WorldWideScience

Sample records for mc-based homogenous central

  1. Central Andean temperature and precipitation measurements and its homogenization

    Science.gov (United States)

    Hunziker, Stefan; Gubler, Stefanie

    2015-04-01

    Observation of climatological parameters and the homogenization of these time series have a well-established history in western countries. This is not the case for many other countries, such as Bolivia and Peru. In Bolivia and Peru, the organization of measurements, quality of measurement equipment, equipment maintenance, training of staff and data management are fundamentally different compared to the western standard. The data needs special attention, because many problems are not detected by standard quality control procedures. Information about the weather stations, best achieved by station visits, is very beneficial. If the cause of the problem is known, some of the data may be corrected. In this study, cases of typical problems and measurement errors will be demonstrated. Much of research on homogenization techniques (up to subdaily scale) has been completed in recent years. However, data sets of the quality of western station networks have been used, and little is known about the performance of homogenization methods on data sets from countries such as Bolivia and Peru. HOMER (HOMogenizaton softwarE in R) is one of the most recent and widely used homogenization softwares. Its performance is tested on Peruvian-like data that has been sourced from Swiss stations (similar station density and metadata availability). The Swiss station network is a suitable test bed, because climate gradients are strong and the terrain is complex, as is also found in the Central Andes. On the other hand, the Swiss station network is dense, and long time series and extensive metadata are available. By subsampling the station network and omitting the metadata, the conditions of a Peruvian test region are mimicked. Results are compared to a dataset homogenized by THOMAS (Tool for Homogenization of Monthly Data Series), the homogenization tool used by MeteoSwiss.

  2. Long term spatial and temporal rainfall trends and homogeneity analysis in Wainganga basin, Central India

    Directory of Open Access Journals (Sweden)

    Arun Kumar Taxak

    2014-08-01

    Full Text Available Gridded rainfall data of 0.5×0.5° resolution (CRU TS 3.21 was analysed to study long term spatial and temporal trends on annual and seasonal scales in Wainganga river basin located in Central India during 1901–2012. After testing the presence of autocorrelation, Mann–Kendall (Modified Mann–Kendall test was applied to non-auto correlated (auto correlated series to detect the trends in rainfall data. Theil and Sen׳s slope estimator test was used for finding the magnitude of change over a time period. For detecting the most probable change year, Pettitt–Mann–Whitney test was applied. The Rainfall series was then divided into two partial duration series for finding changes in trends before and after the change year. Arc GIS was used to explore spatial patterns of the trends over the entire basin. Though most of the grid points shows a decreasing trend in annual rainfall, only seven grids has a significant decreasing trend during 1901–2012. On the basis of seasonal trend analysis, non-significant increasing trend is observed only in post monsoon season while seven grid points show significant decreasing trend in monsoon rainfall and non-significant in pre-monsoon and winter rainfall over the last 112 years. During the study period, overall a 8.45% decrease in annual rainfall is estimated. The most probable year of change was found to be 1948 in annual and monsoonal rainfall. There is an increasing rainfall trend in the basin during the period 1901–1948, which is reversed during the period 1949–2012 resulting in decreasing rainfall trend in the basin. Homogeneous trends in annual and seasonal rainfall over a grid points is exhibited in the basin by van Belle and Hughes׳ homogeneity trend test.

  3. Long-term species loss and homogenization of moth communities in Central Europe.

    Science.gov (United States)

    Valtonen, Anu; Hirka, Anikó; Szőcs, Levente; Ayres, Matthew P; Roininen, Heikki; Csóka, György

    2017-07-01

    As global biodiversity continues to decline steeply, it is becoming increasingly important to understand diversity patterns at local and regional scales. Changes in land use and climate, nitrogen deposition and invasive species are the most important threats to global biodiversity. Because land use changes tend to benefit a few species but impede many, the expected outcome is generally decreasing population sizes, decreasing species richness at local and regional scales, and increasing similarity of species compositions across sites (biotic homogenization). Homogenization can be also driven by invasive species or effects of soil eutrophication propagating to higher trophic levels. In contrast, in the absence of increasing aridity, climate warming is predicted to generally increase abundances and species richness of poikilotherms at local and regional scales. We tested these predictions with data from one of the few existing monitoring programmes on biodiversity in the world dating to the 1960s, where the abundance of 878 species of macro-moths have been measured daily at seven sites across Hungary. Our analyses revealed a dramatic rate of regional species loss and homogenization of community compositions across sites. Species with restricted distribution range, specialized diet or dry grassland habitat were more likely than others to disappear from the community. In global context, the contrasting effects of climate change and land use changes could explain why the predicted enriching effects from climate warming are not always realized. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  4. Diversity and biotic homogenization of urban land-snail faunas in relation to habitat types and macroclimate in 32 central European cities.

    Science.gov (United States)

    Horsák, Michal; Lososová, Zdeňka; Čejka, Tomáš; Juřičková, Lucie; Chytrý, Milan

    2013-01-01

    The effects of non-native species invasions on community diversity and biotic homogenization have been described for various taxa in urban environments, but not for land snails. Here we relate the diversity of native and non-native land-snail urban faunas to urban habitat types and macroclimate, and analyse homogenization effects of non-native species across cities and within the main urban habitat types. Land-snail species were recorded in seven 1-ha plots in 32 cities of ten countries of Central Europe and Benelux (224 plots in total). Each plot represented one urban habitat type characterized by different management and a specific disturbance regime. For each plot, we obtained January, July and mean annual temperature and annual precipitation. Snail species were classified into either native or non-native. The effects of habitat type and macroclimate on the number of native and non-native species were analysed using generalized estimating equations; the homogenization effect of non-native species based on the Jaccard similarity index and homogenization index. We recorded 67 native and 20 non-native species. Besides being more numerous, native species also had much higher beta diversity than non-natives. There were significant differences between the studied habitat types in the numbers of native and non-native species, both of which decreased from less to heavily urbanized habitats. Macroclimate was more important for the number of non-native than native species; however in both cases the effect of climate on diversity was overridden by the effect of urban habitat type. This is the first study on urban land snails documenting that non-native land-snail species significantly contribute to homogenization among whole cities, but both the homogenization and diversification effects occur when individual habitat types are compared among cities. This indicates that the spread of non-native snail species may cause biotic homogenization, but it depends on scale and

  5. Nested MC-Based Risk Measurement of Complex Portfolios: Acceleration and Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Sascha Desmettre

    2016-10-01

    Full Text Available Risk analysis and management currently have a strong presence in financial institutions, where high performance and energy efficiency are key requirements for acceleration systems, especially when it comes to intraday analysis. In this regard, we approach the estimation of the widely-employed portfolio risk metrics value-at-risk (VaR and conditional value-at-risk (cVaR by means of nested Monte Carlo (MC simulations. We do so by combining theory and software/hardware implementation. This allows us for the first time to investigate their performance on heterogeneous compute systems and across different compute platforms, namely central processing unit (CPU, many integrated core (MIC architecture XeonPhi, graphics processing unit (GPU, and field-programmable gate array (FPGA. To this end, the OpenCL framework is employed to generate portable code, and the size of the simulations is scaled in order to evaluate variations in performance. Furthermore, we assess different parallelization schemes, and the targeted platforms are evaluated and compared in terms of runtime and energy efficiency. Our implementation also allowed us to derive a new algorithmic optimization regarding the generation of the required random number sequences. Moreover, we provide specific guidelines on how to properly handle these sequences in portable code, and on how to efficiently implement nested MC-based VaR and cVaR simulations on heterogeneous compute systems.

  6. Reflector homogenization

    International Nuclear Information System (INIS)

    Sanchez, R.; Ragusa, J.; Santandrea, S.

    2004-01-01

    The problem of the determination of a homogeneous reflector that preserves a set of prescribed albedo is considered. Duality is used for a direct estimation of the derivatives needed in the iterative calculation of the optimal homogeneous cross sections. The calculation is based on the preservation of collapsed multigroup albedo obtained from detailed reference calculations and depends on the low-order operator used for core calculations. In this work we analyze diffusion and transport as low-order operators and argue that the P 0 transfers are the best choice for the unknown cross sections to be adjusted. Numerical results illustrate the new approach for SP N core calculations. (Author)

  7. Reflector homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.; Ragusa, J.; Santandrea, S. [Commissariat a l' Energie Atomique, Direction de l' Energie Nucleaire, Service d' Etudes de Reacteurs et de Modelisation Avancee, CEA de Saclay, DM2S/SERMA 91 191 Gif-sur-Yvette cedex (France)]. e-mail: richard.sanchez@cea.fr

    2004-07-01

    The problem of the determination of a homogeneous reflector that preserves a set of prescribed albedo is considered. Duality is used for a direct estimation of the derivatives needed in the iterative calculation of the optimal homogeneous cross sections. The calculation is based on the preservation of collapsed multigroup albedo obtained from detailed reference calculations and depends on the low-order operator used for core calculations. In this work we analyze diffusion and transport as low-order operators and argue that the P{sub 0} transfers are the best choice for the unknown cross sections to be adjusted. Numerical results illustrate the new approach for SP{sub N} core calculations. (Author)

  8. Tissue decomposition from dual energy CT data for MC based dose calculation in particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hünemohr, Nora, E-mail: n.huenemohr@dkfz.de; Greilich, Steffen [Medical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg (Germany); Paganetti, Harald; Seco, Joao [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); Jäkel, Oliver [Medical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany and Department of Radiation Oncology and Radiation Therapy, University Hospital of Heidelberg, 69120 Heidelberg (Germany)

    2014-06-15

    Purpose: The authors describe a novel method of predicting mass density and elemental mass fractions of tissues from dual energy CT (DECT) data for Monte Carlo (MC) based dose planning. Methods: The relative electron density ϱ{sub e} and effective atomic number Z{sub eff} are calculated for 71 tabulated tissue compositions. For MC simulations, the mass density is derived via one linear fit in the ϱ{sub e} that covers the entire range of tissue compositions (except lung tissue). Elemental mass fractions are predicted from the ϱ{sub e} and the Z{sub eff} in combination. Since particle therapy dose planning and verification is especially sensitive to accurate material assignment, differences to the ground truth are further analyzed for mass density, I-value predictions, and stopping power ratios (SPR) for ions. Dose studies with monoenergetic proton and carbon ions in 12 tissues which showed the largest differences of single energy CT (SECT) to DECT are presented with respect to range uncertainties. The standard approach (SECT) and the new DECT approach are compared to reference Bragg peak positions. Results: Mean deviations to ground truth in mass density predictions could be reduced for soft tissue from (0.5±0.6)% (SECT) to (0.2±0.2)% with the DECT method. Maximum SPR deviations could be reduced significantly for soft tissue from 3.1% (SECT) to 0.7% (DECT) and for bone tissue from 0.8% to 0.1%. MeanI-value deviations could be reduced for soft tissue from (1.1±1.4%, SECT) to (0.4±0.3%) with the presented method. Predictions of elemental composition were improved for every element. Mean and maximum deviations from ground truth of all elemental mass fractions could be reduced by at least a half with DECT compared to SECT (except soft tissue hydrogen and nitrogen where the reduction was slightly smaller). The carbon and oxygen mass fraction predictions profit especially from the DECT information. Dose studies showed that most of the 12 selected tissues would

  9. Mechanical Homogenization Increases Bacterial Homogeneity in Sputum

    Science.gov (United States)

    Stokell, Joshua R.; Khan, Ammad

    2014-01-01

    Sputum obtained from patients with cystic fibrosis (CF) is highly viscous and often heterogeneous in bacterial distribution. Adding dithiothreitol (DTT) is the standard method for liquefaction prior to processing sputum for molecular detection assays. To determine if DTT treatment homogenizes the bacterial distribution within sputum, we measured the difference in mean total bacterial abundance and abundance of Burkholderia multivorans between aliquots of DTT-treated sputum samples with and without a mechanical homogenization (MH) step using a high-speed dispersing element. Additionally, we measured the effect of MH on bacterial abundance. We found a significant difference between the mean bacterial abundances in aliquots that were subjected to only DTT treatment and those of the aliquots which included an MH step (all bacteria, P = 0.04; B. multivorans, P = 0.05). There was no significant effect of MH on bacterial abundance in sputum. Although our results are from a single CF patient, they indicate that mechanical homogenization increases the homogeneity of bacteria in sputum. PMID:24759710

  10. Functionality and homogeneity.

    NARCIS (Netherlands)

    2011-01-01

    Functionality and homogeneity are two of the five Sustainable Safety principles. The functionality principle aims for roads to have but one exclusive function and distinguishes between traffic function (flow) and access function (residence). The homogeneity principle aims at differences in mass,

  11. Homogenization of Mammalian Cells.

    Science.gov (United States)

    de Araújo, Mariana E G; Lamberti, Giorgia; Huber, Lukas A

    2015-11-02

    Homogenization is the name given to the methodological steps necessary for releasing organelles and other cellular constituents as a free suspension of intact individual components. Most homogenization procedures used for mammalian cells (e.g., cavitation pump and Dounce homogenizer) rely on mechanical force to break the plasma membrane and may be supplemented with osmotic or temperature alterations to facilitate membrane disruption. In this protocol, we describe a syringe-based homogenization method that does not require specialized equipment, is easy to handle, and gives reproducible results. The method may be adapted for cells that require hypotonic shock before homogenization. We routinely use it as part of our workflow to isolate endocytic organelles from mammalian cells. © 2015 Cold Spring Harbor Laboratory Press.

  12. The SPH homogeneization method

    International Nuclear Information System (INIS)

    Kavenoky, Alain

    1978-01-01

    The homogeneization of a uniform lattice is a rather well understood topic while difficult problems arise if the lattice becomes irregular. The SPH homogeneization method is an attempt to generate homogeneized cross sections for an irregular lattice. Section 1 summarizes the treatment of an isolated cylindrical cell with an entering surface current (in one velocity theory); Section 2 is devoted to the extension of the SPH method to assembly problems. Finally Section 3 presents the generalisation to general multigroup problems. Numerical results are obtained for a PXR rod bundle assembly in Section 4

  13. Homogeneity of Inorganic Glasses

    DEFF Research Database (Denmark)

    Jensen, Martin; Zhang, L.; Keding, Ralf

    2011-01-01

    Homogeneity of glasses is a key factor determining their physical and chemical properties and overall quality. However, quantification of the homogeneity of a variety of glasses is still a challenge for glass scientists and technologists. Here, we show a simple approach by which the homogeneity...... of different glass products can be quantified and ranked. This approach is based on determination of both the optical intensity and dimension of the striations in glasses. These two characteristic values areobtained using the image processing method established recently. The logarithmic ratio between...

  14. Benchmarking monthly homogenization algorithms

    Science.gov (United States)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.

    2011-08-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative). The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random break-type inhomogeneities were added to the simulated datasets modeled as a Poisson process with normally distributed breakpoint sizes. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide) trend was added. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including (i) the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii) the error in linear trend estimates and (iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data

  15. Homogenization approach in engineering

    International Nuclear Information System (INIS)

    Babuska, I.

    1975-10-01

    Homogenization is an approach which studies the macrobehavior of a medium by its microproperties. Problems with a microstructure play an essential role in such fields as mechanics, chemistry, physics, and reactor engineering. Attention is concentrated on a simple specific model problem to illustrate results and problems typical of the homogenization approach. Only the diffusion problem is treated here, but some statements are made about the elasticity of composite materials. The differential equation is solved for linear cases with and without boundaries and for the nonlinear case. 3 figures, 1 table

  16. Dynamics of homogeneous nucleation

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2015-01-01

    The classical nucleation theory for homogeneous nucleation is formulated as a theory for a density fluctuation in a supersaturated gas at a given temperature. But molecular dynamics simulations reveal that it is small cold clusters which initiates the nucleation. The temperature in the nucleating...

  17. Homogeneous bilateral block shifts

    Indian Academy of Sciences (India)

    Douglas class were classified in [3]; they are unilateral block shifts of arbitrary block size (i.e. dim H(n) can be anything). However, no examples of irreducible homogeneous bilateral block shifts of block size larger than 1 were known until now.

  18. Homogeneity and Entropy

    Science.gov (United States)

    Tignanelli, H. L.; Vazquez, R. A.; Mostaccio, C.; Gordillo, S.; Plastino, A.

    1990-11-01

    RESUMEN. Presentamos una metodologia de analisis de la homogeneidad a partir de la Teoria de la Informaci6n, aplicable a muestras de datos observacionales. ABSTRACT:Standard concepts that underlie Information Theory are employed in order design a methodology that enables one to analyze the homogeneity of a given data sample. Key : DATA ANALYSIS

  19. Homogeneous Poisson structures

    International Nuclear Information System (INIS)

    Shafei Deh Abad, A.; Malek, F.

    1993-09-01

    We provide an algebraic definition for Schouten product and give a decomposition for any homogenenous Poisson structure in any n-dimensional vector space. A large class of n-homogeneous Poisson structures in R k is also characterized. (author). 4 refs

  20. Homogeneous group, research, institution

    Directory of Open Access Journals (Sweden)

    Francesca Natascia Vasta

    2014-09-01

    Full Text Available The work outlines the complex connection among empiric research, therapeutic programs and host institution. It is considered the current research state in Italy. Italian research field is analyzed and critic data are outlined: lack of results regarding both the therapeutic processes and the effectiveness of eating disorders group analytic treatment. The work investigates on an eating disorders homogeneous group, led into an eating disorder outpatient service. First we present the methodological steps the research is based on including the strong connection among theory and clinical tools. Secondly clinical tools are described and the results commented. Finally, our results suggest the necessity of validating some more specifical hypothesis: verifying the relationship between clinical improvement (sense of exclusion and painful emotions reduction and specific group therapeutic processes; verifying the relationship between depressive feelings, relapses and transition trough a more differentiated groupal field.Keywords: Homogeneous group; Eating disorders; Institutional field; Therapeutic outcome

  1. Homogeneous turbulence dynamics

    CERN Document Server

    Sagaut, Pierre

    2018-01-01

    This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magneto-hydodynamic turbulence  and turbulence in non-newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obta...

  2. Homogen Mur - et udviklingsprojekt

    DEFF Research Database (Denmark)

    Dahl, Torben; Beim, Anne; Sørensen, Peter

    1997-01-01

    Mølletorvet i Slagelse er det første byggeri i Danmark, hvor ydervæggen er udført af homogene bærende og isolerende teglblokke. Byggeriet viser en række af de muligheder, der både med hensyn til konstruktioner, energiforhold og arkitektur ligger i anvendelsen af homogent blokmurværk.......Mølletorvet i Slagelse er det første byggeri i Danmark, hvor ydervæggen er udført af homogene bærende og isolerende teglblokke. Byggeriet viser en række af de muligheder, der både med hensyn til konstruktioner, energiforhold og arkitektur ligger i anvendelsen af homogent blokmurværk....

  3. Homogenization of resonant chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....

  4. Homogeneous M2 duals

    International Nuclear Information System (INIS)

    Figueroa-O’Farrill, José; Ungureanu, Mara

    2016-01-01

    Motivated by the search for new gravity duals to M2 branes with N>4 supersymmetry — equivalently, M-theory backgrounds with Killing superalgebra osp(N|4) for N>4 — we classify (except for a small gap) homogeneous M-theory backgrounds with symmetry Lie algebra so(n)⊕so(3,2) for n=5,6,7. We find that there are no new backgrounds with n=6,7 but we do find a number of new (to us) backgrounds with n=5. All backgrounds are metrically products of the form AdS 4 ×P 7 , with P riemannian and homogeneous under the action of SO(5), or S 4 ×Q 7 with Q lorentzian and homogeneous under the action of SO(3,2). At least one of the new backgrounds is supersymmetric (albeit with only N=2) and we show that it can be constructed from a supersymmetric Freund-Rubin background via a Wick rotation. Two of the new backgrounds have only been approximated numerically.

  5. Homogeneous M2 duals

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa-O’Farrill, José [School of Mathematics and Maxwell Institute for Mathematical Sciences,The University of Edinburgh,James Clerk Maxwell Building, The King’s Buildings, Peter Guthrie Tait Road,Edinburgh EH9 3FD, Scotland (United Kingdom); Ungureanu, Mara [Humboldt-Universität zu Berlin, Institut für Mathematik,Unter den Linden 6, 10099 Berlin (Germany)

    2016-01-25

    Motivated by the search for new gravity duals to M2 branes with N>4 supersymmetry — equivalently, M-theory backgrounds with Killing superalgebra osp(N|4) for N>4 — we classify (except for a small gap) homogeneous M-theory backgrounds with symmetry Lie algebra so(n)⊕so(3,2) for n=5,6,7. We find that there are no new backgrounds with n=6,7 but we do find a number of new (to us) backgrounds with n=5. All backgrounds are metrically products of the form AdS{sub 4}×P{sup 7}, with P riemannian and homogeneous under the action of SO(5), or S{sup 4}×Q{sup 7} with Q lorentzian and homogeneous under the action of SO(3,2). At least one of the new backgrounds is supersymmetric (albeit with only N=2) and we show that it can be constructed from a supersymmetric Freund-Rubin background via a Wick rotation. Two of the new backgrounds have only been approximated numerically.

  6. HOMOGENEOUS NUCLEAR POWER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  7. Homogeneous Finsler Spaces

    CERN Document Server

    Deng, Shaoqiang

    2012-01-01

    "Homogeneous Finsler Spaces" is the first book to emphasize the relationship between Lie groups and Finsler geometry, and the first to show the validity in using Lie theory for the study of Finsler geometry problems. This book contains a series of new results obtained by the author and collaborators during the last decade. The topic of Finsler geometry has developed rapidly in recent years. One of the main reasons for its surge in development is its use in many scientific fields, such as general relativity, mathematical biology, and phycology (study of algae). This monograph introduc

  8. Homogeneity spoil spectroscopy

    International Nuclear Information System (INIS)

    Hennig, J.; Boesch, C.; Martin, E.; Grutter, R.

    1987-01-01

    One of the problems of in vivo MR spectroscopy of P-31 is spectra localization. Surface coil spectroscopy, which is the method of choice for clinical applications, suffers from the high-intensity signal from subcutaneous muscle tissue, which masks the spectrum of interest from deeper structures. In order to suppress this signal while maintaining the simplicity of surface coil spectroscopy, the authors introduced a small sheet of ferromagnetically dotted plastic between the surface coil and the body. This sheet destroys locally the field homogeneity and therefore all signal from structures around the coil. The very high reproducibility of the simple experimental procedure allows long-term studies important for monitoring tumor therapy

  9. Homogeneous instantons in bigravity

    International Nuclear Information System (INIS)

    Zhang, Ying-li; Sasaki, Misao; Yeom, Dong-han

    2015-01-01

    We study homogeneous gravitational instantons, conventionally called the Hawking-Moss (HM) instantons, in bigravity theory. The HM instantons describe the amplitude of quantum tunneling from a false vacuum to the true vacuum. Corrections to General Relativity (GR) are found in a closed form. Using the result, we discuss the following two issues: reduction to the de Rham-Gabadadze-Tolley (dRGT) massive gravity and the possibility of preference for a large e-folding number in the context of the Hartle-Hawking (HH) no-boundary proposal. In particular, concerning the dRGT limit, it is found that the tunneling through the so-called self-accelerating branch is exponentially suppressed relative to the normal branch, and the probability becomes zero in the dRGT limit. As far as HM instantons are concerned, this could imply that the reduction from bigravity to the dRGT massive gravity is ill-defined.

  10. The relationship between continuum homogeneity and statistical homogeneity in cosmology

    International Nuclear Information System (INIS)

    Stoeger, W.R.; Ellis, G.F.R.; Hellaby, C.

    1987-01-01

    Although the standard Friedmann-Lemaitre-Robertson-Walker (FLRW) Universe models are based on the concept that the Universe is spatially homogeneous, up to the present time no definition of this concept has been proposed that could in principle be tested by observation. Such a definition is here proposed, based on a simple spatial averaging procedure, which relates observable properties of the Universe to the continuum homogeneity idea that underlies the FLRW models. It turns out that the statistical homogeneity often used to describe the distribution of matter on a large scale does not imply spatial homogeneity according to this definition, and so cannot be simply related to a FLRW Universe model. Values are proposed for the homogeneity parameter and length scale of homogeneity of the Universe. (author)

  11. Homogenization of resonant chiral metamaterials

    OpenAIRE

    Andryieuski, Andrei; Menzel, Christoph; Rockstuhl, Carsten; Malureanu, Radu; Lederer, Falk; Lavrinenko, Andrei

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as e.g. propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size a critical density exists above which increasing coupling between neighboring meta-atoms prevails a reasonable homogenization. On the contrary, a dilution in excess will induce features reminiscent to pho...

  12. Bilipschitz embedding of homogeneous fractals

    OpenAIRE

    Lü, Fan; Lou, Man-Li; Wen, Zhi-Ying; Xi, Li-Feng

    2014-01-01

    In this paper, we introduce a class of fractals named homogeneous sets based on some measure versions of homogeneity, uniform perfectness and doubling. This fractal class includes all Ahlfors-David regular sets, but most of them are irregular in the sense that they may have different Hausdorff dimensions and packing dimensions. Using Moran sets as main tool, we study the dimensions, bilipschitz embedding and quasi-Lipschitz equivalence of homogeneous fractals.

  13. Design of SC solenoid with high homogeneity

    International Nuclear Information System (INIS)

    Yang Xiaoliang; Liu Zhong; Luo Min; Luo Guangyao; Kang Qiang; Tan Jie; Wu Wei

    2014-01-01

    A novel kind of SC (superconducting) solenoid coil is designed to satisfy the homogeneity requirement of the magnetic field. In this paper, we first calculate the current density distribution of the solenoid coil section through the linear programming method. Then a traditional solenoid and a nonrectangular section solenoid are designed to produce a central field up to 7 T with a homogeneity to the greatest extent. After comparison of the two solenoid coils designed in magnet field quality, fabrication cost and other aspects, the new design of the nonrectangular section of a solenoid coil can be realized through improving the techniques of framework fabrication and winding. Finally, the outlook and error analysis of this kind of SC magnet coil are also discussed briefly. (authors)

  14. Homogeneous versus heterogeneous zeolite nucleation

    NARCIS (Netherlands)

    Dokter, W.H.; Garderen, van H.F.; Beelen, T.P.M.; Santen, van R.A.; Bras, W.

    1995-01-01

    Aggregates of fractal dimension were found in the intermediate gel phases that organize prior to nucleation and crystallization (shown right) of silicalite from a homogeneous reaction mixture. Small- and wide-angle X-ray scattering studies prove that for zeolites nucleation may be homogeneous or

  15. Homogeneous crystal nucleation in polymers.

    Science.gov (United States)

    Schick, C; Androsch, R; Schmelzer, J W P

    2017-11-15

    The pathway of crystal nucleation significantly influences the structure and properties of semi-crystalline polymers. Crystal nucleation is normally heterogeneous at low supercooling, and homogeneous at high supercooling, of the polymer melt. Homogeneous nucleation in bulk polymers has been, so far, hardly accessible experimentally, and was even doubted to occur at all. This topical review summarizes experimental findings on homogeneous crystal nucleation in polymers. Recently developed fast scanning calorimetry, with cooling and heating rates up to 10 6 K s -1 , allows for detailed investigations of nucleation near and even below the glass transition temperature, including analysis of nuclei stability. As for other materials, the maximum homogeneous nucleation rate for polymers is located close to the glass transition temperature. In the experiments discussed here, it is shown that polymer nucleation is homogeneous at such temperatures. Homogeneous nucleation in polymers is discussed in the framework of the classical nucleation theory. The majority of our observations are consistent with the theory. The discrepancies may guide further research, particularly experiments to progress theoretical development. Progress in the understanding of homogeneous nucleation is much needed, since most of the modelling approaches dealing with polymer crystallization exclusively consider homogeneous nucleation. This is also the basis for advancing theoretical approaches to the much more complex phenomena governing heterogeneous nucleation.

  16. Homogenization theory in reactor lattices

    International Nuclear Information System (INIS)

    Benoist, P.

    1986-02-01

    The purpose of the theory of homogenization of reactor lattices is to determine, by the mean of transport theory, the constants of a homogeneous medium equivalent to a given lattice, which allows to treat the reactor as a whole by diffusion theory. In this note, the problem is presented by laying emphasis on simplicity, as far as possible [fr

  17. Homogeneous Spaces and Equivariant Embeddings

    CERN Document Server

    Timashev, DA

    2011-01-01

    Homogeneous spaces of linear algebraic groups lie at the crossroads of algebraic geometry, theory of algebraic groups, classical projective and enumerative geometry, harmonic analysis, and representation theory. By standard reasons of algebraic geometry, in order to solve various problems on a homogeneous space it is natural and helpful to compactify it keeping track of the group action, i.e. to consider equivariant completions or, more generally, open embeddings of a given homogeneous space. Such equivariant embeddings are the subject of this book. We focus on classification of equivariant em

  18. The Latin-American region and the challenges to develop one homogeneous and harmonized hazard model: preliminary results for the Caribbean and Central America regions in the GEM context

    Science.gov (United States)

    Garcia, J.; Arcila, M.; Benito, B.; Eraso, J.; García, R.; Gomez Capera, A.; Pagani, M.; Pinho, R.; Rendon, H.; Torres, Y.

    2013-05-01

    Latin America is a seismically active region with complex tectonic settings that make the creation of hazard models challenging. Over the past two decades PSHA studies have been completed for this region in the context of global (Shedlock, 1999), regional (Dimaté et al., 1999) and national initiatives. Currently different research groups are developing new models for various nations. The Global Earthquake Model (GEM), an initiative aiming at the creation of a large global community working collaboratively on building hazard and risk models using open standards and tools, is promoting the collaboration between different national projects and groups so as to facilitate the creation of harmonized regional models. The creation of a harmonized hazard model can follow different approaches, varying from a simple patching of available models to a complete homogenisation of basic information and the subsequent creation of a completely new PSHA model. In this contribution we describe the process and results of a first attempt aiming at the creation of a community based model covering the Caribbean and Central America regions. It consists of five main steps: 1- Identification and collection of available PSHA input models; 2- Analysis of the consistency, transparency and reproducibility of each model; 3- Selection (if more then a model exists for the same region); 4- Representation of the models in a standardized format and incorporation of new knowledge from recent studies; 5- Proposal(s) of harmonization We consider some PHSA studies completed over the latest twenty years in the region comprising the Caribbean (CAR), Central America (CAM) and northern South America (SA), we illustrate a tentative harmonization of the seismic source geometries models and we discuss the steps needed toward a complete harmonisation of the models. Our will is to have a model based on best practices and high standards created though a combination of knowledge and competences coming from the

  19. Qualitative analysis of homogeneous universes

    International Nuclear Information System (INIS)

    Novello, M.; Araujo, R.A.

    1980-01-01

    The qualitative behaviour of cosmological models is investigated in two cases: Homogeneous and isotropic Universes containing viscous fluids in a stokesian non-linear regime; Rotating expanding universes in a state which matter is off thermal equilibrium. (Author) [pt

  20. A second stage homogenization method

    International Nuclear Information System (INIS)

    Makai, M.

    1981-01-01

    A second homogenization is needed before the diffusion calculation of the core of large reactors. Such a second stage homogenization is outlined here. Our starting point is the Floquet theorem for it states that the diffusion equation for a periodic core always has a particular solution of the form esup(j)sup(B)sup(x) u (x). It is pointed out that the perturbation series expansion of function u can be derived by solving eigenvalue problems and the eigenvalues serve to define homogenized cross sections. With the help of these eigenvalues a homogenized diffusion equation can be derived the solution of which is cos Bx, the macroflux. It is shown that the flux can be expressed as a series of buckling. The leading term in this series is the well known Wigner-Seitz formula. Finally three examples are given: periodic absorption, a cell with an absorber pin in the cell centre, and a cell of three regions. (orig.)

  1. Homogenization methods for heterogeneous assemblies

    International Nuclear Information System (INIS)

    Wagner, M.R.

    1980-01-01

    The third session of the IAEA Technical Committee Meeting is concerned with the problem of homogenization of heterogeneous assemblies. Six papers will be presented on the theory of homogenization and on practical procedures for deriving homogenized group cross sections and diffusion coefficients. That the problem of finding so-called ''equivalent'' diffusion theory parameters for the use in global reactor calculations is of great practical importance. In spite of this, it is fair to say that the present state of the theory of second homogenization is far from being satisfactory. In fact, there is not even a uniquely accepted approach to the problem of deriving equivalent group diffusion parameters. Common agreement exists only about the fact that the conventional flux-weighting technique provides only a first approximation, which might lead to acceptable results in certain cases, but certainly does not guarantee the basic requirement of conservation of reaction rates

  2. Spinor structures on homogeneous spaces

    International Nuclear Information System (INIS)

    Lyakhovskii, V.D.; Mudrov, A.I.

    1993-01-01

    For multidimensional models of the interaction of elementary particles, the problem of constructing and classifying spinor fields on homogeneous spaces is exceptionally important. An algebraic criterion for the existence of spinor structures on homogeneous spaces used in multidimensional models is developed. A method of explicit construction of spinor structures is proposed, and its effectiveness is demonstrated in examples. The results are of particular importance for harmonic decomposition of spinor fields

  3. A personal view on homogenization

    International Nuclear Information System (INIS)

    Tartar, L.

    1987-02-01

    The evolution of some ideas is first described. Under the name homogenization are collected all the mathematical results who help understanding the relations between the microstructure of a material and its macroscopic properties. Homogenization results are given through a critically detailed bibliography. The mathematical models given are systems of partial differential equations, supposed to describe some properties at a scale ε and we want to understand what will happen to the solutions if ε tends to 0

  4. Homogenization of neutronic diffusion models

    International Nuclear Information System (INIS)

    Capdebosq, Y.

    1999-09-01

    In order to study and simulate nuclear reactor cores, one needs to access the neutron distribution in the core. In practice, the description of this density of neutrons is given by a system of diffusion equations, coupled by non differential exchange terms. The strong heterogeneity of the medium constitutes a major obstacle to the numerical computation of this models at reasonable cost. Homogenization appears as compulsory. Heuristic methods have been developed since the origin by nuclear physicists, under a periodicity assumption on the coefficients. They consist in doing a fine computation one a single periodicity cell, to solve the system on the whole domain with homogeneous coefficients, and to reconstruct the neutron density by multiplying the solutions of the two computations. The objectives of this work are to provide mathematically rigorous basis to this factorization method, to obtain the exact formulas of the homogenized coefficients, and to start on geometries where two periodical medium are placed side by side. The first result of this thesis concerns eigenvalue problem models which are used to characterize the state of criticality of the reactor, under a symmetry assumption on the coefficients. The convergence of the homogenization process is proved, and formulas of the homogenized coefficients are given. We then show that without symmetry assumptions, a drift phenomenon appears. It is characterized by the mean of a real Bloch wave method, which gives the homogenized limit in the general case. These results for the critical problem are then adapted to the evolution model. Finally, the homogenization of the critical problem in the case of two side by side periodic medium is studied on a one dimensional on equation model. (authors)

  5. 7 CFR 58.920 - Homogenization.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Homogenization. 58.920 Section 58.920 Agriculture... Procedures § 58.920 Homogenization. Where applicable concentrated products shall be homogenized for the... homogenization and the pressure at which homogenization is accomplished will be that which accomplishes the most...

  6. Genetic Homogenization of Composite Materials

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper is focused on numerical studies of electromagnetic properties of composite materials used for the construction of small airplanes. Discussions concentrate on the genetic homogenization of composite layers and composite layers with a slot. The homogenization is aimed to reduce CPU-time demands of EMC computational models of electrically large airplanes. First, a methodology of creating a 3-dimensional numerical model of a composite material in CST Microwave Studio is proposed focusing on a sufficient accuracy of the model. Second, a proper implementation of a genetic optimization in Matlab is discussed. Third, an association of the optimization script and a simplified 2-dimensional model of the homogeneous equivalent model in Comsol Multiphysics is proposed considering EMC issues. Results of computations are experimentally verified.

  7. Spontaneous compactification to homogeneous spaces

    International Nuclear Information System (INIS)

    Mourao, J.M.

    1988-01-01

    The spontaneous compactification of extra dimensions to compact homogeneous spaces is studied. The methods developed within the framework of coset space dimensional reduction scheme and the most general form of invariant metrics are used to find solutions of spontaneous compactification equations

  8. TWO FERROMAGNETIC SPHERES IN HOMOGENEOUS MAGNETIC FIELD

    Directory of Open Access Journals (Sweden)

    Yury A. Krasnitsky

    2018-01-01

    Full Text Available The problem of two spherical conductors is studied quite in detail with bispherical coordinates usage and has numerous appendices in an electrostatics. The boundary-value problem about two ferromagnetic spheres enclosed on homogeneous and infinite environment in which the lack of spheres exists like homogeneous magnetic field is considered. The solution of Laplace's equation in the bispherical system of coordinates allows us to find the potential and field distribution in all spaces, including area between spheres. The boundary conditions in potential continuity and in ordinary density constituent of spheres surfaces induction flux are used. It is supposed that spheres are identical, and magnetic permeability of their material is expressed in  >> 0. The problem about falling of electromagnetic plane wave on the system of two spheres, which possesses electrically small sizes, can be considered as quasistationary. The scalar potentials received as a result of Laplace's equation solution are represented by the series containing Legendre polynomials. The concept of two spheres system effective permeability is introduced. It is equal to the advantage in magnitude of magnetic induction flux vector through a certain system’s section arising due to its magnetic properties. Necessary ratios for the effective permeability referred to the central system’s section are obtained. Particularly, the results can be used during the analysis of ferroxcube core clearance, which influences on the magnetic antenna properties. 

  9. Electro-magnetostatic homogenization of bianisotropic metamaterials

    OpenAIRE

    Fietz, Chris

    2012-01-01

    We apply the method of asymptotic homogenization to metamaterials with microscopically bianisotropic inclusions to calculate a full set of constitutive parameters in the long wavelength limit. Two different implementations of electromagnetic asymptotic homogenization are presented. We test the homogenization procedure on two different metamaterial examples. Finally, the analytical solution for long wavelength homogenization of a one dimensional metamaterial with microscopically bi-isotropic i...

  10. Observational homogeneity of the Universe

    International Nuclear Information System (INIS)

    Bonnor, W.B.; Ellis, G.F.R.

    1986-01-01

    A new approach to observational homogeneity is presented. The observation that stars and galaxies in distant regions appear similar to those nearby may be taken to imply that matter has had a similar thermodynamic history in widely separated parts of the Universe (the Postulate of Uniform Thermal Histories, or PUTH). The supposition is now made that similar thermodynamic histories imply similar dynamical histories. Then the distant apparent similarity is evidence for spatial homogeneity of the Universe. General Relativity is used to test this idea, taking a perfect fluid model and implementing PUTH by the condition that the density and entropy per baryon shall be the same function of the proper time along all galaxy world-lines. (author)

  11. Conclusions about homogeneity and devitrification

    International Nuclear Information System (INIS)

    Larche, F.

    1997-01-01

    A lot of experimental data concerning homogeneity and devitrification of R7T7 glass have been published. It appears that: - the crystallization process is very limited, - the interfaces due to bubbles and the container wall favor crystallization locally but the ratio of crystallized volume remains always below a few per cents, and - crystallization has no damaging long-term effects as far as leaching tests can be trusted. (A.C.)

  12. Is charity a homogeneous good?

    OpenAIRE

    Backus, Peter

    2010-01-01

    In this paper I estimate income and price elasticities of donations to six different charitable causes to test the assumption that charity is a homogeneous good. In the US, charitable donations can be deducted from taxable income. This has long been recognized as producing a price, or taxprice, of giving equal to one minus the marginal tax rate faced by the donor. A substantial portion of the economic literature on giving has focused on estimating price and income elasticities of giving as th...

  13. Physical applications of homogeneous balls

    CERN Document Server

    Scarr, Tzvi

    2005-01-01

    One of the mathematical challenges of modern physics lies in the development of new tools to efficiently describe different branches of physics within one mathematical framework. This text introduces precisely such a broad mathematical model, one that gives a clear geometric expression of the symmetry of physical laws and is entirely determined by that symmetry. The first three chapters discuss the occurrence of bounded symmetric domains (BSDs) or homogeneous balls and their algebraic structure in physics. The book further provides a discussion of how to obtain a triple algebraic structure ass

  14. Heterotic strings on homogeneous spaces

    International Nuclear Information System (INIS)

    Israel, D.; Kounnas, C.; Orlando, D.; Petropoulos, P.M.

    2005-01-01

    We construct heterotic string backgrounds corresponding to families of homogeneous spaces as exact conformal field theories. They contain left cosets of compact groups by their maximal tori supported by NS-NS 2-forms and gauge field fluxes. We give the general formalism and modular-invariant partition functions, then we consider some examples such as SU(2)/U(1)∝S 2 (already described in a previous paper) and the SU(3)/U(1) 2 flag space. As an application we construct new supersymmetric string vacua with magnetic fluxes and a linear dilaton. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  15. Homogenization scheme for acoustic metamaterials

    KAUST Repository

    Yang, Min

    2014-02-26

    We present a homogenization scheme for acoustic metamaterials that is based on reproducing the lowest orders of scattering amplitudes from a finite volume of metamaterials. This approach is noted to differ significantly from that of coherent potential approximation, which is based on adjusting the effective-medium parameters to minimize scatterings in the long-wavelength limit. With the aid of metamaterials’ eigenstates, the effective parameters, such as mass density and elastic modulus can be obtained by matching the surface responses of a metamaterial\\'s structural unit cell with a piece of homogenized material. From the Green\\'s theorem applied to the exterior domain problem, matching the surface responses is noted to be the same as reproducing the scattering amplitudes. We verify our scheme by applying it to three different examples: a layered lattice, a two-dimensional hexagonal lattice, and a decorated-membrane system. It is shown that the predicted characteristics and wave fields agree almost exactly with numerical simulations and experiments and the scheme\\'s validity is constrained by the number of dominant surface multipoles instead of the usual long-wavelength assumption. In particular, the validity extends to the full band in one dimension and to regimes near the boundaries of the Brillouin zone in two dimensions.

  16. ISOTOPE METHODS IN HOMOGENEOUS CATALYSIS.

    Energy Technology Data Exchange (ETDEWEB)

    BULLOCK,R.M.; BENDER,B.R.

    2000-12-01

    The use of isotope labels has had a fundamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and followed where they go or don't go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough - what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most careti studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerful.

  17. Improving homogeneity by dynamic speed limit systems.

    NARCIS (Netherlands)

    Nes, N. van Brandenberg, S. & Twisk, D.A.M.

    2010-01-01

    Homogeneity of driving speeds is an important variable in determining road safety; more homogeneous driving speeds increase road safety. This study investigates the effect of introducing dynamic speed limit systems on homogeneity of driving speeds. A total of 46 subjects twice drove a route along 12

  18. 7 CFR 58.636 - Homogenization.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Homogenization. 58.636 Section 58.636 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.636 Homogenization. Homogenization of the pasteurized mix shall be accomplished to...

  19. The homogeneous geometries of real hyperbolic space

    DEFF Research Database (Denmark)

    Castrillón López, Marco; Gadea, Pedro Martínez; Swann, Andrew Francis

    We describe the holonomy algebras of all canonical connections of homogeneous structures on real hyperbolic spaces in all dimensions. The structural results obtained then lead to a determination of the types, in the sense of Tricerri and Vanhecke, of the corresponding homogeneous tensors. We use...... our analysis to show that the moduli space of homogeneous structures on real hyperbolic space has two connected components....

  20. Orthogonality Measurement for Homogenous Projects-Bases

    Science.gov (United States)

    Ivan, Ion; Sandu, Andrei; Popa, Marius

    2009-01-01

    The homogenous projects-base concept is defined. Next, the necessary steps to create a homogenous projects-base are presented. A metric system is built, which then will be used for analyzing projects. The indicators which are meaningful for analyzing a homogenous projects-base are selected. The given hypothesis is experimentally verified. The…

  1. The evaporative vector: Homogeneous systems

    International Nuclear Information System (INIS)

    Klots, C.E.

    1987-05-01

    Molecular beams of van der Waals molecules are the subject of much current research. Among the methods used to form these beams, three-sputtering, laser ablation, and the sonic nozzle expansion of neat gases - yield what are now recognized to be ''warm clusters.'' They contain enough internal energy to undergo a number of first-order processes, in particular that of evaporation. Because of this evaporation and its attendant cooling, the properties of such clusters are time-dependent. The states of matter which can be arrived at via an evaporative vector on a typical laboratory time-scale are discussed. Topics include the (1) temperatures, (2) metastability, (3) phase transitions, (4) kinetic energies of fragmentation, and (5) the expression of magical properties, all for evaporating homogeneous clusters

  2. Reciprocity theory of homogeneous reactions

    Science.gov (United States)

    Agbormbai, Adolf A.

    1990-03-01

    The reciprocity formalism is applied to the homogeneous gaseous reactions in which the structure of the participating molecules changes upon collision with one another, resulting in a change in the composition of the gas. The approach is applied to various classes of dissociation, recombination, rearrangement, ionizing, and photochemical reactions. It is shown that for the principle of reciprocity to be satisfied it is necessary that all chemical reactions exist in complementary pairs which consist of the forward and backward reactions. The backward reaction may be described by either the reverse or inverse process. The forward and backward processes must satisfy the same reciprocity equation. Because the number of dynamical variables is usually unbalanced on both sides of a chemical equation, it is necessary that this balance be established by including as many of the dynamical variables as needed before the reciprocity equation can be formulated. Statistical transformation models of the reactions are formulated. The models are classified under the titles free exchange, restricted exchange and simplified restricted exchange. The special equations for the forward and backward processes are obtained. The models are consistent with the H theorem and Le Chatelier's principle. The models are also formulated in the context of the direct simulation Monte Carlo method.

  3. Moral Beliefs and Cognitive Homogeneity

    Directory of Open Access Journals (Sweden)

    Nevia Dolcini

    2018-04-01

    Full Text Available The Emotional Perception Model of moral judgment intends to account for experientialism about morality and moral reasoning. In explaining how moral beliefs are formed and applied in practical reasoning, the model attempts to overcome the mismatch between reason and action/desire: morality isn’t about reason for actions, yet moral beliefs, if caused by desires, may play a motivational role in (moral agency. The account allows for two kinds of moral beliefs: genuine moral beliefs, which enjoy a relation to desire, and motivationally inert moral beliefs acquired in ways other than experience. Such etiology-based dichotomy of concepts, I will argue, leads to the undesirable view of cognition as a non-homogeneous phenomenon. Moreover, the distinction between moral beliefs and moral beliefs would entail a further dichotomy encompassing the domain of moral agency: one and the same action might possibly be either genuine moral, or not moral, if acted by individuals lacking the capacity for moral feelings, such as psychopaths.

  4. Homogeneous modes of cosmological instantons

    Energy Technology Data Exchange (ETDEWEB)

    Gratton, Steven; Turok, Neil

    2001-06-15

    We discuss the O(4) invariant perturbation modes of cosmological instantons. These modes are spatially homogeneous in Lorentzian spacetime and thus not relevant to density perturbations. But their properties are important in establishing the meaning of the Euclidean path integral. If negative modes are present, the Euclidean path integral is not well defined, but may nevertheless be useful in an approximate description of the decay of an unstable state. When gravitational dynamics is included, counting negative modes requires a careful treatment of the conformal factor problem. We demonstrate that for an appropriate choice of coordinate on phase space, the second order Euclidean action is bounded below for normalized perturbations and has a finite number of negative modes. We prove that there is a negative mode for many gravitational instantons of the Hawking-Moss or Coleman{endash}De Luccia type, and discuss the associated spectral flow. We also investigate Hawking-Turok constrained instantons, which occur in a generic inflationary model. Implementing the regularization and constraint proposed by Kirklin, Turok and Wiseman, we find that those instantons leading to substantial inflation do not possess negative modes. Using an alternate regularization and constraint motivated by reduction from five dimensions, we find a negative mode is present. These investigations shed new light on the suitability of Euclidean quantum gravity as a potential description of our universe.

  5. Homogeneous modes of cosmological instantons

    International Nuclear Information System (INIS)

    Gratton, Steven; Turok, Neil

    2001-01-01

    We discuss the O(4) invariant perturbation modes of cosmological instantons. These modes are spatially homogeneous in Lorentzian spacetime and thus not relevant to density perturbations. But their properties are important in establishing the meaning of the Euclidean path integral. If negative modes are present, the Euclidean path integral is not well defined, but may nevertheless be useful in an approximate description of the decay of an unstable state. When gravitational dynamics is included, counting negative modes requires a careful treatment of the conformal factor problem. We demonstrate that for an appropriate choice of coordinate on phase space, the second order Euclidean action is bounded below for normalized perturbations and has a finite number of negative modes. We prove that there is a negative mode for many gravitational instantons of the Hawking-Moss or ColemanendashDe Luccia type, and discuss the associated spectral flow. We also investigate Hawking-Turok constrained instantons, which occur in a generic inflationary model. Implementing the regularization and constraint proposed by Kirklin, Turok and Wiseman, we find that those instantons leading to substantial inflation do not possess negative modes. Using an alternate regularization and constraint motivated by reduction from five dimensions, we find a negative mode is present. These investigations shed new light on the suitability of Euclidean quantum gravity as a potential description of our universe

  6. Isotopic homogeneity of iron in the early solar nebula.

    Science.gov (United States)

    Zhu, X K; Guo, Y; O'Nions, R K; Young, E D; Ash, R D

    2001-07-19

    The chemical and isotopic homogeneity of the early solar nebula, and the processes producing fractionation during its evolution, are central issues of cosmochemistry. Studies of the relative abundance variations of three or more isotopes of an element can in principle determine if the initial reservoir of material was a homogeneous mixture or if it contained several distinct sources of precursor material. For example, widespread anomalies observed in the oxygen isotopes of meteorites have been interpreted as resulting from the mixing of a solid phase that was enriched in 16O with a gas phase in which 16O was depleted, or as an isotopic 'memory' of Galactic evolution. In either case, these anomalies are regarded as strong evidence that the early solar nebula was not initially homogeneous. Here we present measurements of the relative abundances of three iron isotopes in meteoritic and terrestrial samples. We show that significant variations of iron isotopes exist in both terrestrial and extraterrestrial materials. But when plotted in a three-isotope diagram, all of the data for these Solar System materials fall on a single mass-fractionation line, showing that homogenization of iron isotopes occurred in the solar nebula before both planetesimal accretion and chondrule formation.

  7. AQUEOUS HOMOGENEOUS REACTORTECHNICAL PANEL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, D.J.; Bajorek, S.; Bakel, A.; Flanagan, G.; Mubayi, V.; Skarda, R.; Staudenmeier, J.; Taiwo, T.; Tonoike, K.; Tripp, C.; Wei, T.; Yarsky, P.

    2010-12-03

    Considerable interest has been expressed for developing a stable U.S. production capacity for medical isotopes and particularly for molybdenum- 99 (99Mo). This is motivated by recent re-ductions in production and supply worldwide. Consistent with U.S. nonproliferation objectives, any new production capability should not use highly enriched uranium fuel or targets. Conse-quently, Aqueous Homogeneous Reactors (AHRs) are under consideration for potential 99Mo production using low-enriched uranium. Although the Nuclear Regulatory Commission (NRC) has guidance to facilitate the licensing process for non-power reactors, that guidance is focused on reactors with fixed, solid fuel and hence, not applicable to an AHR. A panel was convened to study the technical issues associated with normal operation and potential transients and accidents of an AHR that might be designed for isotope production. The panel has produced the requisite AHR licensing guidance for three chapters that exist now for non-power reactor licensing: Reac-tor Description, Reactor Coolant Systems, and Accident Analysis. The guidance is in two parts for each chapter: 1) standard format and content a licensee would use and 2) the standard review plan the NRC staff would use. This guidance takes into account the unique features of an AHR such as the fuel being in solution; the fission product barriers being the vessel and attached systems; the production and release of radiolytic and fission product gases and their impact on operations and their control by a gas management system; and the movement of fuel into and out of the reactor vessel.

  8. Homogeneity and thermodynamic identities in geometrothermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Quevedo, Hernando [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares (Mexico); Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); ICRANet, Rome (Italy); Quevedo, Maria N. [Universidad Militar Nueva Granada, Departamento de Matematicas, Facultad de Ciencias Basicas, Bogota (Colombia); Sanchez, Alberto [CIIDET, Departamento de Posgrado, Queretaro (Mexico)

    2017-03-15

    We propose a classification of thermodynamic systems in terms of the homogeneity properties of their fundamental equations. Ordinary systems correspond to homogeneous functions and non-ordinary systems are given by generalized homogeneous functions. This affects the explicit form of the Gibbs-Duhem relation and Euler's identity. We show that these generalized relations can be implemented in the formalism of black hole geometrothermodynamics in order to completely fix the arbitrariness present in Legendre invariant metrics. (orig.)

  9. A literature review on biotic homogenization

    OpenAIRE

    Guangmei Wang; Jingcheng Yang; Chuangdao Jiang; Hongtao Zhao; Zhidong Zhang

    2009-01-01

    Biotic homogenization is the process whereby the genetic, taxonomic and functional similarity of two or more biotas increases over time. As a new research agenda for conservation biogeography, biotic homogenization has become a rapidly emerging topic of interest in ecology and evolution over the past decade. However, research on this topic is rare in China. Herein, we introduce the development of the concept of biotic homogenization, and then discuss methods to quantify its three components (...

