International Nuclear Information System (INIS)
Davidson, Ronald C.; Lee, W. Wei-li; Hong Qin; Startsev, Edward
2001-01-01
This paper develops a clear procedure for solving the nonlinear Vlasov-Maxwell equations for a one-component intense charged particle beam or finite-length charge bunch propagating through a cylindrical conducting pipe (radius r = r(subscript)w = const.), and confined by an applied focusing force. In particular, the nonlinear Vlasov-Maxwell equations are Lorentz-transformed to the beam frame ('primed' variables) moving with axial velocity relative to the laboratory. In the beam frame, the particle motions are nonrelativistic for the applications of practical interest, already a major simplification. Then, in the beam frame, we make the electrostatic approximation which fully incorporates beam space-charge effects, but neglects any fast electromagnetic processes with transverse polarization (e.g., light waves). The resulting Vlasov-Maxwell equations are then Lorentz-transformed back to the laboratory frame, and properties of the self-generated fields and resulting nonlinear Vlasov-Maxwell equations in the laboratory frame are discussed
Superconvergence of mixed finite element approximations to 3-D Maxwell's equations in metamaterials
Huang, Yunqing
2011-09-01
Numerical simulation of metamaterials has attracted more and more attention since 2000, after the first metamaterial with negative refraction index was successfully constructed. In this paper we construct a fully-discrete leap-frog type finite element scheme to solve the three-dimensional time-dependent Maxwell\\'s equations when metamaterials are involved. First, we obtain some superclose results between the interpolations of the analytical solutions and finite element solutions obtained using arbitrary orders of Raviart-Thomas-Nédélec mixed spaces on regular cubic meshes. Then we prove the superconvergence result in the discrete l2 norm achieved for the lowest-order Raviart-Thomas-Nédélec space. To our best knowledge, such superconvergence results have never been obtained elsewhere. Finally, we implement the leap-frog scheme and present numerical results justifying our theoretical analysis. © 2011 Elsevier Inc.
Superconvergence of mixed finite element approximations to 3-D Maxwell's equations in metamaterials
Huang, Yunqing; Li, Jichun; Yang, Wei; Sun, Shuyu
2011-01-01
Numerical simulation of metamaterials has attracted more and more attention since 2000, after the first metamaterial with negative refraction index was successfully constructed. In this paper we construct a fully-discrete leap-frog type finite element scheme to solve the three-dimensional time-dependent Maxwell's equations when metamaterials are involved. First, we obtain some superclose results between the interpolations of the analytical solutions and finite element solutions obtained using arbitrary orders of Raviart-Thomas-Nédélec mixed spaces on regular cubic meshes. Then we prove the superconvergence result in the discrete l2 norm achieved for the lowest-order Raviart-Thomas-Nédélec space. To our best knowledge, such superconvergence results have never been obtained elsewhere. Finally, we implement the leap-frog scheme and present numerical results justifying our theoretical analysis. © 2011 Elsevier Inc.
Mathematics and Maxwell's equations
International Nuclear Information System (INIS)
Boozer, Allen H
2010-01-01
The universality of mathematics and Maxwell's equations is not shared by specific plasma models. Computations become more reliable, efficient and transparent if specific plasma models are used to obtain only the information that would otherwise be missing. Constraints of high universality, such as those from mathematics and Maxwell's equations, can be obscured or lost by integrated computations. Recognition of subtle constraints of high universality is important for (1) focusing the design of control systems for magnetic field errors in tokamaks from perturbations that have little effect on the plasma to those that do, (2) clarifying the limits of applicability to astrophysics of computations of magnetic reconnection in fields that have a double periodicity or have B-vector =0 on a surface, as in a Harris sheet. Both require a degree of symmetry not expected in natural systems. Mathematics and Maxwell's equations imply that neighboring magnetic field lines characteristically separate exponentially with distance along a line. This remarkably universal phenomenon has been largely ignored, though it defines a trigger for reconnection through a critical magnitude of exponentiation. These and other examples of the importance of making distinctions and understanding constraints of high universality are explained.
Magnetic monopoles, Galilean invariance, and Maxwell's equations
International Nuclear Information System (INIS)
Crawford, F.S.
1992-01-01
Maxwell's equations have space reserved for magnetic monopoles. Whether or not they exist in our part of the universe, monopoles provide a useful didactic tool to help us recognize relations among Maxwell's equations less easily apparent in the approach followed by many introductory textbooks, wherein Coulomb's law, Biot and Savart's law, Ampere's law, Faraday's law, Maxwell's displacement current, etc., are introduced independently, ''as demanded by experiment.'' Instead a conceptual path that deduces all of Maxwell's equations from the near-minimal set of assumptions: (a) Inertial frames exist, in which Newton's laws hold, to a first approximation; (b) the laws of electrodynamics are Galilean invariant---i.e., they have the same form in every inertial frame, to a first approximation; (c) magnetic poles (as well as the usual electric charges) exist; (d) the complete Lorentz force on an electric charge is known; (e) the force on a monopole at rest is known; (f) the Coulomb-like field produced by a resting electric charge and by a resting monopole are known. Everything else is deduced. History is followed in the assumption that Newtonian mechanics have been discovered, but not special relativity. (Only particle velocities v much-lt c are considered.) This ends up with Maxwell's equations (Maxwell did not need special relativity, so why should we,) but facing Einstein's paradox, the solution of which is encapsulated in the Einstein velocity-addition formula
International Nuclear Information System (INIS)
Nkemzi, B.
2005-10-01
Three-dimensional time-harmonic Maxwell's problems in axisymmetric domains Ω-circumflex with edges and conical points on the boundary are treated by means of the Fourier-finite-element method. The Fourier-fem combines the approximating Fourier series expansion of the solution with respect to the rotational angle using trigonometric polynomials of degree N (N → ∞), with the finite element approximation of the Fourier coefficients on the plane meridian domain Ω a is a subset of R + 2 of Ω-circumflex with mesh size h (h → 0). The singular behaviors of the Fourier coefficients near angular points of the domain Ω a are fully described by suitable singular functions and treated numerically by means of the singular function method with the finite element method on graded meshes. It is proved that the rate of convergence of the mixed approximations in H 1 (Ω-circumflex) 3 is of the order O (h+N -1 ) as known for the classical Fourier-finite-element approximation of problems with regular solutions. (author)
Chaotic dynamics in the Maxwell-Bloch equations
International Nuclear Information System (INIS)
Holm, D.D.; Kovacic, G.
1992-01-01
In the slowly varying envelope approximation and the rotating wave approximation for the Maxwell-Bloch equations, we describe how the presence of a small-amplitude probe laser in an excited, two-level, resonant medium leads to homoclinic chaos in the laser-matter dynamics. We also describe a derivation of the Maxwell-Bloch equations from an action principle
Geometric Implications of Maxwell's Equations
Smith, Felix T.
2015-03-01
Maxwell's synthesis of the varied results of the accumulated knowledge of electricity and magnetism, based largely on the searching insights of Faraday, still provide new issues to explore. A case in point is a well recognized anomaly in the Maxwell equations: The laws of electricity and magnetism require two 3-vector and two scalar equations, but only six dependent variables are available to be their solutions, the 3-vectors E and B. This leaves an apparent redundancy of two degrees of freedom (J. Rosen, AJP 48, 1071 (1980); Jiang, Wu, Povinelli, J. Comp. Phys. 125, 104 (1996)). The observed self-consistency of the eight equations suggests that they contain additional information. This can be sought as a previously unnoticed constraint connecting the space and time variables, r and t. This constraint can be identified. It distorts the otherwise Euclidean 3-space of r with the extremely slight, time dependent curvature k (t) =Rcurv-2 (t) of the 3-space of a hypersphere whose radius has the time dependence dRcurv / dt = +/- c nonrelativistically, or dRcurvLor / dt = +/- ic relativistically. The time dependence is exactly that of the Hubble expansion. Implications of this identification will be explored.
Unconditionally stable integration of Maxwell's equations
J.G. Verwer (Jan); M.A. Botchev
2008-01-01
htmlabstractNumerical integration of Maxwell''s equations is often based on explicit methods accepting a stability step size restriction. In literature evidence is given that there is also a need for unconditionally stable methods, as exemplified by the successful alternating direction
Static Einstein--Maxwell field equations
International Nuclear Information System (INIS)
Das, A.
1979-01-01
The static Einstein--Maxwell field equations are investigated in the presence of both electric and magnetic fields. The sources or bodies are assumed to be of finite size and to not affect the connectivity of the associated space. Furthermore, electromagnetic and metric fields are assumed to have reasonable differentiabilities. It is then proved that the electric and magnetic field vectors are constant multiples of one another. Moreover, the static Einstein--Maxwell equations reduce to the static magnetovac case. If, furthermore, the variational derivation of the Einstein--Maxwell equations is assumed, then both the total electric and magnetic charge of each body must vanish. As a physical consequence it is pointed out that if a suspended magnet be electrically charged then it must experience a purely general relativistic torque
Modified Maxwell equations in quantum electrodynamics
Harmuth, Henning F; Meffert, Beate
2001-01-01
Divergencies in quantum field theory referred to as "infinite zero-point energy" have been a problem for 70 years. Renormalization has always been considered an unsatisfactory remedy. In 1985 it was found that Maxwell's equations generally do not have solutions that satisfy the causality law. An additional term for magnetic dipole currents corrected this shortcoming. Rotating magnetic dipoles produce magnetic dipole currents, just as rotating electric dipoles in a material like barium titanate produce electric dipole currents. Electric dipole currents were always part of Maxwell's equations. T
Stationary axisymmetric Einstein--Maxwell field equations
International Nuclear Information System (INIS)
Catenacci, R.; Diaz Alonso, J.
1976-01-01
We show the existence of a formal identity between Einstein's and Ernst's stationary axisymmetric gravitational field equations and the Einstein--Maxwell and the Ernst equations for the electrostatic and magnetostatic axisymmetric cases. Our equations are invariant under very simple internal symmetry groups, and one of them appears to be new. We also obtain a method for associating two stationary axisymmetric vacuum solutions with every electrostatic known
On fictitious domain formulations for Maxwell's equations
DEFF Research Database (Denmark)
Dahmen, W.; Jensen, Torben Klint; Urban, K.
2003-01-01
We consider fictitious domain-Lagrange multiplier formulations for variational problems in the space H(curl: Omega) derived from Maxwell's equations. Boundary conditions and the divergence constraint are imposed weakly by using Lagrange multipliers. Both the time dependent and time harmonic formu...
Unconditionally stable integration of Maxwell's equations
Verwer, J.G.; Bochev, Mikhail A.
Numerical integration of Maxwell's equations is often based on explicit methods accepting a stability step size restriction. In literature evidence is given that there is also a need for unconditionally stable methods, as exemplified by the successful alternating direction implicit finite difference
FDTD for Hydrodynamic Electron Fluid Maxwell Equations
Directory of Open Access Journals (Sweden)
Yingxue Zhao
2015-05-01
Full Text Available In this work, we develop a numerical method for solving the three dimensional hydrodynamic electron fluid Maxwell equations that describe the electron gas dynamics driven by an external electromagnetic wave excitation. Our numerical approach is based on the Finite-Difference Time-Domain (FDTD method for solving the Maxwell’s equations and an explicit central finite difference method for solving the hydrodynamic electron fluid equations containing both electron density and current equations. Numerical results show good agreement with the experiment of studying the second-harmonic generation (SHG from metallic split-ring resonator (SRR.
Mathematics and Maxwell's equations
Energy Technology Data Exchange (ETDEWEB)
Boozer, Allen H, E-mail: ahb17@columbia.ed [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States)
2010-12-15
The universality of mathematics and Maxwell's equations is not shared by specific plasma models. Computations become more reliable, efficient and transparent if specific plasma models are used to obtain only the information that would otherwise be missing. Constraints of high universality, such as those from mathematics and Maxwell's equations, can be obscured or lost by integrated computations. Recognition of subtle constraints of high universality is important for (1) focusing the design of control systems for magnetic field errors in tokamaks from perturbations that have little effect on the plasma to those that do, (2) clarifying the limits of applicability to astrophysics of computations of magnetic reconnection in fields that have a double periodicity or have B-vector =0 on a surface, as in a Harris sheet. Both require a degree of symmetry not expected in natural systems. Mathematics and Maxwell's equations imply that neighboring magnetic field lines characteristically separate exponentially with distance along a line. This remarkably universal phenomenon has been largely ignored, though it defines a trigger for reconnection through a critical magnitude of exponentiation. These and other examples of the importance of making distinctions and understanding constraints of high universality are explained.
Green`s function of Maxwell`s equations and corresponding implications for iterative methods
Energy Technology Data Exchange (ETDEWEB)
Singer, B.S. [Macquarie Univ., Sydney (Australia); Fainberg, E.B. [Inst. of Physics of the Earth, Moscow (Russian Federation)
1996-12-31
Energy conservation law imposes constraints on the norm and direction of the Hilbert space vector representing a solution of Maxwell`s equations. In this paper, we derive these constrains and discuss the corresponding implications for the Green`s function of Maxwell`s equations in a dissipative medium. It is shown that Maxwell`s equations can be reduced to an integral equation with a contracting kernel. The equation can be solved using simple iterations. Software based on this algorithm have successfully been applied to a wide range of problems dealing with high contrast models. The matrix corresponding to the integral equation has a well defined spectrum. The equation can be symmetrized and solved using different approaches, for instance one of the conjugate gradient methods.
Local WKB dispersion relation for the Vlasov-Maxwell equations
International Nuclear Information System (INIS)
Berk, H.L.; Dominguez, R.R.
1982-10-01
A formalism for analyzing systems of integral equations, based on the Wentzel-Kramers-Brillouin (WKB) approximation, is applied to the Vlasov-Maxwell integral equations in an arbitrary-β, spatially inhomogenous plasma model. It is shown that when treating frequencies comparable with and larger than the cyclotron frequency, relevant new terms must be accounted for to treat waves that depend upon local spatial gradients. For a specific model, the response for very short wavelength and high frequency is shown to reduce to the straight-line orbit approximation when the WKB rules are correctly followed
How to obtain the covariant form of Maxwell's equations from the continuity equation
International Nuclear Information System (INIS)
Heras, Jose A
2009-01-01
The covariant Maxwell equations are derived from the continuity equation for the electric charge. This result provides an axiomatic approach to Maxwell's equations in which charge conservation is emphasized as the fundamental axiom underlying these equations
How to obtain the covariant form of Maxwell's equations from the continuity equation
Energy Technology Data Exchange (ETDEWEB)
Heras, Jose A [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Av. San Pablo No. 180, Col. Reynosa, 02200, Mexico D. F. (Mexico); Departamento de Fisica y Matematicas, Universidad Iberoamericana, Prolongacion Paseo de la Reforma 880, Mexico D. F. 01210 (Mexico)
2009-07-15
The covariant Maxwell equations are derived from the continuity equation for the electric charge. This result provides an axiomatic approach to Maxwell's equations in which charge conservation is emphasized as the fundamental axiom underlying these equations.
Fractional vector calculus and fractional Maxwell's equations
International Nuclear Information System (INIS)
Tarasov, Vasily E.
2008-01-01
The theory of derivatives and integrals of non-integer order goes back to Leibniz, Liouville, Grunwald, Letnikov and Riemann. The history of fractional vector calculus (FVC) has only 10 years. The main approaches to formulate a FVC, which are used in the physics during the past few years, will be briefly described in this paper. We solve some problems of consistent formulations of FVC by using a fractional generalization of the Fundamental Theorem of Calculus. We define the differential and integral vector operations. The fractional Green's, Stokes' and Gauss's theorems are formulated. The proofs of these theorems are realized for simplest regions. A fractional generalization of exterior differential calculus of differential forms is discussed. Fractional nonlocal Maxwell's equations and the corresponding fractional wave equations are considered
Maxwell equations in conformal invariant electrodynamics
International Nuclear Information System (INIS)
Fradkin, E.S.; AN SSSR, Novosibirsk. Inst. Avtomatiki i Ehlektrometrii); Kozhevnikov, A.A.; Palchik, M.Ya.; Pomeransky, A.A.
1983-01-01
We consider a conformal invariant formulation of quantum electrodynamics. Conformal invariance is achieved with a specific mathematical construction based on the indecomposable representations of the conformal group associated with the electromagnetic potential and current. As a corolary of this construction modified expressions for the 3-point Green functions are obtained which both contain transverse parts. They make it possible to formulate a conformal invariant skeleton perturbation theory. It is also shown that the Euclidean Maxwell equations in conformal electrodynamics are manifestations of its kinematical structure: in the case of the 3-point Green functions these equations follow (up to constants) from the conformal invariance while in the case of higher Green functions they are equivalent to the equality of the kernels of the partial wave expansions. This is the manifestation of the mathematical fast of a (partial) equivalence of the representations associated with the potential, current and the field tensor. (orig.)
Maxwell Equations and the Redundant Gauge Degree of Freedom
Wong, Chun Wa
2009-01-01
On transformation to the Fourier space (k,[omega]), the partial differential Maxwell equations simplify to algebraic equations, and the Helmholtz theorem of vector calculus reduces to vector algebraic projections. Maxwell equations and their solutions can then be separated readily into longitudinal and transverse components relative to the…
Incompressible Maxwell-Boussinesq approximation: Existence, uniqueness and shape sensitivity
Czech Academy of Sciences Publication Activity Database
Consiglieri, L.; Nečasová, Šárka; Sokolowski, J.
2009-01-01
Roč. 38, č. 4 (2009), s. 1193-1215 ISSN 0324-8569 R&D Projects: GA ČR GA201/05/0005; GA ČR GA201/08/0012 Institutional research plan: CEZ:AV0Z10190503 Keywords : Maxwell-Boussinesq approximation Subject RIV: BA - General Mathematics Impact factor: 0.378, year: 2009
Stochastic Levy Divergence and Maxwell's Equations
Directory of Open Access Journals (Sweden)
B. O. Volkov
2015-01-01
Full Text Available One of the main reasons for interest in the Levy Laplacian and its analogues such as Levy d'Alembertian is a connection of these operators with gauge fields. The theorem proved by Accardi, Gibillisco and Volovich stated that a connection in a bundle over a Euclidean space or over a Minkowski space is a solution of the Yang-Mills equations if and only if the corresponding parallel transport to the connection is a solution of the Laplace equation for the Levy Laplacian or of the d'Alembert equation for the Levy d'Alembertian respectively (see [5, 6]. There are two approaches to define Levy type operators, both of which date back to the original works of Levy [7]. The first is that the Levy Laplacian (or Levy d'Alembertian is defined as an integral functional generated by a special form of the second derivative. This approach is used in the works [5, 6], as well as in the paper [8] of Leandre and Volovich, where stochastic Levy-Laplacian is discussed. Another approach to the Levy Laplacian is defining it as the Cesaro mean of second order derivatives along the family of vectors, which is an orthonormal basis in the Hilbert space. This definition of the Levy Laplacian is used for the description of solutions of the Yang-Mills equations in the paper [10].The present work shows that the definitions of the Levy Laplacian and the Levy d'Alembertian based on Cesaro averaging of the second order directional derivatives can be transferred to the stochastic case. In the article the values of these operators on a stochastic parallel transport associated with a connection (vector potential are found. In this case, unlike the deterministic case and the stochastic case of Levy Laplacian from [8], these values are not equal to zero if the vector potential corresponding to the stochastic parallel transport is a solution of the Maxwell's equations. As a result, two approaches to definition of the Levy Laplacian in the stochastic case give different operators. This
J ames Clerk Maxwell and his Equations
Indian Academy of Sciences (India)
standing importance in the development of physical ideas. Maxwell has been ... mathematics teacher was William Hopkins, the famous 'Wran- ... union (like Faraday's) was child- ... bility or to use any influence when he unsuccessfully tried for.
CSR Fields: Direct Numerical Solution of the Maxwell's Equation
International Nuclear Information System (INIS)
Novokhatski, Alexander
2011-01-01
We discuss the properties of the coherent electromagnetic fields of a very short, ultra-relativistic bunch in a rectangular vacuum chamber inside a bending magnet. The analysis is based on the results of a direct numerical solution of Maxwell's equations together with Newton's equations. We use a new dispersion-free time-domain algorithm which employs a more efficient use of finite element mesh techniques and hence produces self-consistent and stable solutions for very short bunches. We investigate the fine structure of the CSR fields including coherent edge radiation. This approach should be useful in the study of existing and future concepts of particle accelerators and ultrafast coherent light sources. The coherent synchrotron radiation (CSR) fields have a strong action on the beam dynamics of very short bunches, which are moving in the bends of all kinds of magnetic elements. They are responsible for additional energy loss and energy spread; micro bunching and beam emittance growth. These fields may bound the efficiency of damping rings, electron-positron colliders and ultrafast coherent light sources, where high peak currents and very short bunches are envisioned. This is relevant to most high-brightness beam applications. On the other hand these fields together with transition radiation fields can be used for beam diagnostics or even as a powerful resource of THz radiation. A history of the study of CSR and a good collection of references can be found in (1). Electromagnetic theory suggests several methods on how to calculate CSR fields. The most popular method is to use Lienard-Wiechert potentials. Other approach is to solve numerically the approximate equations, which are a Schrodinger type equation. These numerical methods are described in (2). We suggest that a direct solution of Maxwell's equations together with Newton's equations can describe the detailed structure of the CSR fields (3).
Limited-diffraction solutions to Maxwell and Schroedinger equations
International Nuclear Information System (INIS)
Lu, Jian-yu; Greenleaf, J.F.
1996-10-01
The authors have developed a new family of limited diffraction electromagnetic X-shaped waves based on the scalar X-shaped waves discovered previously. These waves are diffraction-free in theory and particle-like (wave packets), in that they maintain their shape as they propagate to an infinite distance. The 'X waves' possess (theoretically) infinitely extended 'arms' and - at least, the ones studied in this paper - have an infinite total energy: therefore, they are not physically realizable. However, they can be truncated in both space and time and 'approximated' by means of a finite aperture radiator so to get a large enough depth of interest (depth of field). In addition to the Maxwell equations, X wave solutions to the free Schroedinger equation are also obtained. Possible applications of these new waves are discussed. Finally, the authors discuss the appearance of the X-shaped solutions from the purely geometric point of view of the special relativity theory
Classes of general axisymmetric solutions of Einstein-Maxwell equations
International Nuclear Information System (INIS)
Krori, K.D.; Choudhury, T.
1981-01-01
An exact solution of the Einstein equations for a stationary axially symmetric distribution of mass composed of all types of multipoles is obtained. Following Ernst (1968), from this vacuum solution the corresponding solution of the coupled Einstein-Maxwell equations is derived. A solution of Einstein-Maxwell fields for a static axially symmetric system composed of all types of multipoles is also obtained. (author)
Mathematical and numerical methods for Vlasov-Maxwell equations: the contributions of data mining
International Nuclear Information System (INIS)
Assous, F.; Chaskalovic, J.
2014-01-01
There exist a lot of formulations that can model plasma physics or particle accelerators problems as the Vlasov- Maxwell equations. This paper deals with the applications of data mining techniques in the evaluation of numerical solutions of Vlasov-Maxwell models. This is part of the topic of characterizing the model and approximation errors via learning techniques. We give two examples of application. The first one aims at comparing two Vlasov-Maxwell approximate models. In the second one, a scheme based on data mining techniques is proposed to characterize the errors between a P1 and a P2 finite element Particle-In-Cell approach. Beyond these examples, this original approach should operate in all cases where intricate numerical simulations like for the Vlasov-Maxwell equations take a central part. (authors)
International Nuclear Information System (INIS)
Fochesato, Ch.; Bouche, D.
2007-01-01
The numerical solution of Maxwell equations is a challenging task. Moreover, the range of applications is very wide: microwave devices, diffraction, to cite a few. As a result, a number of methods have been proposed since the sixties. However, among all these methods, none has proved to be free of drawbacks. The finite difference scheme proposed by Yee in 1966, is well suited for Maxwell equations. However, it only works on cubical mesh. As a result, the boundaries of complex objects are not properly handled by the scheme. When classical nodal finite elements are used, spurious modes appear, which spoil the results of simulations. Edge elements overcome this problem, at the price of rather complex implementation, and computationally intensive simulations. Finite volume methods, either generalizing Yee scheme to a wider class of meshes, or applying to Maxwell equations methods initially used in the field of hyperbolic systems of conservation laws, are also used. Lastly, 'Discontinuous Galerkin' methods, generalizing to arbitrary order of accuracy finite volume methods, have recently been applied to Maxwell equations. In this report, we more specifically focus on the coupling of a Maxwell solver to a PIC (Particle-in-cell) method. We analyze advantages and drawbacks of the most widely used methods: accuracy, robustness, sensitivity to numerical artefacts, efficiency, user judgment. (authors)
Twisting null geodesic congruences and the Einstein-Maxwell equations
International Nuclear Information System (INIS)
Newman, Ezra T; Silva-Ortigoza, Gilberto
2006-01-01
In a recent article, we returned to the study of asymptotically flat solutions of the vacuum Einstein equations with a rather unconventional point of view. The essential observation in that work was that from a given asymptotically flat vacuum spacetime with a given Bondi shear, one can find a class of asymptotically shear-free (but, in general, twisting) null geodesic congruences where the class was uniquely given up to the arbitrary choice of a complex analytic 'worldline' in a four-dimensional complex space. By imitating certain terms in the Weyl tensor that are found in the algebraically special type II metrics, this complex worldline could be made unique and given-or assigned-the physical meaning as the complex centre of mass. Equations of motion for this case were found. The purpose of the present work is to extend those results to asymptotically flat solutions of the Einstein-Maxwell equations. Once again, in this case, we get a class of asymptotically shear-free null geodesic congruences depending on a complex worldline in the same four-dimensional complex space. However in this case there will be, in general, two distinct but uniquely chosen worldlines, one of which can be assigned as the complex centre of charge while the other could be called the complex centre of mass. Rather than investigating the situation where there are two distinct complex worldlines, we study instead the special degenerate case where the two worldlines coincide, i.e., where there is a single unique worldline. This mimics the case of algebraically special Einstein-Maxwell fields where the degenerate principle null vector of the Weyl tensor coincides with a Maxwell principle null vector. Again we obtain equations of motion for this worldline-but explicitly found here only in an approximation. Though there are ambiguities in assigning physical meaning to different terms it appears as if reliance on the Kerr and charged Kerr metrics and classical electromagnetic radiation theory helps
Directory of Open Access Journals (Sweden)
Héctor Torres-Silva
2008-11-01
Full Text Available This work deals with the problem of the construction of the Lagrange functional for an electromagnetic field. The generalised Maxwell equations for an electromagnetic field in free space are introduced. The main idea relies on the change of Lagrange function under the integral action. Usually, the Lagrange functional which describes the electromagnetic field is built with the quadrate of the electromagnetic field tensor . Such a quadrate term is the reason, from a mathematical point of view, for the linear form of the Maxwell equations in free space. The author does not make this assumption and nonlinear Maxwell equations are obtained. New material parameters of free space are established. The equations obtained are quite similar to the well-known Maxwell equations. The energy tensor of the electromagnetic field from a chiral approach to the Born Infeld Lagrangian is discussed in connection with the cosmological constant.Se aborda el problema de la construcción de la funcional de Lagrange de un campo electromagnético. Se introducen las ecuaciones generalizadas de Maxwell de un campo electromagnético en el espacio libre. La idea principal se basa en el cambio de función de Lagrange en virtud de la acción integral. Por lo general, la funcional de lagrange, que describe el campo electromagnético, se construye con el cuadrado del tensor de campo electromagnético. Ese término cuadrático es la razón, desde un punto de vista matemático, de la forma lineal de las ecuaciones de Maxwell en el espacio libre. Se obtienen las ecuaciones no lineales de Maxwell sin considerar esta suposición. Las ecuaciones de Maxwell obtenidas son bastante similares a las conocidas ecuaciones de Maxwell. Se analiza el tensor de energía del campo electromagnético en un enfoque quiral de la Lagrangiana de Born Infeld en relación con la constante cosmológica.
Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)
1995-01-01
This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that we currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Karr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.
Maxwell-Vlasov equations as a continuous Hamiltonian system
International Nuclear Information System (INIS)
Morrison, P.J.
1980-09-01
The well-known Maxwell-Vlasov equations that describe a collisionless plasma are cast into Hamiltonian form. The dynamical variables are the physical although noncanonical variables E, B and f. We present a Poisson bracket which acts on these variables and the energy functional to produce the equations of motion
Second order guiding-center Vlasov–Maxwell equations
DEFF Research Database (Denmark)
Madsen, Jens
2010-01-01
Second order gyrogauge invariant guiding-center coordinates with strong E×B-flow are derived using the Lie transformation method. The corresponding Poisson bracket structure and equations of motion are obtained. From a variational principle the explicit Vlasov–Maxwell equations are derived...
Variational principle for nonlinear gyrokinetic Vlasov--Maxwell equations
International Nuclear Information System (INIS)
Brizard, Alain J.
2000-01-01
A new variational principle for the nonlinear gyrokinetic Vlasov--Maxwell equations is presented. This Eulerian variational principle uses constrained variations for the gyrocenter Vlasov distribution in eight-dimensional extended phase space and turns out to be simpler than the Lagrangian variational principle recently presented by H. Sugama [Phys. Plasmas 7, 466 (2000)]. A local energy conservation law is then derived explicitly by the Noether method. In future work, this new variational principle will be used to derive self-consistent, nonlinear, low-frequency Vlasov--Maxwell bounce-gyrokinetic equations, in which the fast gyromotion and bounce-motion time scales have been eliminated
Incompressible Navier-Stokes equation from Einstein-Maxwell and Gauss-Bonnet-Maxwell theories
International Nuclear Information System (INIS)
Niu Chao; Tian Yu; Wu Xiaoning; Ling Yi
2012-01-01
The dual fluid description for a general cutoff surface at radius r=r c outside the horizon in the charged AdS black brane bulk space-time is investigated, first in the Einstein-Maxwell theory. Under the non-relativistic long-wavelength expansion with parameter ε, the coupled Einstein-Maxwell equations are solved up to O(ε 2 ). The incompressible Navier-Stokes equation with external force density is obtained as the constraint equation at the cutoff surface. For non-extremal black brane, the viscosity of the dual fluid is determined by the regularity of the metric fluctuation at the horizon, whose ratio to entropy density η/s is independent of both the cutoff r c and the black brane charge. Then, we extend our discussion to the Gauss-Bonnet-Maxwell case, where the incompressible Navier-Stokes equation with external force density is also obtained at a general cutoff surface. In this case, it turns out that the ratio η/s is independent of the cutoff r c but dependent on the charge density of the black brane.
Maxwell's equations, quantum physics and the quantum graviton
International Nuclear Information System (INIS)
Gersten, Alexander; Moalem, Amnon
2011-01-01
Quantum wave equations for massless particles and arbitrary spin are derived by factorizing the d'Alembertian operator. The procedure is extensively applied to the spin one photon equation which is related to Maxwell's equations via the proportionality of the photon wavefunction Ψ to the sum E + iB of the electric and magnetic fields. Thus Maxwell's equations can be considered as the first quantized one-photon equation. The photon wave equation is written in two forms, one with additional explicit subsidiary conditions and second with the subsidiary conditions implicitly included in the main equation. The second equation was obtained by factorizing the d'Alembertian with 4×4 matrix representation of 'relativistic quaternions'. Furthermore, scalar Lagrangian formalism, consistent with quantization requirements is developed using derived conserved current of probability and normalization condition for the wavefunction. Lessons learned from the derivation of the photon equation are used in the derivation of the spin two quantum equation, which we call the quantum graviton. Quantum wave equation with implicit subsidiary conditions, which factorizes the d'Alembertian with 8×8 matrix representation of relativistic quaternions, is derived. Scalar Lagrangian is formulated and conserved probability current and wavefunction normalization are found, both consistent with the definitions of quantum operators and their expectation values. We are showing that the derived equations are the first quantized equations of the photon and the graviton.
Maxwell-Like Equations for Free Dirac Electrons
Bruce, S. A.
2018-03-01
In this article, we show that the wave equation for a free Dirac electron can be represented in a form that is analogous to Maxwell's electrodynamics. The electron bispinor wavefunction is explicitly expressed in terms of its real and imaginary components. This leads us to incorporate into it appropriate scalar and pseudo-scalar fields in advance, so that a full symmetry may be accomplished. The Dirac equation then takes on a form similar to that of a set of inhomogeneous Maxwell's equations involving a particular self-source. We relate plane wave solutions of these equations to waves corresponding to free Dirac electrons, identifying the longitudinal component of the electron motion, together with the corresponding Zitterbewegung ("trembling motion").
Algorithm development for Maxwell's equations for computational electromagnetism
Goorjian, Peter M.
1990-01-01
A new algorithm has been developed for solving Maxwell's equations for the electromagnetic field. It solves the equations in the time domain with central, finite differences. The time advancement is performed implicitly, using an alternating direction implicit procedure. The space discretization is performed with finite volumes, using curvilinear coordinates with electromagnetic components along those directions. Sample calculations are presented of scattering from a metal pin, a square and a circle to demonstrate the capabilities of the new algorithm.
Unconditionally stable integration of Maxwell's equations
J.G. Verwer (Jan); M.A. Botchev
2009-01-01
textabstractNumerical integration of Maxwell’s equations is often based on explicit methods accepting a stability step size restriction. In literature evidence is given that there is also a need for unconditionally stable methods, as exemplified by the successful alternating direction implicit –
Effective Hamiltonians, two level systems, and generalized Maxwell-Bloch equations
International Nuclear Information System (INIS)
Sczaniecki, L.
1981-02-01
A new method is proposed involving a canonical transformation leading to the non-secular part of time-independent perturbation calculus. The method is used to derive expressions for effective Shen-Walls Hamiltonians which, taken in the two-level approximation and on the inclusion of non-Hamiltonian terms into the dynamics of the system, lead to generalized Maxwell-Bloch equations. The rotating wave approximation is written anew within the framework of our formalism. (author)
Nonlinear gyrokinetic Maxwell-Vlasov equations using magnetic coordinates
International Nuclear Information System (INIS)
Brizard, A.
1988-09-01
A gyrokinetic formalism using magnetic coordinates is used to derive self-consistent, nonlinear Maxwell-Vlasov equations that are suitable for particle simulation studies of finite-β tokamak microturbulence and its associated anomalous transport. The use of magnetic coordinates is an important feature of this work as it introduces the toroidal geometry naturally into our gyrokinetic formalism. The gyrokinetic formalism itself is based on the use of the Action-variational Lie perturbation method of Cary and Littlejohn, and preserves the Hamiltonian structure of the original Maxwell-Vlasov system. Previous nonlinear gyrokinetic sets of equations suitable for particle simulation analysis have considered either electrostatic and shear-Alfven perturbations in slab geometry, or electrostatic perturbations in toroidal geometry. In this present work, fully electromagnetic perturbations in toroidal geometry are considered. 26 refs
Symplectic discretization for spectral element solution of Maxwell's equations
International Nuclear Information System (INIS)
Zhao Yanmin; Dai Guidong; Tang Yifa; Liu Qinghuo
2009-01-01
Applying the spectral element method (SEM) based on the Gauss-Lobatto-Legendre (GLL) polynomial to discretize Maxwell's equations, we obtain a Poisson system or a Poisson system with at most a perturbation. For the system, we prove that any symplectic partitioned Runge-Kutta (PRK) method preserves the Poisson structure and its implied symplectic structure. Numerical examples show the high accuracy of SEM and the benefit of conserving energy due to the use of symplectic methods.
New and old symmetries of the Maxwell and Dirac equations
International Nuclear Information System (INIS)
Fushchich, V.I.; Nikitin, A.G.
1983-01-01
The symmetry properties of Maxwell's equations for the electromagnetic field and also of the Dirac and Kemmer-Duffin-Petiau equations are analyzed. In the framework of a ''non-Lie'' approach it is shown that, besides the well-known invariance with respect to the conformal group and the Heaviside-Larmor-Rainich transformations, Maxwell's equations have an additional symmetry with respect to the group U(2)xU(2) and with respect to the 23-dimensional Lie algebra A 23 . The transformations of the additional symmetry are given by nonlocal (integro-differential) operators. The symmetry of the Dirac equation in the class of differential and integro-differential transformations is investigated. It is shown that this equation is invariant with respect to an 18-parameter group, which includes the Poincare group as a subgroup. A 28-parameter invariance group of the Kemmer-Duffin-Petiau equation is found. Finite transformations of the conformal group for a massless field with arbitrary spin are obtained. The explicit form of conformal transformations for the electromagnetic field and also for the Dirac and Weyl fields is given
On new and old symmetries of Maxwell and Dirac equations
International Nuclear Information System (INIS)
Fushchich, V.I.; Nikitin, A.G.
1983-01-01
Symmetry properties of the Maxwell equation for the electromagnetic field are analysed as well as of the Dirac and Kemmer-Duffin-Petiau one. In the frame of the non-geometrical approach it is demonstrated, that besides to the well-known invariance under the conformal group and Heaviside-Larmor-Rainich transformation, Maxwell equation possess the additional symmetry under the group U(2)xU(2) and under the 23-dimensional Lie algebra A 23 . The additional symmetry transformations are realized by the non-local (integro-differential) operators. The symmetry of the Dirac. equation under the differential and integro-differential transformations is investio.ated. It is shown that this equation is invariant under the 18-parametrical group, which includes the Poincare group as a subgroup. The 28-parametrical invariance group of the Kemmer-Duffin-Petiau equation is found. The finite conformal group transformations for a massless field of any spin are obtained. The explicit form of the conformal transformations for the electromagnetic field as well as for the Dirac and Weyl fields is given
Approximate solutions to Mathieu's equation
Wilkinson, Samuel A.; Vogt, Nicolas; Golubev, Dmitry S.; Cole, Jared H.
2018-06-01
Mathieu's equation has many applications throughout theoretical physics. It is especially important to the theory of Josephson junctions, where it is equivalent to Schrödinger's equation. Mathieu's equation can be easily solved numerically, however there exists no closed-form analytic solution. Here we collect various approximations which appear throughout the physics and mathematics literature and examine their accuracy and regimes of applicability. Particular attention is paid to quantities relevant to the physics of Josephson junctions, but the arguments and notation are kept general so as to be of use to the broader physics community.
Nonlocal symmetries and nonlocal conservation laws of Maxwell's equations
International Nuclear Information System (INIS)
Anco, S.C.; Bluman, G.
1997-01-01
Nonlocal symmetries are obtained for Maxwell's equations in three space-time dimensions through the use of two potential systems involving scalar and vector potentials for the electromagnetic field. Corresponding nonlocal conservation laws are derived from these symmetries. The conservation laws yield nine functionally independent constants of motion which cannot be expressed in terms of the constants of motion arising from local conservation laws for space-time symmetries. These nine constants of motion represent additional conserved quantities for the electromagnetic field in three space endash time dimensions. copyright 1997 American Institute of Physics
On the stationary Einstein-Maxwell-Klein-Gordon equations
International Nuclear Information System (INIS)
Gegenberg, J.D.
1981-05-01
The stationary Einstein-Maxwell-Klein-Gordon (EMKG) equations for interacting gravitational, electromagnetic and meson fields are examined. The theory is cast into the formalism of principal fiber bundles with a connection, wherein its relationship to current trends in theoretical physics is made manifest. The EMKG equations are shown to admit a Higgs-like mechanism for giving mass to the gauge field. A theorem specifying sufficient conditions for the stationarity of the spacetime metric to imply stationarity of the other fields is proved. By imposing additional constraints and symmetries, the EMKG equations are considerably simplified. An attempt is made to apply a solution-generation technique, and this meets with only partial success. Finally, a stationary but non-static solution is found, and the geometric and physical properties are discussed
Numerical Simulations of Self-Focused Pulses Using the Nonlinear Maxwell Equations
Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)
1994-01-01
This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations. Abstract of a proposed paper for presentation at the meeting NONLINEAR OPTICS: Materials, Fundamentals, and Applications, Hyatt Regency Waikaloa, Waikaloa, Hawaii, July 24-29, 1994, Cosponsored by IEEE/Lasers and Electro-Optics Society and Optical Society of America
A Model for Solving the Maxwell Quasi Stationary Equations in a 3-Phase Electric Reduction Furnace
Directory of Open Access Journals (Sweden)
S. Ekrann
1982-10-01
Full Text Available A computer code has been developed for the approximate computation of electric and magnetic fields within an electric reduction furnace. The paper describes the numerical methods used to solve Maxwell's quasi-stationary equations, which are the governing equations for this problem. The equations are discretized by a staggered grid finite difference technique. The resulting algebraic equations are solved by iterating between computations of electric and magnetic quantities. This 'outer' iteration converges only when the skin depth is larger or of about the same magnitude as the linear dimensions of the computational domain. In solving for electric quantities with magnetic quantities being regarded as known, and vice versa, the central computational task is the solution of a Poisson equation for a scalar potential. These equations are solved by line successive overrelaxation combined with a rebalancing technique.
A new formulation of equations of compressible fluids by analogy with Maxwell's equations
International Nuclear Information System (INIS)
Kambe, Tsutomu
2010-01-01
A compressible ideal fluid is governed by Euler's equation of motion and equations of continuity, entropy and vorticity. This system can be reformulated in a form analogous to that of electromagnetism governed by Maxwell's equations with source terms. The vorticity plays the role of magnetic field, while the velocity field plays the part of a vector potential and the enthalpy (of isentropic flows) plays the part of a scalar potential in electromagnetism. The evolution of source terms of fluid Maxwell equations is determined by solving the equations of motion and continuity. The equation of sound waves can be derived from this formulation, where time evolution of the sound source is determined by the equation of motion. The theory of vortex sound of aeroacoustics is included in this formulation. It is remarkable that the forces acting on a point mass moving in a velocity field of an inviscid fluid are analogous in their form to the electric force and Lorentz force in electromagnetism. The significance of the reformulation is interpreted by examples taken from fluid mechanics. This formulation can be extended to viscous fluids without difficulty. The Maxwell-type equations are unchanged by the viscosity effect, although the source terms have additional terms due to viscosities.
Generation of static solutions of the self-consistent system of Einstein-Maxwell equations
International Nuclear Information System (INIS)
Anchikov, A.M.; Daishev, R.A.
1988-01-01
A theorem is proved, according to which to each solution of the Einstein equations with an arbitrary momentum-energy tensor in the right hand side there corresponds a static solution of the self-consistent system of Einstein-Maxwell equations. As a consequence of this theorem, a method is established of generating static solutions of the self-consistent system of Einstein-Maxwell equations with a charged grain as a source of vacuum solutions of the Einstein equations
Bonito, Andrea; Guermond, Jean-Luc
2011-01-01
We propose and analyze an approximation technique for the Maxwell eigenvalue problem using H1-conforming finite elements. The key idea consists of considering a mixed method controlling the divergence of the electric field in a fractional Sobolev space H-α with α ∈ (1/2, 1). The method is shown to be convergent and spectrally correct. © 2011 American Mathematical Society.
New finite volume methods for approximating partial differential equations on arbitrary meshes
International Nuclear Information System (INIS)
Hermeline, F.
2008-12-01
This dissertation presents some new methods of finite volume type for approximating partial differential equations on arbitrary meshes. The main idea lies in solving twice the problem to be dealt with. One addresses the elliptic equations with variable (anisotropic, antisymmetric, discontinuous) coefficients, the parabolic linear or non linear equations (heat equation, radiative diffusion, magnetic diffusion with Hall effect), the wave type equations (Maxwell, acoustics), the elasticity and Stokes'equations. Numerous numerical experiments show the good behaviour of this type of method. (author)
Prolongation structure and linear eigenvalue equations for Einstein-Maxwell fields
International Nuclear Information System (INIS)
Kramer, D.; Neugebauer, G.
1981-01-01
The Einstein-Maxwell equations for stationary axisymmetric exterior fields are shown to be the integrability conditions of a set of linear eigenvalue equations for pseudopotentials. Using the method of Wahlquist and Estabrook (J. Math Phys.; 16:1 (1975)) it is shown that the prolongation structure of the Einstein-Maxwell equations contains the SU(2,1) Lie algebra. A new mapping of known solutions to other solutions has been found. (author)
The covariant formulation of Maxwell's equations expressed in a form independent of specific units
International Nuclear Information System (INIS)
Heras, Jose A; Baez, G
2009-01-01
The covariant formulation of Maxwell's equations can be expressed in a form independent of the usual systems of units by introducing the constants α, β and γ into these equations. Maxwell's equations involving these constants are then specialized to the most commonly used systems of units: Gaussian, SI and Heaviside-Lorentz by giving the constants α, β and γ the values appropriate to each system
The square root of the Dirac operator on superspace and the Maxwell equations
International Nuclear Information System (INIS)
Bzdak, Adam; Hadasz, Leszek
2004-01-01
We re-consider the procedure of 'taking a square root of the Dirac equation' on superspace and show that it leads to the well-known superfield W α and to the proper equations of motion for the components, i.e., the Maxwell equations and the massless Dirac equation
The square root of the Dirac operator on superspace and the Maxwell equations
Bzdak, Adam; Hadasz, Leszek
2004-02-01
We re-consider the procedure of "taking a square root of the Dirac equation" on superspace and show that it leads to the well-known superfield Wα and to the proper equations of motion for the components, i.e., the Maxwell equations and the massless Dirac equation.
The square root of the Dirac operator on the superspace and the Maxwell equations
Bzdak, Adam; Hadasz, Leszek
2003-01-01
We re-consider the procedure of ``taking a square root of the Dirac equation'' on the superspace and show that it leads to the well known superfield W_\\alpha and to the proper equations of motion for the components, i.e. the Maxwell equations and the massless Dirac equation.
The square root of the Dirac operator on superspace and the Maxwell equations
Energy Technology Data Exchange (ETDEWEB)
Bzdak, Adam; Hadasz, Leszek
2004-02-26
We re-consider the procedure of 'taking a square root of the Dirac equation' on superspace and show that it leads to the well-known superfield W{sub {alpha}} and to the proper equations of motion for the components, i.e., the Maxwell equations and the massless Dirac equation.
