric minima from 1986 to 2011 February, where the orbital period is fast increasing with P/ P-dot =+313,000 yr. From 2008 to 2011, T Pyx had a small change in this rate of increase, so that the orbital period at the time of eruption was 0.07622950 {+-} 0.00000008 days. This strong and steady increase of the orbital period can only come from mass transfer, for which we calculate a rate of (1.7-3.5) Multiplication-Sign 10{sup -7} M{sub Sun} yr{sup -1}. We report 6116 magnitudes between 1890 and 2011, for an average B = 15.59 {+-} 0.01 from 1967 to 2011, which allows for an eruption in 2011 if the blue flux is nearly proportional to the accretion rate. The ultraviolet-optical-infrared spectral energy distribution is well fit by a power law with f{sub {nu}}{proportional_to}{nu}{sup 1.0}, although the narrow ultraviolet region has a tilt with a fit of f{sub {nu}}{proportional_to}{nu}{sup 1/3}. We prove that most of the T Pyx light is not coming from a disk, or any superposition of blackbodies, but rather is coming from some nonthermal

  1. The 2011 Eruption of the Recurrent Nova T Pyxidis: The Discovery, the Pre-eruption Rise, the Pre-eruption Orbital Period, and the Reason for the Long Delay

    Science.gov (United States)

    Schaefer, Bradley E.; Landolt, Arlo U.; Linnolt, Michael; Stubbings, Rod; Pojmanski, Grzegorz; Plummer, Alan; Kerr, Stephen; Nelson, Peter; Carstens, Rolf; Streamer, Margaret; Richards, Tom; Myers, Gordon; Dillon, William G.

    2013-08-01

    We report the discovery by M. Linnolt on JD 2,455,665.7931 (UT 2011 April 14.29) of the sixth eruption of the recurrent nova T Pyxidis. This discovery was made just as the initial fast rise was starting, so with fast notification and response by observers worldwide, the entire initial rise was covered (the first for any nova), and with high time resolution in three filters. The speed of the rise peaked at 9 mag day-1, while the light curve is well fit over only the first two days by a model with a uniformly expanding sphere. We also report the discovery by R. Stubbings of a pre-eruption rise starting 18 days before the eruption, peaking 1.1 mag brighter than its long-time average, and then fading back toward quiescence 4 days before the eruption. This unique and mysterious behavior is only the fourth known (with V1500 Cyg, V533 Her, and T CrB) anticipatory rise closely spaced before a nova eruption. We present 19 timings of photometric minima from 1986 to 2011 February, where the orbital period is fast increasing with P/\\dot{P}=+313{,000} yr. From 2008 to 2011, T Pyx had a small change in this rate of increase, so that the orbital period at the time of eruption was 0.07622950 ± 0.00000008 days. This strong and steady increase of the orbital period can only come from mass transfer, for which we calculate a rate of (1.7-3.5) × 10-7 M ⊙ yr-1. We report 6116 magnitudes between 1890 and 2011, for an average B = 15.59 ± 0.01 from 1967 to 2011, which allows for an eruption in 2011 if the blue flux is nearly proportional to the accretion rate. The ultraviolet-optical-infrared spectral energy distribution is well fit by a power law with f νvpropν1.0, although the narrow ultraviolet region has a tilt with a fit of f νvpropν1/3. We prove that most of the T Pyx light is not coming from a disk, or any superposition of blackbodies, but rather is coming from some nonthermal source. We confirm the extinction measure from IUE with E(B - V) = 0.25 ± 0.02 mag.

  2. Too cheap to meter what?

    International Nuclear Information System (INIS)

    Wedekind, Lothar

    2004-01-01

    , energy analysts say trillions of dollars must be invested in fuels that are clean, affordable, and sustainable. In Asia, where energy demand and populations are fast rising, nuclear is growing, as in China where plans are ambitious. Outside the region, the story is mixed, with some countries rejecting the option outright on safety and waste grounds. Whatever the choices, the world can ill afford to ignore bringing more power to people. As eminent Indian scientist Homi Bhaba noted a half century ago, 'No energy is as expensive as no energy.' Time will tell how long his message resonates. (author)

  3. The Influence of Emerging Markets on the Pharmaceutical Industry.

    Science.gov (United States)