  10. Hybrid diffusion–transport spatial homogenization method

    International Nuclear Information System (INIS)

    Kooreman, Gabriel; Rahnema, Farzad

    2014-01-01

    Highlights: • A new hybrid diffusion–transport homogenization method. • An extension of the consistent spatial homogenization (CSH) transport method. • Auxiliary cross section makes homogenized diffusion consistent with heterogeneous diffusion. • An on-the-fly re-homogenization in transport. • The method is faster than fine-mesh transport by 6–8 times. - Abstract: A new hybrid diffusion–transport homogenization method has been developed by extending the consistent spatial homogenization (CSH) transport method to include diffusion theory. As in the CSH method, an “auxiliary cross section” term is introduced into the source term, making the resulting homogenized diffusion equation consistent with its heterogeneous counterpart. The method then utilizes an on-the-fly re-homogenization in transport theory at the assembly level in order to correct for core environment effects on the homogenized cross sections and the auxiliary cross section. The method has been derived in general geometry and tested in a 1-D boiling water reactor (BWR) core benchmark problem for both controlled and uncontrolled configurations. The method has been shown to converge to the reference solution with less than 1.7% average flux error in less than one third the computational time as the CSH method – 6 to 8 times faster than fine-mesh transport

  11. Self-consolidating concrete homogeneity

    Directory of Open Access Journals (Sweden)

    Jarque, J. C.

    2007-08-01

    Full Text Available Concrete instability may lead to the non-uniform distribution of its properties. The homogeneity of self-consolidating concrete in vertically cast members was therefore explored in this study, analyzing both resistance to segregation and pore structure uniformity. To this end, two series of concretes were prepared, self-consolidating and traditional vibrated materials, with different w/c ratios and types of cement. The results showed that selfconsolidating concretes exhibit high resistance to segregation, albeit slightly lower than found in the traditional mixtures. The pore structure in the former, however, tended to be slightly more uniform, probably as a result of less intense bleeding. Such concretes are also characterized by greater bulk density, lower porosity and smaller mean pore size, which translates into a higher resistance to pressurized water. For pore diameters of over about 0.5 μm, however, the pore size distribution was found to be similar to the distribution in traditional concretes, with similar absorption rates.En este trabajo se estudia la homogeneidad de los hormigones autocompactantes en piezas hormigonadas verticalmente, determinando su resistencia a la segregación y la uniformidad de su estructura porosa, dado que la pérdida de estabilidad de una mezcla puede conducir a una distribución no uniforme de sus propiedades. Para ello se han fabricado dos tipos de hormigones, uno autocompactante y otro tradicional vibrado, con diferentes relaciones a/c y distintos tipos de cemento. Los resultados ponen de manifiesto que los hormigones autocompactantes presentan una buena resistencia a la segregación, aunque algo menor que la registrada en los hormigones tradicionales. A pesar de ello, su estructura porosa tiende a ser ligeramente más uniforme, debido probablemente a un menor sangrado. Asimismo, presentan una mayor densidad aparente, una menor porosidad y un menor tamaño medio de poro, lo que les confiere mejores

  12. Multilevel Monte Carlo Approaches for Numerical Homogenization

    KAUST Repository

    Efendiev, Yalchin R.; Kronsbein, Cornelia; Legoll, Fré dé ric

    2015-01-01

    it comes to homogenized solutions, different levels of coarse-grid meshes are used to solve the homogenized equation. We show that, by carefully selecting the number of realizations at each level, we can achieve a speed-up in the computations in comparison

  13. Benchmarking homogenization algorithms for monthly data

    Science.gov (United States)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M. J.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratiannil, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.; Willett, K.

    2013-09-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies. The algorithms were validated against a realistic benchmark dataset. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including i) the centered root mean square error relative to the true homogeneous values at various averaging scales, ii) the error in linear trend estimates and iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data. Moreover, state-of-the-art relative homogenization algorithms developed to work with an inhomogeneous reference are shown to perform best. The study showed that currently automatic algorithms can perform as well as manual ones.

  14. Investigations into homogenization of electromagnetic metamaterials

    DEFF Research Database (Denmark)

    Clausen, Niels Christian Jerichau

    This dissertation encompasses homogenization methods, with a special interest into their applications to metamaterial homogenization. The first method studied is the Floquet-Bloch method, that is based on the assumption of a material being infinite periodic. Its field can then be expanded in term...

  15. Homogeneity of Prototypical Attributes in Soccer Teams

    Directory of Open Access Journals (Sweden)

    Christian Zepp

    2015-09-01

    Full Text Available Research indicates that the homogeneous perception of prototypical attributes influences several intragroup processes. The aim of the present study was to describe the homogeneous perception of the prototype and to identify specific prototypical subcategories, which are perceived as homogeneous within sport teams. The sample consists of N = 20 soccer teams with a total of N = 278 athletes (age M = 23.5 years, SD = 5.0 years. The results reveal that subcategories describing the cohesiveness of the team and motivational attributes are mentioned homogeneously within sport teams. In addition, gender, identification, team size, and the championship ranking significantly correlate with the homogeneous perception of prototypical attributes. The results are discussed on the basis of theoretical and practical implications.

  16. Multilevel Monte Carlo Approaches for Numerical Homogenization

    KAUST Repository

    Efendiev, Yalchin R.

    2015-10-01

    In this article, we study the application of multilevel Monte Carlo (MLMC) approaches to numerical random homogenization. Our objective is to compute the expectation of some functionals of the homogenized coefficients, or of the homogenized solutions. This is accomplished within MLMC by considering different sizes of representative volumes (RVEs). Many inexpensive computations with the smallest RVE size are combined with fewer expensive computations performed on larger RVEs. Likewise, when it comes to homogenized solutions, different levels of coarse-grid meshes are used to solve the homogenized equation. We show that, by carefully selecting the number of realizations at each level, we can achieve a speed-up in the computations in comparison to a standard Monte Carlo method. Numerical results are presented for both one-dimensional and two-dimensional test-cases that illustrate the efficiency of the approach.

  17. String pair production in non homogeneous backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Bolognesi, S. [Department of Physics “E. Fermi” University of Pisa, and INFN - Sezione di Pisa,Largo Pontecorvo, 3, Ed. C, 56127 Pisa (Italy); Rabinovici, E. [Racah Institute of Physics, The Hebrew University of Jerusalem,91904 Jerusalem (Israel); Tallarita, G. [Departamento de Ciencias, Facultad de Artes Liberales,Universidad Adolfo Ibáñez, Santiago 7941169 (Chile)

    2016-04-28

    We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.

  18. String pair production in non homogeneous backgrounds

    International Nuclear Information System (INIS)

    Bolognesi, S.; Rabinovici, E.; Tallarita, G.

    2016-01-01

    We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.

  19. Benchmarking homogenization algorithms for monthly data

    Directory of Open Access Journals (Sweden)

    V. K. C. Venema

    2012-01-01

    Full Text Available The COST (European Cooperation in Science and Technology Action ES0601: advances in homogenization methods of climate series: an integrated approach (HOME has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative. The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random independent break-type inhomogeneities with normally distributed breakpoint sizes were added to the simulated datasets. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide trend was added.

    Participants provided 25 separate homogenized contributions as part of the blind study. After the deadline at which details of the imposed inhomogeneities were revealed, 22 additional solutions were submitted. These homogenized datasets were assessed by a number of performance metrics including (i the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii the error in linear trend estimates and (iii traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve

  20. Deviation from equilibrium conditions in molecular dynamic simulations of homogeneous nucleation.

    Science.gov (United States)

    Halonen, Roope; Zapadinsky, Evgeni; Vehkamäki, Hanna

    2018-04-28

    We present a comparison between Monte Carlo (MC) results for homogeneous vapour-liquid nucleation of Lennard-Jones clusters and previously published values from molecular dynamics (MD) simulations. Both the MC and MD methods sample real cluster configuration distributions. In the MD simulations, the extent of the temperature fluctuation is usually controlled with an artificial thermostat rather than with more realistic carrier gas. In this study, not only a primarily velocity scaling thermostat is considered, but also Nosé-Hoover, Berendsen, and stochastic Langevin thermostat methods are covered. The nucleation rates based on a kinetic scheme and the canonical MC calculation serve as a point of reference since they by definition describe an equilibrated system. The studied temperature range is from T = 0.3 to 0.65 ϵ/k. The kinetic scheme reproduces well the isothermal nucleation rates obtained by Wedekind et al. [J. Chem. Phys. 127, 064501 (2007)] using MD simulations with carrier gas. The nucleation rates obtained by artificially thermostatted MD simulations are consistently lower than the reference nucleation rates based on MC calculations. The discrepancy increases up to several orders of magnitude when the density of the nucleating vapour decreases. At low temperatures, the difference to the MC-based reference nucleation rates in some cases exceeds the maximal nonisothermal effect predicted by classical theory of Feder et al. [Adv. Phys. 15, 111 (1966)].

  1. Poisson-Jacobi reduction of homogeneous tensors

    International Nuclear Information System (INIS)

    Grabowski, J; Iglesias, D; Marrero, J C; Padron, E; Urbanski, P

    2004-01-01

    The notion of homogeneous tensors is discussed. We show that there is a one-to-one correspondence between multivector fields on a manifold M, homogeneous with respect to a vector field Δ on M, and first-order polydifferential operators on a closed submanifold N of codimension 1 such that Δ is transversal to N. This correspondence relates the Schouten-Nijenhuis bracket of multivector fields on M to the Schouten-Jacobi bracket of first-order polydifferential operators on N and generalizes the Poissonization of Jacobi manifolds. Actually, it can be viewed as a super-Poissonization. This procedure of passing from a homogeneous multivector field to a first-order polydifferential operator can also be understood as a sort of reduction; in the standard case-a half of a Poisson reduction. A dual version of the above correspondence yields in particular the correspondence between Δ-homogeneous symplectic structures on M and contact structures on N

  2. Computational Method for Atomistic-Continuum Homogenization

    National Research Council Canada - National Science Library

    Chung, Peter

    2002-01-01

    The homogenization method is used as a framework for developing a multiscale system of equations involving atoms at zero temperature at the small scale and continuum mechanics at the very large scale...

  3. Homogenization and Control of Lattice Structures

    National Research Council Canada - National Science Library

    Blankenship, G. L

    1985-01-01

    ...., trusses may be modeled by beam equations). Using a technique from the mathematics of asymptotic analysis called "homogenization," the author shows how such approximations may be derived in a systematic way that avoids errors made using...

  4. Homogenization of High-Contrast Brinkman Flows

    KAUST Repository

    Brown, Donald L.; Efendiev, Yalchin R.; Li, Guanglian; Savatorova, Viktoria

    2015-01-01

    , Homogenization: Methods and Applications, Transl. Math. Monogr. 234, American Mathematical Society, Providence, RI, 2007, G. Allaire, SIAM J. Math. Anal., 23 (1992), pp. 1482--1518], although a powerful tool, are not applicable here. Our second point

  5. Homogenized thermal conduction model for particulate foods

    OpenAIRE

    Chinesta , Francisco; Torres , Rafael; Ramón , Antonio; Rodrigo , Mari Carmen; Rodrigo , Miguel

    2002-01-01

    International audience; This paper deals with the definition of an equivalent thermal conductivity for particulate foods. An homogenized thermal model is used to asses the effect of particulate spatial distribution and differences in thermal conductivities. We prove that the spatial average of the conductivity can be used in an homogenized heat transfer model if the conductivity differences among the food components are not very large, usually the highest conductivity ratio between the foods ...

  6. Layout optimization using the homogenization method

    Science.gov (United States)

    Suzuki, Katsuyuki; Kikuchi, Noboru

    1993-01-01

    A generalized layout problem involving sizing, shape, and topology optimization is solved by using the homogenization method for three-dimensional linearly elastic shell structures in order to seek a possibility of establishment of an integrated design system of automotive car bodies, as an extension of the previous work by Bendsoe and Kikuchi. A formulation of a three-dimensional homogenized shell, a solution algorithm, and several examples of computing the optimum layout are presented in this first part of the two articles.

  7. Diffusion piecewise homogenization via flux discontinuity ratios

    International Nuclear Information System (INIS)

    Sanchez, Richard; Dante, Giorgio; Zmijarevic, Igor

    2013-01-01

    We analyze piecewise homogenization with flux-weighted cross sections and preservation of averaged currents at the boundary of the homogenized domain. Introduction of a set of flux discontinuity ratios (FDR) that preserve reference interface currents leads to preservation of averaged region reaction rates and fluxes. We consider the class of numerical discretizations with one degree of freedom per volume and per surface and prove that when the homogenization and computing meshes are equal there is a unique solution for the FDRs which exactly preserve interface currents. For diffusion sub-meshing we introduce a Jacobian-Free Newton-Krylov method and for all cases considered obtain an 'exact' numerical solution (eight digits for the interface currents). The homogenization is completed by extending the familiar full assembly homogenization via flux discontinuity factors to the sides of regions laying on the boundary of the piecewise homogenized domain. Finally, for the familiar nodal discretization we numerically find that the FDRs obtained with no sub-mesh (nearly at no cost) can be effectively used for whole-core diffusion calculations with sub-mesh. This is not the case, however, for cell-centered finite differences. (authors)

  8. Asymptotic Expansion Homogenization for Multiscale Nuclear Fuel Analysis

    International Nuclear Information System (INIS)

    2015-01-01

    Engineering scale nuclear fuel performance simulations can benefit by utilizing high-fidelity models running at a lower length scale. Lower length-scale models provide a detailed view of the material behavior that is used to determine the average material response at the macroscale. These lower length-scale calculations may provide insight into material behavior where experimental data is sparse or nonexistent. This multiscale approach is especially useful in the nuclear field, since irradiation experiments are difficult and expensive to conduct. The lower length-scale models complement the experiments by influencing the types of experiments required and by reducing the total number of experiments needed. This multiscale modeling approach is a central motivation in the development of the BISON-MARMOT fuel performance codes at Idaho National Laboratory. These codes seek to provide more accurate and predictive solutions for nuclear fuel behavior. One critical aspect of multiscale modeling is the ability to extract the relevant information from the lower length-scale sim- ulations. One approach, the asymptotic expansion homogenization (AEH) technique, has proven to be an effective method for determining homogenized material parameters. The AEH technique prescribes a system of equations to solve at the microscale that are used to compute homogenized material constants for use at the engineering scale. In this work, we employ AEH to explore the effect of evolving microstructural thermal conductivity and elastic constants on nuclear fuel performance. We show that the AEH approach fits cleanly into the BISON and MARMOT codes and provides a natural, multidimensional homogenization capability.

  9. Homogeneous anisotropic solutions of topologically massive gravity with a cosmological constant and their homogeneous deformations

    International Nuclear Information System (INIS)

    Moutsopoulos, George

    2013-01-01

    We solve the equations of topologically massive gravity (TMG) with a potentially non-vanishing cosmological constant for homogeneous metrics without isotropy. We only reproduce known solutions. We also discuss their homogeneous deformations, possibly with isotropy. We show that de Sitter space and hyperbolic space cannot be infinitesimally homogeneously deformed in TMG. We clarify some of their Segre–Petrov types and discuss the warped de Sitter spacetime. (paper)

  10. Homogeneous anisotropic solutions of topologically massive gravity with a cosmological constant and their homogeneous deformations

    Science.gov (United States)

    Moutsopoulos, George

    2013-06-01

    We solve the equations of topologically massive gravity (TMG) with a potentially non-vanishing cosmological constant for homogeneous metrics without isotropy. We only reproduce known solutions. We also discuss their homogeneous deformations, possibly with isotropy. We show that de Sitter space and hyperbolic space cannot be infinitesimally homogeneously deformed in TMG. We clarify some of their Segre-Petrov types and discuss the warped de Sitter spacetime.

  11. Rapid biotic homogenization of marine fish assemblages

    Science.gov (United States)

    Magurran, Anne E.; Dornelas, Maria; Moyes, Faye; Gotelli, Nicholas J.; McGill, Brian

    2015-01-01

    The role human activities play in reshaping biodiversity is increasingly apparent in terrestrial ecosystems. However, the responses of entire marine assemblages are not well-understood, in part, because few monitoring programs incorporate both spatial and temporal replication. Here, we analyse an exceptionally comprehensive 29-year time series of North Atlantic groundfish assemblages monitored over 5° latitude to the west of Scotland. These fish assemblages show no systematic change in species richness through time, but steady change in species composition, leading to an increase in spatial homogenization: the species identity of colder northern localities increasingly resembles that of warmer southern localities. This biotic homogenization mirrors the spatial pattern of unevenly rising ocean temperatures over the same time period suggesting that climate change is primarily responsible for the spatial homogenization we observe. In this and other ecosystems, apparent constancy in species richness may mask major changes in species composition driven by anthropogenic change. PMID:26400102

  12. Two-Dimensional Homogeneous Fermi Gases

    Science.gov (United States)

    Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning

    2018-02-01

    We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.

  13. Internal homogenization: effective permittivity of a coated sphere.

    Science.gov (United States)

    Chettiar, Uday K; Engheta, Nader

    2012-10-08

    The concept of internal homogenization is introduced as a complementary approach to the conventional homogenization schemes, which could be termed as external homogenization. The theory for the internal homogenization of the permittivity of subwavelength coated spheres is presented. The effective permittivity derived from the internal homogenization of coreshells is discussed for plasmonic and dielectric constituent materials. The effective model provided by the homogenization is a useful design tool in constructing coated particles with desired resonant properties.

  14. Statistical methods for assessment of blend homogeneity

    DEFF Research Database (Denmark)

    Madsen, Camilla

    2002-01-01

    In this thesis the use of various statistical methods to address some of the problems related to assessment of the homogeneity of powder blends in tablet production is discussed. It is not straight forward to assess the homogeneity of a powder blend. The reason is partly that in bulk materials......, it is shown how to set up parametric acceptance criteria for the batch that gives a high confidence that future samples with a probability larger than a specified value will pass the USP threeclass criteria. Properties and robustness of proposed changes to the USP test for content uniformity are investigated...

  15. Homogenization of High-Contrast Brinkman Flows

    KAUST Repository

    Brown, Donald L.

    2015-04-16

    Modeling porous flow in complex media is a challenging problem. Not only is the problem inherently multiscale but, due to high contrast in permeability values, flow velocities may differ greatly throughout the medium. To avoid complicated interface conditions, the Brinkman model is often used for such flows [O. Iliev, R. Lazarov, and J. Willems, Multiscale Model. Simul., 9 (2011), pp. 1350--1372]. Instead of permeability variations and contrast being contained in the geometric media structure, this information is contained in a highly varying and high-contrast coefficient. In this work, we present two main contributions. First, we develop a novel homogenization procedure for the high-contrast Brinkman equations by constructing correctors and carefully estimating the residuals. Understanding the relationship between scales and contrast values is critical to obtaining useful estimates. Therefore, standard convergence-based homogenization techniques [G. A. Chechkin, A. L. Piatniski, and A. S. Shamev, Homogenization: Methods and Applications, Transl. Math. Monogr. 234, American Mathematical Society, Providence, RI, 2007, G. Allaire, SIAM J. Math. Anal., 23 (1992), pp. 1482--1518], although a powerful tool, are not applicable here. Our second point is that the Brinkman equations, in certain scaling regimes, are invariant under homogenization. Unlike in the case of Stokes-to-Darcy homogenization [D. Brown, P. Popov, and Y. Efendiev, GEM Int. J. Geomath., 2 (2011), pp. 281--305, E. Marusic-Paloka and A. Mikelic, Boll. Un. Mat. Ital. A (7), 10 (1996), pp. 661--671], the results presented here under certain velocity regimes yield a Brinkman-to-Brinkman upscaling that allows using a single software platform to compute on both microscales and macroscales. In this paper, we discuss the homogenized Brinkman equations. We derive auxiliary cell problems to build correctors and calculate effective coefficients for certain velocity regimes. Due to the boundary effects, we construct

  16. Flows and chemical reactions in homogeneous mixtures

    CERN Document Server

    Prud'homme, Roger

    2013-01-01

    Flows with chemical reactions can occur in various fields such as combustion, process engineering, aeronautics, the atmospheric environment and aquatics. The examples of application chosen in this book mainly concern homogeneous reactive mixtures that can occur in propellers within the fields of process engineering and combustion: - propagation of sound and monodimensional flows in nozzles, which may include disequilibria of the internal modes of the energy of molecules; - ideal chemical reactors, stabilization of their steady operation points in the homogeneous case of a perfect mixture and c

  17. Homogenization versus homogenization-free method to measure muscle glycogen fractions.

    Science.gov (United States)

    Mojibi, N; Rasouli, M

    2016-12-01

    The glycogen is extracted from animal tissues with or without homogenization using cold perchloric acid. Three methods were compared for determination of glycogen in rat muscle at different physiological states. Two groups of five rats were kept at rest or 45 minutes muscular activity. The glycogen fractions were extracted and measured by using three methods. The data of homogenization method shows that total glycogen decreased following 45 min physical activity and the change occurred entirely in acid soluble glycogen (ASG), while AIG did not change significantly. Similar results were obtained by using "total-glycogen-fractionation methods". The findings of "homogenization-free method" indicate that the acid insoluble fraction (AIG) was the main portion of muscle glycogen and the majority of changes occurred in AIG fraction. The results of "homogenization method" are identical with "total glycogen fractionation", but differ with "homogenization-free" protocol. The ASG fraction is the major portion of muscle glycogen and is more metabolically active form.

  18. The homogeneous marginal utility of income assumption

    NARCIS (Netherlands)

    Demuynck, T.

    2015-01-01

    We develop a test to verify if every agent from a population of heterogeneous consumers has the same marginal utility of income function. This homogeneous marginal utility of income assumption is often (implicitly) used in applied demand studies because it has nice aggregation properties and

  19. Synthesis of silica nanosphere from homogeneous and ...

    Indian Academy of Sciences (India)

    WINTEC

    avoid it, reaction in heterogeneous system using CTABr was carried out. Nanosized silica sphere with ... Homogeneous system contains a mixture of ethanol, water, aqueous ammonia and ... heated to 823 K (rate, 1 K/min) in air and kept at this.

  20. Gravitational Metric Tensor Exterior to Rotating Homogeneous ...

    African Journals Online (AJOL)

    The covariant and contravariant metric tensors exterior to a homogeneous spherical body rotating uniformly about a common φ axis with constant angular velocity ω is constructed. The constructed metric tensors in this gravitational field have seven non-zero distinct components.The Lagrangian for this gravitational field is ...

  1. Homogeneous nucleation of water in synthetic air

    NARCIS (Netherlands)

    Fransen, M.A.L.J.; Sachteleben, E.; Hruby, J.; Smeulders, D.M.J.; DeMott, P.J.; O'Dowd, C.D.

    2013-01-01

    Homogeneous nucleation rates for water vapor in synthetic air are measured by means of a Pulse-Expansion Wave Tube (PEWT). A comparison of the experimental nucleation rates with the Classical Nucleation Theory (CNT) shows that a more elaborated model is necessary to describe supercooled water

  2. Homogeneity in Social Groups of Iraqis

    NARCIS (Netherlands)

    Gresham, J.; Saleh, F.; Majid, S.

    With appreciation to the Royal Institute for Inter-Faith Studies for initiating the Second World Congress for Middle Eastern Studies, this paper summarizes findings on homogeneity in community-level social groups derived from inter-ethnic research conducted during 2005 among Iraqi Arabs and Kurds

  3. Abelian gauge theories on homogeneous spaces

    International Nuclear Information System (INIS)

    Vassilevich, D.V.

    1992-07-01

    An algebraic technique of separation of gauge modes in Abelian gauge theories on homogeneous spaces is proposed. An effective potential for the Maxwell-Chern-Simons theory on S 3 is calculated. A generalization of the Chern-Simons action is suggested and analysed with the example of SU(3)/U(1) x U(1). (author). 11 refs

  4. Benchmarking homogenization algorithms for monthly data

    Czech Academy of Sciences Publication Activity Database

    Venema, V. K. C.; Mestre, O.; Aquilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertačník, G.; Szentimrey, T.; Štěpánek, Petr; Zahradníček, Pavel; Viarre, J.; Mueller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M. J.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Duran, M. P.; Likso, T.; Esteban, P.; Brandsma, T.

    2012-01-01

    Roč. 8, č. 1 (2012), s. 89-115 ISSN 1814-9324 Institutional support: RVO:67179843 Keywords : climate data * instrumental time-series * greater alpine region * homogeneity test * variability * inhomogeneities Subject RIV: EH - Ecology, Behaviour Impact factor: 3.556, year: 2012

  5. Extension theorems for homogenization on lattice structures

    Science.gov (United States)

    Miller, Robert E.

    1992-01-01

    When applying homogenization techniques to problems involving lattice structures, it is necessary to extend certain functions defined on a perforated domain to a simply connected domain. This paper provides general extension operators which preserve bounds on derivatives of order l. Only the special case of honeycomb structures is considered.

  6. Homogeneous scintillating LKr/Xe calorimeters

    International Nuclear Information System (INIS)

    Chen, M.; Mullins, M.; Pelly, D.; Shotkin, S.; Sumorok, K.; Akyuz, D.; Chen, E.; Gaudreau, M.P.J.; Bolozdynya, A.; Tchernyshev, V.; Goritchev, P.; Khovansky, V.; Koutchenkov, A.; Kovalenko, A.; Lebedenko, V.; Vinogradov, V.; Gusev, L.; Sheinkman, V.; Krasnokutsky, R.N.; Shuvalov, R.S.; Fedyakin, N.N.; Sushkov, V.; Akopyan, M.; Doke, T.; Kikuchi, J.; Hitachi, A.; Kashiwagi, T.; Masuda, K.; Shibamura, E.; Ishida, N.; Sugimoto, S.

    1993-01-01

    Recent R and D work on full length scintillating homogeneous liquid xenon/krypton (LXe/Kr) cells has established the essential properties for precision EM calorimeters: In-situ calibration using α's, radiation hardness as well as the uniformity required for δE/E≅0.5% for e/γ's above 50 GeV. (orig.)

  7. Traffic planning for non-homogeneous traffic

    Indian Academy of Sciences (India)

    Western traffic planning methodologies mostly address the concerns of homogeneous traffic and therefore often prove inadequate in solving problems involving ... Transportation Research and Injury Prevention Programme, Indian Institute of Technology, Hauz Khas, New Delhi 110 016; Civil and Architectural Engineering ...

  8. A generalized model for homogenized reflectors

    International Nuclear Information System (INIS)

    Pogosbekyan, Leonid; Kim, Yeong Il; Kim, Young Jin; Joo, Hyung Kook

    1996-01-01

    A new concept of equivalent homogenization is proposed. The concept employs new set of homogenized parameters: homogenized cross sections (XS) and interface matrix (IM), which relates partial currents at the cell interfaces. The idea of interface matrix generalizes the idea of discontinuity factors (DFs), proposed and developed by K. Koebke and K. Smith. The method of K. Smith can be simulated within framework of new method, while the new method approximates hetero-geneous cell better in case of the steep flux gradients at the cell interfaces. The attractive shapes of new concept are:improved accuracy, simplicity of incorporation in the existing codes, equal numerical expenses in comparison to the K. Smith's approach. The new concept is useful for: (a) explicit reflector/baffle simulation; (b)control blades simulation; (c) mixed UO 2 /MOX core simulation. The offered model has been incorporated in the finite difference code and in the nodal code PANBOX. The numerical results show good accuracy of core calculations and insensitivity of homogenized parameters with respect to in-core conditions

  9. Inverse acoustic problem of N homogeneous scatterers

    DEFF Research Database (Denmark)

    Berntsen, Svend

    2002-01-01

    The three-dimensional inverse acoustic medium problem of N homogeneous objects with known geometry and location is considered. It is proven that one scattering experiment is sufficient for the unique determination of the complex wavenumbers of the objects. The mapping from the scattered fields...

  10. Mach's principle in spatially homogeneous spacetimes

    International Nuclear Information System (INIS)

    Tipler, F.J.

    1978-01-01

    On the basis of Mach's Principle it is concluded that the only singularity-free solution to the empty space Einstein equations is flat space. It is shown that the only singularity-free solution to the empty space Einstein equations which is spatially homogeneous and globally hyperbolic is in fact suitably identified Minkowski space. (Auth.)

  11. Water Filtration through Homogeneous Granulated Charge

    Directory of Open Access Journals (Sweden)

    A. M. Krautsou

    2005-01-01

    Full Text Available General relationship for calculation of water filtration through homogeneous granulated charge has been obtained. The obtained relationship has been compared with experimental data. Discrepancies between calculated and experimental values do not exceed 6 % throughout the entire investigated range.

  12. A new concept of equivalent homogenization method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Pogoskekyan, Leonid; Kim, Young Il; Ju, Hyung Kook; Chang, Moon Hee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-07-01

    A new concept of equivalent homogenization is proposed. The concept employs new set of homogenized parameters: homogenized cross sections (XS) and interface matrix (IM), which relates partial currents at the cell interfaces. The idea of interface matrix generalizes the idea of discontinuity factors (DFs), proposed and developed by K. Koebke and K. Smith. The offered concept covers both those of K. Koebke and K. Smith; both of them can be simulated within framework of new concept. Also, the offered concept covers Siemens KWU approach for baffle/reflector simulation, where the equivalent homogenized reflector XS are derived from the conservation of response matrix at the interface in 1D simi-infinite slab geometry. The IM and XS of new concept satisfy the same assumption about response matrix conservation in 1D semi-infinite slab geometry. It is expected that the new concept provides more accurate approximation of heterogeneous cell, especially in case of the steep flux gradients at the cell interfaces. The attractive shapes of new concept are: improved accuracy, simplicity of incorporation in the existing codes, equal numerical expenses in comparison to the K. Smith`s approach. The new concept is useful for: (a) explicit reflector/baffle simulation; (b) control blades simulation; (c) mixed UO{sub 2}/MOX core simulation. The offered model has been incorporated in the finite difference code and in the nodal code PANDOX. The numerical results show good accuracy of core calculations and insensitivity of homogenized parameters with respect to in-core conditions. 9 figs., 7 refs. (Author).

  13. Feasibility Study of Aseptic Homogenization: Affecting Homogenization Steps on Quality of Sterilized Coconut Milk

    Directory of Open Access Journals (Sweden)

    Phungamngoen Chanthima

    2016-01-01

    Full Text Available Coconut milk is one of the most important protein-rich food sources available today. Separation of an emulsion into an aqueous phase and cream phase is commonly occurred and this leads an unacceptably physical defect of either fresh or processed coconut milk. Since homogenization steps are known to affect the stability of coconut milk. This work was aimed to study the effect of homogenization steps on quality of coconut milk. The samples were subject to high speed homogenization in the range of 5000-15000 rpm under sterilize temperatures at 120-140 °C for 15 min. The result showed that emulsion stability increase with increasing speed of homogenization. The lower fat particles were generated and easy to disperse in continuous phase lead to high stability. On the other hand, the stability of coconut milk decreased, fat globule increased, L value decreased and b value increased when the high sterilization temperature was applied. Homogenization after heating led to higher stability than homogenization before heating due to the reduced particle size of coconut milk after aggregation during sterilization process. The results implied that homogenization after sterilization process might play an important role on the quality of the sterilized coconut milk.

  14. Non-homogeneous harmonic analysis: 16 years of development

    Science.gov (United States)

    Volberg, A. L.; Èiderman, V. Ya

    2013-12-01

    This survey contains results and methods in the theory of singular integrals, a theory which has been developing dramatically in the last 15-20 years. The central (although not the only) topic of the paper is the connection between the analytic properties of integrals and operators with Calderón-Zygmund kernels and the geometric properties of the measures. The history is traced of the classical Painlevé problem of describing removable singularities of bounded analytic functions, which has provided a strong incentive for the development of this branch of harmonic analysis. The progress of recent decades has largely been based on the creation of an apparatus for dealing with non-homogeneous measures, and much attention is devoted to this apparatus here. Several open questions are stated, first and foremost in the multidimensional case, where the method of curvature of a measure is not available. Bibliography: 128 titles.

  15. Enhancement of anaerobic sludge digestion by high-pressure homogenization.

    Science.gov (United States)

    Zhang, Sheng; Zhang, Panyue; Zhang, Guangming; Fan, Jie; Zhang, Yuxuan

    2012-08-01

    To improve anaerobic sludge digestion efficiency, the effects of high-pressure homogenization (HPH) conditions on the anaerobic sludge digestion were investigated. The VS and TCOD were significantly removed with the anaerobic digestion, and the VS removal and TCOD removal increased with increasing the homogenization pressure and homogenization cycle number; correspondingly, the accumulative biogas production also increased with increasing the homogenization pressure and homogenization cycle number. The optimal homogenization pressure was 50 MPa for one homogenization cycle and 40 MPa for two homogenization cycles. The SCOD of the sludge supernatant significantly increased with increasing the homogenization pressure and homogenization cycle number due to the sludge disintegration. The relationship between the biogas production and the sludge disintegration showed that the accumulative biogas and methane production were mainly enhanced by the sludge disintegration, which accelerated the anaerobic digestion process and improved the methane content in the biogas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Homogenized group cross sections by Monte Carlo

    International Nuclear Information System (INIS)

    Van Der Marck, S. C.; Kuijper, J. C.; Oppe, J.

    2006-01-01

    Homogenized group cross sections play a large role in making reactor calculations efficient. Because of this significance, many codes exist that can calculate these cross sections based on certain assumptions. However, the application to the High Flux Reactor (HFR) in Petten, the Netherlands, the limitations of such codes imply that the core calculations would become less accurate when using homogenized group cross sections (HGCS). Therefore we developed a method to calculate HGCS based on a Monte Carlo program, for which we chose MCNP. The implementation involves an addition to MCNP, and a set of small executables to perform suitable averaging after the MCNP run(s) have completed. Here we briefly describe the details of the method, and we report on two tests we performed to show the accuracy of the method and its implementation. By now, this method is routinely used in preparation of the cycle to cycle core calculations for HFR. (authors)

  17. Testing homogeneity in Weibull-regression models.

    Science.gov (United States)

    Bolfarine, Heleno; Valença, Dione M

    2005-10-01

    In survival studies with families or geographical units it may be of interest testing whether such groups are homogeneous for given explanatory variables. In this paper we consider score type tests for group homogeneity based on a mixing model in which the group effect is modelled as a random variable. As opposed to hazard-based frailty models, this model presents survival times that conditioned on the random effect, has an accelerated failure time representation. The test statistics requires only estimation of the conventional regression model without the random effect and does not require specifying the distribution of the random effect. The tests are derived for a Weibull regression model and in the uncensored situation, a closed form is obtained for the test statistic. A simulation study is used for comparing the power of the tests. The proposed tests are applied to real data sets with censored data.

  18. Core homogenization method for pebble bed reactors

    International Nuclear Information System (INIS)

    Kulik, V.; Sanchez, R.

    2005-01-01

    This work presents a core homogenization scheme for treating a stochastic pebble bed loading in pebble bed reactors. The reactor core is decomposed into macro-domains that contain several pebble types characterized by different degrees of burnup. A stochastic description is introduced to account for pebble-to-pebble and pebble-to-helium interactions within a macro-domain as well as for interactions between macro-domains. Performance of the proposed method is tested for the PROTEUS and ASTRA critical reactor facilities. Numerical simulations accomplished with the APOLLO2 transport lattice code show good agreement with the experimental data for the PROTEUS reactor facility and with the TRIPOLI4 Monte Carlo simulations for the ASTRA reactor configuration. The difference between the proposed method and the traditional volume-averaged homogenization technique is negligible while only one type of fuel pebbles present in the system, but it grows rapidly with the level of pebble heterogeneity. (authors)

  19. Smooth homogeneous structures in operator theory

    CERN Document Server

    Beltita, Daniel

    2005-01-01

    Geometric ideas and techniques play an important role in operator theory and the theory of operator algebras. Smooth Homogeneous Structures in Operator Theory builds the background needed to understand this circle of ideas and reports on recent developments in this fruitful field of research. Requiring only a moderate familiarity with functional analysis and general topology, the author begins with an introduction to infinite dimensional Lie theory with emphasis on the relationship between Lie groups and Lie algebras. A detailed examination of smooth homogeneous spaces follows. This study is illustrated by familiar examples from operator theory and develops methods that allow endowing such spaces with structures of complex manifolds. The final section of the book explores equivariant monotone operators and Kähler structures. It examines certain symmetry properties of abstract reproducing kernels and arrives at a very general version of the construction of restricted Grassmann manifolds from the theory of loo...

  20. Genetic homogeneity of Fascioloides magna in Austria.

    Science.gov (United States)

    Husch, Christian; Sattmann, Helmut; Hörweg, Christoph; Ursprung, Josef; Walochnik, Julia

    2017-08-30

    The large American liver fluke, Fascioloides magna, is an economically relevant parasite of both domestic and wild ungulates. F. magna was repeatedly introduced into Europe, for the first time already in the 19th century. In Austria, a stable population of F. magna has established in the Danube floodplain forests southeast of Vienna. The aim of this study was to determine the genetic diversity of F. magna in Austria. A total of 26 individuals from various regions within the known area of distribution were investigated for their cytochrome oxidase subunit 1 (cox1) and nicotinamide dehydrogenase subunit 1 (nad1) gene haplotypes. Interestingly, all 26 individuals revealed one and the same haplotype, namely concatenated haplotype Ha5. This indicates a homogenous population of F. magna in Austria and may argue for a single introduction. Alternatively, genetic homogeneity might also be explained by a bottleneck effect and/or genetic drift. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Shape optimization in biomimetics by homogenization modelling

    International Nuclear Information System (INIS)

    Hoppe, Ronald H.W.; Petrova, Svetozara I.

    2003-08-01

    Optimal shape design of microstructured materials has recently attracted a great deal of attention in material science. The shape and the topology of the microstructure have a significant impact on the macroscopic properties. The present work is devoted to the shape optimization of new biomorphic microcellular ceramics produced from natural wood by biotemplating. We are interested in finding the best material-and-shape combination in order to achieve the optimal prespecified performance of the composite material. The computation of the effective material properties is carried out using the homogenization method. Adaptive mesh-refinement technique based on the computation of recovered stresses is applied in the microstructure to find the homogenized elasticity coefficients. Numerical results show the reliability of the implemented a posteriori error estimator. (author)

  2. Homogenization of variational inequalities for obstacle problems

    International Nuclear Information System (INIS)

    Sandrakov, G V

    2005-01-01

    Results on the convergence of solutions of variational inequalities for obstacle problems are proved. The variational inequalities are defined by a non-linear monotone operator of the second order with periodic rapidly oscillating coefficients and a sequence of functions characterizing the obstacles. Two-scale and macroscale (homogenized) limiting variational inequalities are obtained. Derivation methods for such inequalities are presented. Connections between the limiting variational inequalities and two-scale and macroscale minimization problems are established in the case of potential operators.

  3. Quantum groups and quantum homogeneous spaces

    International Nuclear Information System (INIS)

    Kulish, P.P.

    1994-01-01

    The usefulness of the R-matrix formalism and the reflection equations is demonstrated on examples of the quantum group covariant algebras (quantum homogeneous spaces): quantum Minkowski space-time, quantum sphere and super-sphere. The irreducible representations of some covariant algebras are constructed. The generalization of the reflection equation to super case is given and the existence of the quasiclassical limits is pointed out. (orig.)

  4. Process to produce homogenized reactor fuels

    International Nuclear Information System (INIS)

    Hart, P.E.; Daniel, J.L.; Brite, D.W.

    1980-01-01

    The fuels consist of a mixture of PuO 2 and UO 2 . In order to increase the homogeneity of mechanically mixed fuels the pellets are sintered in a hydrogen atmosphere with a sufficiently low oxygen potential. This results in a reduction of Pu +4 to Pu +3 . By the reduction process water vapor is obtained increasing the pressure within the PuO 2 particles and causing PuO 2 to be pressed into the uranium oxide structure. (DG) [de

  5. Homogeneous scintillating LKr/Xe calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M.; Mullins, M.; Pelly, D.; Shotkin, S.; Sumorok, K. (Lab. for Nuclear Science, MIT, Cambridge, MA (United States)); Akyuz, D.; Chen, E.; Gaudreau, M.P.J. (Plasma Fusion Center, MIT, Cambridge, MA (United States)); Bolozdynya, A.; Tchernyshev, V.; Goritchev, P.; Khovansky, V.; Koutchenkov, A.; Kovalenko, A.; Lebedenko, V.; Vinogradov, V.; Gusev, L.; Sheinkman, V. (ITEP, Moscow (Russia)); Krasnokutsky, R.N.; Shuvalov, R.S.; Fedyakin, N.N.; Sushkov, V. (IHEP, Serpukhov (Russia)); Akopyan, M. (Inst. for Nuclear Research, Moscow (Russia)); Doke, T.; Kikuchi, J.; Hitachi, A.; Kashiwagi, T. (Science and Eng. Res. Lab., Waseda Univ., Tokyo (Japan)); Masuda, K.; Shibamura, E. (Saitama Coll. of Health (Japan)); Ishida, N. (Seikei Univ. (Japan)); Sugimoto, S. (INS, Univ. Tokyo (Japan))

    1993-03-20

    Recent R and D work on full length scintillating homogeneous liquid xenon/krypton (LXe/Kr) cells has established the essential properties for precision EM calorimeters: In-situ calibration using [alpha]'s, radiation hardness as well as the uniformity required for [delta]E/E[approx equal]0.5% for e/[gamma]'s above 50 GeV. (orig.).

  6. Fluoroscopic screen which is optically homogeneous

    International Nuclear Information System (INIS)

    1975-01-01

    A high efficiency fluoroscopic screen for X-ray examination consists of an optically homogeneous crystal plate of fluorescent material such as activated cesium iodide, supported on a transparent protective plate, with the edges of the assembly beveled and optically coupled to a light absorbing compound. The product is dressed to the desired thickness and provided with an X-ray-transparent light-opaque cover. (Auth.)

  7. Correlated equilibria in homogenous good Bertrand competition

    DEFF Research Database (Denmark)

    Jann, Ole; Schottmüller, Christoph

    2015-01-01

    We show that there is a unique correlated equilibrium, identical to the unique Nash equilibrium, in the classic Bertrand oligopoly model with homogenous goods and identical marginal costs. This provides a theoretical underpinning for the so-called "Bertrand paradox'' as well as its most general f...... formulation to date. Our proof generalizes to asymmetric marginal costs and arbitrarily many players in the following way: The market price cannot be higher than the second lowest marginal cost in any correlated equilibrium....

  8. Homogeneous Biosensing Based on Magnetic Particle Labels

    KAUST Repository

    Schrittwieser, Stefan

    2016-06-06

    The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation.

  9. Some properties of spatially homogeneous spacetimes

    International Nuclear Information System (INIS)

    Coomer, G.C.

    1979-01-01

    This paper discusses two features of the universe which are influenced in a fundamental way by the spacetime geometry of the universe. The first is the growth of density fluctuations in the early stages of the evolution of the universe. The second is the propagation of electromagnetic radiation in the universe. A spatially homogeneous universe is assumed in both discussions. The gravitational instability theory of galaxy formation is investigated for a viscous fluid and for a charged, conducting fluid with a magnetic field added as a perturbation. It is found that the growth rate of density perturbations in both cases is lower than in the perfect fluid case. Spatially homogeneous but nonisotropic spacetimes are investigated next. Two perfect fluid solutions of Einstein's field equations are found which have spacelike hypersurfaces with Bianchi type II geometry. An expression for the spectrum of the cosmic microwave background radiation in a spatially homogeneous but nonisotropic universe is found. The expression is then used to determine the angular distribution of the intensity of the radiation in the simpler of the two solutions. When accepted values of the matter density and decoupling temperature are inserted into this solution, values for the age of the universe and the time of decoupling are obtained which agree reasonably well with the values of the standard model of the universe

  10. Commensurability effects in holographic homogeneous lattices

    International Nuclear Information System (INIS)

    Andrade, Tomas; Krikun, Alexander

    2016-01-01

    An interesting application of the gauge/gravity duality to condensed matter physics is the description of a lattice via breaking translational invariance on the gravity side. By making use of global symmetries, it is possible to do so without scarifying homogeneity of the pertinent bulk solutions, which we thus term as “homogeneous holographic lattices.' Due to their technical simplicity, these configurations have received a great deal of attention in the last few years and have been shown to correctly describe momentum relaxation and hence (finite) DC conductivities. However, it is not clear whether they are able to capture other lattice effects which are of interest in condensed matter. In this paper we investigate this question focusing our attention on the phenomenon of commensurability, which arises when the lattice scale is tuned to be equal to (an integer multiple of) another momentum scale in the system. We do so by studying the formation of spatially modulated phases in various models of homogeneous holographic lattices. Our results indicate that the onset of the instability is controlled by the near horizon geometry, which for insulating solutions does carry information about the lattice. However, we observe no sharp connection between the characteristic momentum of the broken phase and the lattice pitch, which calls into question the applicability of these models to the physics of commensurability.

  11. Homogeneous Biosensing Based on Magnetic Particle Labels

    Science.gov (United States)

    Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang J.; Lentijo-Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Guenther, Annegret; Tschöpe, Andreas; Schotter, Joerg

    2016-01-01

    The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation. PMID:27275824

  12. Homogeneous Biosensing Based on Magnetic Particle Labels

    KAUST Repository

    Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang; Lentijo Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Guenther, Annegret; Tschö pe, Andreas; Schotter, Joerg

    2016-01-01

    The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation.

  13. Testing Homogeneity with the Galaxy Fossil Record

    CERN Document Server

    Hoyle, Ben; Jimenez, Raul; Heavens, Alan; Clarkson, Chris; Maartens, Roy

    2013-01-01

    Observationally confirming spatial homogeneity on sufficiently large cosmological scales is of importance to test one of the underpinning assumptions of cosmology, and is also imperative for correctly interpreting dark energy. A challenging aspect of this is that homogeneity must be probed inside our past lightcone, while observations take place on the lightcone. The history of star formation rates (SFH) in the galaxy fossil record provides a novel way to do this. We calculate the SFH of stacked Luminous Red Galaxy (LRG) spectra obtained from the Sloan Digital Sky Survey. We divide the LRG sample into 12 equal area contiguous sky patches and 10 redshift slices (0.2homogeneity, we calculate the posterior distribution for the excess large-scale variance due to inhomogeneity, and find that the most likely solution is n...

  14. Investigation of methods for hydroclimatic data homogenization

    Science.gov (United States)

    Steirou, E.; Koutsoyiannis, D.

    2012-04-01

    We investigate the methods used for the adjustment of inhomogeneities of temperature time series covering the last 100 years. Based on a systematic study of scientific literature, we classify and evaluate the observed inhomogeneities in historical and modern time series, as well as their adjustment methods. It turns out that these methods are mainly statistical, not well justified by experiments and are rarely supported by metadata. In many of the cases studied the proposed corrections are not even statistically significant. From the global database GHCN-Monthly Version 2, we examine all stations containing both raw and adjusted data that satisfy certain criteria of continuity and distribution over the globe. In the United States of America, because of the large number of available stations, stations were chosen after a suitable sampling. In total we analyzed 181 stations globally. For these stations we calculated the differences between the adjusted and non-adjusted linear 100-year trends. It was found that in the two thirds of the cases, the homogenization procedure increased the positive or decreased the negative temperature trends. One of the most common homogenization methods, 'SNHT for single shifts', was applied to synthetic time series with selected statistical characteristics, occasionally with offsets. The method was satisfactory when applied to independent data normally distributed, but not in data with long-term persistence. The above results cast some doubts in the use of homogenization procedures and tend to indicate that the global temperature increase during the last century is between 0.4°C and 0.7°C, where these two values are the estimates derived from raw and adjusted data, respectively.

  15. Exponential Stability of Switched Positive Homogeneous Systems

    Directory of Open Access Journals (Sweden)

    Dadong Tian

    2017-01-01

    Full Text Available This paper studies the exponential stability of switched positive nonlinear systems defined by cooperative and homogeneous vector fields. In order to capture the decay rate of such systems, we first consider the subsystems. A sufficient condition for exponential stability of subsystems with time-varying delays is derived. In particular, for the corresponding delay-free systems, we prove that this sufficient condition is also necessary. Then, we present a sufficient condition of exponential stability under minimum dwell time switching for the switched positive nonlinear systems. Some results in the previous literature are extended. Finally, a numerical example is given to demonstrate the effectiveness of the obtained results.

  16. Diffusion piecewise homogenization via flux discontinuity factors

    International Nuclear Information System (INIS)

    Sanchez, Richard; Zmijarevic, Igor

    2011-01-01

    We analyze the calculation of flux discontinuity factors (FDFs) for use with piecewise subdomain assembly homogenization. These coefficients depend on the numerical mesh used to compute the diffusion problem. When the mesh has a single degree of freedom on subdomain interfaces the solution is unique and can be computed independently per subdomain. For all other cases we have implemented an iterative calculation for the FDFs. Our numerical results show that there is no solution to this nonlinear problem but that the iterative algorithm converges towards FDFs values that reproduce subdomains reaction rates with a relatively high precision. In our test we have included both the GET and black-box FDFs. (author)

  17. Tensor harmonic analysis on homogenous space

    International Nuclear Information System (INIS)

    Wrobel, G.

    1997-01-01

    The Hilbert space of tensor functions on a homogenous space with the compact stability group is considered. The functions are decomposed onto a sum of tensor plane waves (defined in the text), components of which are transformed by irreducible representations of the appropriate transformation group. The orthogonality relation and the completeness relation for tensor plane waves are found. The decomposition constitutes a unitary transformation, which allows to obtain the Parseval equality. The Fourier components can be calculated by means of the Fourier transformation, the form of which is given explicitly. (author)

  18. Multifractal spectra in homogeneous shear flow

    Science.gov (United States)

    Deane, A. E.; Keefe, L. R.

    1988-01-01

    Employing numerical simulations of 3-D homogeneous shear flow, the associated multifractal spectra of the energy dissipation, scalar dissipation and vorticity fields were calculated. The results for (128) cubed simulations of this flow, and those obtained in recent experiments that analyzed 1- and 2-D intersections of atmospheric and laboratory flows, are in some agreement. A two-scale Cantor set model of the energy cascade process which describes the experimental results from 1-D intersections quite well, describes the 3-D results only marginally.

  19. Stimulus homogeneity enhances implicit learning: evidence from contextual cueing.

    Science.gov (United States)

    Feldmann-Wüstefeld, Tobias; Schubö, Anna

    2014-04-01

    Visual search for a target object is faster if the target is embedded in a repeatedly presented invariant configuration of distractors ('contextual cueing'). It has also been shown that the homogeneity of a context affects the efficiency of visual search: targets receive prioritized processing when presented in a homogeneous context compared to a heterogeneous context, presumably due to grouping processes at early stages of visual processing. The present study investigated in three Experiments whether context homogeneity also affects contextual cueing. In Experiment 1, context homogeneity varied on three levels of the task-relevant dimension (orientation) and contextual cueing was most pronounced for context configurations with high orientation homogeneity. When context homogeneity varied on three levels of the task-irrelevant dimension (color) and orientation homogeneity was fixed, no modulation of contextual cueing was observed: high orientation homogeneity led to large contextual cueing effects (Experiment 2) and low orientation homogeneity led to low contextual cueing effects (Experiment 3), irrespective of color homogeneity. Enhanced contextual cueing for homogeneous context configurations suggest that grouping processes do not only affect visual search but also implicit learning. We conclude that memory representation of context configurations are more easily acquired when context configurations can be processed as larger, grouped perceptual units. However, this form of implicit perceptual learning is only improved by stimulus homogeneity when stimulus homogeneity facilitates grouping processes on a dimension that is currently relevant in the task. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Topology of actions and homogeneous spaces

    International Nuclear Information System (INIS)

    Kozlov, Konstantin L

    2013-01-01

    Topologization of a group of homeomorphisms and its action provide additional possibilities for studying the topological space, the group of homeomorphisms, and their interconnections. The subject of the paper is the use of the property of d-openness of an action (introduced by Ancel under the name of weak micro-transitivity) in the study of spaces with various forms of homogeneity. It is proved that a d-open action of a Čech-complete group is open. A characterization of Polish SLH spaces using d-openness is given, and it is established that any separable metrizable SLH space has an SLH completion that is a Polish space. Furthermore, the completion is realized in coordination with the completion of the acting group with respect to the two-sided uniformity. A sufficient condition is given for extension of a d-open action to the completion of the space with respect to the maximal equiuniformity with preservation of d-openness. A result of van Mill is generalized, namely, it is proved that any homogeneous CDH metrizable compactum is the only G-compactification of the space of rational numbers for the action of some Polish group. Bibliography: 39 titles.

  1. Primary healthcare solo practices: homogeneous or heterogeneous?

    Science.gov (United States)

    Pineault, Raynald; Borgès Da Silva, Roxane; Provost, Sylvie; Beaulieu, Marie-Dominique; Boivin, Antoine; Couture, Audrey; Prud'homme, Alexandre

    2014-01-01

    Introduction. Solo practices have generally been viewed as forming a homogeneous group. However, they may differ on many characteristics. The objective of this paper is to identify different forms of solo practice and to determine the extent to which they are associated with patient experience of care. Methods. Two surveys were carried out in two regions of Quebec in 2010: a telephone survey of 9180 respondents from the general population and a postal survey of 606 primary healthcare (PHC) practices. Data from the two surveys were linked through the respondent's usual source of care. A taxonomy of solo practices was constructed (n = 213), using cluster analysis techniques. Bivariate and multilevel analyses were used to determine the relationship of the taxonomy with patient experience of care. Results. Four models were derived from the taxonomy. Practices in the "resourceful networked" model contrast with those of the "resourceless isolated" model to the extent that the experience of care reported by their patients is more favorable. Conclusion. Solo practice is not a homogeneous group. The four models identified have different organizational features and their patients' experience of care also differs. Some models seem to offer a better organizational potential in the context of current reforms.

  2. Cosmic Ray Hit Detection with Homogenous Structures

    Science.gov (United States)

    Smirnov, O. M.