On solution of Maxwell's equations in axisymmetric domains with edges. Part II: Numerical aspects
International Nuclear Information System (INIS)
Nkemzi, Boniface
2003-10-01
In this paper we consider the Fourier-finite-element method for treating the Maxwell's equations in three-dimensional axisymmetric domains with reentrant edges. By means of partial Fourier analysis, the 3D BVP is decomposed into an infinite sequence of 2D variational equations in the plane meridian domain of the axisymmetric domain, a finite number of which is considered and treated using nodal H 1 -conforming finite elements. For domains with reentrant edges, the singular field method is employed to compensate the singular behavior of the solutions. Emphases are given to estimates of the Fourier-finite-element approximation error and convergence analysis in the H 1 -norm under different regularity assumptions. (author)
Energy Technology Data Exchange (ETDEWEB)
Fochesato, Ch. [CEA Bruyeres-le-Chatel, Dept. de Conception et Simulation des Armes, Service Simulation des Amorces, Lab. Logiciels de Simulation, 91 (France); Bouche, D. [CEA Bruyeres-le-Chatel, Dept. de Physique Theorique et Appliquee, Lab. de Recherche Conventionne, Centre de Mathematiques et Leurs Applications, 91 (France)
2007-07-01
The numerical solution of Maxwell equations is a challenging task. Moreover, the range of applications is very wide: microwave devices, diffraction, to cite a few. As a result, a number of methods have been proposed since the sixties. However, among all these methods, none has proved to be free of drawbacks. The finite difference scheme proposed by Yee in 1966, is well suited for Maxwell equations. However, it only works on cubical mesh. As a result, the boundaries of complex objects are not properly handled by the scheme. When classical nodal finite elements are used, spurious modes appear, which spoil the results of simulations. Edge elements overcome this problem, at the price of rather complex implementation, and computationally intensive simulations. Finite volume methods, either generalizing Yee scheme to a wider class of meshes, or applying to Maxwell equations methods initially used in the field of hyperbolic systems of conservation laws, are also used. Lastly, 'Discontinuous Galerkin' methods, generalizing to arbitrary order of accuracy finite volume methods, have recently been applied to Maxwell equations. In this report, we more specifically focus on the coupling of a Maxwell solver to a PIC (Particle-in-cell) method. We analyze advantages and drawbacks of the most widely used methods: accuracy, robustness, sensitivity to numerical artefacts, efficiency, user judgment. (authors)
Rauscher, Elizabeth A
2011-01-01
The Maxwell, Einstein, Schrödinger and Dirac equations are considered the most important equations in all of physics. This volume aims to provide new eight- and twelve-dimensional complex solutions to these equations for the first time in order to reveal
Generation of static solutions of self-consistent system of Einstein-Maxwell equations
International Nuclear Information System (INIS)
Anchikov, A.M.; Daishev, R.A.
1988-01-01
The theorem, according to which the static solution of the self-consistent system of the Einstein-Maxwell equations is assigned to energy static solution of the Einstein equations with the arbitrary energy-momentum tensor in the right part, is proved. As a consequence of this theorem, the way of the generation of the static solutions of the self-consistent system of the Einstein-Maxwell equations with charged dust as a source of the vacuum solutions of the Einstein equations is shown
Energy Technology Data Exchange (ETDEWEB)
Steinmann, O [Bielefeld Univ. (F.R. Germany). Fakultaet fuer Physik
1975-01-01
Massive quantum electrodynamics of the electron is formulated as an LSZ theory of the electromagnetic field F(..mu nu..) and the electron-positron fields PSI. The interaction is introduced with the help of mathematically well defined subsidiary conditions. These are: 1) gauge invariance of the first kind, assumed to be generated by a conserved current j(..mu..); 2) the homogeneous Maxwell equations and a massive version of the inhomogeneous Maxwell equations; 3) a minimality condition concerning the high momentum behaviour of the theory. The inhomogeneous Maxwell equation is a linear differential equation connecting Fsub(..mu nu..) with the current Jsub(..mu..). No Lagrangian, no non-linear field equations, and no explicit expression of Jsub(..mu..) in terms of PSI, anti-PSI are needed. It is shown in perturbation theory that the proposed conditions fix the physically relevant (i.e. observable) quantities of the theory uniquely.
Directory of Open Access Journals (Sweden)
I. Ahmed
2012-09-01
Full Text Available Maxwell and Schrödinger equations are coupled to incorporate quantum effects for the simulation of plasmonics nanodevices. Maxwell equations with Lorentz-Drude (LD dispersive model are applied to large size plasmonics components, whereas coupled Maxwell and Schrödinger equations are applied to components where quantum effects are needed. The finite difference time domain method (FDTD is applied to simulate these coupled equations.
Energy Technology Data Exchange (ETDEWEB)
Ismagilov, Timur Z., E-mail: ismagilov@academ.org
2015-02-01
This paper presents a second order finite volume scheme for numerical solution of Maxwell's equations with discontinuous dielectric permittivity and magnetic permeability on unstructured meshes. The scheme is based on Godunov scheme and employs approaches of Van Leer and Lax–Wendroff to increase the order of approximation. To keep the second order of approximation near dielectric permittivity and magnetic permeability discontinuities a novel technique for gradient calculation and limitation is applied near discontinuities. Results of test computations for problems with linear and curvilinear discontinuities confirm second order of approximation. The scheme was applied to modelling propagation of electromagnetic waves inside photonic crystal waveguides with a bend.
DEFF Research Database (Denmark)
Webb, Garry; Sørensen, Mads Peter; Brio, Moysey
2004-01-01
the electromagnetic momentum and energy conservation laws, corresponding to the space and time translation invariance symmetries. The symmetries are used to obtain classical similarity solutions of the equations. The traveling wave similarity solutions for the case of a cubic Kerr nonlinearity, are shown to reduce...... the properties of Maxwell's equations in nonlinear optics, without resorting to the commonly used nonlinear Schr\\"odinger (NLS) equation approximation in which a high frequency carrier wave is modulated on long length and time scales due to nonlinear sideband wave interactions. This is important in femto......-second pulse propagation in which the NLS approximation is expected to break down. The canonical Hamiltonian description of the equations involves the solution of a polynomial equation for the electric field $E$, in terms of the the canonical variables, with possible multiple real roots for $E$. In order...
Harutyunyan, D.; Izsak, F.; van der Vegt, Jacobus J.W.; Bochev, Mikhail A.
For the adaptive solution of the Maxwell equations on three-dimensional domains with N´ed´elec edge finite element methods, we consider an implicit a posteriori error estimation technique. On each element of the tessellation an equation for the error is formulated and solved with a properly chosen
Isomonodromic deformations and self-similar solutions of the Einstein-Maxwell equations
International Nuclear Information System (INIS)
Kitaev, A.V.
1992-01-01
It is shown that the self-similar solutions of the Einstein-Maxwell equations in the cylindrical case describe the isomonodromic deformations of ordinary linear differential equations with rational coefficients. New types of such solutions, expressed in terms of the fifth Painleve transcendent, are found. 24 refs
International Nuclear Information System (INIS)
Portugal, R.; Soares, I.D.
1985-01-01
Two new classes of spatially homogeneous cosmological solutions of Einstein-Maxwell equations are obtained by considering a class of exact perturbations of the static Bertotti-Robinson (BR) model. The BR solution is shown to be unstable under these perturbations, being perturbed into exact cosmological solutions with perfect fluid (equations of state p = lambda rho, O [pt
New exact solutions of the Einstein—Maxwell equations for magnetostatic fields
International Nuclear Information System (INIS)
Goyal, Nisha; Gupta, R.K.
2012-01-01
The symmetry reduction method based on the Fréchet derivative of differential operators is applied to investigate symmetries of the Einstein—Maxwell field equations for magnetostatic fields, which is a coupled system of nonlinear partial differential equations of the second order. The technique yields invariant transformations that reduce the given system of partial differential equations to a system of nonlinear ordinary differential equations. Some of the reduced systems are further studied to obtain the exact solutions
Steepest descent approximations for accretive operator equations
International Nuclear Information System (INIS)
Chidume, C.E.
1993-03-01
A necessary and sufficient condition is established for the strong convergence of the steepest descent approximation to a solution of equations involving quasi-accretive operators defined on a uniformly smooth Banach space. (author). 49 refs
Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.
2018-01-01
High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw [1] how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemann problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. The upwind scheme is shown to be robust and provide high-order accuracy.
On symmetries and exact solutions of the Einstein–Maxwell field equations via the symmetry approach
International Nuclear Information System (INIS)
Kaur, Lakhveer; Gupta, R K
2013-01-01
Using the Lie symmetry approach, we have examined herein the system of partial differential equations corresponding to the Einstein–Maxwell equations for a static axially symmetric spacetime. The method used reduces the system of partial differential equations to a system of ordinary differential equations according to the Lie symmetry admitted. In particular, we found the relevant system of ordinary differential equations is all optimal subgroups. The system of ordinary differential equations is further solved in general to obtain exact solutions. Several new physically important families of exact solutions are derived. (paper)
Resolution of unsteady Maxwell equations with charges in non convex domains
International Nuclear Information System (INIS)
Garcia, Emmanuelle
2002-01-01
This research thesis deals with the modelling and numerical resolution of problems related to plasma physics. The interaction of charged particles (electrons and ions) with electromagnetic fields is modelled with the system of unsteady Vlasov-Maxwell coupled equations (the Vlasov system describes the transport of charged particles and the Maxwell equations describe the wave propagation). The author presents definitions related to singular domains, establishes a Helmholtz decomposition in a space of electro-magnetostatic solutions. He reports a mathematical analysis of decompositions into a regular and a singular part of general functional spaces intervening in the investigation of the Maxwell system in complex geometries. The method is then implemented for bi-dimensional domains. A last part addressed the study and the numerical resolution of three-dimensional problems
Approximate radiative solutions of the Einstein equations
International Nuclear Information System (INIS)
Kuusk, P.; Unt, V.
1976-01-01
In this paper the external field of a bounded source emitting gravitational radiation is considered. A successive approximation method is used to integrate the Einstein equations in Bondi's coordinates (Bondi et al, Proc. R. Soc.; A269:21 (1962)). A method of separation of angular variables is worked out and the approximate Einstein equations are reduced to key equations. The losses of mass, momentum, and angular momentum due to gravitational multipole radiation are found. It is demonstrated that in the case of proper treatment a real mass occurs instead of a mass aspect in a solution of the Einstein equations. In an appendix Bondi's new function is given in terms of sources. (author)
Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains
Bonito, Andrea
2013-12-01
This note establishes regularity estimates for the solution of the Maxwell equations in Lipschitz domains with non-smooth coefficients and minimal regularity assumptions. The argumentation relies on elliptic regularity estimates for the Poisson problem with non-smooth coefficients. © 2013 Elsevier Ltd.
Generalization of the Biot--Savart law to Maxwell's equations using special relativity
International Nuclear Information System (INIS)
Neuenschwander, D.E.; Turner, B.N.
1992-01-01
Maxwell's equations are obtained by generalizing the laws of magnetostatics, which follow from the Biot--Savart law and superposition, to be consistent with special relativity. The Lorentz force on a charged particle and its rate of energy change also follow by making Newton's second law for a particle in a magnetostatic field consistent with special relativity
q-deformed Weinberg-Salam model and q-deformed Maxwell equations
International Nuclear Information System (INIS)
Alavi, S.A.; Sarbishaei, M.; Mokhtari, A.
2000-01-01
We study the q-deformation of the gauge part of the Weinberg-Salam model and show that the q-deformed theory involves new interactions. We then obtain q-deformed Maxwell equations from which magnetic monopoles appear naturally. (author)
Time-integration methods for finite element discretisations of the second-order Maxwell equation
Sarmany, D.; Bochev, Mikhail A.; van der Vegt, Jacobus J.W.
This article deals with time integration for the second-order Maxwell equations with possibly non-zero conductivity in the context of the discontinuous Galerkin finite element method DG-FEM) and the $H(\\mathrm{curl})$-conforming FEM. For the spatial discretisation, hierarchic
The Riemannian geometry is not sufficient for the geometrization of the Maxwell's equations
Kulyabov, Dmitry S.; Korolkova, Anna V.; Velieva, Tatyana R.
2018-04-01
The transformation optics uses geometrized Maxwell's constitutive equations to solve the inverse problem of optics, namely to solve the problem of finding the parameters of the medium along the paths of propagation of the electromagnetic field. For the geometrization of Maxwell's constitutive equations, the quadratic Riemannian geometry is usually used. This is due to the use of the approaches of the general relativity. However, there arises the question of the insufficiency of the Riemannian structure for describing the constitutive tensor of the Maxwell's equations. The authors analyze the structure of the constitutive tensor and correlate it with the structure of the metric tensor of Riemannian geometry. It is concluded that the use of the quadratic metric for the geometrization of Maxwell's equations is insufficient, since the number of components of the metric tensor is less than the number of components of the constitutive tensor. A possible solution to this problem may be a transition to Finslerian geometry, in particular, the use of the Berwald-Moor metric to establish the structural correspondence between the field tensors of the electromagnetic field.
Nanoscale roughness effect on Maxwell-like boundary conditions for the Boltzmann equation
Energy Technology Data Exchange (ETDEWEB)
Brull, S., E-mail: Stephane.Brull@math.u-bordeaux.fr; Charrier, P., E-mail: Pierre.Charrier@math.u-bordeaux.fr; Mieussens, L., E-mail: Luc.Mieussens@math.u-bordeaux.fr [University of Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, F-33400 Talence (France)
2016-08-15
It is well known that the roughness of the wall has an effect on microscale gas flows. This effect can be shown for large Knudsen numbers by using a numerical solution of the Boltzmann equation. However, when the wall is rough at a nanometric scale, it is necessary to use a very small mesh size which is much too expansive. An alternative approach is to incorporate the roughness effect in the scattering kernel of the boundary condition, such as the Maxwell-like kernel introduced by the authors in a previous paper. Here, we explain how this boundary condition can be implemented in a discrete velocity approximation of the Boltzmann equation. Moreover, the influence of the roughness is shown by computing the structure scattering pattern of mono-energetic beams of the incident gas molecules. The effect of the angle of incidence of these molecules, of their mass, and of the morphology of the wall is investigated and discussed in a simplified two-dimensional configuration. The effect of the azimuthal angle of the incident beams is shown for a three-dimensional configuration. Finally, the case of non-elastic scattering is considered. All these results suggest that our approach is a promising way to incorporate enough physics of gas-surface interaction, at a reasonable computing cost, to improve kinetic simulations of micro- and nano-flows.
Modeling High Frequency Semiconductor Devices Using Maxwell's Equations
National Research Council Canada - National Science Library
El-Ghazaly, Samier
1999-01-01
.... In this research, we first replaced the conventional semiconductor device models, which are based on Poisson's Equation as a semiconductor model, with a new one that uses the full-wave electro...
Simultaneous exact controllability for Maxwell equations and for a second-order hyperbolic system
Directory of Open Access Journals (Sweden)
Boris V. Kapitonov
2010-02-01
Full Text Available We present a result on "simultaneous" exact controllability for two models that describe two hyperbolic dynamics. One is the system of Maxwell equations and the other a vector-wave equation with a pressure term. We obtain the main result using modified multipliers in order to generate a necessary observability estimate which allow us to use the Hilbert Uniqueness Method (HUM introduced by Lions.
Application of the operator splitting to the Maxwell equations with the source term
Bochev, Mikhail A.; Faragó, I.; Horváth, R.
Motivated by numerical solution of the time-dependent Maxwell equations, we consider splitting methods for a linear system of differential equations $w'(t)=Aw(t)+f(t),$ $A\\in\\mathbb{R}^{n\\times n}$ split into two subproblems $w_1'(t)=A_1w_1(t)+f_1(t)$ and $w_2'(t)=A_2w_2(t)+f_2(t),$ $A=A_1+A_2,$
On solution of Maxwell's equations in axisymmetric domains with edges. Part I: Theoretical aspects
International Nuclear Information System (INIS)
Nkemzi, Boniface
2003-10-01
In this paper we present the basic mathematical tools for treating boundary value problems for the Maxwell's equations in three-dimensional axisymmetric domains with reentrant edges by means of partial Fourier analysis. We consider the decomposition of the classical and regularized time-harmonic three-dimensional Maxwell's equations into variational equations in the plane meridian domain of the axisymmetric domain and define suitable weighted Sobolev spaces for their treatment. The trace properties of these spaces on the rotational axis and some properties of the solutions are proved, which are important for further numerical treatment, e.g. by the finite-element method. Particularly, a priori estimates of the solutions of the reduced system are given and the asymptotic behavior of these solutions near reentrant corners of the meridian domain is explicitly described by suitable singular functions. (author)
Energy Technology Data Exchange (ETDEWEB)
Nungesser, Ernesto; Rendall, Alan D [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany)
2009-05-21
A proof of strong cosmic censorship is presented for a class of solutions of the Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key element of the argument is the observation that by means of a suitable choice of variables the central equations in this problem can be written in a form where they are identical to the central equations for general (i.e. non-polarized) vacuum Gowdy spacetimes. Using this, it is seen that the deep results of Ringstroem on strong cosmic censorship in the vacuum case have implications for the Einstein-Maxwell case. Working out the geometrical meaning of these analytical results leads to the main conclusion.
International Nuclear Information System (INIS)
Nungesser, Ernesto; Rendall, Alan D
2009-01-01
A proof of strong cosmic censorship is presented for a class of solutions of the Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key element of the argument is the observation that by means of a suitable choice of variables the central equations in this problem can be written in a form where they are identical to the central equations for general (i.e. non-polarized) vacuum Gowdy spacetimes. Using this, it is seen that the deep results of Ringstroem on strong cosmic censorship in the vacuum case have implications for the Einstein-Maxwell case. Working out the geometrical meaning of these analytical results leads to the main conclusion.
Reformulation of Maxwell's equations to incorporate near-solute solvent structure.
Yang, Pei-Kun; Lim, Carmay
2008-09-04
Maxwell's equations, which treat electromagnetic interactions between macroscopic charged objects in materials, have explained many phenomena and contributed to many applications in our lives. Derived in 1861 when no methods were available to determine the atomic structure of macromolecules, Maxwell's equations assume the solvent to be a structureless continuum. However, near-solute solvent molecules are highly structured, unlike far-solute bulk solvent molecules. Current methods cannot treat both the near-solute solvent structure and time-dependent electromagnetic interactions in a macroscopic system. Here, we derive "microscopic" electrodynamics equations that can treat macroscopic time-dependent electromagnetic field problems like Maxwell's equations and reproduce the solvent molecular and dipole density distributions observed in molecular dynamics simulations. These equations greatly reduce computational expense by not having to include explicit solvent molecules, yet they treat the solvent electrostatic and van der Waals effects more accurately than continuum models. They provide a foundation to study electromagnetic interactions between molecules in a macroscopic system that are ubiquitous in biology, bioelectromagnetism, and nanotechnology. The general strategy presented herein to incorporate the near-solute solvent structure would enable studies on how complex cellular protein-ligand interactions are affected by electromagnetic radiation, which could help to prevent harmful electromagnetic spectra or find potential therapeutic applications.
On the Generalized Maxwell Equations and Their Prediction of Electroscalar Wave
Directory of Open Access Journals (Sweden)
Arbab A. I.
2009-04-01
Full Text Available We have formulated the basic laws of electromagnetic theory in quaternion form. The formalism shows that Maxwell equations and Lorentz force are derivable from just one quaternion equation that only requires the Lorentz gauge. We proposed a quaternion form of the continuity equation from which we have derived the ordinary continuity equation. We introduce new transformations that produces a scalar wave and generalize the continuity equation to a set of three equations. These equations imply that both current and density are waves. Moreover, we have shown that the current can not cir- culate around a point emanating from it. Maxwell equations are invariant under these transformations. An electroscalar wave propagating with speed of light is derived upon requiring the invariance of the energy conservation equation under the new transforma- tions. The electroscalar wave function is found to be proportional to the electric field component along the charged particle motion. This scalar wave exists with or without considering the Lorentz gauge. We have shown that the electromagnetic fields travel with speed of light in the presence or absence of free charges.
Hyperbolicity of the Nonlinear Models of Maxwell's Equations
Serre, Denis
. We consider the class of nonlinear models of electromagnetism that has been described by Coleman & Dill [7]. A model is completely determined by its energy density W(B,D). Viewing the electromagnetic field (B,D) as a 3×2 matrix, we show that polyconvexity of W implies the local well-posedness of the Cauchy problem within smooth functions of class Hs with s>1+d/2. The method follows that designed by Dafermos in his book [9] in the context of nonlinear elasticity. We use the fact that B×D is a (vectorial, non-convex) entropy, and we enlarge the system from 6 to 9 equations. The resulting system admits an entropy (actually the energy) that is convex. Since the energy conservation law does not derive from the system of conservation laws itself (Faraday's and Ampère's laws), but also needs the compatibility relations divB=divD=0 (the latter may be relaxed in order to take into account electric charges), the energy density is not an entropy in the classical sense. Thus the system cannot be symmetrized, strictly speaking. However, we show that the structure is close enough to symmetrizability, so that the standard estimates still hold true.
The covariant formulation of Maxwell's equations expressed in a form independent of specific units
Energy Technology Data Exchange (ETDEWEB)
Heras, Jose A; Baez, G [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana Unidad Azcapotzalco, Av. San Pablo No. 180, Col. Reynosa, 02200 Mexico DF (Mexico)], E-mail: herasgomez@gmail.com, E-mail: gbaez@correo.azc.uam.mx
2009-01-15
The covariant formulation of Maxwell's equations can be expressed in a form independent of the usual systems of units by introducing the constants {alpha}, {beta} and {gamma} into these equations. Maxwell's equations involving these constants are then specialized to the most commonly used systems of units: Gaussian, SI and Heaviside-Lorentz by giving the constants {alpha}, {beta} and {gamma} the values appropriate to each system.
A new type of massive spin-one boson: And its relation with Maxwell equations
International Nuclear Information System (INIS)
Ahluwalia, D.V.
1995-01-01
First, the author showed that in the (1, 0) circle-plus (0, 1) representation space there exist not one but two theories for charged particles. In the Weinberg construct, the boson and its antiboson carry same relative intrinsic parity, whereas in the author's construct the relative intrinsic parities of the boson and its antiboson are opposite. These results originate from the commutativity of the operations of Charge conjugation and Parity in Weinberg's theory, and from the anti-commutativity of the operations of Charge conjugation and Parity in the author's theory. The author thus claims that he has constructed a first non-trivial quantum theory of fields for the Wigner-type particles. Second, the massless limit of both theories seems formally identical and suggests a fundamental modification of Maxwell equations. At its simplest level, the modification to Maxwell equations enters via additional boundary condition(s)
Exact solutions of Einstein and Einstein-Maxwell equations in higher-dimensional spacetime
International Nuclear Information System (INIS)
Xu Dianyan; Beijing Univ., BJ
1988-01-01
The D-dimensional Schwarzschild-de Sitter metric and Reissner-Nordstrom-de-Sitter metric are derived directly by solving the Einstein and Einstein-Maxwell equations. The D-dimensional Kerr metric is rederived by using the complex coordinate transformation method and the D-dimensional Kerr-de Sitter metric is also given. The conjecture about the D-dimensional metric of a rotating charged mass is given at the end of this paper. (author)
A new perspective on relativistic transformation for Maxwell's equations of electrodynamics
International Nuclear Information System (INIS)
Huang, Y.-S.
2009-01-01
A new scheme for relativistic transformation of the electromagnetic fields is formulated through relativistic transformation in the wavevector space, instead of the space-time space. Maxwell's equations of electrodynamics are shown to be form-invariant among inertial frames in accordance with this new scheme of relativistic transformation. This new perspective on relativistic transformation not only fulfills the principle of relativity, but is also compatible with quantum theory.
Infinitely many large energy solutions of superlinear Schrodinger-Maxwell equations
Directory of Open Access Journals (Sweden)
Lin Li
2012-12-01
Full Text Available In this article we study the existence of infinitely many large energy solutions for the superlinear Schrodinger-Maxwell equations $$displaylines{ -Delta u+V(xu+ phi u=f(x,u quad hbox{in }mathbb{R}^3,cr -Delta phi=u^2, quad hbox{in }mathbb{R}^3, }$$ via the Fountain Theorem in critical point theory. In particular, we do not use the classical Ambrosetti-Rabinowitz condition.
A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations
Boudin , Laurent; Grec , Bérénice; Salvarani , Francesco
2012-01-01
International audience; We consider the Maxwell-Stefan model of diffusion in a multicomponent gaseous mixture. After focusing on the main differences with the Fickian diffusion model, we study the equations governing a three-component gas mixture. We provide a qualitative and quantitative mathematical analysis of the model. The main properties of the standard explicit numerical scheme are also analyzed. We eventually include some numerical simulations pointing out the uphill diffusion phenome...
Modular hp-FEM system HERMES and its application to Maxwell´s equations
Czech Academy of Sciences Publication Activity Database
Vejchodský, Tomáš; Šolín, P.; Zítka, M.
2007-01-01
Roč. 76, č. 2 (2007), s. 223-228 ISSN 0378-4754. [MODELLING 2005. Plzeň, 04.06.2005-08.06.2005] R&D Projects: GA ČR GP201/04/P021 Institutional research plan: CEZ:AV0Z10190503 Keywords : hp-FEM * time-harmonic Maxwell´s equations * hierarchic higher-order edge elements Subject RIV: BA - General Mathematics Impact factor: 0.738, year: 2007
Theoretical and numerical study of the equations of Vlasov-Maxwell in the covariant formalism
International Nuclear Information System (INIS)
Back, A.
2011-11-01
A new point of view is proposed for the simulation of plasmas using the kinetic model which links the equations of Vlasov for the distribution of particles and the equations of Maxwell for the electromagnetic contribution of fields. We use the following principle: the equations of Physics are mathematical objects which put in relation geometrical objects. To preserve the geometrical properties of the various objects in an equation, we use, for the theoretical and numerical study, the differential geometry. All the equations of Physics can be written with differential forms and this point of view is not dependent on the choice of coordinates. We propose then a discretization of the differential forms by using B-Splines. To be coherent with the theory, we also propose a discretization of the various operations of the differential geometry. We test our scheme, first on the equations of Maxwell with several boundary conditions and since it does not depend on the system of coordinates, we also test it when we change coordinates. Finally, we apply the same method to the equations of Vlasov-Poisson in one-dimension and we propose several numerical schemes. (author)
Hybrid resonance and long-time asymptotic of the solution to Maxwell's equations
Energy Technology Data Exchange (ETDEWEB)
Després, Bruno, E-mail: despres@ann.jussieu.fr [Laboratory Jacques Louis Lions, University Pierre et Marie Curie, Paris VI, Boîte courrier 187, 75252 Paris Cedex 05 (France); Weder, Ricardo, E-mail: weder@unam.mx [Departamento de Física Matemática, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Apartado Postal 20-126, DF 01000 (Mexico)
2016-03-22
We study the long-time asymptotic of the solutions to Maxwell's equation in the case of an upper-hybrid resonance in the cold plasma model. We base our analysis in the transfer to the time domain of the recent results of B. Després, L.M. Imbert-Gérard and R. Weder (2014) [15], where the singular solutions to Maxwell's equations in the frequency domain were constructed by means of a limiting absorption principle and a formula for the heating of the plasma in the limit of vanishing collision frequency was obtained. Currently there is considerable interest in these problems, in particular, because upper-hybrid resonances are a possible scenario for the heating of plasmas, and since they can be a model for the diagnostics involving wave scattering in plasmas. - Highlights: • The upper-hybrid resonance in the cold plasma model is considered. • The long-time asymptotic of the solutions to Maxwell's equations is studied. • A method based in a singular limiting absorption principle is proposed.
A negative-norm least-squares method for time-harmonic Maxwell equations
Copeland, Dylan M.
2012-04-01
This paper presents and analyzes a negative-norm least-squares finite element discretization method for the dimension-reduced time-harmonic Maxwell equations in the case of axial symmetry. The reduced equations are expressed in cylindrical coordinates, and the analysis consequently involves weighted Sobolev spaces based on the degenerate radial weighting. The main theoretical results established in this work include existence and uniqueness of the continuous and discrete formulations and error estimates for simple finite element functions. Numerical experiments confirm the error estimates and efficiency of the method for piecewise constant coefficients. © 2011 Elsevier Inc.
International Nuclear Information System (INIS)
Davidson, R.C.; Chen, C.
1997-08-01
A kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field B sol (rvec x) is developed. The analysis is carried out for a thin beam with characteristic beam radius r b much-lt S, and directed axial momentum γ b mβ b c (in the z-direction) large compared with the transverse momentum and axial momentum spread of the beam particles. Making use of the nonlinear Vlasov-Maxwell equations for general distribution function f b (rvec x,rvec p,t) and self-consistent electrostatic field consistent with the thin-beam approximation, the kinetic model is used to investigate detailed beam equilibrium properties for a variety of distribution functions. Examples are presented both for the case of a uniform solenoidal focusing field B z (z) = B 0 = const. and for the case of a periodic solenoidal focusing field B z (z + S) = B z (z). The nonlinear Vlasov-Maxwell equations are simplified in the thin-beam approximation, and an alternative Hamiltonian formulation is developed that is particularly well-suited to intense beam propagation in periodic focusing systems. Based on the present analysis, the Vlasov-Maxwell description of intense nonneutral beam propagation through a periodic solenoidal focusing field rvec B sol (rvec x) is found to be remarkably tractable and rich in physics content. The Vlasov-Maxwell formalism developed here can be extended in a straightforward manner to investigate detailed stability behavior for perturbations about specific choices of beam equilibria
International Nuclear Information System (INIS)
Budinich, Paolo
2009-03-01
In a previous paper we proposed a purely mathematical way to quantum mechanics based on Cartan's simple spinors in their most elementary form of 2 components spinors. Here we proceed along that path proposing, this time, a symmetric tensor, quadrilinear in simple spinors, as a candidate for the symmetric tensor of general relativity. The procedure resembles closely that in which one builds bilinearly from simple spinors an asymmetric electromagnetic tensor, from which easily descend Maxwell's equations and the photon can be seen as a bilinear combination of neutrinos. Here Lorentzian spaces result compact, building up spheres, where hopefully the problems of the Standard Model could be solved. (author)
Liu, Meilin
2012-08-01
A discontinuous Galerkin finite element method (DG-FEM) with a highly accurate time integration scheme for solving Maxwell equations is presented. The new time integration scheme is in the form of traditional predictor-corrector algorithms, PE CE m, but it uses coefficients that are obtained using a numerical scheme with fully controllable accuracy. Numerical results demonstrate that the proposed DG-FEM uses larger time steps than DG-FEM with classical PE CE) m schemes when high accuracy, which could be obtained using high-order spatial discretization, is required. © 1963-2012 IEEE.
Partial Fourier analysis of time-harmonic Maxwell's equations in axisymmetric domains
International Nuclear Information System (INIS)
Nkemzi, Boniface
2003-01-01
We analyze the Fourier method for treating time-harmonic Maxwell's equations in three-dimensional axisymmetric domains with non-axisymmetric data. The Fourier method reduces the three-dimensional boundary value problem to a system of decoupled two-dimensional boundary value problems on the plane meridian domain of the axisymmetric domain. The reduction process is fully described and suitable weighted spaces are introduced on the meridian domain to characterize the two-dimensional solutions. In particular, existence and uniqueness of solutions of the two-dimensional problems is proved and a priori estimates for the solutions are given. (author)
International Nuclear Information System (INIS)
Taflove, A.
1992-01-01
This paper summarizes the present state and future directions of applying finite-difference and finite-volume time-domain techniques for Maxwell's equations on supercomputers to model complex electromagnetic wave interactions with structures. Applications so far have been dominated by radar cross section technology, but by no means are limited to this area. In fact, the gains we have made place us on the threshold of being able to make tremendous contributions to non-defense electronics and optical technology. Some of the most interesting research in these commercial areas is summarized. 47 refs
Sirenko, Kostyantyn; Asirim, Ozum Emre; Bagci, Hakan
2014-01-01
Discontinuous Galerkin time-domain method (DGTD) has been used extensively in computational electromagnetics for analyzing transient electromagnetic wave interactions on structures described with linear constitutive relations. DGTD expands unknown fields independently on disconnected mesh elements and uses numerical flux to realize information exchange between fields on different elements (J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Method, 2008). The numerical flux of choice for 'linear' Maxwell equations is the upwind flux, which mimics accurately the physical behavior of electromagnetic waves on discontinuous boundaries. It is obtained from the analytical solution of the Riemann problem defined on the boundary of two neighboring mesh elements.
Sirenko, Kostyantyn
2014-07-01
Discontinuous Galerkin time-domain method (DGTD) has been used extensively in computational electromagnetics for analyzing transient electromagnetic wave interactions on structures described with linear constitutive relations. DGTD expands unknown fields independently on disconnected mesh elements and uses numerical flux to realize information exchange between fields on different elements (J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Method, 2008). The numerical flux of choice for \\'linear\\' Maxwell equations is the upwind flux, which mimics accurately the physical behavior of electromagnetic waves on discontinuous boundaries. It is obtained from the analytical solution of the Riemann problem defined on the boundary of two neighboring mesh elements.
Particle-like solutions of the Einstein-Dirac-Maxwell equations
Finster, Felix; Smoller, Joel; Yau, Shing-Tung
1999-08-01
We consider the coupled Einstein-Dirac-Maxwell equations for a static, spherically symmetric system of two fermions in a singlet spinor state. Soliton-like solutions are constructed numerically. The stability and the properties of the ground state solutions are discussed for different values of the electromagnetic coupling constant. We find solutions even when the electromagnetic coupling is so strong that the total interaction is repulsive in the Newtonian limit. Our solutions are regular and well-behaved; this shows that the combined electromagnetic and gravitational self-interaction of the Dirac particles is finite.
Liu, Meilin; Sirenko, Kostyantyn; Bagci, Hakan
2012-01-01
A discontinuous Galerkin finite element method (DG-FEM) with a highly accurate time integration scheme for solving Maxwell equations is presented. The new time integration scheme is in the form of traditional predictor-corrector algorithms, PE CE m, but it uses coefficients that are obtained using a numerical scheme with fully controllable accuracy. Numerical results demonstrate that the proposed DG-FEM uses larger time steps than DG-FEM with classical PE CE) m schemes when high accuracy, which could be obtained using high-order spatial discretization, is required. © 1963-2012 IEEE.
Confinement in Maxwell-Chern-Simons planar quantum electrodynamics and the 1/N approximation
International Nuclear Information System (INIS)
Hofmann, Christoph P.; Raya, Alfredo; Madrigal, Saul Sanchez
2010-01-01
We study the analytical structure of the fermion propagator in planar quantum electrodynamics coupled to a Chern-Simons term within a four-component spinor formalism. The dynamical generation of parity-preserving and parity-violating fermion mass terms is considered, through the solution of the corresponding Schwinger-Dyson equation for the fermion propagator at leading order of the 1/N approximation in Landau gauge. The theory undergoes a first-order phase transition toward chiral symmetry restoration when the Chern-Simons coefficient θ reaches a critical value which depends upon the number of fermion families considered. Parity-violating masses, however, are generated for arbitrarily large values of the said coefficient. On the confinement scenario, complete charge screening - characteristic of the 1/N approximation - is observed in the entire (N,θ)-plane through the local and global properties of the vector part of the fermion propagator.
Theoretical Maxwell's Equations, Gauge Field and Their Universality Based on One Conservation Law
Institute of Scientific and Technical Information of China (English)
Liu Changmao
2005-01-01
The notion of the inner product of vectors is extended to tensors of different orders, which may replace the vector product usually. The essences of the differential and the codifferential forms are pointed out: they represent the tangent surface and the normal surface fluxes of a tensor, respectively. The definitions of the divergence and the curl of a 2D surface flux of a tensor are obtained.Maxwell's equations, namely, the construction law of field, which were usually established based on two conservation laws of electric charge and imaginary magnetic charge, are derived by the author only by using one conservation law ( mass or fluid flux quantity and so on) and the feature of central field ( or its composition). By the feature of central field ( or its composition), the curl of 2D flux is zero. Both universality of gauge field and the difficulty of magnetic monopole theory ( a magnetic monopole has no effect on electric current just like a couple basing no effect on the sum of forces) are presented: magnetic monopole has no the feature of magnet. Finally it is pointed out that the base of relation of mass and energy is already involved in Maxwell's equations.
Salmasi, Mahbod; Potter, Michael
2018-07-01
Maxwell's equations are discretized on a Face-Centered Cubic (FCC) lattice instead of a simple cubic as an alternative to the standard Yee method for improvements in numerical dispersion characteristics and grid isotropy of the method. Explicit update equations and numerical dispersion expressions, and the stability criteria are derived. Also, several tools available to the standard Yee method such as PEC/PMC boundary conditions, absorbing boundary conditions, and scattered field formulation are extended to this method as well. A comparison between the FCC and the Yee formulations is made, showing that the FCC method exhibits better dispersion compared to its Yee counterpart. Simulations are provided to demonstrate both the accuracy and grid isotropy improvement of the method.
The usage of Maxwell fractional equations for the investigation of the waveguide processes
International Nuclear Information System (INIS)
Maksyuta, M.V.; Slinchenko, Yu.A.; Grygoruk, V.I.
2016-01-01
By means of nabla operator written down with using both of some differential operators with integer orders and fractional differential Caputo operators, gradient, divergence and rotor operators are determined, it is checked up the fulfillment of vector relations in fractional vector analysis, fractional Green, Stocks and Ostrogradsky-Gauss formulas. For a specific expression of nabla operator (nabla components along x and y axes have a unit order and along z axis, correspondingly, a fractional value in the interval from zero till unit) Maxwell fractional equations are written down. Based on the following from them some fractional wave equations, dissipative and polarization processes at electromagnetic waves distribution both in rectangular (planar) and in cylindrical waveguide structures are analyzed.
Gravitational and electromagnetic potentials of the stationary Einstein-Maxwell field equations
International Nuclear Information System (INIS)
Jones, T.C.
1979-01-01
Associated with the stationary Einstein-Maxwell field equations is an infinite hierarchy of potentials. The basic characteristics of these potentials are examined in general and then in greater detail for the particular case of the Reissner-Nordstrom metric. Thier essential utility in the process of solution generation is elucidated, and the necessary equations for solution generation are developed. Appropriate generating functions, which contain the complete infinite hierarchy of potentials, are developed and analyzed. Particular attention is paid to the inherent gauge freedom of these generating functions. Two methods of solution generation, which yield asymptotically flat solutions in vacuum, are generalized to include electromagnetism. One method, using potentials consistent with the Harrison transformation and the Reissner-Nordstrom metric, is discussed in detail, and its resultant difficulties are explored
A New Comment on Dyson's Exposition of Feynman's Proof of Maxwell Equations
International Nuclear Information System (INIS)
Pombo, Claudia
2009-01-01
A paper by Dyson, published nearly two decades ago, describing Feynman's proof of Maxwell equations, has generated many comments, analysis, discussions and generalizations of the proof. Feynman's derivation is assumed to be based on two main sets of equations. One is supposed to be the second law of Newton and the other a set of basic commutation relations from quantum physics.Here we present a new comment on this paper, focusing mainly on the initial arguments and applying a new method of analysis and interpretation of physics, named observational realism. The present discussion does not alter the technical steps of Feynman, but do clarify their basis. We show that Newton's physics is not a starting point in Feynman's derivation, neither is quantum physics involved in it, but the foundations of relativity only.
An elementary solution of the Maxwell equations for a time-dependent source
International Nuclear Information System (INIS)
Rivera, R; Villarroel, D
2002-01-01
We present an elementary solution of the Maxwell equations for a time-dependent source consisting of an infinite solenoid with a current density that increases linearly with time. The geometrical symmetries and the time dependence of the current density make possible a mathematical treatment that does not involve the usual technical difficulties, thus making this presentation suitable for students that are taking a first course in electromagnetism. We also show that the electric field generated by the solenoid can be used to construct an exact solution of the relativistic equation of motion of the electron that takes into account the effect of the radiation. In particular, we derive, in an almost trivial way, the formula for the radiation rate of an electron in circular motion
Distributed Approximating Functional Approach to Burgers' Equation ...
African Journals Online (AJOL)
This equation is similar to, but simpler than, the Navier-Stokes equation in fluid dynamics. To verify this advantage through some comparison studies, an exact series solution are also obtained. In addition, the presented scheme has numerically stable behavior. After demonstrating the convergence and accuracy of the ...
One-dimensional free-electron laser equations without the slowly varying envelope approximation
Directory of Open Access Journals (Sweden)
C. Maroli
2011-07-01
Full Text Available A set of one-dimensional equations has been deduced in the time domain from the Maxwell-Lorentz system with the aim of describing the free-electron laser radiation without using the slowly varying envelope approximation (SVEA. These equations are valid even in the case of arbitrarily short electron bunches and of current distributions with ripples on the scale of or shorter than the wavelength. Numerical examples are presented, showing that for long homogeneous bunches the new set of equations gives results in agreement with the SVEA free-electron laser theory and that the use of short or prebunched electron beams leads to a decrease of the emission lethargy. Furthermore, we demonstrate that in all cases in which the backward low frequency wave has negligible effects, these equations can be reduced to a form similar to the usual 1D SVEA equations but with a different definition of the bunching term.
Joseph, Rose M.; Hagness, Susan C.; Taflove, Allen
1991-01-01
The initial results for femtosecond pulse propagation and scattering interactions for a Lorentz medium obtained by a direct time integration of Maxwell's equations are reported. The computational approach provides reflection coefficients accurate to better than 6 parts in 10,000 over the frequency range of dc to 3 x 10 to the 16th Hz for a single 0.2-fs Gaussian pulse incident upon a Lorentz-medium half-space. New results for Sommerfeld and Brillouin precursors are shown and compared with previous analyses. The present approach is robust and permits 2D and 3D electromagnetic pulse propagation directly from the full-vector Maxwell's equations.
Einstein-Cartan Theory of Gravitation: Kinematical Parameters and Maxwell Equations
Katkar, L. N.
2015-03-01
In the space-time manifold of Einstein-Cartan Theory (ECT) of gravitation, the expressions for the time-like kinematical parameters are derived and the propagation equation for expansion is obtained.It has been observed that when the spin tensor is u-orthogonal the spin of the gravitating matter has no influence on the propagation equation of expansion while it has influence when it is not u-orthogonal. The usual formula for the curl of gradient of a scalar function is not zero in ECT. So is the case with the divergence of the curl of a vector.Their expressions on the space-time manifold of ECT are derived. A new derivative operator d ∗ is introduced to develop the calculus on space-time manifold of ECT. It is obtained by taking the covariant derivative of an associated tensor of a form with respect to an asymmetric connections. We have used this differential operator to obtain the form of the Maxwell's equations in the ECT of gravitation. Cartan's equations of structure are also derived through the new derivative operator. It has been shown that unlike the consequences of exterior derivative in Einstein space-time, the repetition of d ∗ on a form of any degree is not zero.
The c equivalence principle and the correct form of writing Maxwell's equations
International Nuclear Information System (INIS)
Heras, Jose A
2010-01-01
It is well known that the speed c u =1/√(ε 0 μ 0 ) is obtained in the process of defining SI units via action-at-a-distance forces, like the force between two static charges and the force between two long and parallel currents. The speed c u is then physically different from the observed speed of propagation c associated with electromagnetic waves in vacuum. However, repeated experiments have led to the numerical equality c u = c, which we have called the c equivalence principle. In this paper we point out that ∇xE=-[1/(ε 0 μ 0 c 2 )]∂B/∂t is the correct form of writing Faraday's law when the c equivalence principle is not assumed. We also discuss the covariant form of Maxwell's equations without assuming the c equivalence principle.
Spherical space Bessel-Legendre-Fourier mode solver for Maxwell's wave equations
Alzahrani, Mohammed A.; Gauthier, Robert C.
2015-02-01
For spherically symmetric dielectric structures, a basis set composed of Bessel, Legendre and Fourier functions, BLF, are used to cast Maxwell's wave equations into an eigenvalue problem from which the localized modes can be determined. The steps leading to the eigenmatrix are reviewed and techniques used to reduce the order of matrix and tune the computations for particular mode types are detailed. The BLF basis functions are used to expand the electric and magnetic fields as well as the inverse relative dielectric profile. Similar to the common plane wave expansion technique, the BLF matrix returns the eigen-frequencies and eigenvectors, but in BLF only steady states, non-propagated, are obtained. The technique is first applied to a air filled spherical structure with perfectly conducting outer surface and then to a spherical microsphere located in air. Results are compared published values were possible.
Collier, Richard S.; McKenna, Paul M.; Perala, Rodney A.
1991-08-01
The objective here is to describe the lightning hazards to buildings and their internal environments using advanced formulations of Maxwell's Equations. The method described is the Three Dimensional Finite Difference Time Domain Solution. It can be used to solve for the lightning interaction with such structures in three dimensions with the inclusion of a considerable amount of detail. Special techniques were developed for including wire, plumbing, and rebar into the model. Some buildings have provisions for lightning protection in the form of air terminals connected to a ground counterpoise system. It is shown that fields and currents within these structures can be significantly high during a lightning strike. Time lapse video presentations were made showing the electric and magnetic field distributions on selected cross sections of the buildings during a simulated lightning strike.
Gauthier, Robert C.; Alzahrani, Mohammed A.; Jafari, Seyed Hamed
2015-02-01
The plane wave expansion (PWM) technique applied to Maxwell's wave equations provides researchers with a supply of information regarding the optical properties of dielectric structures. The technique is well suited for structures that display a linear periodicity. When the focus is directed towards optical resonators and structures that lack linear periodicity the eigen-process can easily exceed computational resources and time constraints. In the case of dielectric structures which display cylindrical or spherical symmetry, a coordinate system specific set of basis functions have been employed to cast Maxwell's wave equations into an eigen-matrix formulation from which the resonator states associated with the dielectric profile can be obtained. As for PWM, the inverse of the dielectric and field components are expanded in the basis functions (Fourier-Fourier-Bessel, FFB, in cylindrical and Fourier- Bessel-Legendre, BLF, in spherical) and orthogonality is employed to form the matrix expressions. The theoretical development details will be presented indicating how certain mathematical complications in the process have been overcome and how the eigen-matrix can be tuned to a specific mode type. The similarities and differences in PWM, FFB and BLF are presented. In the case of structures possessing axial cylindrical symmetry, the inclusion of the z axis component of propagation constant makes the technique applicable to photonic crystal fibers and other waveguide structures. Computational results will be presented for a number of different dielectric geometries including Bragg ring resonators, cylindrical space slot channel waveguides and bottle resonators. Steps to further enhance the computation process will be reported.
Approximating chaotic saddles for delay differential equations.
Taylor, S Richard; Campbell, Sue Ann
2007-04-01
Chaotic saddles are unstable invariant sets in the phase space of dynamical systems that exhibit transient chaos. They play a key role in mediating transport processes involving scattering and chaotic transients. Here we present evidence (long chaotic transients and fractal basins of attraction) of transient chaos in a "logistic" delay differential equation. We adapt an existing method (stagger-and-step) to numerically construct the chaotic saddle for this system. This is the first such analysis of transient chaos in an infinite-dimensional dynamical system, and in delay differential equations in particular. Using Poincaré section techniques we illustrate approaches to visualizing the saddle set, and confirm that the saddle has the Cantor-like fractal structure consistent with a chaotic saddle generated by horseshoe-type dynamics.