    Tannoury, Maya; Attieh, Zouhair

    2017-01-01

    Emerging markets represent an exceptional opportunity for the pharmaceutical industry. Although a precise definition is not yet available, economists define emerging markets as developing prosperous countries in which investment is expected to result in higher income despite high risks. Qualifying a market as emerging is not merely based on the economic status of the country, but also on several criteria that render the definition applicable to each country. Jim O'Neil, retired chairman of asset management at Goldman Sachs, identified leading economies of emerging markets: Brazil, Russia, India, and China (BRIC) and later Brazil, Russia, India, China, and South Africa (BRICS) and then Mexico, Indonesia, South Korea, and Turkey (MIST), which followed years later as the second tier of nations. Sales of the pharmaceutical markets in BRICS and MIST countries doubled in 5 years, reaching a market share of approximately 20%. The shift toward these new markets has been attributed to the large populations, growing prosperity, and increasing life expectancy in BRICS and MIST countries. In addition, companies are experiencing flattened growth of developed markets, expiration of patents leading to the up-selling of less expensive generic drugs, and tight regulations enforced in mature markets. Particular attention must therefore be given to these emerging markets. The strategies adopted by pharmaceutical companies that want to expand in these markets must be tailored to the pace of development of each country. These countries need drugs against infectious diseases and communicable diseases such as sexually transmitted diseases. They are readily exploitable territories for the innovative products of pharmaceuticals. Nevertheless, with the increase in wealth and longevity, a change of lifestyle is occurring. These changes accompany a shift in disease patterns. A disproportionally fast rise in the incidence of noncommunicable diseases such as cardiovascular illnesses, diabetes

  4. ON THE UNDERSTANDING OF AEOLIAN SEQUENCE STRATIGRAPHY: AN EXAMPLE FROM MIOCENE-PLIOCENE DEPOSITS IN PATAGONIA, ARGENTINA

    Directory of Open Access Journals (Sweden)

    CARLOS ZAVALA

    2001-07-01

    Full Text Available Upper Tertiary aeolian strata (Río Negro Formation outcrop in extensive sea cliffs at the Northeast of Patagonia. These outcrops show deposits corresponding to a complete suite of aeolian and aeolian related sub-environments, and also provide excellent exposures to analyse the sedimentology and internal architecture from a sequence stratigraphic point of view. Field studies, supplemented withline-drawings of oblique photographs, allowed the recognition of seven aeolian depositional sequences within the succession, each one bounded by regional super surfaces (or deflation surfaces. Internally these aeolian sequences display a cyclic recurrence in facies, that yields a tentative genetic model for their evolution. As documented from field examples, each basic aeolian depositional sequence was deposited during a single aggradational period, and is bounded by unconformities related to degradational periods. Degradational periods are regional deflationary events, that resulted in deep-scoured to flat surfaces, characterised by erosion / non deposition in which the only recognised accumulation is isolated and large angular blocks of fine-grained aggregates, interpreted as residual remnants of deposits of the previous sequence. Aggradational periods are characterised by a near- continuous accumulations responsible for the sequence building. Differences in the aeolian sediment budget to the area and the rising rate of water table control the related facies types, and allow to discriminateearly and late aggradational sub-periods. Early aggradational sub-periods form under conditions of relatively fast rising water tables associated with moderate aeolian sediment budget, thus resulting in the development of extended wet interduneslaterally associated with aeolian dunes and dry interdunes. During late aggradational sub-periods, the depositional surface outdistanced the water table, and aeolian dunes and dry interdunes tend to predominate. This sub

  5. Breast cancer and human papillomavirus infection: No evidence of HPV etiology of breast cancer in Indian women

    Directory of Open Access Journals (Sweden)