    Cosmic ray (CR) hits can affect a significant number of pixels both on long-exposure ground-based CCD observations and on the Space Telescope frames. Thus, methods of identifying the damaged pixels are an important part of the data preprocessing for practically any application. The paper presents an implementation of a CR hit detection algorithm based on a homogenous structure (also called cellular automata ), a concept originating in artificial intelligence and dicrete mathematics. Each pixel of the image is represented by a small automaton, which interacts with its neighbors and assumes a distinct state if it ``decides'' that a CR hit is present. On test data, the algorithm has shown a high detection rate (~0.7 ) and a low false alarm rate (frame. A homogenous structure is extremely trainable, which can be very important for processing large batches of data obtained under similar conditions. Training and optimizing issues are discussed, as well as possible other applications of this concept to image processing.

  3. Photo-electret effects in homogenous semiconductors

    International Nuclear Information System (INIS)

    Nabiev, G.A.

    2004-01-01

    In the given work is shown the opportunity and created the theory of photo-electret condition in semiconductors with Dember mechanism of photo-voltage generation. Photo-electret of such type can be created, instead of traditional and without an external field as a result of only one illumination. Polar factor, in this case, is the distinction of electrons and holes mobility. Considered the multilayered structure with homogeneous photoactive micro areas shared by the layers, which are interfering to alignment of carriers concentration. We consider, that the homogeneous photoactive areas contain deep levels of stick. Because of addition of elementary photo voltage in separate micro photo cells it is formed the abnormal-large photo voltage (APV-effect). Let's notice, that Dember photo-voltage in a separate micro photo-cell ≤kT/q. From the received expressions, in practically important, special case, when quasi- balance between valent zone and stick levels established in much more smaller time, than free hole lifetime, and we received, that photo-voltage is relaxing. Comparing of the received expressions with the laws of photo voltage attenuation in p-n- junction structures shows their identity; the difference is only in absolute meanings of photo voltage. During the illumination in the semiconductor are created the superfluous concentration of charge carriers and part from them stays at deep levels. At de-energizing light there is a gradual generation of carriers located at these levels

  4. Irregular Homogeneity Domains in Ternary Intermetallic Systems

    Directory of Open Access Journals (Sweden)

    Jean-Marc Joubert

    2015-12-01

    Full Text Available Ternary intermetallic A–B–C systems sometimes have unexpected behaviors. The present paper examines situations in which there is a tendency to simultaneously form the compounds ABx, ACx and BCx with the same crystal structure. This causes irregular shapes of the phase homogeneity domains and, from a structural point of view, a complete reversal of site occupancies for the B atom when crossing the homogeneity domain. This work reviews previous studies done in the systems Fe–Nb–Zr, Hf–Mo–Re, Hf–Re–W, Mo–Re–Zr, Re–W–Zr, Cr–Mn–Si, Cr–Mo–Re, and Mo–Ni–Re, and involving the topologically close-packed Laves, χ and σ phases. These systems have been studied using ternary isothermal section determination, DFT calculations, site occupancy measurement using joint X-ray, and neutron diffraction Rietveld refinement. Conclusions are drawn concerning this phenomenon. The paper also reports new experimental or calculated data on Co–Cr–Re and Fe–Nb–Zr systems.

  5. WHAMP - waves in homogeneous, anisotropic, multicomponent plasmas

    International Nuclear Information System (INIS)

    Roennmark, K.

    1982-06-01

    In this report, a computer program which solves the dispersion relation of waves in a magnetized plasma is described. The dielectric tensor is derived using the kinetic theory of homogeneous plasmas with Maxwellian velocity distribution. Up to six different plasma components can be included in this version of the program, and each component is specified by its density, temperature, particle mass, anisotropy and drift velocity along the magnetic field. The program is thus applicable to a very wide class of plasmas, and the method should in general be useful whenever a homogeneous magnetized plasma can be approximated by a linear combination of Maxwellian components. The general theory underlying the program is outlined. It is shown that by introducing a Pade approximant for the plasma dispersion function Z, the infinite sums of modified Bessel functions which appear in the dielectric tensor may be reduced to a summable form. The Pade approximant is derived and the accuracy of the approximation is also discussed. The subroutines making up the program are described. (Author)

  6. Hydrogen Production by Homogeneous Catalysis: Alcohol Acceptorless Dehydrogenation

    DEFF Research Database (Denmark)

    Nielsen, Martin

    2015-01-01

    in hydrogen production from biomass using homogeneous catalysis. Homogeneous catalysis has the advance of generally performing transformations at much milder conditions than traditional heterogeneous catalysis, and hence it constitutes a promising tool for future applications for a sustainable energy sector...

  7. Radiotracer investigation of cement raw meal homogenizers. Pt. 2

    International Nuclear Information System (INIS)

    Baranyai, L.

    1983-01-01

    Based on radioisotopic tracer technique a method has been worked out to study the homogenization and segregation processes of cement-industrial raw meal homogenizers. On-site measurements were carried out by this method in some Hungarian cement works to determine the optimal homogenization parameters of operating homogenizers. The motion and distribution of different raw meal fractions traced with 198 Au radioisotope was studied in homogenization processes proceeding with different parameters. In the first part of the publication the change of charge homogenity in time was discussed which had been measured as the resultant of mixing and separating processes. In the second part the parameters and types of homogenizers influencing the efficiency of homogenization have been detailed. (orig.) [de

  8. Radiotracer investigation of cement raw meal homogenizers. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Baranyai, L

    1983-12-01

    Based on radioisotopic tracer technique a method has been worked out to study the homogenization and segregation processes of cement-industrial raw meal homogenizers. On-site measurements were carried out by this method in some Hungarian cement works to determine the optimal homogenization parameters of operating homogenizers. The motion and distribution of different raw meal fractions traced with /sup 198/Au radioisotope was studied in homogenization processes proceeding with different parameters. In the first part of the publication the change of charge homogenity in time was discussed which had been measured as the resultant of mixing and separating processes. In the second part the parameters and types of homogenizers influencing the efficiency of homogenization have been detailed.

  9. Gene conversion homogenizes the CMT1A paralogous repeats

    Directory of Open Access Journals (Sweden)

    Hurles Matthew E

    2001-12-01

    Full Text Available Abstract Background Non-allelic homologous recombination between paralogous repeats is increasingly being recognized as a major mechanism causing both pathogenic microdeletions and duplications, and structural polymorphism in the human genome. It has recently been shown empirically that gene conversion can homogenize such repeats, resulting in longer stretches of absolute identity that may increase the rate of non-allelic homologous recombination. Results Here, a statistical test to detect gene conversion between pairs of non-coding sequences is presented. It is shown that the 24 kb Charcot-Marie-Tooth type 1A paralogous repeats (CMT1A-REPs exhibit the imprint of gene conversion processes whilst control orthologous sequences do not. In addition, Monte Carlo simulations of the evolutionary divergence of the CMT1A-REPs, incorporating two alternative models for gene conversion, generate repeats that are statistically indistinguishable from the observed repeats. Bounds are placed on the rate of these conversion processes, with central values of 1.3 × 10-4 and 5.1 × 10-5 per generation for the alternative models. Conclusions This evidence presented here suggests that gene conversion may have played an important role in the evolution of the CMT1A-REP paralogous repeats. The rates of these processes are such that it is probable that homogenized CMT1A-REPs are polymorphic within modern populations. Gene conversion processes are similarly likely to play an important role in the evolution of other segmental duplications and may influence the rate of non-allelic homologous recombination between them.

  10. Layered Fiberconcrete with Non-Homogeneous Fibers Distribution

    OpenAIRE

    Lūsis, V; Krasņikovs, A

    2013-01-01

    The aim of present research is to create fiberconcrete construction with non-homogeneous fibers distribution in it. Traditionally fibers are homogeneously dispersed in a concrete. At the same time in many situations fiberconcretes with homogeneously dispersed fibers are not optimal (majority of added fibers are not participating in a loads bearing process).

  11. Non-homogeneous dynamic Bayesian networks for continuous data

    NARCIS (Netherlands)

    Grzegorczyk, Marco; Husmeier, Dirk

    Classical dynamic Bayesian networks (DBNs) are based on the homogeneous Markov assumption and cannot deal with non-homogeneous temporal processes. Various approaches to relax the homogeneity assumption have recently been proposed. The present paper presents a combination of a Bayesian network with

  12. Bounds for nonlinear composites via iterated homogenization

    Science.gov (United States)

    Ponte Castañeda, P.

    2012-09-01

    Improved estimates of the Hashin-Shtrikman-Willis type are generated for the class of nonlinear composites consisting of two well-ordered, isotropic phases distributed randomly with prescribed two-point correlations, as determined by the H-measure of the microstructure. For this purpose, a novel strategy for generating bounds has been developed utilizing iterated homogenization. The general idea is to make use of bounds that may be available for composite materials in the limit when the concentration of one of the phases (say phase 1) is small. It then follows from the theory of iterated homogenization that it is possible, under certain conditions, to obtain bounds for more general values of the concentration, by gradually adding small amounts of phase 1 in incremental fashion, and sequentially using the available dilute-concentration estimate, up to the final (finite) value of the concentration (of phase 1). Such an approach can also be useful when available bounds are expected to be tighter for certain ranges of the phase volume fractions. This is the case, for example, for the "linear comparison" bounds for porous viscoplastic materials, which are known to be comparatively tighter for large values of the porosity. In this case, the new bounds obtained by the above-mentioned "iterated" procedure can be shown to be much improved relative to the earlier "linear comparison" bounds, especially at low values of the porosity and high triaxialities. Consistent with the way in which they have been derived, the new estimates are, strictly, bounds only for the class of multi-scale, nonlinear composites consisting of two well-ordered, isotropic phases that are distributed with prescribed H-measure at each stage in the incremental process. However, given the facts that the H-measure of the sequential microstructures is conserved (so that the final microstructures can be shown to have the same H-measure), and that H-measures are insensitive to length scales, it is conjectured

  13. Construction of Optimal-Path Maps for Homogeneous-Cost-Region Path-Planning Problems

    Science.gov (United States)

    1989-09-01

    of Artificial Inteligence , 9%,4. 24. Kirkpatrick, S., Gelatt Jr., C. D., and Vecchi, M. P., "Optinization by Sinmulated Ani- nealing", Science, Vol...studied in depth by researchers in such fields as artificial intelligence, robot;cs, and computa- tional geometry. Most methods require homogeneous...the results of the research. 10 U. L SLEVANT RESEARCH A. APPLICABLE CONCEPTS FROM ARTIFICIAL INTELLIGENCE 1. Search Methods One of the central

  14. Homogenization of the lipid profile values.

    Science.gov (United States)

    Pedro-Botet, Juan; Rodríguez-Padial, Luis; Brotons, Carlos; Esteban-Salán, Margarita; García-Lerín, Aurora; Pintó, Xavier; Lekuona, Iñaki; Ordóñez-Llanos, Jordi

    Analytical reports from the clinical laboratory are essential to guide clinicians about what lipid profile values should be considered altered and, therefore, require intervention. Unfortunately, there is a great heterogeneity in the lipid values reported as "normal, desirable, recommended or referenced" by clinical laboratories. This can difficult clinical decisions and be a barrier to achieve the therapeutic goals for cardiovascular prevention. A recent international recommendation has added a new heterogeneity factor for the interpretation of lipid profile, such as the possibility of measuring it without previous fasting. All this justifies the need to develop a document that adapts the existing knowledge to the clinical practice of our health system. In this regard, professionals from different scientific societies involved in the measurement and use of lipid profile data have developed this document to establish recommendations that facilitate their homogenization. Copyright © 2017. Publicado por Elsevier España, S.L.U.

  15. The structure and homogeneity of Psalm 32

    Directory of Open Access Journals (Sweden)

    J. Henk Potgieter

    2014-11-01

    Full Text Available Psalm 32 is widely regarded as a psalm of thanksgiving with elements of wisdom poetry intermingled into it. The wisdom elements are variously explained as having been present from the beginning, or as having been added to a foundational composition. Such views of the Gattung have had a decisive influence on the interpretation of the psalm. This article argues, on the basis of a structural analysis, that Psalm 32 should be understood as a homogeneous wisdom composition. The parallel and inverse structure of its two stanzas demonstrate that the aim of its author was to encourage the upright to foster an open, intimate relationship with Yahweh in which transgressions are confessed and Yahweh’s benevolent guidance on the way of life is wisely accepted.

  16. Precipitation of plutonium oxalate from homogeneous solutions

    International Nuclear Information System (INIS)

    Rao, V.K.; Pius, I.C.; Subbarao, M.; Chinnusamy, A.; Natarajan, P.R.

    1986-01-01

    A method for the precipitation of plutonium(IV) oxalate from homogeneous solutions using diethyl oxalate is reported. The precipitate obtained is crystalline and easily filterable with yields in the range of 92-98% for precipitations involving a few mg to g quantities of plutonium. Decontamination factors for common impurities such as U(VI), Am(III) and Fe(III) were determined. TGA and chemical analysis of the compound indicate its composition as Pu(Csub(2)Osub(4))sub(2).6Hsub(2)O. Data are obtained on the solubility of the oxalate in nitric acid and in mixtures of nitric acid and oxalic acid of varying concentrations. Green PuOsub(2) obtained by calcination of the oxalate has specifications within the recommended values for trace foreign substances such as chlorine, fluorine, carbon and nitrogen. (author)

  17. Homogenization in thermoelasticity: application to composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Peyroux, R [Lab. de Mecanique et Genie Civil, Univ. Montpellier 2, 34 Montpellier (France); Licht, C [Lab. de Mecanique et Genie Civil, Univ. Montpellier 2, 34 Montpellier (France)

    1993-11-01

    One of the obstacles to the industrial use of metal matrix composite materials is the damage they rapidly undergo when they are subjected to cyclic thermal loadings; local thermal stresses of high level can develop, sometimes nearby or over the elastic limit, due to the mismatch of elastic and thermal coefficients between the fibers and the matrix. For the same reasons, early cracks can appear in composites like ceramic-ceramic. Therefore, we investigate the linear thermoelastic behaviour of heterogeneous materials, taking account of the isentropic coupling term in the heat conduction equation. In the case of periodic materials, recent results, using the homogenization theory, allowed us to describe macroscopic and microscopic behaviours of such materials. This paper is concerned with the numerical simulation of this problem by a finite element method, using a multiscale approach. (orig.).

  18. Modelling of an homogeneous equilibrium mixture model

    International Nuclear Information System (INIS)

    Bernard-Champmartin, A.; Poujade, O.; Mathiaud, J.; Mathiaud, J.; Ghidaglia, J.M.

    2014-01-01

    We present here a model for two phase flows which is simpler than the 6-equations models (with two densities, two velocities, two temperatures) but more accurate than the standard mixture models with 4 equations (with two densities, one velocity and one temperature). We are interested in the case when the two-phases have been interacting long enough for the drag force to be small but still not negligible. The so-called Homogeneous Equilibrium Mixture Model (HEM) that we present is dealing with both mixture and relative quantities, allowing in particular to follow both a mixture velocity and a relative velocity. This relative velocity is not tracked by a conservation law but by a closure law (drift relation), whose expression is related to the drag force terms of the two-phase flow. After the derivation of the model, a stability analysis and numerical experiments are presented. (authors)

  19. On Implementing a Homogeneous Interior-Point Algorithm for Nonsymmetric Conic Optimization

    DEFF Research Database (Denmark)

    Skajaa, Anders; Jørgensen, John Bagterp; Hansen, Per Christian

    Based on earlier work by Nesterov, an implementation of a homogeneous infeasible-start interior-point algorithm for solving nonsymmetric conic optimization problems is presented. Starting each iteration from (the vicinity of) the central path, the method computes (nearly) primal-dual symmetric...... approximate tangent directions followed by a purely primal centering procedure to locate the next central primal-dual point. Features of the algorithm include that it makes use only of the primal barrier function, that it is able to detect infeasibilities in the problem and that no phase-I method is needed...

  20. Homogeneous wave turbulence driven by tidal flows

    Science.gov (United States)

    Favier, B.; Le Reun, T.; Barker, A.; Le Bars, M.

    2017-12-01

    When a moon orbits around a planet, the rotation of the induced tidal bulge drives a homogeneous, periodic, large-scale flow. The combination of such an excitation with the rotating motion of the planet has been shown to drive parametric resonance of a pair of inertial waves in a mechanism called the elliptical instability. Geophysical fluid layers can also be stratified: this is the case for instance of the Earth's oceans and, as suggested by several studies, of the upper part of the Earth's liquid Outer Core. We thus investigate the stability of a rotating and stratified layer undergoing tidal distortion in the limit where either rotation or stratification is dominant. We show that the periodic tidal flow drives a parametric subharmonic resonance of inertial (resp. internal) waves in the rotating (resp. stratified) case. The instability saturates into a wave turbulence pervading the whole fluid layer. In such a state, the instability mechanism conveys the tidal energy from the large scale tidal flow to the resonant modes, which then feed a succession of triadic resonances also generating small spatial scales. In the rotating case, we observe a kinetic energy spectrum with a k-2 slope for which the Coriolis force is dominant at all spatial scales. In the stratified case, where the timescale separation is increased between the tidal excitation and the Brunt-Väisälä frequencies, the temporal spectrum decays with a ω-2 power law up to the cut-off frequency beyond which waves do not exist. This result is reminiscent of the Garrett and Munk spectrum measured in the oceans and theoretically described as a manifestation of internal wave turbulence. In addition to revealing an instability driving homogeneous turbulence in geophysical fluid layers, our approach is also an efficient numerical tool to investigate the possibly universal properties of wave turbulence in a geophysical context.

  1. Conformally compactified homogeneous spaces (Possible Observable Consequences)

    International Nuclear Information System (INIS)

    Budinich, P.

    1995-01-01

    Some arguments based on the possible spontaneous violation of the Cosmological Principles (represented by the observed large-scale structures of galaxies), the Cartan-geometry of simple spinors and on the Fock-formulation of hydrogen-atom wave-equation in momentum-space, are presented in favour of the hypothesis that space-time and momentum-space should be both conformally compactified and represented by the two four-dimensional homogeneous spaces of the conformal group, both isomorphic to (S 3 X S 1 )/Z 2 and correlated by conformal inversion. Within this framework, the possible common origin for the S0(4) symmetry underlying the geometrical structure of the Universe, of Kepler orbits and of the H-atom is discussed. On of the consequences of the proposed hypothesis could be that any quantum field theory should be naturally free from both infrared and ultraviolet divergences. But then physical spaces defined as those where physical phenomena may be best described, could be different from those homogeneous spaces. A simple, exactly soluble, toy model, valid for a two-dimensional space-time is presented where the conjecture conformally compactified space-time and momentum-space are both isomorphic to (S 1 X S 1 )/Z 2 , while the physical spaces are two finite lattice which are dual since Fourier transforms, represented by finite, discrete, sums may be well defined on them. Furthermore, a q-deformed SU q (1,1) may be represented on them if q is a root of unity. (author). 22 refs, 3 figs

  2. Value distribution of meromorphic solutions of homogeneous and non-homogeneous complex linear differential-difference equations

    Directory of Open Access Journals (Sweden)

    Luo Li-Qin

    2016-01-01

    Full Text Available In this paper, we investigate the value distribution of meromorphic solutions of homogeneous and non-homogeneous complex linear differential-difference equations, and obtain the results on the relations between the order of the solutions and the convergence exponents of the zeros, poles, a-points and small function value points of the solutions, which show the relations in the case of non-homogeneous equations are sharper than the ones in the case of homogeneous equations.

  3. Genetic homogeneity among Ugandan isolates of Xanthomonas ...

    African Journals Online (AJOL)

    Seven random primers were used because of their ability to amplify reproducible and reliable fingerprints generated between 6 - 12 amplicons each from the Xcm isolates obtained from central core of pseudostems, peduncles, fruit peelings, sap, nectar, insects' bodies and bacterial oozes. Regardless of the source and ...

  4. Dissolution test for homogeneity of mixed oxide fuel pellets

    International Nuclear Information System (INIS)

    Lerch, R.E.

    1979-08-01

    Experiments were performed to determine the relationship between fuel pellet homogeneity and pellet dissolubility. Although, in general, the amount of pellet residue decreased with increased homogeneity, as measured by the pellet figure of merit, the relationship was not absolute. Thus, all pellets with high figure of merit (excellent homogeneity) do not necessarily dissolve completely and all samples that dissolve completely do not necessarily have excellent homogeneity. It was therefore concluded that pellet dissolubility measurements could not be substituted for figure of merit determinations as a measurement of pellet homogeneity. 8 figures, 3 tables

  5. Assembly homogenization techniques for light water reactor analysis

    International Nuclear Information System (INIS)

    Smith, K.S.

    1986-01-01

    Recent progress in development and application of advanced assembly homogenization methods for light water reactor analysis is reviewed. Practical difficulties arising from conventional flux-weighting approximations are discussed and numerical examples given. The mathematical foundations for homogenization methods are outlined. Two methods, Equivalence Theory and Generalized Equivalence Theory which are theoretically capable of eliminating homogenization error are reviewed. Practical means of obtaining approximate homogenized parameters are presented and numerical examples are used to contrast the two methods. Applications of these techniques to PWR baffle/reflector homogenization and BWR bundle homogenization are discussed. Nodal solutions to realistic reactor problems are compared to fine-mesh PDQ calculations, and the accuracy of the advanced homogenization methods is established. Remaining problem areas are investigated, and directions for future research are suggested. (author)

  6. Homogeneous deuterium exchange using rhenium and platinum chloride catalysts

    International Nuclear Information System (INIS)

    Fawdry, R.M.

    1979-01-01

    Previous studies of homogeneous hydrogen isotope exchange are mostly confined to one catalyst, the tetrachloroplatinite salt. Recent reports have indicated that chloride salts of iridium and rhodium may also be homogeneous exchange catalysts similar to the tetrachloroplatinite, but with much lower activities. Exchange by these homogeneous catalysts is frequently accompanied by metal precipitation with the termination of homogeneous exchange, particularly in the case of alkane exchange. The studies presented in this thesis describe two different approaches to overcome this limitation of homogeneous hydrogen isotope exchange catalysts. The first approach was to improve the stability of an existing homogeneous catalyst and the second was to develop a new homogeneous exchange catalyst which is free of the instability limitation

  7. On the decay of homogeneous isotropic turbulence

    Science.gov (United States)

    Skrbek, L.; Stalp, Steven R.

    2000-08-01

    Decaying homogeneous, isotropic turbulence is investigated using a phenomenological model based on the three-dimensional turbulent energy spectra. We generalize the approach first used by Comte-Bellot and Corrsin [J. Fluid Mech. 25, 657 (1966)] and revised by Saffman [J. Fluid Mech. 27, 581 (1967); Phys. Fluids 10, 1349 (1967)]. At small wave numbers we assume the spectral energy is proportional to the wave number to an arbitrary power. The specific case of power 2, which follows from the Saffman invariant, is discussed in detail and is later shown to best describe experimental data. For the spectral energy density in the inertial range we apply both the Kolmogorov -5/3 law, E(k)=Cɛ2/3k-5/3, and the refined Kolmogorov law by taking into account intermittency. We show that intermittency affects the energy decay mainly by shifting the position of the virtual origin rather than altering the power law of the energy decay. Additionally, the spectrum is naturally truncated due to the size of the wind tunnel test section, as eddies larger than the physical size of the system cannot exist. We discuss effects associated with the energy-containing length scale saturating at the size of the test section and predict a change in the power law decay of both energy and vorticity. To incorporate viscous corrections to the model, we truncate the spectrum at an effective Kolmogorov wave number kη=γ(ɛ/v3)1/4, where γ is a dimensionless parameter of order unity. We show that as the turbulence decays, viscous corrections gradually become more important and a simple power law can no longer describe the decay. We discuss the final period of decay within the framework of our model, and show that care must be taken to distinguish between the final period of decay and the change of the character of decay due to the saturation of the energy containing length scale. The model is applied to a number of experiments on decaying turbulence. These include the downstream decay of turbulence in

  8. Homogeneous Thorium Fuel Cycles in Candu Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, B.; Dyck, G.R.; Edwards, G.W.R.; Magill, M. [Chalk River Laboratories, Atomic Energy of Canada Limited (Canada)

    2009-06-15

    The CANDU{sup R} reactor has an unsurpassed degree of fuel-cycle flexibility, as a consequence of its fuel-channel design, excellent neutron economy, on-power refueling, and simple fuel bundle [1]. These features facilitate the introduction and full exploitation of thorium fuel cycles in Candu reactors in an evolutionary fashion. Because thorium itself does not contain a fissile isotope, neutrons must be provided by adding a fissile material, either within or outside of the thorium-based fuel. Those same Candu features that provide fuel-cycle flexibility also make possible many thorium fuel-cycle options. Various thorium fuel cycles can be categorized by the type and geometry of the added fissile material. The simplest of these fuel cycles are based on homogeneous thorium fuel designs, where the fissile material is mixed uniformly with the fertile thorium. These fuel cycles can be competitive in resource utilization with the best uranium-based fuel cycles, while building up a 'mine' of U-233 in the spent fuel, for possible recycle in thermal reactors. When U-233 is recycled from the spent fuel, thorium-based fuel cycles in Candu reactors can provide substantial improvements in the efficiency of energy production from existing fissile resources. The fissile component driving the initial fuel could be enriched uranium, plutonium, or uranium-233. Many different thorium fuel cycle options have been studied at AECL [2,3]. This paper presents the results of recent homogeneous thorium fuel cycle calculations using plutonium and enriched uranium as driver fuels, with and without U-233 recycle. High and low burnup cases have been investigated for both the once-through and U-233 recycle cases. CANDU{sup R} is a registered trademark of Atomic Energy of Canada Limited (AECL). 1. Boczar, P.G. 'Candu Fuel-Cycle Vision', Presented at IAEA Technical Committee Meeting on 'Fuel Cycle Options for LWRs and HWRs', 1998 April 28 - May 01, also Atomic Energy

  9. Persymmetric Adaptive Detectors of Subspace Signals in Homogeneous and Partially Homogeneous Clutter

    Directory of Open Access Journals (Sweden)

    Ding Hao

    2015-08-01

    Full Text Available In the field of adaptive radar detection, an effective strategy to improve the detection performance is to exploit the structural information of the covariance matrix, especially in the case of insufficient reference cells. Thus, in this study, the problem of detecting multidimensional subspace signals is discussed by considering the persymmetric structure of the clutter covariance matrix, which implies that the covariance matrix is persymmetric about its cross diagonal. Persymmetric adaptive detectors are derived on the basis of the one-step principle as well as the two-step Generalized Likelihood Ratio Test (GLRT in homogeneous and partially homogeneous clutter. The proposed detectors consider the structural information of the covariance matrix at the design stage. Simulation results suggest performance improvement compared with existing detectors when reference cells are insufficient. Moreover, the detection performance is assessed with respect to the effects of the covariance matrix, signal subspace dimension, and mismatched performance of signal subspace as well as signal fluctuations.

  10. Dynamic contact angle cycling homogenizes heterogeneous surfaces.

    Science.gov (United States)

    Belibel, R; Barbaud, C; Mora, L

    2016-12-01

    In order to reduce restenosis, the necessity to develop the appropriate coating material of metallic stent is a challenge for biomedicine and scientific research over the past decade. Therefore, biodegradable copolymers of poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) were prepared in order to develop a new coating exhibiting different custom groups in its side chain and being able to carry a drug. This material will be in direct contact with cells and blood. It consists of carboxylic acid and hexylic groups used for hydrophilic and hydrophobic character, respectively. The study of this material wettability and dynamic surface properties is of importance due to the influence of the chemistry and the potential motility of these chemical groups on cell adhesion and polymer kinetic hydrolysis. Cassie theory was used for the theoretical correction of contact angles of these chemical heterogeneous surfaces coatings. Dynamic Surface Analysis was used as practical homogenizer of chemical heterogeneous surfaces by cycling during many cycles in water. In this work, we confirmed that, unlike receding contact angle, advancing contact angle is influenced by the difference of only 10% of acidic groups (%A) in side-chain of polymers. It linearly decreases with increasing acidity percentage. Hysteresis (H) is also a sensitive parameter which is discussed in this paper. Finally, we conclude that cycling provides real information, thus avoiding theoretical Cassie correction. H(10)is the most sensible parameter to %A. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Theoretical studies of homogeneous catalysts mimicking nitrogenase.

    Science.gov (United States)

    Sgrignani, Jacopo; Franco, Duvan; Magistrato, Alessandra

    2011-01-10

    The conversion of molecular nitrogen to ammonia is a key biological and chemical process and represents one of the most challenging topics in chemistry and biology. In Nature the Mo-containing nitrogenase enzymes perform nitrogen 'fixation' via an iron molybdenum cofactor (FeMo-co) under ambient conditions. In contrast, industrially, the Haber-Bosch process reduces molecular nitrogen and hydrogen to ammonia with a heterogeneous iron catalyst under drastic conditions of temperature and pressure. This process accounts for the production of millions of tons of nitrogen compounds used for agricultural and industrial purposes, but the high temperature and pressure required result in a large energy loss, leading to several economic and environmental issues. During the last 40 years many attempts have been made to synthesize simple homogeneous catalysts that can activate dinitrogen under the same mild conditions of the nitrogenase enzymes. Several compounds, almost all containing transition metals, have been shown to bind and activate N₂ to various degrees. However, to date Mo(N₂)(HIPTN)₃N with (HIPTN)₃N= hexaisopropyl-terphenyl-triamidoamine is the only compound performing this process catalytically. In this review we describe how Density Functional Theory calculations have been of help in elucidating the reaction mechanisms of the inorganic compounds that activate or fix N₂. These studies provided important insights that rationalize and complement the experimental findings about the reaction mechanisms of known catalysts, predicting the reactivity of new potential catalysts and helping in tailoring new efficient catalytic compounds.

  12. Theoretical Studies of Homogeneous Catalysts Mimicking Nitrogenase

    Directory of Open Access Journals (Sweden)

    Alessandra Magistrato

    2011-01-01

    Full Text Available The conversion of molecular nitrogen to ammonia is a key biological and chemical process and represents one of the most challenging topics in chemistry and biology. In Nature the Mo-containing nitrogenase enzymes perform nitrogen ‘fixation’ via an iron molybdenum cofactor (FeMo-co under ambient conditions. In contrast, industrially, the Haber-Bosch process reduces molecular nitrogen and hydrogen to ammonia with a heterogeneous iron catalyst under drastic conditions of temperature and pressure. This process accounts for the production of millions of tons of nitrogen compounds used for agricultural and industrial purposes, but the high temperature and pressure required result in a large energy loss, leading to several economic and environmental issues. During the last 40 years many attempts have been made to synthesize simple homogeneous catalysts that can activate dinitrogen under the same mild conditions of the nitrogenase enzymes. Several compounds, almost all containing transition metals, have been shown to bind and activate N2 to various degrees. However, to date Mo(N2(HIPTN3N with (HIPTN3N= hexaisopropyl-terphenyl-triamidoamine is the only compound performing this process catalytically. In this review we describe how Density Functional Theory calculations have been of help in elucidating the reaction mechanisms of the inorganic compounds that activate or fix N2. These studies provided important insights that rationalize and complement the experimental findings about the reaction mechanisms of known catalysts, predicting the reactivity of new potential catalysts and helping in tailoring new efficient catalytic compounds.

  13. Elastic metamaterials and dynamic homogenization: a review

    Directory of Open Access Journals (Sweden)

    Ankit Srivastava

    2015-01-01

    Full Text Available In this paper, we review the recent advances which have taken place in the understanding and applications of acoustic/elastic metamaterials. Metamaterials are artificially created composite materials which exhibit unusual properties that are not found in nature. We begin with presenting arguments from discrete systems which support the case for the existence of unusual material properties such as tensorial and/or negative density. The arguments are then extended to elastic continuums through coherent averaging principles. The resulting coupled and nonlocal homogenized relations, called the Willis relations, are presented as the natural description of inhomogeneous elastodynamics. They are specialized to Bloch waves propagating in periodic composites and we show that the Willis properties display the unusual behavior which is often required in metamaterial applications such as the Veselago lens. We finally present the recent advances in the area of transformation elastodynamics, charting its inspirations from transformation optics, clarifying its particular challenges, and identifying its connection with the constitutive relations of the Willis and the Cosserat types.

  14. Homogenization models for 2-D grid structures

    Science.gov (United States)

    Banks, H. T.; Cioranescu, D.; Rebnord, D. A.

    1992-01-01

    In the past several years, we have pursued efforts related to the development of accurate models for the dynamics of flexible structures made of composite materials. Rather than viewing periodicity and sparseness as obstacles to be overcome, we exploit them to our advantage. We consider a variational problem on a domain that has large, periodically distributed holes. Using homogenization techniques we show that the solution to this problem is in some topology 'close' to the solution of a similar problem that holds on a much simpler domain. We study the behavior of the solution of the variational problem as the holes increase in number, but decrease in size in such a way that the total amount of material remains constant. The result is an equation that is in general more complex, but with a domain that is simply connected rather than perforated. We study the limit of the solution as the amount of material goes to zero. This second limit will, in most cases, retrieve much of the simplicity that was lost in the first limit without sacrificing the simplicity of the domain. Finally, we show that these results can be applied to the case of a vibrating Love-Kirchhoff plate with Kelvin-Voigt damping. We rely heavily on earlier results of (Du), (CS) for the static, undamped Love-Kirchhoff equation. Our efforts here result in a modification of those results to include both time dependence and Kelvin-Voigt damping.

  15. Homogeneous cosmology with aggressively expanding civilizations

    International Nuclear Information System (INIS)

    Jay Olson, S

    2015-01-01

    In the context of a homogeneous Universe, we note that the appearance of aggressively expanding advanced life is geometrically similar to the process of nucleation and bubble growth in a first-order cosmological phase transition. We exploit this similarity to describe the dynamics of life saturating the Universe on a cosmic scale, adapting the phase transition model to incorporate probability distributions of expansion and resource consumption strategies. Through a series of numerical solutions spanning several orders of magnitude in the input assumption parameters, the resulting cosmological model is used to address basic questions related to the intergalactic spreading of life, dealing with issues such as timescales, observability, competition between strategies, and first-mover advantage. Finally, we examine physical effects on the Universe itself, such as reheating and the backreaction on the evolution of the scale factor, if such life is able to control and convert a significant fraction of the available pressureless matter into radiation. We conclude that the existence of life, if certain advanced technologies are practical, could have a significant influence on the future large-scale evolution of the Universe. (paper)

  16. Numerical computation of homogeneous slope stability.

    Science.gov (United States)

    Xiao, Shuangshuang; Li, Kemin; Ding, Xiaohua; Liu, Tong

    2015-01-01

    To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS) to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM) and particle swarm optimization algorithm (PSO) to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759) were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS).

  17. Numerical Computation of Homogeneous Slope Stability

    Directory of Open Access Journals (Sweden)

    Shuangshuang Xiao

    2015-01-01

    Full Text Available To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM and particle swarm optimization algorithm (PSO to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759 were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS.

  18. Thermal neutron diffusion parameters in homogeneous mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Drozdowicz, K.; Krynicka, E. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    A physical background is presented for a computer program which calculates the thermal neutron diffusion parameters for homogeneous mixtures of any compounds. The macroscopic absorption, scattering and transport cross section of the mixture are defined which are generally function of the incident neutron energy. The energy-averaged neutron parameters are available when these energy dependences and the thermal neutron energy distribution are assumed. Then the averaged diffusion coefficient and the pulsed thermal neutron parameters (the absorption rare and the diffusion constant) are also defined. The absorption cross section is described by the 1/v law and deviations from this behaviour are considered. The scattering cross section can be assumed as being almost constant in the thermal neutron region (which results from the free gas model). Serious deviations are observed for hydrogen atoms bound in molecules and a special study in the paper is devoted to this problem. A certain effective scattering cross section is found in this case on a base of individual exact data for a few hydrogenous media. Approximations assumed for the average cosine of the scattering angle are also discussed. The macroscopic parameters calculated are averaged over the Maxwellian energy distribution for the thermal neutron flux. An information on the input data for the computer program is included. (author). 10 refs, 4 figs, 5 tabs.

  19. Lagrangian statistics in compressible isotropic homogeneous turbulence

    Science.gov (United States)

    Yang, Yantao; Wang, Jianchun; Shi, Yipeng; Chen, Shiyi

    2011-11-01

    In this work we conducted the Direct Numerical Simulation (DNS) of a forced compressible isotropic homogeneous turbulence and investigated the flow statistics from the Lagrangian point of view, namely the statistics is computed following the passive tracers trajectories. The numerical method combined the Eulerian field solver which was developed by Wang et al. (2010, J. Comp. Phys., 229, 5257-5279), and a Lagrangian module for tracking the tracers and recording the data. The Lagrangian probability density functions (p.d.f.'s) have then been calculated for both kinetic and thermodynamic quantities. In order to isolate the shearing part from the compressing part of the flow, we employed the Helmholtz decomposition to decompose the flow field (mainly the velocity field) into the solenoidal and compressive parts. The solenoidal part was compared with the incompressible case, while the compressibility effect showed up in the compressive part. The Lagrangian structure functions and cross-correlation between various quantities will also be discussed. This work was supported in part by the China's Turbulence Program under Grant No.2009CB724101.

  20. Forming homogeneous clusters for differential risk information

    International Nuclear Information System (INIS)

    Maardberg, B.

    1996-01-01

    Latent risk situations are always present in society. General information on these risk situations is supposed to be received differently by different groups of people in the population. In the aftermath of specific accidents different groups presumably have need of specific information about how to act to survive, to avoid injuries, to find more information, to obtain facts about the accidents etc. As targets for information these different groups could be defined in different ways. The conventional way is to divide the population according to demographic variables, such as age, sex, occupation etc. Another way would be to structure the population according to dependent variables measured in different studies. They may concern risk perception, emotional reactions, specific technical knowledge of the accidents, and belief in the information sources. One procedure for forming such groupings of people into homogeneous clusters would be by statistical clustering methods on dependent variables. Examples of such clustering procedures are presented and discussed. Data are from a Norwegian study on the perception of radiation from nuclear accidents and other radiation sources. Speculations are made on different risk information strategies. Elements of a research programme are proposed. (author)

  1. Homogeneous purely buoyancy driven turbulent flow

    Science.gov (United States)

    Arakeri, Jaywant; Cholemari, Murali; Pawar, Shashikant

    2010-11-01

    An unstable density difference across a long vertical tube open at both ends leads to convection that is axially homogeneous with a linear density gradient. We report results from such tube convection experiments, with driving density caused by salt concentration difference or temperature difference. At high enough Rayleigh numbers (Ra) the convection is turbulent with zero mean flow and zero mean Reynolds shear stresses; thus turbulent production is purely by buoyancy. We observe different regimes of turbulent convection. At very high Ra the Nusselt number scales as the square root of the Rayleigh number, giving the so-called "ultimate regime" of convection predicted for Rayleigh-Benard convection in limit of infinite Ra. Turbulent convection at intermediate Ra, the Nusselt number scales as Ra^0.3. In both regimes, the flux and the Taylor scale Reynolds number are more than order of magnitude larger than those obtained in Rayleigh-Benard convection. Absence of a mean flow makes this an ideal flow to study shear free turbulence near a wall.

  2. Thermal neutron diffusion parameters in homogeneous mixtures

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Krynicka, E.

    1995-01-01

    A physical background is presented for a computer program which calculates the thermal neutron diffusion parameters for homogeneous mixtures of any compounds. The macroscopic absorption, scattering and transport cross section of the mixture are defined which are generally function of the incident neutron energy. The energy-averaged neutron parameters are available when these energy dependences and the thermal neutron energy distribution are assumed. Then the averaged diffusion coefficient and the pulsed thermal neutron parameters (the absorption rare and the diffusion constant) are also defined. The absorption cross section is described by the 1/v law and deviations from this behaviour are considered. The scattering cross section can be assumed as being almost constant in the thermal neutron region (which results from the free gas model). Serious deviations are observed for hydrogen atoms bound in molecules and a special study in the paper is devoted to this problem. A certain effective scattering cross section is found in this case on a base of individual exact data for a few hydrogenous media. Approximations assumed for the average cosine of the scattering angle are also discussed. The macroscopic parameters calculated are averaged over the Maxwellian energy distribution for the thermal neutron flux. An information on the input data for the computer program is included. (author). 10 refs, 4 figs, 5 tabs

  3. Generalized quantum theory of recollapsing homogeneous cosmologies

    International Nuclear Information System (INIS)

    Craig, David; Hartle, James B.

    2004-01-01

    A sum-over-histories generalized quantum theory is developed for homogeneous minisuperspace type A Bianchi cosmological models, focusing on the particular example of the classically recollapsing Bianchi type-IX universe. The decoherence functional for such universes is exhibited. We show how the probabilities of decoherent sets of alternative, coarse-grained histories of these model universes can be calculated. We consider in particular the probabilities for classical evolution defined by a suitable coarse graining. For a restricted class of initial conditions and coarse grainings we exhibit the approximate decoherence of alternative histories in which the universe behaves classically and those in which it does not. For these situations we show that the probability is near unity for the universe to recontract classically if it expands classically. We also determine the relative probabilities of quasiclassical trajectories for initial states of WKB form, recovering for such states a precise form of the familiar heuristic 'J·dΣ' rule of quantum cosmology, as well as a generalization of this rule to generic initial states

  4. Radiation statistics in homogeneous isotropic turbulence

    International Nuclear Information System (INIS)

    Da Silva, C B; Coelho, P J; Malico, I

    2009-01-01

    An analysis of turbulence-radiation interaction (TRI) in statistically stationary (forced) homogeneous and isotropic turbulence is presented. A direct numerical simulation code was used to generate instantaneous turbulent scalar fields, and the radiative transfer equation (RTE) was solved to provide statistical data relevant in TRI. The radiation intensity is non-Gaussian and is not spatially correlated with any of the other turbulence or radiation quantities. Its power spectrum exhibits a power-law region with a slope steeper than the classical -5/3 law. The moments of the radiation intensity, Planck-mean and incident-mean absorption coefficients, and emission and absorption TRI correlations are calculated. The influence of the optical thickness of the medium, mean and variance of the temperature and variance of the molar fraction of the absorbing species is studied. Predictions obtained from the time-averaged RTE are also included. It was found that while turbulence yields an increase of the mean blackbody radiation intensity, it causes a decrease of the time-averaged Planck-mean absorption coefficient. The absorption coefficient self-correlation is small in comparison with the temperature self-correlation, and the role of TRI in radiative emission is more important than in radiative absorption. The absorption coefficient-radiation intensity correlation is small, which supports the optically thin fluctuation approximation, and justifies the good predictions often achieved using the time-averaged RTE.

  5. Radiation statistics in homogeneous isotropic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, C B; Coelho, P J [Mechanical Engineering Department, IDMEC/LAETA, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Malico, I [Physics Department, University of Evora, Rua Romao Ramalho, 59, 7000-671 Evora (Portugal)], E-mail: carlos.silva@ist.utl.pt, E-mail: imbm@uevora.pt, E-mail: pedro.coelho@ist.utl.pt

    2009-09-15

    An analysis of turbulence-radiation interaction (TRI) in statistically stationary (forced) homogeneous and isotropic turbulence is presented. A direct numerical simulation code was used to generate instantaneous turbulent scalar fields, and the radiative transfer equation (RTE) was solved to provide statistical data relevant in TRI. The radiation intensity is non-Gaussian and is not spatially correlated with any of the other turbulence or radiation quantities. Its power spectrum exhibits a power-law region with a slope steeper than the classical -5/3 law. The moments of the radiation intensity, Planck-mean and incident-mean absorption coefficients, and emission and absorption TRI correlations are calculated. The influence of the optical thickness of the medium, mean and variance of the temperature and variance of the molar fraction of the absorbing species is studied. Predictions obtained from the time-averaged RTE are also included. It was found that while turbulence yields an increase of the mean blackbody radiation intensity, it causes a decrease of the time-averaged Planck-mean absorption coefficient. The absorption coefficient self-correlation is small in comparison with the temperature self-correlation, and the role of TRI in radiative emission is more important than in radiative absorption. The absorption coefficient-radiation intensity correlation is small, which supports the optically thin fluctuation approximation, and justifies the good predictions often achieved using the time-averaged RTE.

  6. Ceria powders by homogeneous precipitation technique

    International Nuclear Information System (INIS)

    Ramanathan, S.; Roy, S.K.

    2003-01-01

    Formation of precursors for ceria by two homogeneous precipitation reactions - (cerium chloride + urea at 95 degC - called reaction A and cerium chloride + hexamethylenetetramine at 85 degC - called reaction B) - has been studied. The variation of size of the colloidal particles formed and the zeta potential of the suspensions with progress of reactions exhibited similar trends for both the precipitation processes. Particle size increased from 100 to 300 nm with increasing temperature and extent of reaction. The zeta potential was found to decrease with increasing extent of precipitation in the pH range of 5 to 7. Filtration and drying led to agglomeration of the fine particles in case of the precursor from reaction B. The as-formed precursors were crystalline - a basic carbonate in case of reaction A and hydrous oxide in case of reaction B. It was found that nano-crystalline ceria powders (average crystallite size -10 nm) formed above 400 degC from both these precursors. The agglomerate size (D50) of the precursors and ceria powders formed after calcination at 600 degC varied from 0.7 to 3 μm. Increasing calcination temperature up to 800 degC, increased the crystallite size (50 nm). The zeta potential variation with pH and concentration of an anionic dispersant (Calgon) for the ceria powders formed was studied to determine the ideal conditions for suspension stability. It was found to be maximum (i.e., the suspensions stable) in the pH range of 3 to 4 or Calgon concentration of 0.01 to 0.1 weight percent. (author)

  7. A Modified Homogeneous Balance Method and Its Applications

    International Nuclear Information System (INIS)

    Liu Chunping

    2011-01-01

    A modified homogeneous balance method is proposed by improving some key steps in the homogeneous balance method. Bilinear equations of some nonlinear evolution equations are derived by using the modified homogeneous balance method. Generalized Boussinesq equation, KP equation, and mKdV equation are chosen as examples to illustrate our method. This approach is also applicable to a large variety of nonlinear evolution equations. (general)

  8. Economical preparation of extremely homogeneous nuclear accelerator targets

    International Nuclear Information System (INIS)

    Maier, H.J.

    1983-01-01

    Techniques for target preparation with a minimum consumption of isotopic material are described. The rotating substrate method, which generates extremely homogeneous targets, is discussed in some detail

  9. Structural changes in heat resisting high nickel alloys during homogenization

    International Nuclear Information System (INIS)

    Kleshchev, A.S.; Korneeva, N.N.; Yurina, O.M.; Guzej, L.S.

    1981-01-01

    Effect of homogenization on the structure and technological plasticity of the KhN73MBTYu and KhN62BMKTYu alloys during treatment with pressure is investigated taking into account peculiarities if the phase composition. It is shown that homogenization of the KhN73MBTYu and KhN62BMKTYu alloys increases the technological plasticity. Homogenization efficiency is conditioned by the change of the grain boundaries and carbide morphology as well as by homogeneous distribution of the large γ'-phase [ru

  10. Sewage sludge solubilization by high-pressure homogenization.

    Science.gov (United States)

    Zhang, Yuxuan; Zhang, Panyue; Guo, Jianbin; Ma, Weifang; Fang, Wei; Ma, Boqiang; Xu, Xiangzhe

    2013-01-01

    The behavior of sludge solubilization using high-pressure homogenization (HPH) treatment was examined by investigating the sludge solid reduction and organics solubilization. The sludge volatile suspended solids (VSS) decreased from 10.58 to 6.67 g/L for the sludge sample with a total solids content (TS) of 1.49% after HPH treatment at a homogenization pressure of 80 MPa with four homogenization cycles; total suspended solids (TSS) correspondingly decreased from 14.26 to 9.91 g/L. About 86.15% of the TSS reduction was attributed to the VSS reduction. The increase of homogenization pressure from 20 to 80 MPa or homogenization cycle number from 1 to 4 was favorable to the sludge organics solubilization, and the protein and polysaccharide solubilization linearly increased with the soluble chemical oxygen demand (SCOD) solubilization. More proteins were solubilized than polysaccharides. The linear relationship between SCOD solubilization and VSS reduction had no significant change under different homogenization pressures, homogenization cycles and sludge solid contents. The SCOD of 1.65 g/L was solubilized for the VSS reduction of 1.00 g/L for the three experimental sludge samples with a TS of 1.00, 1.49 and 2.48% under all HPH operating conditions. The energy efficiency results showed that the HPH treatment at a homogenization pressure of 30 MPa with a single homogenization cycle for the sludge sample with a TS of 2.48% was the most energy efficient.

  11. A non-asymptotic homogenization theory for periodic electromagnetic structures.

    Science.gov (United States)

    Tsukerman, Igor; Markel, Vadim A

    2014-08-08

    Homogenization of electromagnetic periodic composites is treated as a two-scale problem and solved by approximating the fields on both scales with eigenmodes that satisfy Maxwell's equations and boundary conditions as accurately as possible. Built into this homogenization methodology is an error indicator whose value characterizes the accuracy of homogenization. The proposed theory allows one to define not only bulk, but also position-dependent material parameters (e.g. in proximity to a physical boundary) and to quantify the trade-off between the accuracy of homogenization and its range of applicability to various illumination conditions.

  12. Mechanized syringe homogenization of human and animal tissues.

    Science.gov (United States)

    Kurien, Biji T; Porter, Andrew C; Patel, Nisha C; Kurono, Sadamu; Matsumoto, Hiroyuki; Scofield, R Hal

    2004-06-01

    Tissue homogenization is a prerequisite to any fractionation schedule. A plethora of hands-on methods are available to homogenize tissues. Here we report a mechanized method for homogenizing animal and human tissues rapidly and easily. The Bio-Mixer 1200 (manufactured by Innovative Products, Inc., Oklahoma City, OK) utilizes the back-and-forth movement of two motor-driven disposable syringes, connected to each other through a three-way stopcock, to homogenize animal or human tissue. Using this method, we were able to homogenize human or mouse tissues (brain, liver, heart, and salivary glands) in 5 min. From sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and a matrix-assisted laser desorption/ionization time-of-flight mass spectrometric enzyme assay for prolidase, we have found that the homogenates obtained were as good or even better than that obtained used a manual glass-on-Teflon (DuPont, Wilmington, DE) homogenization protocol (all-glass tube and Teflon pestle). Use of the Bio-Mixer 1200 to homogenize animal or human tissue precludes the need to stay in the cold room as is the case with the other hands-on homogenization methods available, in addition to freeing up time for other experiments.

  13. Cross section homogenization analysis for a simplified Candu reactor

    International Nuclear Information System (INIS)

    Pounders, Justin; Rahnema, Farzad; Mosher, Scott; Serghiuta, Dumitru; Turinsky, Paul; Sarsour, Hisham

    2008-01-01

    The effect of using zero current (infinite medium) boundary conditions to generate bundle homogenized cross sections for a stylized half-core Candu reactor problem is examined. Homogenized cross section from infinite medium lattice calculations are compared with cross sections homogenized using the exact flux from the reference core environment. The impact of these cross section differences is quantified by generating nodal diffusion theory solutions with both sets of cross sections. It is shown that the infinite medium spatial approximation is not negligible, and that ignoring the impact of the heterogeneous core environment on cross section homogenization leads to increased errors, particularly near control elements and the core periphery. (authors)

  14. Pi overlapping ring systems contained in a homogeneous assay: a novel homogeneous assay for antigens

    Science.gov (United States)

    Kidwell, David A.

    1993-05-01

    A novel immunoassay, Pi overlapping ring systems contained in a homogeneous assay (PORSCHA), is described. This assay relies upon the change in fluorescent spectral properties that pyrene and its derivatives show with varying concentration. Because antibodies and other biomolecules can bind two molecules simultaneously, they can change the local concentration of the molecules that they bind. This concentration change may be detected spectrally as a change in the fluorescence emission wavelength of an appropriately labeled biomolecule. Several tests of PORSCHA have been performed which demonstrate this principle. For example: with streptavidin as the binding biomolecule and a biotin labeled pyrene derivative, the production of the excimer emitting at 470 nm is observed. Without the streptavidin present, only the monomer emitting at 378 and 390 nm is observed. The ratio of monomer to excimer provides the concentration of unlabeled biotin in the sample. Approximately 1 ng/mL of biotin may be detected with this system using a 50 (mu) l sample (2 X 10-16 moles biotin). The principles behind PORSCHA, the results with the streptavidin/biotin system are discussed and extensions of the PORSCHA concept to antibodies as the binding partner and DNA in homogeneous assays are suggested.

  15. On integral representation, relaxation and homogenization for unbounded functionals

    International Nuclear Information System (INIS)

    Carbone, L.; De Arcangelis, R.

    1997-01-01

    A theory of integral representation, relaxation and homogenization for some types of variational functionals taking extended real values and possibly being not finite also on large classes of regular functions is presented. Some applications to gradient constrained relaxation and homogenization problems are given

  16. Non-linear waves in heterogeneous elastic rods via homogenization

    KAUST Repository

    Quezada de Luna, Manuel

    2012-03-01

    We consider the propagation of a planar loop on a heterogeneous elastic rod with a periodic microstructure consisting of two alternating homogeneous regions with different material properties. The analysis is carried out using a second-order homogenization theory based on a multiple scale asymptotic expansion. © 2011 Elsevier Ltd. All rights reserved.

  17. Is it possible to homogenize resonant chiral metamaterials ?

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, Christoph; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is very important as it makes possible description in terms of effective parameters. In this contribution we consider the homogenization of chiral metamaterials. We show that for some metamaterials there is an optimal meta-atom size which depends on the coupling...

  18. Large-scale Homogenization of Bulk Materials in Mammoth Silos

    NARCIS (Netherlands)

    Schott, D.L.