Approximating chaotic saddles for delay differential equations
Taylor, S. Richard; Campbell, Sue Ann
2007-04-01
Chaotic saddles are unstable invariant sets in the phase space of dynamical systems that exhibit transient chaos. They play a key role in mediating transport processes involving scattering and chaotic transients. Here we present evidence (long chaotic transients and fractal basins of attraction) of transient chaos in a “logistic” delay differential equation. We adapt an existing method (stagger-and-step) to numerically construct the chaotic saddle for this system. This is the first such analysis of transient chaos in an infinite-dimensional dynamical system, and in delay differential equations in particular. Using Poincaré section techniques we illustrate approaches to visualizing the saddle set, and confirm that the saddle has the Cantor-like fractal structure consistent with a chaotic saddle generated by horseshoe-type dynamics.
Approximate equations at breaking for nearshore wave transformation coefficients
Digital Repository Service at National Institute of Oceanography (India)
Chandramohan, P.; Nayak, B.U.; SanilKumar, V.
Based on small amplitude wave theory approximate equations are evaluated for determining the coefficients of shoaling, refraction, bottom friction, bottom percolation and viscous dissipation at breaking. The results obtainEd. by these equations...
Legendre-tau approximations for functional differential equations
Ito, K.; Teglas, R.
1986-01-01
The numerical approximation of solutions to linear retarded functional differential equations are considered using the so-called Legendre-tau method. The functional differential equation is first reformulated as a partial differential equation with a nonlocal boundary condition involving time-differentiation. The approximate solution is then represented as a truncated Legendre series with time-varying coefficients which satisfy a certain system of ordinary differential equations. The method is very easy to code and yields very accurate approximations. Convergence is established, various numerical examples are presented, and comparison between the latter and cubic spline approximation is made.
Asinari, Pietro
2009-11-01
A finite difference lattice Boltzmann scheme for homogeneous mixture modeling, which recovers Maxwell-Stefan diffusion model in the continuum limit, without the restriction of the mixture-averaged diffusion approximation, was recently proposed [P. Asinari, Phys. Rev. E 77, 056706 (2008)]. The theoretical basis is the Bhatnagar-Gross-Krook-type kinetic model for gas mixtures [P. Andries, K. Aoki, and B. Perthame, J. Stat. Phys. 106, 993 (2002)]. In the present paper, the recovered macroscopic equations in the continuum limit are systematically investigated by varying the ratio between the characteristic diffusion speed and the characteristic barycentric speed. It comes out that the diffusion speed must be at least one order of magnitude (in terms of Knudsen number) smaller than the barycentric speed, in order to recover the Navier-Stokes equations for mixtures in the incompressible limit. Some further numerical tests are also reported. In particular, (1) the solvent and dilute test cases are considered, because they are limiting cases in which the Maxwell-Stefan model reduces automatically to Fickian cases. Moreover, (2) some tests based on the Stefan diffusion tube are reported for proving the complete capabilities of the proposed scheme in solving Maxwell-Stefan diffusion problems. The proposed scheme agrees well with the expected theoretical results.
Komathiraj, K.; Sharma, Ranjan
2018-05-01
In this paper, we present a formalism to generate a family of interior solutions to the Einstein-Maxwell system of equations for a spherically symmetric relativistic charged fluid sphere matched to the exterior Reissner-Nordström space-time. By reducing the Einstein-Maxwell system to a recurrence relation with variable rational coefficients, we show that it is possible to obtain closed-form solutions for a specific range of model parameters. A large class of solutions obtained previously are shown to be contained in our general class of solutions. We also analyse the physical viability of our new class of solutions.
Deterministic methods for the relativistic Vlasov-Maxwell equations and the Van Allen belts dynamics
International Nuclear Information System (INIS)
Le Bourdiec, S.
2007-03-01
Artificial satellites operate in an hostile radiation environment, the Van Allen radiation belts, which partly condition their reliability and their lifespan. In order to protect them, it is necessary to characterize the dynamics of the energetic electrons trapped in these radiation belts. This dynamics is essentially determined by the interactions between the energetic electrons and the existing electromagnetic waves. This work consisted in designing a numerical scheme to solve the equations modelling these interactions: the relativistic Vlasov-Maxwell system of equations. Our choice was directed towards methods of direct integration. We propose three new spectral methods for the momentum discretization: a Galerkin method and two collocation methods. All of them are based on scaled Hermite functions. The scaling factor is chosen in order to obtain the proper velocity resolution. We present in this thesis the discretization of the one-dimensional Vlasov-Poisson system and the numerical results obtained. Then we study the possible extensions of the methods to the complete relativistic problem. In order to reduce the computing time, parallelization and optimization of the algorithms were carried out. Finally, we present 1Dx-3Dv (mono-dimensional for x and three-dimensional for velocity) computations of Weibel and whistler instabilities with one or two electrons species. (author)
About perfectly adapted layers for the temporal resolution of Maxwell's equations
International Nuclear Information System (INIS)
Le Potier, Ch.
1995-01-01
The major obstacle encountered in diffraction problems is the limitation in place memory. One solution is to approach the Sommerfeld condition by taking into account absorbing boundary conditions on a boundary surface surrounding the studied object. Many authors have studied these problems, but, unfortunately, the implementation of absorbing boundary conditions of order greater than two for 3-dimensional non-structural meshes in the temporal case is a still unresolved problem to our knowledge. Another way is to add a dummy absorbent layer around the computational domain. J.P. Berenger has revived this method and considerably improved the resolution of the problems of time diffraction. His idea is to split the Maxwell equations in their anisotropic version in a layer surrounding the computational domain. On the other hand, J.Y. Wu introduced a new system of anisotropic equations in the frequency case. The author shows that this new system possesses the same properties as that of Berenger and this idea has been generalized to the temporal case with discretization in space by finite volumes in 3 dimensions for a structured or not structured mesh. The report also presents the implementation of these new methods in the SUMER-T code and the accuracy of these is compared with conventional absorbing boundary conditions [fr
International Nuclear Information System (INIS)
Artru, X.; Fayolle, D.
2001-01-01
For a monopole, the analogue of the Lorentz equation in matter is shown to be f = g (H-v centre dot D). Dual-symmetric Maxwell equations, for matter containing hidden magnetic charge in addition to electric ones, are given. They apply as well to ordinary matter if the particles possess T-violating electric dipole moments. Two schemes of experiments for the detection of such moments in macroscopic pieces of matter are proposed
Approximated solutions to the Schroedinger equation
International Nuclear Information System (INIS)
Rico, J.F.; Fernandez-Alonso, J.I.
1977-01-01
The authors are currently working on a couple of the well-known deficiencies of the variation method and present here some of the results that have been obtained so far. The variation method does not give information a priori on the trial functions best suited for a particular problem nor does it give information a posteriori on the degree of precision attained. In order to clarify the origin of both difficulties, a geometric interpretation of the variation method is presented. This geometric interpretation is the starting point for the exact formal solution to the fundamental state and for the step-by-step approximations to the exact solution which are also given. Some comments on these results are included. (Auth.)
Multi-scale approximation of Vlasov equation
International Nuclear Information System (INIS)
Mouton, A.
2009-09-01
One of the most important difficulties of numerical simulation of magnetized plasmas is the existence of multiple time and space scales, which can be very different. In order to produce good simulations of these multi-scale phenomena, it is recommended to develop some models and numerical methods which are adapted to these problems. Nowadays, the two-scale convergence theory introduced by G. Nguetseng and G. Allaire is one of the tools which can be used to rigorously derive multi-scale limits and to obtain new limit models which can be discretized with a usual numerical method: this procedure is so-called a two-scale numerical method. The purpose of this thesis is to develop a two-scale semi-Lagrangian method and to apply it on a gyrokinetic Vlasov-like model in order to simulate a plasma submitted to a large external magnetic field. However, the physical phenomena we have to simulate are quite complex and there are many questions without answers about the behaviour of a two-scale numerical method, especially when such a method is applied on a nonlinear model. In a first part, we develop a two-scale finite volume method and we apply it on the weakly compressible 1D isentropic Euler equations. Even if this mathematical context is far from a Vlasov-like model, it is a relatively simple framework in order to study the behaviour of a two-scale numerical method in front of a nonlinear model. In a second part, we develop a two-scale semi-Lagrangian method for the two-scale model developed by E. Frenod, F. Salvarani et E. Sonnendrucker in order to simulate axisymmetric charged particle beams. Even if the studied physical phenomena are quite different from magnetic fusion experiments, the mathematical context of the one-dimensional paraxial Vlasov-Poisson model is very simple for establishing the basis of a two-scale semi-Lagrangian method. In a third part, we use the two-scale convergence theory in order to improve M. Bostan's weak-* convergence results about the finite
DEFF Research Database (Denmark)
Popov, Vladislav; Lavrinenko, Andrei; Novitsky, Andrey
2016-01-01
that the zeroth-, first-, and second-order approximations of the operator effective medium theory correspond to electric dipoles, chirality, and magnetic dipoles plus electric quadrupoles, respectively. We discover that the spatially dispersive bianisotropic effective medium obtained in the second...
The c equivalence principle and the correct form of writing Maxwell's equations
Energy Technology Data Exchange (ETDEWEB)
Heras, Jose A, E-mail: herasgomez@gmail.co [Universidad Autonoma Metropolitana Unidad Azcapotzalco, Av. San Pablo No. 180, Col. Reynosa, 02200, Mexico DF (Mexico)
2010-09-15
It is well known that the speed c{sub u}=1/{radical}({epsilon}{sub 0{mu}0}) is obtained in the process of defining SI units via action-at-a-distance forces, like the force between two static charges and the force between two long and parallel currents. The speed c{sub u} is then physically different from the observed speed of propagation c associated with electromagnetic waves in vacuum. However, repeated experiments have led to the numerical equality c{sub u} = c, which we have called the c equivalence principle. In this paper we point out that {nabla}xE=-[1/({epsilon}{sub 0}{mu}{sub 0}c{sup 2})]{partial_derivative}B/{partial_derivative}t is the correct form of writing Faraday's law when the c equivalence principle is not assumed. We also discuss the covariant form of Maxwell's equations without assuming the c equivalence principle.
International Nuclear Information System (INIS)
DAY, DAVID M.; NEWMAN, GREGORY A.
1999-01-01
A fast precondition technique has been developed which accelerates the finite difference solutions of the 3D Maxwell's equations for geophysical modeling. The technique splits the electric field into its curl free and divergence free projections, and allows for the construction of an inverse operator. Test examples show an order of magnitude speed up compared with a simple Jacobi preconditioner. Using this preconditioner a low frequency Neumann series expansion is developed and used to compute responses at multiple frequencies very efficiently. Simulations requiring responses at multiple frequencies, show that the Neumann series is faster than the preconditioned solution, which must compute solutions at each discrete frequency. A Neumann series expansion has also been developed in the high frequency limit along with spectral Lanczos methods in both the high and low frequency cases for simulating multiple frequency responses with maximum efficiency. The research described in this report was to have been carried out over a two-year period. Because of communication difficulties, the project was funded for first year only. Thus the contents of this report are incomplete with respect to the original project objectives
2015-01-01
Discussion meeting organised by Professor Anatoly Zayats, Professor John Ellis and Professor Roy Pike. 16-17 November 2015 at The Royal Society 6-9 Carlton House Terrace, London Event details The unification of electric and magnetic fields about 150 years ago in what is now known as electromagnetic theory expressed in Maxwell's Equations has enabled virtually all modern electrical, electronic, radio and photonic technologies. What new scientific breakthroughs and applications will unification with the other fields provide? This meeting brings together high-energy, optical, quantum and solid-state physicists to discuss recent developments enabled by Maxwell's Equations and will try to predict future innovations. Attending this event This event is intended for researchers in relevant fields and is free to attend. There are a limited number of places and registration is essential. For more information, visit the Royal Society event website.
The accuracy of time dependent transport equation ergodic approximation
International Nuclear Information System (INIS)
Stancic, V.
1995-01-01
In order to predict the accuracy of the ergodic approximation for solving the time dependent transport equation, a comparison with respect to multiple collision and time finite difference methods, has been considered. (author)
Diffusive Wave Approximation to the Shallow Water Equations: Computational Approach
Collier, Nathan; Radwan, Hany; Dalcin, Lisandro; Calo, Victor M.
2011-01-01
We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity
International Nuclear Information System (INIS)
Pujols, Agnes
1991-01-01
We prove that the scattering operator for the wave equation in the exterior of an non-homogeneous obstacle exists. Its distribution kernel is represented by a time-dependent boundary integral equation. A space-time integral variational formulation is developed for determining the current induced by the scattering of an electromagnetic wave by an homogeneous object. The discrete approximation of the variational problem using a finite element method in both space and time leads to stable convergent schemes, giving a numerical code for perfectly conducting cylinders. (author) [fr
Approximate Method for Solving the Linear Fuzzy Delay Differential Equations
Directory of Open Access Journals (Sweden)
S. Narayanamoorthy
2015-01-01
Full Text Available We propose an algorithm of the approximate method to solve linear fuzzy delay differential equations using Adomian decomposition method. The detailed algorithm of the approach is provided. The approximate solution is compared with the exact solution to confirm the validity and efficiency of the method to handle linear fuzzy delay differential equation. To show this proper features of this proposed method, numerical example is illustrated.
approximate controllability of a non-autonomous differential equation
Indian Academy of Sciences (India)
53
for a non-autonomous functional differential equation using the theory of linear ... approximate controllability of various functional differential equations in abstract ...... the operator A(t) and into the requirement that x(t) ∈ D(A) for all t ≥ 0.
Approximate variational solutions of the Grad-Shafranov equation
International Nuclear Information System (INIS)
Ludwig, G.O.
2001-01-01
Approximate solutions of the Grad-Schlueter-Shafranov equation based on variational methods are developed. The power series solutions of the Euler-Lagrange equations for equilibrium are compared with direct variational results for a low aspect ratio tokamak equilibrium. (author)
Symmetries of th-Order Approximate Stochastic Ordinary Differential Equations
Fredericks, E.; Mahomed, F. M.
2012-01-01
Symmetries of $n$ th-order approximate stochastic ordinary differential equations (SODEs) are studied. The determining equations of these SODEs are derived in an Itô calculus context. These determining equations are not stochastic in nature. SODEs are normally used to model nature (e.g., earthquakes) or for testing the safety and reliability of models in construction engineering when looking at the impact of random perturbations.
Enhanced Recovery in Tight Gas Reservoirs using Maxwell-Stefan Equations
Santiago, C. J. S.; Kantzas, A.
2017-12-01
Due to the steep production decline in unconventional gas reservoirs, enhanced recovery (ER) methods are receiving great attention from the industry. Wet gas or liquid rich reservoirs are the preferred ER candidates due to higher added value from natural gas liquids (NGL) production. ER in these reservoirs has the potential to add reserves by improving desorption and displacement of hydrocarbons through the medium. Nevertheless, analysis of gas transport at length scales of tight reservoirs is complicated because concomitant mechanisms are in place as pressure declines. In addition to viscous and Knudsen diffusion, multicomponent gas modeling includes competitive adsorption and molecular diffusion effects. Most models developed to address these mechanisms involve single component or binary mixtures. In this study, ER by gas injection is investigated in multicomponent (C1, C2, C3 and C4+, CO2 and N2) wet gas reservoirs. The competing effects of Knudsen and molecular diffusion are incorporated by using Maxwell-Stefan equations and the Dusty-Gas approach. This model was selected due to its superior properties on representing the physics of multicomponent gas flow, as demonstrated during the presented model validation. Sensitivity studies to evaluate adsorption, reservoir permeability and gas type effects are performed. The importance of competitive adsorption on production and displacement times is demonstrated. In the absence of adsorption, chromatographic separation is negligible. Production is merely dictated by competing effects between molecular and Knudsen diffusion. Displacement fronts travel rapidly across the medium. When adsorption effects are included, molecules with lower affinity to the adsorption sites will be produced faster. If the injected gas is inert (N2), an increase in heavier fraction composition occurs in the medium. During injection of adsorbing gases (CH4 and CO2), competitive adsorption effects will contribute to improved recovery of heavier
High-order FDTD methods via derivative matching for Maxwell's equations with material interfaces
International Nuclear Information System (INIS)
Zhao Shan; Wei, G.W.
2004-01-01
This paper introduces a series of novel hierarchical implicit derivative matching methods to restore the accuracy of high-order finite-difference time-domain (FDTD) schemes of computational electromagnetics (CEM) with material interfaces in one (1D) and two spatial dimensions (2D). By making use of fictitious points, systematic approaches are proposed to locally enforce the physical jump conditions at material interfaces in a preprocessing stage, to arbitrarily high orders of accuracy in principle. While often limited by numerical instability, orders up to 16 and 12 are achieved, respectively, in 1D and 2D. Detailed stability analyses are presented for the present approach to examine the upper limit in constructing embedded FDTD methods. As natural generalizations of the high-order FDTD schemes, the proposed derivative matching methods automatically reduce to the standard FDTD schemes when the material interfaces are absent. An interesting feature of the present approach is that it encompasses a variety of schemes of different orders in a single code. Another feature of the present approach is that it can be robustly implemented with other high accuracy time-domain approaches, such as the multiresolution time-domain method and the local spectral time-domain method, to cope with material interfaces. Numerical experiments on both 1D and 2D problems are carried out to test the convergence, examine the stability, access the efficiency, and explore the limitation of the proposed methods. It is found that operating at their best capacity, the proposed high-order schemes could be over 2000 times more efficient than their fourth-order versions in 2D. In conclusion, the present work indicates that the proposed hierarchical derivative matching methods might lead to practical high-order schemes for numerical solution of time-domain Maxwell's equations with material interfaces
Rational approximations to solutions of linear differential equations.
Chudnovsky, D V; Chudnovsky, G V
1983-08-01
Rational approximations of Padé and Padé type to solutions of differential equations are considered. One of the main results is a theorem stating that a simultaneous approximation to arbitrary solutions of linear differential equations over C(x) cannot be "better" than trivial ones implied by the Dirichlet box principle. This constitutes, in particular, the solution in the linear case of Kolchin's problem that the "Roth's theorem" holds for arbitrary solutions of algebraic differential equations. Complete effective proofs for several valuations are presented based on the Wronskian methods and graded subrings of Picard-Vessiot extensions.
Approximate solution fuzzy pantograph equation by using homotopy perturbation method
Jameel, A. F.; Saaban, A.; Ahadkulov, H.; Alipiah, F. M.
2017-09-01
In this paper, Homotopy Perturbation Method (HPM) is modified and formulated to find the approximate solution for its employment to solve (FDDEs) involving a fuzzy pantograph equation. The solution that can be obtained by using HPM is in the form of infinite series that converge to the actual solution of the FDDE and this is one of the benefits of this method In addition, it can be used for solving high order fuzzy delay differential equations directly without reduction to a first order system. Moreover, the accuracy of HPM can be detected without needing the exact solution. The HPM is studied for fuzzy initial value problems involving pantograph equation. Using the properties of fuzzy set theory, we reformulate the standard approximate method of HPM and obtain the approximate solutions. The effectiveness of the proposed method is demonstrated for third order fuzzy pantograph equation.
On Approximate Solutions of Functional Equations in Vector Lattices
Directory of Open Access Journals (Sweden)
Bogdan Batko
2014-01-01
Full Text Available We provide a method of approximation of approximate solutions of functional equations in the class of functions acting into a Riesz space (algebra. The main aim of the paper is to provide a general theorem that can act as a tool applicable to a possibly wide class of functional equations. The idea is based on the use of the Spectral Representation Theory for Riesz spaces. The main result will be applied to prove the stability of an alternative Cauchy functional equation F(x+y+F(x+F(y≠0⇒F(x+y=F(x+F(y in Riesz spaces, the Cauchy equation with squares F(x+y2=(F(x+F(y2 in f-algebras, and the quadratic functional equation F(x+y+F(x-y=2F(x+2F(y in Riesz spaces.
Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations
International Nuclear Information System (INIS)
Esteban, M.J.; Georgiev, V.; Sere, E.
1995-01-01
The Maxwell-Dirac system describes the interaction of an electron with its own electromagnetic field. We prove the existence of soliton-like solutions of Maxwell-Dirac in (3+1)-Minkowski space-time. The solutions obtained are regular, stationary in time, and localized in space. They are found by a variational method, as critical points of an energy functional. This functional is strongly indefinite and presents a lack of compactness. We also find soliton-like solutions for the Klein-Gordon-Dirac system, arising in the Yukawa model. (author). 32 refs
Directory of Open Access Journals (Sweden)
A. Sakabekov
2016-01-01
Full Text Available We prove existence and uniqueness of the solution of the problem with initial and Maxwell-Auzhan boundary conditions for nonstationary nonlinear one-dimensional Boltzmann’s six-moment system equations in space of functions continuous in time and summable in square by a spatial variable. In order to obtain a priori estimation of the initial and boundary value problem for nonstationary nonlinear one-dimensional Boltzmann’s six-moment system equations we get the integral equality and then use the spherical representation of vector. Then we obtain the initial value problem for Riccati equation. We have managed to obtain a particular solution of this equation in an explicit form.
Improved stochastic approximation methods for discretized parabolic partial differential equations
Guiaş, Flavius
2016-12-01
We present improvements of the stochastic direct simulation method, a known numerical scheme based on Markov jump processes which is used for approximating solutions of ordinary differential equations. This scheme is suited especially for spatial discretizations of evolution partial differential equations (PDEs). By exploiting the full path simulation of the stochastic method, we use this first approximation as a predictor and construct improved approximations by Picard iterations, Runge-Kutta steps, or a combination. This has as consequence an increased order of convergence. We illustrate the features of the improved method at a standard benchmark problem, a reaction-diffusion equation modeling a combustion process in one space dimension (1D) and two space dimensions (2D).
Finite element approximation to the even-parity transport equation
International Nuclear Information System (INIS)
Lewis, E.E.
1981-01-01
This paper studies the finite element method, a procedure for reducing partial differential equations to sets of algebraic equations suitable for solution on a digital computer. The differential equation is cast into the form of a variational principle, the resulting domain then subdivided into finite elements. The dependent variable is then approximated by a simple polynomial, and these are linked across inter-element boundaries by continuity conditions. The finite element method is tailored to a variety of transport problems. Angular approximations are formulated, and the extent of ray effect mitigation is examined. Complex trial functions are introduced to enable the inclusion of buckling approximations. The ubiquitous curved interfaces of cell calculations, and coarse mesh methods are also treated. A concluding section discusses limitations of the work to date and suggests possible future directions
An Approximate Method for the Acoustic Attenuating VTI Eikonal Equation
Hao, Q.
2017-05-26
We present an approximate method to solve the acoustic eikonal equation for attenuating transversely isotropic media with a vertical symmetry axis (VTI). A perturbation method is used to derive the perturbation formula for complex-valued traveltimes. The application of Shanks transform further enhances the accuracy of approximation. We derive both analytical and numerical solutions to the acoustic eikonal equation. The analytic solution is valid for homogeneous VTI media with moderate anellipticity and strong attenuation and attenuation-anisotropy. The numerical solution is applicable for inhomogeneous attenuating VTI media.
An Approximate Method for the Acoustic Attenuating VTI Eikonal Equation
Hao, Q.; Alkhalifah, Tariq Ali
2017-01-01
We present an approximate method to solve the acoustic eikonal equation for attenuating transversely isotropic media with a vertical symmetry axis (VTI). A perturbation method is used to derive the perturbation formula for complex-valued traveltimes. The application of Shanks transform further enhances the accuracy of approximation. We derive both analytical and numerical solutions to the acoustic eikonal equation. The analytic solution is valid for homogeneous VTI media with moderate anellipticity and strong attenuation and attenuation-anisotropy. The numerical solution is applicable for inhomogeneous attenuating VTI media.
Approximate Controllability for Linear Stochastic Differential Equations in Infinite Dimensions
International Nuclear Information System (INIS)
Goreac, D.
2009-01-01
The objective of the paper is to investigate the approximate controllability property of a linear stochastic control system with values in a separable real Hilbert space. In a first step we prove the existence and uniqueness for the solution of the dual linear backward stochastic differential equation. This equation has the particularity that in addition to an unbounded operator acting on the Y-component of the solution there is still another one acting on the Z-component. With the help of this dual equation we then deduce the duality between approximate controllability and observability. Finally, under the assumption that the unbounded operator acting on the state process of the forward equation is an infinitesimal generator of an exponentially stable semigroup, we show that the generalized Hautus test provides a necessary condition for the approximate controllability. The paper generalizes former results by Buckdahn, Quincampoix and Tessitore (Stochastic Partial Differential Equations and Applications, Series of Lecture Notes in Pure and Appl. Math., vol. 245, pp. 253-260, Chapman and Hall, London, 2006) and Goreac (Applied Analysis and Differential Equations, pp. 153-164, World Scientific, Singapore, 2007) from the finite dimensional to the infinite dimensional case
Numerical approximations of difference functional equations and applications
Directory of Open Access Journals (Sweden)
Zdzisław Kamont
2005-01-01
Full Text Available We give a theorem on the error estimate of approximate solutions for difference functional equations of the Volterra type. We apply this general result in the investigation of the stability of difference schemes generated by nonlinear first order partial differential functional equations and by parabolic problems. We show that all known results on difference methods for initial or initial boundary value problems can be obtained as particular cases of this general and simple result. We assume that the right hand sides of equations satisfy nonlinear estimates of the Perron type with respect to functional variables.
International Nuclear Information System (INIS)
Tanimura, Shogo
1992-01-01
R. P. Feynman showed F. J. Dyson a proof of the Lorentz force law and the homogeneous Maxwell equations, which he obtained starting from Newton's law of motion and the commutation relations between position and velocity for a single nonrelativistic particle. The author formulate both a special relativistic and a general relativistic version of Feynman's derivation. Especially in the general relativistic version they prove that the only possible fields that can consistently act on a quantum mechanical particle are scalar, gauge, and gravitational fields. They also extend Feynman's scheme to the case of non-Abelian gauge theory in the special relativistic context. 8 refs
International Nuclear Information System (INIS)
Tupper, B.O.J.
1976-01-01
In a previous article (Gen. Rel. Grav.; 6 : 345 (1975)) the Einstein-Maxwell field equations for non-null electromagnetic fields were studied under the conditions that the null tetrad is parallel-propagated along both principal null congruences. A solution with twist and shear, but no expansion, was found and was conjectured to be the only expansion-free solution. Here it is shown that this conjecture is false; the general expansion-free solution is found to be a family of space-times depending on a single constant parameter which is the ratio of the (constant) twists of the two principal null congruences. (author)
Choosing of optimal start approximation for laplace equation ...
African Journals Online (AJOL)
We investigate Dirichlet problem for a case of two-dimensional area with lime border, numerical scheme for solving this equation is widely knowns it finite difference method. One of the major stages in the algorithm for that numerical solution is choosing of start approximation, usually as the initial values of the unknown ...
Symmetric approximations of the Navier-Stokes equations
International Nuclear Information System (INIS)
Kobel'kov, G M
2002-01-01
A new method for the symmetric approximation of the non-stationary Navier-Stokes equations by a Cauchy-Kovalevskaya-type system is proposed. Properties of the modified problem are studied. In particular, the convergence as ε→0 of the solutions of the modified problem to the solutions of the original problem on an infinite interval is established
An approximation method for nonlinear integral equations of Hammerstein type
International Nuclear Information System (INIS)
Chidume, C.E.; Moore, C.
1989-05-01
The solution of a nonlinear integral equation of Hammerstein type in Hilbert spaces is approximated by means of a fixed point iteration method. Explicit error estimates are given and, in some cases, convergence is shown to be at least as fast as a geometric progression. (author). 25 refs
Finite-dimensional approximation for operator equations of Hammerstein type
International Nuclear Information System (INIS)
Buong, N.
1992-11-01
The purpose of this paper is to establish convergence rate for a method of finite-dimensional approximation to solve operator equation of Hammerstein type in real reflexive Banach space. In order to consider a numerical example an iteration method is proposed in Hilbert space. (author). 25 refs
Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations.
Vorobev, Anatoliy
2010-11-01
We use the Cahn-Hilliard approach to model the slow dissolution dynamics of binary mixtures. An important peculiarity of the Cahn-Hilliard-Navier-Stokes equations is the necessity to use the full continuity equation even for a binary mixture of two incompressible liquids due to dependence of mixture density on concentration. The quasicompressibility of the governing equations brings a short time-scale (quasiacoustic) process that may not affect the slow dynamics but may significantly complicate the numerical treatment. Using the multiple-scale method we separate the physical processes occurring on different time scales and, ultimately, derive the equations with the filtered-out quasiacoustics. The derived equations represent the Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations. This approximation can be further employed as a universal theoretical model for an analysis of slow thermodynamic and hydrodynamic evolution of the multiphase systems with strongly evolving and diffusing interfacial boundaries, i.e., for the processes involving dissolution/nucleation, evaporation/condensation, solidification/melting, polymerization, etc.
Approximation of entropy solutions to degenerate nonlinear parabolic equations
Abreu, Eduardo; Colombeau, Mathilde; Panov, Evgeny Yu
2017-12-01
We approximate the unique entropy solutions to general multidimensional degenerate parabolic equations with BV continuous flux and continuous nondecreasing diffusion function (including scalar conservation laws with BV continuous flux) in the periodic case. The approximation procedure reduces, by means of specific formulas, a system of PDEs to a family of systems of the same number of ODEs in the Banach space L^∞, whose solutions constitute a weak asymptotic solution of the original system of PDEs. We establish well posedness, monotonicity and L^1-stability. We prove that the sequence of approximate solutions is strongly L^1-precompact and that it converges to an entropy solution of the original equation in the sense of Carrillo. This result contributes to justify the use of this original method for the Cauchy problem to standard multidimensional systems of fluid dynamics for which a uniqueness result is lacking.
Approximate solution to neutron transport equation with linear anisotropic scattering
International Nuclear Information System (INIS)
Coppa, G.; Ravetto, P.; Sumini, M.
1983-01-01
A method to obtain an approximate solution to the transport equation, when both sources and collisions show a linearly anisotropic behavior, is outlined and the possible implications for numerical calculations in applied neutronics as well as shielding evaluations are investigated. The form of the differential system of equations taken by the method is quite handy and looks simpler and more manageable than any other today available technique. To go deeper into the efficiency of the method, some typical calculations concerning critical dimension of multiplying systems are then performed and the results are compared with the ones coming from the classical Ssub(N) approximations. The outcome of such calculations leads us to think of interesting developments of the method which could be quite useful in alternative to other today widespread approximate procedures, for any geometry, but especially for curved ones. (author)
Sirenko, Kostyantyn
2013-01-01
A scheme that discretizes exact absorbing boundary conditions (EACs) to incorporate them into a time-domain discontinuous Galerkin finite element method (TD-DG-FEM) is described. The proposed TD-DG-FEM with EACs is used for accurately characterizing transient electromagnetic wave interactions on two-dimensional waveguides. Numerical results demonstrate the proposed method\\'s superiority over the TD-DG-FEM that employs approximate boundary conditions and perfectly matched layers. Additionally, it is shown that the proposed method can produce the solution with ten-eleven digit accuracy when high-order spatial basis functions are used to discretize the Maxwell equations as well as the EACs. © 1963-2012 IEEE.
Approximate Solution of LR Fuzzy Sylvester Matrix Equations
Directory of Open Access Journals (Sweden)
Xiaobin Guo
2013-01-01
Full Text Available The fuzzy Sylvester matrix equation AX~+X~B=C~ in which A,B are m×m and n×n crisp matrices, respectively, and C~ is an m×n LR fuzzy numbers matrix is investigated. Based on the Kronecker product of matrices, we convert the fuzzy Sylvester matrix equation into an LR fuzzy linear system. Then we extend the fuzzy linear system into two systems of linear equations according to the arithmetic operations of LR fuzzy numbers. The fuzzy approximate solution of the original fuzzy matrix equation is obtained by solving the crisp linear systems. The existence condition of the LR fuzzy solution is also discussed. Some examples are given to illustrate the proposed method.
A new numerical approximation of the fractal ordinary differential equation
Atangana, Abdon; Jain, Sonal
2018-02-01
The concept of fractal medium is present in several real-world problems, for instance, in the geological formation that constitutes the well-known subsurface water called aquifers. However, attention has not been quite devoted to modeling for instance, the flow of a fluid within these media. We deem it important to remind the reader that the concept of fractal derivative is not to represent the fractal sharps but to describe the movement of the fluid within these media. Since this class of ordinary differential equations is highly complex to solve analytically, we present a novel numerical scheme that allows to solve fractal ordinary differential equations. Error analysis of the method is also presented. Application of the method and numerical approximation are presented for fractal order differential equation. The stability and the convergence of the numerical schemes are investigated in detail. Also some exact solutions of fractal order differential equations are presented and finally some numerical simulations are presented.
Grima, Ramon
2011-11-01
The mesoscopic description of chemical kinetics, the chemical master equation, can be exactly solved in only a few simple cases. The analytical intractability stems from the discrete character of the equation, and hence considerable effort has been invested in the development of Fokker-Planck equations, second-order partial differential equation approximations to the master equation. We here consider two different types of higher-order partial differential approximations, one derived from the system-size expansion and the other from the Kramers-Moyal expansion, and derive the accuracy of their predictions for chemical reactive networks composed of arbitrary numbers of unimolecular and bimolecular reactions. In particular, we show that the partial differential equation approximation of order Q from the Kramers-Moyal expansion leads to estimates of the mean number of molecules accurate to order Ω(-(2Q-3)/2), of the variance of the fluctuations in the number of molecules accurate to order Ω(-(2Q-5)/2), and of skewness accurate to order Ω(-(Q-2)). We also show that for large Q, the accuracy in the estimates can be matched only by a partial differential equation approximation from the system-size expansion of approximate order 2Q. Hence, we conclude that partial differential approximations based on the Kramers-Moyal expansion generally lead to considerably more accurate estimates in the mean, variance, and skewness than approximations of the same order derived from the system-size expansion.
Parametrized post-Newtonian approximation and Rastall's gravitational field equations
International Nuclear Information System (INIS)
Smalley, L.L.
1978-01-01
The parametrized post-Newtonian (PPN) approximation is generalized to accomodate Rastall's modification of Einstein's theory of gravity, which allows nonzero divergence of the energy-momentum tensor. Rastall's theory is then shown to have consistent field equations, gauge conditions, and the correct Newtonian limit of the equations of motion. The PPN parameters are obtained and shown to agree experimentally with those for the Einstein theory. In light of the nonzero divergence condition, integral conservation laws are investigated and shown to yield conserved energy-momentum and angular-momentum. We conclude that the above generalization of metric theories, within the PPN framework, is a natural extension of the concept of metric theories
Approximate analytical methods for solving ordinary differential equations
Radhika, TSL; Rani, T Raja
2015-01-01
Approximate Analytical Methods for Solving Ordinary Differential Equations (ODEs) is the first book to present all of the available approximate methods for solving ODEs, eliminating the need to wade through multiple books and articles. It covers both well-established techniques and recently developed procedures, including the classical series solution method, diverse perturbation methods, pioneering asymptotic methods, and the latest homotopy methods.The book is suitable not only for mathematicians and engineers but also for biologists, physicists, and economists. It gives a complete descripti
International Nuclear Information System (INIS)
Rabei, Eqab M.; Al-Jamel, A.; Widyan, H.; Baleanu, D.
2014-01-01
In a recent paper, Jaradat et al. [J. Math. Phys. 53, 033505 (2012)] have presented the fractional form of the electromagnetic Lagrangian density within the Riemann-Liouville fractional derivative. They claimed that the Agrawal procedure [O. P. Agrawal, J. Math. Anal. Appl. 272, 368 (2002)] is used to obtain Maxwell's equations in the fractional form, and the Hamilton's equations of motion together with the conserved quantities obtained from fractional Noether's theorem are reported. In this comment, we draw the attention that there are some serious steps of the procedure used in their work are not applicable even though their final results are correct. Their work should have been done based on a formulation as reported by Baleanu and Muslih [Phys. Scr. 72, 119 (2005)
Local density approximation for a perturbative equation of state
International Nuclear Information System (INIS)
Astrakharchik, G. E.
2005-01-01
Knowledge of a series expansion of the equation of state provides a deep insight into the physical nature of a quantum system. Starting from a generic 'perturbative' equation of state of a homogeneous ultracold gas we make predictions for the properties of the gas in the presence of harmonic confinement. The local density approximation is used to obtain the chemical potential, total and release energies, Thomas-Fermi size, and density profile of a trapped system in three-, two-, and one-dimensional geometries. The frequencies of the lowest breathing modes are calculated using scaling and sum-rule approaches and could be used in an experiment as a high-precision tool for obtaining the expansion terms of the equation of state. The derived formalism is applied to dilute Bose and Fermi gases in different dimensions and to integrable one-dimensional models. The physical meaning of the expansion terms in a number of systems is discussed
Nonlinear ordinary differential equations analytical approximation and numerical methods
Hermann, Martin
2016-01-01
The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march...
Chun, Sehun
2017-07-01
Applying the method of moving frames to Maxwell's equations yields two important advancements for scientific computing. The first is the use of upwind flux for anisotropic materials in Maxwell's equations, especially in the context of discontinuous Galerkin (DG) methods. Upwind flux has been available only to isotropic material, because of the difficulty of satisfying the Rankine-Hugoniot conditions in anisotropic media. The second is to solve numerically Maxwell's equations on curved surfaces without the metric tensor and composite meshes. For numerical validation, spectral convergences are displayed for both two-dimensional anisotropic media and isotropic spheres. In the first application, invisible two-dimensional metamaterial cloaks are simulated with a relatively coarse mesh by both the lossless Drude model and the piecewisely-parametered layered model. In the second application, extremely low frequency propagation on various surfaces such as spheres, irregular surfaces, and non-convex surfaces is demonstrated.
The many faces of Maxwell, Dirac and Einstein equations a Clifford bundle approach
Rodrigues, Jr, Waldyr A
2016-01-01
This book is an exposition of the algebra and calculus of differential forms, of the Clifford and Spin-Clifford bundle formalisms, and of vistas to a formulation of important concepts of differential geometry indispensable for an in-depth understanding of space-time physics. The formalism discloses the hidden geometrical nature of spinor fields. Maxwell, Dirac and Einstein fields are shown to have representatives by objects of the same mathematical nature, namely sections of an appropriate Clifford bundle. This approach reveals unity in diversity and suggests relationships that are hidden in the standard formalisms and opens new paths for research. This thoroughly revised second edition also adds three new chapters: on the Clifford bundle approach to the Riemannian or semi-Riemannian differential geometry of branes; on Komar currents in the context of the General Relativity theory; and an analysis of the similarities and main differences between Dirac, Majorana and ELKO spinor fields. The exercises with solut...
Efficient solution of parabolic equations by Krylov approximation methods
Gallopoulos, E.; Saad, Y.
1990-01-01
Numerical techniques for solving parabolic equations by the method of lines is addressed. The main motivation for the proposed approach is the possibility of exploiting a high degree of parallelism in a simple manner. The basic idea of the method is to approximate the action of the evolution operator on a given state vector by means of a projection process onto a Krylov subspace. Thus, the resulting approximation consists of applying an evolution operator of a very small dimension to a known vector which is, in turn, computed accurately by exploiting well-known rational approximations to the exponential. Because the rational approximation is only applied to a small matrix, the only operations required with the original large matrix are matrix-by-vector multiplications, and as a result the algorithm can easily be parallelized and vectorized. Some relevant approximation and stability issues are discussed. We present some numerical experiments with the method and compare its performance with a few explicit and implicit algorithms.
An accessible four-dimensional treatment of Maxwell's equations in terms of differential forms
Sá, Lucas
2017-03-01
Maxwell’s equations are derived in terms of differential forms in the four-dimensional Minkowski representation, starting from the three-dimensional vector calculus differential version of these equations. Introducing all the mathematical and physical concepts needed (including the tool of differential forms), using only knowledge of elementary vector calculus and the local vector version of Maxwell’s equations, the equations are reduced to a simple and elegant set of two equations for a unified quantity, the electromagnetic field. The treatment should be accessible for students taking a first course on electromagnetism.
Approximate Treatment of the Dirac Equation with Hyperbolic Potential Function
Durmus, Aysen
2018-03-01
The time independent Dirac equation is solved analytically for equal scalar and vector hyperbolic potential function in the presence of Greene and Aldrich approximation scheme. The bound state energy equation and spinor wave functions expressed by the hypergeometric function have been obtained in detail with asymptotic iteration approach. In order to indicate the accuracy of this different approach proposed to solve second order linear differential equations, we present that in the non-relativistic limit, analytical solutions of the Dirac equation converge to those of the Schrödinger one. We introduce numerical results of the theoretical analysis for hyperbolic potential function. Bound states corresponding to arbitrary values of n and l are reported for potential parameters covering a wide range of interaction. Also, we investigate relativistic vibrational energy spectra of alkali metal diatomic molecules in the different electronic states. It is observed that theoretical vibrational energy values are consistent with experimental Rydberg-Klein-Rees (RKR) results and vibrational energies of NaK, K_2 and KRb diatomic molecules interacting with hyperbolic potential smoothly converge to the experimental dissociation limit D_e=2508cm^{-1}, 254cm^{-1} and 4221cm^{-1}, respectively.
Equations involving Malliavin calculus operators applications and numerical approximation
Levajković, Tijana
2017-01-01
This book provides a comprehensive and unified introduction to stochastic differential equations and related optimal control problems. The material is new and the presentation is reader-friendly. A major contribution of the book is the development of generalized Malliavin calculus in the framework of white noise analysis, based on chaos expansion representation of stochastic processes and its application for solving several classes of stochastic differential equations with singular data involving the main operators of Malliavin calculus. In addition, applications in optimal control and numerical approximations are discussed. The book is divided into four chapters. The first, entitled White Noise Analysis and Chaos Expansions, includes notation and provides the reader with the theoretical background needed to understand the subsequent chapters. In Chapter 2, Generalized Operators of Malliavin Calculus, the Malliavin derivative operator, the Skorokhod integral and the Ornstein-Uhlenbeck operator are introdu...
Diffusive Wave Approximation to the Shallow Water Equations: Computational Approach
Collier, Nathan
2011-05-14
We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, in the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation.
Black hole equations of motion in the quasistationary approximation
International Nuclear Information System (INIS)
Zhdanov, V.I.; Shtelen', V.M.
1980-01-01
Black hole motion is considered under the effect of external actions from the point of view of a remoted observer. The shift of the black hole and the metrix structure are found at the presence of other gravitational bodies using the Zerilli equation. It is shown that in the region, where the space curvature is small, the contribution of the field of the black hole, moving with acceleration, coincides in configuration with the field of usual body, black hole motion in quasistationary approximation occuring according to laws of Newtonian dynamics
Na, D.-Y.; Moon, H.; Omelchenko, Y. A.; Teixeira, F. L.
2018-01-01
Accurate modeling of relativistic particle motion is essential for physical predictions in many problems involving vacuum electronic devices, particle accelerators, and relativistic plasmas. A local, explicit, and charge-conserving finite-element time-domain (FETD) particle-in-cell (PIC) algorithm for time-dependent (non-relativistic) Maxwell-Vlasov equations on irregular (unstructured) meshes was recently developed by Moon et al. [Comput. Phys. Commun. 194, 43 (2015); IEEE Trans. Plasma Sci. 44, 1353 (2016)]. Here, we extend this FETD-PIC algorithm to the relativistic regime by implementing and comparing three relativistic particle-pushers: (relativistic) Boris, Vay, and Higuera-Cary. We illustrate the application of the proposed relativistic FETD-PIC algorithm for the analysis of particle cyclotron motion at relativistic speeds, harmonic particle oscillation in the Lorentz-boosted frame, and relativistic Bernstein modes in magnetized charge-neutral (pair) plasmas.
Wu, Lingling
composite deuterium - xenon liners reduce the energy gain due to lower target compression rates. The effect of heating of targets by alpha particles on the fusion energy gain has also been investigated. The study of the dependence of the ram pressure amplification on radial compressibility showed a good agreement with the theory. The study concludes that a liner with higher Mach number and lower adiabatic index gamma (the radio of specific heats) will generate higher ram pressure amplification and higher fusion energy gain. We implemented a second order embedded boundary method for the Maxwell equations in geometrically complex domains. The numerical scheme is second order in both space and time. Comparing to the first order stair-step approximation of complex geometries within the FDTD method, this method can avoid spurious solution introduced by the stair step approximation. Unlike the finite element method and the FE-FD hybrid method, no triangulation is needed for this scheme. This method preserves the simplicity of the embedded boundary method and it is easy to implement. We will also propose a conservative (symplectic) fourth order scheme for uniform geometry boundary.
On Some Unusual Properties of Wave Solutions of Free Maxwell Equations
Directory of Open Access Journals (Sweden)
Augusto Espinoza
2006-01-01
Full Text Available Se descubren algunas propiedades inusuales de las soluciones de las llamadas ecuaciones libres de Maxwell. Mostramos la existencia de soluciones que representan las ondas electromagnéticas en el vacío para los cuales el vector de Poynting no coincide con el vector de Umov. Se presentan soluciones que corresponden a ondas magnéticas estacionarias de una configuración inusual en el vacío, que describen en el vacio formaciones estables anulares y esféricas de campo. Se demuestra que en el vacío, de acuerdo a las soluciones obtenidas el campo eléctrico E puede ser un vector polar así como un vector axial; y el campo magnético B, en su turno, puede ser un vector axial así como también un vector polar. Se muestra que tales soluciones existen cuando los vectores E y B, no son vectores polares ni axiales. Además, estas soluciones corresponden a ondas electromagnéticas que no transfieren energía ni momentos en cualquier punto del vacío.
Energy Technology Data Exchange (ETDEWEB)
Le Bourdiec, S
2007-03-15
Artificial satellites operate in an hostile radiation environment, the Van Allen radiation belts, which partly condition their reliability and their lifespan. In order to protect them, it is necessary to characterize the dynamics of the energetic electrons trapped in these radiation belts. This dynamics is essentially determined by the interactions between the energetic electrons and the existing electromagnetic waves. This work consisted in designing a numerical scheme to solve the equations modelling these interactions: the relativistic Vlasov-Maxwell system of equations. Our choice was directed towards methods of direct integration. We propose three new spectral methods for the momentum discretization: a Galerkin method and two collocation methods. All of them are based on scaled Hermite functions. The scaling factor is chosen in order to obtain the proper velocity resolution. We present in this thesis the discretization of the one-dimensional Vlasov-Poisson system and the numerical results obtained. Then we study the possible extensions of the methods to the complete relativistic problem. In order to reduce the computing time, parallelization and optimization of the algorithms were carried out. Finally, we present 1Dx-3Dv (mono-dimensional for x and three-dimensional for velocity) computations of Weibel and whistler instabilities with one or two electrons species. (author)
The wave equation: From eikonal to anti-eikonal approximation
Directory of Open Access Journals (Sweden)
Luis Vázquez
2016-06-01
Full Text Available When the refractive index changes very slowly compared to the wave-length we may use the eikonal approximation to the wave equation. In the opposite case, when the refractive index highly variates over the distance of one wave-length, we have what can be termed as the anti-eikonal limit. This situation is addressed in this work. The anti-eikonal limit seems to be a relevant tool in the modelling and design of new optical media. Besides, it describes a basic universal behaviour, independent of the actual values of the refractive index and, thus, of the media, for the components of a wave with wave-length much greater than the characteristic scale of the refractive index.