    Singh Y Mohan

    2011-01-01

    Full Text Available Abstract Background Two clinically relevant high-risk HPV (HR-HPV types 16 and 18 are etiologically associated with the development of cervical carcinoma and are also reported to be present in many other carcinomas in extra-genital organ sites. Presence of HPV has been reported in breast carcinoma which is the second most common cancer in India and is showing a fast rising trend in urban population. The two early genes E6 and E7 of HPV type 16 have been shown to immortalize breast epithelial cells in vitro, but the role of HPV infection in breast carcinogenesis is highly controversial. Present study has therefore been undertaken to analyze the prevalence of HPV infection in both breast cancer tissues and blood samples from a large number of Indian women with breast cancer from different geographic regions. Methods The presence of all mucosal HPVs and the most common high-risk HPV types 16 and 18 DNA was detected by two different PCR methods - (i conventional PCR assays using consensus primers (MY09/11, or GP5+/GP6+ or HPV16 E6/E7 primers and (ii highly sensitive Real-Time PCR. A total of 228 biopsies and corresponding 142 blood samples collected prospectively from 252 patients from four different regions of India with significant socio-cultural, ethnic and demographic variations were tested. Results All biopsies and blood samples of breast cancer patients tested by PCR methods did not show positivity for HPV DNA sequences in conventional PCRs either by MY09/11 or by GP5+/GP6+/HPV16 E6/E7 primers. Further testing of these samples by real time PCR also failed to detect HPV DNA sequences. Conclusions Lack of detection of HPV DNA either in the tumor or in the blood DNA of breast cancer patients by both conventional and real time PCR does not support a role of genital HPV in the pathogenesis of breast cancer in Indian women.

  6. An adaptive prediction and detection algorithm for multistream syndromic surveillance

    Directory of Open Access Journals (Sweden)

    Magruder Steve F

    2005-10-01

    Full Text Available Abstract Background Surveillance of Over-the-Counter pharmaceutical (OTC sales as a potential early indicator of developing public health conditions, in particular in cases of interest to biosurvellance, has been suggested in the literature. This paper is a continuation of a previous study in which we formulated the problem of estimating clinical data from OTC sales in terms of optimal LMS linear and Finite Impulse Response (FIR filters. In this paper we extend our results to predict clinical data multiple steps ahead using OTC sales as well as the clinical data itself. Methods The OTC data are grouped into a few categories and we predict the clinical data using a multichannel filter that encompasses all the past OTC categories as well as the past clinical data itself. The prediction is performed using FIR (Finite Impulse Response filters and the recursive least squares method in order to adapt rapidly to nonstationary behaviour. In addition, we inject simulated events in both clinical and OTC data streams to evaluate the predictions by computing the Receiver Operating Characteristic curves of a threshold detector based on predicted outputs. Results We present all prediction results showing the effectiveness of the combined filtering operation. In addition, we compute and present the performance of a detector using the prediction output. Conclusion Multichannel adaptive FIR least squares filtering provides a viable method of predicting public health conditions, as represented by clinical data, from OTC sales, and/or the clinical data. The potential value to a biosurveillance system cannot, however, be determined without studying this approach in the presence of transient events (nonstationary events of relatively short duration and fast rise times. Our simulated events superimposed on actual OTC and clinical data allow us to provide an upper bound on that potential value under some restricted conditions. Based on our ROC curves we argue that a

  7. Investigation of an Ultrafast Harmonic Resonant RF Kicker

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yulu [Univ. of Chinese Academy of Sciences (CAS), Beijing (China)

    2016-10-01

    An Energy Recovery Linac (ERL) based multi-turn electron Circulator Cooler Ring (CCR) is envisaged in the proposed Jefferson Lab Electron Ion Collider (JLEIC) to cool the ion bunches with high energy (55 MeV), high current (1.5 A), high repetition frequency (476.3 MHz), high quality magnetized electron bunches. A critical component in this scheme is a pair of ultrafast kickers for the exchange of electron bunches between the ERL and the CCR. The ultrafast kicker should operate with the rise and fall time in less than 2.1 ns, at the repetition rate of ~10s MHz, and should be able to run continuously during the whole period of cooling. These -and-fall time being combined together, are well beyond the state-of-art of traditional pulsed power supplies and magnet kickers. To solve this technical challenge, an alternative method is to generate this high repetition rate, fast rise-and-fall time short pulse continuous waveform by summing several finite number of (co)sine waves at harmonic frequencies of the kicking repetition frequency, and these harmonic modes can be generated by the Quarter Wave Resonater (QWR) based multifrequency cavities. Assuming the recirculator factor is 10, 10 harmonic modes (from 47.63 MHz to 476.3 MHz) with proper amplitudes and phases, plus a DC offset are combined together, a continuous short pulse waveform with the rise-and-fall time in less than 2.1 ns, repetition rate of 47.63 MHz waveform can be generated. With the compact and matured technology of QWR cavities, the total cost of both hardware development and operation can be reduced to a modest level. Focuse on the technical scheme, three main topics will be discussed in this thesis: the synthetization of the kicking pulse, the design and optimization of the deflecting QWR multi-integer harmonic frequency resonator and the fabrication and bench measurements of a half scale copper prototype. In the kicking pulse synthetization part, we begin with the Fourier Series expansion of an ideal