    2004-01-01

    This doctoral thesis concerns the large-scale homogenization of bulk materials in mammoth silos. The objective of this research was to determine the best stacking and reclaiming method for homogenization in mammoth silos. For this purpose a simulation program was developed to estimate the

  19. Homogeneous Buchberger algorithms and Sullivant's computational commutative algebra challenge

    DEFF Research Database (Denmark)

    Lauritzen, Niels

    2005-01-01

    We give a variant of the homogeneous Buchberger algorithm for positively graded lattice ideals. Using this algorithm we solve the Sullivant computational commutative algebra challenge.......We give a variant of the homogeneous Buchberger algorithm for positively graded lattice ideals. Using this algorithm we solve the Sullivant computational commutative algebra challenge....

  20. MCNPX simulation of proton dose distribution in homogeneous and CT phantoms

    International Nuclear Information System (INIS)

    Lee, C.C.; Lee, Y.J.; Tung, C.J.; Cheng, H.W.; Chao, T.C.

    2014-01-01

    A dose simulation system was constructed based on the MCNPX Monte Carlo package to simulate proton dose distribution in homogeneous and CT phantoms. Conversion from Hounsfield unit of a patient CT image set to material information necessary for Monte Carlo simulation is based on Schneider's approach. In order to validate this simulation system, inter-comparison of depth dose distributions among those obtained from the MCNPX, GEANT4 and FLUKA codes for a 160 MeV monoenergetic proton beam incident normally on the surface of a homogeneous water phantom was performed. For dose validation within the CT phantom, direct comparison with measurement is infeasible. Instead, this study took the approach to indirectly compare the 50% ranges (R 50% ) along the central axis by our system to the NIST CSDA ranges for beams with 160 and 115 MeV energies. Comparison result within the homogeneous phantom shows good agreement. Differences of simulated R 50% among the three codes are less than 1 mm. For results within the CT phantom, the MCNPX simulated water equivalent R eq,50% are compatible with the CSDA water equivalent ranges from the NIST database with differences of 0.7 and 4.1 mm for 160 and 115 MeV beams, respectively. - Highlights: ► Proton dose simulation based on the MCNPX 2.6.0 in homogeneous and CT phantoms. ► CT number (HU) conversion to electron density based on Schneider's approach. ► Good agreement among MCNPX, GEANT4 and FLUKA codes in a homogeneous water phantom. ► Water equivalent R 50 in CT phantoms are compatible to those of NIST database

  1. Verification of homogenization in fast critical assembly analyses

    International Nuclear Information System (INIS)

    Chiba, Go

    2006-01-01

    In the present paper, homogenization procedures for fast critical assembly analyses are investigated. Errors caused by homogenizations are evaluated by the exact perturbation theory. In order to obtain reference solutions, three-dimensional plate-wise transport calculations are performed. It is found that the angular neutron flux along plate boundaries has a significant peak in the fission source energy range. To treat this angular dependence accurately, the double-Gaussian Chebyshev angular quadrature set with S 24 is applied. It is shown that the difference between the heterogeneous leakage theory and the homogeneous theory is negligible, and that transport cross sections homogenized with neutron flux significantly underestimate neutron leakage. The error in criticality caused by a homogenization is estimated at about 0.1%Δk/kk' in a small fast critical assembly. In addition, the neutron leakage is overestimated by both leakage theories when sodium plates in fuel lattices are voided. (author)

  2. Cosmic homogeneity: a spectroscopic and model-independent measurement

    Science.gov (United States)

    Gonçalves, R. S.; Carvalho, G. C.; Bengaly, C. A. P., Jr.; Carvalho, J. C.; Bernui, A.; Alcaniz, J. S.; Maartens, R.

    2018-03-01

    Cosmology relies on the Cosmological Principle, i.e. the hypothesis that the Universe is homogeneous and isotropic on large scales. This implies in particular that the counts of galaxies should approach a homogeneous scaling with volume at sufficiently large scales. Testing homogeneity is crucial to obtain a correct interpretation of the physical assumptions underlying the current cosmic acceleration and structure formation of the Universe. In this letter, we use the Baryon Oscillation Spectroscopic Survey to make the first spectroscopic and model-independent measurements of the angular homogeneity scale θh. Applying four statistical estimators, we show that the angular distribution of galaxies in the range 0.46 < z < 0.62 is consistent with homogeneity at large scales, and that θh varies with redshift, indicating a smoother Universe in the past. These results are in agreement with the foundations of the standard cosmological paradigm.

  3. Turbulent Diffusion in Non-Homogeneous Environments

    Science.gov (United States)

    Diez, M.; Redondo, J. M.; Mahjoub, O. B.; Sekula, E.

    2012-04-01

    Many experimental studies have been devoted to the understanding of non-homogeneous turbulent dynamics. Activity in this area intensified when the basic Kolmogorov self-similar theory was extended to two-dimensional or quasi 2D turbulent flows such as those appearing in the environment, that seem to control mixing [1,2]. The statistical description and the dynamics of these geophysical flows depend strongly on the distribution of long lived organized (coherent) structures. These flows show a complex topology, but may be subdivided in terms of strongly elliptical domains (high vorticity regions), strong hyperbolic domains (deformation cells with high energy condensations) and the background turbulent field of moderate elliptic and hyperbolic characteristics. It is of fundamental importance to investigate the different influence of these topological diverse regions. Relevant geometrical information of different areas is also given by the maximum fractal dimension, which is related to the energy spectrum of the flow. Using all the available information it is possible to investigate the spatial variability of the horizontal eddy diffusivity K(x,y). This information would be very important when trying to model numerically the behaviour in time of the oil spills [3,4] There is a strong dependence of horizontal eddy diffusivities with the Wave Reynolds number as well as with the wind stress measured as the friction velocity from wind profiles measured at the coastline. Natural sea surface oily slicks of diverse origin (plankton, algae or natural emissions and seeps of oil) form complicated structures in the sea surface due to the effects of both multiscale turbulence and Langmuir circulation. It is then possible to use the topological and scaling analysis to discriminate the different physical sea surface processes. We can relate higher orden moments of the Lagrangian velocity to effective diffusivity in spite of the need to calibrate the different regions determining the

  4. Central Chile

    Science.gov (United States)

    2002-01-01

    The beginning of spring in central Chile looked like this to SeaWiFS. The snow-covered Andes mark the country's eastern border, and phytoplankton blooms and river sediment plumes fill the waters off its west coast. A large eddy due west of Concepcion is highlighted by the phytoplankton it contains.

  5. Afrique Centrale

    African Journals Online (AJOL)

    PR BOKO

    (Afrique Centrale) : peuplement de protozoaires ciliés et macro invertébrés ... Le lac d'Obili est un écosystème aquatique situé en plein cœur de Yaoundé en ...... électrique des eaux est assez stable, autour de 200 ; ce qui suppose que la ...

  6. Pattern and process of biotic homogenization in the New Pangaea.

    Science.gov (United States)

    Baiser, Benjamin; Olden, Julian D; Record, Sydne; Lockwood, Julie L; McKinney, Michael L

    2012-12-07

    Human activities have reorganized the earth's biota resulting in spatially disparate locales becoming more or less similar in species composition over time through the processes of biotic homogenization and biotic differentiation, respectively. Despite mounting evidence suggesting that this process may be widespread in both aquatic and terrestrial systems, past studies have predominantly focused on single taxonomic groups at a single spatial scale. Furthermore, change in pairwise similarity is itself dependent on two distinct processes, spatial turnover in species composition and changes in gradients of species richness. Most past research has failed to disentangle the effect of these two mechanisms on homogenization patterns. Here, we use recent statistical advances and collate a global database of homogenization studies (20 studies, 50 datasets) to provide the first global investigation of the homogenization process across major faunal and floral groups and elucidate the relative role of changes in species richness and turnover. We found evidence of homogenization (change in similarity ranging from -0.02 to 0.09) across nearly all taxonomic groups, spatial extent and grain sizes. Partitioning of change in pairwise similarity shows that overall change in community similarity is driven by changes in species richness. Our results show that biotic homogenization is truly a global phenomenon and put into question many of the ecological mechanisms invoked in previous studies to explain patterns of homogenization.

  7. Peripheral nerve magnetic stimulation: influence of tissue non-homogeneity

    Directory of Open Access Journals (Sweden)

    Papazov Sava P

    2003-12-01

    Full Text Available Abstract Background Peripheral nerves are situated in a highly non-homogeneous environment, including muscles, bones, blood vessels, etc. Time-varying magnetic field stimulation of the median and ulnar nerves in the carpal region is studied, with special consideration of the influence of non-homogeneities. Methods A detailed three-dimensional finite element model (FEM of the anatomy of the wrist region was built to assess the induced currents distribution by external magnetic stimulation. The electromagnetic field distribution in the non-homogeneous domain was defined as an internal Dirichlet problem using the finite element method. The boundary conditions were obtained by analysis of the vector potential field excited by external current-driven coils. Results The results include evaluation and graphical representation of the induced current field distribution at various stimulation coil positions. Comparative study for the real non-homogeneous structure with anisotropic conductivities of the tissues and a mock homogeneous media is also presented. The possibility of achieving selective stimulation of either of the two nerves is assessed. Conclusion The model developed could be useful in theoretical prediction of the current distribution in the nerves during diagnostic stimulation and therapeutic procedures involving electromagnetic excitation. The errors in applying homogeneous domain modeling rather than real non-homogeneous biological structures are demonstrated. The practical implications of the applied approach are valid for any arbitrary weakly conductive medium.

  8. At-tank Low-Activity Feed Homogeneity Analysis Verification

    International Nuclear Information System (INIS)

    DOUGLAS, J.G.

    2000-01-01

    This report evaluates the merit of selecting sodium, aluminum, and cesium-137 as analytes to indicate homogeneity of soluble species in low-activity waste (LAW) feed and recommends possible analytes and physical properties that could serve as rapid screening indicators for LAW feed homogeneity. The three analytes are adequate as screening indicators of soluble species homogeneity for tank waste when a mixing pump is used to thoroughly mix the waste in the waste feed staging tank and when all dissolved species are present at concentrations well below their solubility limits. If either of these conditions is violated, then the three indicators may not be sufficiently chemically representative of other waste constituents to reliably indicate homogeneity in the feed supernatant. Additional homogeneity indicators that should be considered are anions such as fluoride, sulfate, and phosphate, total organic carbon/total inorganic carbon, and total alpha to estimate the transuranic species. Physical property measurements such as gamma profiling, conductivity, specific gravity, and total suspended solids are recommended as possible at-tank methods for indicating homogeneity. Indicators of LAW feed homogeneity are needed to reduce the U.S. Department of Energy, Office of River Protection (ORP) Program's contractual risk by assuring that the waste feed is within the contractual composition and can be supplied to the waste treatment plant within the schedule requirements

  9. Europa central

    Directory of Open Access Journals (Sweden)

    Karel BARTOSEK

    2010-02-01

    Full Text Available La investigación francesa continúa interesándose por Europa Central. Desde luego, hay límites a este interés en el ambiente general de mi nueva patria: en la ignorancia, producto del largo desinterés de Francia por este espacio después de la Segunda Guerra Mundial, y en el comportamiento y la reflexión de la clase política y de los medios de comunicación (una anécdota para ilustrar este ambiente: durante la preparación de nuestro coloquio «Refugiados e inmigrantes de Europa Central en el movimiento antifascista y la Resistencia en Francia, 1933-1945», celebrado en París en octubre de 1986, el problema de la definición fue planteado concreta y «prácticamente». ¡Y hubo entonces un historiador eminente, para quién Alemania no formaría parte de Europa Central!.

  10. An iterative homogenization technique that preserves assembly core exchanges

    International Nuclear Information System (INIS)

    Mondot, Ph.; Sanchez, R.

    2003-01-01

    A new interactive homogenization procedure for reactor core calculations is proposed that requires iterative transport assembly and diffusion core calculations. At each iteration the transport solution of every assembly type is used to produce homogenized cross sections for the core calculation. The converged solution gives assembly fine multigroup transport fluxes that preserve macro-group assembly exchanges in the core. This homogenization avoids the periodic lattice-leakage model approximation and gives detailed assembly transport fluxes without need of an approximated flux reconstruction. Preliminary results are given for a one-dimensional core model. (authors)

  11. Hydrogen storage materials and method of making by dry homogenation

    Science.gov (United States)

    Jensen, Craig M.; Zidan, Ragaiy A.

    2002-01-01

    Dry homogenized metal hydrides, in particular aluminum hydride compounds, as a material for reversible hydrogen storage is provided. The reversible hydrogen storage material comprises a dry homogenized material having transition metal catalytic sites on a metal aluminum hydride compound, or mixtures of metal aluminum hydride compounds. A method of making such reversible hydrogen storage materials by dry doping is also provided and comprises the steps of dry homogenizing metal hydrides by mechanical mixing, such as be crushing or ball milling a powder, of a metal aluminum hydride with a transition metal catalyst. In another aspect of the invention, a method of powering a vehicle apparatus with the reversible hydrogen storage material is provided.

  12. Homogenization and structural topology optimization theory, practice and software

    CERN Document Server

    Hassani, Behrooz

    1999-01-01

    Structural topology optimization is a fast growing field that is finding numerous applications in automotive, aerospace and mechanical design processes. Homogenization is a mathematical theory with applications in several engineering problems that are governed by partial differential equations with rapidly oscillating coefficients Homogenization and Structural Topology Optimization brings the two concepts together and successfully bridges the previously overlooked gap between the mathematical theory and the practical implementation of the homogenization method. The book is presented in a unique self-teaching style that includes numerous illustrative examples, figures and detailed explanations of concepts. The text is divided into three parts which maintains the book's reader-friendly appeal.

  13. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation.

    Science.gov (United States)

    Wan, W J; Li, H; Zhou, T; Cao, J C

    2017-03-08

    Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification.

  14. Bridging heterogeneous and homogeneous catalysis concepts, strategies, and applications

    CERN Document Server

    Li, Can

    2014-01-01

    This unique handbook fills the gap in the market for an up-to-date work that links both homogeneous catalysis applied to organic reactions and catalytic reactions on surfaces of heterogeneous catalysts.

  15. Time travel in the homogeneous Som-Raychaudhuri Universe

    International Nuclear Information System (INIS)

    Paiva, F.M.; Reboucas, M.J.; Teixeira, A.F.F.

    1987-01-01

    Properties of the rotating Som-Raychaudhuri homogeneous space-time are investigated: time-like and null geodesics, causality features, horizons and invariant characterization. An integral representation of its five isometries is also discussed. (author) [pt

  16. [Methods for enzymatic determination of triglycerides in liver homogenates].

    Science.gov (United States)

    Höhn, H; Gartzke, J; Burck, D

    1987-10-01

    An enzymatic method is described for the determination of triacylglycerols in liver homogenate. In contrast to usual methods, higher reliability and selectivity are achieved by omitting the extraction step.

  17. A convenient procedure for magnetic field homogeneity evaluation

    International Nuclear Information System (INIS)

    Teles, J; Garrido, C E; Tannus, A

    2004-01-01

    In many areas of research that utilize magnetic fields in their studies, it is important to obtain fields with a spatial distribution as homogeneous as possible. A procedure usually utilized to evaluate and to optimize field homogeneity is the expansion of the measured field in spherical harmonic components. In addition to the methods proposed in the literature, we present a more convenient procedure for evaluation of field homogeneity inside a spherical volume. The procedure uses the orthogonality property of the spherical harmonics to find the field variance. It is shown that the total field variance is equal to the sum of the individual variances of each field component in the spherical harmonic expansion. Besides the advantages of the linear behaviour of the individual variances, there is the fact that the field variance and standard deviation are the best parameters to achieve global homogeneity field information

  18. Homogeneity Study of UO2 Pellet Density for Quality Control

    International Nuclear Information System (INIS)

    Moon, Je Seon; Park, Chang Je; Kang, Kwon Ho; Moon, Heung Soo; Song, Kee Chan

    2005-01-01

    A homogeneity study has been performed with various densities of UO 2 pellets as the work of a quality control. The densities of the UO 2 pellets are distributed randomly due to several factors such as the milling conditions and sintering environments, etc. After sintering, total fourteen bottles were chosen for UO 2 density and each bottle had three samples. With these bottles, the between-bottle and within-bottle homogeneity were investigated via the analysis of the variance (ANOVA). From the results of ANOVA, the calculated F-value is used to determine whether the distribution is accepted or rejected from the view of a homogeneity under a certain confidence level. All the homogeneity checks followed the International Standard Guide 35

  19. Tests for homogeneity for multiple 2 x 2 contingency tables

    International Nuclear Information System (INIS)

    Carr, D.B.

    1986-01-01

    Frequently data are described by 2 x 2 contingency tables. For example, each 2 x 2 table arises from two dichotomous classifications such as control/treated and respond/did not respond. Multiple 2 x 2 tables result from stratifying the observational units on the basis of other characteristics. For example, stratifying by sex produces separate 2 x 2 tables for males and females. From each table a measure of difference between the response rates for the control and the treated groups is computed. The researcher usually wants to know if the response-rate difference is zero for each table. If the tables are homogeneous, the researcher can generalize from a statement concerning an average to a statement concerning each table. If tables are not homogeneous, homogeneous subsets of the tables should be described separately. This paper presents tests for homogeneity and illustrates their use. 11 refs., 6 tabs

  20. Engineered CHO cells for production of diverse, homogeneous glycoproteins

    DEFF Research Database (Denmark)

    Yang, Zhang; Wang, Shengjun; Halim, Adnan

    2015-01-01

    Production of glycoprotein therapeutics in Chinese hamster ovary (CHO) cells is limited by the cells' generic capacity for N-glycosylation, and production of glycoproteins with desirable homogeneous glycoforms remains a challenge. We conducted a comprehensive knockout screen of glycosyltransferas...

  1. Homogenization of aligned “fuzzy fiber” composites

    KAUST Repository

    Chatzigeorgiou, George; Efendiev, Yalchin; Lagoudas, Dimitris C.

    2011-01-01

    The aim of this work is to study composites in which carbon fibers coated with radially aligned carbon nanotubes are embedded in a matrix. The effective properties of these composites are identified using the asymptotic expansion homogenization

  2. Jordan's algebra of a facially homogeneous autopolar cone

    International Nuclear Information System (INIS)

    Bellissard, Jean; Iochum, Bruno

    1979-01-01

    It is shown that a Jordan-Banach algebra with predual may be canonically associated with a facially homogeneous autopolar cone. This construction generalizes the case where a trace vector exists in the cone [fr

  3. Notes on a homogeneous reactor project; Idees sur un projet de reacteur homogene

    Energy Technology Data Exchange (ETDEWEB)

    Benveniste, J; Bernot, J; Eidelman, D; Grenon, M; Portes, L; Raspaud, G; Tachon, J; Vendryes, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Berthod, L; Cohen de Lara, G; Delachanal, M; Fontanet, P; Halbronn, G [Societe Grenobloise d' Etudes et d' Applications Hydrauliques, 38 (France)

    1958-07-01

    An attempt has been made to develop certain ideas concerning homogeneous reactors. The project under consideration is based on the simultaneous use of a suspension of uranium dispersed in heavy or light water and of boiling in the reactor for heat extraction. However, the studies of suspensions and of boiling are relatively independent and can also be developed for reactors of different types using one or the other. Our aim is a minimum investment in fissile material; for this we propose to extract the steam directly from the core and to make use of a cyclone to accelerate this extraction; a cyclone-type circulation creating a field of increasing tangential velocities of the fluid towards the axis causes the droplets of vapour to accelerate towards the axial vortex in which they are collected; the steam output is then evacuated to the external heat utilisation system, for example an exchanger of the condenser-boiler type. The input speed of water into the reactor being one of the important parameters in the running of the pile, a spiral supply input chamber is used, allowing this speed to be regulated in amount and direction. (author)Fren. [French] Nous nous sommes attaches a developper certaines idees relatives aux piles homogenes. Le projet que nous etudions est base sur l'emploi simultane d'une suspension contenant de l'uranium disperse dans l'eau legere ou lourde et de l'ebullition dans le reacteur pour l'extraction de chaleur. Neanmoins, les etudes de suspensions et d'ebullition sont relativement independantes et peuvent egalement etre developpees pour des reacteurs de type different utilisant l'une ou l'autre. Le but que nous cherchons a atteindre est un investissement minimum en matiere fissile; pour cela, nous proposons d'extraire directement la vapeur dans le coeur et de recourir a un dispositif cyclone pour accelerer cette extraction; une circulation type cyclone creant un champ de vitesses tangentielles du fluide croissantes veraxe a pour effet d

  4. central t

    Directory of Open Access Journals (Sweden)

    Manuel R. Piña Monarrez

    2007-01-01

    Full Text Available Dado que la Regresión Ridge (RR, es una estimación sesgada que parte de la solución de la regresión de Mínimos Cuadrados (MC, es vital establecer las condiciones para las que la distribución central t de Student que se utiliza en la prueba de hipótesis en MC, sea también aplicable a la regresión RR. La prueba de este importante resultado se presenta en este artículo.

  5. Homogenization of aligned “fuzzy fiber” composites

    KAUST Repository

    Chatzigeorgiou, George

    2011-09-01

    The aim of this work is to study composites in which carbon fibers coated with radially aligned carbon nanotubes are embedded in a matrix. The effective properties of these composites are identified using the asymptotic expansion homogenization method in two steps. Homogenization is performed in different coordinate systems, the cylindrical and the Cartesian, and a numerical example are presented. © 2011 Elsevier Ltd. All rights reserved.

  6. The Perron-Frobenius theorem for multi-homogeneous mappings

    OpenAIRE

    Gautier, Antoine; Tudisco, Francesco; Hein, Matthias

    2018-01-01

    The Perron-Frobenius theory for nonnegative matrices has been generalized to order-preserving homogeneous mappings on a cone and more recently to nonnegative multilinear forms. We unify both approaches by introducing the concept of order-preserving multi-homogeneous mappings, their associated nonlinear spectral problems and spectral radii. We show several Perron-Frobenius type results for these mappings addressing existence, uniqueness and maximality of nonnegative and positive eigenpairs. We...

  7. Homogeneity in Luxury Fashion Consumption: an Exploration of Arab Women

    OpenAIRE

    Marciniak, R.; Gad Mohsen, Marwa

    2014-01-01

    Consumer perceptions and consumer motivations are complex and whilst it is acknowledged within literature\\ud that heterogeneity exists, homogenous models dominate consumer behaviour research. The primary purpose of this\\ud paper is to explore the extent to which Arab women are a homogeneous group of consumers in regard to perceptions\\ud and motivations to consume luxury fashion goods. In particular, the paper seeks to present a critical review of luxury consumption frameworks. As part of the ...

  8. Matrix-dependent multigrid-homogenization for diffusion problems

    Energy Technology Data Exchange (ETDEWEB)

    Knapek, S. [Institut fuer Informatik tu Muenchen (Germany)

    1996-12-31

    We present a method to approximately determine the effective diffusion coefficient on the coarse scale level of problems with strongly varying or discontinuous diffusion coefficients. It is based on techniques used also in multigrid, like Dendy`s matrix-dependent prolongations and the construction of coarse grid operators by means of the Galerkin approximation. In numerical experiments, we compare our multigrid-homogenization method with homogenization, renormalization and averaging approaches.

  9. Central sleep apnea

    Science.gov (United States)

    Sleep apnea - central; Obesity - central sleep apnea; Cheyne-Stokes - central sleep apnea; Heart failure - central sleep apnea ... Central sleep apnea results when the brain temporarily stops sending signals to the muscles that control breathing. The condition ...

  10. Spray structure as generated under homogeneous flash boiling nucleation regime

    International Nuclear Information System (INIS)

    Levy, M.; Levy, Y.; Sher, E.

    2014-01-01

    We show the effect of the initial pressure and temperature on the spatial distribution of droplets size and their velocity profile inside a spray cloud that is generated by a flash boiling mechanism under homogeneous nucleation regime. We used TSI's Phase Doppler Particle Analyzer (PDPA) to characterize the spray. We conclude that the homogeneous nucleation process is strongly affected by the initial liquid temperature while the initial pressure has only a minor effect. The spray shape is not affected by temperature or pressure under homogeneous nucleation regime. We noted that the only visible effect is in the spray opacity. Finally, homogeneous nucleation may be easily achieved by using a simple atomizer construction, and thus is potentially suitable for fuel injection systems in combustors and engines. - Highlights: • We study the characteristics of a spray that is generated by a flash boiling process. • In this study, the flash boiling process occurs under homogeneous nucleation regime. • We used Phase Doppler Particle Analyzer (PDPA) to characterize the spray. • The SMD has been found to be strongly affected by the initial liquid temperature. • Homogeneous nucleation may be easily achieved by using a simple atomizer unit

  11. Applications of a systematic homogenization theory for nodal diffusion methods

    International Nuclear Information System (INIS)

    Zhang, Hong-bin; Dorning, J.J.

    1992-01-01

    The authors recently have developed a self-consistent and systematic lattice cell and fuel bundle homogenization theory based on a multiple spatial scales asymptotic expansion of the transport equation in the ratio of the mean free path to the reactor characteristics dimension for use with nodal diffusion methods. The mathematical development leads naturally to self-consistent analytical expressions for homogenized diffusion coefficients and cross sections and flux discontinuity factors to be used in nodal diffusion calculations. The expressions for the homogenized nuclear parameters that follow from the systematic homogenization theory (SHT) are different from those for the traditional flux and volume-weighted (FVW) parameters. The calculations summarized here show that the systematic homogenization theory developed recently for nodal diffusion methods yields accurate values for k eff and assembly powers even when compared with the results of a fine mesh transport calculation. Thus, it provides a practical alternative to equivalence theory and GET (Ref. 3) and to simplified equivalence theory, which requires auxiliary fine-mesh calculations for assemblies embedded in a typical environment to determine the discontinuity factors and the equivalent diffusion coefficient for a homogenized assembly

  12. Homogenization patterns of the world’s freshwater fish faunas

    Science.gov (United States)

    Villéger, Sébastien; Blanchet, Simon; Beauchard, Olivier; Oberdorff, Thierry; Brosse, Sébastien

    2011-01-01

    The world is currently undergoing an unprecedented decline in biodiversity, which is mainly attributable to human activities. For instance, nonnative species introduction, combined with the extirpation of native species, affects biodiversity patterns, notably by increasing the similarity among species assemblages. This biodiversity change, called taxonomic homogenization, has rarely been assessed at the world scale. Here, we fill this gap by assessing the current homogenization status of one of the most diverse vertebrate groups (i.e., freshwater fishes) at global and regional scales. We demonstrate that current homogenization of the freshwater fish faunas is still low at the world scale (0.5%) but reaches substantial levels (up to 10%) in some highly invaded river basins from the Nearctic and Palearctic realms. In these realms experiencing high changes, nonnative species introductions rather than native species extirpations drive taxonomic homogenization. Our results suggest that the “Homogocene era” is not yet the case for freshwater fish fauna at the worldwide scale. However, the distressingly high level of homogenization noted for some biogeographical realms stresses the need for further understanding of the ecological consequences of homogenization processes. PMID:22025692

  13. Homogenization patterns of the world's freshwater fish faunas.

    Science.gov (United States)

    Villéger, Sébastien; Blanchet, Simon; Beauchard, Olivier; Oberdorff, Thierry; Brosse, Sébastien

    2011-11-01

    The world is currently undergoing an unprecedented decline in biodiversity, which is mainly attributable to human activities. For instance, nonnative species introduction, combined with the extirpation of native species, affects biodiversity patterns, notably by increasing the similarity among species assemblages. This biodiversity change, called taxonomic homogenization, has rarely been assessed at the world scale. Here, we fill this gap by assessing the current homogenization status of one of the most diverse vertebrate groups (i.e., freshwater fishes) at global and regional scales. We demonstrate that current homogenization of the freshwater fish faunas is still low at the world scale (0.5%) but reaches substantial levels (up to 10%) in some highly invaded river basins from the Nearctic and Palearctic realms. In these realms experiencing high changes, nonnative species introductions rather than native species extirpations drive taxonomic homogenization. Our results suggest that the "Homogocene era" is not yet the case for freshwater fish fauna at the worldwide scale. However, the distressingly high level of homogenization noted for some biogeographical realms stresses the need for further understanding of the ecological consequences of homogenization processes.

  14. Homogenization models for thin rigid structured surfaces and films.

    Science.gov (United States)

    Marigo, Jean-Jacques; Maurel, Agnès

    2016-07-01

    A homogenization method for thin microstructured surfaces and films is presented. In both cases, sound hard materials are considered, associated with Neumann boundary conditions and the wave equation in the time domain is examined. For a structured surface, a boundary condition is obtained on an equivalent flat wall, which links the acoustic velocity to its normal and tangential derivatives (of the Myers type). For a structured film, jump conditions are obtained for the acoustic pressure and the normal velocity across an equivalent interface (of the Ventcels type). This interface homogenization is based on a matched asymptotic expansion technique, and differs slightly from the classical homogenization, which is known to fail for small structuration thicknesses. In order to get insight into what causes this failure, a two-step homogenization is proposed, mixing classical homogenization and matched asymptotic expansion. Results of the two homogenizations are analyzed in light of the associated elementary problems, which correspond to problems of fluid mechanics, namely, potential flows around rigid obstacles.

  15. Analytical solutions of time-fractional models for homogeneous Gardner equation and non-homogeneous differential equations

    Directory of Open Access Journals (Sweden)

    Olaniyi Samuel Iyiola

    2014-09-01

    Full Text Available In this paper, we obtain analytical solutions of homogeneous time-fractional Gardner equation and non-homogeneous time-fractional models (including Buck-master equation using q-Homotopy Analysis Method (q-HAM. Our work displays the elegant nature of the application of q-HAM not only to solve homogeneous non-linear fractional differential equations but also to solve the non-homogeneous fractional differential equations. The presence of the auxiliary parameter h helps in an effective way to obtain better approximation comparable to exact solutions. The fraction-factor in this method gives it an edge over other existing analytical methods for non-linear differential equations. Comparisons are made upon the existence of exact solutions to these models. The analysis shows that our analytical solutions converge very rapidly to the exact solutions.

  16. Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia.

    Science.gov (United States)

    Wang, Yanping; Zhang, Xiaoling; Guan, Qiaobing; Wan, Lihong; Yi, Yahui; Liu, Chun-Feng

    2015-01-01

    The pathophysiology of idiopathic trigeminal neuralgia (ITN) has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo) analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected). Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002). Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN.

  17. Toward whole-core neutron transport without spatial homogenization

    International Nuclear Information System (INIS)

    Lewis, E. E.

    2009-01-01

    Full text of publication follows: A long-term goal of computational reactor physics is the deterministic analysis of power reactor core neutronics without incurring significant discretization errors in the energy, spatial or angular variables. In principle, given large enough parallel configurations with unlimited CPU time and memory, this goal could be achieved using existing three-dimensional neutron transport codes. In practice, however, solving the Boltzmann equation for neutrons over the six-dimensional phase space is made intractable by the nature of neutron cross-sections and the complexity and size of power reactor cores. Tens of thousands of energy groups would be required for faithful cross section representation. Likewise, the numerous material interfaces present in power reactor lattices require exceedingly fine spatial mesh structures; these ubiquitous interfaces preclude effective implementation of adaptive grid, mesh-less methods and related techniques that have been applied so successfully in other areas of engineering science. These challenges notwithstanding, substantial progress continues in the pursuit for more robust deterministic methods for whole-core neutronics analysis. This paper examines the progress over roughly the last decade, emphasizing the space-angle variables and the quest to eliminate errors attributable to spatial homogenization. As prolog we briefly assess 1990's methods used in light water reactor analysis and review the lessons learned from the C5G7 benchmark exercises which were originated in 1999 to appraise the ability of transport codes to perform core calculations without homogenization. We proceed by examining progress over the last decade much of which falls into three areas. These may be broadly characterized as reduced homogenization, dynamic homogenization and planar-axial synthesis. In the first, homogenization in three-dimensional calculations is reduced from the fuel assembly to the pin-cell level. In the second

  18. Central hypothyroidism

    Directory of Open Access Journals (Sweden)

    Vishal Gupta

    2011-01-01

    Full Text Available Central hypothyroidism is defined as hypothyroidism due to insufficient stimulation by thyroid stimulating hormone (TSH of an otherwise normal thyroid gland. It has an estimated prevalence of approximately 1 in 80,000 to 1 in 120,000. It can be secondary hypothyroidism (pituitary or tertiary hypothyroidism (hypothalamus in origin. In children, it is usually caused by craniopharyngiomas or previous cranial irradiation for brain tumors or hematological malignancies. In adults, it is usually due to pituitary macroadenomas, pituitary surgeries or post-irradiation. Fatigue and peripheral edema are the most specific clinical features. Diagnosis is established by the presence of normal to low-normal TSH on the background of low-normal thyroid hormones, confirmed by the thyrotropin releasing hormone stimulation test. Therapy includes use of levothyroxine titrated to improvement in symptomology and keeping free T4 in the upper limit of normal reference range.

  19. Spatial homogenization method based on the inverse problem

    International Nuclear Information System (INIS)

    Tóta, Ádám; Makai, Mihály

    2015-01-01

    Highlights: • We derive a spatial homogenization method in slab and cylindrical geometries. • The fluxes and the currents on the boundary are preserved. • The reaction rates and the integral of the fluxes are preserved. • We present verification computations utilizing two- and four-energy groups. - Abstract: We present a method for deriving homogeneous multi-group cross sections to replace a heterogeneous region’s multi-group cross sections; providing that the fluxes, the currents on the external boundary, the reaction rates and the integral of the fluxes are preserved. We consider one-dimensional geometries: a symmetric slab and a homogeneous cylinder. Assuming that the boundary fluxes are given, two response matrices (RMs) can be defined concerning the current and the flux integral. The first one derives the boundary currents from the boundary fluxes, while the second one derives the flux integrals from the boundary fluxes. Further RMs can be defined that connects reaction rates to the boundary fluxes. Assuming that these matrices are known, we present formulae that reconstruct the multi-group diffusion cross-section matrix, the diffusion coefficients and the reaction cross sections in case of one-dimensional (1D) homogeneous regions. We apply these formulae to 1D heterogeneous regions and thus obtain a homogenization method. This method produces such an equivalent homogeneous material, that the fluxes and the currents on the external boundary, the reaction rates and the integral of the fluxes are preserved for any boundary fluxes. We carry out the exact derivations in 1D slab and cylindrical geometries. Verification computations for the presented homogenization method were performed using two- and four-group material cross sections, both in a slab and in a cylindrical geometry

  20. Land-use intensification causes multitrophic homogenization of grassland communities.

    Science.gov (United States)

    Gossner, Martin M; Lewinsohn, Thomas M; Kahl, Tiemo; Grassein, Fabrice; Boch, Steffen; Prati, Daniel; Birkhofer, Klaus; Renner, Swen C; Sikorski, Johannes; Wubet, Tesfaye; Arndt, Hartmut; Baumgartner, Vanessa; Blaser, Stefan; Blüthgen, Nico; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Jorge, Leonardo Ré; Jung, Kirsten; Keyel, Alexander C; Klein, Alexandra-Maria; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Müller, Jörg; Overmann, Jörg; Pašalić, Esther; Penone, Caterina; Perović, David J; Purschke, Oliver; Schall, Peter; Socher, Stephanie A; Sonnemann, Ilja; Tschapka, Marco; Tscharntke, Teja; Türke, Manfred; Venter, Paul Christiaan; Weiner, Christiane N; Werner, Michael; Wolters, Volkmar; Wurst, Susanne; Westphal, Catrin; Fischer, Markus; Weisser, Wolfgang W; Allan, Eric

    2016-12-08

    Land-use intensification is a major driver of biodiversity loss. Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in β-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (α)-diversity and neglected biodiversity loss at larger spatial scales. Studies addressing β-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above- and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in α-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on β-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in β-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local α-diversity in aboveground groups, whereas the α-diversity increased in belowground groups. Correlations between the β-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity

  1. Study of the characteristics of forced homogeneous turbulence using band-pass Fourier filtering

    Energy Technology Data Exchange (ETDEWEB)

    Kareem, Waleed Abdel [Suez Canal University, Suez (Egypt)

    2012-03-15

    Simulations of forced homogeneous isotropic turbulence with resolutions of 128{sup 3} and 256{sup 3} using the Lattice Boltzmann method are carried out. The multi-scale vortical structures are identified using the band-pass Fourier cutoff filtering. Three fields at each simulation are extracted and their characteristics are studied. The vortical structures are visualized using the Q-identification method. A new lattice segmentation scheme to identify the central axes of the vortical structures is introduced. The central points of each vortex are identified and they are connected using the direction cosines technique. Results show that the Q-spectrum of the fine scale field survives at low and high wave-numbers. However, the large and intermediate Q-spectra survives till wave-numbers less than or equal to twice the used velocity cutoff wave-numbers. It is found that the extracted central axes clearly resemble the corresponding vortical structures at each scale. Using the central axes scheme, the radii and lengths of the vortical structures at each scale are determined and compared. It is also found that the radii of the identified vortical structures at each scale in both simulations are of the order of several times the Kolmogorov microscales.

  2. Homogenization of Large-Scale Movement Models in Ecology

    Science.gov (United States)

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  3. Automatic Control of the Concrete Mixture Homogeneity in Cycling Mixers

    Science.gov (United States)

    Anatoly Fedorovich, Tikhonov; Drozdov, Anatoly

    2018-03-01

    The article describes the factors affecting the concrete mixture quality related to the moisture content of aggregates, since the effectiveness of the concrete mixture production is largely determined by the availability of quality management tools at all stages of the technological process. It is established that the unaccounted moisture of aggregates adversely affects the concrete mixture homogeneity and, accordingly, the strength of building structures. A new control method and the automatic control system of the concrete mixture homogeneity in the technological process of mixing components have been proposed, since the tasks of providing a concrete mixture are performed by the automatic control system of processing kneading-and-mixing machinery with operational automatic control of homogeneity. Theoretical underpinnings of the control of the mixture homogeneity are presented, which are related to a change in the frequency of vibrodynamic vibrations of the mixer body. The structure of the technical means of the automatic control system for regulating the supply of water is determined depending on the change in the concrete mixture homogeneity during the continuous mixing of components. The following technical means for establishing automatic control have been chosen: vibro-acoustic sensors, remote terminal units, electropneumatic control actuators, etc. To identify the quality indicator of automatic control, the system offers a structure flowchart with transfer functions that determine the ACS operation in transient dynamic mode.

  4. Higher-order asymptotic homogenization of periodic materials with low scale separation

    NARCIS (Netherlands)

    Ameen, M.M.; Peerlings, R.H.J.; Geers, M.G.D

    2016-01-01

    In this work, we investigate the limits of classical homogenization theories pertaining to homogenization of periodic linear elastic composite materials at low scale separations and demonstrate the effectiveness of higher-order periodic homogenization in alleviating this limitation. Classical

  5. Homogeneous nucleation in 4He: A corresponding-states analysis

    International Nuclear Information System (INIS)

    Sinha, D.N.; Semura, J.S.; Brodie, L.C.

    1982-01-01

    We report homogeneous-nucleation-temperature measurements in liquid 4 He over a bath-temperature range 2.31 4 He, in a region far from the critical point. A simple empirical form is presented for estimating the homogeneous nucleation temperatures for any liquid with a spherically symmetric interatomic potential. The 4 He data are compared with nucleation data for Ar, Kr, Xe, and H; theoretical predictions for 3 He are given in terms of reduced quantities. It is shown that the nucleation data for both quantum and classical liquids obey a quantum law of corresponding states (QCS). On the basis of this QCS analysis, predictions of homogeneous nucleation temperatures are made for hydrogen isotopes such as HD, DT, HT, and T 2

  6. Radiotracer application in determining changes in cement mix homogeneity

    International Nuclear Information System (INIS)

    Breda, M.

    1979-01-01

    A small amount of cement labelled with 24 Na is added to the concrete mix and the relative activity of the mix is measured using a scintillation detector in preset points at different time intervals of the mixing process. The detector picks up information from a volume of 10 to 15 litres. The values characterize the degree of homogeneity of the cement component in the mix. Mathematical statistics methods are used for assessing mixing or the homogeneity changes. The technique is quick and simple and is used to advantage in determining the effect of the duration and method of transport of the cement mix on its homogeneity, and in monitoring the mixing process and determining the minimum mixing time for all types of concrete mix. (M.S.)

  7. Homogeneous-heterogeneous reactions in curved channel with porous medium

    Science.gov (United States)

    Hayat, T.; Ayub, Sadia; Alsaedi, A.

    2018-06-01

    Purpose of the present investigation is to examine the peristaltic flow through porous medium in a curved conduit. Problem is modeled for incompressible electrically conducting Ellis fluid. Influence of porous medium is tackled via modified Darcy's law. The considered model utilizes homogeneous-heterogeneous reactions with equal diffusivities for reactant and autocatalysis. Constitutive equations are formulated in the presence of viscous dissipation. Channel walls are compliant in nature. Governing equations are modeled and simplified under the assumptions of small Reynolds number and large wavelength. Graphical results for velocity, temperature, heat transfer coefficient and homogeneous-heterogeneous reaction parameters are examined for the emerging parameters entering into the problem. Results reveal an activation in both homogenous-heterogenous reaction effect and heat transfer rate with increasing curvature of the channel.

  8. Cryogenic homogenization and sampling of heterogeneous multi-phase feedstock

    Science.gov (United States)

    Doyle, Glenn Michael; Ideker, Virgene Linda; Siegwarth, James David

    2002-01-01

    An apparatus and process for producing a homogeneous analytical sample from a heterogenous feedstock by: providing the mixed feedstock, reducing the temperature of the feedstock to a temperature below a critical temperature, reducing the size of the feedstock components, blending the reduced size feedstock to form a homogeneous mixture; and obtaining a representative sample of the homogeneous mixture. The size reduction and blending steps are performed at temperatures below the critical temperature in order to retain organic compounds in the form of solvents, oils, or liquids that may be adsorbed onto or absorbed into the solid components of the mixture, while also improving the efficiency of the size reduction. Preferably, the critical temperature is less than 77 K (-196.degree. C.). Further, with the process of this invention the representative sample may be maintained below the critical temperature until being analyzed.

  9. Pyroxene Homogenization and the Isotopic Systematics of Eucrites

    Science.gov (United States)

    Nyquist, L. E.; Bogard, D. D.

    1996-01-01

    The original Mg-Fe zoning of eucritic pyroxenes has in nearly all cases been partly homogenized, an observation that has been combined with other petrographic and compositional criteria to establish a scale of thermal "metamorphism" for eucrites. To evaluate hypotheses explaining development of conditions on the HED parent body (Vesta?) leading to pyroxene homogenization against their chronological implications, it is necessary to know whether pyroxene metamorphism was recorded in the isotopic systems. However, identifying the effects of the thermal metamorphism with specific effects in the isotopic systems has been difficult, due in part to a lack of correlated isotopic and mineralogical studies of the same eucrites. Furthermore, isotopic studies often place high demands on analytical capabilities, resulting in slow growth of the isotopic database. Additionally, some isotopic systems would not respond in a direct and sensitive way to pyroxene homogenization. Nevertheless, sufficient data exist to generalize some observations, and to identify directions of potentially fruitful investigations.

  10. Variable valve timing in a homogenous charge compression ignition engine

    Science.gov (United States)

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  11. Radiation Resistance and Gain of Homogeneous Ring Quasi-Array

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1954-01-01

    In a previous paper homogeneous ring quasi-arrays of tangential or radial dipoles were introduced, i.e. systems of dipoles arranged equidistantly along a circle, the dipoles being oriented in tangential or radial directions and carrying currents with the same amplitude, but with a phase that incr......In a previous paper homogeneous ring quasi-arrays of tangential or radial dipoles were introduced, i.e. systems of dipoles arranged equidistantly along a circle, the dipoles being oriented in tangential or radial directions and carrying currents with the same amplitude, but with a phase...... that increases uniformly along the circle. Such quasi-arrays are azimuthally omnidirectional, and the radiated field will be mainly horizontally polarized and concentrated around the plane of the circle. In this paper expressions are obtained for the radiation resistance and the gain of homogeneous ring quasi...

  12. Heterogenization of Homogeneous Catalysts: the Effect of the Support

    Energy Technology Data Exchange (ETDEWEB)

    Earl, W.L.; Ott, K.C.; Hall, K.A.; de Rege, F.M.; Morita, D.K.; Tumas, W.; Brown, G.H.; Broene, R.D.

    1999-06-29

    We have studied the influence of placing a soluble, homogeneous catalyst onto a solid support. We determined that such a 'heterogenized' homogeneous catalyst can have improved activity and selectivity for the asymmetric hydrogenation of enamides to amino acid derivatives. The route of heterogenization of RhDuPhos(COD){sup +} cations occurs via electrostatic interactions with anions that are capable of strong hydrogen bonding to silica surfaces. This is a novel approach to supported catalysis. Supported RhDuPhos(COD){sup +} is a recyclable, non-leaching catalyst in non-polar media. This is one of the few heterogenized catalysts that exhibits improved catalytic performance as compared to its homogeneous analog.

  13. Homogenization technique for strongly heterogeneous zones in research reactors

    International Nuclear Information System (INIS)

    Lee, J.T.; Lee, B.H.; Cho, N.Z.; Oh, S.K.

    1991-01-01

    This paper reports on an iterative homogenization method using transport theory in a one-dimensional cylindrical cell model developed to improve the homogenized cross sections fro strongly heterogeneous zones in research reactors. The flux-weighting homogenized cross sections are modified by a correction factor, the cell flux ratio under an albedo boundary condition. The albedo at the cell boundary is iteratively determined to reflect the geometry effects of the material properties of the adjacent cells. This method has been tested with a simplified core model of the Korea Multipurpose Research Reactor. The results demonstrate that the reaction rates of an off-center control shroud cell, the multiplication factor, and the power distribution of the reactor core are close to those of the fine-mesh heterogeneous transport model

  14. Soluble Molecularly Imprinted Nanorods for Homogeneous Molecular Recognition

    Directory of Open Access Journals (Sweden)

    Rongning Liang

    2018-03-01

    Full Text Available Nowadays, it is still difficult for molecularly imprinted polymers (MIPs to achieve homogeneous recognition since they cannot be easily dissolved in organic or aqueous phase. To address this issue, soluble molecularly imprinted nanorods have been synthesized by using soluble polyaniline doped with a functionalized organic protonic acid as the polymer matrix. By employing 1-naphthoic acid as a model, the proposed imprinted nanorods exhibit an excellent solubility and good homogeneous recognition ability. The imprinting factor for the soluble imprinted nanoroads is 6.8. The equilibrium dissociation constant and the apparent maximum number of the proposed imprinted nanorods are 248.5 μM and 22.1 μmol/g, respectively. We believe that such imprinted nanorods may provide an appealing substitute for natural receptors in homogeneous recognition related fields.

  15. Soluble Molecularly Imprinted Nanorods for Homogeneous Molecular Recognition

    Science.gov (United States)

    Liang, Rongning; Wang, Tiantian; Zhang, Huan; Yao, Ruiqing; Qin, Wei

    2018-03-01

    Nowadays, it is still difficult for molecularly imprinted polymer (MIPs) to achieve homogeneous recognition since they cannot be easily dissolved in organic or aqueous phase. To address this issue, soluble molecularly imprinted nanorods have been synthesized by using soluble polyaniline doped with a functionalized organic protonic acid as the polymer matrix. By employing 1-naphthoic acid as a model, the proposed imprinted nanorods exhibit an excellent solubility and good homogeneous recognition ability. The imprinting factor for the soluble imprinted nanoroads is 6.8. The equilibrium dissociation constant and the apparent maximum number of the proposed imprinted nanorods are 248.5 μM and 22.1 μmol/g, respectively. We believe that such imprinted nanorods may provide an appealing substitute for natural receptors in homogeneous recognition related fields.

  16. Homogeneous versus heterogeneous shielding modeling of spent-fuel casks

    International Nuclear Information System (INIS)

    Carbajo, J.J.; Lindner, C.N.

    1992-01-01

    The design of spent-fuel casks for storage and transport requires modeling the cask for criticality, shielding, thermal, and structural analyses. While some parts of the cask are homogeneous, other regions are heterogeneous with different materials intermixed. For simplicity, some of the heterogeneous regions may be modeled as homogeneous. This paper evaluates the effect of homogenizing some regions of a cask on calculating radiation dose rates outside the cask. The dose rate calculations were performed with the one-dimensional discrete ordinates shielding XSDRNPM code coupled with the XSDOSE code and with the three-dimensional QAD-CGGP code. Dose rates were calculated radially at the midplane of the cask at two locations, cask surface and 2.3 m from the radial surface. The last location corresponds to a point 2 m from the lateral sides of a transport railroad car

  17. Method of the characteristics for calculation of VVER without homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Suslov, I.R.; Komlev, O.G.; Novikova, N.N.; Zemskov, E.A.; Tormyshev, I.V.; Melnikov, K.G.; Sidorov, E.B. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    2005-07-01

    The first stage of the development of characteristics code MCCG3D for calculation of the VVER-type reactor without homogenization is presented. The parallel version of the code for MPI was developed and tested on cluster PC with LINUX-OS. Further development of the MCCG3D code for design-level calculations with full-scale space-distributed feedbacks is discussed. For validation of the MCCG3D code we use the critical assembly VENUS-2. The geometrical models with and without homogenization have been used. With both models the MCCG3D results agree well with the experimental power distribution and with results generated by the other codes, but model without homogenization provides better results. The perturbation theory for MCCG3D code is developed and implemented in the module KEFSFGG. The calculations with KEFSFGG are in good agreement with direct calculations. (authors)

  18. Does prescribed burning result in biotic homogenization of coastal heathlands?

    Science.gov (United States)

    Velle, Liv Guri; Nilsen, Liv Sigrid; Norderhaug, Ann; Vandvik, Vigdis

    2014-05-01

    Biotic homogenization due to replacement of native biodiversity by widespread generalist species has been demonstrated in a number of ecosystems and taxonomic groups worldwide, causing growing conservation concern. Human disturbance is a key driver of biotic homogenization, suggesting potential conservation challenges in seminatural ecosystems, where anthropogenic disturbances such as grazing and burning are necessary for maintaining ecological dynamics and functioning. We test whether prescribed burning results in biotic homogenization in the coastal heathlands of north-western Europe, a seminatural landscape where extensive grazing and burning has constituted the traditional land-use practice over the past 6000 years. We compare the beta-diversity before and after fire at three ecological scales: within local vegetation patches, between wet and dry heathland patches within landscapes, and along a 470 km bioclimatic gradient. Within local patches, we found no evidence of homogenization after fire; species richness increased, and the species that entered the burnt Calluna stands were not widespread specialists but native grasses and herbs characteristic of the heathland system. At the landscapes scale, we saw a weak homogenization as wet and dry heathland patches become more compositionally similar after fire. This was because of a decrease in habitat-specific species unique to either wet or dry habitats and postfire colonization by a set of heathland specialists that established in both habitat types. Along the bioclimatic gradient, species that increased after fire generally had more specific environmental requirements and narrower geographical distributions than the prefire flora, resulting in a biotic 'heterogenisation' after fire. Our study demonstrates that human disturbance does not necessarily cause biotic homogenization, but that continuation of traditional land-use practices can instead be crucial for the maintenance of the diversity and ecological

  19. Numerical computing of elastic homogenized coefficients for periodic fibrous tissue

    Directory of Open Access Journals (Sweden)

    Roman S.

    2009-06-01

    Full Text Available The homogenization theory in linear elasticity is applied to a periodic array of cylindrical inclusions in rectangular pattern extending to infinity in the inclusions axial direction, such that the deformation of tissue along this last direction is negligible. In the plane of deformation, the homogenization scheme is based on the average strain energy whereas in the third direction it is based on the average normal stress along this direction. Namely, these average quantities have to be the same on a Repeating Unit Cell (RUC of heterogeneous and homogenized media when using a special form of boundary conditions forming by a periodic part and an affine part of displacement. It exists an infinity of RUCs generating the considered array. The computing procedure is tested with different choices of RUC to control that the results of the homogenization process are independent of the kind of RUC we employ. Then, the dependence of the homogenized coefficients on the microstructure can be studied. For instance, a special anisotropy and the role of the inclusion volume are investigated. In the second part of this work, mechanical traction tests are simulated. We consider two kinds of loading, applying a density of force or imposing a displacement. We test five samples of periodic array containing one, four, sixteen, sixty-four and one hundred of RUCs. The evolution of mean stresses, strains and energy with the numbers of inclusions is studied. Evolutions depend on the kind of loading, but not their limits, which could be predicted by simulating traction test of the homogenized medium.

  20. Stochastic model of milk homogenization process using Markov's chain

    Directory of Open Access Journals (Sweden)

    A. A. Khvostov

    2016-01-01

    Full Text Available The process of development of a mathematical model of the process of homogenization of dairy products is considered in the work. The theory of Markov's chains was used in the development of the mathematical model, Markov's chain with discrete states and continuous parameter for which the homogenisation pressure is taken, being the basis for the model structure. Machine realization of the model is implemented in the medium of structural modeling MathWorks Simulink™. Identification of the model parameters was carried out by minimizing the standard deviation calculated from the experimental data for each fraction of dairy products fat phase. As the set of experimental data processing results of the micrographic images of fat globules of whole milk samples distribution which were subjected to homogenization at different pressures were used. Pattern Search method was used as optimization method with the Latin Hypercube search algorithm from Global Optimization Тoolbox library. The accuracy of calculations averaged over all fractions of 0.88% (the relative share of units, the maximum relative error was 3.7% with the homogenization pressure of 30 MPa, which may be due to the very abrupt change in properties from the original milk in the particle size distribution at the beginning of the homogenization process and the lack of experimental data at homogenization pressures of below the specified value. The mathematical model proposed allows to calculate the profile of volume and mass distribution of the fat phase (fat globules in the product, depending on the homogenization pressure and can be used in the laboratory and research of dairy products composition, as well as in the calculation, design and modeling of the process equipment of the dairy industry enterprises.