International Nuclear Information System (INIS)
Caire, Francois
2014-01-01
This PhD work concerns the development of fast numerical tools, dedicated to the computation of the electromagnetic interaction between a low frequency 3D current source and a complex conductor, presenting rough interfaces and/or conductivity variations. The main application concerns the simulation of the Eddy Current nondestructive testing process applied to complex specimens. Indeed, the semi-analytical models available today are restricted to canonical geometries. The proposed method is based on the covariant form of Maxwell's equations, which translates the physical equations and relationships in a non-orthogonal coordinate system depending on the geometry of the specimen. Historically, this method (Curvilinear Coordinate Method, CCM or C-method) has been developed in the framework of optical applications, particularly for the characterization of diffraction gratings. Here, we transpose this formalism into the quasi-static regime and we extend the Second Order Vector Potential formalism, initially dedicated to orthonormal curvilinear coordinates systems, to general curvilinear coordinate systems. Thanks to this change of base, we are able to determine numerically a set of modal solutions of the source-free Maxwell equations in the new coordinate system introduced, and this allows us to represent the unknown fields as modal expansions in source-free domains. Then, the coefficients of these expansions are computed by introducing the source fields and by enforcing the boundary conditions that the total fields must verify at interfaces between the different media. In order to tackle the case of a layered conductor presenting rough interfaces, the generalized SOVP formalism is coupled with a recursive routine called the S-matrix algorithm. On the other hand, the application case of a complex shape specimen with depth-varying physical properties is treated by coupling the modal method we developed with a high-order numerical method: pseudo-spectral method. The
International Nuclear Information System (INIS)
Omnes, P.
1999-01-01
This work is dedicated to the study of the behaviour of a magnetic confined plasma that is excited by a purely sinusoidal electric current delivered by an antenna. The response of the electrons to the electromagnetic field is considered as linear, whereas the ions of the plasma are represented by a non-relativistic Vlasov equation. In order to avoid transients, the coupled Maxwell-Vlasov equations are solved in a periodic mode and in a bounded domain. An equivalent electric conductivity tensor has been defined, this tensor is a linear operator that links the electric current generated by the movement of the particles to the electromagnetic field. Theoretical considerations can assure the existence and uniqueness of a periodical solution to Vlasov equations and of a solution to Maxwell equations in harmonic mode. The system of equations is periodical and has been solved by using an iterative method. The application of this method to the simulation of a isotopic separation device based on ionic cyclotron resonance has shown that the convergence is reached in a few iterations and that the solution is valid. Furthermore a method based on a finite-volume formulation of Maxwell equations in the time domain is presented. 2 new variables are defined in order to better take into account the Gauss' law and the conservation of the magnetic flux, the new system is still hyperbolic. The parallelization of the process has been successfully realized. (A.C.)
Simpson, J. J.; Taflove, A.
2005-12-01
We report a finite-difference time-domain (FDTD) computational solution of Maxwell's equations [1] that models the possibility of detecting and characterizing ionospheric disturbances above seismic regions. Specifically, we study anomalies in Schumann resonance spectra in the extremely low frequency (ELF) range below 30 Hz as observed in Japan caused by a hypothetical cylindrical ionospheric disturbance above Taiwan. We consider excitation of the global Earth-ionosphere waveguide by lightning in three major thunderstorm regions of the world: Southeast Asia, South America (Amazon region), and Africa. Furthermore, we investigate varying geometries and characteristics of the ionospheric disturbance above Taiwan. The FDTD technique used in this study enables a direct, full-vector, three-dimensional (3-D) time-domain Maxwell's equations calculation of round-the-world ELF propagation accounting for arbitrary horizontal as well as vertical geometrical and electrical inhomogeneities and anisotropies of the excitation, ionosphere, lithosphere, and oceans. Our entire-Earth model grids the annular lithosphere-atmosphere volume within 100 km of sea level, and contains over 6,500,000 grid-points (63 km laterally between adjacent grid points, 5 km radial resolution). We use our recently developed spherical geodesic gridding technique having a spatial discretization best described as resembling the surface of a soccer ball [2]. The grid is comprised entirely of hexagonal cells except for a small fixed number of pentagonal cells needed for completion. Grid-cell areas and locations are optimized to yield a smoothly varying area difference between adjacent cells, thereby maximizing numerical convergence. We compare our calculated results with measured data prior to the Chi-Chi earthquake in Taiwan as reported by Hayakawa et. al. [3]. Acknowledgement This work was suggested by Dr. Masashi Hayakawa, University of Electro-Communications, Chofugaoka, Chofu Tokyo. References [1] A
Herschlag, Gregory J; Mitran, Sorin; Lin, Guang
2015-06-21
We develop a hierarchy of approximations to the master equation for systems that exhibit translational invariance and finite-range spatial correlation. Each approximation within the hierarchy is a set of ordinary differential equations that considers spatial correlations of varying lattice distance; the assumption is that the full system will have finite spatial correlations and thus the behavior of the models within the hierarchy will approach that of the full system. We provide evidence of this convergence in the context of one- and two-dimensional numerical examples. Lower levels within the hierarchy that consider shorter spatial correlations are shown to be up to three orders of magnitude faster than traditional kinetic Monte Carlo methods (KMC) for one-dimensional systems, while predicting similar system dynamics and steady states as KMC methods. We then test the hierarchy on a two-dimensional model for the oxidation of CO on RuO2(110), showing that low-order truncations of the hierarchy efficiently capture the essential system dynamics. By considering sequences of models in the hierarchy that account for longer spatial correlations, successive model predictions may be used to establish empirical approximation of error estimates. The hierarchy may be thought of as a class of generalized phenomenological kinetic models since each element of the hierarchy approximates the master equation and the lowest level in the hierarchy is identical to a simple existing phenomenological kinetic models.
Notes on solving Maxwell equations, part 2, Green's function for stratified media
Rook, R.
2011-01-01
In the previous report (part 1), the problem and its governing equations are described and is discarded in this report. The finite element method in part 1, or any other method for that matter, determines the fields in and close to the scatterer (near-field) that is used to construct the fields in the far-field. The goal of part 2 is to find far-field expressions formulated as total fields or the Radar Cross Section (RCS) of the scattered fields. The far-field is calculated from the scatterer...
Radiation Boundary Conditions for Maxwell’s Equations: A Review of Accurate Time-Domain Formulations
2007-01-01
conditions have only been constructed for the case ne = 0. Lastly we note that exact reflection formulas have recently been derived by Diaz and Joly [20, 21...SIAM J. Numer. Anal. 41 (2003), 287–305. 6. E. Bécache and P. Joly , On the analysis of Bérenger’s perfectly matched layers for Maxwell’s equations...Computational Wave Propagation (M. Ainsworth, P. Davies, D. Duncan, P. Martin , and B. Rynne, eds.), Springer-Verlag, 2003, pp. 43–82. 13. O. Bruno and D. Hoch
Quadrupole terms in the Maxwell equations: Born energy, partial molar volume, and entropy of ions.
Slavchov, Radomir I; Ivanov, Tzanko I
2014-02-21
A new equation of state relating the macroscopic quadrupole moment density Q to the gradient of the field ∇E in an isotropic fluid is derived: Q = αQ(∇E - U∇·E/3), where the quadrupolarizability αQ is proportional to the squared molecular quadrupole moment. Using this equation of state, a generalized expression for the Born energy of an ion dissolved in quadrupolar solvent is obtained. It turns out that the potential and the energy of a point charge in a quadrupolar medium are finite. From the obtained Born energy, the partial molar volume and the partial molar entropy of a dissolved ion follow. Both are compared to experimental data for a large number of simple ions in aqueous solutions. From the comparison the value of the quadrupolar length LQ is determined, LQ = (αQ/3ɛ)(1/2) = 1-4 Å. Data for ion transfer from aqueous to polar oil solution are analyzed, which allowed for the determination of the quadrupolarizability of nitrobenzene.
Controlled Nonlinear Stochastic Delay Equations: Part I: Modeling and Approximations
International Nuclear Information System (INIS)
Kushner, Harold J.
2012-01-01
This two-part paper deals with “foundational” issues that have not been previously considered in the modeling and numerical optimization of nonlinear stochastic delay systems. There are new classes of models, such as those with nonlinear functions of several controls (such as products), each with is own delay, controlled random Poisson measure driving terms, admissions control with delayed retrials, and others. There are two basic and interconnected themes for these models. The first, dealt with in this part, concerns the definition of admissible control. The classical definition of an admissible control as a nonanticipative relaxed control is inadequate for these models and needs to be extended. This is needed for the convergence proofs of numerical approximations for optimal controls as well as to have a well-defined model. It is shown that the new classes of admissible controls do not enlarge the range of the value functions, is closed (together with the associated paths) under weak convergence, and is approximatable by ordinary controls. The second theme, dealt with in Part II, concerns transportation equation representations, and their role in the development of numerical algorithms with much reduced memory and computational requirements.
International Nuclear Information System (INIS)
Neate, A D; Truman, A
2005-01-01
The inviscid limit of the Burgers equation, with body forces white noise in time, is discussed in terms of the level surfaces of the minimizing Hamilton-Jacobi function and the classical mechanical caustic and their algebraic pre-images under the classical mechanical flow map. The problem is analysed in terms of a reduced (one-dimensional) action function using a circle of ideas due to Arnol'd, Cayley and Klein. We characterize those parts of the caustic which are singular, and give an explicit expression for the cusp density on caustics and level surfaces. By considering the double points of level surfaces we find an explicit formula for the Maxwell set in the two-dimensional polynomial case, and we extend this to higher dimensions using a double discriminant of the reduced action, solving a long-standing problem for Hamiltonian dynamical systems. When the pre-level surface touches the pre-caustic, the geometry (number of cusps) on the level surface changes infinitely rapidly causing 'real turbulence'. Using an idea of Klein, it is shown that the geometry (number of swallowtails) on the caustic also changes infinitely rapidly when the real part of the pre-caustic touches its complex counterpart, causing 'complex turbulence'. These are both inherently stochastic in nature, and we determine their intermittence in terms of the recurrent behaviour of two processes
International Nuclear Information System (INIS)
Laemmerzahl, Claus; Macias, Alfredo; Mueller, Holger
2005-01-01
All quantum gravity approaches lead to small modifications in the standard laws of physics which in most cases lead to violations of Lorentz invariance. One particular example is the extended standard model (SME). Here, a general phenomenological approach for extensions of the Maxwell equations is presented which turns out to be more general than the SME and which covers charge nonconservation (CNC), too. The new Lorentz invariance violating terms cannot be probed by optical experiments but need, instead, the exploration of the electromagnetic field created by a point charge or a magnetic dipole. Some scalar tensor theories and higher dimensional brane theories predict CNC in four dimensions and some models violating special relativity have been shown to be connected with CNC. Its relation to the Einstein Equivalence Principle has been discussed. Because of this upcoming interest, the experimental status of electric charge conservation is reviewed. Up to now there seem to exist no unique tests of charge conservation. CNC is related to the precession of polarization, to a modification of the 1/r-Coulomb potential, and to a time dependence of the fine structure constant. This gives the opportunity to describe a dedicated search for CNC
Leibov Roman
2017-01-01
This paper presents a bilinear approach to nonlinear differential equations system approximation problem. Sometimes the nonlinear differential equations right-hand sides linearization is extremely difficult or even impossible. Then piecewise-linear approximation of nonlinear differential equations can be used. The bilinear differential equations allow to improve piecewise-linear differential equations behavior and reduce errors on the border of different linear differential equations systems ...
Czech Academy of Sciences Publication Activity Database
Zhukov, V.P.; Bulgakova, Nadezhda M.; Fedoruk, M.P.
2017-01-01
Roč. 84, č. 7 (2017), s. 439-446 ISSN 1070-9762 R&D Projects: GA MŠk LO1602; GA ČR GA16-12960S Institutional support: RVO:68378271 Keywords : glass * femtosecond laser pulses * Maxwell's and Schrdinger equations Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 0.299, year: 2016
International Nuclear Information System (INIS)
Burde, G.I.
2002-01-01
A new approach to the use of the Lie group technique for partial and ordinary differential equations dependent on a small parameter is developed. In addition to determining approximate solutions to the perturbed equation, the approach allows constructing integrable equations that have solutions with (partially) prescribed features. Examples of application of the approach to partial differential equations are given
Convergence of method of lines approximations to partial differential equations
International Nuclear Information System (INIS)
Verwer, J.G.; Sanz-Serna, J.M.
1984-01-01
Many existing numerical schemes for evolutionary problems in partial differential equations (PDEs) can be viewed as method of lines (MOL) schemes. This paper treats the convergence of one-step MOL schemes. The main purpose is to set up a general framework for a convergence analysis applicable to nonlinear problems. The stability materials for this framework are taken from the field of nonlinear stiff ODEs. In this connection, important concepts are the logarithmic matrix norm and C-stability. A nonlinear parabolic equation and the cubic Schroedinger equation are used for illustrating the ideas. (Auth.)
Two-state approximation of the Fadeev-Hahn equations
International Nuclear Information System (INIS)
Brener, S.E.
1993-01-01
The equations have been chosen which allow both to solve the scattering problems and to calculate the parameters of bound states of three particles with Coulomb interaction when the system energy is below the decay to three separate particles. The method of constructing of equations which are most suitable for concrete problems is considered. Different numerical schemes to calculate the low energy scattering cross sections with two-particle clusterization in 'in' and 'out' collision's channels have been developed. The bounds of applied approaches were determined and the peculiarities connected with differently defined reaction amplitudes under these approaches have been considered. The interpretation of obtained results at different definitions of reaction amplitudes was demonstrated, and the elastic, inelastic cross sections and muon transfer rates in hydrogen isotope mesic atom collisions have been calculated using Fadeev-Hahn equations. (author)
Energy Technology Data Exchange (ETDEWEB)
Omnes, P
1999-01-25
This work is dedicated to the study of the behaviour of a magnetic confined plasma that is excited by a purely sinusoidal electric current delivered by an antenna. The response of the electrons to the electromagnetic field is considered as linear,whereas the ions of the plasma are represented by a non-relativistic Vlasov equation. In order to avoid transients, the coupled Maxwell-Vlasov equations are solved in a periodic mode and in a bounded domain. An equivalent electric conductivity tensor has been defined, this tensor is a linear operator that links the electric current generated by the movement of the particles to the electromagnetic field. Theoretical considerations can assure the existence and uniqueness of a periodical solution to Vlasov equations and of a solution to Maxwell equations in harmonic mode. The system of equations is periodical and has been solved by using an iterative method. The application of this method to the simulation of a isotopic separation device based on ionic cyclotron resonance has shown that the convergence is reached in a few iterations and that the solution is valid. Furthermore a method based on a finite-volume formulation of Maxwell equations in the time domain is presented. 2 new variables are defined in order to better take into account the Gauss' law and the conservation of the magnetic flux, the new system is still hyperbolic. The parallelization of the process has been successfully realized. (A.C.)
International Nuclear Information System (INIS)
Chen Changyuan; Sun Dongsheng; Lu Falin
2007-01-01
Using the exponential function transformation approach along with an approximation for the centrifugal potential, the radial Klein-Gordon equation with the vector and scalar Hulthen potential is transformed to a hypergeometric differential equation. The approximate analytical solutions of bound states are attained for different l. The analytical energy equation and the unnormalized radial wave functions expressed in terms of hypergeometric polynomials are given
An inhomogeneous wave equation and non-linear Diophantine approximation
DEFF Research Database (Denmark)
Beresnevich, V.; Dodson, M. M.; Kristensen, S.
2008-01-01
A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution...
Numerical approximation of the Boltzmann equation : moment closure
Abdel Malik, M.R.A.; Brummelen, van E.H.
2012-01-01
This work applies the moment method onto a generic form of kinetic equations to simplify kinetic models of particle systems. This leads to the moment closure problem which is addressed using entropy-based moment closure techniques utilizing entropy minimization. The resulting moment closure system
Maxwell electrodynamics subjected to quantum vacuum fluctuations
International Nuclear Information System (INIS)
Gevorkyan, A. S.; Gevorkyan, A. A.
2011-01-01
The propagation of electromagnetic waves in the vacuum is considered taking into account quantum fluctuations in the limits of Maxwell-Langevin (ML) equations. For a model of “white noise” fluctuations, using ML equations, a second order partial differential equation is found which describes the quantum distribution of virtual particles in vacuum. It is proved that in order to satisfy observed facts, the Lamb Shift etc, the virtual particles should be quantized in unperturbed vacuum. It is shown that the quantized virtual particles in toto (approximately 86 percent) are condensed on the “ground state” energy level. It is proved that the extension of Maxwell electrodynamics with inclusion of the vacuum quantum field fluctuations may be constructed on a 6D space-time continuum with a 2D compactified subspace. Their influence on the refraction indexes of vacuum is studied.
The generalized approximation method and nonlinear heat transfer equations
Directory of Open Access Journals (Sweden)
Rahmat Khan
2009-01-01
Full Text Available Generalized approximation technique for a solution of one-dimensional steady state heat transfer problem in a slab made of a material with temperature dependent thermal conductivity, is developed. The results obtained by the generalized approximation method (GAM are compared with those studied via homotopy perturbation method (HPM. For this problem, the results obtained by the GAM are more accurate as compared to the HPM. Moreover, our (GAM generate a sequence of solutions of linear problems that converges monotonically and rapidly to a solution of the original nonlinear problem. Each approximate solution is obtained as the solution of a linear problem. We present numerical simulations to illustrate and confirm the theoretical results.
International Nuclear Information System (INIS)
Liu Chunliang; Xie Xi; Chen Yinbao
1991-01-01
The universal nonlinear dynamic system equation is equivalent to its nonlinear Volterra's integral equation, and any order approximate analytical solution of the nonlinear Volterra's integral equation is obtained by exact analytical method, thus giving another derivation procedure as well as another computation algorithm for the solution of the universal nonlinear dynamic system equation
International Nuclear Information System (INIS)
Cambon, S.; Lacoste, P.
2011-01-01
We propose a finite element method to solve the axisymmetric scattering problem posed on a regular bounded domain. Here we shall show how to reduce the initial 3D problem into a truncated sum of 2D independent problems posed into a meridian plane of the object. Each of these problem results in the coupling of a partial differential equation into the interior domain and an integral equation on the surface simulating the free space. Then variational volume and boundary integral formulations of Maxwell's equation on regular surfaces are derived. We introduce some general finite element adapted to cylindrical coordinates and constructed from nodal and mixed finite element both for the interior (volume) and for the integral equation (surface). (authors)
Applicability of refined Born approximation to non-linear equations
International Nuclear Information System (INIS)
Rayski, J.
1990-01-01
A computational method called ''Refined Born Approximation'', formerly applied exclusively to linear problems, is shown to be successfully applicable also to non-linear problems enabling me to compute bifurcations and other irregular solutions which cannot be obtained by the standard perturbation procedures. (author)
International Nuclear Information System (INIS)
Kawashima, S.; Matsumara, A.; Nishida, T.
1979-01-01
The compressible and heat-conductive Navier-Stokes equation obtained as the second approximation of the formal Chapman-Enskog expansion is investigated on its relations to the original nonlinear Boltzmann equation and also to the incompressible Navier-Stokes equation. The solutions of the Boltzmann equation and the incompressible Navier-Stokes equation for small initial data are proved to be asymptotically equivalent (mod decay rate tsup(-5/4)) as t → + infinitely to that of the compressible Navier-Stokes equation for the corresponding initial data. (orig.) 891 HJ/orig. 892 MKO
Validity of various approximations for the Bethe-Salpeter equation and their WKB quantization
International Nuclear Information System (INIS)
Silvestre-Brac, B.; Bilal, A.; Gignoux, C.; Schuck, P.
1984-01-01
The validity of the instantaneous approximation for the Bethe-Salpeter equation is questioned within the framework of the simple scalar-scalar model of Cutkosky. Detailed numerous results for various approximations are compared to the exact ones. WKB quantization is applied to these relativistic approximations. An unexpected question arises: is the currently used Bethe-Salpeter equation (i.e., the ladder approximation) well suited to describe two interacting relativistic particles
Directory of Open Access Journals (Sweden)
Berenguer MI
2010-01-01
Full Text Available This paper deals with obtaining a numerical method in order to approximate the solution of the nonlinear Volterra integro-differential equation. We define, following a fixed-point approach, a sequence of functions which approximate the solution of this type of equation, due to some properties of certain biorthogonal systems for the Banach spaces and .
International Nuclear Information System (INIS)
Sentis, R.
1984-07-01
The radiative transfer equations may be approximated by a non linear diffusion equation (called Rosseland equation) when the mean free paths of the photons are small with respect to the size of the medium. Some technical assomptions are made, namely about the initial conditions, to avoid any problem of initial layer terms
Analytical approximate solutions for a general class of nonlinear delay differential equations.
Căruntu, Bogdan; Bota, Constantin
2014-01-01
We use the polynomial least squares method (PLSM), which allows us to compute analytical approximate polynomial solutions for a very general class of strongly nonlinear delay differential equations. The method is tested by computing approximate solutions for several applications including the pantograph equations and a nonlinear time-delay model from biology. The accuracy of the method is illustrated by a comparison with approximate solutions previously computed using other methods.
International Nuclear Information System (INIS)
Verdu, G.; Capilla, M.; Talavera, C. F.; Ginestar, D.
2012-01-01
PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)
Energy Technology Data Exchange (ETDEWEB)
Verdu, G. [Departamento de Ingenieria Quimica Y Nuclear, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain); Capilla, M.; Talavera, C. F.; Ginestar, D. [Dept. of Nuclear Engineering, Departamento de Matematica Aplicada, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain)
2012-07-01
PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)
Banks, H. T.; Kunisch, K.
1982-01-01
Approximation results from linear semigroup theory are used to develop a general framework for convergence of approximation schemes in parameter estimation and optimal control problems for nonlinear partial differential equations. These ideas are used to establish theoretical convergence results for parameter identification using modal (eigenfunction) approximation techniques. Results from numerical investigations of these schemes for both hyperbolic and parabolic systems are given.
International Nuclear Information System (INIS)
Sato, M.
1991-01-01
The Saha equation for a plasma in thermodynamic equilibrium (TE) is approximately solved to give the temperature as an explicit function of population densities. It is shown that the derived expressions for the Saha temperature are valid approximations to the exact solution. An application of the approximate temperature to the calculation of TE plasma parameters is also described. (orig.)
Horowitz, Jordan M
2015-07-28
The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.
Energy Technology Data Exchange (ETDEWEB)
Benoist, P; Kavenoky, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1968-01-15
In a new method of approximation of the Boltzmann equation, one starts from a particular form of the equation which involves only the angular flux at the boundary of the considered medium and where the space variable does not appear explicitly. Expanding in orthogonal polynomials the angular flux of neutrons leaking from the medium and making no assumption about the angular flux within the medium, very good approximations to several classical plane geometry problems, i.e. the albedo of slabs and the transmission by slabs, the extrapolation length of the Milne problem, the spectrum of neutrons reflected by a semi-infinite slowing down medium. The method can be extended to other geometries. (authors) [French] On etablit une nouvelle methode d'approximation pour l'equation de Boltzmann en partant d'une forme particuliere de cette equation qui n'implique que le flux angulaire a la frontiere du milieu et ou les variables d'espace n'apparaissent pas explicitement. Par un developpement en polynomes orthogonaux du flux angulaire sortant du milieu et sans faire d'hypothese sur le flux angulaire a l'interieur du milieu, on obtient de tres bonnes approximations pour plusieurs problemes classiques en geometrie plane: l'albedo et le facteur de transmission des plaques, la longueur d'extrapolation du probleme de Milne, le spectre des neutrons reflechis par un milieu semi-infini ralentisseur. La methode se generalise a d'autres geometries. (auteurs)
International Nuclear Information System (INIS)
Kinsler, Paul; Tan Jiajun; Thio, Timothy C Y; Trant, Claire; Kandapper, Navin
2012-01-01
Most of us will have at some time thrown a pebble into water, and watched the ripples spread outwards and fade away. But now there is also a way to reverse the process, and make those ripples turn around and reconverge again, …and again, and again. To do this we have designed the Maxwell's fishpond, a water wave or ‘transformation aquatics’ version of the Maxwell's fisheye lens (Tyc et al 2011 New J. Phys. 13 115004; Luneburg 1964 Mathematical Theory of Optics). These are transformation devices where wave propagation on the surface of a sphere is modelled using a flat device with spatially varying properties. And just as for rays from a point source on a sphere, a wave disturbance in a Maxwell's fisheye or fishpond spreads out at first, but then reforms itself at its opposite (or complementary) point. Here we show how such a device can be made for water waves, partly in friendly competition with comparable electromagnetic devices (Ma et al 2011 New J. Phys. 13 033016) and partly as an accessible and fun demonstration of the power of transformation mechanics. To the eye, our Maxwell's fishpond was capable of reforming a disturbance up to five times, although such a feat required taking considerable care, close observation, and a little luck. (paper)
Parameter Estimation for Partial Differential Equations by Collage-Based Numerical Approximation
Directory of Open Access Journals (Sweden)
Xiaoyan Deng
2009-01-01
into a minimization problem of a function of several variables after the partial differential equation is approximated by a differential dynamical system. Then numerical schemes for solving this minimization problem are proposed, including grid approximation and ant colony optimization. The proposed schemes are applied to a parameter estimation problem for the Belousov-Zhabotinskii equation, and the results show that the proposed approximation method is efficient for both linear and nonlinear partial differential equations with respect to unknown parameters. At worst, the presented method provides an excellent starting point for traditional inversion methods that must first select a good starting point.
Wang, Xiaohu; Lu, Kening; Wang, Bixiang
2018-01-01
In this paper, we study the Wong-Zakai approximations given by a stationary process via the Wiener shift and their associated long term behavior of the stochastic reaction-diffusion equation driven by a white noise. We first prove the existence and uniqueness of tempered pullback attractors for the Wong-Zakai approximations of stochastic reaction-diffusion equation. Then, we show that the attractors of Wong-Zakai approximations converges to the attractor of the stochastic reaction-diffusion equation for both additive and multiplicative noise.
Approximate solution of the transport equation by methods of Galerkin type
International Nuclear Information System (INIS)
Pitkaranta, J.
1977-01-01
Questions of the existence, uniqueness, and convergence of approximate solutions of transport equations by methods of the Galerkin type (where trial and weighting functions are the same) are discussed. The results presented do not exclude the infinite-dimensional case. Two strategies can be followed in the variational approximation of the transport operator: one proceeds from the original form of the transport equation, while the other is based on the partially symmetrized equation. Both principles are discussed in this paper. The transport equation is assumed in a discretized multigroup form
Comparison of approximate gravitational lens equations and a proposal for an improved new one
International Nuclear Information System (INIS)
Bozza, V.
2008-01-01
Keeping the exact general relativistic treatment of light bending as a reference, we compare the accuracy of commonly used approximate lens equations. We conclude that the best approximate lens equation is the Ohanian lens equation, for which we present a new expression in terms of distances between observer, lens, and source planes. We also examine a realistic gravitational lensing case, showing that the precision of the Ohanian lens equation might be required for a reliable treatment of gravitational lensing and a correct extraction of the full information about gravitational physics.
Error Estimates for Approximate Solutions of the Riccati Equation with Real or Complex Potentials
Finster, Felix; Smoller, Joel
2010-09-01
A method is presented for obtaining rigorous error estimates for approximate solutions of the Riccati equation, with real or complex potentials. Our main tool is to derive invariant region estimates for complex solutions of the Riccati equation. We explain the general strategy for applying these estimates and illustrate the method in typical examples, where the approximate solutions are obtained by gluing together WKB and Airy solutions of corresponding one-dimensional Schrödinger equations. Our method is motivated by, and has applications to, the analysis of linear wave equations in the geometry of a rotating black hole.
Van de Moortel, Maxime
2018-05-01
We show non-linear stability and instability results in spherical symmetry for the interior of a charged black hole—approaching a sub-extremal Reissner-Nordström background fast enough—in presence of a massive and charged scalar field, motivated by the strong cosmic censorship conjecture in that setting: 1. Stability We prove that spherically symmetric characteristic initial data to the Einstein-Maxwell-Klein-Gordon equations approaching a Reissner-Nordström background with a sufficiently decaying polynomial decay rate on the event horizon gives rise to a space-time possessing a Cauchy horizon in a neighbourhood of time-like infinity. Moreover, if the decay is even stronger, we prove that the space-time metric admits a continuous extension to the Cauchy horizon. This generalizes the celebrated stability result of Dafermos for Einstein-Maxwell-real-scalar-field in spherical symmetry. 2. Instability We prove that for the class of space-times considered in the stability part, whose scalar field in addition obeys a polynomial averaged- L 2 (consistent) lower bound on the event horizon, the scalar field obeys an integrated lower bound transversally to the Cauchy horizon. As a consequence we prove that the non-degenerate energy is infinite on any null surface crossing the Cauchy horizon and the curvature of a geodesic vector field blows up at the Cauchy horizon near time-like infinity. This generalizes an instability result due to Luk and Oh for Einstein-Maxwell-real-scalar-field in spherical symmetry. This instability of the black hole interior can also be viewed as a step towards the resolution of the C 2 strong cosmic censorship conjecture for one-ended asymptotically flat initial data.
Directory of Open Access Journals (Sweden)
Shaheed N. Huseen
2013-01-01
Full Text Available A modified q-homotopy analysis method (mq-HAM was proposed for solving nth-order nonlinear differential equations. This method improves the convergence of the series solution in the nHAM which was proposed in (see Hassan and El-Tawil 2011, 2012. The proposed method provides an approximate solution by rewriting the nth-order nonlinear differential equation in the form of n first-order differential equations. The solution of these n differential equations is obtained as a power series solution. This scheme is tested on two nonlinear exactly solvable differential equations. The results demonstrate the reliability and efficiency of the algorithm developed.
Direct application of Padé approximant for solving nonlinear differential equations.
Vazquez-Leal, Hector; Benhammouda, Brahim; Filobello-Nino, Uriel; Sarmiento-Reyes, Arturo; Jimenez-Fernandez, Victor Manuel; Garcia-Gervacio, Jose Luis; Huerta-Chua, Jesus; Morales-Mendoza, Luis Javier; Gonzalez-Lee, Mario
2014-01-01
This work presents a direct procedure to apply Padé method to find approximate solutions for nonlinear differential equations. Moreover, we present some cases study showing the strength of the method to generate highly accurate rational approximate solutions compared to other semi-analytical methods. The type of tested nonlinear equations are: a highly nonlinear boundary value problem, a differential-algebraic oscillator problem, and an asymptotic problem. The high accurate handy approximations obtained by the direct application of Padé method shows the high potential if the proposed scheme to approximate a wide variety of problems. What is more, the direct application of the Padé approximant aids to avoid the previous application of an approximative method like Taylor series method, homotopy perturbation method, Adomian Decomposition method, homotopy analysis method, variational iteration method, among others, as tools to obtain a power series solutions to post-treat with the Padé approximant. 34L30.
Approximate Analytic and Numerical Solutions to Lane-Emden Equation via Fuzzy Modeling Method
Directory of Open Access Journals (Sweden)
De-Gang Wang
2012-01-01
Full Text Available A novel algorithm, called variable weight fuzzy marginal linearization (VWFML method, is proposed. This method can supply approximate analytic and numerical solutions to Lane-Emden equations. And it is easy to be implemented and extended for solving other nonlinear differential equations. Numerical examples are included to demonstrate the validity and applicability of the developed technique.
International Nuclear Information System (INIS)
Jakab, J.
1979-05-01
Local approximations of neutron flux density by 2nd degree polynomials are used in calculating light water reactors. The calculations include spatial kinetics tasks for the models of two- and three-dimensional reactors in the Cartesian geometry. The resulting linear algebraic equations are considered to be formally identical to the results of the differential method of diffusion equation solution. (H.S.)
An accessible four-dimensional treatment of Maxwell's equations in terms of differential forms
International Nuclear Information System (INIS)
Sá, Lucas
2017-01-01
Maxwell’s equations are derived in terms of differential forms in the four-dimensional Minkowski representation, starting from the three-dimensional vector calculus differential version of these equations. Introducing all the mathematical and physical concepts needed (including the tool of differential forms), using only knowledge of elementary vector calculus and the local vector version of Maxwell’s equations, the equations are reduced to a simple and elegant set of two equations for a unified quantity, the electromagnetic field. The treatment should be accessible for students taking a first course on electromagnetism. (paper)
Directory of Open Access Journals (Sweden)
Veyis Turut
2013-01-01
Full Text Available Two tecHniques were implemented, the Adomian decomposition method (ADM and multivariate Padé approximation (MPA, for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in Caputo sense. First, the fractional differential equation has been solved and converted to power series by Adomian decomposition method (ADM, then power series solution of fractional differential equation was put into multivariate Padé series. Finally, numerical results were compared and presented in tables and figures.
Integration of differential equations by the pseudo-linear (PL) approximation
International Nuclear Information System (INIS)
Bonalumi, Riccardo A.
1998-01-01
A new method of integrating differential equations was originated with the technique of approximately calculating the integrals called the pseudo-linear (PL) procedure: this method is A-stable. This article contains the following examples: 1st order ordinary differential equations (ODEs), 2nd order linear ODEs, stiff system of ODEs (neutron kinetics), one-dimensional parabolic (diffusion) partial differential equations. In this latter case, this PL method coincides with the Crank-Nicholson method
Ford, Neville J.; Connolly, Joseph A.
2009-07-01
We give a comparison of the efficiency of three alternative decomposition schemes for the approximate solution of multi-term fractional differential equations using the Caputo form of the fractional derivative. The schemes we compare are based on conversion of the original problem into a system of equations. We review alternative approaches and consider how the most appropriate numerical scheme may be chosen to solve a particular equation.
James Clerk Maxwell: Life and science
International Nuclear Information System (INIS)
Marston, Philip L.
2016-01-01
Maxwell's life and science are presented with an account of the progression of Maxwell's research on electromagnetic theory. This is appropriate for the International Year of Light and Light-based Technologies, 2015. Maxwell's own confidence in his 1865 electromagnetic theory of light is examined, along with some of the difficulties he faced and the difficulties faced by some of his followers. Maxwell's interest in radiation pressure and electromagnetic stress is addressed, as well as subsequent developments. Some of Maxwell's other contributions to physics are discussed with an emphasis on the kinetic and molecular theory of gases. Maxwell's theistic perspective on science is illustrated, accompanied by examples of perspectives on Maxwell and his science provided by his peers and accounts of his interactions with those peers. Appendices examine the peer review of Maxwell's 1865 electromagnetic theory paper and the naming of the Maxwell Garnett effective media approximation and provide various supplemental perspectives. From Maxwell's publications and correspondence there is evidence he had a high regard for Michael Faraday. Examples of Maxwell's contributions to electromagnetic terminology are noted. - Highlights: • Maxwell’s 1865 “Dynamical theory of the electromagnetic field” is examined. • Maxwell affirmed confidence in his electromagnetic wave theory in his 1873 Treatise. • Discussion includes views and unpublished correspondence of Maxwell's contemporaries. • His contemporaries noticed the depth and breadth of Maxwell’s thought. • Maxwell’s contemporaries noticed his theistic perspective concerning science.
International Nuclear Information System (INIS)
Assous, F.; Ciarlet, P.; Sonnendruker, E.
1996-01-01
This study addresses the resolution of Maxwell equations in the case of a non-regular boundary and non-convex domain (presence of inner corners) which requires a notably locally refined mesh to obtain an acceptable numerical solution. The authors focus on a 2D problem which may physically correspond to a 3D problem, for example when the electromagnetic field is independent of one the three space variables (for example an infinite cylinder when the field does not depend on the variable associated with the cylinder axis). Model problems are presented: the steady problem, and the evolution problem. The solution is then decomposed into a regular part and a singular one. The authors report the solution calculation, and then the study of the model problems
Approximate analytical solution of two-dimensional multigroup P-3 equations
International Nuclear Information System (INIS)
Matausek, M.V.; Milosevic, M.
1981-01-01
Iterative solution of multigroup spherical harmonics equations reduces, in the P-3 approximation and in two-dimensional geometry, to a problem of solving an inhomogeneous system of eight ordinary first order differential equations. With appropriate boundary conditions, these equations have to be solved for each energy group and in each iteration step. The general solution of the corresponding homogeneous system of equations is known in analytical form. The present paper shows how the right-hand side of the system can be approximated in order to derive a particular solution and thus an approximate analytical expression for the general solution of the inhomogeneous system. This combined analytical-numerical approach was shown to have certain advantages compared to the finite-difference method or the Lie-series expansion method, which have been used to solve similar problems. (orig./RW) [de
Approximate analytical solution of two-dimensional multigroup P-3 equations
International Nuclear Information System (INIS)
Matausek, M.V.; Milosevic, M.
1981-01-01
Iterative solution of multigroup spherical harmonics equations reduces, in the P-3 approximation and in two-dimensional geometry, to a problem of solving an inhomogeneous system of eight ordinary first order differential equations. With appropriate boundary conditions, these equations have to be solved for each energy group and in each iteration step. The general solution of the corresponding homogeneous system of equations is known in analytical form. The present paper shows how the right-hand side of the system can be approximated in order to derive a particular solution and thus an approximate analytical expression for the general solution of the inhomogeneous system. This combined analytical-numerical approach was shown to have certain advantages compared to the finite-difference method or the Lie-series expansion method, which have been used to solve similar problems. (author)
International Nuclear Information System (INIS)
Brett, Tobias; Galla, Tobias
2014-01-01
We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period
Brett, Tobias; Galla, Tobias
2014-03-28
We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period.
Nodal approximations of varying order by energy group for solving the diffusion equation
International Nuclear Information System (INIS)
Broda, J.T.
1992-02-01
The neutron flux across the nuclear reactor core is of interest to reactor designers and others. The diffusion equation, an integro-differential equation in space and energy, is commonly used to determine the flux level. However, the solution of a simplified version of this equation when automated is very time consuming. Since the flux level changes with time, in general, this calculation must be made repeatedly. Therefore solution techniques that speed the calculation while maintaining accuracy are desirable. One factor that contributes to the solution time is the spatial flux shape approximation used. It is common practice to use the same order flux shape approximation in each energy group even though this method may not be the most efficient. The one-dimensional, two-energy group diffusion equation was solved, for the node average flux and core k-effective, using two sets of spatial shape approximations for each of three reactor types. A fourth-order approximation in both energy groups forms the first set of approximations used. The second set used combines a second-order approximation with a fourth-order approximation in energy group two. Comparison of the results from the two approximation sets show that the use of a different order spatial flux shape approximation results in considerable loss in accuracy for the pressurized water reactor modeled. However, the loss in accuracy is small for the heavy water and graphite reactors modeled. The use of different order approximations in each energy group produces mixed results. Further investigation into the accuracy and computing time is required before any quantitative advantage of the use of the second-order approximation in energy group one and the fourth-order approximation in energy group two can be determined
Zúñiga-Aguilar, C. J.; Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Martínez, V. M.; Romero-Ugalde, H. M.
2018-02-01
In this paper, we approximate the solution of fractional differential equations with delay using a new approach based on artificial neural networks. We consider fractional differential equations of variable order with the Mittag-Leffler kernel in the Liouville-Caputo sense. With this new neural network approach, an approximate solution of the fractional delay differential equation is obtained. Synaptic weights are optimized using the Levenberg-Marquardt algorithm. The neural network effectiveness and applicability were validated by solving different types of fractional delay differential equations, linear systems with delay, nonlinear systems with delay and a system of differential equations, for instance, the Newton-Leipnik oscillator. The solution of the neural network was compared with the analytical solutions and the numerical simulations obtained through the Adams-Bashforth-Moulton method. To show the effectiveness of the proposed neural network, different performance indices were calculated.
International Nuclear Information System (INIS)
Barth, Andrea; Lang, Annika
2012-01-01
In this paper, the strong approximation of a stochastic partial differential equation, whose differential operator is of advection-diffusion type and which is driven by a multiplicative, infinite dimensional, càdlàg, square integrable martingale, is presented. A finite dimensional projection of the infinite dimensional equation, for example a Galerkin projection, with nonequidistant time stepping is used. Error estimates for the discretized equation are derived in L 2 and almost sure senses. Besides space and time discretizations, noise approximations are also provided, where the Milstein double stochastic integral is approximated in such a way that the overall complexity is not increased compared to an Euler–Maruyama approximation. Finally, simulations complete the paper.
Approximate damped oscillatory solutions and error estimates for the perturbed Klein–Gordon equation
International Nuclear Information System (INIS)
Ye, Caier; Zhang, Weiguo
2015-01-01
Highlights: • Analyze the dynamical behavior of the planar dynamical system corresponding to the perturbed Klein–Gordon equation. • Present the relations between the properties of traveling wave solutions and the perturbation coefficient. • Obtain all explicit expressions of approximate damped oscillatory solutions. • Investigate error estimates between exact damped oscillatory solutions and the approximate solutions and give some numerical simulations. - Abstract: The influence of perturbation on traveling wave solutions of the perturbed Klein–Gordon equation is studied by applying the bifurcation method and qualitative theory of dynamical systems. All possible approximate damped oscillatory solutions for this equation are obtained by using undetermined coefficient method. Error estimates indicate that the approximate solutions are meaningful. The results of numerical simulations also establish our analysis
Cummings, Patrick
We consider the approximation of solutions of two complicated, physical systems via the nonlinear Schrodinger equation (NLS). In particular, we discuss the evolution of wave packets and long waves in two physical models. Due to the complicated nature of the equations governing many physical systems and the in-depth knowledge we have for solutions of the nonlinear Schrodinger equation, it is advantageous to use approximation results of this kind to model these physical systems. The approximations are simple enough that we can use them to understand the qualitative and quantitative behavior of the solutions, and by justifying them we can show that the behavior of the approximation captures the behavior of solutions to the original equation, at least for long, but finite time. We first consider a model of the water wave equations which can be approximated by wave packets using the NLS equation. We discuss a new proof that both simplifies and strengthens previous justification results of Schneider and Wayne. Rather than using analytic norms, as was done by Schneider and Wayne, we construct a modified energy functional so that the approximation holds for the full interval of existence of the approximate NLS solution as opposed to a subinterval (as is seen in the analytic case). Furthermore, the proof avoids problems associated with inverting the normal form transform by working with a modified energy functional motivated by Craig and Hunter et al. We then consider the Klein-Gordon-Zakharov system and prove a long wave approximation result. In this case there is a non-trivial resonance that cannot be eliminated via a normal form transform. By combining the normal form transform for small Fourier modes and using analytic norms elsewhere, we can get a justification result on the order 1 over epsilon squared time scale.
International Nuclear Information System (INIS)
Ofoedu, Eric U.; Malonza, David M.
2010-07-01
In this paper we study the hybrid iterative scheme to find a common element of a set of solutions of generalized mixed equilibrium problem, a set of common fixed points of finite family of weak relatively nonexpansive mapping, and null spaces of finite family of γ-inverse strongly monotone mappings in a 2-uniformly convex and uniformly smooth real Banach space. Our results extend, improve and generalize the results of several authors which were announced recently. An application of our theorem to the solution of equations of Hammerstein-type is of independent interest. (author)
Geology of Maxwell Montes, Venus
Head, J. W.; Campbell, D. B.; Peterfreund, A. R.; Zisk, S. A.
1984-01-01
Maxwell Montes represent the most distinctive topography on the surface of Venus, rising some 11 km above mean planetary radius. The multiple data sets of the Pioneer missing and Earth based radar observations to characterize Maxwell Montes are analyzed. Maxwell Montes is a porkchop shaped feature located at the eastern end of Lakshmi Planum. The main massif trends about North 20 deg West for approximately 1000 km and the narrow handle extends several hundred km West South-West WSW from the north end of the main massif, descending down toward Lakshmi Planum. The main massif is rectilinear and approximately 500 km wide. The southern and northern edges of Maxwell Montes coincide with major topographic boundaries defining the edge of Ishtar Terra.
ON ASYMTOTIC APPROXIMATIONS OF FIRST INTEGRALS FOR DIFFERENTIAL AND DIFFERENCE EQUATIONS
Directory of Open Access Journals (Sweden)
W.T. van Horssen
2007-04-01
Full Text Available In this paper the concept of integrating factors for differential equations and the concept of invariance factors for difference equations to obtain first integrals or invariants will be presented. It will be shown that all integrating factors have to satisfya system of partial differential equations, and that all invariance factors have to satisfy a functional equation. In the period 1997-2001 a perturbation method based on integrating vectors was developed to approximate first integrals for systems of ordinary differential equations. This perturbation method will be reviewed shortly. Also in the paper the first results in the development of a perturbation method for difference equations based on invariance factors will be presented.
Critique of the Brownian approximation to the generalized Langevin equation in lattice dynamics
International Nuclear Information System (INIS)
Diestler, D.J.; Riley, M.E.
1985-01-01
We consider the classical motion of a harmonic lattice in which only those atoms in a certain subset of the lattice (primary zone) may interact with an external force. The formally exact generalized Langevin equation (GLE) for the primary zone is an appropriate description of the dynamics. We examine a previously proposed Brownian, or frictional damping, approximation that reduces the GLE to a set of coupled ordinary Langevin equations for the primary atoms. It is shown that the solution of these equations can contain undamped motion if there is more than one atom in the primary zone. Such motion is explicitly demonstrated for a model that has been used to describe energy transfer in atom--surface collisions. The inability of the standard Brownian approximation to yield an acceptable, physically meaningful result for primary zones comprising more than one atom suggests that the Brownian approximation may introduce other spurious dynamical effects. Further work on damping of correlated motion in lattices is needed
Approximate analytical solution to the Boussinesq equation with a sloping water-land boundary
Tang, Yuehao; Jiang, Qinghui; Zhou, Chuangbing
2016-04-01
An approximate solution is presented to the 1-D Boussinesq equation (BEQ) characterizing transient groundwater flow in an unconfined aquifer subject to a constant water variation at the sloping water-land boundary. The flow equation is decomposed to a linearized BEQ and a head correction equation. The linearized BEQ is solved using a Laplace transform. By means of the frozen-coefficient technique and Gauss function method, the approximate solution for the head correction equation can be obtained, which is further simplified to a closed-form expression under the condition of local energy equilibrium. The solutions of the linearized and head correction equations are discussed from physical concepts. Especially for the head correction equation, the well posedness of the approximate solution obtained by the frozen-coefficient method is verified to demonstrate its boundedness, which can be further embodied as the upper and lower error bounds to the exact solution of the head correction by statistical analysis. The advantage of this approximate solution is in its simplicity while preserving the inherent nonlinearity of the physical phenomenon. Comparisons between the analytical and numerical solutions of the BEQ validate that the approximation method can achieve desirable precisions, even in the cases with strong nonlinearity. The proposed approximate solution is applied to various hydrological problems, in which the algebraic expressions that quantify the water flow processes are derived from its basic solutions. The results are useful for the quantification of stream-aquifer exchange flow rates, aquifer response due to the sudden reservoir release, bank storage and depletion, and front position and propagation speed.