  8. Stable isotope separation; Separations physicochimiques d'isotopes stables realisations et etudes de petites productions

    Energy Technology Data Exchange (ETDEWEB)

    Botter, F; Molinari, Ph; Dirian, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    which cooling water circulates. Studies are going forward to increase the separation factor of the cascade by using an auxiliary gas. Isotopic Exchange: A series of experiments has been performed to determine the isotopic separation factor between a lithium amalgam and an organic solvent containing a lithium salt. The various parameters which may enter into this exchange were studied: the influence of the type of solvent (the two solvents used were dimethylformamide and tetrahydrofurane), of the temperature, of the concentration and of the nature of the associated halogen. Solutions of Li metal and liquid NH{sub 3} were studied also. A number of tests were carried out to see whether there was a difference between the isotopic compositions of the Li present in the two liquid layers obtained by the dissolution of Li metal in ammonia. No difference was observed between the Li isotopic ratios in the two phases. This was also true in the case of a layer of of Li in liquid NH{sub 3} and a layer of Li I in a similar solvent. Electromigration: The method of counter current electro Migration in fused salts is a powerful isotopic enrichment technique. It can be used successfully to separate the isotopes of elements with strongly metallic character. In the case of alkalis, small quantities of isotopically pure {sup 7}Li have been obtained, while the enrichment factors obtained for potassium are of the order of 10. With regard to the alkaline earths, it has been possible to produce small quantities of calcium enriched 5 times in {sup 46}Ca. However considerable technological difficulties rise up in the way of production on a semi-industrial scale. (authors) [French] Nous avons effectue Ia separation de deuterium pur, a partir de melanges gazeux d'hydrogene et de deuterium, par chromatographie de deplacement de bande sur colonnes de palladium supporte. Les meilleures performances ont ete obtenues par des colonnes de Pd sur fritte d'alumine {alpha}. Avec une colonne de ce type, de

  9. Simulated and observed trends in key variables of the Arctic marine carbon cycle

    Science.gov (United States)

    Goris, Nadine; Heinze, Christoph; Lauvset, Siv; Petrenko, Dmitry; Pozdnyakov, Dmitry; Schwinger, Jörg

    2013-04-01

    nor to determine significant trends. Widespread measurements for at least 40 years are needed to capture both different regional behavior and associated trends stressing the value of the existing spatially comprehensive Arctic datasets of primary production and the importance of continuing the sensor-retrievals in the following years. The measurement stations of atmospheric CO2 provide a good characterization of CO2 with continuous measurement on a few, well distributed locations and allow for a confident data-model comparison all over the Arctic, while the coverage of the LDEO/SOCAT database allows for confident statements about the trends of oceanic pCO2 in the region between 60oW and 30oE. Here, the validated model MICOM-HAMOCC-M simulates a fast rising oceanic CO2 partial pressure leading to an accelerated decrease in ocean CO2 uptake in the Arctic.

  10. Assessment of carbonaceous aerosols in Shanghai, China - Part 1: long-term evolution, seasonal variations, and meteorological effects

    Science.gov (United States)

    Chang, Yunhua; Deng, Congrui; Cao, Fang; Cao, Chang; Zou, Zhong; Liu, Shoudong; Lee, Xuhui; Li, Jun; Zhang, Gan; Zhang, Yanlin