  1. A homogeneous cooling scheme investigation for high power slab laser

    Science.gov (United States)

    He, Jianguo; Lin, Weiran; Fan, Zhongwei; Chen, Yanzhong; Ge, Wenqi; Yu, Jin; Liu, Hao; Mo, Zeqiang; Fan, Lianwen; Jia, Dan

    2017-10-01

    The forced convective heat transfer with the advantages of reliability and durability is widely used in cooling the laser gain medium. However, a flow direction induced temperature gradient always appears. In this paper, a novel cooling configuration based on longitudinal forced convective heat transfer is presented. In comparison with two different types of configurations, it shows a more efficient heat transfer and more homogeneous temperature distribution. The investigation of the flow rate reveals that the higher flow rate the better cooling performance. Furthermore, the simulation results with 20 L/min flow rate shows an adequate temperature level and temperature homogeneity which keeps a lower hydrostatic pressure in the flow path.

  2. Early capillary flux homogenization in response to neural activation.

    Science.gov (United States)

    Lee, Jonghwan; Wu, Weicheng; Boas, David A

    2016-02-01

    This Brief Communication reports early homogenization of capillary network flow during somatosensory activation in the rat cerebral cortex. We used optical coherence tomography and statistical intensity variation analysis for tracing changes in the red blood cell flux over hundreds of capillaries nearly at the same time with 1-s resolution. We observed that while the mean capillary flux exhibited a typical increase during activation, the standard deviation of the capillary flux exhibited an early decrease that happened before the mean flux increase. This network-level data is consistent with the theoretical hypothesis that capillary flow homogenizes during activation to improve oxygen delivery. © The Author(s) 2015.

  3. Note on integrability of certain homogeneous Hamiltonian systems

    Energy Technology Data Exchange (ETDEWEB)

    Szumiński, Wojciech [Institute of Physics, University of Zielona Góra, Licealna 9, PL-65-407, Zielona Góra (Poland); Maciejewski, Andrzej J. [Institute of Astronomy, University of Zielona Góra, Licealna 9, PL-65-407, Zielona Góra (Poland); Przybylska, Maria, E-mail: M.Przybylska@if.uz.zgora.pl [Institute of Physics, University of Zielona Góra, Licealna 9, PL-65-407, Zielona Góra (Poland)

    2015-12-04

    In this paper we investigate a class of natural Hamiltonian systems with two degrees of freedom. The kinetic energy depends on coordinates but the system is homogeneous. Thanks to this property it admits, in a general case, a particular solution. Using this solution we derive necessary conditions for the integrability of such systems investigating differential Galois group of variational equations. - Highlights: • Necessary integrability conditions for some 2D homogeneous Hamilton systems are given. • Conditions are obtained analysing differential Galois group of variational equations. • New integrable and superintegrable systems are identified.

  4. How to determine composite material properties using numerical homogenization

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe

    2014-01-01

    Numerical homogenization is an efficient way to determine effective macroscopic properties, such as the elasticity tensor, of a periodic composite material. In this paper an educational description of the method is provided based on a short, self-contained Matlab implementation. It is shown how...... the basic code, which computes the effective elasticity tensor of a two material composite, where one material could be void, is easily extended to include more materials. Furthermore, extensions to homogenization of conductivity, thermal expansion, and fluid permeability are described in detail. The unit...

  5. Homogenization of long fiber reinforced composites including fiber bending effects

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2016-01-01

    This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows...... of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization...

  6. Preparation of homogeneous isotopic targets with rotating substrate

    International Nuclear Information System (INIS)

    Xu, G.J.; Zhao, Z.G.

    1993-01-01

    Isotopically enriched accelerator targets were prepared using the evaporation-condensation method from a resistance heating crucible. For high collection efficiency and good homogeneity the substrate was rotated at a vertical distance of 1.3 to 2.5 cm from the evaporation source. Measured collection efficiencies were 13 to 51 μg cm -2 mg -1 and homogeneity tests showed values close to the theoretically calculated ones for a point source. Targets, selfsupporting or on backings, could be fabricated with this method for elements and some compounds with evaporation temperatures up to 2300 K. (orig.)

  7. A critical review of homogenization techniques in reactor lattices

    International Nuclear Information System (INIS)

    Benoist, P.

    1983-01-01

    The determination of the shape of the neutron flux in a whole reactor is, at the time being, a much too complex problem to be treated by transport theory. Since the earlier times of reactor theory, the necessity appeared to solve the problem in two steps. First the reactor is divided into zones, each of them forming a regular lattice. In each of these zones, homogenized parameters are determined by transport theory, in order to define an equivalent smeared medium. In a second step, these parameters are introduced in a diffusion theory scheme in order to treat the reactor as a whole. This is the homogenization procedure. 14 refs

  8. Relativistic cosmologies with closed, locally homogeneous space sections

    International Nuclear Information System (INIS)

    Fagundes, H.V.

    1985-01-01

    The homogeneous Bianchi and Kantowski-Sachs metrics of relativistic cosmology are investigated through their correspondence with recent geometrical results of Thurston. These allow a partial classification of the topologies for closed, locally homogeneous spaces according to Thurston's eight geometric types. Besides, which of the Bianchi-Kantowski-Sachs metrics can be imposed on closed space sections of cosmological models are learned. This is seen as a progress toward implementation of a postulate of the closure of space for both classical and quantum gravity. (Author) [pt

  9. Control rod homogenization in heterogeneous sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Andersson, Mikael

    2016-01-01

    The sodium-cooled fast reactor is one of the candidates for a sustainable nuclear reactor system. In particular, the French ASTRID project employs an axially heterogeneous design, proposed in the so-called CFV (low sodium effect) core, to enhance the inherent safety features of the reactor. This thesis focuses on the accurate modeling of the control rods, through the homogenization method. The control rods in a sodium-cooled fast reactor are used for reactivity compensation during the cycle, power shaping, and to shutdown the reactor. In previous control rod homogenization procedures, only a radial description of the geometry was implemented, hence the axially heterogeneous features of the CFV core could not be taken into account. This thesis investigates the different axial variations the control rod experiences in a CFV core, to determine the impact that these axial environments have on the control rod modeling. The methodology used in this work is based on previous homogenization procedures, the so-called equivalence procedure. The procedure was newly implemented in the PARIS code system in order to be able to use 3D geometries, and thereby be take axial effects into account. The thesis is divided into three parts. The first part investigates the impact of different neutron spectra on the homogeneous control-rod cross sections. The second part investigates the cases where the traditional radial control-rod homogenization procedure is no longer applicable in the CFV core, which was found to be 5-10 cm away from any material interface. In the third part, based on the results from the second part, a 3D model of the control rod is used to calculate homogenized control-rod cross sections. In a full core model, a study is made to investigate the impact these axial effects have on control rod-related core parameters, such as the control rod worth, the capture rates in the control rod, and the power in the adjacent fuel assemblies. All results were compared to a Monte

  10. A critical review of homogenization techniques in reactor lattices

    International Nuclear Information System (INIS)

    Benoist, P.

    1983-01-01

    The determination of the shape of the neutron flux in a whole reactor is, at the time being, a much too complex problem to be treated by transport theory. Since the earlier times of reactor theory, the necessity appeared to solve the problem in two steps. First the reactor is divided into zones, each of them forming a regular lattice. In each of these zones, homogenized parameters are determined by transport theory, in order to define an equivalent smeared medium. In a second step, these parameters are introduced in a diffusion theory scheme in order to treat the reactor as a whole. This is the homogenization procedure

  11. A homogeneous catalogue of quasar candidates found with slitless spectroscopy

    International Nuclear Information System (INIS)

    Beauchemin, M.; Borra, E.F.; Edwards, G.

    1990-01-01

    This paper gives a list of all quasar candidates obtained from an automated computer search performed on 11 grens plates. The description of the main characteristics of the survey is given along with the latest improvements in the selection techniques. Particular attention has been paid to understanding and quantifying selection effects. This allows the construction of homogeneous samples having well-understood characteristics. The noteworthy aspect of our homogenization process is the correction that we apply to our probability classes in order to take into account the signal-to-noise differences; at a given magnitude, among plates of different limiting magnitudes. (author)

  12. Assessment of dose homogeneity in conformal interstitial breast brachytherapy with special respect to ICRU recommendations

    Directory of Open Access Journals (Sweden)

    Tibor Major

    2011-09-01

    Full Text Available Purpose: To present the results of dose homogeneity analysis for breast cancer patients treated with image-basedconformal interstitial brachytherapy, and to investigate the usefulness of the ICRU recommendations. Material and methods: Treatment plans of forty-nine patients who underwent partial breast irradiation with interstitialbrachytherapy were analyzed. Quantitative parameters were used to characterize dose homogeneity. Dose nonuniformityratio (DNR, dose homogeneity index (DHI, uniformity index (UI and quality index (QI were calculated.Furthermore, parameters recommended by the ICRU 58 such as minimum target dose (MTD, mean central dose (MCD,high dose volume, low dose volume and the spread between local minimum doses were determined. Correlationsbetween the calculated homogeneity parameters and usefulness of the ICRU parameters in image-based brachytherapywere investigated. Results: Catheters with mean number of 15 (range: 6-25 were implanted in median 4 (range: 3-6 planes. The volu -me of the PTV ranged from 15.5 cm3 to 176 cm3. The mean DNR was 0.32, the DHI 0.66, the UI 1.49 and the QI 1.94. Relatedto the prescribed dose, the MTD was 69% and the MCD 135%. The mean high dose volume was 8.1 cm3 (10%, whilethe low dose volume was 63.8 cm3 (96%. The spread between minimum doses in central plane ranged from –14% to+20%. Good correlation was found between the DNR and the DHI (R2 = 0.7874, and the DNR correlated well with theUI (R2 = 0.7615 also. No correlation was found between the ICRU parameters and any other volumetric parameters. Conclusions: To characterize the dose uniformity in high-dose rate breast implants, DVH-related homogeneityparameters representing the full 3D dose distributions are mandatory to be used. In many respects the current re commendationsof the ICRU Report 58 are already outdated, and it is well-timed to set up new recommendations, whichare more feasible for image-guided conformal interstitial brachytherapy.

  13. Effect of heat and homogenization on in vitro digestion of milk.

    Science.gov (United States)

    Tunick, Michael H; Ren, Daxi X; Van Hekken, Diane L; Bonnaillie, Laetitia; Paul, Moushumi; Kwoczak, Raymond; Tomasula, Peggy M

    2016-06-01

    Central to commercial fluid milk processing is the use of high temperature, short time (HTST) pasteurization to ensure the safety and quality of milk, and homogenization to prevent creaming of fat-containing milk. Ultra-high-temperature sterilization is also applied to milk and is typically used to extend the shelf life of refrigerated, specialty milk products or to provide shelf-stable milk. The structures of the milk proteins and lipids are affected by processing but little information is available on the effects of the individual processes or sequences of processes on digestibility. In this study, raw whole milk was subjected to homogenization, HTST pasteurization, and homogenization followed by HTST or UHT processing. Raw skim milk was subjected to the same heating regimens. In vitro gastrointestinal digestion using a fasting model was then used to detect the processing-induced changes in the proteins and lipids. Using sodium dodecyl sulfate-PAGE, gastric pepsin digestion of the milk samples showed rapid elimination of the casein and α-lactalbumin bands, persistence of the β-lactoglobulin bands, and appearance of casein and whey peptide bands. The bands for β-lactoglobulin were eliminated within the first 15min of intestinal pancreatin digestion. The remaining proteins and peptides of raw, HTST, and UHT skim samples were digested rapidly within the first 15min of intestinal digestion, but intestinal digestion of raw and HTST pasteurized whole milk showed some persistence of the peptides throughout digestion. The availability of more lipid droplets upon homogenization, with greater surface area available for interaction with the peptides, led to persistence of the smaller peptide bands and thus slower intestinal digestion when followed by HTST pasteurization but not by UHT processing, in which the denatured proteins may be more accessible to the digestive enzymes. Homogenization and heat processing also affected the ζ-potential and free fatty acid release

  14. Keeping an eye on the ring: COMS plaque loading optimization for improved dose conformity and homogeneity.

    Science.gov (United States)

    Gagne, Nolan L; Cutright, Daniel R; Rivard, Mark J

    2012-09-01

    To improve tumor dose conformity and homogeneity for COMS plaque brachytherapy by investigating the dosimetric effects of varying component source ring radionuclides and source strengths. The MCNP5 Monte Carlo (MC) radiation transport code was used to simulate plaque heterogeneity-corrected dose distributions for individually-activated source rings of 14, 16 and 18 mm diameter COMS plaques, populated with (103)Pd, (125)I and (131)Cs sources. Ellipsoidal tumors were contoured for each plaque size and MATLAB programming was developed to generate tumor dose distributions for all possible ring weighting and radionuclide permutations for a given plaque size and source strength resolution, assuming a 75 Gy apical prescription dose. These dose distributions were analyzed for conformity and homogeneity and compared to reference dose distributions from uniformly-loaded (125)I plaques. The most conformal and homogeneous dose distributions were reproduced within a reference eye environment to assess organ-at-risk (OAR) doses in the Pinnacle(3) treatment planning system (TPS). The gamma-index analysis method was used to quantitatively compare MC and TPS-generated dose distributions. Concentrating > 97% of the total source strength in a single or pair of central (103)Pd seeds produced the most conformal dose distributions, with tumor basal doses a factor of 2-3 higher and OAR doses a factor of 2-3 lower than those of corresponding uniformly-loaded (125)I plaques. Concentrating 82-86% of the total source strength in peripherally-loaded (131)Cs seeds produced the most homogeneous dose distributions, with tumor basal doses 17-25% lower and OAR doses typically 20% higher than those of corresponding uniformly-loaded (125)I plaques. Gamma-index analysis found > 99% agreement between MC and TPS dose distributions. A method was developed to select intra-plaque ring radionuclide compositions and source strengths to deliver more conformal and homogeneous tumor dose distributions than

  15. Size-dependent homogenized diffusion parameters for a finite lattice

    International Nuclear Information System (INIS)

    Premuda, F.

    1980-01-01

    A numerical technique is reported for solving the transcendental equation for unknown Ysub(n+1). The solution is expressed in terms of quantities related to Ysub(n). This is an iterative reversion technique which has already been proven to converge rapidly in the homogeneous slab problem considered herein. (author)

  16. Homogeneity of Moral Judgment? Apprentices Solving Business Conflicts.

    Science.gov (United States)

    Beck, Klaus; Heinrichs, Karin; Minnameier, Gerhard; Parche-Kawik, Kirsten

    In an ongoing longitudinal study that started in 1994, the moral development of business apprentices is being studied. The focal point of this project is a critical analysis of L. Kohlberg's thesis of homogeneity, according to which people should judge every moral issue from the point of view of their "modal" stage (the most frequently…

  17. Gauge freedom in perfect fluid spatially homogeneous spacetimes

    International Nuclear Information System (INIS)

    Jantzen, R.T.

    1983-01-01

    The class of reference systems compatible with the symmetry of a spatially homogeneous perfect fluid spacetime is discussed together with the associated class of symmetry adapted comoving ADM frames (or computational frames). The fluid equations of motion are related to the four functions on the space of fluid flow lines discovered by Taub and which characterize an isentropic flow. (Auth.)

  18. Lagrangian statistics of particle pairs in homogeneous isotropic turbulence

    NARCIS (Netherlands)

    Biferale, L.; Boffeta, G.; Celani, A.; Devenish, B.J.; Lanotte, A.; Toschi, F.

    2005-01-01

    We present a detailed investigation of the particle pair separation process in homogeneous isotropic turbulence. We use data from direct numerical simulations up to R????280 following the evolution of about two million passive tracers advected by the flow over a time span of about three decades. We

  19. Electromagnetic Radiation in a Uniformly Moving, Homogeneous Medium

    DEFF Research Database (Denmark)

    Johannsen, Günther

    1972-01-01

    A new method of treating radiation problems in a uniformly moving, homogeneous medium is presented. A certain transformation technique in connection with the four-dimensional Green's function method makes it possible to elaborate the Green's functions of the governing differential equations...

  20. Class Management and Homogeneous Grouping in Kindergarten Literacy Instruction

    Science.gov (United States)

    Hong, Guanglei; Pelletier, Janette; Hong, Yihua; Corter, Carl

    2010-01-01

    The purpose of this study is two-fold. Firstly the authors examine, given the amount of time allocated to literacy instruction, whether homogeneous grouping helps improve class manageability over the kindergarten year and whether individual students' externalizing problem behaviors will decrease in tandem. Secondly, they investigate whether the…

  1. On superspinor structure of homogeneous superspace of orthosymplectic groups

    International Nuclear Information System (INIS)

    Volkov, D.V.; Soroka, V.A.; Tkach, V.I.

    1984-01-01

    Superspinor structure of homogeneous superspaces of orthosymplectic groups are considered. It is shown how the properties of orthosymplectic group superspaces of OSp(N, 2K) group playing an important role in the supersymmetry theory can be described using superspinors. An example confirming a possibility of the relation between . canonical ratios of Butten bracket and conventional methods of quantization is considered

  2. Molecular weight enlargement : a molecular approach to continuous homogeneous catalysis

    NARCIS (Netherlands)

    Janssen, M.C.C.

    2010-01-01

    Homogeneous catalysts play an increasingly important role in organic synthesis today, because of their high activity and selectivity. Usually, precious metals are used in combination with valuable ligands and since metal prices are expected to increase further in the future, methods for their

  3. Non-homogeneous polymer model for wave propagation and its ...

    African Journals Online (AJOL)

    user

    density are functions of space i.e. non-homogeneous engineering material. .... The Solution of equation Eq. (9) in the form of Eq. (10) can be obtained by taking a phase ..... Viscoelastic Model Applied to a Particular Case .... p m i exp m α α σ σ σ. = −. +. −. (35). The progressive harmonic wave which starts from the end. 0 x =.

  4. DNA Dynamics Studied Using the Homogeneous Balance Method

    International Nuclear Information System (INIS)

    Zayed, E. M. E.; Arnous, A. H.

    2012-01-01

    We employ the homogeneous balance method to construct the traveling waves of the nonlinear vibrational dynamics modeling of DNA. Some new explicit forms of traveling waves are given. It is shown that this method provides us with a powerful mathematical tool for solving nonlinear evolution equations in mathematical physics. Strengths and weaknesses of the proposed method are discussed. (general)

  5. Homogenization and isotropization of an inflationary cosmological model

    International Nuclear Information System (INIS)

    Barrow, J.D.; Groen, Oe.; Oslo Univ.

    1986-01-01

    A member of the class of anisotropic and inhomogeneous cosmological models constructed by Wainwright and Goode is investigated. It is shown to describe a universe containing a scalar field which is minimally coupled to gravitation and a positive cosmological constant. It is shown that this cosmological model evolves exponentially rapidly towards the homogeneous and isotropic de Sitter universe model. (orig.)

  6. Revisiting the homogenization of dammed rivers in the southeastern US

    Science.gov (United States)

    Ryan A. McManamay; Donald J. Orth; Charles A. Dolloff

    2012-01-01

    For some time, ecologists have attempted to make generalizations concerning how disturbances influence natural ecosystems, especially river systems. The existing literature suggests that dams homogenize the hydrologic variability of rivers. However, this might insinuate that dams affect river systems similarly despite a large gradient in natural hydrologic character....

  7. Homogeneous axisymmetric model with a limitting stiff equation of state

    International Nuclear Information System (INIS)

    Korkina, M.P.; Martynenko, V.G.

    1976-01-01

    A solution is obtained for Einstein's equations in which all metric coefficients are time functions for a limiting stiff equation of the substance state. Thr solution describes a homogeneous cosmological model with cylindrical symmetry. It is shown that the same metrics can be induced by a massless scalar only time-dependent field. Analysis of this solution is presented

  8. Fraisse sequences: category-theoretic approach to universal homogeneous structures

    Czech Academy of Sciences Publication Activity Database

    Kubiś, Wieslaw

    2014-01-01

    Roč. 165, č. 11 (2014), s. 1755-1811 ISSN 0168-0072 R&D Projects: GA ČR(CZ) GAP201/12/0290 Institutional support: RVO:67985840 Keywords : universal homogeneous object * Fraissé sequence * amalgamation Subject RIV: BA - General Mathematics Impact factor: 0.548, year: 2014 http://www.sciencedirect.com/science/article/pii/S0168007214000773

  9. KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2010-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold

  10. Kinetic theory of plasma waves: Part II homogeneous plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2000-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold

  11. Kinetic theory of plasma waves - Part II: Homogeneous plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2008-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold

  12. Homogeneous Nucleation Rate Measurements in Supersaturated Water Vapor

    Czech Academy of Sciences Publication Activity Database

    Brus, David; Ždímal, Vladimír; Smolík, Jiří

    2008-01-01

    Roč. 129, č. 17 (2008), , 174501-1-174501-8 ISSN 0021-9606 R&D Projects: GA ČR GA101/05/2214 Institutional research plan: CEZ:AV0Z40720504 Keywords : homogeneous nucleation * water * diffusion chamber Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.149, year: 2008

  13. Homogenization and Optimal Control S. Kesavan The Institute of ...

    Indian Academy of Sciences (India)

    Homogenization permits us to study the global behaviour of heterogeneous bodies with a lot of heterogeneities whose dimen- sions are small compared to those of the body. • It describes the macroscopic behaviour of systems with a fine microstructure. 2 ...

  14. Exploring cosmic homogeneity with the BOSS DR12 galaxy sample

    Energy Technology Data Exchange (ETDEWEB)

    Ntelis, Pierros; Hamilton, Jean-Christophe; Busca, Nicolas Guillermo; Aubourg, Eric [APC, Université Paris Diderot-Paris 7, CNRS/IN2P3, CEA, Observatoire de Paris, 10, rue A. Domon and L. Duquet, Paris (France); Goff, Jean-Marc Le; Burtin, Etienne; Laurent, Pierre; Rich, James; Bourboux, Hélion du Mas des; Delabrouille, Nathalie Palanque [CEA, Centre de Saclay, IRFU/SPP, F-91191 Gif-sur-Yvette (France); Tinker, Jeremy [Department of Physics and Center for Cosmology and Particle Physics, New York University, 726 Broadway, New York (United States); Bautista, Julian [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Delubac, Timothée [Laboratoire d' astrophysique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix (Switzerland); Eftekharzadeh, Sarah; Myers, Adam [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Hogg, David W. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, Meyer Hall of Physics, New York, NY 10003 (United States); Vargas-Magaña, Mariana [Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, México (Mexico); Pâris, Isabelle [Aix Marseille Universite, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, 13388, Marseille (France); Petitjean, Partick [Institut d' Astrophysique de Paris, CNRS-UPMC, UMR7095, 98bis bd Arago, Paris, 75014 France (France); Rossi, Graziano, E-mail: pntelis@apc.in2p3.fr, E-mail: jchamilton75@gmail.com [Department of Astronomy and Space Science, Sejong University, Seoul, 143-747 (Korea, Republic of); and others

    2017-06-01

    In this study, we probe the transition to cosmic homogeneity in the Large Scale Structure (LSS) of the Universe using the CMASS galaxy sample of BOSS spectroscopic survey which covers the largest effective volume to date, 3 h {sup −3} Gpc{sup 3} at 0.43 ≤ z ≤ 0.7. We study the scaled counts-in-spheres, N(< r ), and the fractal correlation dimension, D{sub 2}( r ), to assess the homogeneity scale of the universe using a Landy and Szalay inspired estimator. Defining the scale of transition to homogeneity as the scale at which D{sub 2}( r ) reaches 3 within 1%, i.e. D{sub 2}( r )>2.97 for r >R {sub H} , we find R {sub H} = (63.3±0.7) h {sup −1} Mpc, in agreement at the percentage level with the predictions of the ΛCDM model R {sub H} =62.0 h {sup −1} Mpc. Thanks to the large cosmic depth of the survey, we investigate the redshift evolution of the transition to homogeneity scale and find agreement with the ΛCDM prediction. Finally, we find that D{sub 2} is compatible with 3 at scales larger than 300 h {sup −1} Mpc in all redshift bins. These results consolidate the Cosmological Principle and represent a precise consistency test of the ΛCDM model.

  15. Homogenization of a thermo-diffusion system with Smoluchowski interactions

    NARCIS (Netherlands)

    Krehel, O.; Aiki, T.; Muntean, A.

    2014-01-01

    We study the solvability and homogenization of a thermal-diffusion reaction problem posed in a periodically perforated domain. The system describes the motion of populations of hot colloidal particles interacting together via Smoluchowski production terms. The upscaled system, obtained via two-scale

  16. Homogeneous optical cloak constructed with uniform layered structures

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Liu, Liu; Luo, Yu

    2011-01-01

    , the majority of the invisibility cloaks reported so far have a spatially varying refractive index which requires complicated design processes. Besides, the size of the hidden object is usually small relative to that of the cloak device. Here we report the experimental realization of a homogenous invisibility...

  17. Homogenization of compacted blends of Ni and Mo powders

    International Nuclear Information System (INIS)

    Lanam, R.D.; Yeh, F.C.H.; Rovsek, J.E.; Smith, D.W.; Heckel, R.W.

    1975-01-01

    The homogenization behavior of compacted blends of Ni and Mo powders was studied primarily as a function of temperature, mean compact composition, and Mo powder particle size. All compact compositions were in the Ni-rich terminal solid-solution range; temperatures were between 950 and 1200 0 C (in the region of the phase diagram where only the Mo--Ni intermediate phase forms); average Mo particle sizes ranged from 8.4 mu m to 48 mu m. Homogenization was characterized in terms of the rate of decrease of the amounts of the Mo-rich terminal solid-solution phase and the Mo--Ni intermediate phase. The experimental results were compared to predictions based upon the three-phase, concentric-sphere homogenization model. In general, agreement between experimental data and model predictions was fairly good for high-temperature treatments and for compact compositions which were not close to the solubility limit of Mo in Ni. Departures from the model are discussed in terms of surface diffusion contributions to homogenization and non-uniform mixing effects. (U.S.)

  18. A new formulation for the problem of fuel cell homogenization

    International Nuclear Information System (INIS)

    Chao, Y.-A.; Martinez, A.S.

    1982-01-01

    A new homogenization method for reactor cells is described. This new method consists in eliminating the NR approximation for the fuel resonance and the Wigner approximation for the resonance escape probability; the background cross section is then redefined and the problem studied is reanalyzed. (E.G.) [pt

  19. Notes on a class of homogeneous space-times

    International Nuclear Information System (INIS)

    Calvao, M.O.; Reboucas, M.J.; Teixeira, A.F.F.; Silva Junior, W.M.

    1987-01-01

    The breakdown of causality in homogeneous Goedel-type space-time manifolds is examined. An extension of Reboucas-Tiomno (RT) study is made. The existence of noncausal curves is also investigated under two different conditions on the energy-momentum tensor. An integral representation of the infinitesimal generators of isometries is obtained extending previous works on the RT geometry. (Author) [pt

  20. Transient computational homogenization for heterogeneous materials under dynamic excitation

    NARCIS (Netherlands)

    Pham, N.K.H.; Kouznetsova, V.; Geers, M.G.D.

    2013-01-01

    This paper presents a novel transient computational homogenization procedure that is suitable for the modelling of the evolution in space and in time of materials with non-steady state microstructure, such as metamaterials. This transient scheme is an extension of the classical (first-order)

  1. Non-homogeneous polymer model for wave propagation and its ...

    African Journals Online (AJOL)

    This article concerns certain aspects of four parameter polymer models to study harmonic waves in the non-homogeneous polymer rods of varying density. There are two sections of this paper, in first section, the rheological behaviour of the model is discussed numerically and then it is solved analytically with the help of ...

  2. A characterization of Markovian homogeneous multicomponent Gaussian fields

    International Nuclear Information System (INIS)

    Ekhaguere, G.O.S.

    1980-01-01

    Necessary and sufficient conditions are given for a certain class of homogeneous multicomponent Gaussian generalized stochastic fields to possess a Markov property equivalent to Nelson's. The class of Markov fields so characterized has a as a cubclass the class of Markov fields which lead by Nelson's Reconstruction Theorem to some covariant (free) quantum fields. (orig.)

  3. Homogenization of Stokes and Navier-Stokes equations

    International Nuclear Information System (INIS)

    Allaire, G.

    1990-04-01

    This thesis is devoted to homogenization of Stokes and Navier-Stokes equations with a Dirichlet boundary condition in a domain containing many tiny obstacles. Tipycally those obstacles are distributed at the modes of a periodic lattice with same small period in each axe's direction, and their size is always asymptotically smaller than the lattice's step. With the help of the energy method, and thanks to a suitable pressure's extension, we prove the convergence of the homogenization process when the lattice's step tends to zero (and thus the number of obstacles tends to infinity). For a so-called critical size of the obstacles, the homogenized problem turns out to be a Brinkman's law (i.e. Stokes or Navier-Stokes equation plus a linear zero-order term for the velocity in the momentum equation). For obstacles which have a size smaller than the critical one, the limit problem reduces to the initial Stokes or Navier-Stokes equations, while for larger sizes the homogenized problem a Darcy's law. Furthermore, those results have been extended to the case of obstacles included in a hyperplane, and we establish a simple model of fluid flows through grids, which is based on a special form of Brinkman's law [fr

  4. Microsegregation and homogenization in U-Nb alloy

    International Nuclear Information System (INIS)

    Leal, J. Fernando; Nogueira, R.A.; Ambrozio Filho, F.

    1987-01-01

    Microsegregation results in U-4 w t% Nb alloys casted in nonconsumable electrode arc furnace are presented. The microsegregation is studied qualitatively by optical microscopy and quantitatively by electron microprobe. The degreee of homogenetization has been measured after 800 0 C heat treatments. The times required for homogeneization of the alloys are also discussed. (author) [pt

  5. Environmental Kuznets Curves for CO2 : Heterogeneity Versus Homogeneity

    NARCIS (Netherlands)

    Vollebergh, H.R.J.; Dijkgraaf, E.; Melenberg, B.

    2005-01-01

    We explore the emissions income relationship for CO2 in OECD countries using various modelling strategies.Even for this relatively homogeneous sample, we find that the inverted-U-shaped curve is quite sensitive to the degree of heterogeneity included in the panel estimations.This finding is robust,

  6. Subspace identification of distributed clusters of homogeneous systems

    NARCIS (Netherlands)

    Yu, C.; Verhaegen, M.H.G.

    2017-01-01

    This note studies the identification of a network comprised of interconnected clusters of LTI systems. Each cluster consists of homogeneous dynamical systems, and its interconnections with the rest of the network are unmeasurable. A subspace identification method is proposed for identifying a single

  7. Quasi-single-mode homogeneous 31-core fibre

    DEFF Research Database (Denmark)

    Sasaki, Y.; Saitoh, S.; Amma, Y.

    2015-01-01

    A homogeneous 31-core fibre with a cladding diameter of 230 μm for quasi-single-mode transmission is designed and fabricated. LP01-crosstalk of -38.4 dB/11 km at 1550 nm is achieved by using few-mode trench-assisted cores....

  8. Assessing the use of food coloring as an appropriate visual guide for homogenously mixed capsule powders in extemporaneous compounding.

    Science.gov (United States)

    Hoffmann, Brittany; Carlson, Christie; Rao, Deepa A

    2014-01-01

    The purpose of this work was to assess the use of food colors as a visual aid to determine homogeneous mixing in the extemporaneous preparation of capsules. Six different batches of progesterone slow-release 200-mg capsules were prepared by different mixing methods until visually determined as homogeneous based on yellow food coloring distribution in the preparation by the Central Iowa Compounding Pharmacy, Des Moines, Iowa. UV-Vis spectrophotometry was used to extract and evaluate yellow food coloring content in each of these batches and compared to an in-house, small-batch geometric dilution preparation of progesterone slow- release 200-mg capsules. Of the 6 batches tested, only one, which followed the principles of additive dilution and an appropriate mixing time, was both visually and quantitatively homogeneous in the detection of yellow food coloring. The use of food coloring alone is not a valid quality-assurance tool in determining homogeneous mixing. Principles of geometric and/or additive dilution and appropriate mixing times along with the food color can serve as a quality-assurance tool.

  9. Biotic homogenization of three insect groups due to urbanization.

    Science.gov (United States)

    Knop, Eva

    2016-01-01

    Cities are growing rapidly, thereby expected to cause a large-scale global biotic homogenization. Evidence for the homogenization hypothesis is mostly derived from plants and birds, whereas arthropods have so far been neglected. Here, I tested the homogenization hypothesis with three insect indicator groups, namely true bugs, leafhoppers, and beetles. In particular, I was interested whether insect species community composition differs between urban and rural areas, whether they are more similar between cities than between rural areas, and whether the found pattern is explained by true species turnover, species diversity gradients and geographic distance, by non-native or specialist species, respectively. I analyzed insect species communities sampled on birch trees in a total of six Swiss cities and six rural areas nearby. In all indicator groups, urban and rural community composition was significantly dissimilar due to native species turnover. Further, for bug and leafhopper communities, I found evidence for large-scale homogenization due to urbanization, which was driven by reduced species turnover of specialist species in cities. Species turnover of beetle communities was similar between cities and rural areas. Interestingly, when specialist species of beetles were excluded from the analyses, cities were more dissimilar than rural areas, suggesting biotic differentiation of beetle communities in cities. Non-native species did not affect species turnover of the insect groups. However, given non-native arthropod species are increasing rapidly, their homogenizing effect might be detected more often in future. Overall, the results show that urbanization has a negative large-scale impact on the diversity specialist species of the investigated insect groups. Specific measures in cities targeted at increasing the persistence of specialist species typical for the respective biogeographic region could help to stop the loss of biodiversity. © 2015 John Wiley & Sons Ltd.

  10. Homogenized description and retrieval method of nonlinear metasurfaces

    Science.gov (United States)

    Liu, Xiaojun; Larouche, Stéphane; Smith, David R.

    2018-03-01

    A patterned, plasmonic metasurface can strongly scatter incident light, functioning as an extremely low-profile lens, filter, reflector or other optical device. When the metasurface is patterned uniformly, its linear optical properties can be expressed using effective surface electric and magnetic polarizabilities obtained through a homogenization procedure. The homogenized description of a nonlinear metasurface, however, presents challenges both because of the inherent anisotropy of the medium as well as the much larger set of potential wave interactions available, making it challenging to assign effective nonlinear parameters to the otherwise inhomogeneous layer of metamaterial elements. Here we show that a homogenization procedure can be developed to describe nonlinear metasurfaces, which derive their nonlinear response from the enhanced local fields arising within the structured plasmonic elements. With the proposed homogenization procedure, we are able to assign effective nonlinear surface polarization densities to a nonlinear metasurface, and link these densities to the effective nonlinear surface susceptibilities and averaged macroscopic pumping fields across the metasurface. These effective nonlinear surface polarization densities are further linked to macroscopic nonlinear fields through the generalized sheet transition conditions (GSTCs). By inverting the GSTCs, the effective nonlinear surface susceptibilities of the metasurfaces can be solved for, leading to a generalized retrieval method for nonlinear metasurfaces. The application of the homogenization procedure and the GSTCs are demonstrated by retrieving the nonlinear susceptibilities of a SiO2 nonlinear slab. As an example, we investigate a nonlinear metasurface which presents nonlinear magnetoelectric coupling in near infrared regime. The method is expected to apply to any patterned metasurface whose thickness is much smaller than the wavelengths of operation, with inclusions of arbitrary geometry

  11. Fuel loading and homogeneity analysis of HFIR design fuel plates loaded with uranium silicide fuel

    International Nuclear Information System (INIS)

    Blumenfeld, P.E.

    1995-08-01

    Twelve nuclear reactor fuel plates were analyzed for fuel loading and fuel loading homogeneity by measuring the attenuation of a collimated X-ray beam as it passed through the plates. The plates were identical to those used by the High Flux Isotope Reactor (HFIR) but were loaded with uranium silicide rather than with HFIR's uranium oxide fuel. Systematic deviations from nominal fuel loading were observed as higher loading near the center of the plates and underloading near the radial edges. These deviations were within those allowed by HFIR specifications. The report begins with a brief background on the thermal-hydraulic uncertainty analysis for the Advanced Neutron Source (ANS) Reactor that motivated a statistical description of fuel loading and homogeneity. The body of the report addresses the homogeneity measurement techniques employed, the numerical correction required to account for a difference in fuel types, and the statistical analysis of the resulting data. This statistical analysis pertains to local variation in fuel loading, as well as to ''hot segment'' analysis of narrow axial regions along the plate and ''hot streak'' analysis, the cumulative effect of hot segment loading variation. The data for all twelve plates were compiled and divided into 20 regions for analysis, with each region represented by a mean and a standard deviation to report percent deviation from nominal fuel loading. The central regions of the plates showed mean values of about +3% deviation, while the edge regions showed mean values of about -7% deviation. The data within these regions roughly approximated random samplings from normal distributions, although the chi-square (χ 2 ) test for goodness of fit to normal distributions was not satisfied

  12. Homogenization via the strong-permittivity-fluctuation theory with nonzero depolarization volume

    Science.gov (United States)

    Mackay, Tom G.

    2004-08-01

    The depolarization dyadic provides the scattering response of a single inclusion particle embedded within a homogenous background medium. These dyadics play a central role in formalisms used to estimate the effective constitutive parameters of homogenized composite mediums (HCMs). Conventionally, the inclusion particle is taken to be vanishingly small; this allows the pointwise singularity of the dyadic Green function associated with the background medium to be employed as the depolarization dyadic. A more accurate approach is pursued in this communication by taking into account the nonzero spatial extent of inclusion particles. Depolarization dyadics corresponding to inclusion particles of nonzero volume are incorporated within the strong-permittivity-fluctuation theory (SPFT). The linear dimensions of inclusion particles are assumed to be small relative to the electromagnetic wavelength(s) and the SPFT correlation length. The influence of the size of inclusion particles upon SPFT estimates of the HCM constitutive parameters is investigated for anisotropic dielectric HCMs.In particular, the interplay between correlation length and inclusion size is explored.

  13. Non-homogeneous harmonic analysis: 16 years of development

    International Nuclear Information System (INIS)

    Volberg, A L; Èiderman, V Ya

    2013-01-01

    This survey contains results and methods in the theory of singular integrals, a theory which has been developing dramatically in the last 15-20 years. The central (although not the only) topic of the paper is the connection between the analytic properties of integrals and operators with Calderón-Zygmund kernels and the geometric properties of the measures. The history is traced of the classical Painlevé problem of describing removable singularities of bounded analytic functions, which has provided a strong incentive for the development of this branch of harmonic analysis. The progress of recent decades has largely been based on the creation of an apparatus for dealing with non-homogeneous measures, and much attention is devoted to this apparatus here. Several open questions are stated, first and foremost in the multidimensional case, where the method of curvature of a measure is not available. Bibliography: 128 titles

  14. A game-theoretic formulation of the homogeneous self-reconfiguration problem

    KAUST Repository

    Pickem, Daniel

    2015-12-15

    In this paper we formulate the homogeneous two- and three-dimensional self-reconfiguration problem over discrete grids as a constrained potential game. We develop a game-theoretic learning algorithm based on the Metropolis-Hastings algorithm that solves the self-reconfiguration problem in a globally optimal fashion. Both a centralized and a fully decentralized algorithm are presented and we show that the only stochastically stable state is the potential function maximizer, i.e. the desired target configuration. These algorithms compute transition probabilities in such a way that even though each agent acts in a self-interested way, the overall collective goal of self-reconfiguration is achieved. Simulation results confirm the feasibility of our approach and show convergence to desired target configurations.

  15. A game-theoretic formulation of the homogeneous self-reconfiguration problem

    KAUST Repository

    Pickem, Daniel; Egerstedt, Magnus; Shamma, Jeff S.

    2015-01-01

    In this paper we formulate the homogeneous two- and three-dimensional self-reconfiguration problem over discrete grids as a constrained potential game. We develop a game-theoretic learning algorithm based on the Metropolis-Hastings algorithm that solves the self-reconfiguration problem in a globally optimal fashion. Both a centralized and a fully decentralized algorithm are presented and we show that the only stochastically stable state is the potential function maximizer, i.e. the desired target configuration. These algorithms compute transition probabilities in such a way that even though each agent acts in a self-interested way, the overall collective goal of self-reconfiguration is achieved. Simulation results confirm the feasibility of our approach and show convergence to desired target configurations.

  16. Homogeneous nucleation limit on the bulk formation of metallic glasses

    International Nuclear Information System (INIS)

    Drehman, A.J.

    1983-01-01

    Glassy Pd 82 Si 18 spheres, of up to 1 mm diameter, were formed in a drop tube filled with He gas. The largest spheres were successfully cooled to a glass using a cooling rate of less than 800 K/sec. Even at this low cooling rate, crystallization (complete or partial) was the result of heterogeneous nucleation at a high temperature, relative to the temperature at which copious homogeneous nucleation would commence. Bulk underscoring experiments demonstrated that this alloy could be cooled to 385 K below its eutectic melting temperature (1083 K) without the occurrence of crystallization. If heterogeneous nucleation can be avoided, it is estimated that a cooling rate of at most 100 K/sec would be required to form this alloy in the glassy state. Ingots of glassy Pd 40 Ni 40 P 20 were formed from the liquid by cooling at a rate of only 1 K/sec. It was found that glassy samples of this alloy could be heated well above the glass transition temperature without the occurrence of rapid divitrification. This is a result due, in part of the low density of pre-existing nuclei, but, more importantly, due to the low homogeneous nucleation rate and the slow crystal growth kinetics. Based on the observed devitrification kinetics, the steady-state homogeneous nucleation rate is approximately 1 nuclei/cm 3 sec at 590 K (the temperature at which the homogeneous nucleation rate is estimated to be a maximum). Two iron-nickel based glass-forming alloys (Fe 40 Ni 40 P 14 B 6 and Fe 40 Ni 40 B 20 , were not successfully formed into glassy spheres, however, microstructural examination indicates that crystallization was not the result of copious homogeneous nucleation. In contrast, glass forming iron based alloys (Fe 80 B 20 and Fe/sub 79.3/B/sub 16.4/Si/sub 4.0/C/sub 0.3/) exhibit copious homogeneous nucleation when cooled at approximately the same rate

  17. Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia

    Directory of Open Access Journals (Sweden)

    Wang Y

    2015-10-01

    Full Text Available Yanping Wang,1,2 Xiaoling Zhang,2 Qiaobing Guan,2 Lihong Wan,2 Yahui Yi,2 Chun-Feng Liu1 1Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 2Department of Neurology, The Second Hospital of Jiaxing City, Jiaxing, Zhejiang Province, People’s Republic of China Abstract: The pathophysiology of idiopathic trigeminal neuralgia (ITN has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected. Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002. Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN. Keywords: trigeminal neuralgia, resting fMRI, brain, chronic pain, local connectivity

  18. Self-formed waterfall plunge pools in homogeneous rock

    Science.gov (United States)

    Scheingross, Joel S.; Lo, Daniel Y.; Lamb, Michael P.

    2017-01-01

    Waterfalls are ubiquitous, and their upstream propagation can set the pace of landscape evolution, yet no experimental studies have examined waterfall plunge pool erosion in homogeneous rock. We performed laboratory experiments, using synthetic foam as a bedrock simulant, to produce self-formed waterfall plunge pools via particle impact abrasion. Plunge pool vertical incision exceeded lateral erosion by approximately tenfold until pools deepened to the point that the supplied sediment could not be evacuated and deposition armored the pool bedrock floor. Lateral erosion of plunge pool sidewalls continued after sediment deposition, but primarily at the downstream pool wall, which might lead to undermining of the plunge pool lip, sediment evacuation, and continued vertical pool floor incision in natural streams. Undercutting of the upstream pool wall was absent, and our results suggest that vertical drilling of successive plunge pools is a more efficient waterfall retreat mechanism than the classic model of headwall undercutting and collapse in homogeneous rock.

  19. Parametric dependence of two-plasmon decay in homogeneous plasma

    International Nuclear Information System (INIS)

    Dimitrijevic, Dejan R

    2010-01-01

    A hydrodynamic model of two-plasmon decay in a homogeneous plasma slab near the quarter-critical density is constructed in order to improve our understanding of the spatio-temporal evolution of the daughter electron plasma waves in plasma in the course of the instability. The scaling of the amplitudes of the participating waves with laser and plasma parameters is investigated. The secondary coupling of two daughter electron plasma waves with an ion-acoustic wave is assumed to be the principal mechanism of saturation of the instability. The impact of the inherently nonresonant nature of this secondary coupling on the development of two-plasmon decay is researched and it is shown to significantly influence the electron plasma wave dynamics. Its inclusion leads to nonuniformity of the spatial profile of the instability and causes the burst-like pattern of the instability development, which should result in the burst-like hot-electron production in homogeneous plasma.

  20. The coherent state on SUq(2) homogeneous space

    International Nuclear Information System (INIS)

    Aizawa, N; Chakrabarti, R

    2009-01-01

    The generalized coherent states for quantum groups introduced by Jurco and StovIcek are studied for the simplest example SU q (2) in full detail. It is shown that the normalized SU q (2) coherent states enjoy the property of completeness, and allow a resolution of the unity. This feature is expected to play a key role in the application of these coherent states in physical models. The homogeneous space of SU q (2), i.e. the q-sphere of Podles, is reproduced in complex coordinates by using the coherent states. Differential calculus in the complex form on the homogeneous space is developed. The high spin limit of the SU q (2) coherent states is also discussed.

  1. Homogenization of the critically spectral equation in neutron transport

    Energy Technology Data Exchange (ETDEWEB)

    Allaire, G. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie]|[Paris-6 Univ., 75 (France). Lab. d' Analyse Numerique; Bal, G. [Electricite de France (EDF), 92 - Clamart (France). Direction des Etudes et Recherches

    1998-07-01

    We address the homogenization of an eigenvalue problem for the neutron transport equation in a periodic heterogeneous domain, modeling the criticality study of nuclear reactor cores. We prove that the neutron flux, corresponding to the first and unique positive eigenvector, can be factorized in the product of two terms, up to a remainder which goes strongly to zero with the period. On terms is the first eigenvector of the transport equation in the periodicity cell. The other term is the first eigenvector of a diffusion equation in the homogenized domain. Furthermore, the corresponding eigenvalue gives a second order corrector for the eigenvalue of the heterogeneous transport problem. This result justifies and improves the engineering procedure used in practice for nuclear reactor cores computations. (author)

  2. Constructing Bridges between Computational Tools in Heterogeneous and Homogeneous Catalysis

    KAUST Repository

    Falivene, Laura; Kozlov, Sergey M.; Cavallo, Luigi

    2018-01-01

    Better catalysts are needed to address numerous challenges faced by humanity. In this perspective, we review concepts and tools in theoretical and computational chemistry that can help to accelerate the rational design of homogeneous and heterogeneous catalysts. In particular, we focus on the following three topics: 1) identification of key intermediates and transition states in a reaction using the energetic span model, 2) disentanglement of factors influencing the relative stability of the key species using energy decomposition analysis and the activation strain model, and 3) discovery of new catalysts using volcano relationships. To facilitate wider use of these techniques across different areas, we illustrate their potentials and pitfalls when applied to the study of homogeneous and heterogeneous catalysts.

  3. Fourier-Accelerated Nodal Solvers (FANS) for homogenization problems

    Science.gov (United States)

    Leuschner, Matthias; Fritzen, Felix

    2017-11-01

    Fourier-based homogenization schemes are useful to analyze heterogeneous microstructures represented by 2D or 3D image data. These iterative schemes involve discrete periodic convolutions with global ansatz functions (mostly fundamental solutions). The convolutions are efficiently computed using the fast Fourier transform. FANS operates on nodal variables on regular grids and converges to finite element solutions. Compared to established Fourier-based methods, the number of convolutions is reduced by FANS. Additionally, fast iterations are possible by assembling the stiffness matrix. Due to the related memory requirement, the method is best suited for medium-sized problems. A comparative study involving established Fourier-based homogenization schemes is conducted for a thermal benchmark problem with a closed-form solution. Detailed technical and algorithmic descriptions are given for all methods considered in the comparison. Furthermore, many numerical examples focusing on convergence properties for both thermal and mechanical problems, including also plasticity, are presented.

  4. Some variance reduction methods for numerical stochastic homogenization.

    Science.gov (United States)

    Blanc, X; Le Bris, C; Legoll, F

    2016-04-28

    We give an overview of a series of recent studies devoted to variance reduction techniques for numerical stochastic homogenization. Numerical homogenization requires that a set of problems is solved at the microscale, the so-called corrector problems. In a random environment, these problems are stochastic and therefore need to be repeatedly solved, for several configurations of the medium considered. An empirical average over all configurations is then performed using the Monte Carlo approach, so as to approximate the effective coefficients necessary to determine the macroscopic behaviour. Variance severely affects the accuracy and the cost of such computations. Variance reduction approaches, borrowed from other contexts in the engineering sciences, can be useful. Some of these variance reduction techniques are presented, studied and tested here. © 2016 The Author(s).

  5. Modification of enzymes by use of high-pressure homogenization.

    Science.gov (United States)

    Dos Santos Aguilar, Jessika Gonçalves; Cristianini, Marcelo; Sato, Helia Harumi

    2018-07-01

    High-pressure is an emerging and relatively new technology that can modify various molecules. High-pressure homogenization (HPH) has been used in several studies on protein modification, especially in enzymes used or found in food, from animal, plant or microbial resources. According to the literature, the enzymatic activity can be modulated under pressure causing inactivation, stabilization or activation of the enzymes, which, depending on the point of view could be very useful. Homogenization can generate changes in the structure of the enzyme modifying various chemical bonds (mainly weak bonds) causing different denaturation levels and, consequently, affecting the catalytic activity. This review aims to describe the various alterations due to HPH treatment in enzymes, to show the influence of high-pressure on proteins and to report the HPH effects on the enzymatic activity of different enzymes employed in the food industry and research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Using homogenization, sonication and thermo-sonication to inactivate fungi

    Science.gov (United States)

    Bevilacqua, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria

    2016-01-01

    Ultrasound (US), Thermo-sonication (TS) and High Pressure Homogenization (HPH) were studied as tools to inactivate the spores of Penicillium spp. and Mucor spp. inoculated in distilled water. For US, the power ranged from 40% to 100%, pulse from 2 to 10 s, and duration of the treatment from 2 to 10 min. TS was performed combining US (40–80% of power, for 8 min and pulse of 2 s) with a thermal treatment (50, 55 and 60°C at 4, 8 and 12 min). Homogenization was done at 30–150 MPa for 1, 2 and 3 times. Power was the most important factors to determine the antifungal effect of US and TS towards the conidia of Penicillium spp.; on the other hand, in US treatments Mucor spp. was also affected by pulse and time. HPH exerted a significant antifungal effect only if the highest pressures were applied for 2–3 times. PMID:27375964

  7. Induction, bounding, weak combinatorial principles, and the homogeneous model theorem

    CERN Document Server

    Hirschfeldt, Denis R; Shore, Richard A

    2017-01-01

    Goncharov and Peretyat'kin independently gave necessary and sufficient conditions for when a set of types of a complete theory T is the type spectrum of some homogeneous model of T. Their result can be stated as a principle of second order arithmetic, which is called the Homogeneous Model Theorem (HMT), and analyzed from the points of view of computability theory and reverse mathematics. Previous computability theoretic results by Lange suggested a close connection between HMT and the Atomic Model Theorem (AMT), which states that every complete atomic theory has an atomic model. The authors show that HMT and AMT are indeed equivalent in the sense of reverse mathematics, as well as in a strong computability theoretic sense and do the same for an analogous result of Peretyat'kin giving necessary and sufficient conditions for when a set of types is the type spectrum of some model.

  8. Osteoarthritic cartilage is more homogeneous than healthy cartilage

    DEFF Research Database (Denmark)

    Qazi, Arish A; Dam, Erik B; Nielsen, Mads

    2007-01-01

    it evolves as a consequence to disease and thereby can be used as a progression biomarker. MATERIALS AND METHODS: A total of 283 right and left knees from 159 subjects aged 21 to 81 years were scanned using a Turbo 3D T1 sequence on a 0.18-T MRI Esaote scanner. The medial compartment of the tibial cartilage...... sheet was segmented using a fully automatic voxel classification scheme based on supervised learning. From the segmented cartilage sheet, homogeneity was quantified by measuring entropy from the distribution of signal intensities inside the compartment. Each knee was examined by radiography...... of the region was evaluated by testing for overfitting. Three different regularization techniques were evaluated for reducing overfitting errors. RESULTS: The P values for separating the different groups based on cartilage homogeneity were 2 x 10(-5) (KL 0 versus KL 1) and 1 x 10(-7) (KL 0 versus KL >0). Using...

  9. Electrical model of dielectric barrier discharge homogenous and filamentary modes

    Science.gov (United States)

    López-Fernandez, J. A.; Peña-Eguiluz, R.; López-Callejas, R.; Mercado-Cabrera, A.; Valencia-Alvarado, R.; Muñoz-Castro, A.; Rodríguez-Méndez, B. G.

    2017-01-01

    This work proposes an electrical model that combines homogeneous and filamentary modes of an atmospheric pressure dielectric barrier discharge cell. A voltage controlled electric current source has been utilized to implement the power law equation that represents the homogeneous discharge mode, which starts when the gas breakdown voltage is reached. The filamentary mode implies the emergence of electric current conducting channels (microdischarges), to add this phenomenon an RC circuit commutated by an ideal switch has been proposed. The switch activation occurs at a higher voltage level than the gas breakdown voltage because it is necessary to impose a huge electric field that contributes to the appearance of streamers. The model allows the estimation of several electric parameters inside the reactor that cannot be measured. Also, it is possible to appreciate the modes of the DBD depending on the applied voltage magnitude. Finally, it has been recognized a good agreement between simulation outcomes and experimental results.

  10. Neutron transport equation - indications on homogenization and neutron diffusion

    International Nuclear Information System (INIS)

    Argaud, J.P.