Finite difference approximation of control via the potential in a 1-D Schrodinger equation
Directory of Open Access Journals (Sweden)
K. Kime
2000-04-01
Full Text Available We consider the problem of steering given initial data to given terminal data via a time-dependent potential, the control, in a 1-D Schrodinger equation. We determine a condition for existence of a transferring potential within our approximation. Using Maple, we give equations for the control and also examples in which the potential is restricted to be centralized and to be a step potential.
Alam Khan, Najeeb; Razzaq, Oyoon Abdul
2016-03-01
In the present work a wavelets approximation method is employed to solve fuzzy boundary value differential equations (FBVDEs). Essentially, a truncated Legendre wavelets series together with the Legendre wavelets operational matrix of derivative are utilized to convert FB- VDE into a simple computational problem by reducing it into a system of fuzzy algebraic linear equations. The capability of scheme is investigated on second order FB- VDE considered under generalized H-differentiability. Solutions are represented graphically showing competency and accuracy of this method.
Directory of Open Access Journals (Sweden)
Hua Yang
2012-01-01
Full Text Available We are concerned with the stochastic differential delay equations with Poisson jump and Markovian switching (SDDEsPJMSs. Most SDDEsPJMSs cannot be solved explicitly as stochastic differential equations. Therefore, numerical solutions have become an important issue in the study of SDDEsPJMSs. The key contribution of this paper is to investigate the strong convergence between the true solutions and the numerical solutions to SDDEsPJMSs when the drift and diffusion coefficients are Taylor approximations.
Discrete Ordinates Approximations to the First- and Second-Order Radiation Transport Equations
International Nuclear Information System (INIS)
FAN, WESLEY C.; DRUMM, CLIFTON R.; POWELL, JENNIFER L. email wcfan@sandia.gov
2002-01-01
The conventional discrete ordinates approximation to the Boltzmann transport equation can be described in a matrix form. Specifically, the within-group scattering integral can be represented by three components: a moment-to-discrete matrix, a scattering cross-section matrix and a discrete-to-moment matrix. Using and extending these entities, we derive and summarize the matrix representations of the second-order transport equations
Discrete Ordinates Approximations to the First- and Second-Order Radiation Transport Equations
Fan, W C; Powell, J L
2002-01-01
The conventional discrete ordinates approximation to the Boltzmann transport equation can be described in a matrix form. Specifically, the within-group scattering integral can be represented by three components: a moment-to-discrete matrix, a scattering cross-section matrix and a discrete-to-moment matrix. Using and extending these entities, we derive and summarize the matrix representations of the second-order transport equations.
Solution of the kinetic equation in the P3-approximation in a plane geometry
International Nuclear Information System (INIS)
Vlasov, Yu.A.
1975-01-01
A method and a program are described for solving single-velocity kinetic equations of neutron transfer for the plane geometry in the finite-difference approximation. A difference high-accuracy scheme and a matrix factorization method are used for the differential-difference equation systems. The program is written in the ALGOL-60 language and is adapted for M-20, M-220, M-222 and BESM-4 computers
Approximate solution to the Kolmogorov equation for a fission chain-reacting system
International Nuclear Information System (INIS)
Ruby, L.; McSwine, T.L.
1986-01-01
An approximate solution has been obtained for the Kolmogorov equation describing a fission chain-reacting system. The method considers the population of neutrons, delayed-neutron precursors, and detector counts. The effect of the detector is separated from the statistics of the chain reaction by a weak coupling assumption that predicts that the detector responds to the average rather than to the instantaneous neutron population. An approximate solution to the remaining equation, involving the populations of neutrons and precursors, predicts a negative-binomial behaviour for the neutron probability distribution
International Nuclear Information System (INIS)
Basak, K C; Ray, P C; Bera, R K
2009-01-01
The aim of the present analysis is to apply the Adomian decomposition method and He's variational method for the approximate analytical solution of a nonlinear ordinary fractional differential equation. The solutions obtained by the above two methods have been numerically evaluated and presented in the form of tables and also compared with the exact solution. It was found that the results obtained by the above two methods are in excellent agreement with the exact solution. Finally, a surface plot of the approximate solutions of the fractional differential equation by the above two methods is drawn for 0≤t≤2 and 1<α≤2.
Reduced Vlasov-Maxwell simulations
International Nuclear Information System (INIS)
Helluy, P.; Navoret, L.; Pham, N.; Crestetto, A.
2014-01-01
The Maxwell-Vlasov system is a fundamental model in physics. It can be applied to plasma simulations, charged particles beam, astrophysics, etc. The unknowns are the electromagnetic field, solution to the Maxwell equations and the distribution function, solution to the Vlasov equation. In this paper we review two different numerical methods for Vlasov-Maxwell simulations. The first method is based on a coupling between a Discontinuous Galerkin (DG) Maxwell solver and a Particle-In-Cell (PIC) Vlasov solver. The second method only uses a DG approach for the Vlasov and Maxwell equations. The Vlasov equation is first reduced to a space-only hyperbolic system thanks to the finite-element method. The two numerical methods are implemented using OpenCL in order to achieve high performance on recent Graphic Processing Units (GPU). We obtained interesting speedups, but we also observe that the PIC method is the most expensive part of the computation. Therefore we propose another fully Eulerian approach. Thanks to a decomposition of the distribution function on velocity basis functions, we obtain a reduced Vlasov model, which appears to be a hyperbolic system of conservation laws written only in the (x,t) space. We can thus adapt very easily our DG solver to the reduced model
Directory of Open Access Journals (Sweden)
M. Bishehniasar
2017-01-01
Full Text Available The demand of many scientific areas for the usage of fractional partial differential equations (FPDEs to explain their real-world systems has been broadly identified. The solutions may portray dynamical behaviors of various particles such as chemicals and cells. The desire of obtaining approximate solutions to treat these equations aims to overcome the mathematical complexity of modeling the relevant phenomena in nature. This research proposes a promising approximate-analytical scheme that is an accurate technique for solving a variety of noninteger partial differential equations (PDEs. The proposed strategy is based on approximating the derivative of fractional-order and reducing the problem to the corresponding partial differential equation (PDE. Afterwards, the approximating PDE is solved by using a separation-variables technique. The method can be simply applied to nonhomogeneous problems and is proficient to diminish the span of computational cost as well as achieving an approximate-analytical solution that is in excellent concurrence with the exact solution of the original problem. In addition and to demonstrate the efficiency of the method, it compares with two finite difference methods including a nonstandard finite difference (NSFD method and standard finite difference (SFD technique, which are popular in the literature for solving engineering problems.
Delzanno, G. L.
2015-11-01
A spectral method for the numerical solution of the multi-dimensional Vlasov-Maxwell equations is presented. The plasma distribution function is expanded in Fourier (for the spatial part) and Hermite (for the velocity part) basis functions, leading to a truncated system of ordinary differential equations for the expansion coefficients (moments) that is discretized with an implicit, second order accurate Crank-Nicolson time discretization. The discrete non-linear system is solved with a preconditioned Jacobian-Free Newton-Krylov method. It is shown analytically that the Fourier-Hermite method features exact conservation laws for total mass, momentum and energy in discrete form. Standard tests involving plasma waves and the whistler instability confirm the validity of the conservation laws numerically. The whistler instability test also shows that we can step over the fastest time scale in the system without incurring in numerical instabilities. Some preconditioning strategies are presented, showing that the number of linear iterations of the Krylov solver can be drastically reduced and a significant gain in performance can be obtained.
Approximations to the Probability of Failure in Random Vibration by Integral Equation Methods
DEFF Research Database (Denmark)
Nielsen, Søren R.K.; Sørensen, John Dalsgaard
Close approximations to the first passage probability of failure in random vibration can be obtained by integral equation methods. A simple relation exists between the first passage probability density function and the distribution function for the time interval spent below a barrier before...... passage probability density. The results of the theory agree well with simulation results for narrow banded processes dominated by a single frequency, as well as for bimodal processes with 2 dominating frequencies in the structural response....... outcrossing. An integral equation for the probability density function of the time interval is formulated, and adequate approximations for the kernel are suggested. The kernel approximation results in approximate solutions for the probability density function of the time interval, and hence for the first...
Time-dependent simplified PN approximation to the equations of radiative transfer
International Nuclear Information System (INIS)
Frank, Martin; Klar, Axel; Larsen, Edward W.; Yasuda, Shugo
2007-01-01
The steady-state simplified P N approximation to the radiative transport equation has been successfully applied to many problems involving radiation. This paper presents the derivation of time-dependent simplified P N (SP N ) equations (up to N = 3) via two different approaches. First, we use an asymptotic analysis, similar to the asymptotic derivation of the steady-state SP N equations. Second, we use an approach similar to the original derivation of the steady-state SP N equations and we show that both approaches lead to similar results. Special focus is put on the well-posedness of the equations and the question whether it can be guaranteed that the solution satisfies the correct physical bounds. Several numerical test cases are shown, including an analytical benchmark due to Su and Olson [B. Su, G.L. Olson, An analytical benchmark for non-equilibrium radiative transfer in an isotropically scattering medium, Ann. Nucl. Energy 24 (1997) 1035-1055.
International Nuclear Information System (INIS)
Mukhtarova, M.I.
1988-01-01
Comparative analysis of approximations, used in the methods of Faddeev equations and hyperspherical harmonics (MHH) was conducted. The differences in solutions of these methods, related with introduction of approximation of sufficient partial states into the three-nucleon problem, is shown. MHH method is preferred. It is shown that MHH advantage can be manifested clearly when studying new classes of interactions: three-particle, Δ-isobar, nonlocal and other interactions
Approximate, analytic solutions of the Bethe equation for charged particle range
Swift, Damian C.; McNaney, James M.
2009-01-01
By either performing a Taylor expansion or making a polynomial approximation, the Bethe equation for charged particle stopping power in matter can be integrated analytically to obtain the range of charged particles in the continuous deceleration approximation. Ranges match reference data to the expected accuracy of the Bethe model. In the non-relativistic limit, the energy deposition rate was also found analytically. The analytic relations can be used to complement and validate numerical solu...
Directory of Open Access Journals (Sweden)
Lee HyunYoung
2010-01-01
Full Text Available We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal error estimates of discontinuous Galerkin approximations in both spatial direction and temporal direction.
International Nuclear Information System (INIS)
Zhidkov, E.P.; Nguen Mong; Khoromskij, B.N.
1979-01-01
The ways of enhancement of the accuracy of approximate solutions of the Chew-Low type equation are considered. Difference schemes are proposed which allow one to obtain solution expansion in degrees of lattice step. On the basis of the expansion by the Richardson method the refinement of approximated solutions is made. Besides, the iteration process is constructed which reduces immediately to the solution of enhanced accuracy. The efficiency of the methods proposed is illustrated by numerical examples
Inverse periodic problem for the discrete approximation of the Schroedinger nonlinear equation
International Nuclear Information System (INIS)
Bogolyubov, N.N.; Prikarpatskij, A.K.; AN Ukrainskoj SSR, Lvov. Inst. Prikladnykh Problem Mekhaniki i Matematiki)
1982-01-01
The problem of numerical solution of the Schroedinger nonlinear equation (1) iPSIsub(t) = PSIsub(xx)+-2(PSI)sup(2)PSI. The numerical solution of nonlinear differential equation supposes its discrete approximation is required for the realization of the computer calculation process. Tor the equation (1) there exists the following discrete approximation by variable x(2) iPSIsub(n, t) = (PSIsub(n+1)-2PSIsub(n)+PSIsub(n-1))/(Δx)sup(2)+-(PSIsub(n))sup(2)(PSIsub(n+1)+PSIsub(n-1)), n=0, +-1, +-2... where PSIsub(n)(+) is the corresponding value of PSI(x, t) function in the node and divisions with the equilibrium step Δx. The main problem is obtaining analytically exact solutions of the equations (2). The analysis of the equation system (2) is performed on the base of the discrete analogue of the periodic variant of the inverse scattering problem method developed with the aid of nonlinear equations of the Korteweg-de Vries type. Obtained in explicit form are analytical solutions of the equations system (2). The solutions are expressed through the Riemann THETA-function [ru
Bethe-Salpeter equation for fermion-antifermion system in the ladder approximation
International Nuclear Information System (INIS)
Fukui, Ichio; Seto, Noriaki; Yoshida, Toshihiro.
1977-01-01
The Bethe-Salpeter (B-S) equation is important for studying hadron physics. Especially intensive investigation on the fermion-antifermion B-S equation is indispensable for the phenomenological studies of hardrons. However, many components of the B-S amplitude and the Wick-rotated integral kernel of non-Fredholm type have prevented from knowing details the solutions even in the ladder approximation. Some particular solutions are known in case of the vanishing four-momenta of bound states. The B-S equation for the bound state of fermion-anti-fermion system interacting through vector (axial-vector) particle exchange was studied in the ladder approximation with Feynman gauge. The reduced equations were obtained for suitably decomposed amplitude, and it is shown that, in the S-wave case, the coupled equations separate into two parts. In the nonrelativistic limit, large components of the amplitude satisfy the Wick-Cutkosky equation, and small components are expressed in terms of the large ones. Equations are derived for the equal-time amplitudes. (Kobatake, H.)
International Nuclear Information System (INIS)
Hoenselaers, C.; Kinnersley, W.; Xanthopoulos, B.C.
1979-01-01
A new series of transformations is presented for generating stationary axially symmetric asymptotically flat vacuum solutions of Einstein's equations. The application requires only algebraic manipulations to be performed. Several examples are given of new stationary axisymmetric solutions obtained in this way. It is conjectured that the transformations, applied to the genral Weyl metric, can be used to generate systematically all stationary metrics with axial symmetry
Ito, K.
1983-01-01
Approximation schemes based on Legendre-tau approximation are developed for application to parameter identification problem for delay and partial differential equations. The tau method is based on representing the approximate solution as a truncated series of orthonormal functions. The characteristic feature of the Legendre-tau approach is that when the solution to a problem is infinitely differentiable, the rate of convergence is faster than any finite power of 1/N; higher accuracy is thus achieved, making the approach suitable for small N.
Hamilton-Jacobi equation and the breaking of the WKB approximation
Energy Technology Data Exchange (ETDEWEB)
Canfora, F. [Istituto Nazionale di Fisica Nucleare, GC di Salerno (Italy) and Dipartimento di Fisica E.R. Caianiello, Universita di Salerno, Via S. Allende, 84081 Baronissi (Salerno) (Italy)]. E-mail: canfora@sa.infn.it
2005-03-17
A simple method to deal with four-dimensional Hamilton-Jacobi equation for null hypersurfaces is introduced. This method allows to find simple geometrical conditions which give rise to the failure of the WKB approximation on curved spacetimes. The relation between such failure, extreme blackholes and the Cosmic Censor hypothesis is briefly discussed.
Approximation of the unsteady Brinkman-Forchheimer equations by the pressure stabilization method
Louaked, Mohammed; Seloula, Nour; Trabelsi, Saber
2017-01-01
In this work, we propose and analyze the pressure stabilization method for the unsteady incompressible Brinkman-Forchheimer equations. We present a time discretization scheme which can be used with any consistent finite element space approximation. Second-order error estimate is proven. Some numerical results are also given.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2017
International Nuclear Information System (INIS)
Chudnovsky, D.V.; Chudnovsky, G.V.
1980-01-01
We consider semi-classical approximation to factorized S-matrices. We show that this new class of matrices, called s-matrices, defines Hamiltonian structures for isospectral deformation equations. Concrete examples of factorized s-matrices are constructed and they are used to define Hamiltonian structure for general two-dimensional isospectral deformation systems. (orig.)
International Nuclear Information System (INIS)
Buckel, G.; Wouters, R. de; Pilate, S.
1977-01-01
The synthesis code KASY for an approximate solution of the three-dimensional neutron diffusion equation is described; the state of the art as well as envisaged program extensions and the application to tasks from the field of reactor designing are dealt with. (RW) [de
Atkinson, D.; Drohm, J. K.; Johnson, P. W.; Stam, K.
1981-01-01
An approximated form of the Dyson–Schwinger equation for the gluon propagator in quarkless QCD is subjected to nonlinear functional and numerical analysis. It is found that solutions exist, and that these have a double pole at the origin of the square of the propagator momentum, together with an
Zeno dynamics and high-temperature master equations beyond secular approximation
International Nuclear Information System (INIS)
Militello, B; Messina, A; Scala, M
2013-01-01
Complete positivity of a class of maps generated by master equations derived beyond the secular approximation is discussed. The connection between such a class of evolutions and the physical properties of the system is analyzed in depth. It is also shown that under suitable hypotheses a Zeno dynamics can be induced because of the high temperature of the bath. (paper)
International Nuclear Information System (INIS)
Tellier, C.R.; Tosser, A.J.
1977-01-01
In the usual thickness range of sputtered metallic films, analytical linearized approximate expressions of polycrystalline film resistivity and its t.c.r. are deduced from the Mayadas-Shatzkes theoretical equations. A good experimental fit is observed for Al rf sputtered metal films. (orig.) [de
Approximation of the unsteady Brinkman-Forchheimer equations by the pressure stabilization method
Louaked, Mohammed
2017-07-20
In this work, we propose and analyze the pressure stabilization method for the unsteady incompressible Brinkman-Forchheimer equations. We present a time discretization scheme which can be used with any consistent finite element space approximation. Second-order error estimate is proven. Some numerical results are also given.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2017
Zhang, Zhendong; Schuster, Gerard T.; Liu, Yike; Hanafy, Sherif M.; Li, Jing
2016-01-01
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh wave dispersion curve using a difference approximation to the gradient of the misfit function. We call this wave equation inversion of skeletonized
International Nuclear Information System (INIS)
Caraballo, T.; Kloeden, P.E.
2006-01-01
Under a one-sided dissipative Lipschitz condition on its drift, a stochastic evolution equation with additive noise of the reaction-diffusion type is shown to have a unique stochastic stationary solution which pathwise attracts all other solutions. A similar situation holds for each Galerkin approximation and each implicit Euler scheme applied to these Galerkin approximations. Moreover, the stationary solution of the Euler scheme converges pathwise to that of the Galerkin system as the stepsize tends to zero and the stationary solutions of the Galerkin systems converge pathwise to that of the evolution equation as the dimension increases. The analysis is carried out on random partial and ordinary differential equations obtained from their stochastic counterparts by subtraction of appropriate Ornstein-Uhlenbeck stationary solutions
A multi scale approximation solution for the time dependent Boltzmann-transport equation
International Nuclear Information System (INIS)
Merk, B.
2004-03-01
The basis of all transient simulations for nuclear reactor cores is the reliable calculation of the power production. The local power distribution is generally calculated by solving the space, time, energy and angle dependent neutron transport equation known as Boltzmann equation. The computation of exact solutions of the Boltzmann equation is very time consuming. For practical numerical simulations approximated solutions are usually unavoidable. The objective of this work is development of an effective multi scale approximation solution for the Boltzmann equation. Most of the existing methods are based on separation of space and time. The new suggested method is performed without space-time separation. This effective approximation solution is developed on the basis of an expansion for the time derivative of different approximations to the Boltzmann equation. The method of multiple scale expansion is used for the expansion of the time derivative, because the problem of the stiff time behaviour can't be expressed by standard expansion methods. This multiple scale expansion is used in this work to develop approximation solutions for different approximations of the Boltzmann equation, starting from the expansion of the point kinetics equations. The resulting analytic functions are used for testing the applicability and accuracy of the multiple scale expansion method for an approximation solution with 2 delayed neutron groups. The results are tested versus the exact analytical results for the point kinetics equations. Very good agreement between both solutions is obtained. The validity of the solution with 2 delayed neutron groups to approximate the behaviour of the system with 6 delayed neutron groups is demonstrated in an additional analysis. A strategy for a solution with 4 delayed neutron groups is described. A multiple scale expansion is performed for the space-time dependent diffusion equation for one homogenized cell with 2 delayed neutron groups. The result is
Weakly intrusive low-rank approximation method for nonlinear parameter-dependent equations
Giraldi, Loic; Nouy, Anthony
2017-01-01
This paper presents a weakly intrusive strategy for computing a low-rank approximation of the solution of a system of nonlinear parameter-dependent equations. The proposed strategy relies on a Newton-like iterative solver which only requires evaluations of the residual of the parameter-dependent equation and of a preconditioner (such as the differential of the residual) for instances of the parameters independently. The algorithm provides an approximation of the set of solutions associated with a possibly large number of instances of the parameters, with a computational complexity which can be orders of magnitude lower than when using the same Newton-like solver for all instances of the parameters. The reduction of complexity requires efficient strategies for obtaining low-rank approximations of the residual, of the preconditioner, and of the increment at each iteration of the algorithm. For the approximation of the residual and the preconditioner, weakly intrusive variants of the empirical interpolation method are introduced, which require evaluations of entries of the residual and the preconditioner. Then, an approximation of the increment is obtained by using a greedy algorithm for low-rank approximation, and a low-rank approximation of the iterate is finally obtained by using a truncated singular value decomposition. When the preconditioner is the differential of the residual, the proposed algorithm is interpreted as an inexact Newton solver for which a detailed convergence analysis is provided. Numerical examples illustrate the efficiency of the method.
Weakly intrusive low-rank approximation method for nonlinear parameter-dependent equations
Giraldi, Loic
2017-06-30
This paper presents a weakly intrusive strategy for computing a low-rank approximation of the solution of a system of nonlinear parameter-dependent equations. The proposed strategy relies on a Newton-like iterative solver which only requires evaluations of the residual of the parameter-dependent equation and of a preconditioner (such as the differential of the residual) for instances of the parameters independently. The algorithm provides an approximation of the set of solutions associated with a possibly large number of instances of the parameters, with a computational complexity which can be orders of magnitude lower than when using the same Newton-like solver for all instances of the parameters. The reduction of complexity requires efficient strategies for obtaining low-rank approximations of the residual, of the preconditioner, and of the increment at each iteration of the algorithm. For the approximation of the residual and the preconditioner, weakly intrusive variants of the empirical interpolation method are introduced, which require evaluations of entries of the residual and the preconditioner. Then, an approximation of the increment is obtained by using a greedy algorithm for low-rank approximation, and a low-rank approximation of the iterate is finally obtained by using a truncated singular value decomposition. When the preconditioner is the differential of the residual, the proposed algorithm is interpreted as an inexact Newton solver for which a detailed convergence analysis is provided. Numerical examples illustrate the efficiency of the method.
A nodal collocation approximation for the multi-dimensional PL equations - 2D applications
International Nuclear Information System (INIS)
Capilla, M.; Talavera, C.F.; Ginestar, D.; Verdu, G.
2008-01-01
A classical approach to solve the neutron transport equation is to apply the spherical harmonics method obtaining a finite approximation known as the P L equations. In this work, the derivation of the P L equations for multi-dimensional geometries is reviewed and a nodal collocation method is developed to discretize these equations on a rectangular mesh based on the expansion of the neutronic fluxes in terms of orthogonal Legendre polynomials. The performance of the method and the dominant transport Lambda Modes are obtained for a homogeneous 2D problem, a heterogeneous 2D anisotropic scattering problem, a heterogeneous 2D problem and a benchmark problem corresponding to a MOX fuel reactor core
Energy Technology Data Exchange (ETDEWEB)
Silvestre-Brac, Bernard [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France); Semay, Claude; Buisseret, Fabien [Groupe de Physique Nucleaire Theorique, Universite de Mons-Hainaut, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium)], E-mail: silvestre@lpsc.in2p3.fr, E-mail: claude.semay@umh.ac.be, E-mail: fabien.buisseret@umh.ac.be
2009-06-19
The auxiliary field method is a new and efficient way to compute approximate analytical eigenenergies of the Schroedinger equation. This method has already been successfully applied to the case of central potentials of power-law and logarithmic forms. In the present work, we show that the Schroedinger equation with exponential potentials of the form -{alpha}r{sup {lambda}}exp(-{beta}r) can also be analytically solved by using the auxiliary field method. Closed formulae giving the critical heights and the energy levels of these potentials are presented. Special attention is drawn to the Yukawa potential and the pure exponential potential.
International Nuclear Information System (INIS)
Silvestre-Brac, Bernard; Semay, Claude; Buisseret, Fabien
2009-01-01
The auxiliary field method is a new and efficient way to compute approximate analytical eigenenergies of the Schroedinger equation. This method has already been successfully applied to the case of central potentials of power-law and logarithmic forms. In the present work, we show that the Schroedinger equation with exponential potentials of the form -αr λ exp(-βr) can also be analytically solved by using the auxiliary field method. Closed formulae giving the critical heights and the energy levels of these potentials are presented. Special attention is drawn to the Yukawa potential and the pure exponential potential
Asymptotic analysis of the local potential approximation to the Wetterich equation
Bender, Carl M.; Sarkar, Sarben
2018-06-01
This paper reports a study of the nonlinear partial differential equation that arises in the local potential approximation to the Wetterich formulation of the functional renormalization group equation. A cut-off-dependent shift of the potential in this partial differential equation is performed. This shift allows a perturbative asymptotic treatment of the differential equation for large values of the infrared cut-off. To leading order in perturbation theory the differential equation becomes a heat equation, where the sign of the diffusion constant changes as the space-time dimension D passes through 2. When D 2 one obtains a backward heat equation whose initial-value problem is ill-posed. For the special case D = 1 the asymptotic series for cubic and quartic models is extrapolated to the small infrared-cut-off limit by using Padé techniques. The effective potential thus obtained from the partial differential equation is then used in a Schrödinger-equation setting to study the stability of the ground state. For cubic potentials it is found that this Padé procedure distinguishes between a -symmetric theory and a conventional Hermitian theory (g real). For an theory the effective potential is nonsingular and has a stable ground state but for a conventional theory the effective potential is singular. For a conventional Hermitian theory and a -symmetric theory (g > 0) the results are similar; the effective potentials in both cases are nonsingular and possess stable ground states.
Ito, Kazufumi
1987-01-01
The linear quadratic optimal control problem on infinite time interval for linear time-invariant systems defined on Hilbert spaces is considered. The optimal control is given by a feedback form in terms of solution pi to the associated algebraic Riccati equation (ARE). A Ritz type approximation is used to obtain a sequence pi sup N of finite dimensional approximations of the solution to ARE. A sufficient condition that shows pi sup N converges strongly to pi is obtained. Under this condition, a formula is derived which can be used to obtain a rate of convergence of pi sup N to pi. The results of the Galerkin approximation is demonstrated and applied for parabolic systems and the averaging approximation for hereditary differential systems.
Slavchov, Radomir I
2014-04-28
If the molecules of a given solvent possess significant quadrupolar moment, the macroscopic Maxwell equations must involve the contribution of the density of the quadrupolar moment to the electric displacement field. This modifies the Poisson-Boltzmann equation and all consequences from it. In this work, the structure of the diffuse atmosphere around an ion dissolved in quadrupolarizable medium is analyzed by solving the quadrupolar variant of the Coulomb-Ampere's law of electrostatics. The results are compared to the classical Debye-Hückel theory. The quadrupolar version of the Debye-Hückel potential of a point charge is finite even in r = 0. The ion-quadrupole interaction yields a significant expansion of the diffuse atmosphere of the ion and, thus, it decreases the Debye-Hückel energy. In addition, since the dielectric permittivity of the electrolyte solutions depends strongly on concentration, the Born energy of the dissolved ions alters with concentration, which has a considerable contribution to the activity coefficient γ± known as the self-salting-out effect. The quadrupolarizability of the medium damps strongly the self-salting-out of the electrolyte, and thus it affects additionally γ±. Comparison with experimental data for γ± for various electrolytes allows for the estimation of the quadrupolar length of water: LQ ≈ 2 Å, in good agreement with previous assessments. The effect of quadrupolarizability is especially important in non-aqueous solutions. Data for the activity of NaBr in methanol is used to determine the quadrupolarizability of methanol with good accuracy.
Lin, Yezhi; Liu, Yinping; Li, Zhibin
2013-01-01
The Adomian decomposition method (ADM) is one of the most effective methods to construct analytic approximate solutions for nonlinear differential equations. In this paper, based on the new definition of the Adomian polynomials, Rach (2008) [22], the Adomian decomposition method and the Padé approximants technique, a new algorithm is proposed to construct analytic approximate solutions for nonlinear fractional differential equations with initial or boundary conditions. Furthermore, a MAPLE software package is developed to implement this new algorithm, which is user-friendly and efficient. One only needs to input the system equation, initial or boundary conditions and several necessary parameters, then our package will automatically deliver the analytic approximate solutions within a few seconds. Several different types of examples are given to illustrate the scope and demonstrate the validity of our package, especially for non-smooth initial value problems. Our package provides a helpful and easy-to-use tool in science and engineering simulations. Program summaryProgram title: ADMP Catalogue identifier: AENE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12011 No. of bytes in distributed program, including test data, etc.: 575551 Distribution format: tar.gz Programming language: MAPLE R15. Computer: PCs. Operating system: Windows XP/7. RAM: 2 Gbytes Classification: 4.3. Nature of problem: Constructing analytic approximate solutions of nonlinear fractional differential equations with initial or boundary conditions. Non-smooth initial value problems can be solved by this program. Solution method: Based on the new definition of the Adomian polynomials [1], the Adomian decomposition method and the Pad
Directory of Open Access Journals (Sweden)
S. Das
2013-12-01
Full Text Available In this article, optimal homotopy-analysis method is used to obtain approximate analytic solution of the time-fractional diffusion equation with a given initial condition. The fractional derivatives are considered in the Caputo sense. Unlike usual Homotopy analysis method, this method contains at the most three convergence control parameters which describe the faster convergence of the solution. Effects of parameters on the convergence of the approximate series solution by minimizing the averaged residual error with the proper choices of parameters are calculated numerically and presented through graphs and tables for different particular cases.
Solution of the Chew-Low equations in the quadratic approximation
International Nuclear Information System (INIS)
Gerdt, V.P.; Zharkov, A.Yu.
1982-01-01
Within the framework of the iteration scheme for constructing the general solution of the Chew-Low equations as suggested earlier the second order power contributions are found. In contrast to the linear approximation obtained before the quadratic approximation includes an infinite number of poles on the complex plane of the uniformizing variable w. It is shown that taking into account the second order corrections in the general solution allows us to select the class of solutions possessing the Born pole at w=0. The most cumbersome part of analytical computations has been carried out by computer using the algebraic system REDUCE-2
Directory of Open Access Journals (Sweden)
Mourad Kerboua
2014-12-01
Full Text Available We introduce a new notion called fractional stochastic nonlocal condition, and then we study approximate controllability of class of fractional stochastic nonlinear differential equations of Sobolev type in Hilbert spaces. We use Hölder's inequality, fixed point technique, fractional calculus, stochastic analysis and methods adopted directly from deterministic control problems for the main results. A new set of sufficient conditions is formulated and proved for the fractional stochastic control system to be approximately controllable. An example is given to illustrate the abstract results.
Hutzenthaler, Martin
2015-01-01
Many stochastic differential equations (SDEs) in the literature have a superlinearly growing nonlinearity in their drift or diffusion coefficient. Unfortunately, moments of the computationally efficient Euler-Maruyama approximation method diverge for these SDEs in finite time. This article develops a general theory based on rare events for studying integrability properties such as moment bounds for discrete-time stochastic processes. Using this approach, the authors establish moment bounds for fully and partially drift-implicit Euler methods and for a class of new explicit approximation method
Born approximation to a perturbative numerical method for the solution of the Schrodinger equation
International Nuclear Information System (INIS)
Adam, Gh.
1978-05-01
A perturbative numerical (PN) method is given for the solution of a regular one-dimensional Cauchy problem arising from the Schroedinger equation. The present method uses a step function approximation for the potential. Global, free of scaling difficulty, forward and backward PN algorithms are derived within first order perturbation theory (Born approximation). A rigorous analysis of the local truncation errors is performed. This shows that the order of accuracy of the method is equal to four. In between the mesh points, the global formula for the wavefunction is accurate within O(h 4 ), while that for the first order derivative is accurate within O(h 3 ). (author)
A Padé approximant approach to two kinds of transcendental equations with applications in physics
International Nuclear Information System (INIS)
Luo, Qiang; Wang, Zhidan; Han, Jiurong
2015-01-01
In this paper, we obtain the analytical solutions of two kinds of transcendental equations with numerous applications in college physics by means of the Lagrange inversion theorem. Afterwards we rewrite them in the form of a ratio of rational polynomials by a second-order Padé approximant from a practical and instructional perspective. Our method is illustrated in a pedagogical manner for the benefit of students at the undergraduate level. The approximate formulas introduced in the paper can be applied to abundant examples in physics textbooks, such as Fraunhofer single-slit diffraction, Wien’s displacement law, and the Schrödinger equation with single- or double-δ potential. These formulas, consequently, can reach considerable accuracies according to the numerical results; therefore, they promise to act as valuable ingredients in the standard teaching curriculum. (paper)
Neutron wave reflexions in interface media with transport equation P1 approximation
International Nuclear Information System (INIS)
Oliveira Vellozo, S. de.
1977-01-01
The propagation of neutron waves in non multiplying media is investigated employing the Telegrapher's equation obtained from the P 1 approximation of the time, space and energy dependent Boltzmann equation. Solution of the problem of propagation of sinusoidally modulated source incident on one face of the medium is obtained by analysing the Fourier component of a pulsed source introduced, for the corresponding frequency. The amplitude and the phase of the flux are computed as a function of frequency in media consisting of one, two and three regions in order to study the effects of reflection at the interfaces. The results are compared with those from the Diffusion approximation obtained by neglecting the term involving the second order time derivative. (author)
A method for the approximate solutions of the unsteady boundary layer equations
International Nuclear Information System (INIS)
Abdus Sattar, Md.
1990-12-01
The approximate integral method proposed by Bianchini et al. to solve the unsteady boundary layer equations is considered here with a simple modification to the scale function for the similarity variable. This is done by introducing a time dependent length scale. The closed form solutions, thus obtained, give satisfactory results for the velocity profile and the skin friction to a limiting case in comparison with the results of the past investigators. (author). 7 refs, 2 figs
The strong running coupling from an approximate gluon Dyson-Schwinger equation
International Nuclear Information System (INIS)
Alkofer, R.; Hauck, A.
1996-01-01
Using Mandelstam's approximation to the gluon Dyson-Schwinger equation we calculate the gluon self-energy in a renormalisation group invariant fashion. We obtain a non-perturbative Β function. The scaling behavior near the ultraviolet stable fixed point is in good agreement with perturbative QCD. No further fixed point for positive values of the coupling is found: α S increases without bound in the infrared
Bai, Yunru; Baleanu, Dumitru; Wu, Guo-Cheng
2018-06-01
We investigate a class of generalized differential optimization problems driven by the Caputo derivative. Existence of weak Carathe ´odory solution is proved by using Weierstrass existence theorem, fixed point theorem and Filippov implicit function lemma etc. Then a numerical approximation algorithm is introduced, and a convergence theorem is established. Finally, a nonlinear programming problem constrained by the fractional differential equation is illustrated and the results verify the validity of the algorithm.
Kiefer, Claus; Wichmann, David
2018-06-01
We extend the Born-Oppenheimer type of approximation scheme for the Wheeler-DeWitt equation of canonical quantum gravity to arbitrary orders in the inverse Planck mass squared. We discuss in detail the origin of unitarity violation in this scheme and show that unitarity can be restored by an appropriate modification which requires back reaction from matter onto the gravitational sector. In our analysis, we heavily rely on the gauge aspects of the standard Born-Oppenheimer scheme in molecular physics.
Using trees to compute approximate solutions to ordinary differential equations exactly
Grossman, Robert
1991-01-01
Some recent work is reviewed which relates families of trees to symbolic algorithms for the exact computation of series which approximate solutions of ordinary differential equations. It turns out that the vector space whose basis is the set of finite, rooted trees carries a natural multiplication related to the composition of differential operators, making the space of trees an algebra. This algebraic structure can be exploited to yield a variety of algorithms for manipulating vector fields and the series and algebras they generate.
Quasi-linear equation for magnetoplasma oscillations in the weakly relativistic approximation
International Nuclear Information System (INIS)
Rizzato, F.B.
1985-01-01
Some limitations which are present in the dynamical equations for collisionless plasmas are discussed. Some elementary corrections to the linear theories are obtained in a heuristic form, which directly lead to the so-called quasi-linear theories in its non-relativistic and relativistic forms. The effect of the relativistic variation of the gyrofrequency on the diffusion coefficient is examined in a typically perturbative approximation. (author)
Picard Approximation of Stochastic Differential Equations and Application to LIBOR Models
DEFF Research Database (Denmark)
Papapantoleon, Antonis; Skovmand, David
The aim of this work is to provide fast and accurate approximation schemes for the Monte Carlo pricing of derivatives in LIBOR market models. Standard methods can be applied to solve the stochastic differential equations of the successive LIBOR rates but the methods are generally slow. Our...... exponential to quadratic using truncated expansions of the product terms. We include numerical illustrations of the accuracy and speed of our method pricing caplets, swaptions and forward rate agreements....
Fagioli, Simone; Radici, Emanuela
2018-01-01
We investigate the existence of weak type solutions for a class of aggregation-diffusion PDEs with nonlinear mobility obtained as large particle limit of a suitable nonlocal version of the follow-the-leader scheme, which is interpreted as the discrete Lagrangian approximation of the target continuity equation. We restrict the analysis to nonnegative initial data in $L^{\\infty} \\cap BV$ away from vacuum and supported in a closed interval with zero-velocity boundary conditions. The main novelti...
Xu, Zhenli; Ma, Manman; Liu, Pei
2014-07-01
We propose a modified Poisson-Nernst-Planck (PNP) model to investigate charge transport in electrolytes of inhomogeneous dielectric environment. The model includes the ionic polarization due to the dielectric inhomogeneity and the ion-ion correlation. This is achieved by the self energy of test ions through solving a generalized Debye-Hückel (DH) equation. We develop numerical methods for the system composed of the PNP and DH equations. Particularly, toward the numerical challenge of solving the high-dimensional DH equation, we developed an analytical WKB approximation and a numerical approach based on the selective inversion of sparse matrices. The model and numerical methods are validated by simulating the charge diffusion in electrolytes between two electrodes, for which effects of dielectrics and correlation are investigated by comparing the results with the prediction by the classical PNP theory. We find that, at the length scale of the interface separation comparable to the Bjerrum length, the results of the modified equations are significantly different from the classical PNP predictions mostly due to the dielectric effect. It is also shown that when the ion self energy is in weak or mediate strength, the WKB approximation presents a high accuracy, compared to precise finite-difference results.
Approximate method for solving the velocity dependent transport equation in a slab lattice
International Nuclear Information System (INIS)
Ferrari, A.
1966-01-01
A method is described that is intended to provide an approximate solution of the transport equation in a medium simulating a water-moderated plate filled reactor core. This medium is constituted by a periodic array of water channels and absorbing plates. The velocity dependent transport equation in slab geometry is included. The computation is performed in a water channel: the absorbing plates are accounted for by the boundary conditions. The scattering of neutrons in water is assumed isotropic, which allows the use of a double Pn approximation to deal with the angular dependence. This method is able to represent the discontinuity of the angular distribution at the channel boundary. The set of equations thus obtained is dependent only on x and v and the coefficients are independent on x. This solution suggests to try solutions involving Legendre polynomials. This scheme leads to a set of equations v dependent only. To obtain an explicit solution, a thermalization model must now be chosen. Using the secondary model of Cadilhac a solution of this set is easy to get. The numerical computations were performed with a particular secondary model, the well-known model of Wigner and Wilkins. (author) [fr
Xia, Ya-Rong; Zhang, Shun-Li; Xin, Xiang-Peng
2018-03-01
In this paper, we propose the concept of the perturbed invariant subspaces (PISs), and study the approximate generalized functional variable separation solution for the nonlinear diffusion-convection equation with weak source by the approximate generalized conditional symmetries (AGCSs) related to the PISs. Complete classification of the perturbed equations which admit the approximate generalized functional separable solutions (AGFSSs) is obtained. As a consequence, some AGFSSs to the resulting equations are explicitly constructed by way of examples.
Non-minimal Maxwell-Chern-Simons theory and the composite Fermion model
International Nuclear Information System (INIS)
Paschoal, Ricardo C.; Helayel Neto, Jose A.
2003-01-01
The magnetic field redefinition in Jain's composite fermion model for the fractional quantum Hall effect is shown to be effective described by a mean-field approximation of a model containing a Maxwell-Chern-Simons gauge field nominally coupled to matter. Also an explicit non-relativistic limit of the non-minimal (2+1) D Dirac's equation is derived. (author)
Directory of Open Access Journals (Sweden)
Ronald C. Davidson
1999-05-01
Full Text Available The present analysis makes use of the Vlasov-Maxwell equations to develop a fully kinetic description of the electrostatic, electron-ion two-stream instability driven by the directed axial motion of a high-intensity ion beam propagating in the z direction with average axial momentum γ_{b}m_{b}β_{b}c through a stationary population of background electrons. The ion beam has characteristic radius r_{b} and is treated as continuous in the z direction, and the applied transverse focusing force on the beam ions is modeled by F_{foc}^{b}=-γ_{b}m_{b}ω_{βb}^{0^{2}}x_{⊥} in the smooth-focusing approximation. Here, ω_{βb}^{0}=const is the effective betatron frequency associated with the applied focusing field, x_{⊥} is the transverse displacement from the beam axis, (γ_{b}-1m_{b}c^{2} is the ion kinetic energy, and V_{b}=β_{b}c is the average axial velocity, where γ_{b}=(1-β_{b}^{2}^{-1/2}. Furthermore, the ion motion in the beam frame is assumed to be nonrelativistic, and the electron motion in the laboratory frame is assumed to be nonrelativistic. The ion charge and number density are denoted by +Z_{b}e and n_{b}, and the electron charge and number density by -e and n_{e}. For Z_{b}n_{b}>n_{e}, the electrons are electrostatically confined in the transverse direction by the space-charge potential φ produced by the excess ion charge. The equilibrium and stability analysis retains the effects of finite radial geometry transverse to the beam propagation direction, including the presence of a perfectly conducting cylindrical wall located at radius r=r_{w}. In addition, the analysis assumes perturbations with long axial wavelength, k_{z}^{2}r_{b}^{2}≪1, and sufficiently high frequency that |ω/k_{z}|≫v_{Tez} and |ω/k_{z}-V_{b}|≫v_{Tbz}, where v_{Tez} and v_{Tbz} are the characteristic axial thermal speeds of the background electrons and beam ions. In this regime, Landau damping (in axial velocity space v_{z} by resonant ions and
Hannah, S. R.; Palazotto, A. N.
1978-01-01
A new trigonometric approach to the finite difference calculus was applied to the problem of beam buckling as represented by virtual work and equilibrium equations. The trigonometric functions were varied by adjusting a wavelength parameter in the approximating Fourier series. Values of the critical force obtained from the modified approach for beams with a variety of boundary conditions were compared to results using the conventional finite difference method. The trigonometric approach produced significantly more accurate approximations for the critical force than the conventional approach for a relatively wide range in values of the wavelength parameter; and the optimizing value of the wavelength parameter corresponded to the half-wavelength of the buckled mode shape. It was found from a modal analysis that the most accurate solutions are obtained when the approximating function closely represents the actual displacement function and matches the actual boundary conditions.
International Nuclear Information System (INIS)
Kushner, Harold J.
2012-01-01
This is the second part of a work dealing with key issues that have not been addressed in the modeling and numerical optimization of nonlinear stochastic delay systems. We consider new classes of models, such as those with nonlinear functions of several controls (such as products), each with is own delay, controlled random Poisson measure driving terms, admissions control with delayed retrials, and others. Part I was concerned with issues concerning the class of admissible controls and their approximations, since the classical definitions are inadequate for our models. This part is concerned with transportation equation representations and their approximations. Such representations of nonlinear stochastic delay models have been crucial in the development of numerical algorithms with much reduced memory and computational requirements. The representations for the new models are not obvious and are developed. They also provide a template for the adaptation of the Markov chain approximation numerical methods.
Optical bistability without the rotating wave approximation
Energy Technology Data Exchange (ETDEWEB)
Sharaby, Yasser A., E-mail: Yasser_Sharaby@hotmail.co [Physics Department, Faculty of Applied Sciences, Suez Canal University, Suez (Egypt); Joshi, Amitabh, E-mail: ajoshi@eiu.ed [Department of Physics, Eastern Illinois University, Charleston, IL 61920 (United States); Hassan, Shoukry S., E-mail: Shoukryhassan@hotmail.co [Mathematics Department, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain)
2010-04-26
Optical bistability for two-level atomic system in a ring cavity is investigated outside the rotating wave approximation (RWA) using non-autonomous Maxwell-Bloch equations with Fourier decomposition up to first harmonic. The first harmonic output field component exhibits reversed or closed loop bistability simultaneously with the usual (anti-clockwise) bistability in the fundamental field component.
Optical bistability without the rotating wave approximation
International Nuclear Information System (INIS)
Sharaby, Yasser A.; Joshi, Amitabh; Hassan, Shoukry S.
2010-01-01
Optical bistability for two-level atomic system in a ring cavity is investigated outside the rotating wave approximation (RWA) using non-autonomous Maxwell-Bloch equations with Fourier decomposition up to first harmonic. The first harmonic output field component exhibits reversed or closed loop bistability simultaneously with the usual (anti-clockwise) bistability in the fundamental field component.