    2017-08-01

    Carbonaceous aerosols are major chemical components of fine particulate matter (PM2. 5) with major impacts on air quality, climate change, and human health. Gateway to fast-rising China and home of over twenty million people, Shanghai throbs as the nation's largest mega city and the biggest industrial hub. From July 2010 to December 2014, hourly mass concentrations of ambient organic carbon (OC) and elemental carbon (EC) in the PM2. 5 fraction were quasi-continuously measured in Shanghai's urban center. The annual OC and EC concentrations (mean ±1σ) in 2013 (8.9 ± 6.2 and 2.6 ± 2.1 µg m-3, n = 5547) and 2014 (7.8 ± 4.6 and 2.1 ± 1.6 µg m-3, n = 6914) were higher than those of 2011 (6.3 ± 4.2 and 2.4 ± 1.8 µg m-3, n = 8039) and 2012 (5.7 ± 3.8 and 2.0 ± 1.6 µg m-3, n = 4459). We integrated the results from historical field measurements (1999-2012) and satellite observations (2003-2013), concluding that carbonaceous aerosol pollution in Shanghai has gradually reduced since 2006. In terms of monthly variations, average OC and EC concentrations ranged from 4.0 to 15.5 and from 1.4 to 4.7 µg m-3, accounting for 13.2-24.6 and 3.9-6.6 % of the seasonal PM2. 5 mass (38.8-94.1 µg m-3), respectively. The concentrations of EC (2.4, 2.0, 2.2, and 3.0 µg m-3 in spring, summer, fall, and winter, respectively) showed little seasonal variation (except in winter) and weekend-weekday dependence, indicating EC is a relatively stable constituent of PM2. 5 in the Shanghai urban atmosphere. In contrast to OC (7.3, 6.8, 6.7, and 8.1 µg m-3 in spring, summer, fall, and winter, respectively), EC showed marked diurnal cycles and correlated strongly with CO across all seasons, confirming vehicular emissions as the dominant source of EC at the targeted site. Our data also reveal that both OC and EC showed concentration gradients as a function of wind direction (WD) and wind speed (WS), generally with higher values associated with winds from the southwest, west, and northwest

  11. X-RAY AND GAMMA-RAY FLASHES FROM TYPE Ia SUPERNOVAE?

    International Nuclear Information System (INIS)

    Hoeflich, Peter; Schaefer, Bradley E.

    2009-01-01

    We investigate two potential mechanisms that will produce X-ray and γ-ray flashes from Type Ia supernovae (SN-Ia). The first mechanism is the breakout of the thermonuclear burning front as it reaches the surface of the white dwarf (WD). The second mechanism is the interaction of the rapidly expanding envelope with material within an accretion disk in the progenitor system. Our study is based on the delayed detonation scenario because this can account for the majority of light curves, spectra, and statistical properties of 'Branch-normal' SN-Ia. Based on detailed radiation-hydro calculations which include nuclear networks, we find that both mechanisms produce brief flashes of high-energy radiation with peak luminosities of 10 48 -10 50 erg s -1 . The breakout from the WD surface produces flashes with a rapid exponential decay by 3-4 orders of magnitude on timescales of a few tenths of a second and with most of the radiation in the X-ray and soft γ-ray range. The shocks produced in gases in and around the binary will produce flashes with a characteristic duration of a few seconds with most of the radiation coming out as X-rays and γ-rays. In both mechanisms, we expect a fast rise and slow decline and, after the peak, an evolution from hard to softer radiation due to adiabatic expansion. In many cases, flashes from both mechanisms will be superposed. The X- and γ-ray visibility of an SN-Ia will depend strongly on self-absorption within the progenitor system, specifically on the properties of the accretion disk and its orientation toward the observer. Such X-ray and γ-ray flashes could be detected as triggered events by gamma-ray burst (GRB) detectors on satellites, with events in current GRB catalogs. We have searched through the GRB catalogs (for the BATSE, HETE, and Swift experiments) for GRBs that occur at the extrapolated time of explosion and in the correct direction for known Type Ia supernovae with radial velocity of less than 3000 km s -1 . For the Burst

  12. Development of a chest digital tomosynthesis R/F system and implementation of low-dose GPU-accelerated compressed sensing (CS) image reconstruction.