    1992-06-01

    In PWR nuclear reactor, the practical study of the neutrons in the core uses diffusion equation to describe the problem. On the other hand, the most correct method to describe these neutrons is to use the Boltzmann equation, or neutron transport equation. In this paper, we give some theoretical indications to obtain a diffusion equation from the general transport equation, with some simplifying hypothesis. The work is organised as follows: (a) the most general formulations of the transport equation are presented: integro-differential equation and integral equation; (b) the theoretical approximation of this Boltzmann equation by a diffusion equation is introduced, by the way of asymptotic developments; (c) practical homogenization methods of transport equation is then presented. In particular, the relationships with some general and useful methods in neutronic are shown, and some homogenization methods in energy and space are indicated. A lot of other points of view or complements are detailed in the text or the remarks

  11. Non-Almost Periodicity of Parallel Transports for Homogeneous Connections

    International Nuclear Information System (INIS)

    Brunnemann, Johannes; Fleischhack, Christian

    2012-01-01

    Let A be the affine space of all connections in an SU(2) principal fibre bundle over ℝ 3 . The set of homogeneous isotropic connections forms a line l in A. We prove that the parallel transports for general, non-straight paths in the base manifold do not depend almost periodically on l. Consequently, the embedding l ↪ A does not continuously extend to an embedding l-bar ↪ A-bar of the respective compactifications. Here, the Bohr compactification l-bar corresponds to the configuration space of homogeneous isotropic loop quantum cosmology and A-bar to that of loop quantum gravity. Analogous results are given for the anisotropic case.

  12. Homogenization of the critically spectral equation in neutron transport

    International Nuclear Information System (INIS)

    Allaire, G.; Paris-6 Univ., 75; Bal, G.

    1998-01-01

    We address the homogenization of an eigenvalue problem for the neutron transport equation in a periodic heterogeneous domain, modeling the criticality study of nuclear reactor cores. We prove that the neutron flux, corresponding to the first and unique positive eigenvector, can be factorized in the product of two terms, up to a remainder which goes strongly to zero with the period. On terms is the first eigenvector of the transport equation in the periodicity cell. The other term is the first eigenvector of a diffusion equation in the homogenized domain. Furthermore, the corresponding eigenvalue gives a second order corrector for the eigenvalue of the heterogeneous transport problem. This result justifies and improves the engineering procedure used in practice for nuclear reactor cores computations. (author)

  13. Computer modeling of homogenization of boric acid in IRIS pressurizer

    International Nuclear Information System (INIS)

    Rives Sanz, Ronny; Montesinos Otero, Maria Elena; Gonzalez Mantecon, Javier

    2015-01-01

    Integral layout of nuclear reactor IRIS makes possible the elimination of the spray system; which is usually used to mitigate in-surge transient and help to boron homogenization. The study of transients with deficiencies in the boron homogenization in this technology is very important, because they can cause disturbances in the reactor power and insert a strong reactivity in the core. The aim of the present research is to model the IRIS pressurizer using the CFX code searching for designs alternatives that guaranteed its intrinsic security, focused on the phenomena before mentioned. A symmetric tri dimensional model equivalent to 1/8 of the total geometry was adopted to reduce mesh size and minimize processing time. The relationships are programmed and incorporated into the code. This paper discusses the model developed and the behavior of the system for representative transients sequences. The results of the analyzed IRIS transients could be applied to the design of the pressurizer internal structures and components. (Author)

  14. Oscillatory Dynamics of One-Dimensional Homogeneous Granular Chains

    Science.gov (United States)

    Starosvetsky, Yuli; Jayaprakash, K. R.; Hasan, Md. Arif; Vakakis, Alexander F.

    The acoustics of the homogeneous granular chains has been studied extensively both numerically and experimentally in the references cited in the previous chapters. This chapter focuses on the oscillatory behavior of finite dimensional homogeneous granular chains. It is well known that normal vibration modes are the building blocks of the vibrations of linear systems due to the applicability of the principle of superposition. One the other hand, nonlinear theory is deprived of such a general superposition principle (although special cases of nonlinear superpositions do exist), but nonlinear normal modes ‒ NNMs still play an important role in the forced and resonance dynamics of these systems. In their basic definition [1], NNMs were defined as time-periodic nonlinear oscillations of discrete or continuous dynamical systems where all coordinates (degrees-of-freedom) oscillate in-unison with the same frequency; further extensions of this definition have been considered to account for NNMs of systems with internal resonances [2]...

  15. Homogeneous Catalysis with Metal Complexes Fundamentals and Applications

    CERN Document Server

    Duca, Gheorghe

    2012-01-01

    The book about homogeneous catalysis with metal complexes deals with the description of the reductive-oxidative, metal complexes  in a liquid phase (in polar solvents, mainly in water, and less in nonpolar solvents). The exceptional importance of the redox processes in chemical systems, in the reactions occuring in living organisms, the environmental processes, atmosphere, water, soil, and in industrial technologies (especially in food-processing industries) is discussed. The detailed practical aspects of the established regularities are explained for solving the specific practical tasks in various fields of industrial chemistry, biochemistry, medicine, analytical chemistry and ecological chemistry. The main scope of the book is the survey and systematization of the latest advances in homogeneous catalysis with metal complexes. It gives an overview of the research results and practical experience accumulated by the author during the last decade.

  16. Constructing Bridges between Computational Tools in Heterogeneous and Homogeneous Catalysis

    KAUST Repository

    Falivene, Laura

    2018-05-08

    Better catalysts are needed to address numerous challenges faced by humanity. In this perspective, we review concepts and tools in theoretical and computational chemistry that can help to accelerate the rational design of homogeneous and heterogeneous catalysts. In particular, we focus on the following three topics: 1) identification of key intermediates and transition states in a reaction using the energetic span model, 2) disentanglement of factors influencing the relative stability of the key species using energy decomposition analysis and the activation strain model, and 3) discovery of new catalysts using volcano relationships. To facilitate wider use of these techniques across different areas, we illustrate their potentials and pitfalls when applied to the study of homogeneous and heterogeneous catalysts.

  17. Electrical model of dielectric barrier discharge homogenous and filamentary modes

    International Nuclear Information System (INIS)

    López-Fernandez, J A; Peña-Eguiluz, R; López-Callejas, R; Mercado-Cabrera, A; Valencia-Alvarado, R; Muñoz-Castro, A; Rodríguez-Méndez, B G

    2017-01-01

    This work proposes an electrical model that combines homogeneous and filamentary modes of an atmospheric pressure dielectric barrier discharge cell. A voltage controlled electric current source has been utilized to implement the power law equation that represents the homogeneous discharge mode, which starts when the gas breakdown voltage is reached. The filamentary mode implies the emergence of electric current conducting channels (microdischarges), to add this phenomenon an RC circuit commutated by an ideal switch has been proposed. The switch activation occurs at a higher voltage level than the gas breakdown voltage because it is necessary to impose a huge electric field that contributes to the appearance of streamers. The model allows the estimation of several electric parameters inside the reactor that cannot be measured. Also, it is possible to appreciate the modes of the DBD depending on the applied voltage magnitude. Finally, it has been recognized a good agreement between simulation outcomes and experimental results. (paper)

  18. Advanced homogenization strategies in material modeling of thermally sprayed TBCs

    International Nuclear Information System (INIS)

    Bobzin, K.; Lugscheider, E.; Nickel, R.; Kashko, T.

    2006-01-01

    Thermal barrier coatings (TBC), obtained by atmospheric plasma spraying (APS), have a complex microstructure (lamellar, porous, micro-cracked). Process parameters take an influence on this microstructure. Two methods based on the homogenization for periodic structures are presented in this article. The methods are used to calculate the effective material behavior of APS-TBCs made of partially yttria stabilized zirconia (PYSZ) depending on the microstructure. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  19. Desertification, salinization, and biotic homogenization in a dryland river ecosystem.

    Science.gov (United States)

    Miyazono, Seiji; Patiño, Reynaldo; Taylor, Christopher M

    2015-04-01

    This study determined long-term changes in fish assemblages, river discharge, salinity, and local precipitation, and examined hydrological drivers of biotic homogenization in a dryland river ecosystem, the Trans-Pecos region of the Rio Grande/Rio Bravo del Norte (USA/Mexico). Historical (1977-1989) and current (2010-2011) fish assemblages were analyzed by rarefaction analysis (species richness), nonmetric multidimensional scaling (composition/variability), multiresponse permutation procedures (composition), and paired t-test (variability). Trends in hydrological conditions (1970s-2010s) were examined by Kendall tau and quantile regression, and associations between streamflow and specific conductance (salinity) by generalized linear models. Since the 1970s, species richness and variability of fish assemblages decreased in the Rio Grande below the confluence with the Rio Conchos (Mexico), a major tributary, but not above it. There was increased representation of lower-flow/higher-salinity tolerant species, thus making fish communities below the confluence taxonomically and functionally more homogeneous to those above it. Unlike findings elsewhere, this biotic homogenization was due primarily to changes in the relative abundances of native species. While Rio Conchos discharge was>2-fold higher than Rio Grande discharge above their confluence, Rio Conchos discharge decreased during the study period causing Rio Grande discharge below the confluence to also decrease. Rio Conchos salinity is lower than Rio Grande salinity above their confluence and, as Rio Conchos discharge decreased, it caused Rio Grande salinity below the confluence to increase (reduced dilution). Trends in discharge did not correspond to trends in precipitation except at extreme-high (90th quantile) levels. In conclusion, decreasing discharge from the Rio Conchos has led to decreasing flow and increasing salinity in the Rio Grande below the confluence. This spatially uneven desertification and

  20. Exact Polynomial Eigenmodes for Homogeneous Spherical 3-Manifolds

    OpenAIRE

    Weeks, Jeffrey R.

    2005-01-01

    Observational data hints at a finite universe, with spherical manifolds such as the Poincare dodecahedral space tentatively providing the best fit. Simulating the physics of a model universe requires knowing the eigenmodes of the Laplace operator on the space. The present article provides explicit polynomial eigenmodes for all globally homogeneous 3-manifolds: the Poincare dodecahedral space S3/I*, the binary octahedral space S3/O*, the binary tetrahedral space S3/T*, the prism manifolds S3/D...

  1. Transport and spin effects in homogeneous magnetic superlattice

    International Nuclear Information System (INIS)

    Cardoso, J.L.; Pereyra, P.; Anzaldo-Meneses, A.

    2000-09-01

    Homogeneous semiconductors under spacially periodic external magnetic fields exhibit spin-band splitting and displacements, more clearly defined than in diluted magnetic semiconductor superlattices. We study the influence of the geometrical parameters and the spin-field interaction on the electronic transport properties. We show that by varying the external magnetic field, one can easily block the transmission of either the spin-up or the spin-down electrons. (author)

  2. Homogeneous nucleation, growth and recrystallization of discharge products on electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kappus, W.

    1983-11-01

    The early stage of discharge of electrodes with an electrodissolution/precipitation mechanism is investigated. A theory is proposed for quasi-classical homogeneous nucleation and the subsequent growth. Based on this theory the radii distribution function was calculated for the diffusion-controlled growth of crystallites. Recrystallization was included. The nucleation overpotential was calculated as a function of time for discharges under various conditions.

  3. Numerical Integration of the Transport Equation For Infinite Homogeneous Media

    Energy Technology Data Exchange (ETDEWEB)

    Haakansson, Rune

    1962-01-15

    The transport equation for neutrons in infinite homogeneous media is solved by direct numerical integration. Accounts are taken to the anisotropy and the inelastic scattering. The integration has been performed by means of the trapezoidal rule and the length of the energy intervals are constant in lethargy scale. The machine used is a Ferranti Mercury computer. Results are given for water, heavy water, aluminium water mixture and iron-aluminium-water mixture.

  4. Heterogeneous skills and homogeneous land: segmentation and agglomeration

    OpenAIRE

    Matthias Wrede

    2013-01-01

    This paper analyzes the impact of skill heterogeneity on regional patterns of production and housing in the presence of pecuniary externalities within a general-equilibrium framework assuming monopolistic competition at intermediate good markets. It shows that the interplay of heterogeneous skills and relatively homogeneous land demand triggers skill segmentation and agglomeration. The core region, being more attractive to high skilled workers, has a disproportionately large share of producti...

  5. Homogeneity and scale testing of generalized gamma distribution

    International Nuclear Information System (INIS)

    Stehlik, Milan

    2008-01-01

    The aim of this paper is to derive the exact distributions of the likelihood ratio tests of homogeneity and scale hypothesis when the observations are generalized gamma distributed. The special cases of exponential, Rayleigh, Weibull or gamma distributed observations are discussed exclusively. The photoemulsion experiment analysis and scale test with missing time-to-failure observations are present to illustrate the applications of methods discussed

  6. Color Segmentation of Homogeneous Areas on Colposcopical Images

    Directory of Open Access Journals (Sweden)

    Kosteley Yana

    2016-01-01

    Full Text Available The article provides an analysis of image processing and color segmentation applied to the problem of selection of homogeneous regions in the parameters of the color model. Methods of image processing such as Gaussian filter, median filter, histogram equalization and mathematical morphology are considered. The segmentation algorithm with the parameters of color components is presented, followed by isolation of the resulting connected component of a binary segmentation mask. Analysis of methods performed on images colposcopic research.

  7. Homogenization of monthly precipitation time series in Croatia

    Czech Academy of Sciences Publication Activity Database

    Zahradníček, Pavel; Rasol, D.; Cindric, K.; Štěpánek, Petr

    2014-01-01

    Roč. 34, č. 14 (2014), s. 3671-3682 ISSN 0899-8418 R&D Projects: GA MŠk(CZ) EE2.3.20.0248; GA MŠk(CZ) EE2.4.31.0056 Institutional support: RVO:67179843 Keywords : homogenization * Croatia * precipitation * inhomogeneities * break points Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.157, year: 2014

  8. Tidal Dissipation in a Homogeneous Spherical Body. 1. Methods

    Science.gov (United States)

    2014-11-01

    mantle (with χ = χlmpq ≡ |ωlmpq| being the physical forcing frequency). The dependency J̄ (χ ) follows from the rheological model . Evidently, the... current paper. Key words: planets and satellites: dynamical evolution and stability – planets and satellites: formation – planets and satellites: general... modeling the body with a homogeneous sphere of a certain rheology. However, the simplistic nature of the approach limits the precision of the ensuing

  9. Niobium bonds as homogeneous catalysts for the cyclotrimerization of alkynes

    International Nuclear Information System (INIS)

    Du Toit, C.J.

    1984-05-01

    The activity and selectivity of the catalytic system MX 5 with M = Nb or Ta and X = Cl - or Br - and (CH 3 ) 3 TaCl 2 with regard to the reaction rate and product formation in the reaction with alkynes were evaluated. A measuring technique was developed with which the reaction path of the oligomerization reactions of alkynes with homogeneous catalysts in a nitrogen atmosphere can be followed spectrophotometrically

  10. Desertification, salinization, and biotic homogenization in a dryland river ecosystem

    Science.gov (United States)

    Miyazono, S.; Patino, Reynaldo; Taylor, C.M.

    2015-01-01

    This study determined long-term changes in fish assemblages, river discharge, salinity, and local precipitation, and examined hydrological drivers of biotic homogenization in a dryland river ecosystem, the Trans-Pecos region of the Rio Grande/Rio Bravo del Norte (USA/Mexico). Historical (1977-1989) and current (2010-2011) fish assemblages were analyzed by rarefaction analysis (species richness), nonmetric multidimensional scaling (composition/variability), multiresponse permutation procedures (composition), and paired t-test (variability). Trends in hydrological conditions (1970s-2010s) were examined by Kendall tau and quantile regression, and associations between streamfiow and specific conductance (salinity) by generalized linear models. Since the 1970s, species richness and variability of fish assemblages decreased in the Rio Grande below the confluence with the Rio Conchos (Mexico), a major tributary, but not above it. There was increased representation of lower-flow/higher-salinity tolerant species, thus making fish communities below the confluence taxonomically and functionally more homogeneous to those above it. Unlike findings elsewhere, this biotic homogenization was due primarily to changes in the relative abundances of native species. While Rio Conchos discharge was > 2-fold higher than Rio Grande discharge above their confluence, Rio Conchos discharge decreased during the study period causing Rio Grande discharge below the confluence to also decrease. Rio Conchos salinity is lower than Rio Grande salinity above their confluence and, as Rio Conchos discharge decreased, it caused Rio Grande salinity below the confluence to increase (reduced dilution). Trends in discharge did not correspond to trends in precipitation except at extreme-high (90th quantile) levels. In conclusion, decreasing discharge from the Rio Conchos has led to decreasing flow and increasing salinity in the Rio Grande below the confluence. This spatially uneven desertification and

  11. Spinorial characterizations of surfaces into three-dimensional homogeneous manifolds

    Science.gov (United States)

    Roth, Julien

    2010-06-01

    We give spinorial characterizations of isometrically immersed surfaces into three-dimensional homogeneous manifolds with four-dimensional isometry group in terms of the existence of a particular spinor field. This generalizes works by Friedrich for R3 and Morel for S3 and H3. The main argument is the interpretation of the energy-momentum tensor of such a spinor field as the second fundamental form up to a tensor depending on the structure of the ambient space.

  12. Classification of compact homogeneous spaces with invariant G(2)-structures

    Czech Academy of Sciences Publication Activity Database

    Le, Hong-Van; Munir, M.

    2012-01-01

    Roč. 12, č. 2 (2012), s. 303-328 ISSN 1615-715X R&D Projects: GA AV ČR IAA100190701 Institutional support: RVO:67985840 Keywords : compact homogeneous space * G(2)-structure Subject RIV: BA - General Mathematics Impact factor: 0.371, year: 2012 http://www.degruyter.com/view/j/advg.2012.12.issue-2/advgeom.2011.054/advgeom.2011.054. xml

  13. Evaluation of basic mitochondrial functions using rat tissue homogenates

    Czech Academy of Sciences Publication Activity Database

    Pecinová, Alena; Drahota, Zdeněk; Nůsková, Hana; Pecina, Petr; Houštěk, Josef

    2011-01-01

    Roč. 11, č. 5 (2011), s. 722-728 ISSN 1567-7249 R&D Projects: GA MZd(CZ) NS9759; GA ČR(CZ) GAP303/11/0970; GA MŠk(CZ) 1M0520; GA MŠk OC08017 Institutional research plan: CEZ:AV0Z50110509 Keywords : oxidative phosphorylation * isolated mitochondria * tissue homogenates * respiratory control * membrane potential Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.615, year: 2011

  14. Homogeneity evaluation of mesenchymal stem cells based on electrotaxis analysis

    OpenAIRE

    Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Kim, Dohyun; Koo, Min-Ah; Seon, Gyeung Mi; Park, Jong-Chul

    2017-01-01

    Stem cell therapy that can restore function to damaged tissue, avoid host rejection and reduce inflammation throughout body without use of immunosuppressive drugs. The established methods were used to identify and to isolate specific stem cell markers by FACS or by immunomagnetic cell separation. The procedures for distinguishing population of stem cells took a time and needed many preparations. Here we suggest an electrotaxis analysis as a new method to evaluate the homogeneity of mesenchyma...

  15. Homogenized boundary conditions and resonance effects in Faraday cages

    OpenAIRE

    Hewett, DP; Hewitt, IJ

    2016-01-01

    We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called `Faraday cage e ect'). Taking the limit as the number of wires in the cage tends to in nity we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an e ective cage boundary. We show how the resulting models depend on key cage parameters such as the...

  16. Homogeneity Property of Besov and Triebel-Lizorkin Spaces

    Directory of Open Access Journals (Sweden)

    Cornelia Schneider

    2012-01-01

    Full Text Available We consider the classical Besov and Triebel-Lizorkin spaces defined via differences and prove a homogeneity property for functions with bounded support in the frame of these spaces. As the proof is based on compact embeddings between the studied function spaces, we present also some results on the entropy numbers of these embeddings. Moreover, we derive some applications in terms of pointwise multipliers.

  17. Electromagnetic illusion with isotropic and homogeneous materials through scattering manipulation

    International Nuclear Information System (INIS)

    Yang, Fan; Mei, Zhong Lei; Jiang, Wei Xiang; Cui, Tie Jun

    2015-01-01

    A new isotropic and homogeneous illusion device for electromagnetic waves is proposed. This single-shelled device can change the fingerprint of the covered object into another one by manipulating the scattering of the composite structure. We show that an electrically small sphere can be disguised as another small one with different electromagnetic parameters. The device can even make a dielectric sphere (electrically small) behave like a conducting one. Full-wave simulations confirm the performance of proposed illusion device. (paper)

  18. Lower bounds for the circuit size of partially homogeneous polynomials

    Czech Academy of Sciences Publication Activity Database

    Le, Hong-Van

    2017-01-01

    Roč. 225, č. 4 (2017), s. 639-657 ISSN 1072-3374 Institutional support: RVO:67985840 Keywords : partially homogeneous polynomials * polynomials Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) https://link.springer.com/article/10.1007/s10958-017-3483-4

  19. Properties of subvisible cirrus clouds formed by homogeneous freezing

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2002-01-01

    Full Text Available Number concentrations and mean sizes of ice crystals and derived microphysical and optical properties of subvisible cirrus clouds (SVCs formed by homogeneous freezing of supercooled aerosols are investigated as a function of temperature and updraft speed of adiabatically ascending air parcels. The properties of such clouds are insensitive to variations of the aerosol number and size distribution. Based on criteria constraining the optical extinction, sedimentation time, and existence time of SVCs, longer-lived (>10min clouds, capable of exerting a measurable radiative or chemical impact, are generated within a narrow range of updraft speeds below 1-2cm s-1 at temperatures below about 215K, with concentrations of ice crystals not exceeding 0.1cm-3. The clouds do not reach an equilibrium state because the ice crystals sediment out of the formation layer typically before the supersaturation is removed. Two important conclusions emerge from this work. First, the above characteristics of SVCs may provide an explanation for why SVCs are more common in the cold tropical than in the warmer midlatitude tropopause region. Second, it seems likely that a limited number (-3 of effective heterogeneous freezing nuclei that nucleate ice below the homogeneous freezing threshold can control the formation and properties of SVCs, although homogeneous freezing nuclei are far more abundant.

  20. Homogeneous CdTe quantum dots-carbon nanotubes heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Kayo Oliveira [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Bettini, Jefferson [Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, CEP 13083-970, Campinas, SP (Brazil); Ferrari, Jefferson Luis [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Schiavon, Marco Antonio, E-mail: schiavon@ufsj.edu.br [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil)

    2015-01-15

    The development of homogeneous CdTe quantum dots-carbon nanotubes heterostructures based on electrostatic interactions has been investigated. We report a simple and reproducible non-covalent functionalization route that can be accomplished at room temperature, to prepare colloidal composites consisting of CdTe nanocrystals deposited onto multi-walled carbon nanotubes (MWCNTs) functionalized with a thin layer of polyelectrolytes by layer-by-layer technique. Specifically, physical adsorption of polyelectrolytes such as poly (4-styrene sulfonate) and poly (diallyldimethylammonium chloride) was used to deagglomerate and disperse MWCNTs, onto which we deposited CdTe quantum dots coated with mercaptopropionic acid (MPA), as surface ligand, via electrostatic interactions. Confirmation of the CdTe quantum dots/carbon nanotubes heterostructures was done by transmission and scanning electron microscopies (TEM and SEM), dynamic-light scattering (DLS) together with absorption, emission, Raman and infrared spectroscopies (UV–vis, PL, Raman and FT-IR). Almost complete quenching of the PL band of the CdTe quantum dots was observed after adsorption on the MWCNTs, presumably through efficient energy transfer process from photoexcited CdTe to MWCNTs. - Highlights: • Highly homogeneous CdTe-carbon nanotubes heterostructures were prepared. • Simple and reproducible non-covalent functionalization route. • CdTe nanocrystals homogeneously deposited onto multi-walled carbon nanotubes. • Efficient energy transfer process from photoexcited CdTe to MWCNTs.

  1. Collision-free gases in spatially homogeneous space-times

    International Nuclear Information System (INIS)

    Maartens, R.; Maharaj, S.D.

    1985-01-01

    The kinematical and dynamical properties of one-component collision-free gases in spatially homogeneous, locally rotationally symmetric (LRS) space-times are analyzed. Following Ray and Zimmerman [Nuovo Cimento B 42, 183 (1977)], it is assumed that the distribution function f of the gas inherits the symmetry of space-time, in order to construct solutions of Liouville's equation. The redundancy of their further assumption that f be based on Killing vector constants of the motion is shown. The Ray and Zimmerman results for Kantowski--Sachs space-time are extended to all spatially homogeneous LRS space-times. It is shown that in all these space-times the kinematic average four-velocity u/sup i/ can be tilted relative to the homogeneous hypersurfaces. This differs from the perfect fluid case, in which only one space-time admits tilted u/sup i/, as shown by King and Ellis [Commun. Math. Phys. 31, 209 (1973)]. As a consequence, it is shown that all space-times admit nonzero acceleration and heat flow, while a subclass admits nonzero vorticity. The stress π/sub i/j is proportional to the shear sigma/sub i/j by virtue of the invariance of the distribution function. The evolution of tilt and the existence of perfect fluid solutions is also discussed

  2. Non-homogeneous flow profiles in sheared bacterial suspensions

    Science.gov (United States)

    Samanta, Devranjan; Cheng, Xiang

    Bacterial suspensions under shear exhibit interesting rheological behaviors including the remarkable ``superfluidic'' state with vanishing viscosity at low shear rates. Theoretical studies have shown that such ``superfluidic'' state is linked with non-homogeneous shear flows, which are induced by coupling between nematic order of active fluids and hydrodynamics of shear flows. However, although bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been explored so far. Here, we experimentally investigate the flow behaviors of E. coli suspensions under planar oscillatory shear. Using confocal microscopy and PIV, we measure velocity profiles across gap between two shear plates. We find that with increasing shear rates, high-concentration bacterial suspensions exhibit an array of non-homogeneous flow behaviors like yield-stress flows and shear banding. We show that these non-homogeneous flows are due to collective motion of bacterial suspensions. The phase diagram of sheared bacterial suspensions is systematically mapped as functions of shear rates an bacterial concentrations. Our experiments provide new insights into rheology of bacterial suspensions and shed light on shear induced dynamics of active fluids. Chemical Engineering and Material Science department.

  3. Unified double- and single-sided homogeneous Green's function representations

    Science.gov (United States)

    Wapenaar, Kees; van der Neut, Joost; Slob, Evert

    2016-06-01

    In wave theory, the homogeneous Green's function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green's function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green's function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green's function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green's function retrieval.

  4. Broken ergodicity in two-dimensional homogeneous magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    Shebalin, John V.

    2010-01-01

    Two-dimensional (2D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3D) homogeneous MHD turbulence. These features include several ideal (i.e., nondissipative) invariants along with the phenomenon of broken ergodicity (defined as nonergodic behavior over a very long time). Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo. Recently, the origin of broken ergodicity in 3D MHD turbulence that is manifest in the lowest wavenumbers was found. Here, we study the origin of broken ergodicity in 2D MHD turbulence. It will be seen that broken ergodicity in ideal 2D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions. The origins of broken ergodicity in an ideal 2D homogeneous MHD turbulence are found through an eigenanalysis of the covariance matrices of the probability density function and by an examination of the associated entropy functional. When the values of ideal invariants are kept fixed and grid size increases, it will be shown that the energy in a few large modes remains constant, while the energy in any other mode is inversely proportional to grid size. Also, as grid size increases, we find that broken ergodicity becomes manifest at more and more wavenumbers.

  5. Central Nervous System Vasculitis

    Science.gov (United States)

    ... of Vasculitis / Central Nervous System (CNS) Vasculitis Central Nervous System (CNS) Vasculitis Swap out your current Facebook Profile ... Facebook personal page. Replace with this image. Central nervous system (CNS) vasculitis is inflammation of blood vessel walls ...

  6. Dosimetric calculations by Monte Carlo for treatments of radiosurgery with the Leksell Gamma Knife, homogeneous and non homogeneous cases

    International Nuclear Information System (INIS)

    Rojas C, E.L.; Lallena R, A.M.

    2004-01-01

    In this work dose profiles are calculated that are obtained modeling treatments of radiosurgery with the Leksell Gamma Knife. This was made with the simulation code Monte Carlo Penelope for an homogeneous mannequin and one not homogeneous. Its were carried out calculations with the irradiation focus coinciding with the center of the mannequin as in near areas to the bone interface. Each one of the calculations one carries out for the 4 skull treatment that it includes the Gamma Knife and using a model simplified of their 201 sources of 60 Co. It was found that the dose profiles differ of the order of 2% when the isocenter coincides with the center of the mannequin and they ascend to near 5% when the isocenter moves toward the skull. (Author)

  7. Homogenization of linearly anisotropic scattering cross sections in a consistent B1 heterogeneous leakage model

    International Nuclear Information System (INIS)

    Marleau, G.; Debos, E.

    1998-01-01

    One of the main problems encountered in cell calculations is that of spatial homogenization where one associates to an heterogeneous cell an homogeneous set of cross sections. The homogenization process is in fact trivial when a totally reflected cell without leakage is fully homogenized since it involved only a flux-volume weighting of the isotropic cross sections. When anisotropic leakages models are considered, in addition to homogenizing isotropic cross sections, the anisotropic scattering cross section must also be considered. The simple option, which consists of using the same homogenization procedure for both the isotropic and anisotropic components of the scattering cross section, leads to inconsistencies between the homogeneous and homogenized transport equation. Here we will present a method for homogenizing the anisotropic scattering cross sections that will resolve these inconsistencies. (author)

  8. Selection of suitable prodrug candidates for in vivo studies via in vitro studies; the correlation of prodrug stability in between cell culture homogenates and human tissue homogenates.

    Science.gov (United States)

    Tsume, Yasuhiro; Amidon, Gordon L

    2012-01-01

    To determine the correlations/discrepancies of drug stabilities between in the homogenates of human culture cells and of human tissues. Amino acid/dipeptide monoester prodrugs of floxuridine were chosen as the model drugs. The stabilities (half-lives) of floxuridine prodrugs in human tissues (pancreas, liver, and small intestine) homogenates were obtained and compared with ones in cell culture homogenates (AcPC-1, Capan-2, and Caco-2 cells) as well as human liver microsomes. The correlations of prodrug stability in human small bowel tissue homogenate vs. Caco-2 cell homogenate, human liver tissue homogenate vs. human liver microsomes, and human pancreatic tissue homogenate vs. pancreatic cell, AsPC-1 and Capan-2, homogenates were examined. The stabilities of floxuridine prodrugs in human small bowel homogenate exhibited the great correlation to ones in Caco-2 cell homogenate (slope = 1.0-1.3, r2 = 0.79-0.98). The stability of those prodrugs in human pancreas tissue homogenate also exhibited the good correlations to ones in AsPC-1 and Capan-2 cells homogenates (slope = 0.5-0.8, r2 = 0.58-0.79). However, the correlations of prodrug stabilities between in human liver tissue homogenates and in human liver microsomes were weaker than others (slope = 1.3-1.9, r2 = 0.07-0.24). The correlations of drug stabilities in cultured cell homogenates and in human tissue homogenates were compared. Those results exhibited wide range of correlations between in cell homogenate and in human tissue homogenate (r2 = 0.07 - 0.98). Those in vitro studies in cell homogenates would be good tools to predict drug stabilities in vivo and to select drug candidates for further developments. In the series of experiments, 5'-O-D-valyl-floxuridine and 5'-O-L-phenylalanyl-L-tyrosyl-floxuridine would be selected as candidates of oral drug targeting delivery for cancer chemotherapy due to their relatively good stabilities compared to other tested prodrugs.

  9. Homogenization in powder compacts of UO2-PuO2

    International Nuclear Information System (INIS)

    Verma, R.

    1979-01-01

    The homogenization kinetics in mixed UO 2 -PuO 2 compacts have been studied by adopting a concentric core-shell model of diffusion. An equation relating the extent of homogenization expressed in terms of the fraction of UO 2 remaining undissolved and the time of annealing has been derived. From the equation, the periods required at different annealing temperatures to attain a specified level of homogenization have been calculated. These calculated homogenization times have been found to be in fair agreement with the experimentally observed homogenization times. The derived relationship has also been shown to satisfactorily predict homogenization in Cu-Ni powder compacts. (Auth.)

  10. Technical Note: Homogeneity of Gafchromic EBT2 film

    International Nuclear Information System (INIS)

    Hartmann, Bernadette; Martisikova, Maria; Jaekel, Oliver

    2010-01-01

    Purpose: The self-developing Gafchromic EBT film is a radiochromic film, widely used for relative photon dosimetry. Recently, the manufacturer has replaced the well-investigated EBT film by the new Gafchromic EBT2 film. It has the same sensitive component and, in addition, it contains a yellow marker dye in order to protect the film against ambient light exposure and to serve as a base for corrections of small differences in film response. Furthermore, the configuration of the film layers as well as the binder material have been changed in comparison to the EBT film. When investigating the properties of EBT2 film, all characteristics were found to be similar to those of EBT film, except for the film response homogeneity. Thus, in this article special focus was put on examining the homogeneity of EBT2 film. Methods: A scan protocol established for EBT film and published previously was used. The uniformity of the film coloration was investigated for unirradiated and irradiated EBT2 film sheets. The dose response of EBT2 film was measured and the influence of film inhomogeneities on dose determination was evaluated. Results: Inhomogeneities in pixel values of up to ±3.7% within one film were detected. The relative inhomogeneities were found to be approximately independent of the dose. Nonuniformities of the film response lead to uncertainties in dose determination of ±8.7% at 1 Gy. When using net optical densities for dose calibration, uncertainties in dose determination amount to more than ±6%. Conclusions: EBT2 films from the lot investigated in this study show response inhomogeneities, which lead to uncertainties in dose determination exceeding the commonly accepted tolerance levels. It is important to test further EBT2 lots regarding homogeneity before using the film in clinical routine.

  11. Comparison of different homogenization approaches for elastic–viscoplastic materials

    International Nuclear Information System (INIS)

    Mercier, S; Molinari, A; Berbenni, S; Berveiller, M

    2012-01-01

    Homogenization of linear viscoelastic and non-linear viscoplastic composite materials is considered in this paper. First, we compare two homogenization schemes based on the Mori–Tanaka method coupled with the additive interaction (AI) law proposed by Molinari et al (1997 Mech. Mater. 26 43–62) or coupled with a concentration law based on translated fields (TF) originally proposed for the self-consistent scheme by Paquin et al (1999 Arch. Appl. Mech. 69 14–35). These methods are also evaluated against (i) full-field calculations of the literature based on the finite element method and on fast Fourier transform, (ii) available analytical exact solutions obtained in linear viscoelasticity and (iii) homogenization methods based on variational approaches. Developments of the AI model are obtained for linear and non-linear material responses while results for the TF method are shown for the linear case. Various configurations are considered: spherical inclusions, aligned fibers, hard and soft inclusions, large material contrasts between phases, volume-preserving versus dilatant anelastic flow, non-monotonic loading. The agreement between the AI and TF methods is excellent and the correlation with full field calculations is in general of quite good quality (with some exceptions for non-linear composites with a large volume fraction of very soft inclusions for which a discrepancy of about 15% was found for macroscopic stress). Description of the material behavior with internal variables can be accounted for with the AI and TF approaches and therefore complex loadings can be easily handled in contrast with most hereditary approaches. (paper)

  12. Autoregressive Processes in Homogenization of GNSS Tropospheric Data

    Science.gov (United States)

    Klos, A.; Bogusz, J.; Teferle, F. N.; Bock, O.; Pottiaux, E.; Van Malderen, R.

    2016-12-01

    Offsets due to changes in hardware equipment or any other artificial event are all a subject of a task of homogenization of tropospheric data estimated within a processing of Global Navigation Satellite System (GNSS) observables. This task is aimed at identifying exact epochs of offsets and estimate their magnitudes since they may artificially under- or over-estimate trend and its uncertainty delivered from tropospheric data and used in climate studies. In this research, we analysed a common data set of differences of Integrated Water Vapour (IWV) from GPS and ERA-Interim (1995-2010) provided for a homogenization group working within ES1206 COST Action GNSS4SWEC. We analysed daily IWV records of GPS and ERA-Interim in terms of trend, seasonal terms and noise model with Maximum Likelihood Estimation in Hector software. We found that this data has a character of autoregressive process (AR). Basing on this analysis, we performed Monte Carlo simulations of 25 years long data with two different noise types: white as well as combination of white and autoregressive and also added few strictly defined offsets. This synthetic data set of exactly the same character as IWV from GPS and ERA-Interim was then subjected to a task of manual and automatic/statistical homogenization. We made blind tests and detected possible epochs of offsets manually. We found that simulated offsets were easily detected in series with white noise, no influence of seasonal signal was noticed. The autoregressive series were much more problematic when offsets had to be determined. We found few epochs, for which no offset was simulated. This was mainly due to strong autocorrelation of data, which brings an artificial trend within. Due to regime-like behaviour of AR it is difficult for statistical methods to properly detect epochs of offsets, which was previously reported by climatologists.

  13. Homogenization of Doppler broadening in spin-noise spectroscopy

    Science.gov (United States)

    Petrov, M. Yu.; Ryzhov, I. I.; Smirnov, D. S.; Belyaev, L. Yu.; Potekhin, R. A.; Glazov, M. M.; Kulyasov, V. N.; Kozlov, G. G.; Aleksandrov, E. B.; Zapasskii, V. S.

    2018-03-01

    The spin-noise spectroscopy, being a nonperturbative linear optics tool, is still reputed to reveal a number of capabilities specific to nonlinear optics techniques. The effect of the Doppler broadening homogenization discovered in this work essentially widens these unique properties of spin-noise spectroscopy. We investigate spin noise of a classical system—cesium atoms vapor with admixture of buffer gas—by measuring the spin-induced Faraday rotation fluctuations in the region of D 2 line. The line, under our experimental conditions, is strongly inhomogeneously broadened due to the Doppler effect. Despite that, optical spectrum of the spin-noise power has the shape typical for the homogeneously broadened line with a dip at the line center. This fact is in stark contrast with the results of previous studies of inhomogeneous quantum dot ensembles and Doppler broadened atomic systems. In addition, the two-color spin-noise measurements have shown, in a highly spectacular way, that fluctuations of the Faraday rotation within the line are either correlated or anticorrelated depending on whether the two wavelengths lie on the same side or on different sides of the resonance. The experimental data are interpreted in the frame of the developed theoretical model which takes into account both kinetics and spin dynamics of Cs atoms. It is shown that the unexpected behavior of the Faraday rotation noise spectra and effective homogenization of the optical transition in the spin-noise measurements are related to smallness of the momentum relaxation time of the atoms as compared with their spin-relaxation time. Our findings demonstrate abilities of spin-noise spectroscopy for studying dynamic properties of inhomogeneously broadened ensembles of randomly moving spins.

  14. Homogenizing bacterial cell factories: Analysis and engineering of phenotypic heterogeneity.

    Science.gov (United States)

    Binder, Dennis; Drepper, Thomas; Jaeger, Karl-Erich; Delvigne, Frank; Wiechert, Wolfgang; Kohlheyer, Dietrich; Grünberger, Alexander

    2017-07-01

    In natural habitats, microbes form multispecies communities that commonly face rapidly changing and highly competitive environments. Thus, phenotypic heterogeneity has evolved as an innate and important survival strategy to gain an overall fitness advantage over cohabiting competitors. However, in defined artificial environments such as monocultures in small- to large-scale bioreactors, cell-to-cell variations are presumed to cause reduced production yields as well as process instability. Hence, engineering microbial production toward phenotypic homogeneity is a highly promising approach for synthetic biology and bioprocess optimization. In this review, we discuss recent studies that have unraveled the cell-to-cell heterogeneity observed during bacterial gene expression and metabolite production as well as the molecular mechanisms involved. In addition, current single-cell technologies are briefly reviewed with respect to their applicability in exploring cell-to-cell variations. We highlight emerging strategies and tools to reduce phenotypic heterogeneity in biotechnological expression setups. Here, strain or inducer modifications are combined with cell physiology manipulations to achieve the ultimate goal of equalizing bacterial populations. In this way, the majority of cells can be forced into high productivity, thus reducing less productive subpopulations that tend to consume valuable resources during production. Modifications in uptake systems, inducer molecules or nutrients represent valuable tools for diminishing heterogeneity. Finally, we address the challenge of transferring homogeneously responding cells into large-scale bioprocesses. Environmental heterogeneity originating from extrinsic factors such as stirring speed and pH, oxygen, temperature or nutrient distribution can significantly influence cellular physiology. We conclude that engineering microbial populations toward phenotypic homogeneity is an increasingly important task to take biotechnological

  15. Pliocene benthonic foraminifera from homogeneous and laminated marls on Crete

    NARCIS (Netherlands)

    Jonkers, H.A.

    1984-01-01

    In the Pliocene, the paleogeography of central Crete consisted of a number of basins which were filled by predominantly marly sediments. In the sedimentary sequence numerous laminated sapropelic intercalations can be observed. At a higher stratigraphic level diatomaceous laminites appear.

  16. Plane wave interaction with a homogeneous warm plasma sphere

    International Nuclear Information System (INIS)

    Ruppin, R.

    1975-01-01

    A Mie type theory for the scattering and absorption properties of a homogeneous warm plasma sphere is developed. The theory is applied to the calculation of the extinction cross section of plasma spheres, and the effects of Landau damping and collisional damping on the spectra are discussed. The dependence of the main resonance and of the Tonks-Dattner resonances on the physical parameters characterizing the sphere and its surroundings is investigated. The spectrum is shown to be insenitive to the boundary conditions which specify the behaviour of the electrons at the surface of the sphere (author)

  17. Hypersurface Homogeneous Cosmological Model in Modified Theory of Gravitation

    Science.gov (United States)

    Katore, S. D.; Hatkar, S. P.; Baxi, R. J.

    2016-12-01

    We study a hypersurface homogeneous space-time in the framework of the f (R, T) theory of gravitation in the presence of a perfect fluid. Exact solutions of field equations are obtained for exponential and power law volumetric expansions. We also solve the field equations by assuming the proportionality relation between the shear scalar (σ ) and the expansion scalar (θ ). It is observed that in the exponential model, the universe approaches isotropy at large time (late universe). The investigated model is notably accelerating and expanding. The physical and geometrical properties of the investigated model are also discussed.

  18. Homogenization of variational inequalities and equations defined by pseudomonotone operators

    International Nuclear Information System (INIS)

    Sandrakov, G V

    2008-01-01

    Results on the convergence of sequences of solutions of non-linear equations and variational inequalities for obstacle problems are proved. The variational inequalities and equations are defined by a non-linear, pseudomonotone operator of the second order with periodic, rapidly oscillating coefficients and by sequences of functions characterizing the obstacles and the boundary conditions. Two-scale and macroscale (homogenized) limiting problems for such variational inequalities and equations are obtained. Results on the relationship between solutions of these limiting problems are established and sufficient conditions for the uniqueness of solutions are presented. Bibliography: 25 titles

  19. Fabrication of homogeneous titania/MWNT composite materials

    International Nuclear Information System (INIS)

    Korbely, Barbara; Nemeth, Zoltan; Reti, Balazs; Seo, Jin Won; Magrez, Arnaud; Forro, Laszlo; Hernadi, Klara

    2011-01-01

    Highlights: → Homogenous titania coverage on MWNT surface in a controllable way. → Various titanium alkoxy precursors are suitable for layer formation. → Acetone and ethanol are the best to promote interaction between MWNT and titania. -- Abstract: MWNT/titania nanocomposites were prepared by an impregnation method and subsequent heat treatment at 400 o C. Precursor compounds such as titanium (IV) propoxide and titanium (IV) ethoxide were used to cover the surface of CNTs under solution conditions. Electron microscopy and X-ray diffraction techniques were carried out to characterize the as-prepared titania layers.

  20. Preliminary development of thermal nuclear cell homogenization code

    International Nuclear Information System (INIS)

    Su'ud, Z.; Shafii, M. A.; Yudha, S. P.; Waris, A.; Rijal, K.

    2012-01-01

    Nuclear fuel cell homogenization for thermal reactors usually include three main parts, i.e., fast energy resonance part which usually adopt narrow resonance approximation to treat the resonance, low (intermediate) energy region in which the resonance can not be treated accurately using NR approximation and therefore we should use intermediate resonance treatment, and thermal energy region (very low) in which the effect of thermal must be treated properly. In n this study the application of the intermediate resonance approximation treatment for low energy nuclear resonance is discussed. The method is iterative based. As a sample the method is applied in U-235 low lying resonance and the result is presented and discussed.

  1. Decomposition of ammonium nitrate in homogeneous and catalytic denitration

    International Nuclear Information System (INIS)

    Anan'ev, A. V.; Tananaev, I. G.; Shilov, V. P.

    2005-01-01

    Ammonium nitrate is one of potentially explosive by-products of spent fuel reprocessing. Decomposition of ammonium nitrate in the HNO 3 -HCOOH system was studied in the presence or absence of Pt/SiO 2 catalyst. It was found that decomposition of ammonium nitrate is due to homogeneous noncatalytic oxidation of ammonium ion with nitrous acid generated in the HNO 3 -HCOOH system during denitration. The platinum catalyst initiates the reaction of HNO 3 with HCOOH to form HNO 2 . The regular trends were revealed and the optimal conditions of decomposition of ammonium nitrate in nitric acid solutions were found [ru

  2. Decay of homogeneous two-dimensional quantum turbulence

    Science.gov (United States)

    Baggaley, Andrew W.; Barenghi, Carlo F.

    2018-03-01

    We numerically simulate the free decay of two-dimensional quantum turbulence in a large, homogeneous Bose-Einstein condensate. The large number of vortices, the uniformity of the density profile, and the absence of boundaries (where vortices can drift out of the condensate) isolate the annihilation of vortex-antivortex pairs as the only mechanism which reduces the number of vortices, Nv, during the turbulence decay. The results clearly reveal that vortex annihilation is a four-vortex process, confirming the decay law Nv˜t-1 /3 where t is time, which was inferred from experiments with relatively few vortices in small harmonically trapped condensates.

  3. Integrability of Hamiltonian systems with homogeneous potentials of degree zero

    Energy Technology Data Exchange (ETDEWEB)

    Casale, Guy, E-mail: guy.casale@univ-rennes1.f [IRMAR UMR 6625, Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France); Duval, Guillaume, E-mail: dduuvvaall@wanadoo.f [1 Chemin du Chateau, 76 430 Les Trois Pierres (France); Maciejewski, Andrzej J., E-mail: maciejka@astro.ia.uz.zgora.p [Institute of Astronomy, University of Zielona Gora, Licealna 9, PL-65-417 Zielona Gora (Poland); Przybylska, Maria, E-mail: Maria.Przybylska@astri.uni.torun.p [Torun Centre for Astronomy, N. Copernicus University, Gagarina 11, PL-87-100 Torun (Poland)

    2010-01-04

    We derive necessary conditions for integrability in the Liouville sense of classical Hamiltonian systems with homogeneous potentials of degree zero. We obtain these conditions through an analysis of the differential Galois group of variational equations along a particular solution generated by a non-zero solution d element of C{sup n} of nonlinear equation gradV(d)=d. We prove that when the system is integrable the Hessian matrix V{sup ''}(d) has only integer eigenvalues and is diagonalizable.

  4. Projective embeddings of homogeneous spaces with small boundary

    International Nuclear Information System (INIS)

    Arzhantsev, Ivan V

    2009-01-01

    We study open equivariant projective embeddings of homogeneous spaces such that the complement of the open orbit has codimension at least 2. We establish a criterion for the existence of such an embedding, prove that the set of isomorphism classes of such embeddings is finite, and give a construction of the embeddings in terms of Geometric Invariant Theory. A generalization of Cox's construction and the theory of bunched rings enable us to describe in combinatorial terms the basic geometric properties of embeddings with small boundary

  5. Homogeneous approximation property for continuous shearlet transforms in higher dimensions

    Directory of Open Access Journals (Sweden)

    Yu Su

    2016-07-01

    Full Text Available Abstract This paper is concerned with the generalization of the homogeneous approximation property (HAP for a continuous shearlet transform to higher dimensions. First, we give a pointwise convergence result on the inverse shearlet transform in higher dimensions. Second, we show that every pair of admissible shearlets possess the HAP in the sense of L 2 ( R d $L^{2}(R^{d}$ . Third, we give a sufficient condition for the pointwise HAP to hold, which depends on both shearlets and functions to be reconstructed.

  6. Non-Homogenous Moral Space (from Bentham toSen

    Directory of Open Access Journals (Sweden)

    Piotr (Peter Boltuc

    2013-12-01

    Full Text Available The notion of moral space covers all thin (universal and thick (particular characteristics that may plausibly be seen as morally relevant. In this paper, I investigate certain properties of moral space so defined. These properties are not easily visible if we analyze moral characteristics individually, but become clear once we consider them collectively. In particular, following Amartya Sen, I claim that the value of moral properties is, in part, a function of positional characteristics. I call this notion the non-homogeneity of moral space.

  7. Homogenized Elastic Properties of Graphene for Small Deformations

    Directory of Open Access Journals (Sweden)

    Jurica Sorić

    2013-09-01

    Full Text Available In this paper, we provide the quantification of the linear and non-linear elastic mechanical properties of graphene based upon the judicious combination of molecular mechanics simulation results and homogenization methods. We clarify the influence on computed results by the main model features, such as specimen size, chirality of microstructure, the effect of chosen boundary conditions (imposed displacement versus force and the corresponding plane stress transformation. The proposed approach is capable of explaining the scatter of the results for computed stresses, energy and stiffness and provides the bounds on graphene elastic properties, which are quite important in modeling and simulation of the virtual experiments on graphene-based devices.

  8. Neutron guide geometries for homogeneous phase space volume transformation

    International Nuclear Information System (INIS)

    Stüßer, N.; Bartkowiak, M.; Hofmann, T.

    2014-01-01

    We extend geometries for recently developed optical guide systems that perform homogeneous phase space volume transformations on neutron beams. These modules allow rotating beam directions and can simultaneously compress or expand the beam cross-section. Guide systems combining these modules offer the possibility to optimize ballistic guides with and without direct view on the source and beam splitters. All systems are designed for monochromatic beams with a given divergence. The case of multispectral beams with wavelength-dependent divergence distributions is addressed as well. - Highlights: • Form invariant volume transformation in phase space. • Geometrical approach. • Ballistic guide, beam splitter, beam bender

  9. The General Theory of Homogenization A Personalized Introduction

    CERN Document Server

    Tartar, Luc

    2010-01-01

    Homogenization is not about periodicity, or Gamma-convergence, but about understanding which effective equations to use at macroscopic level, knowing which partial differential equations govern mesoscopic levels, without using probabilities (which destroy physical reality); instead, one uses various topologies of weak type, the G-convergence of Sergio Spagnolo, the H-convergence of Francois Murat and the author, and some responsible for the appearance of nonlocal effects, which many theories in continuum mechanics or physics guessed wrongly. For a better understanding of 20th century science,

  10. Water infiltration into homogeneous soils: a new concept

    International Nuclear Information System (INIS)

    Manfredni, S.

    1977-10-01

    A new concept for the analytical description of the process of water infiltration into homogeneous soils is presented. The concept uses a new definition of a 'gravitational diffusivity' which permits the generalization of both cases, horizontal and vertical infiltration. The efficiency of the new concept in describing the infiltration process, for short and intermediate times, is proved through experimental data obtained during water infiltration into air-dry soil columns. Its advantages are discussed comparing soil water contents predicted by the numerical solution proposed by PHILLIP (1955, 1957) [pt

  11. Diamond-shaped electromagnetic transparent devices with homogeneous material parameters

    International Nuclear Information System (INIS)

    Li Tinghua; Huang Ming; Yang Jingjing; Yu Jiang; Lan Yaozhong

    2011-01-01

    Based on the linear coordinate transformation method, two-dimensional and three-dimensional electromagnetic transparent devices with diamond shape composed of homogeneous and non-singular materials are proposed in this paper. The permittivity and permeability tensors of the transparent devices are derived. The performance and scattering properties of the transparent devices are confirmed by a full-wave simulation. It can physically protect electric devices such as an antenna and a radar station inside, without sacrificing their performance. This work represents important progress towards the practical realization of metamaterial-assisted transparent devices and expands the application of transformation optics.

  12. Neutron guide geometries for homogeneous phase space volume transformation

    Energy Technology Data Exchange (ETDEWEB)

    Stüßer, N., E-mail: stuesser@helmholtz-berlin.de; Bartkowiak, M.; Hofmann, T.

    2014-06-01

    We extend geometries for recently developed optical guide systems that perform homogeneous phase space volume transformations on neutron beams. These modules allow rotating beam directions and can simultaneously compress or expand the beam cross-section. Guide systems combining these modules offer the possibility to optimize ballistic guides with and without direct view on the source and beam splitters. All systems are designed for monochromatic beams with a given divergence. The case of multispectral beams with wavelength-dependent divergence distributions is addressed as well. - Highlights: • Form invariant volume transformation in phase space. • Geometrical approach. • Ballistic guide, beam splitter, beam bender.

  13. Hydrogen atoms in the presence of a homogeneous magnetic field

    International Nuclear Information System (INIS)

    Brandi, H.S.; Koiller, B.

    1978-01-01

    A variational scheme to obtain the spectrum of the hydrogen atom in the presence of an external homogeneous magnetic field is proposed. Two different sets of basis function to diagonalize the Hamiltonian describing the system are used, namely the eigenfunctions of the free hydrogen atom and of the three-dimensional harmonic oscillator; both having their radial coordinates properly scaled by a variational parammeter. Because of its characteristics, the present approach is suitable to describe the ground state as well as an infinite number of excited states also for a wide range of magnetic field strengths [pt

  14. Cosmology the homogeneous universe and the evolution of structures

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2003-01-01

    In my course I will first give and introduction to standard cosmology. I discuss the equations of the homogeneous and isotropic universe and I'll briefly summarize its thermal history. After that I want to concentrate on the fluctuations in the universe. We will study anisotropies in the cosmic microwave background, fluctuations of the matter density and the velocity field and weak lensing. I want to explain especially new cosmological data which are coming up right now and their implication for the cosmological model. N.B. This lecture series will be held in the Auditorium, bldg. 500 on 27, 28, 30, 31 January and in the Council room on 29 January.