Numerical approximation of null controls for the heat equation: Ill-posedness and remedies
International Nuclear Information System (INIS)
Münch, Arnaud; Zuazua, Enrique
2010-01-01
The numerical approximation of exact or trajectory controls for the wave equation is known to be a delicate issue, since the pioneering work of Glowinski–Lions in the nineties, because of the anomalous behavior of the high-frequency spurious numerical waves. Various efficient remedies have been developed and analyzed in the last decade to filter out these high-frequency components: Fourier filtering, Tychonoff's regularization, mixed finite-element methods, multi-grid strategies, etc. Recently convergence rate results have also been obtained. This work is devoted to analyzing this issue for the heat equation, which is the opposite paradigm because of its strong dissipativity and smoothing properties. The existing analytical results guarantee that, at least in some simple situations, as in the finite-difference scheme in 1 − d, the null or trajectory controls for numerical approximation schemes converge. This is due to the intrinsic high-frequency damping of the heat equation that is inherited by its numerical approximation schemes. But when developing numerical simulations the topic appears to be much more subtle and difficult. In fact, efficiently computing the null control for a numerical approximation scheme of the heat equation is a difficult problem in itself. The difficulty is strongly related to the regularizing effect of the heat kernel. The controls of minimal L 2 -norm are characterized as minima of quadratic functionals on the solutions of the adjoint heat equation, or its numerical versions. These functionals are shown to be coercive in very large spaces of solutions, sufficient to guarantee the L 2 character of controls, but very far from being identifiable as energy spaces for the adjoint system. The very weak coercivity of the functionals under consideration makes the approximation problem exponentially ill-posed and the functional framework far from being well adapted to standard techniques in numerical analysis. In practice, the controls of the
Energy Technology Data Exchange (ETDEWEB)
Iles-Smith, Jake, E-mail: Jakeilessmith@gmail.com [Controlled Quantum Dynamics Theory, Imperial College London, London SW7 2PG (United Kingdom); Photon Science Institute and School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Department of Photonics Engineering, DTU Fotonik, Ørsteds Plads, 2800 Kongens Lyngby (Denmark); Dijkstra, Arend G. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Lambert, Neill [CEMS, RIKEN, Saitama 351-0198 (Japan); Nazir, Ahsan, E-mail: ahsan.nazir@manchester.ac.uk [Photon Science Institute and School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)
2016-01-28
We explore excitonic energy transfer dynamics in a molecular dimer system coupled to both structured and unstructured oscillator environments. By extending the reaction coordinate master equation technique developed by Iles-Smith et al. [Phys. Rev. A 90, 032114 (2014)], we go beyond the commonly used Born-Markov approximations to incorporate system-environment correlations and the resultant non-Markovian dynamical effects. We obtain energy transfer dynamics for both underdamped and overdamped oscillator environments that are in perfect agreement with the numerical hierarchical equations of motion over a wide range of parameters. Furthermore, we show that the Zusman equations, which may be obtained in a semiclassical limit of the reaction coordinate model, are often incapable of describing the correct dynamical behaviour. This demonstrates the necessity of properly accounting for quantum correlations generated between the system and its environment when the Born-Markov approximations no longer hold. Finally, we apply the reaction coordinate formalism to the case of a structured environment comprising of both underdamped (i.e., sharply peaked) and overdamped (broad) components simultaneously. We find that though an enhancement of the dimer energy transfer rate can be obtained when compared to an unstructured environment, its magnitude is rather sensitive to both the dimer-peak resonance conditions and the relative strengths of the underdamped and overdamped contributions.
Null canonical formalism 1, Maxwell field. [Poisson brackets, boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Wodkiewicz, K [Warsaw Univ. (Poland). Inst. Fizyki Teoretycznej
1975-01-01
The purpose of this paper is to formulate the canonical formalism on null hypersurfaces for the Maxwell electrodynamics. The set of the Poisson brackets relations for null variables of the Maxwell field is obtained. The asymptotic properties of the theory are investigated. The Poisson bracket relations for the news-functions of the Maxwell field are computed. The Hamiltonian form of the asymptotic Maxwell equations in terms of these news-functions is obtained.
LOCFES-B: Solving the one-dimensional transport equation with user-selected spatial approximations
International Nuclear Information System (INIS)
Jarvis, R.D.; Nelson, P.
1993-01-01
Closed linear one-cell functional (CLOF) methods constitute an abstractly defined class of spatial approximations to the one-dimensional discrete ordinates equations of linear particle transport that encompass, as specific instances, the vast majority of the spatial approximations that have been either used or suggested in the computational solution of these equations. A specific instance of the class of CLOF methods is defined by a (typically small) number of functions of the cell width, total cross section, and direction cosine of particle motion. The LOCFES code takes advantage of the latter observation by permitting the use, within a more-or-less standard source iteration solution process, of an arbitrary CLOF method as defined by a user-supplied subroutine. The design objective of LOCFES was to provide automated determination of the order of accuracy (i.e., order of the discretization error) in the fine-mesh limit for an arbitrary user-selected CLOF method. This asymptotic order of accuracy is one widely used measure of the merit of a spatial approximation. This paper discusses LOCFES-B, which is a code that uses methods developed in LOCFES to solve one-dimensional linear particle transport problems with any user-selected CLOF method. LOCFES-B provides automatic solution of a given problem to within an accuracy specified by user input and provides comparison of the computational results against results from externally provided benchmark results
The approximate inverse in action: IV. Semi-discrete equations in a Banach space setting
International Nuclear Information System (INIS)
Schuster, T; Schöpfer, F; Rieder, A
2012-01-01
This article concerns the method of approximate inverse to solve semi-discrete, linear operator equations in Banach spaces. Semi-discrete means that we search for a solution in an infinite-dimensional Banach space having only a finite number of data available. In this sense the situation is applicable to a large variety of applications where a measurement process delivers a discretization of an infinite-dimensional data space. The method of approximate inverse computes scalar products of the data with pre-computed reconstruction kernels which are associated with mollifiers and the dual of the model operator. The convergence, approximation power and regularization property of this method when applied to semi-discrete operator equations in Hilbert spaces has been investigated in three prequels to this paper. Here we extend these results to a Banach space setting. We prove convergence and stability for general Banach spaces and reproduce the results specifically for the integration operator acting on the space of continuous functions. (paper)
Energy Technology Data Exchange (ETDEWEB)
Jacques, R.
1975-03-15
Integrating the linearized Navier-Stokes equations linearized along the whole length of the centrifuge, we get a differential relation between the mean axial velocity and the centrifugal and viscosity forces on the ends. Then, these equations are integrated near the ends by a boundary layer approximation method. We assume that outside the boundary layer, the axial velocity reaches its mean value. So we obtain on the first hand the repartition of all physical quantities in the boundary layer, on the second hand a differential equation between the mean axial velocity and the boundary conditions imposed on the ends. This equation, valid both for the mechanical and thermal counter-current is solved numerically. Its solution shows the existence of a second boundary layer close to the wall of the tube. The present theory extends Martin's one in that it takes into account: (1) the action of pressure forces; (2) zero velocity on the wall with no transport; (3) the interaction between mechanical and thermal effects which tend to decrease the efficiency and the intensity of the counter-current. (author)
Inverse problems for Maxwell's equations
Romanov, V G
1994-01-01
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
A New Algorithm for the Approximation of the Schrödinger Equation
Directory of Open Access Journals (Sweden)
LIN Rong-an
2016-01-01
Full Text Available In this paper a four stages twelfth algebraic order symmetric two-step method with vanished phase-lag and its first, second, third, fourth and fifth derivatives is developed for the first time in the literature. For the new proposed method: (1 we will study the phase-lag analysis, (2 we will present the development of the new method, (3 the local truncation error (LTE analysis will be studied. The analysis is based on a test problem which is the radial time independent Schrödinger equation, (4 the stability and the interval of periodicity analysis will be presented, (5 stepsize control technique will also be presented, (6 the examination of the accuracy and computational cost of the proposed algorithm which is based on the approximation of the Schrödinger equation.
Approximate Solution of Nonlinear Klein-Gordon Equation Using Sobolev Gradients
Directory of Open Access Journals (Sweden)
Nauman Raza
2016-01-01
Full Text Available The nonlinear Klein-Gordon equation (KGE models many nonlinear phenomena. In this paper, we propose a scheme for numerical approximation of solutions of the one-dimensional nonlinear KGE. A common approach to find a solution of a nonlinear system is to first linearize the equations by successive substitution or the Newton iteration method and then solve a linear least squares problem. Here, we show that it can be advantageous to form a sum of squared residuals of the nonlinear problem and then find a zero of the gradient. Our scheme is based on the Sobolev gradient method for solving a nonlinear least square problem directly. The numerical results are compared with Lattice Boltzmann Method (LBM. The L2, L∞, and Root-Mean-Square (RMS values indicate better accuracy of the proposed method with less computational effort.
Zhang, Zhendong
2016-07-26
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh wave dispersion curve using a difference approximation to the gradient of the misfit function. We call this wave equation inversion of skeletonized surface waves because the skeletonized dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the multi-dimensional elastic wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Our method can invert for lateral velocity variations and also can mitigate the local minimum problem in full waveform inversion with a reasonable computation cost for simple models. Results with synthetic and field data illustrate the benefits and limitations of this method. © 2016 Elsevier B.V.
Approximate solution of space and time fractional higher order phase field equation
Shamseldeen, S.
2018-03-01
This paper is concerned with a class of space and time fractional partial differential equation (STFDE) with Riesz derivative in space and Caputo in time. The proposed STFDE is considered as a generalization of a sixth-order partial phase field equation. We describe the application of the optimal homotopy analysis method (OHAM) to obtain an approximate solution for the suggested fractional initial value problem. An averaged-squared residual error function is defined and used to determine the optimal convergence control parameter. Two numerical examples are studied, considering periodic and non-periodic initial conditions, to justify the efficiency and the accuracy of the adopted iterative approach. The dependence of the solution on the order of the fractional derivative in space and time and model parameters is investigated.
International Nuclear Information System (INIS)
Asadzadeh, M.; Thevenot, L.
2010-01-01
The objective of this paper is to give a mathematical framework for a fully discrete numerical approach for the study of the neutron transport equation in a cylindrical domain (container model,). More specifically, we consider the discontinuous Galerkin (D G) finite element method for spatial approximation of the mono-energetic, critical neutron transport equation in an infinite cylindrical domain ??in R3 with a polygonal convex cross-section ? The velocity discretization relies on a special quadrature rule developed to give optimal estimates in discrete ordinate parameters compatible with the quasi-uniform spatial mesh. We use interpolation spaces and derive optimal error estimates, up to maximal available regularity, for the fully discrete scalar flux. Finally we employ a duality argument and prove superconvergence estimates for the critical eigenvalue.
Lin, Yezhi; Liu, Yinping; Li, Zhibin
2012-01-01
The Adomian decomposition method (ADM) is one of the most effective methods for constructing analytic approximate solutions of nonlinear differential equations. In this paper, based on the new definition of the Adomian polynomials, and the two-step Adomian decomposition method (TSADM) combined with the Padé technique, a new algorithm is proposed to construct accurate analytic approximations of nonlinear differential equations with initial conditions. Furthermore, a MAPLE package is developed, which is user-friendly and efficient. One only needs to input a system, initial conditions and several necessary parameters, then our package will automatically deliver analytic approximate solutions within a few seconds. Several different types of examples are given to illustrate the validity of the package. Our program provides a helpful and easy-to-use tool in science and engineering to deal with initial value problems. Program summaryProgram title: NAPA Catalogue identifier: AEJZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJZ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4060 No. of bytes in distributed program, including test data, etc.: 113 498 Distribution format: tar.gz Programming language: MAPLE R13 Computer: PC Operating system: Windows XP/7 RAM: 2 Gbytes Classification: 4.3 Nature of problem: Solve nonlinear differential equations with initial conditions. Solution method: Adomian decomposition method and Padé technique. Running time: Seconds at most in routine uses of the program. Special tasks may take up to some minutes.
Time adaptivity in the diffusive wave approximation to the shallow water equations
Collier, Nathan; Radwan, Hany; Dalcí n, Lisandro D.; Calo, Victor M.
2013-01-01
We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation. © 2011 Elsevier B.V.
First error bounds for the porous media approximation of the Poisson-Nernst-Planck equations
Energy Technology Data Exchange (ETDEWEB)
Schmuck, Markus [Imperial College, London (United Kingdom). Depts. of Chemical Engineering and Mathematics
2012-04-15
We study the well-accepted Poisson-Nernst-Planck equations modeling transport of charged particles. By formal multiscale expansions we rederive the porous media formulation obtained by two-scale convergence in [42, 43]. The main result is the derivation of the error which occurs after replacing a highly heterogeneous solid-electrolyte composite by a homogeneous one. The derived estimates show that the approximation errors for both, the ion densities quantified in L{sup 2}-norm and the electric potential measured in H{sup 1}-norm, are of order O(s{sup 1/2}). (orig.)
Born approximation to a perturbative numerical method for the solution of the Schroedinger equation
International Nuclear Information System (INIS)
Adam, Gh.
1978-01-01
A step function perturbative numerical method (SF-PN method) is developed for the solution of the Cauchy problem for the second order liniar differential equation in normal form. An important point stressed in the present paper, which seems to have been previously ignored in the literature devoted to the PN methods, is the close connection between the first order perturbation theory of the PN approach and the wellknown Born approximation, and, in general, the connection between the varjous orders of the PN corrections and the Neumann series. (author)
Ghil, M.; Balgovind, R.
1979-01-01
The inhomogeneous Cauchy-Riemann equations in a rectangle are discretized by a finite difference approximation. Several different boundary conditions are treated explicitly, leading to algorithms which have overall second-order accuracy. All boundary conditions with either u or v prescribed along a side of the rectangle can be treated by similar methods. The algorithms presented here have nearly minimal time and storage requirements and seem suitable for development into a general-purpose direct Cauchy-Riemann solver for arbitrary boundary conditions.
Accuracy of approximations of solutions to Fredholm equations by kernel methods
Czech Academy of Sciences Publication Activity Database
Gnecco, G.; Kůrková, Věra; Sanguineti, M.
2012-01-01
Roč. 218, č. 14 (2012), s. 7481-7497 ISSN 0096-3003 R&D Projects: GA ČR GAP202/11/1368; GA MŠk OC10047 Grant - others:CNR-AV ČR(CZ-IT) Project 2010–2012 “Complexity of Neural -Network and Kernel Computational Models Institutional research plan: CEZ:AV0Z10300504 Keywords : approximate solutions to integral equations * radial and kernel-based networks * Gaussian kernels * model complexity * analysis of algorithms Subject RIV: IN - Informatics, Computer Science Impact factor: 1.349, year: 2012
Time adaptivity in the diffusive wave approximation to the shallow water equations
Collier, Nathan
2013-05-01
We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation. © 2011 Elsevier B.V.
International Nuclear Information System (INIS)
Feizi, H.; Rajabi, A.A.; Shojaei, M.R.
2011-01-01
In this work, the three dimensional Woods-Saxon potential is studied within the context of Supersymmetry Quantum Mechanics. We have applied the SUSY method by using the Pekeris approximation to the centrifugal potential l ≠ 0 states. By application of this method, it is possible to solve the Schroedinger equation for this potential. We obtain exactly bound state spectrum and wave function of Woods-Saxon potential for nonzero angular momentum. Hamiltonian hierarchy method and the shape invariance property are used in the calculations. (authors)
Hall, Eric Joseph
2016-12-08
We derive computable error estimates for finite element approximations of linear elliptic partial differential equations with rough stochastic coefficients. In this setting, the exact solutions contain high frequency content that standard a posteriori error estimates fail to capture. We propose goal-oriented estimates, based on local error indicators, for the pathwise Galerkin and expected quadrature errors committed in standard, continuous, piecewise linear finite element approximations. Derived using easily validated assumptions, these novel estimates can be computed at a relatively low cost and have applications to subsurface flow problems in geophysics where the conductivities are assumed to have lognormal distributions with low regularity. Our theory is supported by numerical experiments on test problems in one and two dimensions.
Yosida approximations of stochastic differential equations in infinite dimensions and applications
Govindan, T E
2016-01-01
This research monograph brings together, for the first time, the varied literature on Yosida approximations of stochastic differential equations (SDEs) in infinite dimensions and their applications into a single cohesive work. The author provides a clear and systematic introduction to the Yosida approximation method and justifies its power by presenting its applications in some practical topics such as stochastic stability and stochastic optimal control. The theory assimilated spans more than 35 years of mathematics, but is developed slowly and methodically in digestible pieces. The book begins with a motivational chapter that introduces the reader to several different models that play recurring roles throughout the book as the theory is unfolded, and invites readers from different disciplines to see immediately that the effort required to work through the theory that follows is worthwhile. From there, the author presents the necessary prerequisite material, and then launches the reader into the main discussi...
Iterative approximation of the solution of a monotone operator equation in certain Banach spaces
International Nuclear Information System (INIS)
Chidume, C.E.
1988-01-01
Let X=L p (or l p ), p ≥ 2. The solution of the equation Ax=f, f is an element of X is approximated in X by an iteration process in each of the following two cases: (i) A is a bounded linear mapping of X into itself which is also bounded below; and, (ii) A is a nonlinear Lipschitz mapping of X into itself and satisfies ≥ m |x-y| 2 , for some constant m > 0 and for all x, y in X, where j is the single-valued normalized duality mapping of X into X* (the dual space of X). A related result deals with the iterative approximation of the fixed point of a Lipschitz strictly pseudocontractive mapping in X. (author). 12 refs
Energy Technology Data Exchange (ETDEWEB)
Paolucci, S.
1982-12-01
An approximation leading to anelastic equations capable of describing thermal convection in a compressible fluid is given. These equations are more general than the Oberbeck-Boussinesq equations and different than the standard anelastic equations in that they can be used for the computation of convection in a fluid with large density gradients present. We show that the equations do not contain acoustic waves, while at the same time they can still describe the propagation of internal waves. Throughout we show that the filtering of acoustic waves, within the limits of the approximation, does not appreciably alter the description of the physics.
International Nuclear Information System (INIS)
Wu, Fuke; Tian, Tianhai; Rawlings, James B.; Yin, George
2016-01-01
The frequently used reduction technique is based on the chemical master equation for stochastic chemical kinetics with two-time scales, which yields the modified stochastic simulation algorithm (SSA). For the chemical reaction processes involving a large number of molecular species and reactions, the collection of slow reactions may still include a large number of molecular species and reactions. Consequently, the SSA is still computationally expensive. Because the chemical Langevin equations (CLEs) can effectively work for a large number of molecular species and reactions, this paper develops a reduction method based on the CLE by the stochastic averaging principle developed in the work of Khasminskii and Yin [SIAM J. Appl. Math. 56, 1766–1793 (1996); ibid. 56, 1794–1819 (1996)] to average out the fast-reacting variables. This reduction method leads to a limit averaging system, which is an approximation of the slow reactions. Because in the stochastic chemical kinetics, the CLE is seen as the approximation of the SSA, the limit averaging system can be treated as the approximation of the slow reactions. As an application, we examine the reduction of computation complexity for the gene regulatory networks with two-time scales driven by intrinsic noise. For linear and nonlinear protein production functions, the simulations show that the sample average (expectation) of the limit averaging system is close to that of the slow-reaction process based on the SSA. It demonstrates that the limit averaging system is an efficient approximation of the slow-reaction process in the sense of the weak convergence.
International Nuclear Information System (INIS)
Boisseau, Bruno; Forgacs, Peter; Giacomini, Hector
2007-01-01
A new (algebraic) approximation scheme to find global solutions of two-point boundary value problems of ordinary differential equations (ODEs) is presented. The method is applicable for both linear and nonlinear (coupled) ODEs whose solutions are analytic near one of the boundary points. It is based on replacing the original ODEs by a sequence of auxiliary first-order polynomial ODEs with constant coefficients. The coefficients in the auxiliary ODEs are uniquely determined from the local behaviour of the solution in the neighbourhood of one of the boundary points. The problem of obtaining the parameters of the global (connecting) solutions, analytic at one of the boundary points, reduces to find the appropriate zeros of algebraic equations. The power of the method is illustrated by computing the approximate values of the 'connecting parameters' for a number of nonlinear ODEs arising in various problems in field theory. We treat in particular the static and rotationally symmetric global vortex, the skyrmion, the Abrikosov-Nielsen-Olesen vortex, as well as the 't Hooft-Polyakov magnetic monopole. The total energy of the skyrmion and of the monopole is also computed by the new method. We also consider some ODEs coming from the exact renormalization group. The ground-state energy level of the anharmonic oscillator is also computed for arbitrary coupling strengths with good precision. (fast track communication)
Coupled kinetic equations for fermions and bosons in the relaxation-time approximation
Florkowski, Wojciech; Maksymiuk, Ewa; Ryblewski, Radoslaw
2018-02-01
Kinetic equations for fermions and bosons are solved numerically in the relaxation-time approximation for the case of one-dimensional boost-invariant geometry. Fermions are massive and carry baryon number, while bosons are massless. The conservation laws for the baryon number, energy, and momentum lead to two Landau matching conditions, which specify the coupling between the fermionic and bosonic sectors and determine the proper-time dependence of the effective temperature and baryon chemical potential of the system. The numerical results illustrate how a nonequilibrium mixture of fermions and bosons approaches hydrodynamic regime described by the Navier-Stokes equations with appropriate forms of the kinetic coefficients. The shear viscosity of a mixture is the sum of the shear viscosities of fermion and boson components, while the bulk viscosity is given by the formula known for a gas of fermions, however, with the thermodynamic variables characterising the mixture. Thus, we find that massless bosons contribute in a nontrivial way to the bulk viscosity of a mixture, provided fermions are massive. We further observe the hydrodynamization effect, which takes place earlier in the shear sector than in the bulk one. The numerical studies of the ratio of the longitudinal and transverse pressures show, to a good approximation, that it depends on the ratio of the relaxation and proper times only. This behavior is connected with the existence of an attractor solution for conformal systems.
Solutions to the linearized Navier-Stokes equations for channel flow via the WKB approximation
Leonard, Anthony
2017-11-01
Progress on determining semi-analytical solutions to the linearized Navier-Stokes equations for incompressible channel flow, laminar and turbulent, is reported. Use of the WKB approximation yields, e.g., solutions to initial-value problem for the inviscid Orr-Sommerfeld equation in terms of the Bessel functions J+ 1 / 3 ,J- 1 / 3 ,J1 , and Y1 and their modified counterparts for any given wave speed c = ω /kx and k⊥ ,(k⊥2 =kx2 +kz2) . Of particular note to be discussed is a sequence i = 1 , 2 , . . . of homogeneous inviscid solutions with complex k⊥ i for each speed c, (0 < c <=Umax), in the downstream direction. These solutions for the velocity component normal to the wall v are localized in the plane parallel to the wall. In addition, for limited range of negative c, (- c * <= c <= 0) , we have found upstream-traveling homogeneous solutions with real k⊥(c) . In both cases the solutions for v serve as a source for corresponding solutions to the inviscid Squire equation for the vorticity component normal to the wall ωy.
International Nuclear Information System (INIS)
Cartier, J.
2006-04-01
This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)
Nobile, Fabio; Tempone, Raul
2009-01-01
We consider the problem of numerically approximating statistical moments of the solution of a time- dependent linear parabolic partial differential equation (PDE), whose coefficients and/or forcing terms are spatially correlated random fields. The stochastic coefficients of the PDE are approximated by truncated Karhunen-Loève expansions driven by a finite number of uncorrelated random variables. After approxi- mating the stochastic coefficients, the original stochastic PDE turns into a new deterministic parametric PDE of the same type, the dimension of the parameter set being equal to the number of random variables introduced. After proving that the solution of the parametric PDE problem is analytic with respect to the parameters, we consider global polynomial approximations based on tensor product, total degree or sparse polynomial spaces and constructed by either a Stochastic Galerkin or a Stochastic Collocation approach. We derive convergence rates for the different cases and present numerical results that show how these approaches are a valid alternative to the more traditional Monte Carlo Method for this class of problems. © 2009 John Wiley & Sons, Ltd.
The Fourier-finite-element approximation of the lame equations in axisymmetric domains with edges
International Nuclear Information System (INIS)
Nkemzil, Boniface
2003-10-01
This paper is concerned with a priori error estimates and convergence analysis of the Fourier-finite-element solutions of the Neumann problem for the Lame equations in axisymmetric domains Ω-circumflex is contained in R 3 with reentrant edges. The Fourier-FEM combines the approximating Fourier method with respect to the rotational angle using trigonometric polynomials of degree N (N →∞), with the finite-element method on the plane meridian domain of Ω-circumflex with mesh size h (h → 0) for approximating the Fourier coefficients. The asymptotic behavior of the solution near reentrant edges is described by singular functions in non-tensor product form and treated numerically by means of finite element method on locally graded meshes. For the right-hand side f-circumflex is an element of (L 2 (Ω-circumflex)) 3 , it is proved that the rate of convergence of the combined approximations in the norms of (W 2 1 (Ω-circumflex)) 3 is of the order O(h 2-l +N -(2-l) ) (l=0,1). (author)
Sanz, Luis; Alonso, Juan Antonio
2017-12-01
In this work we develop approximate aggregation techniques in the context of slow-fast linear population models governed by stochastic differential equations and apply the results to the treatment of populations with spatial heterogeneity. Approximate aggregation techniques allow one to transform a complex system involving many coupled variables and in which there are processes with different time scales, by a simpler reduced model with a fewer number of 'global' variables, in such a way that the dynamics of the former can be approximated by that of the latter. In our model we contemplate a linear fast deterministic process together with a linear slow process in which the parameters are affected by additive noise, and give conditions for the solutions corresponding to positive initial conditions to remain positive for all times. By letting the fast process reach equilibrium we build a reduced system with a lesser number of variables, and provide results relating the asymptotic behaviour of the first- and second-order moments of the population vector for the original and the reduced system. The general technique is illustrated by analysing a multiregional stochastic system in which dispersal is deterministic and the rate growth of the populations in each patch is affected by additive noise.
Nobile, Fabio
2009-11-05
We consider the problem of numerically approximating statistical moments of the solution of a time- dependent linear parabolic partial differential equation (PDE), whose coefficients and/or forcing terms are spatially correlated random fields. The stochastic coefficients of the PDE are approximated by truncated Karhunen-Loève expansions driven by a finite number of uncorrelated random variables. After approxi- mating the stochastic coefficients, the original stochastic PDE turns into a new deterministic parametric PDE of the same type, the dimension of the parameter set being equal to the number of random variables introduced. After proving that the solution of the parametric PDE problem is analytic with respect to the parameters, we consider global polynomial approximations based on tensor product, total degree or sparse polynomial spaces and constructed by either a Stochastic Galerkin or a Stochastic Collocation approach. We derive convergence rates for the different cases and present numerical results that show how these approaches are a valid alternative to the more traditional Monte Carlo Method for this class of problems. © 2009 John Wiley & Sons, Ltd.
Evaluation of stochastic differential equation approximation of ion channel gating models.
Bruce, Ian C
2009-04-01
Fox and Lu derived an algorithm based on stochastic differential equations for approximating the kinetics of ion channel gating that is simpler and faster than "exact" algorithms for simulating Markov process models of channel gating. However, the approximation may not be sufficiently accurate to predict statistics of action potential generation in some cases. The objective of this study was to develop a framework for analyzing the inaccuracies and determining their origin. Simulations of a patch of membrane with voltage-gated sodium and potassium channels were performed using an exact algorithm for the kinetics of channel gating and the approximate algorithm of Fox & Lu. The Fox & Lu algorithm assumes that channel gating particle dynamics have a stochastic term that is uncorrelated, zero-mean Gaussian noise, whereas the results of this study demonstrate that in many cases the stochastic term in the Fox & Lu algorithm should be correlated and non-Gaussian noise with a non-zero mean. The results indicate that: (i) the source of the inaccuracy is that the Fox & Lu algorithm does not adequately describe the combined behavior of the multiple activation particles in each sodium and potassium channel, and (ii) the accuracy does not improve with increasing numbers of channels.
Analytical approximate solutions of the time-domain diffusion equation in layered slabs.
Martelli, Fabrizio; Sassaroli, Angelo; Yamada, Yukio; Zaccanti, Giovanni
2002-01-01
Time-domain analytical solutions of the diffusion equation for photon migration through highly scattering two- and three-layered slabs have been obtained. The effect of the refractive-index mismatch with the external medium is taken into account, and approximate boundary conditions at the interface between the diffusive layers have been considered. A Monte Carlo code for photon migration through a layered slab has also been developed. Comparisons with the results of Monte Carlo simulations showed that the analytical solutions correctly describe the mean path length followed by photons inside each diffusive layer and the shape of the temporal profile of received photons, while discrepancies are observed for the continuous-wave reflectance or transmittance.
Gerencsér, Máté; Jentzen, Arnulf; Salimova, Diyora
2017-11-01
In a recent article (Jentzen et al. 2016 Commun. Math. Sci. 14 , 1477-1500 (doi:10.4310/CMS.2016.v14.n6.a1)), it has been established that, for every arbitrarily slow convergence speed and every natural number d ∈{4,5,…}, there exist d -dimensional stochastic differential equations with infinitely often differentiable and globally bounded coefficients such that no approximation method based on finitely many observations of the driving Brownian motion can converge in absolute mean to the solution faster than the given speed of convergence. In this paper, we strengthen the above result by proving that this slow convergence phenomenon also arises in two ( d =2) and three ( d =3) space dimensions.
International Nuclear Information System (INIS)
Blaizot, Jean-Paul; Liao, Jinfeng; McLerran, Larry
2014-01-01
To understand the evolution of a dense system of gluons, such as those produced in the early stages of ultra-relativistic heavy ion collisions, is an important and challenging problem. We describe the approach to thermal equilibrium using the small angle approximation for gluon scattering in a Boltzmann equation that includes the effects of Bose statistics. The role of Bose statistical factors in amplifying the rapid growth of the population of the soft modes is essential. With these factors properly taken into account, one finds that elastic scattering alone provides an efficient mechanism for populating soft modes, and in fact leads to rapid infrared local thermalization. Furthermore, recent developments suggest that high initial overpopulation plays a key role and may lead to dynamical Bose–Einstein condensation. The kinetics of condensation is an interesting problem in itself. By solving the transport equation for initial conditions with a large enough initial phase-space density the equilibrium state contains a Bose condensate, and we present numerical evidence that such over-occupied systems reach the onset of Bose–Einstein condensation in a finite time. It is also found that the approach to condensation is characterized by a scaling behavior. Finally we discuss a number of extensions of the present study
Energy Technology Data Exchange (ETDEWEB)
Blaizot, Jean-Paul [Institut de Physique Théorique, CNRS/URA 2306, CEA Saclay, F-91191 Gif-sur-Yvette (France); Liao, Jinfeng [Physics Dept. and CEEM, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); McLerran, Larry [Physics Dept., Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Physics Department, China Central Normal University, Wuhan (China)
2014-11-15
To understand the evolution of a dense system of gluons, such as those produced in the early stages of ultra-relativistic heavy ion collisions, is an important and challenging problem. We describe the approach to thermal equilibrium using the small angle approximation for gluon scattering in a Boltzmann equation that includes the effects of Bose statistics. The role of Bose statistical factors in amplifying the rapid growth of the population of the soft modes is essential. With these factors properly taken into account, one finds that elastic scattering alone provides an efficient mechanism for populating soft modes, and in fact leads to rapid infrared local thermalization. Furthermore, recent developments suggest that high initial overpopulation plays a key role and may lead to dynamical Bose–Einstein condensation. The kinetics of condensation is an interesting problem in itself. By solving the transport equation for initial conditions with a large enough initial phase-space density the equilibrium state contains a Bose condensate, and we present numerical evidence that such over-occupied systems reach the onset of Bose–Einstein condensation in a finite time. It is also found that the approach to condensation is characterized by a scaling behavior. Finally we discuss a number of extensions of the present study.
A new hybrid code (CHIEF) implementing the inertial electron fluid equation without approximation
Muñoz, P. A.; Jain, N.; Kilian, P.; Büchner, J.
2018-03-01
We present a new hybrid algorithm implemented in the code CHIEF (Code Hybrid with Inertial Electron Fluid) for simulations of electron-ion plasmas. The algorithm treats the ions kinetically, modeled by the Particle-in-Cell (PiC) method, and electrons as an inertial fluid, modeled by electron fluid equations without any of the approximations used in most of the other hybrid codes with an inertial electron fluid. This kind of code is appropriate to model a large variety of quasineutral plasma phenomena where the electron inertia and/or ion kinetic effects are relevant. We present here the governing equations of the model, how these are discretized and implemented numerically, as well as six test problems to validate our numerical approach. Our chosen test problems, where the electron inertia and ion kinetic effects play the essential role, are: 0) Excitation of parallel eigenmodes to check numerical convergence and stability, 1) parallel (to a background magnetic field) propagating electromagnetic waves, 2) perpendicular propagating electrostatic waves (ion Bernstein modes), 3) ion beam right-hand instability (resonant and non-resonant), 4) ion Landau damping, 5) ion firehose instability, and 6) 2D oblique ion firehose instability. Our results reproduce successfully the predictions of linear and non-linear theory for all these problems, validating our code. All properties of this hybrid code make it ideal to study multi-scale phenomena between electron and ion scales such as collisionless shocks, magnetic reconnection and kinetic plasma turbulence in the dissipation range above the electron scales.
Phase integral approximation for coupled ordinary differential equations of the Schroedinger type
International Nuclear Information System (INIS)
Skorupski, Andrzej A.
2008-01-01
Four generalizations of the phase integral approximation (PIA) to sets of ordinary differential equations of Schroedinger type [u j '' (x)+Σ k=1 N R jk (x)u k (x)=0, j=1,2,...,N] are described. The recurrence relations for higher order corrections are given in a form valid to arbitrary order and for the matrix R(x)[≡(R jk (x))] either Hermitian or non-Hermitian. For Hermitian and negative definite R(x) matrices, a Wronskian conserving PIA theory is formulated, which generalizes Fulling's current conserving theory pertinent to positive definite R(x) matrices. The idea of a modification of the PIA, which is well known for one equation [u '' (x)+R(x)u(x)=0], is generalized to sets. A simplification of Wronskian or current conserving theories is proposed which in each order eliminates one integration from the formulas for higher order corrections. If the PIA is generated by a nondegenerate eigenvalue of the R(x) matrix, the eliminated integration is the only one present. In that case, the simplified theory becomes fully algorithmic and is generalized to non-Hermitian R(x) matrices. The general theory is illustrated by a few examples automatically generated by using the author's program in MATHEMATICA published in e-print arXiv:0710.5406 [math-ph
Speeding up equation of motion coupled cluster theory with the chain of spheres approximation
International Nuclear Information System (INIS)
Dutta, Achintya Kumar; Neese, Frank; Izsák, Róbert
2016-01-01
In the present paper, the chain of spheres exchange (COSX) approximation is applied to the highest scaling terms in the equation of motion (EOM) coupled cluster equations with single and double excitations, in particular, the terms involving integrals with four virtual labels. It is found that even the acceleration of this single term yields significant computational gains without compromising the desired accuracy of the method. For an excitation energy calculation on a cluster of five water molecules using 585 basis functions, the four virtual term is 9.4 times faster using COSX with a loose grid than using the canonical implementation, which yields a 2.6 fold acceleration for the whole of the EOM calculation. For electron attachment calculations, the four virtual term is 15 times and the total EOM calculation is 10 times faster than the canonical calculation for the same system. The accuracy of the new method was tested using Thiel’s test set for excited states using the same settings and the maximum absolute deviation over the whole test set was found to be 12.945 cm −1 (59 μHartree) for excitation energies and 6.799 cm −1 (31 μHartree) for electron attachments. Using MP2 amplitudes for the ground state in combination with the parallel evaluation of the full EOM equations in the manner discussed in this paper enabled us to perform calculations for large systems. Electron affinity values for the two lowest states of a Zn protoporphyrine model compound (224 correlated electrons and 1120 basis functions) were obtained in 3 days 19 h using 4 cores of a Xeon E5-2670 processor allocating 10 GB memory per core. Calculating the lowest two excitation energies for trans-retinal (114 correlated electrons and 539 basis functions) took 1 day 21 h using eight cores of the same processor and identical memory allocation per core
Speeding up equation of motion coupled cluster theory with the chain of spheres approximation
Energy Technology Data Exchange (ETDEWEB)
Dutta, Achintya Kumar; Neese, Frank, E-mail: frank.neese@cec.mpg.de; Izsák, Róbert, E-mail: robert.izsak@cec.mpg.de [Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr (Germany)
2016-01-21
In the present paper, the chain of spheres exchange (COSX) approximation is applied to the highest scaling terms in the equation of motion (EOM) coupled cluster equations with single and double excitations, in particular, the terms involving integrals with four virtual labels. It is found that even the acceleration of this single term yields significant computational gains without compromising the desired accuracy of the method. For an excitation energy calculation on a cluster of five water molecules using 585 basis functions, the four virtual term is 9.4 times faster using COSX with a loose grid than using the canonical implementation, which yields a 2.6 fold acceleration for the whole of the EOM calculation. For electron attachment calculations, the four virtual term is 15 times and the total EOM calculation is 10 times faster than the canonical calculation for the same system. The accuracy of the new method was tested using Thiel’s test set for excited states using the same settings and the maximum absolute deviation over the whole test set was found to be 12.945 cm{sup −1} (59 μHartree) for excitation energies and 6.799 cm{sup −1} (31 μHartree) for electron attachments. Using MP2 amplitudes for the ground state in combination with the parallel evaluation of the full EOM equations in the manner discussed in this paper enabled us to perform calculations for large systems. Electron affinity values for the two lowest states of a Zn protoporphyrine model compound (224 correlated electrons and 1120 basis functions) were obtained in 3 days 19 h using 4 cores of a Xeon E5-2670 processor allocating 10 GB memory per core. Calculating the lowest two excitation energies for trans-retinal (114 correlated electrons and 539 basis functions) took 1 day 21 h using eight cores of the same processor and identical memory allocation per core.
PADÉ APPROXIMANTS FOR THE EQUATION OF STATE FOR RELATIVISTIC HYDRODYNAMICS BY KINETIC THEORY
Energy Technology Data Exchange (ETDEWEB)
Tsai, Shang-Hsi; Yang, Jaw-Yen, E-mail: shanghsi@gmail.com [Institute of Applied Mechanics, National Taiwan University, Taipei 10764, Taiwan (China)
2015-07-20
A two-point Padé approximant (TPPA) algorithm is developed for the equation of state (EOS) for relativistic hydrodynamic systems, which are described by the classical Maxwell–Boltzmann statistics and the semiclassical Fermi–Dirac statistics with complete degeneracy. The underlying rational function is determined by the ratios of the macroscopic state variables with various orders of accuracy taken at the extreme relativistic limits. The nonunique TPPAs are validated by Taub's inequality for the consistency of the kinetic theory and the special theory of relativity. The proposed TPPA is utilized in deriving the EOS of the dilute gas and in calculating the specific heat capacity, the adiabatic index function, and the isentropic sound speed of the ideal gas. Some general guidelines are provided for the application of an arbitrary accuracy requirement. The superiority of the proposed TPPA is manifested in manipulating the constituent polynomials of the approximants, which avoids the arithmetic complexity of struggling with the modified Bessel functions and the hyperbolic trigonometric functions arising from the relativistic kinetic theory.
International Nuclear Information System (INIS)
Yang Pei; Li Zhibin; Chen Yong
2010-01-01
In this paper, the short-wave model equations are investigated, which are associated with the Camassa-Holm (CH) and Degasperis-Procesi (DP) shallow-water wave equations. Firstly, by means of the transformation of the independent variables and the travelling wave transformation, the partial differential equation is reduced to an ordinary differential equation. Secondly, the equation is solved by homotopy analysis method. Lastly, by the transformations back to the original independent variables, the solution of the original partial differential equation is obtained. The two types of solutions of the short-wave models are obtained in parametric form, one is one-cusp soliton for the CH equation while the other one is one-loop soliton for the DP equation. The approximate analytic solutions expressed by a series of exponential functions agree well with the exact solutions. It demonstrates the validity and great potential of homotopy analysis method for complicated nonlinear solitary wave problems. (general)
Non-Equilibrium Liouville and Wigner Equations: Moment Methods and Long-Time Approximations
Directory of Open Access Journals (Sweden)
Ramon F. Álvarez-Estrada
2014-03-01
Full Text Available We treat the non-equilibrium evolution of an open one-particle statistical system, subject to a potential and to an external “heat bath” (hb with negligible dissipation. For the classical equilibrium Boltzmann distribution, Wc,eq, a non-equilibrium three-term hierarchy for moments fulfills Hermiticity, which allows one to justify an approximate long-time thermalization. That gives partial dynamical support to Boltzmann’s Wc,eq, out of the set of classical stationary distributions, Wc;st, also investigated here, for which neither Hermiticity nor that thermalization hold, in general. For closed classical many-particle systems without hb (by using Wc,eq, the long-time approximate thermalization for three-term hierarchies is justified and yields an approximate Lyapunov function and an arrow of time. The largest part of the work treats an open quantum one-particle system through the non-equilibrium Wigner function, W. Weq for a repulsive finite square well is reported. W’s (< 0 in various cases are assumed to be quasi-definite functionals regarding their dependences on momentum (q. That yields orthogonal polynomials, HQ,n(q, for Weq (and for stationary Wst, non-equilibrium moments, Wn, of W and hierarchies. For the first excited state of the harmonic oscillator, its stationary Wst is a quasi-definite functional, and the orthogonal polynomials and three-term hierarchy are studied. In general, the non-equilibrium quantum hierarchies (associated with Weq for the Wn’s are not three-term ones. As an illustration, we outline a non-equilibrium four-term hierarchy and its solution in terms of generalized operator continued fractions. Such structures also allow one to formulate long-time approximations, but make it more difficult to justify thermalization. For large thermal and de Broglie wavelengths, the dominant Weq and a non-equilibrium equation for W are reported: the non-equilibrium hierarchy could plausibly be a three-term one and possibly not
Singh, Brajesh K; Srivastava, Vineet K
2015-04-01
The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations.
International Nuclear Information System (INIS)
Hussain, Ibrar; Qadir, Asghar; Mahomed, F. M.
2009-01-01
Since gravitational wave spacetimes are time-varying vacuum solutions of Einstein's field equations, there is no unambiguous means to define their energy content. However, Weber and Wheeler had demonstrated that they do impart energy to test particles. There have been various proposals to define the energy content, but they have not met with great success. Here we propose a definition using 'slightly broken' Noether symmetries. We check whether this definition is physically acceptable. The procedure adopted is to appeal to 'approximate symmetries' as defined in Lie analysis and use them in the limit of the exact symmetry holding. A problem is noted with the use of the proposal for plane-fronted gravitational waves. To attain a better understanding of the implications of this proposal we also use an artificially constructed time-varying nonvacuum metric and evaluate its Weyl and stress-energy tensors so as to obtain the gravitational and matter components separately and compare them with the energy content obtained by our proposal. The procedure is also used for cylindrical gravitational wave solutions. The usefulness of the definition is demonstrated by the fact that it leads to a result on whether gravitational waves suffer self-damping.
most effective style of leadership. (Courtesy Photo, Air University Press) Air University Press Directory Maxwell Links Welcome Leadership Joint Land Use Study Heritage Pamphlet Maxwell Driving Tour (No releases 'A Discourse on Winning and Losing' "Developing Your Full Range of Leadership" focuses
Kryven, I.; Röblitz, S; Schütte, C.
2015-01-01
Background: The chemical master equation is the fundamental equation of stochastic chemical kinetics. This differential-difference equation describes temporal evolution of the probability density function for states of a chemical system. A state of the system, usually encoded as a vector, represents
Ito, Kazufumi; Teglas, Russell
1987-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
Ito, K.; Teglas, R.
1984-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
Fiori, A.; Zarlenga, A.; Jankovic, I.; Dagan, G.
2017-12-01
Natural gradient steady flow of mean velocity U takes place in heterogeneous aquifers of random logconductivity Y = lnK , characterized by the normal univariate PDF f(Y) and autocorrelation ρY, of variance σY2 and horizontal integral scale I. Solute transport is quantified by the Breakthrough Curve (BTC) M at planes at distance x from the injection plane. The study builds on the extensive 3D numerical simulations of flow and transport of Jankovic et al. (2017) for different conductivity structures. The present study further explores the predictive capabilities of the Advection Dispersion Equation (ADE), with macrodispersivity αL given by the First Order Approximation (FOA), by checking in a quantitative manner its applicability. After a discussion on the suitable boundary conditions for ADE, we find that the ADE-FOA solution is a sufficiently accurate predictor for applications, the many other sources of uncertainty prevailing in practice notwithstanding. We checked by least squares and by comparison of travel time of quantiles of M that indeed the analytical Inverse Gaussian M with αL =σY2 I , is able to fit well the bulk of the simulated BTCs. It tends to underestimate the late arrival time of the thin and persistent tail. The tail is better reproduced by the semi-analytical MIMSCA model, which also allows for a physical explanation of the success of the Inverse Gaussian solution. Examination of the pertinent longitudinal mass distribution shows that it is different from the commonly used Gaussian one in the analysis of field experiments, and it captures the main features of the plume measurements of the MADE experiment. The results strengthen the confidence in the applicability of the ADE and the FOA to predicting longitudinal spreading in solute transport through heterogeneous aquifers of stationary random structure.
Maxwell-Higgs vortices with internal structure
Bazeia, D.; Marques, M. A.; Menezes, R.
2018-05-01
Vortices are considered in relativistic Maxwell-Higgs systems in interaction with a neutral scalar field. The gauge field interacts with the neutral field via the presence of generalized permeability, and the charged and neutral scalar fields interact in a way dictated by the presence of first order differential equations that solve the equations of motion. The neutral field may be seen as the source field of the vortex, and we study some possibilities, which modify the standard Maxwell-Higgs solution and include internal structure to the vortex.
Directory of Open Access Journals (Sweden)
A. A. Fonarev
2014-01-01
Full Text Available Possibility of use of a projective iterative method for search of approximations to the closed set of not trivial generalised solutions of a boundary value problem for Ginzburg - Landau's equations of the phenomenological theory of superconduction is investigated. The projective iterative method combines a projective method and iterative process. The generalised solutions of a boundary value problem for Ginzburg - Landau's equations are critical points of a functional of a superconductor free energy.
Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan
2016-01-01
Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations.
The trajectory-coherent approximation and the system of moments for the Hartree type equation
Directory of Open Access Journals (Sweden)
V. V. Belov
2002-01-01
Full Text Available The general construction of semiclassically concentrated solutions to the Hartree type equation, based on the complex WKB-Maslov method, is presented. The formal solutions of the Cauchy problem for this equation, asymptotic in small parameter ℏ (ℏ→0, are constructed with a power accuracy of O(ℏ N/2, where N is any natural number. In constructing the semiclassically concentrated solutions, a set of Hamilton-Ehrenfest equations (equations for centered moments is essentially used. The nonlinear superposition principle has been formulated for the class of semiclassically concentrated solutions of Hartree type equations. The results obtained are exemplified by a one-dimensional Hartree type equation with a Gaussian potential.