    Science.gov (United States)

    Choi, Sunghoon; Lee, Haenghwa; Lee, Donghoon; Choi, Seungyeon; Lee, Chang-Lae; Kwon, Woocheol; Shin, Jungwook; Seo, Chang-Woo; Kim, Hee-Joung

    2018-05-01

    This work describes the hardware and software developments of a prototype chest digital tomosynthesis (CDT) R/F system. The purpose of this study was to validate the developed system for its possible clinical application on low-dose chest tomosynthesis imaging. The prototype CDT R/F system was operated by carefully controlling the electromechanical subsystems through a synchronized interface. Once a command signal was delivered by the user, a tomosynthesis sweep started to acquire 81 projection views (PVs) in a limited angular range of ±20°. Among the full projection dataset of 81 images, several sets of 21 (quarter view) and 41 (half view) images with equally spaced angle steps were selected to represent a sparse view condition. GPU-accelerated and total-variation (TV) regularization strategy-based compressed sensing (CS) image reconstruction was implemented. The imaged objects were a flat-field using a copper filter to measure the noise power spectrum (NPS), a Catphan ® CTP682 quality assurance (QA) phantom to measure a task-based modulation transfer function (MTF T ask ) of three different cylinders' edge, and an anthropomorphic chest phantom with inserted lung nodules. The authors also verified the accelerated computing power over CPU programming by checking the elapsed time required for the CS method. The resultant absorbed and effective doses that were delivered to the chest phantom from two-view digital radiographic projections, helical computed tomography (CT), and the prototype CDT system were compared. The prototype CDT system was successfully operated, showing little geometric error with fast rise and fall times of R/F x-ray pulse less than 2 and 10 ms, respectively. The in-plane NPS presented essential symmetric patterns as predicted by the central slice theorem. The NPS images from 21 PVs were provided quite different pattern against 41 and 81 PVs due to aliased noise. The voxel variance values which summed all NPS intensities were inversely

  13. Climate, people, fire and vegetation: new insights into vegetation dynamics in the Eastern Mediterranean since the 1st century AD

    Directory of Open Access Journals (Sweden)

    J. Bakker

    2013-01-01

    land use during Ottoman times. The pollen data reveal that a fast rise in Pinus pollen after the end of the Beyşehir Occupation Phase need not always occur. The notion of high Pinus pollen percentages indicating an open landscape incapable of countering the influx of pine pollen is also deemed unrealistic. While multiple fires occurred in the region through time, extended fire periods, as had occurred during the Bronze Age and Beyşehir Occupation Phase, did not occur, and no signs of local fire activity were observed. Fires were never a major influence on vegetation dynamics. While no complete overview of post-BO Phase fire events can be presented, the available data indicates that fires in the vicinity of Gravgaz may have been linked to anthropogenic activity in the wider surroundings of the marsh. Fires in the vicinity of Bereket appeared to be linked to increased abundance of pine forests. There was no link with specifically wet or dry environmental conditions at either site. While this study reveals much new information concerning the impact of climate change and human occupation on the environment, more studies from SW Turkey are required in order to properly quantify the range of the observed phenomena and the magnitude of their impacts.

  14. Assessment of carbonaceous aerosols in Shanghai, China – Part 1: long-term evolution, seasonal variations, and meteorological effects

    Directory of Open Access Journals (Sweden)

    Y. Chang

    2017-08-01

    Full Text Available Carbonaceous aerosols are major chemical components of fine particulate matter (PM2. 5 with major impacts on air quality, climate change, and human health. Gateway to fast-rising China and home of over twenty million people, Shanghai throbs as the nation's largest mega city and the biggest industrial hub. From July 2010 to December 2014, hourly mass concentrations of ambient organic carbon (OC and elemental carbon (EC in the PM2. 5 fraction were quasi-continuously measured in Shanghai's urban center. The annual OC and EC concentrations (mean ±1σ in 2013 (8.9 ± 6.2 and 2.6 ± 2.1 µg m−3, n =  5547 and 2014 (7.8 ± 4.6 and 2.1 ± 1.6 µg m−3, n =  6914 were higher than those of 2011 (6.3 ± 4.2 and 2.4 ± 1.8 µg m−3, n =  8039 and 2012 (5.7 ± 3.8 and 2.0 ± 1.6 µg m−3, n =  4459. We integrated the results from historical field measurements (1999–2012 and satellite observations (2003–2013, concluding that carbonaceous aerosol pollution in Shanghai has gradually reduced since 2006. In terms of monthly variations, average OC and EC concentrations ranged from 4.0 to 15.5 and from 1.4 to 4.7 µg m−3, accounting for 13.2–24.6 and 3.9–6.6 % of the seasonal PM2. 5 mass (38.8–94.1 µg m−3, respectively. The concentrations of EC (2.4, 2.0, 2.2, and 3.0 µg m−3 in spring, summer, fall, and winter, respectively showed little seasonal variation (except in winter and weekend–weekday dependence, indicating EC is a relatively stable constituent of PM2. 5 in the Shanghai urban atmosphere. In contrast to OC (7.3, 6.8, 6.7, and 8.1 µg m−3 in spring, summer, fall, and winter, respectively, EC showed marked diurnal cycles and correlated strongly with CO across all seasons, confirming vehicular emissions as the dominant source of EC at the targeted site. Our data also reveal that both OC and EC showed concentration gradients as a