  15. Orange oil/water nanoemulsions prepared by high pressure homogenizer

    International Nuclear Information System (INIS)

    Kourniatis, Loretta R.; Spinelli, Luciana S.; Mansur, Claudia R.E.

    2010-01-01

    The objective of this work was to use the high-pressure homogenizer (HPH) to prepare stable oil/water nanoemulsions presenting narrow particle size distribution. The dispersions were prepared using nonionic surfactants based on ethoxylated ether. The size and distribution of the droplets formed, along with their stability, were determined in a Zetasizer Nano ZS particle size analyzer. The stability and the droplet size distribution in these systems do not present the significant differences with the increase of the processing pressure in the HPH). The processing time can promote the biggest dispersion in the size of particles, thus reducing its stability. (author)

  16. Chaos Control on a Duopoly Game with Homogeneous Strategy

    Directory of Open Access Journals (Sweden)

    Manying Bai

    2016-01-01

    Full Text Available We study the dynamics of a nonlinear discrete-time duopoly game, where the players have homogenous knowledge on the market demand and decide their outputs based on adaptive expectation. The Nash equilibrium and its local stability are investigated. The numerical simulation results show that the model may exhibit chaotic phenomena. Quasiperiodicity is also found by setting the parameters at specific values. The system can be stabilized to a stable state by using delayed feedback control method. The discussion of control strategy shows that the effect of both firms taking control method is better than that of single firm taking control method.

  17. Ab initio molecular dynamics in a finite homogeneous electric field.

    Science.gov (United States)

    Umari, P; Pasquarello, Alfredo

    2002-10-07

    We treat homogeneous electric fields within density functional calculations with periodic boundary conditions. A nonlocal energy functional depending on the applied field is used within an ab initio molecular dynamics scheme. The reliability of the method is demonstrated in the case of bulk MgO for the Born effective charges, and the high- and low-frequency dielectric constants. We evaluate the static dielectric constant by performing a damped molecular dynamics in an electric field and avoiding the calculation of the dynamical matrix. Application of this method to vitreous silica shows good agreement with experiment and illustrates its potential for systems of large size.

  18. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  19. Nonlinear ionic transport through microstructured solid electrolytes: homogenization estimates

    Science.gov (United States)

    Curto Sillamoni, Ignacio J.; Idiart, Martín I.

    2016-10-01

    We consider the transport of multiple ionic species by diffusion and migration through microstructured solid electrolytes in the presence of strong electric fields. The assumed constitutive relations for the constituent phases follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The effective response is heuristically deduced from a multi-scale convergence analysis of the relevant field equations. The resulting homogenized response involves an effective dissipation potential per species. Each potential is mathematically akin to that of a standard nonlinear heterogeneous conductor. A ‘linear-comparison’ homogenization technique is then used to generate estimates for these nonlinear potentials in terms of available estimates for corresponding linear conductors. By way of example, use is made of the Maxwell-Garnett and effective-medium linear approximations to generate estimates for two-phase systems with power-law dissipation. Explicit formulas are given for some limiting cases. In the case of threshold-type behavior, the estimates exhibit non-analytical dilute limits and seem to be consistent with fields localized in low energy paths.

  20. Heats pipes for temperature homogenization: A literature review

    International Nuclear Information System (INIS)

    Blet, Nicolas; Lips, Stéphane; Sartre, Valérie

    2017-01-01

    Highlights: • This paper is a review based on more than sixty references. • The review is sorted into various application fields. • Quantitative values of thermal gradients are compared with and without heat pipes. • Specificities of mentioned heat pipes are compared to other functions of heat pipes. - Abstract: Heat pipes offer high effective heat transfer in a purely passive way. Other specific properties of heat pipes, like temperature homogenization, can be also reached. In this paper, a literature review is carried out in order to investigate the existing heat pipe systems mainly aiming the reduction of temperature gradients. The review gathering more than sixty references is sorted into various application fields, like thermal management of electronics, of storage vessels or of satellites, for which the management of the temperature uniformity differs by the isothermal surface area, temperature ranges or the targeted precision of the temperature flattening. A summary of heat pipe characteristics for this function of temperature homogenization is then performed to identify their specificities, compared to other applications of heat pipes.

  1. Rate of Homogenous Nucleation of Ice in Supercooled Water.

    Science.gov (United States)

    Atkinson, James D; Murray, Benjamin J; O'Sullivan, Daniel

    2016-08-25

    The homogeneous freezing of water is of fundamental importance to a number of fields, including that of cloud formation. However, there is considerable scatter in homogeneous nucleation rate coefficients reported in the literature. Using a cold stage droplet system designed to minimize uncertainties in temperature measurements, we examined the freezing of over 1500 pure water droplets with diameters between 4 and 24 μm. Under the assumption that nucleation occurs within the bulk of the droplet, nucleation rate coefficients fall within the spread of literature data and are in good agreement with a subset of more recent measurements. To quantify the relative importance of surface and volume nucleation in our experiments, where droplets are supported by a hydrophobic surface and surrounded by oil, comparison of droplets with different surface area to volume ratios was performed. From our experiments it is shown that in droplets larger than 6 μm diameter (between 234.6 and 236.5 K), nucleation in the interior is more important than nucleation at the surface. At smaller sizes we cannot rule out a significant contribution of surface nucleation, and in order to further constrain surface nucleation, experiments with smaller droplets are necessary. Nevertheless, in our experiments, it is dominantly volume nucleation controlling the observed nucleation rate.

  2. Homogeneous protein analysis by magnetic core-shell nanorod probes

    KAUST Repository

    Schrittwieser, Stefan

    2016-03-29

    Studying protein interactions is of vital importance both to fundamental biology research and to medical applications. Here, we report on the experimental proof of a universally applicable label-free homogeneous platform for rapid protein analysis. It is based on optically detecting changes in the rotational dynamics of magnetically agitated core-shell nanorods upon their specific interaction with proteins. By adjusting the excitation frequency, we are able to optimize the measurement signal for each analyte protein size. In addition, due to the locking of the optical signal to the magnetic excitation frequency, background signals are suppressed, thus allowing exclusive studies of processes at the nanoprobe surface only. We study target proteins (soluble domain of the human epidermal growth factor receptor 2 - sHER2) specifically binding to antibodies (trastuzumab) immobilized on the surface of our nanoprobes and demonstrate direct deduction of their respective sizes. Additionally, we examine the dependence of our measurement signal on the concentration of the analyte protein, and deduce a minimally detectable sHER2 concentration of 440 pM. For our homogeneous measurement platform, good dispersion stability of the applied nanoprobes under physiological conditions is of vital importance. To that end, we support our measurement data by theoretical modeling of the total particle-particle interaction energies. The successful implementation of our platform offers scope for applications in biomarker-based diagnostics as well as for answering basic biology questions.

  3. Homogeneous Ir-192 afterloading-flab-irradiation of plane surfaces

    International Nuclear Information System (INIS)

    Bratengeier, K.; Krieger, T.

    2002-01-01

    Homogeneous irradiation of plane targets bt Ir-192 afterloading flabs made by a parallel series of linear applicators can be time-consuming even with modern planning systems. The aim of the present study was to develop an algorithm that supplies homogeneous dose distributions in an arbitrary given plane in parallel to the equipped plane of a flab. The edge and corner positions of the flab are of particular importance. The identity of the dose in the optimisation distance above the flab centre, corners, and middle of the flab edges, leads to a strict relation of the respective dwell weights. Formulas can be derived that allow the calculation of the dwell times. The dimensioning of the flab can be rapidly adapted to new conditions. A comparison with the results of Nucletron PLATO-BPS for applicator-applicator distances and step sizes of 1 cm at optimisation distances of 10, 20, 30, and 40 mm and various flab sizes (3 x 3, 9 x 9, and 15 x 15 cm 2 ) shows the following results: The standard deviation of the proposed algorithm is sometimes slightly higher than the results of the commercial planning system, whereas the underdosage at the flab edges is usually smaller. The effort for planning and preparation of the irradiation, for example using a Nucletron HDR, is below 5 minutes - a considerable reduction of planning time. (orig.) [de

  4. Title: a simple method to evaluate linac beam homogeneity

    International Nuclear Information System (INIS)

    Monti, A.F.; Ostinelli, A.; Gelosa, S.; Frigerio, M.

    1995-01-01

    Quality Control (QC) tests in Radiotherapy represent a basic requirement to asses treatment units performance and treatment quality. Since they are generally time consuming, it is worth while to introduce procedures and methods which can be carried on more easily and quickly. Since 1994 in the Radiotherapy Department of S. Anna Hospital, it had been employed a commercially available solid phantom (PRECITRON) with a 10 diodes array, to investigate beam homogeneity (symmetry and flatness). In particular, global symmetry percentage indexes were defined which consider pairs of corresponding points along each axis (x and y) and compare the readings of the respective diodes, following the formula: (I gs =((X d + X -d ) - (Y d + Y -d )((X d + X -d ) + (Y d + Y -d )*200 where X d and X -d are points 8 or 10 cm equally spaced from the beam centre along x axis and the same for Y d and Y -d along y axis. Even if non supporting international protocols requirements as a whole, this parameter gives an important information about beam homogeneity, when only few points of measure are available in a plane, and it can be daily determined, thus fulfilling the aim of lightning immediately each situation capable to compromise treatment accuracy and effectiveness. In this poster we report the results concerning this parameter for a linear accelerator (Varian Clinac 1800), since September 1994 to September 1995

  5. Homogenization techniques for population dynamics in strongly heterogeneous landscapes.

    Science.gov (United States)

    Yurk, Brian P; Cobbold, Christina A

    2018-12-01

    An important problem in spatial ecology is to understand how population-scale patterns emerge from individual-level birth, death, and movement processes. These processes, which depend on local landscape characteristics, vary spatially and may exhibit sharp transitions through behavioural responses to habitat edges, leading to discontinuous population densities. Such systems can be modelled using reaction-diffusion equations with interface conditions that capture local behaviour at patch boundaries. In this work we develop a novel homogenization technique to approximate the large-scale dynamics of the system. We illustrate our approach, which also generalizes to multiple species, with an example of logistic growth within a periodic environment. We find that population persistence and the large-scale population carrying capacity is influenced by patch residence times that depend on patch preference, as well as movement rates in adjacent patches. The forms of the homogenized coefficients yield key theoretical insights into how large-scale dynamics arise from the small-scale features.

  6. Cluster-cell calculation using the method of generalized homogenization

    International Nuclear Information System (INIS)

    Laletin, N.I.; Boyarinov, V.F.

    1988-01-01

    The generalized-homogenization method (GHM), used for solving the neutron transfer equation, was applied to calculating the neutron distribution in the cluster cell with a series of cylindrical cells with cylindrically coaxial zones. Single-group calculations of the technological channel of the cell of an RBMK reactor were performed using GHM. The technological channel was understood to be the reactor channel, comprised of the zirconium rod, the water or steam-water mixture, the uranium dioxide fuel element, and the zirconium tube, together with the adjacent graphite layer. Calculations were performed for channels with no internal sources and with unit incoming current at the external boundary as well as for channels with internal sources and zero current at the external boundary. The PRAKTINETs program was used to calculate the symmetric neutron distributions in the microcell and in channels with homogenized annular zones. The ORAR-TsM program was used to calculate the antisymmetric distribution in the microcell. The accuracy of the calculations were compared for the two channel versions

  7. Numerical Studies of Homogenization under a Fast Cellular Flow

    KAUST Repository

    Iyer, Gautam

    2012-09-13

    We consider a two dimensional particle diffusing in the presence of a fast cellular flow confined to a finite domain. If the flow amplitude A is held fixed and the number of cells L 2 →∞, then the problem homogenizes; this has been well studied. Also well studied is the limit when L is fixed and A→∞. In this case the solution averages along stream lines. The double limit as both the flow amplitude A→∞and the number of cells L 2 →∞was recently studied [G. Iyer et al., preprint, arXiv:1108.0074]; one observes a sharp transition between the homogenization and averaging regimes occurring at A = L 2. This paper numerically studies a few theoretically unresolved aspects of this problem when both A and L are large that were left open in [G. Iyer et al., preprint, arXiv:1108.0074] using the numerical method devised in [G. A. Pavliotis, A. M. Stewart, and K. C. Zygalakis, J. Comput. Phys., 228 (2009), pp. 1030-1055]. Our treatment of the numerical method uses recent developments in the theory of modified equations for numerical integrators of stochastic differential equations [K. C. Zygalakis, SIAM J. Sci. Comput., 33 (2001), pp. 102-130]. © 2012 Society for Industrial and Applied Mathematics.

  8. Nationwide Genomic Study in Denmark Reveals Remarkable Population Homogeneity.

    Science.gov (United States)

    Athanasiadis, Georgios; Cheng, Jade Y; Vilhjálmsson, Bjarni J; Jørgensen, Frank G; Als, Thomas D; Le Hellard, Stephanie; Espeseth, Thomas; Sullivan, Patrick F; Hultman, Christina M; Kjærgaard, Peter C; Schierup, Mikkel H; Mailund, Thomas

    2016-10-01

    Denmark has played a substantial role in the history of Northern Europe. Through a nationwide scientific outreach initiative, we collected genetic and anthropometrical data from ∼800 high school students and used them to elucidate the genetic makeup of the Danish population, as well as to assess polygenic predictions of phenotypic traits in adolescents. We observed remarkable homogeneity across different geographic regions, although we could still detect weak signals of genetic structure reflecting the history of the country. Denmark presented genomic affinity with primarily neighboring countries with overall resemblance of decreasing weight from Britain, Sweden, Norway, Germany, and France. A Polish admixture signal was detected in Zealand and Funen, and our date estimates coincided with historical evidence of Wend settlements in the south of Denmark. We also observed considerably diverse demographic histories among Scandinavian countries, with Denmark having the smallest current effective population size compared to Norway and Sweden. Finally, we found that polygenic prediction of self-reported adolescent height in the population was remarkably accurate (R 2 = 0.639 ± 0.015). The high homogeneity of the Danish population could render population structure a lesser concern for the upcoming large-scale gene-mapping studies in the country. Copyright © 2016 by the Genetics Society of America.

  9. Numerical Studies of Homogenization under a Fast Cellular Flow

    KAUST Repository

    Iyer, Gautam; Zygalakis, Konstantinos C.

    2012-01-01

    We consider a two dimensional particle diffusing in the presence of a fast cellular flow confined to a finite domain. If the flow amplitude A is held fixed and the number of cells L 2 →∞, then the problem homogenizes; this has been well studied. Also well studied is the limit when L is fixed and A→∞. In this case the solution averages along stream lines. The double limit as both the flow amplitude A→∞and the number of cells L 2 →∞was recently studied [G. Iyer et al., preprint, arXiv:1108.0074]; one observes a sharp transition between the homogenization and averaging regimes occurring at A = L 2. This paper numerically studies a few theoretically unresolved aspects of this problem when both A and L are large that were left open in [G. Iyer et al., preprint, arXiv:1108.0074] using the numerical method devised in [G. A. Pavliotis, A. M. Stewart, and K. C. Zygalakis, J. Comput. Phys., 228 (2009), pp. 1030-1055]. Our treatment of the numerical method uses recent developments in the theory of modified equations for numerical integrators of stochastic differential equations [K. C. Zygalakis, SIAM J. Sci. Comput., 33 (2001), pp. 102-130]. © 2012 Society for Industrial and Applied Mathematics.

  10. Integration and magnitude homogenization of the Egyptian earthquake catalogue

    International Nuclear Information System (INIS)

    Hussein, H.M.; Abou Elenean, K.A.; Marzouk, I.A.; Abu El-Nader, E.; Peresan, A.; Korrat, I.M.; Panza, G.F.; El-Gabry, M.N.

    2008-03-01

    The aim of the present work is to compile and update a catalogue of the instrumentally recorded earthquakes in Egypt, with uniform and homogeneous source parameters as required for the analysis of seismicity and seismic hazard assessment. This in turn requires a detailed analysis and comparison of the properties of different available sources, including the distribution of events with time, the magnitude completeness and the scaling relations between different kinds of magnitude reported by different agencies. The observational data cover the time interval 1900- 2004 and an area between 22--33.5 deg N and 25--3 6 deg. E. The linear regressions between various magnitude types have been evaluated for different magnitude ranges. Using the best linear relationship determined for each available pair of magnitudes, as well as those identified between the magnitudes and the seismic moment, we convert the different magnitude types into moment magnitudes M W , through a multi-step conversion process. Analysis of the catalogue completeness, based on the MW thus estimated, allows us to identify two different time intervals with homogeneous properties. The first one (1900- 1984) appears to be complete for M W ≥ 4.5, while the second one (1985-2004) can be considered complete for magnitudes M W ≥ 3. (author)

  11. Principal distance constraint error diffusion algorithm for homogeneous dot distribution

    Science.gov (United States)

    Kang, Ki-Min; Kim, Choon-Woo

    1999-12-01

    The perceived quality of the halftoned image strongly depends on the spatial distribution of the binary dots. Various error diffusion algorithms have been proposed for realizing the homogeneous dot distribution in the highlight and shadow regions. However, they are computationally expensive and/or require large memory space. This paper presents a new threshold modulated error diffusion algorithm for the homogeneous dot distribution. The proposed method is applied exactly same as the Floyd-Steinberg's algorithm except the thresholding process. The threshold value is modulated based on the difference between the distance to the nearest minor pixel, `minor pixel distance', and the principal distance. To do so, calculation of the minor pixel distance is needed for every pixel. But, it is quite time consuming and requires large memory resources. In order to alleviate this problem, `the minor pixel offset array' that transforms the 2D history of minor pixels into the 1D codes is proposed. The proposed algorithm drastically reduces the computational load and memory spaces needed for calculation of the minor pixel distance.

  12. Enthalpy recovery in glassy materials: Heterogeneous versus homogenous models

    Science.gov (United States)

    Mazinani, Shobeir K. S.; Richert, Ranko

    2012-05-01

    Models of enthalpy relaxations of glasses are the basis for understanding physical aging, scanning calorimetry, and other phenomena that involve non-equilibrium and non-linear dynamics. We compare models in terms of the nature of the relaxation dynamics, heterogeneous versus homogeneous, with focus on the Kovacs-Aklonis-Hutchinson-Ramos (KAHR) and the Tool-Narayanaswamy-Moynihan (TNM) approaches. Of particular interest is identifying the situations for which experimental data are capable of discriminating the heterogeneous from the homogeneous scenario. The ad hoc assumption of a single fictive temperature, Tf, is common to many models, including KAHR and TNM. It is shown that only for such single-Tf models, enthalpy relaxation of a glass is a two-point correlation function in reduced time, implying that experimental results are not decisive regarding the underlying nature of the dynamics of enthalpy relaxation. We also find that the restriction of the common TNM model to a Kohlrausch-Williams-Watts type relaxation pattern limits the applicability of this approach, as the particular choice regarding the distribution of relaxation times is a more critical factor compared with isothermal relaxation experiments. As a result, significant improvements in fitting calorimetry data can be achieved with subtle adjustments in the underlying relaxation time distribution.

  13. The Homogeneity Research of Urban Rail Transit Network Performance

    Directory of Open Access Journals (Sweden)

    Wang Fu-jian

    2016-01-01

    Full Text Available Urban Rail Transit is an important part of the public transit, it is necessary to carry out the corresponding network function analysis. Previous studies mainly about network performance analysis of a single city rail transit, lacking of horizontal comparison between the multi-city, it is difficult to find inner unity of different Urban Rail Transit network functions. Taking into account the Urban Rail Transit network is a typical complex networks, so this paper proposes the application of complex network theory to research the homogeneity of Urban Rail Transit network performance. This paper selects rail networks of Beijing, Shanghai, Guangzhou as calculation case, gave them a complex network mapping through the L, P Space method and had a static topological analysis using complex network theory, Network characteristics in three cities were calculated and analyzed form node degree distribution and node connection preference. Finally, this paper studied the network efficiency changes of Urban Rail Transit system under different attack mode. The results showed that, although rail transport network size, model construction and construction planning of the three cities are different, but their network performance in many aspects showed high homogeneity.

  14. Homogeneity of blended nuclear fuel powders after pneumatic transport

    International Nuclear Information System (INIS)

    Smeltzer, E.E.; Skriba, M.C.; Lyon, W.L.

    1982-01-01

    A study of the pneumatic transport of fine (approx. 1μm) cohesive nuclear fuel powders was conducted for the U.S. Department of Energy to demonstrate the feasibility of this method of transport and to develop a design data base for use in a large scale nuclear fuel production facility. As part of this program, a considerable effort was directed at following the homogeneity of blended powders. Since different reactors require different enrichments, blending and subsequent transport are critical parts of the fabrication sequence. The various materials used represented analogs of a wide range of powders and blends that could be expected in a commercial mixed oxide fabrication facility. All UO 2 powders used were depleted and a co-precipitated master mix of (U, Th)O 2 was made specifically for this program, using thorium as an analog for plutonium. In order to determine the effect of pneumatic transport on a blended powder, samples were taken from a feeder vessel before each test, and from a receiver vessel and a few line sections after each transfer test. The average difference between the before and after degree of non-homogeneity was < 1%, for the 21 tests considered. This shows that overall, the pneumatic transport of blended, fine nuclear fuel powders is possible, with only minor unblending occurring

  15. Fluidic delivery of homogeneous solutions through carbon tube bundles

    International Nuclear Information System (INIS)

    Srikar, R; Yarin, A L; Megaridis, C M

    2009-01-01

    A wide array of technological applications requires localized high-rate delivery of dissolved compounds (in particular, biological ones), which can be achieved by forcing the solutions or suspensions of such compounds through nano or microtubes and their bundled assemblies. Using a water-soluble compound, the fluorescent dye Rhodamine 610 chloride, frequently used as a model drug release compound, it is shown that deposit buildup on the inner walls of the delivery channels and its adverse consequences pose a severe challenge to implementing pressure-driven long-term fluidic delivery through nano and microcapillaries, even in the case of such homogeneous solutions. Pressure-driven delivery (3-6 bar) of homogeneous dye solutions through macroscopically-long (∼1 cm) carbon nano and microtubes with inner diameters in the range 100 nm-1 μm and their bundled parallel assemblies is studied experimentally and theoretically. It is shown that the flow delivery gradually shifts from fast convection-dominated (unobstructed) to slow jammed convection, and ultimately to diffusion-limited transport through a porous deposit. The jamming/clogging phenomena appear to be rather generic: they were observed in a wide concentration range for two fluorescent dyes in carbon nano and microtubes, as well as in comparable transparent glass microcapillaries. The aim of the present work is to study the physics of jamming, rather than the chemical reasons for the affinity of dye molecules to the tube walls.

  16. Changes of the Temperature and Precipitation Extremes on Homogenized Data

    Directory of Open Access Journals (Sweden)

    LAKATOS, Mónika

    2007-01-01

    Full Text Available Climate indices to detect changes have been defined in several international projects onclimate change. Climate index calculations require at least daily resolution of time series withoutinhomogeneities, such as transfer of stations, changes in observation practice. In many cases thecharacteristics of the estimated linear trends, calculated from the original and from the homogenizedtime series are significantly different. The ECA&D (European Climate Assessment & Dataset indicesand some other special temperature and precipitation indices of own development were applied to theClimate Database of the Hungarian Meteorological Service. Long term daily maximum, minimum anddaily mean temperature data series and daily precipitation sums were examined. The climate indexcalculation processes were tested on original observations and on homogenized daily data fortemperature; in the case of precipitation a complementation process was performed to fill in the gapsof missing data. Experiences of comparing the climate index calculation results, based on original andcomplemented-homogenized data, are reported in this paper. We present the preliminary result ofclimate index calculations also on gridded (interpolated daily data.

  17. Deduction of Einstein equation from homogeneity of Riemann spacetime

    Science.gov (United States)

    Ni, Jun

    2012-03-01

    The symmetry of spacetime translation leads to the energy-momentum conservation. However, the Lagrange depends on spacetime coordinates, which makes the symmetry of spacetime translation different with other symmetry invariant explicitly under symmetry transformation. We need an equation to guarantee the symmetry of spacetime translation. In this talk, I will show that the Einstein equation can be deduced purely from the general covariant principle and the homogeneity of spacetime in the frame of quantum field theory. The Einstein equation is shown to be the equation to guarantee the symmetry of spacetime translation. Gravity is an apparent force due to the curvature of spacetime resulted from the conservation of energy-momentum. In the action of quantum field, only electroweak-strong interactions appear with curved spacetime metric determined by the Einstein equation.. The general covariant principle and the homogeneity of spacetime are merged into one basic principle: Any Riemann spacetime metric guaranteeing the energy-momentum conservation are equivalent, which can be called as the conserved general covariant principle. [4pt] [1] Jun Ni, Chin. Phys. Lett. 28, 110401 (2011).

  18. Spatial and temporal genetic homogeneity of the Monterey Spanish mackerel, Scomberomorus concolor, in the Gulf of California

    Directory of Open Access Journals (Sweden)

    Erika Magallón-Gayón

    2016-10-01

    Full Text Available The genetic homogeneity of the Monterey Spanish mackerel Scomberomorus concolor population in the Gulf of California was confirmed using nine nuclear microsatellite loci in combination with mitochondrial cytochrome b gene sequences. Samples were collected from the upper and central Gulf areas, representing the two main biogeographical regions of the Gulf. The analyses support the existence of a single panmictic population of S. concolor inhabiting the Gulf of California which in terms of fishery management represents a single genetic stock. Additionally, the contemporary effective population size estimated for the S. concolor population (Ne = 3056.9 was high and similar to another pelagic species. The gene flow seems to be bidirectional between the upper and central Gulf, which coincides with the seasonal movements between both regions related to spawning and feeding activities. A population expansion event was detected, which agrees with a colonization-expansion hypothesis of the S. concolor population in the Gulf.

  19. Suggestion for a homogenizer installation in LOFT small break two-phase measurement

    International Nuclear Information System (INIS)

    Rieger, G.

    1981-07-01

    The purpose of this task, which was performed as an Austrian inkind contribution for the INEL research program is a) the evaluation of literature concerning homogenizers to improve two phase flow measurements for the LOFT small break test series, b) design of a homogenizer and c) recommandation of the location of a homogenizer in the LOFT piping system. To optimize the location of the homogenizer LTSF-tests should be performed according to the suggestions in this paper. (author)

  20. A Comparison of Homogeneous and Multi-layered Berm Breakwaters with Respect to Overtopping and Stability

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Skals, Kasper; Burcharth, Hans F.

    2008-01-01

    The paper deals with homogeneous and multi-layer berm breakwaters designed to maximize the utilization of the quarry material. Two wide stone classes are typically used for berm breakwaters with a homogeneous berm.......The paper deals with homogeneous and multi-layer berm breakwaters designed to maximize the utilization of the quarry material. Two wide stone classes are typically used for berm breakwaters with a homogeneous berm....

  1. Alfven-ion-cyclotron instability in the central cell of TMX

    International Nuclear Information System (INIS)

    Watson, D.C.; Baldwin, D.E.

    1977-01-01

    The central cell of TMX may require hot-ion injection. The resulting velocity-space anisotropy together with the length of the central homogeneous region raise the possibility of convective AIC instability. In this report we demonstrate that the Rosenbluth criterion of less than a thousand-fold amplitude amplification per pass can be satisfied by ion distributions which nevertheless have sufficient anisotropy to be confined within the central cell

  2. Immobilised Homogeneous Catalysts for Sequential Fine Chemical Synthesis : Functionalised Organometallics for Nanotechnology

    NARCIS (Netherlands)

    McDonald, A.R.

    2008-01-01

    The work described in this thesis has demonstrated the application of heterogenised homogeneous catalysts. We have shown that by coupling a homogeneous catalyst to a heterogeneous support we could combine the benefits of two major fields of catalysis: retain the high selectivity of homogeneous

  3. Effects of high-speed homogenization and high-pressure homogenization on structure of tomato residue fibers.

    Science.gov (United States)

    Hua, Xiao; Xu, Shanan; Wang, Mingming; Chen, Ying; Yang, Hui; Yang, Ruijin

    2017-10-01

    Tomato residue fibers obtained after derosination and deproteinization were processed by high-speed homogenization (HSH) and high-pressure homogenization (HPH), and their effects on fiber structure was investigated, respectively. Characterizations including particle size distribution, SEM, TEM and XRD were performed. HSH could break raw fibers to small particles of around 60μm, while HPH could reshape fibers to build network structure. Microfibrils were released and their nanostructure consisting of elementary fibrils was observed by TEM. XRD patterns indicated both HSH and HPH could hardly alter the nanostructure of the fibers. Physicochemical properties including expansibility, WHC and OHC were determined. Both HSH and HPH could increase the soluble fiber content by about 8%, but HSH-HPH combined processing did not show better result. Acid (4mol/L HCl) was used in replacement of water medium and the acidic degradation of fibers could be promoted by high speed shearing or high pressure processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Neural plasticity in amplitude of low frequency fluctuation, cortical hub construction, regional homogeneity resulting from working memory training.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Kotozaki, Yuka; Nakagawa, Seishu; Makoto Miyauchi, Carlos; Sassa, Yuko; Kawashima, Ryuta

    2017-05-03

    Working memory training (WMT) induces changes in cognitive function and various neurological systems. Here, we investigated changes in recently developed resting state functional magnetic resonance imaging measures of global information processing [degree of the cortical hub, which may have a central role in information integration in the brain, degree centrality (DC)], the magnitude of intrinsic brain activity [fractional amplitude of low frequency fluctuation (fALFF)], and local connectivity (regional homogeneity) in young adults, who either underwent WMT or received no intervention for 4 weeks. Compared with no intervention, WMT increased DC in the anatomical cluster, including anterior cingulate cortex (ACC), to the medial prefrontal cortex (mPFC). Furthermore, WMT increased fALFF in the anatomical cluster including the right dorsolateral prefrontal cortex (DLPFC), frontopolar area and mPFC. WMT increased regional homogeneity in the anatomical cluster that spread from the precuneus to posterior cingulate cortex and posterior parietal cortex. These results suggest WMT-induced plasticity in spontaneous brain activity and global and local information processing in areas of the major networks of the brain during rest.

  5. A homogeneous static gravitational field and the principle of equivalence

    International Nuclear Information System (INIS)

    Chernikov, N.A.

    2001-01-01

    In this paper any gravitational field (both in the Einsteinian case and in the Newtonian case) is described by the connection, called gravitational. A homogeneous static gravitational field is considered in the four-dimensional area z>0 of a space-time with Cartesian coordinates x, y, z, and t. Such field can be created by masses, disposed outside the area z>0 with a density distribution independent of x, y, and t. Remarkably, in the four-dimensional area z>0, together with the primitive background connection, the primitive gravitational connection has been derived. In concordance with the Principle of Equivalence all components of such gravitational connection are equal to zero in the uniformly accelerated frame system, in which the gravitational force of attraction is balanced by the inertial force. However, all components of such background connection are equal to zero in the resting frame system, but not in the accelerated frame system

  6. Redshift and lateshift from homogeneous and isotropic modified dispersion relations

    Science.gov (United States)

    Pfeifer, Christian

    2018-05-01

    Observables which would indicate a modified vacuum dispersion relations, possibly caused by quantum gravity effects, are a four momentum dependence of the cosmological redshift and the existence of a so called lateshift effect for massless or very light particles. Existence or non-existence of the latter is currently analyzed on the basis of the available observational data from gamma-ray bursts and compared to predictions of specific modified dispersion relation models. We consider the most general perturbation of the general relativistic dispersion relation of freely falling particles on homogeneous and isotropic spacetimes and derive the red- and lateshift to first order in the perturbation. Our result generalizes the existing formulae in the literature and we find that there exist modified dispersion relations causing both, one or none of the two effects to first order.

  7. Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes.

    Science.gov (United States)

    Grande, Lorenzo; von Zamory, Jan; Koch, Stephan L; Kalhoff, Julian; Paillard, Elie; Passerini, Stefano

    2015-03-18

    In this study, we report on the electroplating and stripping of lithium in two ionic liquid (IL) based electrolytes, namely N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl) imide (Pyr14FSI) and N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI), and mixtures thereof, both on nickel and lithium electrodes. An improved method to evaluate the Li cycling efficiency confirmed that homogeneous electroplating (and stripping) of Li is possible with TFSI-based ILs. Moreover, the presence of native surface features on lithium, directly observable via scanning electron microscope imaging, was used to demonstrate the enhanced electrolyte interphase (SEI)-forming ability, that is, fast cathodic reactivity of this class of electrolytes and the suppressed dendrite growth. Finally, the induced inhomogeneous deposition enabled us to witness the SEI cracking and revealed previously unreported bundled Li fibers below the pre-existing SEI and nonrod-shaped protuberances resulting from Li extrusion.

  8. Statistical mechanics of homogeneous partly pinned fluid systems.

    Science.gov (United States)

    Krakoviack, Vincent

    2010-12-01

    The homogeneous partly pinned fluid systems are simple models of a fluid confined in a disordered porous matrix obtained by arresting randomly chosen particles in a one-component bulk fluid or one of the two components of a binary mixture. In this paper, their configurational properties are investigated. It is shown that a peculiar complementarity exists between the mobile and immobile phases, which originates from the fact that the solid is prepared in presence of and in equilibrium with the adsorbed fluid. Simple identities follow, which connect different types of configurational averages, either relative to the fluid-matrix system or to the bulk fluid from which it is prepared. Crucial simplifications result for the computation of important structural quantities, both in computer simulations and in theoretical approaches. Finally, possible applications of the model in the field of dynamics in confinement or in strongly asymmetric mixtures are suggested.

  9. Analysis of spectral methods for the homogeneous Boltzmann equation

    KAUST Repository

    Filbet, Francis

    2011-04-01

    The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.

  10. Magnon-mediated Dzyaloshinskii-Moriya torque in homogeneous ferromagnets

    KAUST Repository

    Manchon, Aurelien

    2014-12-01

    In thin magnetic layers with structural inversion asymmetry and spin-orbit coupling, the Dzyaloshinskii-Moriya interaction arises at the interface. When a spin-wave current jm flows in a system with a homogeneous magnetization m, this interaction produces an effective fieldlike torque of the form TFLm×(z×jm) as well as a dampinglike torque, TDLm×[(z×jm)×m], the latter only in the presence of spin-wave relaxation (z is normal to the interface). These torques mediated by the magnon flow can reorient the time-averaged magnetization direction and display a number of similarities with the torques arising from the electron flow in a magnetic two-dimensional electron gas with Rashba spin-orbit coupling. This magnon-mediated spin-orbit torque can be efficient in the case of magnons driven by a thermal gradient.

  11. Homogeneity of a Global Multisatellite Soil Moisture Climate Data Record

    Science.gov (United States)

    Su, Chun-Hsu; Ryu, Dongryeol; Dorigo, Wouter; Zwieback, Simon; Gruber, Alexander; Albergel, Clement; Reichle, Rolf H.; Wagner, Wolfgang

    2016-01-01

    Climate Data Records (CDR) that blend multiple satellite products are invaluable for climate studies, trend analysis and risk assessments. Knowledge of any inhomogeneities in the CDR is therefore critical for making correct inferences. This work proposes a methodology to identify the spatiotemporal extent of the inhomogeneities in a 36-year, global multisatellite soil moisture CDR as the result of changing observing systems. Inhomogeneities are detected at up to 24 percent of the tested pixels with spatial extent varying with satellite changeover times. Nevertheless, the contiguous periods without inhomogeneities at changeover times are generally longer than 10 years. Although the inhomogeneities have measurable impact on the derived trends, these trends are similar to those observed in ground data and land surface reanalysis, with an average error less than 0.003 cubic meters per cubic meter per year. These results strengthen the basis of using the product for long-term studies and demonstrate the necessity of homogeneity testing of multisatellite CDRs in general.

  12. Modelling of functionally graded materials by numerical homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Schmauder, S.; Weber, U. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt

    2001-03-01

    In this contribution, the mechanical behaviour of different ZrO{sub 2}/NiCr 80 20 compositions is analysed and compared with experimental findings. The microwave-sintered material is found to possess a slightly dominant ceramic matrix for intermediate volume fractions. Its thermal expansion coefficient deviates from the rule of mixture. The modulus and the stress strain behaviour can be simulated by a numerical homogenization procedure, and the influence of residual stresses is found to be negligible. A newly introduced parameter (matricity) describes the mutual circumvention of the phases and is found to strongly control the stress level of the composite, globally as well as locally. Finally, a graded component and a metal/ceramic bi-material are compared for thermal as well as mechanical loading. (orig.)

  13. Robust PRNG based on homogeneously distributed chaotic dynamics

    International Nuclear Information System (INIS)

    Garasym, Oleg; Taralova, Ina; Lozi, René

    2016-01-01

    This paper is devoted to the design of new chaotic Pseudo Random Number Generator (CPRNG). Exploring several topologies of network of 1-D coupled chaotic mapping, we focus first on two dimensional networks. Two topologically coupled maps are studied: TTL rc non-alternate, and TTL SC alternate. The primary idea of the novel maps has been based on an original coupling of the tent and logistic maps to achieve excellent random properties and homogeneous /uniform/ density in the phase plane, thus guaranteeing maximum security when used for chaos base cryptography. In this aim two new nonlinear CPRNG: MTTL 2 sc and NTTL 2 are proposed. The maps successfully passed numerous statistical, graphical and numerical tests, due to proposed ring coupling and injection mechanisms. (paper)

  14. Homogenization Issues in the Combustion of Heterogeneous Solid Propellants

    Science.gov (United States)

    Chen, M.; Buckmaster, J.; Jackson, T. L.; Massa, L.

    2002-01-01

    We examine random packs of discs or spheres, models for ammonium-perchlorate-in-binder propellants, and discuss their average properties. An analytical strategy is described for calculating the mean or effective heat conduction coefficient in terms of the heat conduction coefficients of the individual components, and the results are verified by comparison with those of direct numerical simulations (dns) for both 2-D (disc) and 3-D (sphere) packs across which a temperature difference is applied. Similarly, when the surface regression speed of each component is related to the surface temperature via a simple Arrhenius law, an analytical strategy is developed for calculating an effective Arrhenius law for the combination, and these results are verified using dns in which a uniform heat flux is applied to the pack surface, causing it to regress. These results are needed for homogenization strategies necessary for fully integrated 2-D or 3-D simulations of heterogeneous propellant combustion.

  15. Growth Kinetics of the Homogeneously Nucleated Water Droplets: Simulation Results

    International Nuclear Information System (INIS)

    Mokshin, Anatolii V; Galimzyanov, Bulat N

    2012-01-01

    The growth of homogeneously nucleated droplets in water vapor at the fixed temperatures T = 273, 283, 293, 303, 313, 323, 333, 343, 353, 363 and 373 K (the pressure p = 1 atm.) is investigated on the basis of the coarse-grained molecular dynamics simulation data with the mW-model. The treatment of simulation results is performed by means of the statistical method within the mean-first-passage-time approach, where the reaction coordinate is associated with the largest droplet size. It is found that the water droplet growth is characterized by the next features: (i) the rescaled growth law is unified at all the considered temperatures and (ii) the droplet growth evolves with acceleration and follows the power law.

  16. Fuel micro-mechanics: homogenization, cracking, granular media

    International Nuclear Information System (INIS)

    Monerie, Yann

    2010-01-01

    This work summarizes about fifteen years of research in the field of micro-mechanics of materials. Emphasis is placed on the most recent work carried out in the context of nuclear safety. Micro-mechanics finds a natural place there, aiming to predict the behavior of heterogeneous materials with an evolving microstructure. The applications concerned mainly involve the nuclear fuel and its tubular cladding. The uranium dioxide fuel is modeled, according to the scales under consideration, as a porous ceramic or a granular medium. The strongly irradiated Zircaloy claddings are identified with a composite medium with a metal matrix and a gradient of properties. The analysis of these classes of material is rich in problems of a more fundamental nature. Three main themes are discussed: 1/ Homogenization, 2/ cracking, rupture and fragmentation, 3/ discrete media and fluid-grain couplings. Homogenization: The analytical scale change methods proposed aim to estimate or limit the linear and equivalent nonlinear behaviors of isotropic porous media and anisotropic composites with a metal matrix. The porous media under consideration are saturated or drained, with a compressible or incompressible matrix, and have one or two scales of spherical or ellipsoid pores, or cracks. The composites studied have a macroscopic anisotropy related to that of the matrix, and to the shape and spatial distribution of the inclusions. Thermoelastic, elastoplastic, and viscoplastic behaviors and ductile damage of these media are examined using different techniques: extensions of classic approaches, linear in particular, variational approaches and approaches using elliptical potentials with thermally activated elementary mechanisms. The models developed are validated on numerical finite element simulations, and their functional relevance is illustrated in comparison to experimental data obtained from the literature. The significant results obtained include a plasticity criterion for Gurson matrix

  17. Radiation induced homogeneous precipitation in undersaturated solid-solutions

    International Nuclear Information System (INIS)

    Cauvin, Richard; Martin, Georges.

    1978-01-01

    The stability of various types of solid solutions under irradiation is studied. In this paper, observations made on AlZn solid solutions under 1 MeV electron irradiation are reported. Al-Zn was chosen as a prototype of solid solutions with a simple miscibility gap. It is shown that under appropriate irradiation conditions undersaturated AnZn solid solutions give rise to a homogeneous precipitation of coherent G.P. zones and of incoherent Zn precipitates the atomic volume of which is smaller than that of the matrix. We propose a more general treatment of solute concentration heterogeneities in solid solutions under irradiation and suggest how it might account for the nucleation of the observed phases. The growth of the observed precipitates is studied

  18. Quantum aspects of photon propagation in transparent infinite homogeneous media

    International Nuclear Information System (INIS)

    Nistor, Rudolf Emil

    2008-01-01

    The energy balance photon - medium, during the light travelling, through a specific continuous interaction between a single photon and a homogeneous, infinite medium (fully ionized plasma or a transparent dielectric), was studied. We obtained a wave equation for the interacting photon. To explain the interaction in quantum terms, we assume a certain photon - medium interaction energy, macroscopically materialized by the existence of the refractive index. It turns out that the interaction is of a scalar type, for vanishing rest mass and of spin 1 particle submitted both to scalar and vectorial fields. We found out an expression of the propagation equation of the photon through a non-dissipative medium, using a coupling between the photon spin S vector and the scalar interaction field ( E S vector,H S vector). (authors)

  19. Edge-Based Image Compression with Homogeneous Diffusion

    Science.gov (United States)

    Mainberger, Markus; Weickert, Joachim

    It is well-known that edges contain semantically important image information. In this paper we present a lossy compression method for cartoon-like images that exploits information at image edges. These edges are extracted with the Marr-Hildreth operator followed by hysteresis thresholding. Their locations are stored in a lossless way using JBIG. Moreover, we encode the grey or colour values at both sides of each edge by applying quantisation, subsampling and PAQ coding. In the decoding step, information outside these encoded data is recovered by solving the Laplace equation, i.e. we inpaint with the steady state of a homogeneous diffusion process. Our experiments show that the suggested method outperforms the widely-used JPEG standard and can even beat the advanced JPEG2000 standard for cartoon-like images.

  20. A homogeneous fluorometric assay platform based on novel synthetic proteins

    International Nuclear Information System (INIS)

    Vardar-Schara, Goenuel; Krab, Ivo M.; Yi, Guohua; Su, Wei Wen

    2007-01-01

    Novel synthetic recombinant sensor proteins have been created to detect analytes in solution, in a rapid single-step 'mix and read' noncompetitive homogeneous assay process, based on modulating the Foerster resonance energy transfer (FRET) property of the sensor proteins upon binding to their targets. The sensor proteins comprise a protein scaffold that incorporates a specific target-capturing element, sandwiched by genetic fusion between two molecules that form a FRET pair. The utility of the sensor proteins was demonstrated via three examples, for detecting an anti-biotin Fab antibody, a His-tagged recombinant protein, and an anti-FLAG peptide antibody, respectively, all done directly in solution. The diversity of sensor-target interactions that we have demonstrated in this study points to a potentially universal applicability of the biosensing concept. The possibilities for integrating a variety of target-capturing elements with a common sensor scaffold predict a broad range of practical applications

  1. Analysis of spectral methods for the homogeneous Boltzmann equation

    KAUST Repository

    Filbet, Francis; Mouhot, Clé ment

    2011-01-01

    The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.

  2. Phenomenology of uranium-plutonium homogenization in nuclear fuels

    International Nuclear Information System (INIS)

    Marin, J.M.

    1988-01-01

    The uranium and plutonium cations distribution in mixed oxide fuels (U 1-y Pu y )O 2 with y ≤ 0.1 has been studied in laboratory with industrial fabrication methods. Our experiences has showed a slow cations migration. In the substoichiometry (UPu)O 2-x the diffusion is in connection with the plutonium valence which is an indicator of the oxidoreduction state of the crystal lattice. The plutonium valence is in connection with the oxygen ion deficit in order to compensate the electrical charge. The oxygen ratio of the solid depends of the oxygen partial pressure prevailing at the time of product elaboration but it can be modified by impurities. These impurities permit to increase or decrease the fuel characteristics and performances. An homogeneity analysis methodology is proposed, its objective is to classify the mixed oxide fuels according to the uranium and plutonium ions distribution [fr

  3. Direct numerical simulation of homogeneous stratified rotating turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Iida, O.; Tsujimura, S.; Nagano, Y. [Nagoya Institute of Technology, Department of Mech. Eng., Nagoya (Japan)

    2005-12-01

    The effects of the Prandtl number on stratified rotating turbulence have been studied in homogeneous turbulence by using direct numerical simulations and a rapid distortion theory. Fluctuations under strong stable-density stratification can be theoretically divided into the WAVE and the potential vorticity (PV) modes. In low-Prandtl-number fluids, the WAVE mode deteriorates, while the PV mode remains. Imposing rotation on a low-Prandtl-number fluid makes turbulence two-dimensional as well as geostrophic; it is found from the instantaneous turbulent structure that the vortices merge to form a few vertically-elongated vortex columns. During the period toward two-dimensionalization, the vertical vortices become asymmetric in the sense of rotation. (orig.)

  4. Negative index effects from a homogeneous positive index prism

    Science.gov (United States)

    Marcus, Sherman W.; Epstein, Ariel

    2017-12-01

    Cellular structured negative index metamaterials in the form of a right triangular prism have often been tested by observing the refraction of a beam across the prism hypotenuse which is serrated in order to conform to the cell walls. We show that not only can this negative index effect be obtained from a homogeneous dielectric prism having a positive index of refraction, but in addition, for sampling at the walls of the cellular structure, the phase in the material has the illusory appearance of moving in a negative direction. Although many previous reports relied on refraction direction and phase velocity of prism structures to verify negative index design, our investigation indicates that to unambiguously demonstrate material negativity additional empirical evidence is required.

  5. The Copenhagen problem with a quasi-homogeneous potential

    Science.gov (United States)

    Fakis, Demetrios; Kalvouridis, Tilemahos

    2017-05-01

    The Copenhagen problem is a well-known case of the famous restricted three-body problem. In this work instead of considering Newtonian potentials and forces we assume that the two primaries create a quasi-homogeneous potential, which means that we insert to the inverse square law of gravitation an inverse cube corrective term in order to approximate various phenomena as the radiation pressure of the primaries or the non-sphericity of them. Based on this new consideration we investigate the equilibrium locations of the small body and their parametric dependence, as well as the zero-velocity curves and surfaces for the planar motion, and the evolution of the regions where this motion is permitted when the Jacobian constant varies.

  6. Japanese Fast Reactor Program for Homogeneous Actinide Recycling

    International Nuclear Information System (INIS)

    Ishikawa, Makoto; Nagata, Takashi; Kondo, Satoru

    2008-01-01

    In the present report, the homogeneous actinide recycling scenario of Fast Reactor (FR) Cycle Technology Development Project (FaCT) is summarized. First, the scenario of nuclear energy policy in Japan are briefly reviewed. Second, the basic plan of Japan to manage all minor actinide (MA) by recycling is summarized objectives of which are the efficiency increase of uranium resources, the environmental burden reduction, and the increase of nuclear non-proliferation potential. Third, recent results of reactor physics study related to MA-loaded FR cores are briefly described. Fourth, typical nuclear design of MA-loaded FR cores in the FaCT project and their main features are demonstrated with the feasibility to recycle all MA in the future FR equilibrium society. Finally, the research and development program to realize the MA recycling in Japan is introduced, including international cooperation projects. (authors)

  7. Production of Biodiesel from Shea Butter Oil using Homogeneous Catalysts

    Directory of Open Access Journals (Sweden)

    Jude EJEH

    2014-02-01

    Full Text Available An investigation into the production of biodiesel from shea butter oil using homogenous catalyst was carried out. The properties of the oil obtained were first determined, having an FFA value of 2.279 amongst other properties. Thus, the direct base-catalysis method was used, with potassium hydroxide as the catalyst. In a 1 hour batch run, biodiesel was produced with a conversion of 92%, FAME content of 97.1%, cetane number of 46.84 and kinematic viscosity of 4.30mm2/s, conforming to ASTM D6751 and EN 14214 international standards. As such, it was established that shea butter biodiesel could be produced by the direct base catalysis, over a shorter time with low cost chemicals.

  8. Stepping out of homogeneity in loop quantum cosmology

    International Nuclear Information System (INIS)

    Rovelli, Carlo; Vidotto, Francesca

    2008-01-01

    We explore the extension of quantum cosmology outside the homogeneous approximation using the formalism of loop quantum gravity. We introduce a model where some of the inhomogeneous degrees of freedom are present, providing a tool for describing general fluctuations of quantum geometry near the initial singularity. We show that the dynamical structure of the model reduces to that of loop quantum cosmology in the Born-Oppenheimer approximation. This result corroborates the assumptions that ground loop cosmology sheds some light on the physical and mathematical relation between loop cosmology and full loop quantum gravity, and on the nature of the cosmological approximation. Finally, we show that the non-graph-changing Hamiltonian constraint considered in the context of algebraic quantum gravity provides a viable effective dynamics within this approximation

  9. Efisiensi Energi Jaringan Homogeneous Wcdma/3g Pada Lingkungan Outdoor

    Directory of Open Access Journals (Sweden)

    Linawati Linawati

    2013-06-01

    Full Text Available Telecommunication technology and applications have developed fast recently. Hence this development will take energy consumption significantly. Many studies have been done on energy efficiency on cellular network. The studies are more focused on energy usage of the base station, as the base station is the component of cellular station which takes the most energy consumption. Therefore this study analyzes energy efficiency on homogeneous network of WCDMA/3G for outdoor environment. Energy consumption of three macro base stations is compared with energy consumption of 12 micro base stations. This comparison analysis has been conducted on the same Area Spectral Efficiency (ASE. The results show that the macro base stations are more efficient for energy usage than the micro base stations. However based on ASE requirements, the micro base stations are more efficient than the macro base stations on both busy hours and non-busy hour.

  10. A new class of spatially homogeneous 4D string backgrounds

    CERN Document Server

    Batakis, N A

    1995-01-01

    A new class of spatially homogeneous 4D string backgrounds, the X(d\\rightarrow) according to a recent classification, is presented and shown to contain only five generic types. In contrast to the case of X(d\\uparrow) (which contains as a subclass all possible FRW backgrounds), exact SO(3) isotropy is always broken in the X(d\\rightarrow) class. This is due to the H-field, whose dual is necessarily along a principal direction of anisotropy. Nevertheless, FRW symmetry can be attained asymptotically for Bianchi-types I and VII_0 in a rather appealing physical context. Other aspects of the solutions found for types X=I,II,III,VI_{-1}, and of the VII_0 case are briefly discussed.

  11. Environmental Kuznets curves for CO2. Heterogeneity versus homogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Vollebergh, Herman R.J.; Dijkgraaf, Elbert [Department of Economics, Erasmus University Rotterdam, Rotterdam (Netherlands); Melenberg, Bertrand [CentER for Economic Research, Tilburg University, Tilburg (Netherlands)

    2005-01-11

    We explore the emissions income relationship for CO2 in OECD countries using various modelling strategies.Even for this relatively homogeneous sample, we find that the inverted-U-shaped curve is quite sensitive to the degree of heterogeneity included in the panel estimations.This finding is robust, not only across different model specifications but also across estimation techniques, including the more flexible non-parametric approach.Differences in restrictions applied in panel estimations are therefore responsible for the widely divergent findings for an inverted-U shape for CO2.Our findings suggest that allowing for enough heterogeneity is essential to prevent spurious correlation from reduced-form panel estimations.Moreover, this inverted U for CO2 is likely to exist for many, but not for all, countries.

  12. A spatially homogeneous and isotropic Einstein-Dirac cosmology

    Science.gov (United States)

    Finster, Felix; Hainzl, Christian

    2011-04-01

    We consider a spatially homogeneous and isotropic cosmological model where Dirac spinors are coupled to classical gravity. For the Dirac spinors we choose a Hartree-Fock ansatz where all one-particle wave functions are coherent and have the same momentum. If the scale function is large, the universe behaves like the classical Friedmann dust solution. If however the scale function is small, quantum effects lead to oscillations of the energy-momentum tensor. It is shown numerically and proven analytically that these quantum oscillations can prevent the formation of a big bang or big crunch singularity. The energy conditions are analyzed. We prove the existence of time-periodic solutions which go through an infinite number of expansion and contraction cycles.