International Nuclear Information System (INIS)
Yasa, F.; Anli, F.; Guengoer, S.
2007-01-01
We present analytical calculations of spherically symmetric radioactive transfer and neutron transport using a hypothesis of P1 and T1 low order polynomial approximation for diffusion coefficient D. Transport equation in spherical geometry is considered as the pseudo slab equation. The validity of polynomial expansionion in transport theory is investigated through a comparison with classic diffusion theory. It is found that for causes when the fluctuation of the scattering cross section dominates, the quantitative difference between the polynomial approximation and diffusion results was physically acceptable in general
International Nuclear Information System (INIS)
Capilla, M.; Talavera, C.F.; Ginestar, D.; Verdú, G.
2012-01-01
Highlights: ► The multidimensional P L approximation to the nuclear transport equation is reviewed. ► A nodal collocation method is developed for the spatial discretization of P L equations. ► Advantages of the method are lower dimension and good characterists of the associated algebraic eigenvalue problem. ► The P L nodal collocation method is implemented into the computer code SHNC. ► The SHNC code is verified with 2D and 3D benchmark eigenvalue problems from Takeda and Ikeda, giving satisfactory results. - Abstract: P L equations are classical approximations to the neutron transport equations, which are obtained expanding the angular neutron flux in terms of spherical harmonics. These approximations are useful to study the behavior of reactor cores with complex fuel assemblies, for the homogenization of nuclear cross-sections, etc., and most of these applications are in three-dimensional (3D) geometries. In this work, we review the multi-dimensional P L equations and describe a nodal collocation method for the spatial discretization of these equations for arbitrary odd order L, which is based on the expansion of the spatial dependence of the fields in terms of orthonormal Legendre polynomials. The performance of the nodal collocation method is studied by means of obtaining the k eff and the stationary power distribution of several 3D benchmark problems. The solutions are obtained are compared with a finite element method and a Monte Carlo method.
Gunzburger, M. D.; Nicolaides, R. A.
1986-01-01
Substructuring methods are in common use in mechanics problems where typically the associated linear systems of algebraic equations are positive definite. Here these methods are extended to problems which lead to nonpositive definite, nonsymmetric matrices. The extension is based on an algorithm which carries out the block Gauss elimination procedure without the need for interchanges even when a pivot matrix is singular. Examples are provided wherein the method is used in connection with finite element solutions of the stationary Stokes equations and the Helmholtz equation, and dual methods for second-order elliptic equations.
International Nuclear Information System (INIS)
Sanchez, Richard.
1980-11-01
This work is divided into two part the first part (note CEA-N-2165) deals with the solution of complex two-dimensional transport problems, the second one treats the critically mixed methods of resolution. These methods are applied for one-dimensional geometries with highly anisotropic scattering. In order to simplify the set of integral equation provided by the integral transport equation, the integro-differential equation is used to obtain relations that allow to lower the number of integral equation to solve; a general mathematical and numerical study is presented [fr
International Nuclear Information System (INIS)
Bardo, R.D.; Wolfsberg, M.
1977-01-01
The wave equation for a nonlinear polyatomic molecule is formulated in molecule-fixed coordinates by a method originally due to Hirschfelder and Wigner. Application is made to a triatomic molecule, and the wave equation is explicitly presented in a useful molecule-fixed coordinate system. The formula for the adiabatic correction to the Born--Oppenheimer approximation for a triatomic molecule is obtained. The extension of the present formulation to larger polyatomic molecules is pointed out. Some terms in the triatomic molecule wave equation are discussed in detail
A separable approximation of the NN-Paris-potential in the framework of the Bethe-Salpeter equation
International Nuclear Information System (INIS)
Schwarz, K.; Haidenbauer, J.; Froehlich, J.
1985-09-01
The Bethe-Salpeter equation is solved with a separable kernel for the most important nucleon-nucleon partial wave states. We employ the Ernst Shakin-Thaler method in the framework of minimal relativity (Blankenbeckler-Sugar equation) to generate a separable representation of the meson-theoretical Paris potential. These separable interactions, which closely approximate the on-shell- and half-off-shell behaviour of the Paris potential, are then cast into a covariant form for application in the Bethe-Salpeter equation. The role of relativistic effects is discussed with respect to on-shell and off-shell properties of the NN-system. (Author)
International Nuclear Information System (INIS)
Polivanskij, V.P.
1989-01-01
The method to solve two-dimensional equations of neutron transport using 4P 0 -approximation is presented. Previously such approach was efficiently used for the solution of one-dimensional problems. New an attempt is made to apply the approach to solution of two-dimensional problems. Algorithm of the solution is given, as well as results of test neutron-physical calculations. A considerable as compared with diffusion approximation is shown. 11 refs
Directory of Open Access Journals (Sweden)
Hyun Young Lee
2010-01-01
Full Text Available We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal ℓ∞(L2 error estimates of discontinuous Galerkin approximations in both spatial direction and temporal direction.
Dynamical Mass Generation and Confinement in Maxwell-Chern-Simons Planar Quantum Electrodynamics
International Nuclear Information System (INIS)
Sanchez Madrigal, S; Raya, A; Hofmann, C P
2011-01-01
We study the non-perturbative phenomena of Dynamical Mass Generation and Confinement by truncating at the non-perturbative level the Schwinger-Dyson equations in Maxwell-Chern-Simons planar quantum electrodynamics. We obtain numerical solutions for the fermion propagator in Landau gauge within the so-called rainbow approximation. A comparison with the ordinary theory without the Chern-Simons term is presented.
Energy Technology Data Exchange (ETDEWEB)
Qin, Hong; Liu, Jian; Xiao, Jianyuan; Zhang, Ruili; He, Yang; Wang, Yulei; Sun, Yajuan; Burby, Joshua W.; Ellison, Leland; Zhou, Yao
2015-12-14
Particle-in-cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretising its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root searching or global matrix inversion, enabling applications of the proposed method to very large-scale plasma simulations with many, e.g. 10(9), degrees of freedom. The long-term accuracy and fidelity of the algorithm enables us to numerically confirm Mouhot and Villani's theory and conjecture on nonlinear Landau damping over several orders of magnitude using the PIC method, and to calculate the nonlinear evolution of the reflectivity during the mode conversion process from extraordinary waves to Bernstein waves.
Directory of Open Access Journals (Sweden)
Decio Levi
2013-10-01
Full Text Available We briefly review two different methods of applying Lie group theory in the numerical solution of ordinary differential equations. On specific examples we show how the symmetry preserving discretization provides difference schemes for which the “first differential approximation” is invariant under the same Lie group as the original ordinary differential equation.
Approximate solution of integro-differential equation of fractional (arbitrary order
Directory of Open Access Journals (Sweden)
Asma A. Elbeleze
2016-01-01
Full Text Available In the present paper, we study the integro-differential equations which are combination of differential and Fredholm–Volterra equations that have the fractional order with constant coefficients by the homotopy perturbation and the variational iteration. The fractional derivatives are described in Caputo sense. Some illustrative examples are presented.
Multiple spatial scaling and the weak coupling approximation. II. Homogeneous kinetic equation
Energy Technology Data Exchange (ETDEWEB)
Kleinsmith, P E [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)
1977-08-01
A modified form of the Bogoliubov plasma cluster expansion is applied to the derivation of a divergence-free kinetic equation from the BBGKY hierarchy. Special attention is given to the conditions under which the Landau kinetic equation may be derived from this more general formulation.
International Nuclear Information System (INIS)
Krishnaswami, Govind S.
2006-01-01
Large-N multi-matrix loop equations are formulated as quadratic difference equations in concatenation of gluon correlations. Though non-linear, they involve highest rank correlations linearly. They are underdetermined in many cases. Additional linear equations for gluon correlations, associated to symmetries of action and measure are found. Loop equations aren't differential equations as they involve left annihilation, which doesn't satisfy the Leibnitz rule with concatenation. But left annihilation is a derivation of the commutative shuffle product. Moreover shuffle and concatenation combine to define a bialgebra. Motivated by deformation quantization, we expand concatenation around shuffle in powers of q, whose physical value is 1. At zeroth order the loop equations become quadratic PDEs in the shuffle algebra. If the variation of the action is linear in iterated commutators of left annihilations, these quadratic PDEs linearize by passage to shuffle reciprocal of correlations. Remarkably, this is true for regularized versions of the Yang-Mills, Chern-Simons and Gaussian actions. But the linear equations are underdetermined just as the loop equations were. For any particular solution, the shuffle reciprocal is explicitly inverted to get the zeroth order gluon correlations. To go beyond zeroth order, we find a Poisson bracket on the shuffle algebra and associative q-products interpolating between shuffle and concatenation. This method, and a complementary one of deforming annihilation rather than product are shown to give over and underestimates for correlations of a gaussian matrix model
International Nuclear Information System (INIS)
Song Lina; Wang Weiguo
2010-01-01
In this Letter, an enhanced Adomian decomposition method which introduces the h-curve of the homotopy analysis method into the standard Adomian decomposition method is proposed. Some examples prove that this method can derive successfully approximate rational Jacobi elliptic function solutions of the fractional differential equations.
Rao, T. R. Ramesh
2018-04-01
In this paper, we study the analytical method based on reduced differential transform method coupled with sumudu transform through Pades approximants. The proposed method may be considered as alternative approach for finding exact solution of Gas dynamics equation in an effective manner. This method does not require any discretization, linearization and perturbation.
Application of Trotter approximation for solving time dependent neutron transport equation
International Nuclear Information System (INIS)
Stancic, V.
1987-01-01
A method is proposed to solve multigroup time dependent neutron transport equation with arbitrary scattering anisotropy. The recurrence relation thus obtained is simple, numerically stable and especially suitable for treatment of complicated geometries. (author)
Umut Caglar, Mehmet; Pal, Ranadip
2010-10-01
The central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid.'' However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of data in the cellular level and probabilistic nature of interactions. Probabilistic models like Stochastic Master Equation (SME) or deterministic models like differential equations (DE) can be used to analyze these types of interactions. SME models based on chemical master equation (CME) can provide detailed representation of genetic regulatory system, but their use is restricted by the large data requirements and computational costs of calculations. The differential equations models on the other hand, have low calculation costs and much more adequate to generate control procedures on the system; but they are not adequate to investigate the probabilistic nature of interactions. In this work the success of the mapping between SME and DE is analyzed, and the success of a control policy generated by DE model with respect to SME model is examined. Index Terms--- Stochastic Master Equation models, Differential Equation Models, Control Policy Design, Systems biology
Fikri, Fariz Fahmi; Nuraini, Nuning
2018-03-01
The differential equation is one of the branches in mathematics which is closely related to human life problems. Some problems that occur in our life can be modeled into differential equations as well as systems of differential equations such as the Lotka-Volterra model and SIR model. Therefore, solving a problem of differential equations is very important. Some differential equations are difficult to solve, so numerical methods are needed to solve that problems. Some numerical methods for solving differential equations that have been widely used are Euler Method, Heun Method, Runge-Kutta and others. However, some of these methods still have some restrictions that cause the method cannot be used to solve more complex problems such as an evaluation interval that we cannot change freely. New methods are needed to improve that problems. One of the method that can be used is the artificial bees colony algorithm. This algorithm is one of metaheuristic algorithm method, which can come out from local search space and do exploration in solution search space so that will get better solution than other method.
Goldstein, M; Haussmann, W; Hayman, W; Rogge, L
1992-01-01
This volume consists of the proceedings of the NATO Advanced Research Workshop on Approximation by Solutions of Partial Differential Equations, Quadrature Formulae, and Related Topics, which was held at Hanstholm, Denmark. These proceedings include the main invited talks and contributed papers given during the workshop. The aim of these lectures was to present a selection of results of the latest research in the field. In addition to covering topics in approximation by solutions of partial differential equations and quadrature formulae, this volume is also concerned with related areas, such as Gaussian quadratures, the Pompelu problem, rational approximation to the Fresnel integral, boundary correspondence of univalent harmonic mappings, the application of the Hilbert transform in two dimensional aerodynamics, finely open sets in the limit set of a finitely generated Kleinian group, scattering theory, harmonic and maximal measures for rational functions and the solution of the classical Dirichlet problem. In ...
Lumping of degree-based mean-field and pair-approximation equations for multistate contact processes
Kyriakopoulos, Charalampos; Grossmann, Gerrit; Wolf, Verena; Bortolussi, Luca
2018-01-01
Contact processes form a large and highly interesting class of dynamic processes on networks, including epidemic and information-spreading networks. While devising stochastic models of such processes is relatively easy, analyzing them is very challenging from a computational point of view, particularly for large networks appearing in real applications. One strategy to reduce the complexity of their analysis is to rely on approximations, often in terms of a set of differential equations capturing the evolution of a random node, distinguishing nodes with different topological contexts (i.e., different degrees of different neighborhoods), such as degree-based mean-field (DBMF), approximate-master-equation (AME), or pair-approximation (PA) approaches. The number of differential equations so obtained is typically proportional to the maximum degree kmax of the network, which is much smaller than the size of the master equation of the underlying stochastic model, yet numerically solving these equations can still be problematic for large kmax. In this paper, we consider AME and PA, extended to cope with multiple local states, and we provide an aggregation procedure that clusters together nodes having similar degrees, treating those in the same cluster as indistinguishable, thus reducing the number of equations while preserving an accurate description of global observables of interest. We also provide an automatic way to build such equations and to identify a small number of degree clusters that give accurate results. The method is tested on several case studies, where it shows a high level of compression and a reduction of computational time of several orders of magnitude for large networks, with minimal loss in accuracy.
International Nuclear Information System (INIS)
Heintze, E.
1993-01-01
The aim of this report is to validate the program MAX3D built up from the discretization of the formulation (FB) established in part 1. A qualitative and quantitative analysis is carried out on numerical results obtained with various test cases of which, for most of them, analytical solutions are known. 32 figs., 3 refs
Skrdla, Peter J; Robertson, Rebecca T
2005-06-02
Many solid-state reactions and phase transformations performed under isothermal conditions give rise to asymmetric, sigmoidally shaped conversion-time (x-t) profiles. The mathematical treatment of such curves, as well as their physical interpretation, is often challenging. In this work, the functional form of a Maxwell-Boltzmann (M-B) distribution is used to describe the distribution of activation energies for the reagent solids, which, when coupled with an integrated first-order rate expression, yields a novel semiempirical equation that may offer better success in the modeling of solid-state kinetics. In this approach, the Arrhenius equation is used to relate the distribution of activation energies to a corresponding distribution of rate constants for the individual molecules in the reagent solids. This distribution of molecular rate constants is then correlated to the (observable) reaction time in the derivation of the model equation. In addition to providing a versatile treatment for asymmetric, sigmoidal reaction curves, another key advantage of our equation over other models is that the start time of conversion is uniquely defined at t = 0. We demonstrate the ability of our simple, two-parameter equation to successfully model the experimental x-t data for the polymorphic transformation of a pharmaceutical compound under crystallization slurry (i.e., heterogeneous) conditions. Additionally, we use a modification of this equation to model the kinetics of a historically significant, homogeneous solid-state reaction: the thermal decomposition of AgMnO4 crystals. The potential broad applicability of our statistical (i.e., dispersive) kinetic approach makes it a potentially attractive alternative to existing models/approaches.
Maxwell and the classical wave particle dualism.
Mendonça, J T
2008-05-28
Maxwell's equations are one of the greatest theoretical achievements in physics of all times. They have survived three successive theoretical revolutions, associated with the advent of relativity, quantum mechanics and modern quantum field theory. In particular, they provide the theoretical framework for the understanding of the classical wave particle dualism.
A unified approach to the Darwin approximation
International Nuclear Information System (INIS)
Krause, Todd B.; Apte, A.; Morrison, P. J.
2007-01-01
There are two basic approaches to the Darwin approximation. The first involves solving the Maxwell equations in Coulomb gauge and then approximating the vector potential to remove retardation effects. The second approach approximates the Coulomb gauge equations themselves, then solves these exactly for the vector potential. There is no a priori reason that these should result in the same approximation. Here, the equivalence of these two approaches is investigated and a unified framework is provided in which to view the Darwin approximation. Darwin's original treatment is variational in nature, but subsequent applications of his ideas in the context of Vlasov's theory are not. We present here action principles for the Darwin approximation in the Vlasov context, and this serves as a consistency check on the use of the approximation in this setting
Directory of Open Access Journals (Sweden)
J. Prakash
2016-03-01
Full Text Available In this paper, a numerical algorithm based on a modified He-Laplace method (MHLM is proposed to solve space and time nonlinear fractional differential-difference equations (NFDDEs arising in physical phenomena such as wave phenomena in fluids, coupled nonlinear optical waveguides and nanotechnology fields. The modified He-Laplace method is a combined form of the fractional homotopy perturbation method and Laplace transforms method. The nonlinear terms can be easily decomposed by the use of He’s polynomials. This algorithm has been tested against time-fractional differential-difference equations such as the modified Lotka Volterra and discrete (modified KdV equations. The proposed scheme grants the solution in the form of a rapidly convergent series. Three examples have been employed to illustrate the preciseness and effectiveness of the proposed method. The achieved results expose that the MHLM is very accurate, efficient, simple and can be applied to other nonlinear FDDEs.
Analysis of an upstream weighted collocation approximation to the transport equation
International Nuclear Information System (INIS)
Shapiro, A.; Pinder, G.F.
1981-01-01
The numerical behavior of a modified orthogonal collocation method, as applied to the transport equations, can be examined through the use of a Fourier series analysis. The necessity of such a study becomes apparent in the analysis of several techniques which emulate classical upstream weighting schemes. These techniques are employed in orthogonal collocation and other numerical methods as a means of handling parabolic partial differential equations with significant first-order terms. Divergent behavior can be shown to exist in one upstream weighting method applied to orthogonal collocation
Biswas, Samir Kumar; Kanhirodan, Rajan; Vasu, Ram Mohan; Roy, Debasish
2011-08-01
We explore a pseudodynamic form of the quadratic parameter update equation for diffuse optical tomographic reconstruction from noisy data. A few explicit and implicit strategies for obtaining the parameter updates via a semianalytical integration of the pseudodynamic equations are proposed. Despite the ill-posedness of the inverse problem associated with diffuse optical tomography, adoption of the quadratic update scheme combined with the pseudotime integration appears not only to yield higher convergence, but also a muted sensitivity to the regularization parameters, which include the pseudotime step size for integration. These observations are validated through reconstructions with both numerically generated and experimentally acquired data.
Solutions of the Low equation in the no-crossing approximation
International Nuclear Information System (INIS)
Kumar, K.S.; Nogami, Y.
1979-01-01
In solving the Low equation for the Chew-Low model, if the crossing term is dropped a ghost state appears in the repulsive channels for a sufficiently large coupling constant. Ernst et al. suggested recently that this difficulty could be avoided by adopting a solution with a Castillejo-Dalitz-Dyson (CDD) pole in its denominator. Contrary to this suggestion, we show that the inclusion of the CDD pole, rather than avoiding the difficulty, only compounds it. We also reexamine Dyson's interpretation of the ''redundant'' CDD solutions, and point out that the Low equation we study possesses solutions to which Dyson's interpretation does not seem to apply
Approximating a retarded-advanced differential equation that models human phonation
Teodoro, M. Filomena
2017-11-01
In [1, 2, 3] we have got the numerical solution of a linear mixed type functional differential equation (MTFDE) introduced initially in [4], considering the autonomous and non-autonomous case by collocation, least squares and finite element methods considering B-splines basis set. The present work introduces a numerical scheme using least squares method (LSM) and Gaussian basis functions to solve numerically a nonlinear mixed type equation with symmetric delay and advance which models human phonation. The preliminary results are promising. We obtain an accuracy comparable with the previous results.
A nonperturbative approximation for the moderate Reynolds number Navier-Stokes equations.
Roper, Marcus; Brenner, Michael P
2009-03-03
The nonlinearity of the Navier-Stokes equations makes predicting the flow of fluid around rapidly moving small bodies highly resistant to all approaches save careful experiments or brute force computation. Here, we show how a linearization of the Navier-Stokes equations captures the drag-determining features of the flow and allows simplified or analytical computation of the drag on bodies up to Reynolds number of order 100. We illustrate the utility of this linearization in 2 practical problems that normally can only be tackled with sophisticated numerical methods: understanding flow separation in the flow around a bluff body and finding drag-minimizing shapes.
A nonperturbative approximation for the moderate Reynolds number Navier–Stokes equations
Roper, Marcus; Brenner, Michael P.
2009-01-01
The nonlinearity of the Navier–Stokes equations makes predicting the flow of fluid around rapidly moving small bodies highly resistant to all approaches save careful experiments or brute force computation. Here, we show how a linearization of the Navier–Stokes equations captures the drag-determining features of the flow and allows simplified or analytical computation of the drag on bodies up to Reynolds number of order 100. We illustrate the utility of this linearization in 2 practical problems that normally can only be tackled with sophisticated numerical methods: understanding flow separation in the flow around a bluff body and finding drag-minimizing shapes. PMID:19211800
Hall, Eric Joseph; Hoel, Hå kon; Sandberg, Mattias; Szepessy, Anders; Tempone, Raul
2016-01-01
posteriori error estimates fail to capture. We propose goal-oriented estimates, based on local error indicators, for the pathwise Galerkin and expected quadrature errors committed in standard, continuous, piecewise linear finite element approximations
International Nuclear Information System (INIS)
Lenaghan, J.T.; Rischke, D.H.
2000-01-01
The temperature dependence of the sigma meson and pion masses is studied in the framework of the O(N ) model. The Cornwall-Jackiw-Tomboulis formalism is applied to derive gap equations for the masses in the Hartree and large-N approximations. Renormalization of the gap equations is carried out within the cut-off and counter-term renormalization schemes. A consistent renormalization of the gap equations within the cut-off scheme is found to be possible only in the large-N approximation and for a finite value of the cut-off. On the other hand, the counter-term scheme allows for a consistent renormalization of both the large-N and Hartree approximations. In these approximations, the meson masses at a given nonzero temperature depend in general on the choice of the cut-off or renormalization scale. As an application, we also discuss the in-medium on-shell decay widths for sigma mesons and pions at rest. (author)
Directory of Open Access Journals (Sweden)
Hossein Jafari
2016-04-01
Full Text Available In this paper, we consider the local fractional decomposition method, variational iteration method, and differential transform method for analytic treatment of linear and nonlinear local fractional differential equations, homogeneous or nonhomogeneous. The operators are taken in the local fractional sense. Some examples are given to demonstrate the simplicity and the efficiency of the presented methods.
Approximate treatment of two soliton solutions of the sine-Gordon equation
International Nuclear Information System (INIS)
Mihaly, L.
1979-05-01
The so called breather solution of the sine-Gordon equation is phenomenologically described by an appropri.ately choosen potential acting between two particles. For some applications the method proves to be equivalent to other classical and quantum calculations. (author)
Directory of Open Access Journals (Sweden)
Mohammad Siddique
2010-08-01
Full Text Available Parabolic partial differential equations with nonlocal boundary conditions arise in modeling of a wide range of important application areas such as chemical diffusion, thermoelasticity, heat conduction process, control theory and medicine science. In this paper, we present the implementation of positivity- preserving Padé numerical schemes to the two-dimensional diffusion equation with nonlocal time dependent boundary condition. We successfully implemented these numerical schemes for both Homogeneous and Inhomogeneous cases. The numerical results show that these Padé approximation based numerical schemes are quite accurate and easily implemented.
Representing the Electromagnetic Field: How Maxwell's Mathematics Empowered Faraday's Field Theory
Tweney, Ryan D.
2011-01-01
James Clerk Maxwell "translated" Michael Faraday's experimentally-based field theory into the mathematical representation now known as "Maxwell's Equations." Working with a variety of mathematical representations and physical models Maxwell extended the reach of Faraday's theory and brought it into consistency with other…
Goličnik, Marko
2011-01-01
The Michaelis-Menten rate equation can be found in most general biochemistry textbooks, where the time derivative of the substrate is a hyperbolic function of two kinetic parameters (the limiting rate V, and the Michaelis constant K(M) ) and the amount of substrate. However, fundamental concepts of enzyme kinetics can be difficult to understand fully, or can even be misunderstood, by students when based only on the differential form of the Michaelis-Menten equation, and the variety of methods available to calculate the kinetic constants from rate versus substrate concentration "textbook data." Consequently, enzyme kinetics can be confusing if an analytical solution of the Michaelis-Menten equation is not available. Therefore, the still rarely known exact solution to the Michaelis-Menten equation is presented here through the explicit closed-form equation in terms of the Lambert W(x) function. Unfortunately, as the W(x) is not available in standard curve-fitting computer programs, the practical use of this direct solution is limited for most life-science students. Thus, the purpose of this article is to provide analytical approximations to the equation for modeling Michaelis-Menten kinetics. The elementary and explicit nature of these approximations can provide students with direct and simple estimations of kinetic parameters from raw experimental time-course data. The Michaelis-Menten kinetics studied in the latter context can provide an ideal alternative to the 100-year-old problems of data transformation, graphical visualization, and data analysis of enzyme-catalyzed reactions. Hence, the content of the course presented here could gradually become an important component of the modern biochemistry curriculum in the 21st century. Copyright © 2011 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Barnes, D.C.; Cayton, T.E.
1980-01-01
The ideal magnetohydrodynamic stability of the diffuse linear pinch is studied in the special case when the poloidal magnetic field component is small compared with the axial field component. A two-term approximation for growth rates is derived by straightforward asymptotic expansion in terms of a small parameter that is proportional to (B/sub theta//rB/sub z/). Evaluation of the second term in the expansion requires only a trivial amount of additional computation after the leading-order eigenvalue and eigenfunction are determined. For small, but finite, values of the expansion parameter the second term is found to be non-negligible compared with the leading term. The approximate solution is compared with exact solutions and the range of validity of the approximation is investigated. Implications of these results to a wide class of problems involving weakly unstable near theta-pinch configurations are discussed
Multigroup neutron transport equation in the diffusion and P{sub 1} approximation
Energy Technology Data Exchange (ETDEWEB)
Obradovic, D [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)
1970-07-01
Investigations of the properties of the multigroup transport operator, width and without delayed neutrons in the diffusion and P{sub 1} approximation, is performed using Keldis's theory of operator families as well as a technique . recently used for investigations into the properties of the general linearized Boltzmann operator. It is shown that in the case without delayed neutrons, multigroup transport operator in the diffusion and P{sub 1} approximation possesses a complete set of generalized eigenvectors. A formal solution to the initial value problem is also given. (author)
International Nuclear Information System (INIS)
Gelß, Patrick; Matera, Sebastian; Schütte, Christof
2016-01-01
In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO 2 (110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.
Talib, Imran; Belgacem, Fethi Bin Muhammad; Asif, Naseer Ahmad; Khalil, Hammad
2017-01-01
In this research article, we derive and analyze an efficient spectral method based on the operational matrices of three dimensional orthogonal Jacobi polynomials to solve numerically the mixed partial derivatives type multi-terms high dimensions generalized class of fractional order partial differential equations. We transform the considered fractional order problem to an easily solvable algebraic equations with the aid of the operational matrices. Being easily solvable, the associated algebraic system leads to finding the solution of the problem. Some test problems are considered to confirm the accuracy and validity of the proposed numerical method. The convergence of the method is ensured by comparing our Matlab software simulations based obtained results with the exact solutions in the literature, yielding negligible errors. Moreover, comparative results discussed in the literature are extended and improved in this study.
Gelß, Patrick; Matera, Sebastian; Schütte, Christof
2016-06-01
In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO2(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.
Energy Technology Data Exchange (ETDEWEB)
Gelß, Patrick, E-mail: p.gelss@fu-berlin.de; Matera, Sebastian, E-mail: matera@math.fu-berlin.de; Schütte, Christof, E-mail: schuette@mi.fu-berlin.de
2016-06-01
In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO{sub 2}(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.
International Nuclear Information System (INIS)
Ligou, J.; Thomi, P.A.
1973-01-01
1 - Nature of physical problem solved: Integral transport equation, anisotropy of diffusion in P1 approximation. SHADOK3 - cylindrical geometry; direct solution of the linear system. SHADOK4 - cylindrical geometry; Thermalization iteration; solution of the linear system with inverse matrix calculation. SHADOK5 - like SHADOK3 for spherical geometry. SHADOK6 - like SHADOK4 for spherical geometry. 2 - Method of solution: Analysis in terms of annuli for each of which polynomial approximation is applied. Dynamic allocation (for formulas see report TM(10)). 3 - Restrictions on the complexity of the problem: Relative accuracy of the Bickley functions about 1.0E-13
How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems
Cortazar, C.; Elgueta, M.; Rossi, J. D.; Wolanski, N.
2006-01-01
We present a model for nonlocal diffusion with Neumann boundary conditions in a bounded smooth domain prescribing the flux through the boundary. We study the limit of this family of nonlocal diffusion operators when a rescaling parameter related to the kernel of the nonlocal operator goes to zero. We prove that the solutions of this family of problems converge to a solution of the heat equation with Neumann boundary conditions.
Hölder-type approximation for the spatial source term of a backward heat equation
DEFF Research Database (Denmark)
Dang, Duc Trong; Mach, Minh Nguyet; Pham, Ngoc Dinh Alain
2010-01-01
We consider the problem of determining a pair of functions $(u,f)$ satisfying the two-dimensional backward heat equation \\bqq u_t -\\Delta u &=&\\varphi(t)f (x,y), ~~t\\in (0,T), (x,y)\\in (0,1)\\times (0,1),\\hfill\\\\ u(x,y,T)&=&g(x,y), \\eqq together with the homogeneous boundary conditions, where...
Approximation of a solution for a K-positive definite operator equation
International Nuclear Information System (INIS)
Chidume, C.E.; Osilike, M.O.
1994-11-01
Let E be a separable q-uniformly smooth Banach space, q > 1, and let A : D(A) is contained in-bar E → E be a K-positive definite operator. Let f is an element of E be arbitrary. An iterative method is constructed which converges strongly to the unique solution of the equation Ax = f. Our result resolves two questions raised in Chidume and Aneke (Applicable Analysis Vol. 50 (1993), p. 293). (author). 13 refs
Energy Technology Data Exchange (ETDEWEB)
Ju, Lili; Tian, Li; Wang, Desheng
2008-10-31
In this paper, we present a residual-based a posteriori error estimate for the finite volume discretization of steady convection– diffusion–reaction equations defined on surfaces in R3, which are often implicitly represented as level sets of smooth functions. Reliability and efficiency of the proposed a posteriori error estimator are rigorously proved. Numerical experiments are also conducted to verify the theoretical results and demonstrate the robustness of the error estimator.
Generalized large-scale semigeostrophic approximations for the f-plane primitive equations
Oliver, Marcel; Vasylkevych, Sergiy
2016-05-01
We derive a family of balance models for rotating stratified flow in the primitive equation (PE) setting. By construction, the models possess conservation laws for energy and potential vorticity and are formally of the same order of accuracy as Hoskins’ semigeostrophic equations. Our construction is based on choosing a new coordinate frame for the PE variational principle in such a way that the consistently truncated Lagrangian degenerates. We show that the balance relations so obtained are elliptic when the fluid is stably stratified and certain smallness assumptions are satisfied. Moreover, the potential temperature can be recovered from the potential vorticity via inversion of a non-standard Monge-Ampère problem which is subject to the same ellipticity condition. While the present work is entirely formal, we conjecture, based on a careful rewriting of the equations of motion and a straightforward derivative count, that the Cauchy problem for the balance models is well posed subject to conditions on the initial data. Our family of models includes, in particular, the stratified analog of the L 1 balance model of Salmon.
Fokker-Planck-Rosenbluth-type equations for self-gravitating systems in the 1PN approximation
International Nuclear Information System (INIS)
Ramos-Caro, Javier; Gonzalez, Guillermo A
2008-01-01
We present two formulations of Fokker-Planck-Rosenbluth-type (FPR) equations for many-particle self-gravitating systems, with first-order relativistic corrections in the post-Newtonian approach (1PN). The first starts from a covariant Fokker-Planck equation for a simple gas, introduced recently by Chacon-Acosta and Kremer (2007 Phys. Rev. E 76 021201). The second derivation is based on the establishment of an 1PN-BBGKY hierarchy, developed systematically from the 1PN microscopic law of force and using the Klimontovich-Dupree (KD) method. We close the hierarchy by the introduction of a two-point correlation function that describes adequately the relaxation process. This picture reveals an aspect that is not considered in the first formulation: the contribution of ternary correlation patterns to the diffusion coefficients, as a consequence of the nature of 1PN interaction. Both formulations can be considered as a generalization of the equation derived by Rezania and Sobouti (2000 Astron. Astrophys. 354 1110), to stellar systems where the relativistic effects of gravitation play a significant role
Generalized large-scale semigeostrophic approximations for the f-plane primitive equations
International Nuclear Information System (INIS)
Oliver, Marcel; Vasylkevych, Sergiy
2016-01-01
We derive a family of balance models for rotating stratified flow in the primitive equation (PE) setting. By construction, the models possess conservation laws for energy and potential vorticity and are formally of the same order of accuracy as Hoskins’ semigeostrophic equations. Our construction is based on choosing a new coordinate frame for the PE variational principle in such a way that the consistently truncated Lagrangian degenerates. We show that the balance relations so obtained are elliptic when the fluid is stably stratified and certain smallness assumptions are satisfied. Moreover, the potential temperature can be recovered from the potential vorticity via inversion of a non-standard Monge–Ampère problem which is subject to the same ellipticity condition. While the present work is entirely formal, we conjecture, based on a careful rewriting of the equations of motion and a straightforward derivative count, that the Cauchy problem for the balance models is well posed subject to conditions on the initial data. Our family of models includes, in particular, the stratified analog of the L 1 balance model of Salmon. (paper)
Inverse source problems for eddy current equations
International Nuclear Information System (INIS)
Rodríguez, Ana Alonso; Valli, Alberto; Camaño, Jessika
2012-01-01
We study the inverse source problem for the eddy current approximation of Maxwell equations. As for the full system of Maxwell equations, we show that a volume current source cannot be uniquely identified by knowledge of the tangential components of the electromagnetic fields on the boundary, and we characterize the space of non-radiating sources. On the other hand, we prove that the inverse source problem has a unique solution if the source is supported on the boundary of a subdomain or if it is the sum of a finite number of dipoles. We address the applicability of this result for the localization of brain activity from electroencephalography and magnetoencephalography measurements. (paper)
International Nuclear Information System (INIS)
Soysal, A.O.; Semlyen, A.
1994-01-01
A general methodology is presented for the state equation approximation of a multiple input-output linear system from transfer matrix data. A complex transformation matrix, obtained by eigen analysis at a fixed frequency, is used for diagonalization of the transfer matrix over the whole frequency range. A scalar estimation procedure is applied for identification of the modal transfer functions. The state equations in the original coordinates are obtained by inverse transformation. An iterative Gauss-Newton refinement process is used to reduce the overall error of the approximation. The developed methodology is applied to the phase domain modeling of untransposed transmission lines. The approach makes it possible to perform EMTP calculations directly in the phase domain. This results in conceptual simplification and savings in computation time since modal transformations are not needed in the sequences of the transient analysis. The presented procedure is compared with the conventional modal approach in terms of accuracy and computation time
Directory of Open Access Journals (Sweden)
Alsaedi Ahmed
2009-01-01
Full Text Available A generalized quasilinearization technique is developed to obtain a sequence of approximate solutions converging monotonically and quadratically to a unique solution of a boundary value problem involving Duffing type nonlinear integro-differential equation with integral boundary conditions. The convergence of order for the sequence of iterates is also established. It is found that the work presented in this paper not only produces new results but also yields several old results in certain limits.
International Nuclear Information System (INIS)
Bahar, M.K.; Yasuk, F.
2012-01-01
The solutions of the effective mass Dirac equation for the Manning-Rosen potential with the centrifugal term are studied approximately in N dimension. The relativistic energy spectrum and two-component spinor eigenfunctions are obtained by the asymptotic iteration method. We have also investigated eigenvalues of the effective mass Dirac-Manning-Rosen problem for α = 0 or α = 1. In this case, the Manning-Rosen potential reduces to the Hulthen potential. (author)
International Nuclear Information System (INIS)
Hammouch, Z.
2012-01-01
The 'anelastic' approximation allows us to filter the acoustic waves thanks to an asymptotic development of the Navier-Stokes equations, so increasing the averaged time step, during the numerical simulation of hydrodynamic instabilities development. So, the anelastic equations for a two fluid mixture in case of Rayleigh-Taylor instability are established.The linear stability of Rayleigh-Taylor flow is studied, for the first time, for perfect fluids in the anelastic approximation. We define the Stokes problem resulting from Navier-Stokes equations without the non linear terms (a part of the buoyancy is considered); the ellipticity is demonstrated, the Eigenmodes and the invariance related to the pressure are detailed. The Uzawa's method is extended to the anelastic approximation and shows the decoupling speeds in 3D, the particular case k = 0 and the spurious modes of pressure. Passing to multi-domain allowed to establish the transmission conditions.The algorithms and the implementation in the existing program are validated by comparing the Uzawa's operator in Fortran and Mathematica languages, to an experiment with incompressible fluids and results from anelastic and compressible numerical simulations. The study of the influence of the initial stratification of both fluids on the development of the Rayleigh-Taylor instability is initiated. (author) [fr
The free Maxwell field in curved spacetime
International Nuclear Information System (INIS)
Kueskue, M.
2001-09-01
The aim of this thesis is to discuss quantizations of the free Maxwell field in flat and curved spacetimes. First we introduce briefly some notions from tensor analysis and the causal structure of spacetime. As an introduction to the main topic, we review some aspects of the two axiomatic quantum field theories, Wightman theory and algebraic quantum field theory. We also give an introduction into concepts of the quantization of fields on curved spacetime backgrounds. Then the wave equation and quantization of the Maxwell field in flat spacetimes is discussed. It follows a review of J. Dimock's quantization of the Maxwell field on curved spacetimes and then we come to our main result: We show explicitly that the Maxwell field, defined by dF=0 and δF=0, has a well posed initial value formulation on arbitrary globally hyperbolic spacetime manifolds. We prove the existence and uniqueness of fundamental solutions without employing a vector potential. Thus our solution is also applicable to spacetimes not satisfying the Poincare lemma and should lead to a quantization of the Maxwell field on non-trivial spacetime backgrounds. This in turn provides the opportunity to investigate physical states on non-trivial spacetime-topologies and could lead to the discovery of new quantum phenomena. (orig.)
Anomalies of the free loop wave equation in the WKB approximation
International Nuclear Information System (INIS)
Weisz, P.; Luescher, M.; Symanzik, K.
1980-04-01
We derive a well-defined, reparametrization invariant expression for the next to leading term in the small h/2π expansion of the Euclidean loop Green's functional PSI(C). To this order in h/2π, we then verify that PSI(C) satisfies a renormalized loop wave equation, which involves a number of local, but non-harmonic anomalous terms. Also, we find that the quantum fluctuations of the string give rise, in 3 + 1 dimensions, to a correction of the static quark potential by an attractive Coulomb potential of universal strength αsub(string) = π/12. (orig.)
International Nuclear Information System (INIS)
Obradovic, D.
1970-04-01
In the study of the nuclear reactors space-time behaviour the modal analysis is very often used though some basic mathematical problems connected with application of this methods are still unsolved. In this paper the modal analysis is identified as a set of the methods in the mathematical literature known as the Galerkin methods (or projection methods, or sometimes direct methods). Using the results of the mathematical investigations of these methods the applicability of the Galerkin type methods to the calculations of the eigenvalue and eigenvectors of the stationary and non-stationary diffusion operator, as well as for the solutions of the corresponding functional equations, is established (author)
Guermond, Jean-Luc; Kanschat, Guido
2010-01-01
We revisit some results from M. L. Adams [Nu cl. Sci. Engrg., 137 (2001), pp. 298- 333]. Using functional analytic tools we prove that a necessary and sufficient condition for the standard upwind discontinuous Galerkin approximation to converge to the correct limit solution in the diffusive regime is that the approximation space contains a linear space of continuous functions, and the restrictions of the functions of this space to each mesh cell contain the linear polynomials. Furthermore, the discrete diffusion limit converges in the Sobolev space H1 to the continuous one if the boundary data is isotropic. With anisotropic boundary data, a boundary layer occurs, and convergence holds in the broken Sobolev space H with s < 1/2 only © 2010 Society for Industrial and Applied Mathematics.
Directory of Open Access Journals (Sweden)
Ituen B. Okon
2017-01-01
Full Text Available We used a tool of conventional Nikiforov-Uvarov method to determine bound state solutions of Schrodinger equation with quantum interaction potential called Hulthen-Yukawa inversely quadratic potential (HYIQP. We obtained the energy eigenvalues and the total normalized wave function. We employed Hellmann-Feynman Theorem (HFT to compute expectation values r-2, r-1, T, and p2 for four different diatomic molecules: hydrogen molecule (H2, lithium hydride molecule (LiH, hydrogen chloride molecule (HCl, and carbon (II oxide molecule. The resulting energy equation reduces to three well-known potentials which are as follows: Hulthen potential, Yukawa potential, and inversely quadratic potential. The bound state energies for Hulthen and Yukawa potentials agree with the result reported in existing literature. We obtained the numerical bound state energies of the expectation values by implementing MATLAB algorithm using experimentally determined spectroscopic constant for the different diatomic molecules. We developed mathematica programming to obtain wave function and probability density plots for different orbital angular quantum number.
International Nuclear Information System (INIS)
Balenzategui, J. L.
1999-01-01
A new way for the modelling of the charge and discharge processes in electrochemical batteries based on the use of integral equations is presented. The proposed method models the charge curves by the so called fractional or cumulative integrals of a certain objective function f(t) that must be sought. The charge figures can be easily fitted by breaking down this objective function as the addition of two different Lorentz type functions: the first one is associated to the own charge process and the second one to the overcharge process. The method allows calculating the starting voltage for overcharge as the intersection between both functions. The curve fitting of this model to different experimental charge curves, by using the Marquart algorithm, has shown very accurate results. In the case of discharge curves, two possible methods for modelling purposes are suggested, well by using the same kind of integral equations, well by the simple subtraction of an objective function f(t) from a constant value V O D. Many other aspects for the study and analysis of this method in order to improve its results in further developments are also discussed. (Author) 10 refs
A Method for Generating Approximate Similarity Solutions of Nonlinear Partial Differential Equations
Directory of Open Access Journals (Sweden)
Mazhar Iqbal
2014-01-01
Full Text Available Standard application of similarity method to find solutions of PDEs mostly results in reduction to ODEs which are not easily integrable in terms of elementary or tabulated functions. Such situations usually demand solving reduced ODEs numerically. However, there are no systematic procedures available to utilize these numerical solutions of reduced ODE to obtain the solution of original PDE. A practical and tractable approach is proposed to deal with such situations and is applied to obtain approximate similarity solutions to different cases of an initial-boundary value problem of unsteady gas flow through a semi-infinite porous medium.
Classes of exact Einstein Maxwell solutions
Komathiraj, K.; Maharaj, S. D.
2007-12-01
We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.
A multipoint flux approximation of the steady-state heat conduction equation in anisotropic media
Salama, Amgad; Sun, Shuyu; El-Amin, M. F.
2013-01-01
In this work, we introduce multipoint flux (MF) approximation method to the problem of conduction heat transfer in anisotropic media. In such media, the heat flux vector is no longer coincident with the temperature gradient vector. In this case, thermal conductivity is described as a second order tensor that usually requires, at least, six quantities to be fully defined in general three-dimensional problems. The two-point flux finite differences approximation may not handle such anisotropy and essentially more points need to be involved to describe the heat flux vector. In the framework of mixed finite element method (MFE), the MFMFE methods are locally conservative with continuous normal fluxes. We consider the lowest order Brezzi-Douglas-Marini (BDM) mixed finite element method with a special quadrature rule that allows for nodal velocity elimination resulting in a cell-centered system for the temperature. We show comparisons with some analytical solution of the problem of conduction heat transfer in anisotropic long strip. We also consider the problem of heat conduction in a bounded, rectangular domain with different anisotropy scenarios. It is noticed that the temperature field is significantly affected by such anisotropy scenarios. Also, the technique used in this work has shown that it is possible to use the finite difference settings to handle heat transfer in anisotropic media. In this case, heat flux vectors, for the case of rectangular mesh, generally require six points to be described. Copyright © 2013 by ASME.
Numerical solution of matrix exponential in burn-up equation using mini-max polynomial approximation
International Nuclear Information System (INIS)
Kawamoto, Yosuke; Chiba, Go; Tsuji, Masashi; Narabayashi, Tadashi
2015-01-01
Highlights: • We propose a new numerical solution of matrix exponential in burn-up depletion calculations. • The depletion calculation with extremely short half-lived nuclides can be done numerically stable with this method. • The computational time is shorter than the other conventional methods. - Abstract: Nuclear fuel burn-up depletion calculations are essential to compute the nuclear fuel composition transition. In the burn-up calculations, the matrix exponential method has been widely used. In the present paper, we propose a new numerical solution of the matrix exponential, a Mini-Max Polynomial Approximation (MMPA) method. This method is numerically stable for burn-up matrices with extremely short half-lived nuclides as the Chebyshev Rational Approximation Method (CRAM), and it has several advantages over CRAM. We also propose a multi-step calculation, a computational time reduction scheme of the MMPA method, which can perform simultaneously burn-up calculations with several time periods. The applicability of these methods has been theoretically and numerically proved for general burn-up matrices. The numerical verification has been performed, and it has been shown that these methods have high precision equivalent to CRAM
International Nuclear Information System (INIS)
Sanchez, Richard
1977-01-01
A set of approximate solutions for the isotropic two-dimensional neutron transport problem has been developed using the Interface Current formalism. The method has been applied to regular lattices of rectangular cells containing a fuel pin, cladding and water, or homogenized structural material. The cells are divided into zones which are homogeneous. A zone-wise flux expansion is used to formulate a direct collision probability problem within a cell. The coupling of the cells is made by making extra assumptions on the currents entering and leaving the interfaces. Two codes have been written: the first uses a cylindrical cell model and one or three terms for the flux expansion; the second uses a two-dimensional flux representation and does a truly two-dimensional calculation inside each cell. In both codes one or three terms can be used to make a space-independent expansion of the angular fluxes entering and leaving each side of the cell. The accuracies and computing times achieved with the different approximations are illustrated by numerical studies on two benchmark pr
A multipoint flux approximation of the steady-state heat conduction equation in anisotropic media
Salama, Amgad
2013-03-20
In this work, we introduce multipoint flux (MF) approximation method to the problem of conduction heat transfer in anisotropic media. In such media, the heat flux vector is no longer coincident with the temperature gradient vector. In this case, thermal conductivity is described as a second order tensor that usually requires, at least, six quantities to be fully defined in general three-dimensional problems. The two-point flux finite differences approximation may not handle such anisotropy and essentially more points need to be involved to describe the heat flux vector. In the framework of mixed finite element method (MFE), the MFMFE methods are locally conservative with continuous normal fluxes. We consider the lowest order Brezzi-Douglas-Marini (BDM) mixed finite element method with a special quadrature rule that allows for nodal velocity elimination resulting in a cell-centered system for the temperature. We show comparisons with some analytical solution of the problem of conduction heat transfer in anisotropic long strip. We also consider the problem of heat conduction in a bounded, rectangular domain with different anisotropy scenarios. It is noticed that the temperature field is significantly affected by such anisotropy scenarios. Also, the technique used in this work has shown that it is possible to use the finite difference settings to handle heat transfer in anisotropic media. In this case, heat flux vectors, for the case of rectangular mesh, generally require six points to be described. Copyright © 2013 by ASME.