  15. Dirtier Air from a Weaker Monsoon

    Science.gov (United States)

    Chin, Mian

    2012-01-01

    The level of air pollution in China has much increased in the past decades, causing serious health problems. Among the main pollutants are aerosols, also known as particulate matter: tiny, invisible particles that are suspended in the air. These particles contribute substantially to premature mortality associated with cardiopulmonary diseases and lung cancer1. The increase of the aerosol level in China has been commonly attributed to the fast rise in pollutant emissions from the rapid economic development in the region. However, writing in Geophysical Research Letters, Jianlei Zhu and colleagues2 tell a different side of the story: using a chemical transport model and observation data, they show that the decadal scale weakening of the East Asian summer monsoon has also contributed to the increase of aerosol concentrations in China. The life cycle of atmospheric aerosols starts with its emission or formation in the atmosphere. Some aerosol components such as dust, soot and sea salt are emitted directly as particles to the atmosphere, but others are formed there by way of photochemical reactions. For example, sulphate and nitrate aerosols are produced from their respective precursor gases, sulphur dioxide and nitrogen oxides. Aerosol particles can be transported away from their source locations by winds or vertical motion of the air. Eventually, they are removed from the atmosphere by means of dry deposition and wet scavenging by precipitation. Measurements generally show that aerosol concentrations over Asia are lowest during the summer monsoon season3, because intense rainfall efficiently removes them from the air. The East Asian summer monsoon extends over subtropics and mid-latitudes. Its rainfall tends to concentrate in rain belts that stretch out for many thousands of kilometres and affect China, Korea, Japan and the surrounding area. Observations suggest that the East Asian summer monsoon circulation and precipitation have been in decline since the 1970s4. In

  16. Laser Wakefield Acceleration Driven by a CO2 Laser (STELLA-LW) - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Wayne D

    2008-06-27

    chicane bifurcated the incoming bunch into two compressed bunches separated in time and energy. With the available equipment it was not possible to stop the bifurcation. In an attempt to still deliver a single compressed bunch to the experiment, a slit was used to block one of the bunches, but this also blocked any witness bunch. Third, the loss of the witness bunch meant a different method for detecting the effect of the laser beam on the wakefield had to be implemented. Hence, a coherent Thomson scattering (CTS) diagnostic was designed and assembled. Unfortunately, further tests with blocking one of the double-bunches showed that wakefield generation was too unstable and difficult to control for the seeded SM-LWFA experiment. Luckily, it was found that a fast-rising (~50 fs) bunch could be created along Beamline #2 that was capable of generating wakefields, did not use the chicane, and was more stable. Thus, as the fourth major change, the entire STELLA-LW apparatus, including the CTS diagnostic, was moved from Beamline #1 to Beamline #2. Because this move occurred near the end of the program, only a single 2-week run could be performed. During the run it was found the laser beam transmission through the capillary discharge was severely degraded when the plasma was on. This loss of transmission appeared to be due to defocusing of the laser beam probably caused by laser-induced ionization creating a lens effect inside the capillary. Defocusing could also cause laser light to strike the capillary wall, thereby producing ablation and localized changes in the plasma density. Any changes in the plasma density would disrupt the plasma resonance condition for the wakefield. It was also discovered after the run that the ATF laser was producing multiple output pulses. The leading pulse could have caused ionization that interfered with transmission of the following pulses. Worse yet, the peak power in each of the pulses was several times smaller than if all the pulse energy was