  13. Homogeneous Charge Compression Ignition Combustion of Dimethyl Ether

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr

    This thesis is based on experimental and numerical studies on the use of dimethyl ether (DME) in the homogeneous charge compression ignition (HCCI) combustion process. The first paper in this thesis was published in 2007 and describes HCCI combustion of pure DME in a small diesel engine. The tests...... were designed to investigate the effect of engine speed, compression ratio and equivalence ratio on the combustion timing and the engine performance. It was found that the required compression ratio depended on the equivalence ratio used. A lower equivalence ratio requires a higher compression ratio...... before the fuel is burned completely, due to lower in-cylinder temperatures and lower reaction rates. The study provided some insight in the importance of operating at the correct compression ratio, as well as the operational limitations and emission characteristics of HCCI combustion. HCCI combustion...

  14. Elastic waves trapped by a homogeneous anisotropic semicylinder

    Energy Technology Data Exchange (ETDEWEB)

    Nazarov, S A [Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St.-Petersburg (Russian Federation)

    2013-11-30

    It is established that the problem of elastic oscillations of a homogeneous anisotropic semicylinder (console) with traction-free lateral surface (Neumann boundary condition) has no eigenvalues when the console is clamped at one end (Dirichlet boundary condition). If the end is free, under additional requirements of elastic and geometric symmetry, simple sufficient conditions are found for the existence of an eigenvalue embedded in the continuous spectrum and generating a trapped elastic wave, that is, one which decays at infinity at an exponential rate. The results are obtained by generalizing the methods developed for scalar problems, which however require substantial modification for the vector problem in elasticity theory. Examples are given and open questions are stated. Bibliography: 53 titles.

  15. On some methods in homogenization and their applications

    International Nuclear Information System (INIS)

    Allaire, Gregoire

    1993-01-01

    This report (which reproduces an 'Habilitation' thesis) is concerned with the homogenization theory which can be defined as the union of all mathematical techniques allowing to pass from a microscopic behavior to a macroscopic (or averaged, or effective) behavior of a physical phenomenon, modeled by one or several partial differential equations. Some new results are discussed, both from the point of view of methods, and from that of applications. The first chapter deals with viscous incompressible fluid flows in porous media, and, in particular, contains a derivation of Darcy and Brinkman's law. The second chapter is dedicated to the two-scale convergence method. The third chapter focus on the problem of optimal bounds for the effective properties of composite materials. Finally, in the fourth chapter the previous results are applied to the optimal design problem for elastic shapes. (author) [fr

  16. The homogeneous boundary value problem of the thick spherical shell

    International Nuclear Information System (INIS)

    Linder, F.

    1975-01-01

    With the aim to solve boundary value problems in the same manner as it is attained at thin shell theory (Superposition of Membrane solution to solution of boundary values), one has to search solutions of the equations of equilibrium of the three dimensional thick shell which produce tensions at the cut edge and are zero on the whole shell surface inside and outside. This problem was solved with the premissions of the linear theory of Elasticity. The gained solution is exact and contains the symmetric and non-symmetric behaviour and is described in relatively short analytical expressions for the deformations and tensions, after the problem of the coupled system had been solved. The static condition of the two surfaces (zero tension) leads to a homogeneous system of complex equations with the index of the Legendre spherical function as Eigenvalue. One symmetrical case is calculated numerically and is compared with the method of finite elements. This comparison results in good accordance. (Auth.)

  17. Homogeneous Precipitation Synthesis and Magnetic Properties of Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhigang Liu

    2008-01-01

    Full Text Available Magnetic nanoparticles (NPs of cobalt ferrite have been synthesized via a homogeneous precipitation route using hexamethylenetetramine (HMT as the precipitant. The particle size, crystal structure, and magnetic properties of the synthesized particles were investigated by X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The NPs are of cubic inverse spinel structure and nearly spherical shape. With the increase of oxidation time from 30 to 180 minutes in the reaction solution at 90∘C, the average particle size increases from ~30 nm to ~45 nm. The as-synthesized NPs ~30 nm in size show higher Ms (61.5 emu/g and moderate Hc (945 Oe and Mr/Ms (0.45 value compared with the materials synthesized by coprecipitation method using NaOH as precipitate at high pH value.

  18. Analysis of three idealized reactor configurations: plate, pin, and homogeneous

    International Nuclear Information System (INIS)

    McKnight, R.D.

    1983-01-01

    Detailed Monte Carlo calculations have been performed for three distinct configurations of an idealized fast critical assembly. This idealized assembly was based on the LMFBR benchmark critical assembly ZPR-6/7. In the first configuration, the entire core was loaded with the plate unit cell of ZPR-6/7. In the second configuration, the entire core was loaded with the ZPR sodium-filled pin calandria. The actual ZPR pin calandria are loaded with mixed (U,Pu) oxide pins which closely match the composition of the ZPR-6/7 plate unit cell. For the present study, slight adjustments were made in the atom concentrations and the length of the pin calandria in order to make the core boundaries and average composition for the pin-cell configuration identical to those of the plate-cell configuration. In the third configuration, the core was homogeneous, again with identical core boundaries and average composition as the plate and pin configurations

  19. Histological and pathological characteristics of the homogeneous oral leucoplakia

    International Nuclear Information System (INIS)

    Izaguirre Bordelois, Marioneya; Soriano Gonzalez, Blanca Ines

    2011-01-01

    A descriptive, retrospective, cross-sectional, and analytical study of 35 patients with homogeneous oral leucoplakia associated to the smoking habit, assisted at the Outpatient Department of Maxillofacial Surgery from 'Dr. Juan Bruno Zayas Alfonso' Teaching General Hospital in Santiago de Cuba was carried out from January, 2007 to the same month of 2009, aimed at determining the presence not only of changes of keratinisation as parakeratosis, orthokeratosis, and dyskeratosis, but also of epithelial dysplasia. The primary information was obtained through the histological-pathological study of the biopsies processed in the Pathology Department of the aforementioned institution. The distinctive microscopic characteristic was the hyperparakeratosis, with the presence of the abnormal development of the tissue or without it. (author)

  20. Geostatistical Analysis Methods for Estimation of Environmental Data Homogeneity

    Directory of Open Access Journals (Sweden)

    Aleksandr Danilov

    2018-01-01

    Full Text Available The methodology for assessing the spatial homogeneity of ecosystems with the possibility of subsequent zoning of territories in terms of the degree of disturbance of the environment is considered in the study. The degree of pollution of the water body was reconstructed on the basis of hydrochemical monitoring data and information on the level of the technogenic load in one year. As a result, the greatest environmental stress zones were isolated and correct zoning using geostatistical analysis techniques was proved. Mathematical algorithm computing system was implemented in an object-oriented programming C #. A software application has been obtained that allows quickly assessing the scale and spatial localization of pollution during the initial analysis of the environmental situation.

  1. Time Dilation and Homogeneous, Soft-Spectrum GRBs

    Science.gov (United States)

    Norris, J. P.; Bonnell, J. T.; Nemiroff, R. J.; Scargle, J. D.; Pendleton, G. N.; Kouveliotou, C.; Pizzichini, G.

    1996-12-01

    Recently, BATSE gamma-ray bursts selected for soft average spectra have been shown to follow more nearly a -3/2 power law in their number-intensity relation, indicative of a spatially homogeneous population, unlike the whole BATSE burst sample which deviates significantly from a -3/2 signature. The softer bursts might therefore be closer, and the reported time dilation as a function of peak flux in the whole burst sample (Bonnell et al., ApJ submitted) might be expected to be different for soft bursts. We have investigated this possibility with a sample of 500 long bursts (T_90 > 2 s) from the BATSE 3B catalog, defining soft bursts ( ~ 20% of total) using the three hardness ratios derived from fluences in BATSE's four energy channels (25--55, 55--110, 110--320, > 320 keV). The relative time-dilation factors (TDFs) were calculated using a brightness-independent algorithm for duration. The expected effect is observed: The average log[duration] of soft bursts is significantly lower (factor of ~ 2) than that for harder bursts, or for the whole set, to much dimmer peak fluxes -- consistent with unity TDF (compared to bright bursts in the whole sample) down to peak flux of ~ 1.0 photon cm(-2) s(-1) . Using a Kolmogorov-Smirnov test, we find that T_90 and T_50 duration distributions of soft and hard bursts above this peak flux value are different, with a confidence level > 99%. This result is qualitatively consistent with a GRB luminosity function implied by the apparent homogeneity of the bright-to-intermediate peak-flux soft bursts. However, dimmer soft bursts are time-dilated relative to bright bursts in the whole sample, suggesting that spectral redshift compounds the definition of the soft burst class.

  2. High-frequency homogenization for travelling waves in periodic media.

    Science.gov (United States)

    Harutyunyan, Davit; Milton, Graeme W; Craster, Richard V

    2016-07-01

    We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω 1 plus a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω 2 . We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω 1 = ω 2 and [Formula: see text] where Λ =(λ 1 λ 2 …λ d ) is the periodicity cell of the medium and for any two vectors [Formula: see text] the product a ⊙ b is defined to be the vector ( a 1 b 1 , a 2 b 2 ,…, a d b d ). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.

  3. Urbanization reduces and homogenizes trait diversity in stream macroinvertebrate communities.

    Science.gov (United States)

    Barnum, Thomas R; Weller, Donald E; Williams, Meghan

    2017-12-01

    More than one-half of the world's population lives in urban areas, so quantifying the effects of urbanization on ecological communities is important for understanding whether anthropogenic stressors homogenize communities across environmental and climatic gradients. We examined the relationship of impervious surface coverage (a marker of urbanization) and the structure of stream macroinvertebrate communities across the state of Maryland and within each of Maryland's three ecoregions: Coastal Plain, Piedmont, and Appalachian, which differ in stream geomorphology and community composition. We considered three levels of trait organization: individual traits, unique combinations of traits, and community metrics (functional richness, functional evenness, and functional divergence) and three levels of impervious surface coverage (low [10%]). The prevalence of an individual trait differed very little between low impervious surface and high impervious surface sites. The arrangement of trait combinations in community trait space for each ecoregion differed when impervious surface coverage was low, but the arrangement became more similar among ecoregions as impervious surface coverage increased. Furthermore, trait combinations that occurred only at low or medium impervious surface coverage were clustered in a subset of the community trait space, indicating that impervious surface affected the presence of only a subset of trait combinations. Functional richness declined with increasing impervious surface, providing evidence for environmental filtering. Community metrics that include abundance were also sensitive to increasing impervious surface coverage: functional divergence decreased while functional evenness increased. These changes demonstrate that increasing impervious surface coverage homogenizes the trait diversity of macroinvertebrate communities in streams, despite differences in initial community composition and stream geomorphology among ecoregions. Community

  4. Coprecipitation of cadmium with copper 8-hydroxyquinolate from homogeneous solution

    International Nuclear Information System (INIS)

    Takiyama, Kazuyoshi; Kozen, Terumi; Ueki, Yasuyo; Ishida, Hiromi

    1976-01-01

    The coprecipitation of copper and cadmium 8-hydroxyquinolates from homogeneous solution was conducted from the viewpoint of crystal and analytical chemistry. To the mixed solution containing copper and cadmium ions an 8-acetoxyquinoline solution was added by keeping the pH of the solution at 9 and the resulted solution was stirred at 25 0 C. The precipitate formed at each stage of the reaction was analyzed. The precipitates in an initial stage were composed of needle crystals which characterizes copper 8-hydroxyquinolate, and were associated with a slight amount of cadmium. The first half of the coprecipitation curve for the needle crystal formation resembles the logarithmic distribution curve of lambda equal to about 0.01. The precipitation of most of the copper ions was followed by the precipitation of cadmium 8-hydroxyquinolate crystal in the plate form. The needle crystals of copper 8-hydroxyquinolate started to dissolve and transformed to plate crystals. In the second half of the coprecipitation, both crystals, owing to the identical crystal structure, precipitated simultaneously and form a solid solution. When cadmium 8-hydroxyquinolate was precipitated by the PFHS method (precipitation from homogeneous solution) in the presence of the needle crystals of copper 8-hydroxyquinolate, the above mentioned phenomenon was observed. The precipitation of cadmium 8-hydroxyquinolate in the plate form is due to the seeding effect of the plate crystals of copper 8-hydroxyquinolate, which were scantily transformed from the needle crystals. The plate crystals of cadmium compound acts as a seed to transform the needle crystals of copper compound to plate crystals. (auth.)

  5. Application of cryogenic grinding to achieve homogenization of transuranic wastes

    International Nuclear Information System (INIS)

    Atkins, W.H.; Hill, D.D.; Lucero, M.E.; Jaramillo, L.; Martinez, H.E.

    1996-08-01

    This paper describes work done at Los Alamos National Laboratory (LANL) in collaboration with the Department of Energy Rocky Flats Field Office (DOE/RFFO) and with the National Institute of Standards and Technology (NIST), Boulder, Colorado. Researchers on this project have developed a method for cryogenic grinding of mixed wastes to homogenize and, thereby, to acquire a representative sample of the materials. There are approximately 220,000 waste drums owned by the Rocky Flats Environmental Technology Site (RFETS)-50,000 at RFETS and 170,000 at the Idaho National Engineering Laboratory. The cost of sampling the heterogeneous distribution of waste in each drum is prohibitive. In an attempt to produce a homogeneous mixture of waste that would reduce greatly the cost of sampling, researchers at NIST and RFETS are developing a cryogenic grinder. The Los Alamos work herein described addresses the implementation issues of the task. The first issue was to ascertain whether samples of the open-quotes small particleclose quotes mixtures of materials present in the waste drums at RFETS were representative of actual drum contents. Second, it was necessary to determine at what temperature the grinding operation must be performed in order to minimize or to eliminate the release of volatile organic compounds present in the waste. Last, it was essential to evaluate any effect the liquid cryogen might have on the structural integrity and ventilation capacity of the glovebox system. Results of this study showed that representative samples could be and had been obtained, that some release of organics occurred below freezing because of sublimation, and that operation of the cryogenic grinding equipment inside the glovebox was feasible

  6. Effect of homogenization on the properties and microstructure of Mozzarella cheese from buffalo milk.

    Science.gov (United States)

    Abd El-Gawad, Mona A M; Ahmed, Nawal S; El-Abd, M M; Abd El-Rafee, S

    2012-04-02

    The name pasta filata refers to a unique plasticizing and texturing treatments of the fresh curd in hot water that imparts to the finished cheese its characteristic fibrous structure and melting properties. Mozzarella cheese made from standardized homogenized and non-homogenized buffalo milk with 3 and 1.5%fat. The effect of homogenization on rheological, microstructure and sensory evaluation was carried out. Fresh raw buffalo milk and starter cultures of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus were used. The coagulants were calf rennet powder (HA-LA). Standardized buffalo milk was homogenized at 25 kg/cm2 pressure after heating to 60°C using homogenizer. Milk and cheese were analysed. Microstructure of the cheese samples was investigated either with an application of transmission or scanning electron microscope. Statistical analyses were applied on the obtained data. Soluble nitrogen total volatile free fatty acids, soluble tyrosine and tryptophan increased with using homogenized milk and also, increased with relatively decrease in case of homogenized Mozzarella cheese. Meltability of Mozzarella cheese increased with increasing the fat content and storage period and decrease with homogenization. Mozzarella cheese firmness increased with homogenization and also, increased with progressing of storage period. Flavour score, appearance and total score of Mozzarella cheese increased with homogenization and storage period progress, while body and texture score decreased with homogenization and increased with storage period progress. Microstructure of Mozzarella cheese showed the low fat cheese tends to be harder, more crumbly and less smooth than normal. Curd granule junctions were prominent in non-homogenized milk cheese. Homogenization of milk cheese caused changes in the microstructure of the Mozzarella cheese. Microstructure studies of cheese revealed that cheese made from homogenized milk is smoother and has a finer texture than

  7. Observations of central stars

    International Nuclear Information System (INIS)

    Lutz, J.H.

    1978-01-01

    Difficulties occurring in the observation of central stars of planetary nebulae are reviewed with emphasis on spectral classifications and population types, and temperature determination. Binary and peculiar central stars are discussed. (U.M.G.)

  8. Gangs in Central America

    National Research Council Canada - National Science Library

    Ribando, Clare

    2005-01-01

    ... activities of Central American gangs. Citizens in several Central American countries have identified crime and gang violence among the top issues of popular concern, and Honduras and El Salvador have recently enacted tough anti-gang legislation...

  9. NIDDK Central Repository

    Data.gov (United States)

    U.S. Department of Health & Human Services — The NIDDK Central Repository stores biosamples, genetic and other data collected in designated NIDDK-funded clinical studies. The purpose of the NIDDK Central...

  10. Is banking supervision central to central banking?

    OpenAIRE

    Joe Peek; Eric S. Rosengren; Geoffrey M. B. Tootell

    1997-01-01

    Whether central banks should play an active role in bank supervision and regulation is being debated both in the United States and abroad. While the Bank of England has recently been stripped of its supervisory responsibilities and several proposals in the United States have advocated removing bank supervision from the Federal Reserve System, other countries are considering enhancing central bank involvement in this area. Many of the arguments for and against these proposals hinge on the effe...

  11. Microstructural homogeneity of support silk spun by Eriophora fuliginea (C.L. Koch) determined by scanning X-ray microdiffraction

    Science.gov (United States)

    Riekel, C.; Craig, C. L.; Burghammer, M.; Müller, M.

    2001-01-01

    Scanning X-ray microdiffraction (SXD) permits the 'imaging' in-situ of crystalline phases, crystallinity and texture in whole biopolymer samples on the micrometre scale. SXD complements transmission electron microscopy (TEM) techniques, which reach sub-nanometre lateral resolution but require thin sections and a vacuum environment. This is demonstrated using a support thread from a web spun by the orb-weaving spider Eriophora fuliginea (C.L. Koch). Scanning electron microscopy (SEM) shows a central thread composed of two fibres to which thinner fibres are loosely attached. SXD of a piece of support thread approximately 60 µm long shows in addition the presence of nanometre-sized crystallites with the β-poly(L-alanine) structure in all fibres. The crystallinity of the thin fibres appears to be higher than that of the central thread, which probably reflects a higher polyalanine content of the fibroins. The molecular axis of the polymer chains in the central thread is orientated parallel to the macroscopic fibre axis, but in the thin fibres the molecular axis is tilted by about 71° to the macroscopic fibre axis. A helical model is tentatively proposed to describe this morphology. The central thread has a homogeneous distribution of crystallinity along the macroscopic fibre axis.

  12. Sewage sludge disintegration by high-pressure homogenization: a sludge disintegration model.

    Science.gov (United States)

    Zhang, Yuxuan; Zhang, Panyue; Ma, Boqiang; Wu, Hao; Zhang, Sheng; Xu, Xin

    2012-01-01

    High-pressure homogenization (HPH) technology was applied as a pretreatment to disintegrate sewage sludge. The effects of homogenization pressure, homogenization cycle number, and total solid content on sludge disintegration were investigated. The sludge disintegration degree (DD(COD)), protein concentration, and polysaccharide concentration increased with the increase of homogenization pressure and homogenization cycle number, and decreased with the increase of sludge total solid (TS) content. The maximum DD(COD) of 43.94% was achieved at 80 MPa with four homogenization cycles for a 9.58 g/L TS sludge sample. A HPH sludge disintegration model of DD(COD) = kNaPb was established by multivariable linear regression to quantify the effects of homogenization parameters. The homogenization cycle exponent a and homogenization pressure exponent b were 0.4763 and 0.7324 respectively, showing that the effect of homogenization pressure (P) was more significant than that of homogenization cycle number (N). The value of the rate constant k decreased with the increase of sludge total solid content. The specific energy consumption increased with the increment of sludge disintegration efficiency. Lower specific energy consumption was required for higher total solid content sludge.

  13. Influence of homogenization treatment on physicochemical properties and enzymatic hydrolysis rate of pure cellulose fibers.

    Science.gov (United States)

    Jacquet, N; Vanderghem, C; Danthine, S; Blecker, C; Paquot, M

    2013-02-01

    The aim of this study is to compare the effect of different homogenization treatments on the physicochemical properties and the hydrolysis rate of a pure bleached cellulose. Results obtained show that homogenization treatments improve the enzymatic hydrolysis rate of the cellulose fibers by 25 to 100 %, depending of the homogenization treatment applied. Characterization of the samples showed also that homogenization had an impact on some physicochemical properties of the cellulose. For moderate treatment intensities (pressure below 500 b and degree of homogenization below 25), an increase of water retention values (WRV) that correlated to the increase of the hydrolysis rate was highlighted. Result also showed that the overall crystallinity of the cellulose properties appeared not to be impacted by the homogenization treatment. For higher treatment intensities, homogenized cellulose samples developed a stable tridimentional network that contributes to decrease cellulase mobility and slowdown the hydrolysis process.

  14. Homogenous reactor, elaborations, not released up to end

    International Nuclear Information System (INIS)

    Takibayev, Zh.S.

    2002-01-01

    Nowadays the nuclear power uses mainly water moderated reactors, where water or heavy water works as neutron inhibitor or coolant, and fuel solid state is situated in reactor core discretely as fuel element packed in fuel assembly. Such fuel composition in solid state reactors leads to rise in price of reactor itself and, of course, many other inconveniences. Firstly, burning out depth is limited; secondary, agents absorbed neutrons are accumulated in fission products, i. e. it leads to poisoning slag derive and thirdly, there are too many outside agents in reactor core in the form of fuel elements and different constructional materials. It worsens neutron balance of reactor. There are many other inconveniences. Specialists understand this problem. They are looking for escaping of difficulty proposing to begin a wide-ranging design, for example, of a new generation of homogeneous reactor especially with salt liquid, liquid metal fuel. But this problem nowadays can not be nearly decided. It is clear enough that within at least 50-100 years the existing monopoly will not change its attitude to use of new elaboration, for example, reactor with salt liquid fuel unless a sharp necessity of opening up not only 1-2 % of uranium in the case of reactors on thermal neutrons or nearby 10-20 % for fast reactors as nowadays but effective use of all potential of nuclear fission energy contained in natural uranium and thorium resources will be realized. In the report the scheme of nuclear reactor with liquid metal or salt liquid is shown. Such approach can be in future one of possible variants of problem solution in effective opening up of all uranium-plutonium energy resource of our planet. The scheme shows only possible allocations of the container and the pipeline. Their proportioning is one of main problems of future elaborations. A mutual allocation of the container and pipelines was carried out in such way, that demand to the last ones where less than to the container

  15. Biotic homogenization of Central European urban floras depends on residence time of alien species and habitat types

    Czech Academy of Sciences Publication Activity Database

    Lososová, Z.; Chytrý, M.; Tichý, L.; Danihelka, Jiří; Fajmon, K.; Hájek, O.; Kintrová, K.; Láníková, Deana; Otýpková, Z.; Řehořek, V.

    2012-01-01

    Roč. 145, č. 1 (2012), s. 179-184 ISSN 0006-3207 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : archaeophytes * beta diversity * biological invasions Subject RIV: EF - Botanics Impact factor: 3.794, year: 2012

  16. Homogeneous Photodynamical Analysis of Kepler's Multiply-Transiting Systems

    Science.gov (United States)

    Ragozzine, Darin

    To search for planets more like our own, NASA s Kepler Space Telescope ( Kepler ) discovered thousands of exoplanet candidates that cross in front of ( transit ) their parent stars (e.g., Twicken et al. 2016). The Kepler exoplanet data represent an incredible observational leap forward as evidenced by hundreds of papers with thousands of citations. In particular, systems with multiple transiting planets combine the determination of physical properties of exoplanets (e.g., radii), the context provided by the system architecture, and insights from orbital dynamics. Such systems are the most information-rich exoplanetary systems (Ragozzine & Holman 2010). Thanks to Kepler s revolutionary dataset, understanding these Multi-Transiting Systems (MTSs) enables a wide variety of major science questions. In conclusion, existing analyses of MTSs are incomplete and suboptimal and our efficient and timely proposal will provide significant scientific gains ( 100 new mass measurements and 100 updated mass measurements). Furthermore, our homogeneous analysis enables future statistical analyses, including those necessary to characterize the small planet mass-radius relation with implications for understanding the formation, evolution, and habitability of planets. The overarching goal of this proposal is a complete homogeneous investigation of Kepler MTSs to provide detailed measurements (or constraints) on exoplanetary physical and orbital properties. Current investigations do not exploit the full power of the Kepler data; here we propose to use better data (Short Cadence observations), better methods (photodynamical modeling), and a better statistical method (Bayesian Differential Evolution Markov Chain Monte Carlo) in a homogenous analysis of all 700 Kepler MTSs. These techniques are particularly valuable for understanding small terrestrial planets. We propose to extract the near-maximum amount of information from these systems through a series of three research objectives

  17. Iterative and variational homogenization methods for filled elastomers

    Science.gov (United States)

    Goudarzi, Taha

    Elastomeric composites have increasingly proved invaluable in commercial technological applications due to their unique mechanical properties, especially their ability to undergo large reversible deformation in response to a variety of stimuli (e.g., mechanical forces, electric and magnetic fields, changes in temperature). Modern advances in organic materials science have revealed that elastomeric composites hold also tremendous potential to enable new high-end technologies, especially as the next generation of sensors and actuators featured by their low cost together with their biocompatibility, and processability into arbitrary shapes. This potential calls for an in-depth investigation of the macroscopic mechanical/physical behavior of elastomeric composites directly in terms of their microscopic behavior with the objective of creating the knowledge base needed to guide their bottom-up design. The purpose of this thesis is to generate a mathematical framework to describe, explain, and predict the macroscopic nonlinear elastic behavior of filled elastomers, arguably the most prominent class of elastomeric composites, directly in terms of the behavior of their constituents --- i.e., the elastomeric matrix and the filler particles --- and their microstructure --- i.e., the content, size, shape, and spatial distribution of the filler particles. This will be accomplished via a combination of novel iterative and variational homogenization techniques capable of accounting for interphasial phenomena and finite deformations. Exact and approximate analytical solutions for the fundamental nonlinear elastic response of dilute suspensions of rigid spherical particles (either firmly bonded or bonded through finite size interphases) in Gaussian rubber are first generated. These results are in turn utilized to construct approximate solutions for the nonlinear elastic response of non-Gaussian elastomers filled with a random distribution of rigid particles (again, either firmly

  18. Numerical homogenization of concrete microstructures without explicit meshes

    International Nuclear Information System (INIS)

    Sanahuja, Julien; Toulemonde, Charles

    2011-01-01

    Life management of electric hydro or nuclear power plants requires to estimate long-term concrete properties on facilities, for obvious safety and serviceability reasons. Decades-old structures are foreseen to be operational for several more decades. As a large number of different concrete formulations are found in EDF facilities, empirical models based on many experiments cannot be an option for a large fleet of power plant buildings. To build predictive models, homogenization techniques offer an appealing alternative. To properly upscale creep, especially at long term, a rather precise description of the microstructure is required. However, the complexity of the morphology of concrete poses several challenges. In particular, concrete is formulated to maximize the packing density of the granular skeleton, leading to aggregates spanning several length scales with small inter particle spacings. Thus, explicit meshing of realistic concrete microstructures is either out of reach of current meshing algorithms or would produce a number of degrees of freedom far higher than the current generic FEM codes capabilities. This paper proposes a method to deal with complex matrix-inclusions microstructures such as the ones encountered at the mortar or concrete scales, without explicitly meshing them. The microstructure is superimposed to an independent mesh, which is a regular Cartesian grid. This inevitably yields so called 'gray elements', spanning across multiple phases. As the reliability of the estimate of the effective properties highly depends on the behavior affected to these gray elements, special attention is paid to them. As far as the question of the solvers is concerned, generic FEM codes are found to lack efficiency: they cannot reach high enough levels of discretization with classical free meshes, and they do not take advantage of the regular structure of the mesh. Thus, a specific finite differences/finite volumes solver has been developed. At first, generic off

  19. Hierarchy compensation of non-homogeneous intermittent atmospheric turbulence

    Science.gov (United States)

    Redondo, Jose M.; Mahjoub, Otman B.; Cantalapiedra, Inma R.

    2010-05-01

    In this work a study both the internal turbulence energy cascade intermittency evaluated from wind speed series in the atmospheric boundary layer, as well as the role of external or forcing intermittency based on the flatness (Vindel et al 2008)is carried out. The degree of intermittency in the stratified ABL flow (Cuxart et al. 2000) can be studied as the deviation, from the linear form, of the absolute scaling exponents of the structure functions as well as generalizing for non-isotropic and non-homogeneous turbulence, even in non-inertial ranges (in the Kolmogorov-Kraichnan sense) where the scaling exponents are not constant. The degree of intermittency, evaluated in the non-local quasi-inertial range, is explained from the variation with scale of the energy transfer as well as the dissipation. The scale to scale transfer and the structure function scaling exponents are calculated and from these the intermittency parametres. The turbulent diffusivity could also be estimated and compared with Richardson's law. Some two point correlations and time lag calculations are used to investigate the time and spatial integral length scales obtained from both Lagrangian and Eulerian correlations and functions, and we compare these results with both theoretical and laboratory data. We develop a theoretical description of how to measure the different levels of intermittency following (Mahjoub et al. 1998, 2000) and the role of locality in higher order exponents of structure function analysis. Vindel J.M., Yague C. and Redondo J.M. (2008) Structure function analysis and intermittency in the ABL. Nonlin. Processes Geophys., 15, 915-929. Cuxart J, Yague C, Morales G, Terradellas E, Orbe J, Calvo J, Fernández A, Soler M R, Infante C, Buenestado P, Espinalt A, Joergensen H E, Rees J M, Vilá J, Redondo J M, Cantalapiedra R and Conangla L (2000): Stable atmospheric boundary-layer experiment in Spain (Sables 98): a report, Boundary-Layer Meteorology 96, 337-370 Mahjoub O

  20. Modification of homogeneous and isotropic turbulence by solid particles

    Science.gov (United States)

    Hwang, Wontae

    2005-12-01

    Particle-laden flows are prevalent in natural and industrial environments. Dilute loadings of small, heavy particles have been observed to attenuate the turbulence levels of the carrier-phase flow, up to 80% in some cases. We attempt to increase the physical understanding of this complex phenomenon by studying the interaction of solid particles with the most fundamental type of turbulence, which is homogeneous and isotropic with no mean flow. A flow facility was developed that could create air turbulence in a nearly-spherical chamber by means of synthetic jet actuators mounted on the corners. Loudspeakers were used as the actuators. Stationary turbulence and natural decaying turbulence were investigated using two-dimensional particle image velocimetry for the base flow qualification. Results indicated that the turbulence was fairly homogeneous throughout the measurement domain and very isotropic, with small mean flow. The particle-laden flow experiments were conducted in two different environments, the lab and in micro-gravity, to examine the effects of particle wakes and flow structure distortion caused by settling particles. The laboratory experiments showed that glass particles with diameters on the order of the turbulence Kolmogorov length scale attenuated the fluid turbulent kinetic energy (TKE) and dissipation rate with increasing particle mass loadings. The main source of fluid TKE production in the chamber was the speakers, but the loss of potential energy of the settling particles also resulted in a significant amount of production of extra TKE. The sink of TKE in the chamber was due to the ordinary fluid viscous dissipation and extra dissipation caused by particles. This extra dissipation could be divided into "unresolved" dissipation caused by local velocity disturbances in the vicinity of the small particles and dissipation caused by large-scale flow distortions from particle wakes and particle clusters. The micro-gravity experiments in NASA's KC-135

  1. Fractionated homogenous total-body irradiation prior to bone marrow transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Duehmke, E; Brix, F; Hebbinghaus, D; Jensen, M; Wendhausen, H; Schmitz, N

    1985-03-01

    At the University of Kiel, myeloid and acute lymphatic leukemia is treated since 1983 by total-body irradiation applied prior to bone marrow transplantation. Dose deviations in the midplane caused by the irregular surface and tissue inhomogeneities of the patient are reduced down to +-3.5% compared to the central ray, with the help of CT-based individual compensators. This method prevents above all an excessive dose to the lungs. The radiobiologic advantages of fractionated irradiation have been employed for all patients treated hitherto (n = 9). At present, a total body dose of 12 Gy in six fractions is applied within three days. There were no undesired acute radiogenic reactions except a mild acute mucositis found in all patients. Chronic side effects, especially in the lungs, were not demonstrated, too. However, the average follow-up time of 149 days has been rather short. One patient died from relapse of leukemia after a total dose of 10 Gy, another patient died because the transplanted bone marrow was rejected, and a third died from catheter sepsis. Six out of nine patients are in complete remission with a maximum index of Karnofsky. The limited experiences gained hitherto show that the homogeneous accelerated-fractionated total-body irradiation offers essential advantages compared to non-compensated single dose irradiation with respect to the prevention of undesired radiogenic effects in sound tissues and that its therapeutic efficacy is at least the same.

  2. Monte Carlo simulation of neutron transport in a homogeneous reactor with a partially inserted control rod

    International Nuclear Information System (INIS)

    Karlsson, J.K.H.; Linden, P.

    1997-01-01

    The neutron transport in a bare, cylindrical and homogeneous reactor, with and without the presence of a central partially inserted control rod, has been simulated by using a Monte Carlo transport code. The behaviour of both the flux and current in this system have been investigated. We have found that the flux and especially the current are strongly affected by the presence of the control rod in its close vicinity. The results indicate the feasibility to identify the position and especially the tip of the rod from the flux and current. Further, the direction to the rod can be found from the current vector. The information content regarding the position of the rod, in both the neutron flux and the current, decays strongly as a function of distance and it is dependent on the size of the rod. In our model, the practical range over which the flux or current can be a useful indicator of the position of the tip of the rod is about 10-15 cm for a rod with a diameter of 2 cm. The practical range for identification of the position of the rod is greater for a rod of larger diameter

  3. Deep learning for predicting the monsoon over the homogeneous regions of India

    Science.gov (United States)

    Saha, Moumita; Mitra, Pabitra; Nanjundiah, Ravi S.

    2017-06-01

    Indian monsoon varies in its nature over the geographical regions. Predicting the rainfall not just at the national level, but at the regional level is an important task. In this article, we used a deep neural network, namely, the stacked autoencoder to automatically identify climatic factors that are capable of predicting the rainfall over the homogeneous regions of India. An ensemble regression tree model is used for monsoon prediction using the identified climatic predictors. The proposed model provides forecast of the monsoon at a long lead time which supports the government to implement appropriate policies for the economic growth of the country. The monsoon of the central, north-east, north-west, and south-peninsular India regions are predicted with errors of 4.1%, 5.1%, 5.5%, and 6.4%, respectively. The identified predictors show high skill in predicting the regional monsoon having high variability. The proposed model is observed to be competitive with the state-of-the-art prediction models.

  4. Homogeneous photocatalytic reactions with organometallic and coordination compounds--perspectives for sustainable chemistry.

    Science.gov (United States)

    Hoffmann, Norbert

    2012-02-13

    Since the time of Giacomo Ciamician at the beginning of the 20th century, photochemical transformations have been recognized as contributing to sustainable chemistry. Electronic excitation significantly changes the reactivity of chemical compounds. Thus, the application of activation reagents is frequently avoided and transformations can be performed under mild conditions. Catalysis plays a central role in sustainable chemistry. Stoichiometric amounts of activation reagents are often avoided. This fact and the milder catalytic reaction conditions diminish the formation of byproducts. In the case of homogeneous catalysis, organometallic compounds are often applied. The combination of both techniques develops synergistic effects in the sense of "Green Chemistry". Herein, metal carbonyl-mediated reactions are reported. These transformations are of considerable interest for the synthesis of complex polyfunctionalized compounds. Copper(I)-catalyzed [2+2] photocycloaddition gives access to a large variety of cyclobutane derivatives. Currently, a large number of publications deal with photochemical electron-transfer-induced reactions with organometallic and coordination compounds, particularly with ruthenium complexes. Several photochemically induced oxidations can easily be performed with air or molecular oxygen when they are catalyzed with organometallic complexes. Photochemical reaction conditions also play a certain role in C-H activation with organometallic catalysts, for instance, with alkanes, although such transformations are conveniently performed with a variety of other photochemical reactions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. How does money memorize social interactions? Understanding time-homogeneity in monetary systems

    Science.gov (United States)

    Braun, Dieter; Schmitt, Matthias; Schacker, Andreas

    2013-03-01

    Understanding how money shapes and memorizes our social interactions is central to modern life. There are many schools of thought on as to how monetary systems contribute to crises or boom/bust cycles and how monetary policy can try to avert them. We find that statistical physics gives a refreshing perspective. We analyze how credit mechanisms introduce non-locality and time-heterogeneity to the monetary memory. Motivated by an analogy to particle physics, locality and time-homogeneity can be imposed to monetary systems. As a result, a full reserve banking system is complemented with a bi-currency system of non-bank assets (``money'') and bank assets (``antimoney''). Payment can either be made by passing on money or by receiving antimoney. As a result, a free floating exchange rate between non-bank assets and bank assets is established. Interestingly, this monetary memory allows for credit creation by the simultaneous transfer of money and antimoney at a negotiated exchange rate. We analyze this novel mechanism of liquidity transfer in a model of random social interactions, yielding analytical results for all relevant distributions and the price of liquidity under the conditions of a fully transparent credit market.

  6. ONETRAN, 1-D Transport in Planar, Cylindrical, Spherical Geometry for Homogeneous, Inhomogeneous Problem, Anisotropic Source

    International Nuclear Information System (INIS)

    1982-01-01

    1 - Description of problem or function: ONETRAN solves the one- dimensional multigroup transport equation in plane, cylindrical, spherical, and two-angle plane geometries. Both regular and adjoint, inhomogeneous and homogeneous (K-eff and eigenvalue searches) problems subject to vacuum, reflective, periodic, white, albedo or inhomogeneous boundary flux conditions are solved. General anisotropic scattering is allowed and anisotropic inhomogeneous sources are permitted. 2 - Method of solution: The discrete ordinates approximation for the angular variable is used with the diamond (central) difference approximation for the angular extrapolation in curved geometries. A linear discontinuous finite element representation for the angular flux in each spatial mesh cell is used. Negative fluxes are eliminated by a local set-to-zero and correct algorithm. Standard inner (within-group) iteration cycles are accelerated by system re-balance, coarse mesh re-balance, or Chebyshev acceleration. Outer iteration cycles are accelerated by coarse-mesh re-balance. 3 - Restrictions on the complexity of the problem: Variable dimensioning is used so that any combination of problem parameters leading to a container array less than MAXCOR can be accommodated. On CDC machines MAXCOR can be about 25 000 words and peripheral storage is used for most group-dependent data

  7. Metallographic Index-Based Quantification of the Homogenization State in Extrudable Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Panagiota I. Sarafoglou

    2016-05-01

    Full Text Available Extrudability of aluminum alloys of the 6xxx series is highly dependent on the microstructure of the homogenized billets. It is therefore very important to characterize quantitatively the state of homogenization of the as-cast billets. The quantification of the homogenization state was based on the measurement of specific microstructural indices, which describe the size and shape of the intermetallics and indicate the state of homogenization. The indices evaluated were the following: aspect ratio (AR, which is the ratio of the maximum to the minimum diameter of the particles, feret (F, which is the maximum caliper length, and circularity (C, which is a measure of how closely a particle resembles a circle in a 2D metallographic section. The method included extensive metallographic work and the measurement of a large number of particles, including a statistical analysis, in order to investigate the effect of homogenization time. Among the indices examined, the circularity index exhibited the most consistent variation with homogenization time. The lowest value of the circularity index coincided with the metallographic observation for necklace formation. Shorter homogenization times resulted in intermediate homogenization stages involving rounding of edges or particle pinching. The results indicated that the index-based quantification of the homogenization state could provide a credible method for the selection of homogenization process parameters towards enhanced extrudability.

  8. Calculation of proton beam initial orbit at cyclotron central region

    International Nuclear Information System (INIS)

    Pramudita Anggraita

    2012-01-01

    A calculation of proton beam initial orbits at cyclotron central region was carried out using Scilab 5.2.0. The calculation was done in 2 dimensions in a homogeneous magnetic field of 1.66 tesla at frequency of fourth harmonics. The positions of ion source, dees, and dummy dees follow those of GE Minitrace cyclotron, peak dee voltage 30 kV. The calculation yields result comparable to those simulated at KIRAMS-13 cyclotron. (author)

  9. Parallel computing for homogeneous diffusion and transport equations in neutronics

    International Nuclear Information System (INIS)

    Pinchedez, K.

    1999-06-01

    Parallel computing meets the ever-increasing requirements for neutronic computer code speed and accuracy. In this work, two different approaches have been considered. We first parallelized the sequential algorithm used by the neutronics code CRONOS developed at the French Atomic Energy Commission. The algorithm computes the dominant eigenvalue associated with PN simplified transport equations by a mixed finite element method. Several parallel algorithms have been developed on distributed memory machines. The performances of the parallel algorithms have been studied experimentally by implementation on a T3D Cray and theoretically by complexity models. A comparison of various parallel algorithms has confirmed the chosen implementations. We next applied a domain sub-division technique to the two-group diffusion Eigen problem. In the modal synthesis-based method, the global spectrum is determined from the partial spectra associated with sub-domains. Then the Eigen problem is expanded on a family composed, on the one hand, from eigenfunctions associated with the sub-domains and, on the other hand, from functions corresponding to the contribution from the interface between the sub-domains. For a 2-D homogeneous core, this modal method has been validated and its accuracy has been measured. (author)

  10. Experimental investigation of clogging dynamics in homogeneous porous medium

    Science.gov (United States)

    Shen, Jikang; Ni, Rui

    2017-03-01

    A 3-D refractive-index matching Lagrangian particle tracking (3D-RIM-LPT) system was developed to study the filtration and the clogging process inside a homogeneous porous medium. A small subset of particles flowing through the porous medium was dyed and tracked. As this subset was randomly chosen, its dynamics is representative of all the rest. The statistics of particle locations, number, and velocity were obtained as functions of different volumetric concentrations. It is found that in our system the clogging time decays with the particle concentration following a power law relationship. As the concentration increases, there is a transition from depth filtration to cake filtration. At high concentration, more clogged pores lead to frequent flow redirections and more transverse migrations of particles. In addition, the velocity distribution in the transverse direction is symmetrical around zero, and it is slightly more intermittent than the random Gaussian curve due to particle-particle and particle-grain interactions. In contrast, as clogging develops, the longitudinal velocity of particles along the mean flow direction peaks near zero because of many trapped particles. But at the same time, the remaining open pores will experience larger pressure and, as a result, particles through those pores tend to have larger longitudinal velocities.

  11. Social enterprise in health organisation and management: hybridity or homogeneity?

    Science.gov (United States)

    Millar, Ross

    2012-01-01

    The purpose of this paper is to reflect on social enterprise as an organisational form in health organisation and management. The paper presents a critique of the underlying assumptions associated with social enterprise in the context of English health and social care. The rise of social enterprise models of service provision reflects increasingly hybrid organisational forms and functions entering the health and social care market. Whilst at one level this hybridity increases the diversity of service providers promoting innovative and responsive services, the paper argues that further inspection of the assumptions associated with social enterprise reveal an organisational form that is symbolic of isomorphic processes pushing healthcare organisations toward greater levels of homogeneity, based on market-based standardisation and practices. Social enterprise forms part of isomorphic processes moving healthcare organisation and management towards market norms". In line with the aim of the "New Perspectives section", the paper aims to present a provocative perspective about developments in health and social care, as a spur to further debate and research in this area.

  12. Estimating minimum polycrystalline aggregate size for macroscopic material homogeneity

    International Nuclear Information System (INIS)

    Kovac, M.; Simonovski, I.; Cizelj, L.

    2002-01-01

    During severe accidents the pressure boundary of reactor coolant system can be subjected to extreme loadings, which might cause failure. Reliable estimation of the extreme deformations can be crucial to determine the consequences of severe accidents. Important drawback of classical continuum mechanics is idealization of inhomogenous microstructure of materials. Classical continuum mechanics therefore cannot predict accurately the differences between measured responses of specimens, which are different in size but geometrical similar (size effect). A numerical approach, which models elastic-plastic behavior on mesoscopic level, is proposed to estimate minimum size of polycrystalline aggregate above which it can be considered macroscopically homogeneous. The main idea is to divide continuum into a set of sub-continua. Analysis of macroscopic element is divided into modeling the random grain structure (using Voronoi tessellation and random orientation of crystal lattice) and calculation of strain/stress field. Finite element method is used to obtain numerical solutions of strain and stress fields. The analysis is limited to 2D models.(author)

  13. Membership function used to construction of a hand homogeneous phantom

    International Nuclear Information System (INIS)

    Pavan, Ana Luiza Menegatti; Alvarez, Matheus; Alves, Allan Felipe Fattori; Rosa, Maria Eugenia Dela; Miranda, Jose Ricardo de Arruda

    2014-01-01

    Fractures and dislocations of the hand are some injuries most frequently encountered in trauma of the musculoskeletal system. In evaluating these lesions, in addition to physical examination, radiography, in at least two incidents, is the investigation of choice, and rarely is necessary the help of other images to establish the diagnosis and treatment. The image quality of X-ray examination is therefore essential. In this study, a homogeneous phantom hand was developed to be used in the optimization of images from hand using computed radiography system process. In this procedure were quantified thicknesses of different tissues that constitute an anthropomorphic phantom hand. To perform the classification and quantification of tissue was applied membership functions for histograms of CT scans. The same procedure was adopted for retrospective examinations of 30 patients of the Hospital das Clinicas, Botucatu Medicine School, UNESP (HCFMB-UNESP). The results showed agreement between the thicknesses of tissues that make up the anthropomorphic phantom and sampling of patients, presenting variations between 12.63% and 6.48% for soft tissue and bone, respectively. (author)

  14. Competing Contact Processes on Homogeneous Networks with Tunable Clusterization

    Science.gov (United States)

    Rybak, Marcin; Kułakowski, Krzysztof

    2013-03-01

    We investigate two homogeneous networks: the Watts-Strogatz network with mean degree ⟨k⟩ = 4 and the Erdös-Rényi network with ⟨k⟩ = 10. In both kinds of networks, the clustering coefficient C is a tunable control parameter. The network is an area of two competing contact processes, where nodes can be in two states, S or D. A node S becomes D with probability 1 if at least two its mutually linked neighbors are D. A node D becomes S with a given probability p if at least one of its neighbors is S. The competition between the processes is described by a phase diagram, where the critical probability pc depends on the clustering coefficient C. For p > pc the rate of state S increases in time, seemingly to dominate in the whole system. Below pc, the majority of nodes is in the D-state. The numerical results indicate that for the Watts-Strogatz network the D-process is activated at the finite value of the clustering coefficient C, close to 0.3. On the contrary, for the Erdös-Rényi network the transition is observed at the whole investigated range of C.

  15. Hamiltonian dynamics of spatially-homogeneous Vlasov-Einstein systems

    International Nuclear Information System (INIS)

    Okabe, Takahide; Morrison, P. J.; Friedrichsen, J. E. III; Shepley, L. C.

    2011-01-01

    We introduce a new matter action principle, with a wide range of applicability, for the Vlasov equation in terms of a conjugate pair of functions. Here we apply this action principle to the study of matter in Bianchi cosmological models in general relativity. The Bianchi models are spatially-homogeneous solutions to the Einstein field equations, classified by the three-dimensional Lie algebra that describes the symmetry group of the model. The Einstein equations for these models reduce to a set of coupled ordinary differential equations. The class A Bianchi models admit a Hamiltonian formulation in which the components of the metric tensor and their time derivatives yield the canonical coordinates. The evolution of anisotropy in the vacuum Bianchi models is determined by a potential due to the curvature of the model, according to its symmetry. For illustrative purposes, we examine the evolution of anisotropy in models with Vlasov matter. The Vlasov content is further simplified by the assumption of cold, counter-streaming matter, a kind of matter that is far from thermal equilibrium and is not describable by an ordinary fluid model nor other more simplistic matter models. Qualitative differences and similarities are found in the dynamics of certain vacuum class A Bianchi models and Bianchi type I models with cold, counter-streaming Vlasov-matter potentials analogous to the curvature potentials of corresponding vacuum models.

  16. Soil homogeneity evaluation by radionuclide tracer breakthrough curve interpretation

    International Nuclear Information System (INIS)

    Brenizer, J.S. Jr.; Jarrett, A.R.; Jester, W.A.

    1980-01-01

    Increasing concern about the environmental impact of hazardous waste disposal has made site evaluation and site selection difficult and expensive. Pollutants, assumed to be absorbed by the soil immediately surrounding the burial trench, have been detected far from sites. Discrepancies between predicted migration distances based on indirect methods such as laboratory and computer modeling and those observed at the field site are often significant. The homogeneity of subsurface media, often assumed in laboratory and modeling studies, is seldom found in the field. The use of tracers to determine the flow characteristics of a potential disposal site involves time and expense, but offers a direct evaluation of solute transport and eliminates the assumptions inherent in indirect methods. Current modeling of solute transport in nonhomogeneous porous media is limited by the quantification of input parameters. Several general models can predict solute transport in saturated-unsaturated media from low-level disposal sites if the hydraulic characteristics and chemical reactions expected in each unique water-solute-media system can be defined. The objective of this research was to develop a method of evaluating potential shallow-land burial waste disposal sites by interpreting tracer breakthrough curve structure with respect to the hydrologic properties of the media at the potential disposal site. This methodology will be helpful in evaluating the potential performance of many types of shallow-land waste burial sites such as low-level radioactive waste disposal, surface disposal of flyash, chemical waste disposal, waste sedimentation ponds, and sanitary landfills

  17. Non-homogeneous updates for the iterative coordinate descent algorithm

    Science.gov (United States)

    Yu, Zhou; Thibault, Jean-Baptiste; Bouman, Charles A.; Sauer, Ken D.; Hsieh, Jiang

    2007-02-01

    Statistical reconstruction methods show great promise for improving resolution, and reducing noise and artifacts in helical X-ray CT. In fact, statistical reconstruction seems to be particularly valuable in maintaining reconstructed image quality when the dosage is low and the noise is therefore high. However, high computational cost and long reconstruction times remain as a barrier to the use of statistical reconstruction in practical applications. Among the various iterative methods that have been studied for statistical reconstruction, iterative coordinate descent (ICD) has been found to have relatively low overall computational requirements due to its fast convergence. This paper presents a novel method for further speeding the convergence of the ICD algorithm, and therefore reducing the overall reconstruction time for statistical reconstruction. The method, which we call nonhomogeneous iterative coordinate descent (NH-ICD) uses spatially non-homogeneous updates to speed convergence by focusing computation where it is most needed. Experimental results with real data indicate that the method speeds reconstruction by roughly a factor of two for typical 3D multi-slice geometries.

  18. Modeling environmental noise exceedances using non-homogeneous Poisson processes.

    Science.gov (United States)

    Guarnaccia, Claudio; Quartieri, Joseph; Barrios, Juan M; Rodrigues, Eliane R

    2014-10-01

    In this work a non-homogeneous Poisson model is considered to study noise exposure. The Poisson process, counting the number of times that a sound level surpasses a threshold, is used to estimate the probability that a population is exposed to high levels of noise a certain number of times in a given time interval. The rate function of the Poisson process is assumed to be of a Weibull type. The presented model is applied to community noise data from Messina, Sicily (Italy). Four sets of data are used to estimate the parameters involved in the model. After the estimation and tuning are made, a way of estimating the probability that an environmental noise threshold is exceeded a certain number of times in a given time interval is presented. This estimation can be very useful in the study of noise exposure of a population and also to predict, given the current behavior of the data, the probability of occurrence of high levels of noise in the near future. One of the most important features of the model is that it implicitly takes into account different noise sources, which need to be treated separately when using usual models.

  19. The homogeneity of levitation force in single domain YBCO bulk

    International Nuclear Information System (INIS)

    Zhou Keran; Xu Kexi; Wu Xingda; Pan Pengjun

    2007-01-01

    The pellet homogeneity of levitation force versus the position in comparison to the seed or to the top surface has been studied in the entire volume of a single domain YBa 2 Cu 3 O 7-δ bulk sample processed by the top-seeded melt texturing growth (TSMTG). It is found that the levitation forces increase and peak at a depth of 3 mm from the top of the sample at liquid nitrogen temperature. In other words, the second disk has the largest levitation force density. The phenomenon can be interpreted by the interaction between the microcracks or pores produced by crystal growth and the oxygenation. We propose a model in which Y211 particles distribution leading to microcracks and pores reduces the effective induced shielding current loops (ISCL) and increases the perimeters of ISCL. This corresponds to a decrease in the grain size and results in greatly reduced levitation forces of the bottom of the bulk. From the research, we know that the density of the YBCO bulk is also an important parameter for the levitation properties. The result is very attractive and useful for the fundamental studies and fabrication of TSMTG YBa 2 Cu 3 O 7-δ bulk

  20. The homogeneity of levitation force in single domain YBCO bulk

    Science.gov (United States)

    Zhou, Keran; Xu, Ke-Xi; Wu, Xing-da; Pan, Peng-jun

    2007-11-01

    The pellet homogeneity of levitation force versus the position in comparison to the seed or to the top surface has been studied in the entire volume of a single domain YBa 2Cu 3O 7-δ bulk sample processed by the top-seeded melt texturing growth (TSMTG). It is found that the levitation forces increase and peak at a depth of 3 mm from the top of the sample at liquid nitrogen temperature. In other words, the second disk has the largest levitation force density. The phenomenon can be interpreted by the interaction between the microcracks or pores produced by crystal growth and the oxygenation. We propose a model in which Y211 particles distribution leading to microcracks and pores reduces the effective induced shielding current loops (ISCL) and increases the perimeters of ISCL. This corresponds to a decrease in the grain size and results in greatly reduced levitation forces of the bottom of the bulk. From the research, we know that the density of the YBCO bulk is also an important parameter for the levitation properties. The result is very attractive and useful for the fundamental studies and fabrication of TSMTG YBa 2Cu 3O 7-δ bulk.