The varying cosmological constant: a new approximation to the Friedmann equations and universe model
Öztaş, Ahmet M.; Dil, Emre; Smith, Michael L.
2018-05-01
We investigate the time-dependent nature of the cosmological constant, Λ, of the Einstein Field Equation (EFE). Beginning with the Einstein-Hilbert action as our fundamental principle we develop a modified version of the EFE allowing the value of Λ to vary as a function of time, Λ(t), indirectly, for an expanding universe. We follow the evolving Λ presuming four-dimensional space-time and a flat universe geometry and present derivations of Λ(t) as functions of the Hubble constant, matter density, and volume changes which can be traced back to the radiation epoch. The models are more detailed descriptions of the Λ dependence on cosmological factors than previous, allowing calculations of the important parameters, Ωm and Ωr, to deep lookback times. Since we derive these without the need for extra dimensions or other special conditions our derivations are useful for model evaluation with astronomical data. This should aid resolution of several difficult problems of astronomy such as the best value for the Hubble constant at present and at recombination.
International Nuclear Information System (INIS)
Monticelli, Cintia O.; Wortmann, Sergio; Segatto, Cynthia F.
2005-01-01
In this work is obtained a hybrid solution to the Fokker-Planck equation with energy dependency, very used in ion implantation problems. The main idea relies on the application of Laplace transform in the energy variable, and finite-difference in the spatial variable and in the angular variable. This procedure leads to a symbolic matrix problem for the transformed energy. To solve this system, is needed to do the Laplace inverse of the (sI+A) matrix, where s is a complex parameter, I is the identity matrix and A is a square matrix that was proceeded from the finite-difference in the spatial variable and in the angular variable. The matrix A is not defective, then is taken decomposition of A in a sum of two others matrices, where one is defective. It leads a iterative inversion method, similar the source fixed method combined with the diagonalization method, then is obtained the values to the angular flux. Hereafter we can to determine the energy deposited into the electronic system and in the nuclear system of the target. To comprove the results obtained, the simulation of implantation of B into Si at energies ranging from 1 KeV to 50 MeV was carried out and compared with the results by software SRIM2003. (author)
FN approximation of the solution to a singular integral equation of classical reactor physics
Energy Technology Data Exchange (ETDEWEB)
Ganapol, B.D. [Department of Aerospace and Mechanical Engineering, University of Arizona, AME Building, Tucson, AZ 85721 (United States)]. E-mail: ganapol@ame.arizona.edu
2004-11-01
The iterated FN method is applied to a singular integral equation arising from a classical problem of reactor physics to determine the distribution of fissile material giving a spatially uniform flux. The FN iterations are accelerated toward convergence through the Wynn-algorithm - but first - Happy Birthday 'Fast Eddie' Larsen Why do I refer to the well known, most proper and exquisitely accomplished Edward W. Larsen as 'Fast Eddie'. Well our story begins in a small back bar room in the lobby of one of Los Alamos' finest and most luxurious hotels. Two young men were having a transport theoretic discussion while they were engaged in a serious game of pool with monetary benefits going to the winner. In addition, the two were sipping their most favorite lavation in rather large quantities - one, a short stocky man with thinning hair, was sipping to forget the cost of his recent divorce, and the other, a shorter stockier man also with thinning hair, was drinking, well because he liked to drink and it just made him silly. As they continued their transport discussion, one stocky man turned to the other and said, 'I wonder what 'Fast Eddie' Larsen would say to our transport question'. The other stocky man immediately thought the 'Fast Eddie' reference was to Paul Newman who played 'Fast Eddie', an expert at applied particle transport theory (a pool player) in the movie the Hustler and asked if indeed this was the case. The first stocky man said 'No. I call everyone with the name Ed 'Fast Eddie' ' - and that's the story of how 'Fast Eddie' Larsen got his name. Happy 60th Ed and thanks for all the great transport theory - from one of your biggest fans.
FN approximation of the solution to a singular integral equation of classical reactor physics
International Nuclear Information System (INIS)
Ganapol, B.D.
2004-01-01
The iterated FN method is applied to a singular integral equation arising from a classical problem of reactor physics to determine the distribution of fissile material giving a spatially uniform flux. The FN iterations are accelerated toward convergence through the Wynn-algorithm - but first - Happy Birthday 'Fast Eddie' Larsen Why do I refer to the well known, most proper and exquisitely accomplished Edward W. Larsen as 'Fast Eddie'. Well our story begins in a small back bar room in the lobby of one of Los Alamos' finest and most luxurious hotels. Two young men were having a transport theoretic discussion while they were engaged in a serious game of pool with monetary benefits going to the winner. In addition, the two were sipping their most favorite lavation in rather large quantities - one, a short stocky man with thinning hair, was sipping to forget the cost of his recent divorce, and the other, a shorter stockier man also with thinning hair, was drinking, well because he liked to drink and it just made him silly. As they continued their transport discussion, one stocky man turned to the other and said, 'I wonder what 'Fast Eddie' Larsen would say to our transport question'. The other stocky man immediately thought the 'Fast Eddie' reference was to Paul Newman who played 'Fast Eddie', an expert at applied particle transport theory (a pool player) in the movie the Hustler and asked if indeed this was the case. The first stocky man said 'No. I call everyone with the name Ed 'Fast Eddie' ' - and that's the story of how 'Fast Eddie' Larsen got his name. Happy 60th Ed and thanks for all the great transport theory - from one of your biggest fans
International Nuclear Information System (INIS)
Chang, J.; Sandler, S.I.
1995-01-01
We have extended the Wertheim integral equation theory to mixtures of hard spheres with two attraction sites in order to model homonuclear hard-sphere chain fluids, and then solved these equations with the polymer-Percus--Yevick closure and the ideal chain approximation to obtain the average intermolecular and overall radial distribution functions. We obtain explicit expressions for the contact values of these distribution functions and a set of one-dimensional integral equations from which the distribution functions can be calculated without iteration or numerical Fourier transformation. We compare the resulting predictions for the distribution functions with Monte Carlo simulation results we report here for five selected binary mixtures. It is found that the accuracy of the prediction of the structure is the best for dimer mixtures and declines with increasing chain length and chain-length asymmetry. For the equation of state, we have extended the dimer version of the thermodynamic perturbation theory to the hard-sphere chain mixture by introducing the dimer mixture as an intermediate reference system. The Helmholtz free energy of chain fluids is then expressed in terms of the free energy of the hard-sphere mixture and the contact values of the correlation functions of monomer and dimer mixtures. We compared with the simulation results, the resulting equation of state is found to be the most accurate among existing theories with a relative average error of 1.79% for 4-mer/8-mer mixtures, which is the worst case studied in this work. copyright 1995 American Institute of Physics
Approximate Solution of Schrödinger Equation with Pseudo-Gaussian Potential Viewed as a Perturbation
Directory of Open Access Journals (Sweden)
Iacob Theodor-Felix
2015-12-01
Full Text Available We consider the Schrödinger equation with pseudo-Gaussian potential and point out that it is basically made up by a term representing the harmonic oscillator potential and an additional term, which is actually a power series that converges rapidly. Based on this observation the system can be considered as a perturbation of harmonic oscillator. The perturbation method is used to approximate the energy levels of pseudo- Gaussian oscillator. The results are compared with those obtained in the analytic and numeric case.
Directory of Open Access Journals (Sweden)
D. Olvera
2015-01-01
Full Text Available We expand the application of the enhanced multistage homotopy perturbation method (EMHPM to solve delay differential equations (DDEs with constant and variable coefficients. This EMHPM is based on a sequence of subintervals that provide approximate solutions that require less CPU time than those computed from the dde23 MATLAB numerical integration algorithm solutions. To address the accuracy of our proposed approach, we examine the solutions of several DDEs having constant and variable coefficients, finding predictions with a good match relative to the corresponding numerical integration solutions.
Directory of Open Access Journals (Sweden)
Adam Weintrit
2013-06-01
Full Text Available In the paper the author presents overview of the meridian distance approximations. He would like to find the answer for the question what is actually the distance from the equator to the pole - the polar distance. In spite of appearances this is not such a simple question. The problem of determining the polar distance is a great opportunity to demonstrate the multitude of possible solutions in common use. At the beginning of the paper the author discusses some approximations and a few exact expressions (infinite sums to calculate perimeter and quadrant of an ellipse, he presents convenient measurement units of the distance on the surface of the Earth, existing methods for the solution of the great circle and great elliptic sailing, and in the end he analyses and compares geodetic formulas for the meridian arc length.
Approximated transport-of-intensity equation for coded-aperture x-ray phase-contrast imaging.
Das, Mini; Liang, Zhihua
2014-09-15
Transport-of-intensity equations (TIEs) allow better understanding of image formation and assist in simplifying the "phase problem" associated with phase-sensitive x-ray measurements. In this Letter, we present for the first time to our knowledge a simplified form of TIE that models x-ray differential phase-contrast (DPC) imaging with coded-aperture (CA) geometry. The validity of our approximation is demonstrated through comparison with an exact TIE in numerical simulations. The relative contributions of absorption, phase, and differential phase to the acquired phase-sensitive intensity images are made readily apparent with the approximate TIE, which may prove useful for solving the inverse phase-retrieval problem associated with these CA geometry based DPC.
International Nuclear Information System (INIS)
Zhang Yongde.
1987-03-01
In this paper, the neutron Dirac-equation is presented. After decoupling it into two equations of the simple spinors, the rigorous solution of this equation is obtained in the case of slab-like uniform magnetic fields at perpendicular incidence. At non-relativistic approximation and first order approximation of weak field (NRWFA), our results have included all results that have been obtained in references for this case up to now. The corresponding transformations of the neutron's spin vectors are given. The single particle spectrum and its approximate expression are obtained. The characteristics of quantum statistics with the approximate expression of energy spectrum are studied. (author). 15 refs
International Nuclear Information System (INIS)
Lim, T.
2011-01-01
To simulate numerically a non-destructive by eddy current testing (NDT-CF), the sensor response can be modeled through a semi-analytical approach by volume integral equations. Faster than the finite element method, this approach is however restricted to the study of plane or cylindrical parts (without taking into account the edge effects) because of the complexity of the expression of the dyadic Green function for more general configurations. However, there is an industrial demand to extend the capabilities of the CF model in complex configurations (deformed plates, edges effects...). We were thus brought to formulate the electromagnetic problem differently, by setting ourselves the goal of maintaining a semi-analytical approach. The surface integral equation (SIE) expresses the volume problem by an equivalent transmission one at the interfaces (2D) between homogeneous sub-domains. This problem is approached by a linear system (by the method of moments), whose number of unknowns is reduced due to the nature of the surfacic mesh. Therefore, this system can be solved by a direct solver for small configurations. That enabled us to treat several various positions of the sensor for only one inversion of the impedance matrix. The numerical results obtained using this formulation involve plates with consideration of edge effects such as edge and corner. They are consistent with results obtained by the finite element method. For larger configurations, we conducted a preliminary study for the adaptation of an acceleration method of the matrix vector product involved in an iterative solver (fast multipole method or FMM) to define the conditions under which the FMM calculation works correctly (accuracy, convergence...) in the NDT's domain. A special attention has been given to the choice of basis functions (which have to satisfy an Hdiv conforming property) and on the evaluation of near interactions (which are weakly singular). (author) [fr
Monserrat, Bartomeu
2010-01-01
El dimoni de Maxwell és el resultat d'un experiment mental que va proposar el físic escocès James Clerk Maxwell (1831-1879), que si es complís amenaçaria la validesa de la segona llei de la termodinàmica. Segons aquest experiment, seria possible la transmissió de calor d'un cos a un altre de més calent sense cap altre canvi. S'hi ex- posen diverses solucions, que van des de la interacció entre la mesura i el sistema mesurat, fins a la teoria de la informació. Aquest article, origi...
MAXWELL3, 3-D FEM Electromagnetism
International Nuclear Information System (INIS)
Grant, J.B.
2001-01-01
1 - Description of program or function: MAXWELL3 is a linear, time domain, finite element code designed for simulation of electromagnetic fields interacting with three-dimensional objects. The simulation region is discretized into 6-sided, 8-nodded elements which need not form a logically regular grid. Scatterers may be perfectly conducting or dielectric. Restart capability and a Muer-type radiating boundary are included. MAXWELL3 can be run in a two-dimensional mode or on infinitesimally thin geometries. The output of time histories on surfaces, or shells, in addition to volumes, is allowed. Two post-processors are included - HIST2XY, which splits the MAXWELL3 history file into simple xy data files, and FFT A BS, which performs fast Fourier transformations on the xy data. 2 - Method of solution: The numerical method requires that the model be discretized with a mesh generator. MAXWELL3 then uses the mesh and computes the time domain electric and magnetic fields by integrating Maxwell's divergence-free curl equations over time. The output from MAXWELL3 can then be used with a post-processor to get the desired information in a graphical form. The explicit time integration is done with a leap-frog technique that alternates evaluating the electric and magnetic fields at half time steps. This allows for centered time differencing accurate in second order. The algorithm is naturally robust and requires no parameters. 3 - Restrictions on the complexity of the problem: MAXWELL3 has no mesh generation capabilities. Anisotropic, nonlinear, and magnetic materials cannot be modeled. Material interfaces only account for dielectric changes and neglect any surface charges that would be present at the surface of a partially conducting material. The radiation boundary algorithm is only accurate for normally incident fields and becomes less accurate as the angle of incidence increases. Thus, only models using scattered fields should use the radiation boundary. This limits MAXWELL3
DEFF Research Database (Denmark)
Köylüoglu, H. U.; Nielsen, Søren R. K.; Cakmak, A. S.
Geometrically non-linear multi-degree-of-freedom (MDOF) systems subject to random excitation are considered. New semi-analytical approximate forward difference equations for the lower order non-stationary statistical moments of the response are derived from the stochastic differential equations...... of motion, and, the accuracy of these equations is numerically investigated. For stationary excitations, the proposed method computes the stationary statistical moments of the response from the solution of non-linear algebraic equations....
International Nuclear Information System (INIS)
Maertens, H.D.
1982-01-01
The inhomogenious structure of modern heavy water reactor fuel elements result in a strong spacial dependence of the neutron flux. The flux distribution can be calculated in detail by numerical methods, which describe exactly the geometrical heterogeniety and take into account the neutron flux anisotropy by higher transport theoretical approximations. Starting from the discrete ordinate method an approximation of the neutron transport equation has been developed, allowing for a cylindrical representation of the fuel-elements in a rectangular array of rods. The discretisation of the space variables, is based on the finite-difference approximation, defining a rectangular lattice in a two-dimensional cartesian coordinate system, which can be cut and replaced by circular mesh elements of a partially one-dimensional cylindrical coordinate system at arbitrary space points. To couple the two spacial regions the outer circle line of a cylindrical geometry is approximated in the cartesian system by a polygon with n >= 8. A cylindrical geometry is approximated in the cartesian system by a polygon with n>=8. A cylindrical geometry is thus enclosed by a system of two-dimensional rectangular, triangular and trapezoid mesh elements. The directional distribution of the neutron flux is conserved when switching from the xy-system to the cylindrical coordinate system. The angle discretisation by balanced sets of squares (EQsub(n)) allows a simple definition of transfer-coefficients for the redistribution of the neutron flux due to coordinate transformations. The procedure is verified and tested by selected problems. Possible applications and limits are discussed. (orig.) [de
Bardhan, Jaydeep P
2008-10-14
The importance of molecular electrostatic interactions in aqueous solution has motivated extensive research into physical models and numerical methods for their estimation. The computational costs associated with simulations that include many explicit water molecules have driven the development of implicit-solvent models, with generalized-Born (GB) models among the most popular of these. In this paper, we analyze a boundary-integral equation interpretation for the Coulomb-field approximation (CFA), which plays a central role in most GB models. This interpretation offers new insights into the nature of the CFA, which traditionally has been assessed using only a single point charge in the solute. The boundary-integral interpretation of the CFA allows the use of multiple point charges, or even continuous charge distributions, leading naturally to methods that eliminate the interpolation inaccuracies associated with the Still equation. This approach, which we call boundary-integral-based electrostatic estimation by the CFA (BIBEE/CFA), is most accurate when the molecular charge distribution generates a smooth normal displacement field at the solute-solvent boundary, and CFA-based GB methods perform similarly. Conversely, both methods are least accurate for charge distributions that give rise to rapidly varying or highly localized normal displacement fields. Supporting this analysis are comparisons of the reaction-potential matrices calculated using GB methods and boundary-element-method (BEM) simulations. An approximation similar to BIBEE/CFA exhibits complementary behavior, with superior accuracy for charge distributions that generate rapidly varying normal fields and poorer accuracy for distributions that produce smooth fields. This approximation, BIBEE by preconditioning (BIBEE/P), essentially generates initial guesses for preconditioned Krylov-subspace iterative BEMs. Thus, iterative refinement of the BIBEE/P results recovers the BEM solution; excellent agreement
International Nuclear Information System (INIS)
Martin, P.; Zamudio-Cristi, J.
1982-01-01
A method is described to obtain fractional approximations for linear first order differential equations with polynomial coefficients. This approximation can give good accuracy in a large region of the complex variable plane that may include all the real axis. The parameters of the approximation are solutions of algebraic equations obtained through the coefficients of the highest and lowest power of the variable after the sustitution of the fractional approximation in the differential equation. The method is more general than the asymptotical Pade method, and it is not required to determine the power series or asymptotical expansion. A simple approximation for the exponential integral is found, which give three exact digits for most of the real values of the variable. Approximations of higher accuracy and of the same degree than other authors are also obtained. (Author) [pt
Bhrawy, A. H.; Zaky, M. A.
2015-01-01
In this paper, we propose and analyze an efficient operational formulation of spectral tau method for multi-term time-space fractional differential equation with Dirichlet boundary conditions. The shifted Jacobi operational matrices of Riemann-Liouville fractional integral, left-sided and right-sided Caputo fractional derivatives are presented. By using these operational matrices, we propose a shifted Jacobi tau method for both temporal and spatial discretizations, which allows us to present an efficient spectral method for solving such problem. Furthermore, the error is estimated and the proposed method has reasonable convergence rates in spatial and temporal discretizations. In addition, some known spectral tau approximations can be derived as special cases from our algorithm if we suitably choose the corresponding special cases of Jacobi parameters θ and ϑ. Finally, in order to demonstrate its accuracy, we compare our method with those reported in the literature.
Incompressible Einstein–Maxwell fluids with specified electric fields
Indian Academy of Sciences (India)
The Einstein–Maxwell equations describing static charged spheres with uniform density and variable electric field intensity are studied. The special case of constant electric field is also studied. The evolution of the model is governed by a hypergeometric differential equation which has a general solution in terms of special ...
Quezada de Luna, M.; Farthing, M.; Guermond, J. L.; Kees, C. E.; Popov, B.
2017-12-01
The Shallow Water Equations (SWEs) are popular for modeling non-dispersive incompressible water waves where the horizontal wavelength is much larger than the vertical scales. They can be derived from the incompressible Navier-Stokes equations assuming a constant vertical velocity. The SWEs are important in Geophysical Fluid Dynamics for modeling surface gravity waves in shallow regimes; e.g., in the deep ocean. Some common geophysical applications are the evolution of tsunamis, river flooding and dam breaks, storm surge simulations, atmospheric flows and others. This work is concerned with the approximation of the time-dependent Shallow Water Equations with friction using explicit time stepping and continuous finite elements. The objective is to construct a method that is at least second-order accurate in space and third or higher-order accurate in time, positivity preserving, well-balanced with respect to rest states, well-balanced with respect to steady sliding solutions on inclined planes and robust with respect to dry states. Methods fulfilling the desired goals are common within the finite volume literature. However, to the best of our knowledge, schemes with the above properties are not well developed in the context of continuous finite elements. We start this work based on a finite element method that is second-order accurate in space, positivity preserving and well-balanced with respect to rest states. We extend it by: modifying the artificial viscosity (via the entropy viscosity method) to deal with issues of loss of accuracy around local extrema, considering a singular Manning friction term handled via an explicit discretization under the usual CFL condition, considering a water height regularization that depends on the mesh size and is consistent with the polynomial approximation, reducing dispersive errors introduced by lumping the mass matrix and others. After presenting the details of the method we show numerical tests that demonstrate the well
Rozanova-Pierrat, Anna
2009-01-01
We consider the derivation of the Khokhlov-Zabolotskaya-Kuznetzov (KZK) equation from the nonlinear isentropic Navier-Stokes and Euler systems. The KZK equation is a mathematical model that describes the nonlinear propagation of a finite-amplitude sound pulse in a thermo-viscous medium. The derivation of the KZK equation has to date been based on the paraxial approximation of small perturbations around a given state of the Navier-Stokes system. However, this method does not ...
Chigvintsev, A. Yu; Zorina, I. G.; Noginova, L. Yu; Iosilevskiy, I. L.
2018-01-01
Impressive appearance of discontinuities in equilibrium spatial charge profiles in non-uniform Coulomb systems is under discussions in wide number of thermoelectrostatics problems. Such discontinuities are considered as peculiar micro-level manifestation of phase transitions and intrinsic macro-level non-ideality effects in local equation of state (EOS), which should be used for description of non-ideal ionic subsystem in frames of local-density (or “pseudofluid”, or “jellium” etc) approximation. Such discontinuities were discussed already by the authors for electronic subsystems. Special emphasis is made in present paper on the mentioned above non-ideality effects in non-uniform ionic subsystems, such as micro-ions profile within screening “cloud” around macro-ion in complex (dusty, colloid etc) plasmas, equilibrium charge profile in ionic traps or (and) in the neighborhood vicinity of “charged wall” etc). Multiphase EOS for simplified ionic model of classical charged hard spheres on uniformly compressible electrostatic compensating background was constructed and several illustrative examples of discussed discontinuous ionic profiles were calculated.
Maxwell: A new vision of the world
Maystre, Daniel
2014-05-01
The paper outlines the crucial contributions of James Clerk Maxwell to Physics and more generally to our vision of the world. He achieved 150 years ago a synthesis of the pioneering works in magnetostatics, electrostatics, induction and, by introducing the notion of displacement current, gave birth to Electromagnetics. Then, he deduced the existence of electromagnetic waves and identified light as one of them. Maxwell equations deeply changed a Newtonian conception of the world based on particle interactions by pointing out the vital role of waves in physics. This new conception had a strong influence on the development of quantum physics. Finally, the invariance of light velocity in Galilean frames led to Lorentz transformations, a key step toward the theory of relativity. Par ailleurs, les équations de Maxwell ont profondément changé une conception du monde newtonienne basée sur l'interaction entre particules en révélant le rôle essentiel des ondes en physique, ce qui eut une influence déterminante sur le développement de la physique quantique. Enfin, l'invariance de la vitesse de la lumière dans les repères galiléens a entraîné la découverte des transformations de Lorentz, une étape capitale vers la théorie de la relativité.
Vitanov, Nikolay K.
2011-03-01
We discuss the class of equations ∑i,j=0mAij(u){∂iu}/{∂ti}∂+∑k,l=0nBkl(u){∂ku}/{∂xk}∂=C(u) where Aij( u), Bkl( u) and C( u) are functions of u( x, t) as follows: (i) Aij, Bkl and C are polynomials of u; or (ii) Aij, Bkl and C can be reduced to polynomials of u by means of Taylor series for small values of u. For these two cases the above-mentioned class of equations consists of nonlinear PDEs with polynomial nonlinearities. We show that the modified method of simplest equation is powerful tool for obtaining exact traveling-wave solution of this class of equations. The balance equations for the sub-class of traveling-wave solutions of the investigated class of equations are obtained. We illustrate the method by obtaining exact traveling-wave solutions (i) of the Swift-Hohenberg equation and (ii) of the generalized Rayleigh equation for the cases when the extended tanh-equation or the equations of Bernoulli and Riccati are used as simplest equations.
International Nuclear Information System (INIS)
Kadri, M.
1983-01-01
The time dependent heat conduction equation in the x-y Cartesian geometry is formulated in terms of a nine-point finite difference relation using a Taylor series expansion technique. The accuracy of the nine-point formulation over the five-point formulation has been tested and evaluated for various reactor fuel-cladding plate configurations using a computer program. The results have been checked against analytical solutions for various model problems. The following cases were considered in the steady-state condition: (a) The thermal conductivity and the heat generation were uniform. (b) The thermal conductivity was constant, the heat generation variable. (c) The thermal conductivity varied linearly with the temperature, the heat generation was uniform. (d) Both thermal conductivity and heat generation vary. In case (a), approximately, for the same accuracy, 85% fewer grid points were needed for the nine-point relation which has a 14% higher convergence rate as compared to the five-point relation. In case (b), on the average, 84% fewer grid points were needed for the nine-point relation which has a 65% higher convergence rate as compared to the five-point relation. In case (c) and (d), there is significant accuracy (91% higher than the five-point relation) for the nine-point relation when a worse grid was used. The numerical solution of the nine-point formula in the time dependent case was also more accurate and converges faster than the numerical solution of the five-point formula for all comparative tests related to heat conduction problems in a nuclear fuel element
Longair, Malcolm
2016-07-01
Preface; Acknowledgements; Figure credits; Part I. To 1874: 1. Physics in the nineteenth century; 2. Mathematics and physics in Cambridge in the nineteenth century; Part II. 1874 to 1879: 3. The Maxwell era; Part III. 1879 to 1884: 4. Rayleigh's Quinquennium; Part IV. 1884 to 1919: 5. The challenges facing J. J. Thomson; 6. The J. J. Thomson era, 1884-1900 - the electron; 7. The Thomson era, 1900-19 - atomic structure; Part V. 1919 to 1937: 8. Rutherford at McGill and Manchester Universities - new challenges in Cambridge; 9. The Rutherford era - the radioactivists; 10. Rutherford era - the seeds of the new physics; Part VI. 1938 to 1953: 11. Bragg and the war years; 12. Bragg and the post-war years; Part VII. 1953 to 1971: 13. The Mott era - an epoch of expansion; 14. The Mott era - radio astronomy and high energy physics; 15. The Mott era - the growth of condensed matter physics; Part VIII. 1971 to 1982: 16. The Pippard era - a new laboratory and a new vision; 17. The Pippard era - radio astronomy, high energy physics and laboratory astrophysics; 18. The Pippard era - condensed matter physics; Part IX. 1984 to 1995: 19. The Edwards era - a new epoch of expansion; 20. The Edwards era - new directions in condensed matter physics; 21. The Edwards era - high energy physics and radio astronomy; Part X. 1995 to present: 22. Towards the new millennium and beyond; 23. The evolution of the New Museums site; Notes; Bibliography; Author index; Index.
International Nuclear Information System (INIS)
Tarvainen, Tanja; Vauhkonen, Marko; Kolehmainen, Ville; Arridge, Simon R; Kaipio, Jari P
2005-01-01
In this paper, a coupled radiative transfer equation and diffusion approximation model is extended for light propagation in turbid medium with low-scattering and non-scattering regions. The light propagation is modelled with the radiative transfer equation in sub-domains in which the assumptions of the diffusion approximation are not valid. The diffusion approximation is used elsewhere in the domain. The two equations are coupled through their boundary conditions and they are solved simultaneously using the finite element method. The streamline diffusion modification is used to avoid the ray-effect problem in the finite element solution of the radiative transfer equation. The proposed method is tested with simulations. The results of the coupled model are compared with the finite element solutions of the radiative transfer equation and the diffusion approximation and with results of Monte Carlo simulation. The results show that the coupled model can be used to describe photon migration in turbid medium with low-scattering and non-scattering regions more accurately than the conventional diffusion model
International Nuclear Information System (INIS)
Strinati, G.C.; Pieri, P.
2004-01-01
The linear response to a space- and time-dependent external disturbance of a system of dilute condensed composite bosons at zero temperature, as obtained from the linearized version of the time-dependent Gross-Pitaevskii equation, is shown to result also from the strong-coupling limit of the time-dependent BCS (or broken-symmetry random-phase) approximation for the constituent fermions subject to the same external disturbance. In this way, it is possible to connect excited-state properties of the bosonic and fermionic systems by placing the Gross-Pitaevskii equation in perspective with the corresponding fermionic approximations
International Nuclear Information System (INIS)
Didyk, A.Yu.; Altynov, V.A.; Wisniewski, R.
2009-01-01
The numerical analysis of practically all existing formulae such as expansion series, Tait, logarithm, Van der Waals and virial equations for interpolation of experimental molar volumes versus high pressure was carried out. One can conclude that extrapolating dependences of molar volumes versus pressure and temperature can be valid. It was shown that virial equations can be used for fitting experimental data at relatively low pressures P<3 kbar too in distinction to other equations. Direct solving of a linear equation of the third order relatively to volume using extrapolated virial coefficients allows us to obtain good agreement between existing experimental data for high pressure and calculated values
International Nuclear Information System (INIS)
Aboanber, A E; Nahla, A A
2002-01-01
A method based on the Pade approximations is applied to the solution of the point kinetics equations with a time varying reactivity. The technique consists of treating explicitly the roots of the inhour formula. A significant improvement has been observed by treating explicitly the most dominant roots of the inhour equation, which usually would make the Pade approximation inaccurate. Also the analytical inversion method which permits a fast inversion of polynomials of the point kinetics matrix is applied to the Pade approximations. Results are presented for several cases of Pade approximations using various options of the method with different types of reactivity. The formalism is applicable equally well to non-linear problems, where the reactivity depends on the neutron density through temperature feedback. It was evident that the presented method is particularly good for cases in which the reactivity can be represented by a series of steps and performed quite well for more general cases
Singular limits of the equations of magnetohydrodynamics
Czech Academy of Sciences Publication Activity Database
Kukučka, Peter
2011-01-01
Roč. 13, č. 2 (2011), s. 173-189 ISSN 1422-6928 R&D Projects: GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : Navier-Stokes-Fourier system * Oberbeck -Boussinesq approximation * Maxwell equations Subject RIV: BA - General Mathematics Impact factor: 0.768, year: 2011 http://www.springerlink.com/content/e14w1h5x188142n6/
Energy Technology Data Exchange (ETDEWEB)
Lim, T.
2011-04-28
To simulate numerically a non-destructive by eddy current testing (NDT-CF), the sensor response can be modeled through a semi-analytical approach by volume integral equations. Faster than the finite element method, this approach is however restricted to the study of plane or cylindrical parts (without taking into account the edge effects) because of the complexity of the expression of the dyadic Green function for more general configurations. However, there is an industrial demand to extend the capabilities of the CF model in complex configurations (deformed plates, edges effects...). We were thus brought to formulate the electromagnetic problem differently, by setting ourselves the goal of maintaining a semi-analytical approach. The surface integral equation (SIE) expresses the volume problem by an equivalent transmission one at the interfaces (2D) between homogeneous sub-domains. This problem is approached by a linear system (by the method of moments), whose number of unknowns is reduced due to the nature of the surfacic mesh. Therefore, this system can be solved by a direct solver for small configurations. That enabled us to treat several various positions of the sensor for only one inversion of the impedance matrix. The numerical results obtained using this formulation involve plates with consideration of edge effects such as edge and corner. They are consistent with results obtained by the finite element method. For larger configurations, we conducted a preliminary study for the adaptation of an acceleration method of the matrix vector product involved in an iterative solver (fast multipole method or FMM) to define the conditions under which the FMM calculation works correctly (accuracy, convergence...) in the NDT's domain. A special attention has been given to the choice of basis functions (which have to satisfy an Hdiv conforming property) and on the evaluation of near interactions (which are weakly singular). (author) [French] Pour simuler
DEFF Research Database (Denmark)
Costa, Rafael S.; Machado, Daniel; Rocha, Isabel
2010-01-01
, represent nowadays the limiting factor in the construction of such models. In this study, we compare four alternative modeling approaches based on Michaelis–Menten kinetics for the bi-molecular reactions and different types of simplified rate equations for the remaining reactions (generalized mass action......The construction of dynamic metabolic models at reaction network level requires the use of mechanistic enzymatic rate equations that comprise a large number of parameters. The lack of knowledge on these equations and the difficulty in the experimental identification of their associated parameters...
Quiney, H. M.; Glushkov, V. N.; Wilson, S.; Sabin,; Brandas, E
2001-01-01
A comparison is made of the accuracy achieved in finite difference and finite basis set approximations to the Dirac equation for the ground state of the hydrogen molecular ion. The finite basis set calculations are carried out using a distributed basis set of Gaussian functions the exponents and
International Nuclear Information System (INIS)
Lyczkowski, R.W.; Gidaspow, D.; Solbrig, C.W.; Hughes, E.D.
1975-01-01
Equation systems describing one-dimensional, transient, two-phase flow with separate continuity, momentum, and energy equations for each phase are classified by use of the method of characteristics. Little attempt is made to justify the physics of these equations. Many of the equation systems possess complex-valued characteristics and hence, according to well-known mathematical theorems, are not well-posed as initial-value problems (IVPs). Real-valued characteristics are necessary but not sufficient to insure well-posedness. In the absence of lower order source or sink terms (potential type flows), which can affect the well-posedness of IVPs, the complex characteristics associated with these two-phase flow equations imply unbounded exponential growth for disturbances of all wavelengths. Analytical and numerical examples show that the ill-posedness of IVPs for the two-phase flow partial differential equations which possess complex characteristics produce unstable numerical schemes. These unstable numerical schemes can produce apparently stable and even accurate results if the growth rate resulting from the complex characteristics remains small throughout the time span of the numerical experiment or if sufficient numerical damping is present for the increment size used. Other examples show that clearly nonphysical numerical instabilities resulting from the complex characteristics can be produced. These latter types of numerical instabilities are shown to be removed by the addition of physically motivated differential terms which eliminate the complex characteristics. (auth)
Maxwell fields and shear-free null geodesic congruences
International Nuclear Information System (INIS)
Newman, Ezra T
2004-01-01
We study and report on the class of vacuum Maxwell fields in Minkowski space that possess a non-degenerate, diverging, principal null vector field (null eigenvector field of the Maxwell tensor) that is tangent to a shear-free null geodesics congruence. These congruences can be either surface forming (the tangent vectors being proportional to gradients) or not, i.e., the twisting congruences. In the non-twisting case, the associated Maxwell fields are precisely the Lienard-Wiechert fields, i.e., those Maxwell fields arising from an electric monopole moving on an arbitrary worldline. The null geodesic congruence is given by the generators of the light-cones with apex on the worldline. The twisting case is much richer, more interesting and far more complicated. In a twisting subcase, where our main interests lie, the following strange interpretation can be given. If we allow the real Minkowski space to be complexified so that the real Minkowski coordinates x a take complex values, i.e., x a → z a = x a + iy a with complex metric g η ab dz a dz b , the real vacuum Maxwell equations can be extended into the complex space and rewritten as curl W=i W radical, div W=0 with W=E+iB. This subcase of Maxwell fields can then be extended into the complex space so as to have as source, a complex analytic worldline, i.e., to now become complex Lienard-Wiechart fields. When viewed as real fields on the real Minkowski space (z a = x a ), they possess a real principal null vector that is shear-free but twisting and diverging. The twist is a measure of how far the complex worldline is from the real 'slice'. Most Maxwell fields in this subcase are asymptotically flat with a time-varying set of electric and magnetic moments, all depending on the complex displacements and the complex velocities
International Nuclear Information System (INIS)
Lehtikangas, O.; Tarvainen, T.; Kim, A.D.; Arridge, S.R.
2015-01-01
The radiative transport equation can be used as a light transport model in a medium with scattering particles, such as biological tissues. In the radiative transport equation, the refractive index is assumed to be constant within the medium. However, in biomedical media, changes in the refractive index can occur between different tissue types. In this work, light propagation in a medium with piece-wise constant refractive index is considered. Light propagation in each sub-domain with a constant refractive index is modeled using the radiative transport equation and the equations are coupled using boundary conditions describing Fresnel reflection and refraction phenomena on the interfaces between the sub-domains. The resulting coupled system of radiative transport equations is numerically solved using a finite element method. The approach is tested with simulations. The results show that this coupled system describes light propagation accurately through comparison with the Monte Carlo method. It is also shown that neglecting the internal changes of the refractive index can lead to erroneous boundary measurements of scattered light
Mroz, T A
1999-10-01
This paper contains a Monte Carlo evaluation of estimators used to control for endogeneity of dummy explanatory variables in continuous outcome regression models. When the true model has bivariate normal disturbances, estimators using discrete factor approximations compare favorably to efficient estimators in terms of precision and bias; these approximation estimators dominate all the other estimators examined when the disturbances are non-normal. The experiments also indicate that one should liberally add points of support to the discrete factor distribution. The paper concludes with an application of the discrete factor approximation to the estimation of the impact of marriage on wages.
James Clerk Maxwell perspectives on his life and work
McCartney, Mark; Whitaker, Andrew
2014-01-01
James Clerk Maxwell (1831-1879) had a relatively brief, but remarkable life, lived in his beloved rural home of Glenlair, and variously in Edinburgh, Aberdeen, London and Cambridge. His scholarship also ranged wide - covering all the major aspects of Victorian natural philosophy. He was one of the most important mathematical physicists of all time, coming only after Newton and Einstein. In scientific terms his immortality is enshrined in electromagnetism and Maxwell's equations, but as this book shows, there was much more to Maxwell than electromagnetism, both in terms of his science and his wider life. Maxwell's life and contributions to science are so rich that they demand the expertise of a range of academics - physicists, mathematicians, and historians of science and literature - to do him justice. The various chapters will enable Maxwell to be seen from a range of perspectives. Chapters 1 to 4 deal with wider aspects of his life in time and place, at Aberdeen, King's College London and the Cavendish Labo...
Majumdar-Papapetrou class of nonstatic cylindrically symmetric Brans-Dicke-Maxwell fields
International Nuclear Information System (INIS)
Tiwari, R.N.; Rao, P.P.
1979-01-01
Relations have been obtained between certain components of the metric and the electromagnetic potentials for source-free Brans-Dicke-Maxwell fields described by a nonstatic cylindrically symmetric Einstein-Rosen metric. These are important, in the sense that they generate a class of solutions that in a way can be said to belong to the class generated by similar relations obtained by Majumdar (Phys. Rev.; 72: 390 (1947)) and Papapetrou (Proc. R. Ir. Acad. Sect. A.; 51: 191 (1947)) for generalized static Einstein-Maxwell fields. The relations have further been used to reduce the B-D Maxwell equations to B-D vacuum equations and vice versa. (author)
International Nuclear Information System (INIS)
Hadad, Kamal; Pirouzmand, Ahmad; Ayoobian, Navid
2008-01-01
This paper describes the application of a multilayer cellular neural network (CNN) to model and solve the time dependent one-speed neutron transport equation in slab geometry. We use a neutron angular flux in terms of the Chebyshev polynomials (T N ) of the first kind and then we attempt to implement the equations in an equivalent electrical circuit. We apply this equivalent circuit to analyze the T N moments equation in a uniform finite slab using Marshak type vacuum boundary condition. The validity of the CNN results is evaluated with numerical solution of the steady state T N moments equations by MATLAB. Steady state, as well as transient simulations, shows a very good comparison between the two methods. We used our CNN model to simulate space-time response of total flux and its moments for various c (where c is the mean number of secondary neutrons per collision). The complete algorithm could be implemented using very large-scale integrated circuit (VLSI) circuitry. The efficiency of the calculation method makes it useful for neutron transport calculations
International Nuclear Information System (INIS)
Pirouzmand, Ahmad; Hadad, Kamal
2012-01-01
Highlights: ► This paper describes the solution of time-dependent neutron transport equation. ► We use a novel method based on cellular neural networks (CNNs) coupled with the spherical harmonics method. ► We apply the CNN model to simulate step and ramp perturbation transients in a core. ► The accuracy and capabilities of the CNN model are examined for x–y geometry. - Abstract: In an earlier paper we utilized a novel method using cellular neural networks (CNNs) coupled with spherical harmonics method to solve the steady state neutron transport equation in x–y geometry. Here, the previous work is extended to the study of time-dependent neutron transport equation. To achieve this goal, an equivalent electrical circuit based on a second-order form of time-dependent neutron transport equation and one equivalent group of neutron precursor density is obtained by the CNN method. The CNN model is used to simulate step and ramp perturbation transients in a typical 2D core.
Comparing Teaching Approaches About Maxwell's Displacement Current
Karam, Ricardo; Coimbra, Debora; Pietrocola, Maurício
2014-08-01
Due to its fundamental role for the consolidation of Maxwell's equations, the displacement current is one of the most important topics of any introductory course on electromagnetism. Moreover, this episode is widely used by historians and philosophers of science as a case study to investigate several issues (e.g. the theory-experiment relationship). Despite the consensus among physics educators concerning the relevance of the topic, there are many possible ways to interpret and justify the need for the displacement current term. With the goal of understanding the didactical transposition of this topic more deeply, we investigate three of its domains: (1) The historical development of Maxwell's reasoning; (2) Different approaches to justify the term insertion in physics textbooks; and (3) Four lectures devoted to introduce the topic in undergraduate level given by four different professors. By reflecting on the differences between these three domains, significant evidence for the knowledge transformation caused by the didactization of this episode is provided. The main purpose of this comparative analysis is to assist physics educators in developing an epistemological surveillance regarding the teaching and learning of the displacement current.
Malik, G P
2016-01-01
Given the Debye temperature of an elemental superconductor (SC) and its Tc, BCS theory enables one to predict the value of its gap 0 at T = 0, or vice versa. This monograph shows that non-elemental SCs can be similarly dealt with via the generalized BCS equations (GBCSEs) which, given any two parameters of the set {Tc, 10, 20 > 10}, enable one to predict the third. Also given herein are new equations for the critical magnetic field and critical current density of an elemental and a non-elemental SC — equations that are derived directly from those that govern pairing in them. The monograph includes topics that are usually not covered in any one text on superconductivity, e.g., BCS-BEC crossover physics, the long-standing puzzle posed by SrTiO3, and heavy-fermion superconductors — all of which are still imperfectly understood and therefore continue to avidly engage theoreticians. It suggests that addressing the Tcs, s and other properties (e.g., number densities of charge carriers) of high-Tc SCs via GBCSE...
Gai, Litao; Bilige, Sudao; Jie, Yingmo
2016-01-01
In this paper, we successfully obtained the exact solutions and the approximate analytic solutions of the (2 + 1)-dimensional KP equation based on the Lie symmetry, the extended tanh method and the homotopy perturbation method. In first part, we obtained the symmetries of the (2 + 1)-dimensional KP equation based on the Wu-differential characteristic set algorithm and reduced it. In the second part, we constructed the abundant exact travelling wave solutions by using the extended tanh method. These solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions respectively. It should be noted that when the parameters are taken as special values, some solitary wave solutions are derived from the hyperbolic function solutions. Finally, we apply the homotopy perturbation method to obtain the approximate analytic solutions based on four kinds of initial conditions.
21 CFR 886.1435 - Maxwell spot.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Maxwell spot. 886.1435 Section 886.1435 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1435 Maxwell spot. (a) Identification. A Maxwell spot is an AC...
Moraes Rêgo, Patrícia Helena; Viana da Fonseca Neto, João; Ferreira, Ernesto M.
2015-08-01
The main focus of this article is to present a proposal to solve, via UDUT factorisation, the convergence and numerical stability problems that are related to the covariance matrix ill-conditioning of the recursive least squares (RLS) approach for online approximations of the algebraic Riccati equation (ARE) solution associated with the discrete linear quadratic regulator (DLQR) problem formulated in the actor-critic reinforcement learning and approximate dynamic programming context. The parameterisations of the Bellman equation, utility function and dynamic system as well as the algebra of Kronecker product assemble a framework for the solution of the DLQR problem. The condition number and the positivity parameter of the covariance matrix are associated with statistical metrics for evaluating the approximation performance of the ARE solution via RLS-based estimators. The performance of RLS approximators is also evaluated in terms of consistence and polarisation when associated with reinforcement learning methods. The used methodology contemplates realisations of online designs for DLQR controllers that is evaluated in a multivariable dynamic system model.
International Nuclear Information System (INIS)
Ceolin, C.; Schramm, M.; Bodmann, B.E.J.; Vilhena, M.T.
2015-01-01
Recently the stationary neutron diffusion equation in heterogeneous rectangular geometry was solved by the expansion of the scalar fluxes in polynomials in terms of the spatial variables (x; y), considering the two-group energy model. The focus of the present discussion consists in the study of an error analysis of the aforementioned solution. More specifically we show how the spatial subdomain segmentation is related to the degree of the polynomial and the Lipschitz constant. This relation allows to solve the 2-D neutron diffusion problem for second degree polynomials in each subdomain. This solution is exact at the knots where the Lipschitz cone is centered. Moreover, the solution has an analytical representation in each subdomain with supremum and infimum functions that shows the convergence of the solution. We illustrate the analysis with a selection of numerical case studies. (author)
Energy Technology Data Exchange (ETDEWEB)
Ceolin, C., E-mail: celina.ceolin@gmail.com [Universidade Federal de Santa Maria (UFSM), Frederico Westphalen, RS (Brazil). Centro de Educacao Superior Norte; Schramm, M.; Bodmann, B.E.J.; Vilhena, M.T., E-mail: celina.ceolin@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica
2015-07-01
Recently the stationary neutron diffusion equation in heterogeneous rectangular geometry was solved by the expansion of the scalar fluxes in polynomials in terms of the spatial variables (x; y), considering the two-group energy model. The focus of the present discussion consists in the study of an error analysis of the aforementioned solution. More specifically we show how the spatial subdomain segmentation is related to the degree of the polynomial and the Lipschitz constant. This relation allows to solve the 2-D neutron diffusion problem for second degree polynomials in each subdomain. This solution is exact at the knots where the Lipschitz cone is centered. Moreover, the solution has an analytical representation in each subdomain with supremum and infimum functions that shows the convergence of the solution. We illustrate the analysis with a selection of numerical case studies. (author)